Sample records for gas composition monitor

  1. Composition for absorbing hydrogen from gas mixtures

    DOE Patents [OSTI]

    Heung, Leung K. (Aiken, SC); Wicks, George G. (Aiken, SC); Lee, Myung W. (Aiken, SC)

    1999-01-01T23:59:59.000Z

    A hydrogen storage composition is provided which defines a physical sol-gel matrix having an average pore size of less than 3.5 angstroms which effectively excludes gaseous metal hydride poisons while permitting hydrogen gas to enter. The composition is useful for separating hydrogen gas from diverse gas streams which may have contaminants that would otherwise render the hydrogen absorbing material inactive.

  2. Health monitoring method for composite materials

    DOE Patents [OSTI]

    Watkins, Jr., Kenneth S. (Dahlonega, GA); Morris, Shelby J. (Hampton, VA)

    2011-04-12T23:59:59.000Z

    An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.

  3. Automated soil gas monitoring chamber

    DOE Patents [OSTI]

    Edwards, Nelson T.; Riggs, Jeffery S.

    2003-07-29T23:59:59.000Z

    A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.

  4. Apparatus and method for monitoring of gas having stable isotopes

    DOE Patents [OSTI]

    Clegg, Samuel M; Fessenden-Rahn, Julianna E

    2013-03-05T23:59:59.000Z

    Gas having stable isotopes is monitored continuously by using a system that sends a modulated laser beam to the gas and collects and transmits the light not absorbed by the gas to a detector. Gas from geological storage, or from the atmosphere can be monitored continuously without collecting samples and transporting them to a lab.

  5. Structural Health Monitoring of Smart Composite Material by Acoustic Emission

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Structural Health Monitoring of Smart Composite Material by Acoustic Emission S. Masmoudia , A. El composite structures gives the opportunity to develop smart materials for health monitoring systems and structural health monitoring [1, 3]. Several studies [5, 6] were carried for the development of non

  6. Gas treating process and composition

    SciTech Connect (OSTI)

    Byers, D.L.

    1989-06-20T23:59:59.000Z

    This patent describes a process for the removal of H/sub 2/S from a sour gaseous stream. The process consists of: (a) contacting the sour gaseous stream in a contacting zone with an aqueous reaction solution, at a temperature not greater than about 160{sup 0}C, the reaction solution comprising an effective amount of vanadium V-containing ions to oxidize H/sub 2/S to elemental sulfur and being substantially free of anthraquinone disulfonate, and producing a sweet gas stream and an aqueous solution having a pH of 8-11 and containing sulfur and vanadium IV-containing ions, the reaction solution further comprising an amount of phosphate ions sufficient to provide a molar ratio of phosphate ions to vanadium IV-containing ions produced in solution of at least 0.1; (b) removing sulfur from the aqueous solution, producing an aqueous solution having reduced sulfur content; (c) regenerating aqueous solution having reduced sulfur content in a regenerating zone and producing regenerated reactant in the solution; and (d) returning regenerated solution from step (c) to the contacting zone for use as aqueous reaction solution therein.

  7. Ceramic oxide composite hot gas filters

    SciTech Connect (OSTI)

    Wagner, R.A.; Weitzel, P. [Babcock and Wilcox, Lynchburg, VA (United States)

    1996-12-31T23:59:59.000Z

    This paper describes the development and testing of continuous fiber ceramic composites (CFCC) based hot gas filters. The work was divided into three primary tasks. In the first task, a preliminary set of compositions was fabricated in the form of open end tubes and characterized. The results of the first task were then used to identify the most promising compositions for sub-scale fabrication and testing. In addition to laboratory measurements of permeability and strength, exposure testing in a coal combustion environment was performed to assess the thermo-chemical stability of the CFCC materials. The results of this testing were used to down-select the filter composition for full-scale filter fabrication and testing in the third phase of the program.

  8. Oxygen sensor for monitoring gas mixtures containing hydrocarbons

    DOE Patents [OSTI]

    Ruka, R.J.; Basel, R.A.

    1996-03-12T23:59:59.000Z

    A gas sensor measures O{sub 2} content of a reformable monitored gas containing hydrocarbons, H{sub 2}O and/or CO{sub 2}, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system. 4 figs.

  9. Oxygen sensor for monitoring gas mixtures containing hydrocarbons

    DOE Patents [OSTI]

    Ruka, Roswell J. (Pittsburgh, PA); Basel, Richard A. (Pittsburgh, PA)

    1996-01-01T23:59:59.000Z

    A gas sensor measures O.sub.2 content of a reformable monitored gas containing hydrocarbons H.sub.2 O and/or CO.sub.2, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system.

  10. Natural Gas Pipeline Research: Best Practices in Monitoring Technology

    E-Print Network [OSTI]

    Natural Gas Pipeline Research: Best Practices in Monitoring Technology Energy Systems Research/index.html January 2012 The Issue California is the secondlargest natural gas consuming state in the United States, just behind Texas. About 85% of the natural gas consumed in California is delivered on interstate

  11. Operating Experience Review of the INL HTE Gas Monitoring System

    SciTech Connect (OSTI)

    L. C. Cadwallader; K. G. DeWall

    2010-06-01T23:59:59.000Z

    This paper describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored at hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and unwanted alarms are described. The calibration session time durations are described. Some simple statistics are given for the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

  12. Embedded Sensor Array Development for Composite Structure Integrity Monitoring

    SciTech Connect (OSTI)

    Kumar, A.; Bryan, W. L.; Clonts, L. G.; Franks, S.

    2007-06-26T23:59:59.000Z

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the "Contractor") and Accellent Technologies, Inc. (the "Participant") was for the development of an embedded ultrasonic sensor system for composite structure integrity monitoring.

  13. Hydrogen and Oxygen Gas Monitoring System Design and Operation

    SciTech Connect (OSTI)

    Lee C. Cadwallader; Kevin G. DeWall; J. Stephen Herring

    2007-06-01T23:59:59.000Z

    This paper describes pertinent design practices of selecting types of monitors, monitor unit placement, setpoint selection, and maintenance considerations for gas monitors. While hydrogen gas monitors and enriched oxygen atmosphere monitors as they would be needed for hydrogen production experiments are the primary focus of this paper, monitors for carbon monoxide and carbon dioxide are also discussed. The experiences of designing, installing, and calibrating gas monitors for a laboratory where experiments in support of the DOE Nuclear Hydrogen Initiative (NHI) are described along with codes, standards, and regulations for these monitors. Information from the literature about best operating practices is also presented. The NHI program has two types of activities. The first, near-term activity is laboratory and pilot-plant experimentation with different processes in the kilogram per day scale to select the most promising types of processes for future applications of hydrogen production. Prudent design calls for indoor gas monitors to sense any hydrogen leaks within these laboratory rooms. The second, longer-term activity is the prototype, or large-scale plants to produce tons of hydrogen per day. These large, outdoor production plants will require area (or “fencepost”) monitoring of hydrogen gas leaks. Some processes will have oxygen production with hydrogen production, and any oxygen releases are also safety concerns since oxygen gas is the strongest oxidizer. Monitoring of these gases is important for personnel safety of both indoor and outdoor experiments. There is some guidance available about proper placement of monitors. The fixed point, stationary monitor can only function if the intruding gas contacts the monitor. Therefore, monitor placement is vital to proper monitoring of the room or area. Factors in sensor location selection include: indoor or outdoor site, the location and nature of potential vapor/gas sources, chemical and physical data of the gases or vapors, liquids with volatility need sensors near the potential sources of release, nature and concentration of gas releases, natural and mechanical ventilation, detector installation locations not vulnerable to mechanical or water damage from normal operations, and locations that lend themselves to convenient maintenance and calibration. The guidance also states that sensors should be located in all areas where hazardous accumulations of gas may occur. Such areas might not be close to release points but might be areas with restricted air movement. Heavier than air gases are likely to accumulate in pits, trenches, drains, and other low areas. Lighter than air gases are more likely to accumulate in overhead spaces, above drop ceilings, etc. In general, sensors should be located close to any potential sources of major release of gas. The paper gives data on monitor sensitivity and expected lifetimes to support the monitor selection process. Proper selection of indoor and outdoor locations for monitors is described, accounting for the vapor densities of hydrogen and oxygen. The latest information on monitor alarm setpoint selection is presented. Typically, monitors require recalibration at least every six months, or more frequently for inhospitable locations, so ready access to the monitors is an important issue to consider in monitor siting. Gas monitors, depending on their type, can be susceptible to blockages of the detector element (i.e., dus

  14. Variations in dissolved gas compositions of reservoir fluids...

    Open Energy Info (EERE)

    from the Coso geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Variations in dissolved gas compositions of reservoir...

  15. Gas Composition Transients in the Cold Vacuum Drying (CVD) Facility

    SciTech Connect (OSTI)

    PACKER, M.J.

    1999-07-01T23:59:59.000Z

    Calculations with plotted results presented as confirmation bases for selected problems involving the prediction of transient gas compositions during Cold Vacuum Drying Operations.

  16. Composition monitoring of electron beam melting processes using diode lasers

    SciTech Connect (OSTI)

    Berzins, L.V.

    1991-11-20T23:59:59.000Z

    Electron beam melting processes are used to produce high purity alloys for a wide range of applications. Real time monitoring of the alloy constituents, however, has historically been difficult. Absorption spectroscopy using diode lasers provides a means for measuring constituent densities, and hence alloy composition, in real time. Diode lasers are suggested because they are inexpensive and require little maintenance. There is increasing interest in the composition and quality control of titanium alloys used in aircraft parts. For this reason we describe a proposed system for composition monitoring of titanium alloys. Performance and cost of the proposed system is addressed. We discuss the applicability of this approach to other alloys.

  17. Indirect Gas Species Monitoring Using Tunable Diode Lasers

    DOE Patents [OSTI]

    Von Drasek, William A. (Oak Forest, IL); Saucedo, Victor M. (Willowbrook, IL)

    2005-02-22T23:59:59.000Z

    A method for indirect gas species monitoring based on measurements of selected gas species is disclosed. In situ absorption measurements of combustion species are used for process control and optimization. The gas species accessible by near or mid-IR techniques are limited to species that absorb in this spectral region. The absorption strength is selected to be strong enough for the required sensitivity and is selected to be isolated from neighboring absorption transitions. By coupling the gas measurement with a software sensor gas, species not accessible from the near or mid-IR absorption measurement can be predicted.

  18. Operating experience review of an INL gas monitoring system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cadwallader, Lee C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); DeWall, K. G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Herring, J. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01T23:59:59.000Z

    This article describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored in the lab room are hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and both actual and unwanted alarms are described. The calibration session time durations are described. Some simple calculations are given to estimate the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

  19. Monitoring and analyzing waste glass compositions

    DOE Patents [OSTI]

    Schumacher, Ray F. (Aiken, SC)

    1994-01-01T23:59:59.000Z

    A device and method for determining the viscosity of a fluid, preferably molten glass. The apparatus and method uses the velocity of rising bubbles, preferably helium bubbles, within the molten glass to determine the viscosity of the molten glass. The bubbles are released from a tube positioned below the surface of the molten glass so that the bubbles pass successively between two sets of electrodes, one above the other, that are continuously monitoring the conductivity of the molten glass. The measured conductivity will change as a bubble passes between the electrodes enabling an accurate determination of when a bubble has passed between the electrodes. The velocity of rising bubbles can be determined from the time interval between a change in conductivity of the first electrode pair and the second, upper electrode pair. The velocity of the rise of the bubbles in the glass melt is used in conjunction with other physical characteristics, obtained by known methods, to determine the viscosity of the glass melt fluid and, hence, glass quality.

  20. Monitoring and analyzing waste glass compositions

    DOE Patents [OSTI]

    Schumacher, R.F.

    1994-03-01T23:59:59.000Z

    A device and method are described for determining the viscosity of a fluid, preferably molten glass. The apparatus and method use the velocity of rising bubbles, preferably helium bubbles, within the molten glass to determine the viscosity of the molten glass. The bubbles are released from a tube positioned below the surface of the molten glass so that the bubbles pass successively between two sets of electrodes, one above the other, that are continuously monitoring the conductivity of the molten glass. The measured conductivity will change as a bubble passes between the electrodes enabling an accurate determination of when a bubble has passed between the electrodes. The velocity of rising bubbles can be determined from the time interval between a change in conductivity of the first electrode pair and the second, upper electrode pair. The velocity of the rise of the bubbles in the glass melt is used in conjunction with other physical characteristics, obtained by known methods, to determine the viscosity of the glass melt fluid and, hence, glass quality. 2 figures.

  1. Development of self-monitoring structural composites with integrated sensing networks

    E-Print Network [OSTI]

    Huang, Yi

    2008-01-01T23:59:59.000Z

    A review of structural health monitoring literature: 1996-A Review", Structural Health Monitoring, Vol.3 (4), 355-377.Web-based structural health monitoring of a FRP composite

  2. MONITORING OF GAS TURBINE OPERATING PARAMETERS USING ACOUSTIC EMISSION

    E-Print Network [OSTI]

    R M Douglas; S Beugné; M D Jenkins; A K Frances; J A Steel; R L Reuben; P A Kew

    In this work, Acoustic Emission (AE) sensors were mounted on several parts of a laboratory-scale gas turbine operating under various conditions, the object being to assess the value of AE for inservice condition monitoring. The turbine unit comprised a gas generator (compressor and turbine on a common shaft) and a free-power turbine for power extraction. AE was acquired from several sensor positions on the external surfaces of the equipment over a range of gas generator running speeds. Relationships between parameters derived from the acquired AE signals and the running conditions are discussed. It is shown that the compressor impeller blade passing frequency is discernible in the AE record, allowing shaft speed to be obtained, and presenting a significant blade monitoring opportunity. Further studies permit a trend to be established between the energy contained in the AE signal and the turbine running speed. In order to study the effects of damaged rotor blades a fault was simulated in opposing blades of the free-power turbine and run again under the previous conditions. Also, the effect of an additional AE source, occurring due to abnormal operation in the gas generator area (likely rubbing), is shown to produce deviations from that expected during normal operation. The findings suggest that many aspects of the machine condition can be monitored.

  3. COMPOSITION OF LOW-REDSHIFT HALO GAS

    SciTech Connect (OSTI)

    Cen Renyue, E-mail: cen@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States)

    2013-06-20T23:59:59.000Z

    Halo gas in low-z (z < 0.5) {>=}0.1 L{sub *} galaxies in high-resolution, large-scale cosmological hydrodynamic simulations is examined with respect to three components: cold, warm, and hot with temperatures of <10{sup 5}, 10{sup 5-6}, and >10{sup 6} K, respectively. Utilizing O VI {lambda}{lambda}1032, 1038 absorption lines, the warm component is compared to observations, and agreement is found with respect to the galaxy-O VI line correlation, the ratio of the O VI line incidence rate in blue to red galaxies, and the amount of O VI mass in star-forming galaxies. A detailed account of the sources of warm halo gas (stellar feedback heating, gravitational shock heating, and accretion from the intergalactic medium), inflowing and outflowing warm halo gas metallicity disparities, and their dependencies on galaxy types and environment is also presented. With the warm component securely anchored, our simulations make the following additional predictions. First, cold gas is the primary component in inner regions with its mass comprising 50% of all gas within galactocentric radius r = (30, 150) kpc in (red, blue) galaxies. Second, at r > (30, 200) kpc in (red, blue) galaxies the hot component becomes the majority. Third, the warm component is a perpetual minority, with its contribution peaking at {approx}30% at r = 100-300 kpc in blue galaxies and never exceeding 5% in red galaxies. The significant amount of cold gas in low-z early-type galaxies, which was found in simulations and in agreement with recent observations (Thom et al.), is intriguing, as is the dominance of hot gas at large radii in blue galaxies.

  4. New generation enrichment monitoring technology for gas centrifuge enrichment plants

    SciTech Connect (OSTI)

    Ianakiev, Kiril D [Los Alamos National Laboratory; Alexandrov, Boian S. [Los Alamos National Laboratory; Boyer, Brian D. [Los Alamos National Laboratory; Hill, Thomas R. [Los Alamos National Laboratory; Macarthur, Duncan W. [Los Alamos National Laboratory; Marks, Thomas [Los Alamos National Laboratory; Moss, Calvin E. [Los Alamos National Laboratory; Sheppard, Gregory A. [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory

    2008-06-13T23:59:59.000Z

    The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

  5. Mid-Infrared Laser based Gas Sensor Technologies for Environmental Monitoring,

    E-Print Network [OSTI]

    , quantification and monitoring of trace gas species and their applications in environmental and industrial process performing sensitive trace gas measurements in gas samples of a few mm3 in volume. QEPAS employs readilyChapter XX Mid-Infrared Laser based Gas Sensor Technologies for Environmental Monitoring, Medical

  6. Flammable gas tank safety program: Technical basis for gas analysis and monitoring

    SciTech Connect (OSTI)

    Sherwood, D.J.

    1995-09-08T23:59:59.000Z

    Flammable gases generated in radioactive liquids. Twenty-five high level radioactive liquid waste storage tanks located underground at the Hanford Site are on a Flammable Gas Watch List because they contain waste which tends to retain the gases generated in it until rather large quantities are available for sudden release to the tank head space; if a tank is full it has little dome space, and a flammable concentration of gases could be produced--even if the tank is ventilated. If the waste has no tendency to retain gas generated in it then a continual flammable gas concentration in the tank dome space is established by the gas production rate and the tank ventilation rate (or breathing rate for unventilated tanks); this is also a potential problem for Flammable Gas Watch List tanks, and perhaps other Hanford tanks too. All Flammable Gas Watch List tanks will be fitted with Standard Hydorgen Monitoring Systems so that their behavior can be observed. In some cases, such as tank 241-SY-101, the data gathered from such observations will indicate that tank conditions need to be mitigated so that gas release events are either eliminated or rendered harmless. For example, a mixer pump was installed in tank 241-SY-101; operating the pump stirs the waste, replacing the large gas release events with small releases of gas that are kept below twenty-five percent of the lower flammability limit by the ventilation system. The concentration of hydrogen measured in Hanford waste tanks is greater than that of any other flammable gas. Hydrogen levels measured with a Standard Hydrogen Monitoring System in excess of 0.6 volume percent will cause Westinghouse Hanford Company to consider actions which will decrease the amount of flammable gas in the tank

  7. STRUCTURAL HEALTH MONITORING OF A SMART COMPOSITE BRIDGE USING GUIDED WAVES AND ACOUSTIC EMISSION TECHNIQUES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    STRUCTURAL HEALTH MONITORING OF A SMART COMPOSITE BRIDGE USING GUIDED WAVES AND ACOUSTIC EMISSION with the development of a structural health monitoring (SHM) system implemented on a composite footbridge during in France to serve as demonstrators. KEYWORDS : Structural Health Monitoring, Acoustic emission, Guided

  8. Structural Health Monitoring of Composite Materials Using the Two Dimensional Fast Fourier

    E-Print Network [OSTI]

    Nemat-Nasser, Sia

    Structural Health Monitoring of Composite Materials Using the Two Dimensional Fast Fourier. This work is part of an effort to develop smart composite materials that monitor their own health using the health of composite materials. Submitted to: Smart Materials and Structures #12;Structural Health

  9. A Robust Infrastructure Design for Gas Centrifuge Enrichment Plant Unattended Online Enrichment Monitoring

    SciTech Connect (OSTI)

    Younkin, James R [ORNL; Rowe, Nathan C [ORNL; Garner, James R [ORNL

    2012-01-01T23:59:59.000Z

    An online enrichment monitor (OLEM) is being developed to continuously measure the relative isotopic composition of UF6 in the unit header pipes of a gas centrifuge enrichment plant (GCEP). From a safeguards perspective, OLEM will provide early detection of a facility being misused for production of highly enriched uranium. OLEM may also reduce the number of samples collected for destructive assay and if coupled with load cell monitoring can provide isotope mass balance verification. The OLEM design includes power and network connections for continuous monitoring of the UF6 enrichment and state of health of the instrument. Monitoring the enrichment on all header pipes at a typical GCEP could require OLEM detectors on each of the product, tails, and feed header pipes. If there are eight process units, up to 24 detectors may be required at a modern GCEP. Distant locations, harsh industrial environments, and safeguards continuity of knowledge requirements all place certain demands on the network robustness and power reliability. This paper describes the infrastructure and architecture of an OLEM system based on OLEM collection nodes on the unit header pipes and power and network support nodes for groupings of the collection nodes. A redundant, self-healing communications network, distributed backup power, and a secure communications methodology. Two candidate technologies being considered for secure communications are the Object Linking and Embedding for Process Control Unified Architecture cross-platform, service-oriented architecture model for process control communications and the emerging IAEA Real-time And INtegrated STream-Oriented Remote Monitoring (RAINSTORM) framework to provide the common secure communication infrastructure for remote, unattended monitoring systems. The proposed infrastructure design offers modular, commercial components, plug-and-play extensibility for GCEP deployments, and is intended to meet the guidelines and requirements for unattended and remotely monitored safeguards systems.

  10. Condition Based Monitoring of Gas Turbine Combustion Components

    SciTech Connect (OSTI)

    Ulerich, Nancy; Kidane, Getnet; Spiegelberg, Christine; Tevs, Nikolai

    2012-09-30T23:59:59.000Z

    The objective of this program is to develop sensors that allow condition based monitoring of critical combustion parts of gas turbines. Siemens teamed with innovative, small companies that were developing sensor concepts that could monitor wearing and cracking of hot turbine parts. A magnetic crack monitoring sensor concept developed by JENTEK Sensors, Inc. was evaluated in laboratory tests. Designs for engine application were evaluated. The inability to develop a robust lead wire to transmit the signal long distances resulted in a discontinuation of this concept. An optical wear sensor concept proposed by K Sciences GP, LLC was tested in proof-of concept testing. The sensor concept depended, however, on optical fiber tips wearing with the loaded part. The fiber tip wear resulted in too much optical input variability; the sensor could not provide adequate stability for measurement. Siemens developed an alternative optical wear sensor approach that used a commercial PHILTEC, Inc. optical gap sensor with an optical spacer to remove fibers from the wearing surface. The gap sensor measured the length of the wearing spacer to follow loaded part wear. This optical wear sensor was developed to a Technology Readiness Level (TRL) of 5. It was validated in lab tests and installed on a floating transition seal in an F-Class gas turbine. Laboratory tests indicate that the concept can measure wear on loaded parts at temperatures up to 800{degrees}C with uncertainty of < 0.3 mm. Testing in an F-Class engine installation showed that the optical spacer wore with the wearing part. The electro-optics box located outside the engine enclosure survived the engine enclosure environment. The fiber optic cable and the optical spacer, however, both degraded after about 100 operating hours, impacting the signal analysis.

  11. Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications

    SciTech Connect (OSTI)

    Gregory Corman; Krishan Luthra

    2005-09-30T23:59:59.000Z

    This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

  12. Acid gas scrubbing by composite solvent-swollen membranes

    DOE Patents [OSTI]

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1988-04-12T23:59:59.000Z

    A composite immobilized liquid membrane suitable for acid gas scrubbing is disclosed. The membrane is a solvent-swollen polymer and a microporous polymeric support, the solvent being selected from a class of highly polar solvents containing at least one atom selected from nitrogen, oxygen, phosphorus and sulfur, and having a boiling point of at least 100 C and a solubility parameter of from about 7.5 to about 13.5 (cal/cm[sup 3]-atm)[sup 1/2]. Such solvents are homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. Also disclosed are methods of acid gas scrubbing of high- and low-Btu gas effluents with such solvent-swollen membranes. 3 figs.

  13. Acid gas scrubbing by composite solvent-swollen membranes

    DOE Patents [OSTI]

    Matson, Stephen L. (Harvard, MA); Lee, Eric K. L. (Acton, MA); Friesen, Dwayne T. (Bend, OR); Kelly, Donald J. (Bend, OR)

    1988-01-01T23:59:59.000Z

    A composite immobilized liquid membrane suitable for acid gas scrubbing is disclosed. The membrane is a solvent-swollen polymer and a microporous polymeric support, the solvent being selected from a class of highly polar solvents containing at least one atom selected from nitrogen, oxygen, phosphorous and sulfur, and having a boiling point of at least 100.degree. C. and a solubility parameter of from about 7.5 to about 13.5 (cal/cm.sup.3 -atm).sup.1/2. Such solvents are homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. Also disclosed are methods of acid gas scrubbing of high- and low-Btu gas effluents with such solvent-swollen membranes.

  14. Environmental Monitoring and the Gas Industry: Program Manager Handbook

    SciTech Connect (OSTI)

    Gregory D. Gillispie

    1997-12-01T23:59:59.000Z

    This document has been developed for the nontechnical gas industry manager who has the responsibility for the development of waste or potentially contaminated soil and groundwater data or must make decisions based on such data for the management or remediation of these materials. It explores the pse of common analytical chemistry instrumentation and associated techniques for identification of environmentally hazardous materials. Sufficient detail is given to familiarize the nontechnical reader with the principles behind the operation of each technique. The scope and realm of the techniques and their constituent variations are portrayed through a discussion of crucial details and, where appropriate, the depiction of real-life data. It is the author's intention to provide an easily understood handbook for gas industry management. Techniques which determine the presence, composition, and quantification of gas industry wastes are discussed. Greater focus is given to traditional techniques which have been the mainstay of modem analytical benchwork. However, with the continual advancement of instrumental principles and design, several techniques have been included which are likely to receive greater attention in fiture considerations for waste-related detection. Definitions and concepts inherent to a thorough understanding of the principles common to analytical chemistry are discussed. It is also crucial that gas industry managers understand the effects of the various actions which take place before, during, and after the actual sampling step. When a series of sample collection, storage, and transport activities occur, new or inexperienced project managers may overlook or misunderstand the importance of the sequence. Each step has an impact on the final results of the measurement process; errors in judgment or decision making can be costly. Specific techniques and methodologies for the collection, storage, and transport of environmental media samples are not described or discussed in detail in thk handbook. However, the underlying philosophy regarding the importance of proper collection, storage, and transport practices, as well as pertinent references, are presented.

  15. Gas Composition and Oxygen Supply in the Root Environment of Substrates in Closed Hydroponic Systems

    E-Print Network [OSTI]

    Lieth, J. Heinrich

    299 Gas Composition and Oxygen Supply in the Root Environment of Substrates in Closed Hydroponic Abstract The objective of this study was to get more information about the root zone, mainly the gas and ethylene, a gas sampling system was used to get gas samples from the root zone. CO2 gas samples of 20 ml

  16. E ects of the Driving Force on the Composition of Natural Gas Hydrates

    E-Print Network [OSTI]

    Gudmundsson, Jon Steinar

    E ects of the Driving Force on the Composition of Natural Gas Hydrates Odd I. Levik(1) , Jean for storage and transport of natural gas. Storage of natural gas in the form of hydrate at elevated pressure concept) (Gud- mundsson et al. 1998). Natural gas hydrate contains up to 182 Sm3 gas per m3 hydrate

  17. VIBRATION-BASED HEALTH MONITORING APPROACH FOR COMPOSITE STRUCTURES USING MULTIVARIATE STATISTICAL ANALYSIS.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    VIBRATION-BASED HEALTH MONITORING APPROACH FOR COMPOSITE STRUCTURES USING MULTIVARIATE STATISTICAL makes Structural Health Monitoring (SHM) a must for such materials and structures. The development of a proper structural health monitoring system has a crucial importance for such structures because

  18. FINITE ELEMENT MODEL-BASED STRUCTURAL HEALTH MONITORING (SHM) SYSTEMS FOR COMPOSITE MATERIAL UNDER

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    FINITE ELEMENT MODEL-BASED STRUCTURAL HEALTH MONITORING (SHM) SYSTEMS FOR COMPOSITE MATERIAL UNDER). To design a Structural Health Monitoring (SHM) system, it is important to understand phenomenologically Workshop on Structural Health Monitoring July 8-11, 2014. La Cité, Nantes, France Copyright © Inria (2014

  19. The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling

    E-Print Network [OSTI]

    Wang, Z. Jane

    The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling Methane contamination is usually due to natural causes; however, it can also be the result of drilling activities, including shale gas drilling. Monitoring techniques exist for detecting methane and, in some cases

  20. Gas separation by composite solvent-swollen membranes

    DOE Patents [OSTI]

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1989-04-25T23:59:59.000Z

    There is disclosed a composite immobilized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorus or sulfur atom, and having a boiling point of at least 100 C and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation. 3 figs.

  1. Towards structural health monitoring in carbon nanotube reinforced composites

    E-Print Network [OSTI]

    Wang, Wennie

    2013-01-01T23:59:59.000Z

    An experimental investigation was conducted to understand the non-destructive evaluation (NDE) capabilities of carbon nanotubes (CNTs) of several network architectures towards structural health monitoring (SHM). As ...

  2. Project MACC "monitoring atmosphere composition & climate" Sub-project RAD "radiation"

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Agreement no. 218793 USER'S GUIDE TO THE SODA AND SOLEMI SERVICES Towards the "solar energy radiation Composition, Climate, and UV and Solar Energy. Within the radiation subproject (MACC-RAD) existing historicalProject MACC "monitoring atmosphere composition & climate" Sub-project RAD "radiation" Grant

  3. Modeling of Multilayer Composite Fabrics for Gas Turbine Engine Containment Systems

    E-Print Network [OSTI]

    Mobasher, Barzin

    Modeling of Multilayer Composite Fabrics for Gas Turbine Engine Containment Systems J. Sharda1 ; C of multilayer composite fabrics used in a gas turbine engine containment system is developed. Specifically to obtain the material properties of these fabrics. Later, one or more layers of these fabrics is tightly

  4. Microemulsion impregnated catalyst composite and use thereof in a synthesis gas conversion process

    DOE Patents [OSTI]

    Abrevaya, Hayim (Chicago, IL); Targos, William M. (Palatine, IL)

    1987-01-01T23:59:59.000Z

    A catalyst composition for synthesis gas conversion comprising a ruthenium metal component deposited on a support carrier wherein the average metal particle size is less than about 100 A. The method of manufacture of the composition via a reverse micelle impregnation technique and the use of the composition in a Fischer-Tropsch conversion process is also disclosed.

  5. Microemulsion impregnated catalyst composite and use thereof in a synthesis gas conversion process

    DOE Patents [OSTI]

    Abrevaya, H.; Targos, W.M.

    1987-12-22T23:59:59.000Z

    A catalyst composition is described for synthesis gas conversion comprising a ruthenium metal component deposited on a support carrier wherein the average metal particle size is less than about 100 A. The method of manufacture of the composition via a reverse micelle impregnation technique and the use of the composition in a Fischer-Tropsch conversion process is also disclosed.

  6. Process for dissolving coke oven deposits comprising atomizing a composition containing N-methyl-2-pyrrolidone into the gas lines

    SciTech Connect (OSTI)

    Stafford, M.L.; Nicholson, G.M.

    1993-07-06T23:59:59.000Z

    A method is described for cleaning gas lines in coke oven batteries comprising atomizing a composition into the gas lines of coke oven batteries, where the composition comprises N-methyl-2-pyrrolidone.

  7. Ultrahigh sensitivity heavy noble gas detectors for long-term monitoring and for monitoring air. Technical status report

    SciTech Connect (OSTI)

    Valentine, J.D.

    1999-01-31T23:59:59.000Z

    The primary objective of this research project is to develop heavy noble gas (krypton, xenon, and radon) detectors for (1) long-term monitoring of transuranic waste, spent fuel, and other uranium and thorium bearing wastes and (2) alpha particle air monitors that discriminate between radon emissions and other alpha emitters. A University of Cincinnati/Argonne National Laboratory (UC/ANL) Team was assembled to complete this detector development project. DOE needs that are addressed by this project include improved long-term monitoring capability and improved air monitoring capability during remedial activities. Successful development and implementation of the proposed detection systems could significantly improve current capabilities with relatively simple and inexpensive equipment.

  8. The future of gas turbine compliance monitoring: The integration of PEMS and CEMS for regulatory compliance

    SciTech Connect (OSTI)

    Macak, J.J. III

    1999-07-01T23:59:59.000Z

    When the New Source Performance Standards (NSPS) for Stationary Gas Turbines were first promulgated in 1979 (40 CFR 60, Subpart GG), continuous compliance monitoring for gas turbines was simply a parametric monitoring approach where a unit was tested at four load conditions. For those units where water or steam injection was used for NO{sub x} control, testing consisted of establishing a water (or steam injection) versus fuel flow curve to achieve permitted NO{sub x} emission levels across the load range. Since 1979, the growth in gas turbine popularity has encouraged the development of Predictive Emissions Monitoring Systems (PEMS) where gas turbine operating parameters and ambient conditions are fed into a prediction algorithm to predict, rather than monitor, emissions. However, permitting requirements and technological advances now have gas turbines emitting NO{sub x} in the single digits while the overall combined-cycle thermal efficiency has improved dramatically. The combination of supplemental duct-firing in heat recovery steam generators, pollution prevention technology, post-combustion emission controls, and EPA Continuous Emissions Monitoring System (CEMS) regulations for the power industry, resulted in a shift towards CEMS due to the complexity of the overall process. Yet, CEMS are often considered to be a maintenance nightmare with significant amounts of downtime. CEMS and PEMS have their own advantages and disadvantages. Thus evolved the need to find the optimum balance between CEMS and PEMS for gas turbine projects. To justify the cost of both PEMS and CEMS in the same installation, there must be an economic incentive to do so. This paper presents the application of a PEMS/CEMS monitoring system that integrates both PEMS and CEMS in order to meet, and exceed, all emissions monitoring requirements.

  9. Structural Health Monitoring for Impact Damage in Composite Structures.

    SciTech Connect (OSTI)

    Roach, Dennis P.; Raymond Bond (Purdue); Doug Adams (Purdue)

    2014-08-01T23:59:59.000Z

    Composite structures are increasing in prevalence throughout the aerospace, wind, defense, and transportation industries, but the many advantages of these materials come with unique challenges, particularly in inspecting and repairing these structures. Because composites of- ten undergo sub-surface damage mechanisms which compromise the structure without a clear visual indication, inspection of these components is critical to safely deploying composite re- placements to traditionally metallic structures. Impact damage to composites presents one of the most signi fi cant challenges because the area which is vulnerable to impact damage is generally large and sometimes very dif fi cult to access. This work seeks to further evolve iden- ti fi cation technology by developing a system which can detect the impact load location and magnitude in real time, while giving an assessment of the con fi dence in that estimate. Fur- thermore, we identify ways by which impact damage could be more effectively identi fi ed by leveraging impact load identi fi cation information to better characterize damage. The impact load identi fi cation algorithm was applied to a commercial scale wind turbine blade, and results show the capability to detect impact magnitude and location using a single accelerometer, re- gardless of sensor location. A technique for better evaluating the uncertainty of the impact estimates was developed by quantifying how well the impact force estimate meets the assump- tions underlying the force estimation technique. This uncertainty quanti fi cation technique was found to reduce the 95% con fi dence interval by more than a factor of two for impact force estimates showing the least uncertainty, and widening the 95% con fi dence interval by a fac- tor of two for the most uncertain force estimates, avoiding the possibility of understating the uncertainty associated with these estimates. Linear vibration based damage detection tech- niques were investigated in the context of structural stiffness reductions and impact damage. A method by which the sensitivity to damage could be increased for simple structures was presented, and the challenges of applying that technique to a more complex structure were identi fi ed. The structural dynamic changes in a weak adhesive bond were investigated, and the results showed promise for identifying weak bonds that show little or no static reduction in stiffness. To address these challenges in identifying highly localized impact damage, the possi- bility of detecting damage through nonlinear dynamic characteristics was also identi fi ed, with a proposed technique which would leverage impact location estimates to enable the detection of impact damage. This nonlinear damage identi fi cation concept was evaluated on a composite panel with a substructure disbond, and the results showed that the nonlinear dynamics at the damage site could be observed without a baseline healthy reference. By further developing impact load identi fi cation technology and combining load and damage estimation techniques into an integrated solution, the challenges associated with impact detection in composite struc- tures can be effectively solved, thereby reducing costs, improving safety, and enhancing the operational readiness and availability of high value assets.

  10. Application of Condition-Based Monitoring Techniques for Remote Monitoring of a Simulated Gas Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Hooper, David A [ORNL; Henkel, James J [ORNL; Whitaker, Michael [ORNL

    2012-01-01T23:59:59.000Z

    This paper presents research into the adaptation of monitoring techniques from maintainability and reliability (M&R) engineering for remote unattended monitoring of gas centrifuge enrichment plants (GCEPs) for international safeguards. Two categories of techniques are discussed: the sequential probability ratio test (SPRT) for diagnostic monitoring, and sequential Monte Carlo (SMC or, more commonly, particle filtering ) for prognostic monitoring. Development and testing of the application of condition-based monitoring (CBM) techniques was performed on the Oak Ridge Mock Feed and Withdrawal (F&W) facility as a proof of principle. CBM techniques have been extensively developed for M&R assessment of physical processes, such as manufacturing and power plants. These techniques are normally used to locate and diagnose the effects of mechanical degradation of equipment to aid in planning of maintenance and repair cycles. In a safeguards environment, however, the goal is not to identify mechanical deterioration, but to detect and diagnose (and potentially predict) attempts to circumvent normal, declared facility operations, such as through protracted diversion of enriched material. The CBM techniques are first explained from the traditional perspective of maintenance and reliability engineering. The adaptation of CBM techniques to inspector monitoring is then discussed, focusing on the unique challenges of decision-based effects rather than equipment degradation effects. These techniques are then applied to the Oak Ridge Mock F&W facility a water-based physical simulation of a material feed and withdrawal process used at enrichment plants that is used to develop and test online monitoring techniques for fully information-driven safeguards of GCEPs. Advantages and limitations of the CBM approach to online monitoring are discussed, as well as the potential challenges of adapting CBM concepts to safeguards applications.

  11. Use of high temperature insulation for ceramic matrix composites in gas turbines

    DOE Patents [OSTI]

    Morrison, Jay Alan (Orlando, FL); Merrill, Gary Brian (Pittsburgh, PA); Ludeman, Evan McNeil (New Boston, NH); Lane, Jay Edgar (Murrysville, PA)

    2001-01-01T23:59:59.000Z

    A ceramic composition for insulating components, made of ceramic matrix composites, of gas turbines is provided. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere and the arrangement of spheres is such that the composition is dimensionally stable and chemically stable at a temperature of approximately 1600.degree. C. A stationary vane of a gas turbine comprising the composition of the present invention bonded to the outer surface of the vane is provided. A combustor comprising the composition bonded to the inner surface of the combustor is provided. A transition duct comprising the insulating coating bonded to the inner surface of the transition is provided. Because of abradable properties of the composition, a gas turbine blade tip seal comprising the composition also is provided. The composition is bonded to the inside surface of a shroud so that a blade tip carves grooves in the composition so as to create a customized seal for the turbine blade tip.

  12. Fibre optic sensor for continuous health monitoring in CFRP composite materials

    E-Print Network [OSTI]

    Fibre optic sensor for continuous health monitoring in CFRP composite materials Laurent Rippert on this material. In this research study, fibre optic sensors will be proven to offer an alternative for the robust a quite simple microbend optical sensor contains information on the elastic energy released whenever

  13. Technology Makes Solid State Multi-Gas Emission Monitoring Possible

    E-Print Network [OSTI]

    Nelson, R. L.

    single crystal thallium arsenic se1enide (TAS) on a production basis has made it possible to buLld an electronically controlled acousto ,-,ptie tunable filter (AOTF) capable of operating in the infrared. Such a filter with integral .11 t rasonic... trifnsduce r can be used in place of Inechanica1 filter wheels, spinning gas cells, moving mirrors, diffraction gratings and mechanical light choppers. The TAS AOTF produces an electronically controllable narrow banel infrared filter capable of being...

  14. Method and apparatus for off-gas composition sensing

    DOE Patents [OSTI]

    Ottesen, David Keith (Livermore, CA); Allendorf, Sarah Williams (Fremont, CA); Hubbard, Gary Lee (Richmond, CA); Rosenberg, David Ezechiel (Columbia, MD)

    1999-01-01T23:59:59.000Z

    An apparatus and method for non-intrusive collection of off-gas data in a steelmaking furnace includes structure and steps for transmitting a laser beam through the off-gas produced by a steelmaking furnace, for controlling the transmitting to repeatedly scan the laser beam through a plurality of wavelengths in its tuning range, and for detecting the laser beam transmitted through the off-gas and converting the detected laser beam to an electrical signal. The electrical signal is processed to determine characteristics of the off-gas that are used to analyze and/or control the steelmaking process.

  15. Geochemical Analyses of Surface and Shallow Gas Flux and Composition Over a Proposed Carbon Sequestration Site in Eastern Kentucky

    SciTech Connect (OSTI)

    Thomas Parris; Michael Solis; Kathryn Takacs

    2009-12-31T23:59:59.000Z

    Using soil gas chemistry to detect leakage from underground reservoirs (i.e. microseepage) requires that the natural range of soil gas flux and chemistry be fully characterized. To meet this need, soil gas flux (CO{sub 2}, CH{sub 4}) and the bulk (CO{sub 2}, CH{sub 4}) and isotopic chemistry ({delta}{sup 13}C-CO2) of shallow soil gases (<1 m, 3.3 ft) were measured at 25 locations distributed among two active oil and gas fields, an active strip mine, and a relatively undisturbed research forest in eastern Kentucky. The measurements apportion the biologic, atmospheric, and geologic influences on soil gas composition under varying degrees of human surface disturbance. The measurements also highlight potential challenges in using soil gas chemistry as a monitoring tool where the surface cover consists of reclaimed mine land or is underlain by shallow coals. For example, enrichment of ({delta}{sup 13}C-CO2) and high CH{sub 4} concentrations in soils have been historically used as indicators of microseepage, but in the reclaimed mine lands similar soil chemistry characteristics likely result from dissolution of carbonate cement in siliciclastic clasts having {delta}{sup 13}C values close to 0{per_thousand} and degassing of coal fragments. The gases accumulate in the reclaimed mine land soils because intense compaction reduces soil permeability, thereby impeding equilibration with the atmosphere. Consequently, the reclaimed mine lands provide a false microseepage anomaly. Further potential challenges arise from low permeability zones associated with compacted soils in reclaimed mine lands and shallow coals in undisturbed areas that might impede upward gas migration. To investigate the effect of these materials on gas migration and composition, four 10 m (33 ft) deep monitoring wells were drilled in reclaimed mine material and in undisturbed soils with and without coals. The wells, configured with sampling zones at discrete intervals, show the persistence of some of the aforementioned anomalies at depth. Moreover, high CO{sub 2} concentrations associated with coals in the vadose zone suggest a strong affinity for adsorbing CO{sub 2}. Overall, the low permeability of reclaimed mine lands and coals and CO2 adsorption by the latter is likely to reduce the ability of surface geochemistry tools to detect a microseepage signal.

  16. Deformed Bose gas models aimed at taking into account both compositeness of particles and their interaction

    E-Print Network [OSTI]

    Gavrilik, A M

    2013-01-01T23:59:59.000Z

    We consider the deformed Bose gas model with the deformation structure function that is the combination of a q-deformation and a quadratically polynomial deformation. Such a choice of the unifying deformation structure function enables us to describe the interacting gas of composite (two-fermionic or two-bosonic) bosons. Using the relevant generalization of the Jackson derivative, we derive a two-parametric expression for the total number of particles, from which the deformed virial expansion of the equation of state is obtained. The latter is interpreted as the virial expansion for the effective description of a gas of interacting composite bosons with some interaction potential.

  17. Method For Enhanced Gas Monitoring In High Density Flow Streams

    DOE Patents [OSTI]

    Von Drasek, William A. (Oak Forest, IL); Mulderink, Kenneth A. (Countryside, IL); Marin, Ovidiu (Lisle, IL)

    2005-09-13T23:59:59.000Z

    A method for conducting laser absorption measurements in high temperature process streams having high levels of particulate matter is disclosed. An impinger is positioned substantially parallel to a laser beam propagation path and at upstream position relative to the laser beam. Beam shielding pipes shield the beam from the surrounding environment. Measurement is conducted only in the gap between the two shielding pipes where the beam propagates through the process gas. The impinger facilitates reduced particle presence in the measurement beam, resulting in improved SNR (signal-to-noise) and improved sensitivity and dynamic range of the measurement.

  18. System and method for monitoring wet bulb temperature in a flue gas stream

    SciTech Connect (OSTI)

    Glover, R.L.; Bland, V.V.

    1990-01-02T23:59:59.000Z

    This patent describes in a system for monitoring wet bulb temperature in a flue gas stream means for extracting a sample of the gas from the flue, means for heating the sample to maintain the sample at substantially the same temperature as the gas in the flue, a sensor for measuring the wet bulb temperature of the sample, a reservoir of liquid, a liquid absorbent wick surrounding the sensor and extending into the liquid in the reservoir, and means for maintaining the liquid in the reservoir at a substantially constant level.

  19. Characterization of landfill gas composition at the Fresh Kills municipal solid-waste landfill

    SciTech Connect (OSTI)

    Eklund, B.; Anderson, E.P.; Walker, B.L.; Burrows, D.B. [Radian International, LLC, Austin, TX (United States)] [Radian International, LLC, Austin, TX (United States)

    1998-08-01T23:59:59.000Z

    The most common disposal method in the US for municipal solid waste (MSW) is burial in landfills. Until recently, air emissions from these landfills were not regulated. Under the New Source Performance Standards and Emission Guidelines for MSW landfills, MSW operators are required to determine the nonmethane organic gas generation rate of their landfill through modeling and/or measurements. This paper summarizes speciated nonmethane organic compound (NMOC) measurement data collected during an intensive, short-term field program. Over 250 separate landfill gas samples were collected from emission sources at the Fresh Kills landfill in New York City and analyzed for approximately 150 different analytes. The average total NMOC value for the landfill was 438 ppmv (as hexane) versus the regulatory default value of 4,000 ppmv (as hexane). Over 70 individual volatile organic compounds (VOCs) were detected and quantified in the landfill gas samples. The typical gas composition for this landfill was determined as well as estimates of the spatial, temporal, and measurement variability in the gas composition. The data for NMOC show that the gas composition within the landfill is equivalent to the composition of the gas exiting the landfill through passive vents and through the soil cover.

  20. Feasibility of monitoring gas hydrate production with time-lapse VSP

    SciTech Connect (OSTI)

    Kowalsky, M.B.; Nakagawa, S.; Moridis, G.J.

    2009-11-01T23:59:59.000Z

    In this work we begin to examine the feasibility of using time-lapse seismic methods-specifically the vertical seismic profiling (VSP) method-for monitoring changes in hydrate accumulations that are predicted to occur during production of natural gas.

  1. Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method

    DOE Patents [OSTI]

    Sinha, Dipen N

    2014-02-04T23:59:59.000Z

    An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.

  2. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants

    SciTech Connect (OSTI)

    Kenneth A. Yackly

    2005-12-01T23:59:59.000Z

    The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, was re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for coal/IGCC powerplants. The new program was re-titled ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants''. This final report summarizes the work accomplished from March 1, 2003 to March 31, 2004 on the four original tasks, and the work accomplished from April 1, 2004 to July 30, 2005 on the two re-directed tasks. The program Tasks are summarized below: Task 1--IGCC Environmental Impact on high Temperature Materials: The first task was refocused to address IGCC environmental impacts on high temperature materials used in gas turbines. This task screened material performance and quantified the effects of high temperature erosion and corrosion of hot gas path materials in coal/IGCC applications. The materials of interest included those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: The second task was reduced in scope to demonstrate new technologies to determine the inservice health of advanced technology coal/IGCC powerplants. The task focused on two critical sensing needs for advanced coal/IGCC gas turbines: (1) Fuel Quality Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and detection of fuel impurities that could lead to rapid component degradation. (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware. Task 3--Advanced Methods for Combustion Monitoring and Control: The third task was originally to develop and validate advanced monitoring and control methods for coal/IGCC gas turbine combustion systems. This task was refocused to address pre-mixed combustion phenomenon for IGCC applications. The work effort on this task was shifted to another joint GE Energy/DOE-NETL program investigation, High Hydrogen Pre-mixer Designs, as of April 1, 2004. Task 4--Information Technology (IT) Integration: The fourth task was originally to demonstrate Information Technology (IT) tools for advanced technology coal/IGCC powerplant condition assessment and condition based maintenance. The task focused on development of GateCycle. software to model complete-plant IGCC systems, and the Universal On-Site Monitor (UOSM) to collect and integrate data from multiple condition monitoring applications at a power plant. The work on this task was stopped as of April 1, 2004.

  3. Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades

    SciTech Connect (OSTI)

    J.L. Rovey

    2012-09-21T23:59:59.000Z

    A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strain measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit sensor data underwater from the rotating frame of the blade to a fixed relay station. Data are then broadcast via radio waves to a remote monitoring station. Results indicate that the assembled system can transmit simulated sensor data with an accuracy of ±5% at a maximum sampling rate of 500 samples/sec. A power investigation of the transmitter within the blade shows that continuous max-sampling operation is only possible for short durations (~days), and is limited due to the capacity of the battery power source. However, intermittent sampling, with long periods between samples, allows for the system to last for very long durations (~years). Finally, because the data transmission system can operate at a high sampling rate for short durations or at a lower sampling rate/higher duty cycle for long durations, it is well-suited for short-term prototype and environmental testing, as well as long-term commercially-deployed hydrokinetic machines.

  4. Reactant gas composition for fuel cell potential control

    DOE Patents [OSTI]

    Bushnell, Calvin L. (Glastonbury, CT); Davis, Christopher L. (Tolland, CT)

    1991-01-01T23:59:59.000Z

    A fuel cell (10) system in which a nitrogen (N.sub.2) gas is used on the anode section (11) and a nitrogen/oxygen (N.sub.2 /O.sub.2) gaseous mix is used on the cathode section (12) to maintain the cathode at an acceptable voltage potential during adverse conditions occurring particularly during off-power conditions, for example, during power plant shutdown, start-up and hot holds. During power plant shutdown, the cathode section is purged with a gaseous mixture of, for example, one-half percent (0.5%) oxygen (O.sub.2) and ninety-nine and a half percent (99.5%) nitrogen (N.sub.2) supplied from an ejector (21) bleeding in air (24/28) into a high pressure stream (27) of nitrogen (N.sub.2) as the primary or majority gas. Thereafter the fuel gas in the fuel processor (31) and the anode section (11) is purged with nitrogen gas to prevent nickel (Ni) carbonyl from forming from the shift catalyst. A switched dummy electrical load (30) is used to bring the cathode potential down rapidly during the start of the purges. The 0.5%/99.5% O.sub.2 /N.sub.2 mixture maintains the cathode potential between 0.3 and 0.7 volts, and this is sufficient to maintain the cathode potential at 0.3 volts for the case of H.sub.2 diffusing to the cathode through a 2 mil thick electrolyte filled matrix and below 0.8 volts for no diffusion at open circuit conditions. The same high pressure gas source (20) is used via a "T" juncture ("T") to purge the anode section and its associated fuel processor (31).

  5. Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field

    SciTech Connect (OSTI)

    Williams, Alan E.; Copp, John F.

    1991-01-01T23:59:59.000Z

    Gas concentrations and ratios in 110 analyses of geothermal fluids from 47 wells in the Coso geothermal system illustrate the complexity of this two-phase reservoir in its natural state. Two geographically distinct regions of single-phase (liquid) reservoir are present and possess distinctive gas and liquid compositions. Relationships in soluble and insoluble gases preclude derivation of these waters from a common parent by boiling or condensation alone. These two regions may represent two limbs of fluid migration away from an area of two-phase upwelling. During migration, the upwelling fluids mix with chemically evolved waters of moderately dissimilar composition. CO{sub 2} rich fluids found in the limb in the southeastern portion of the Coso field are chemically distinct from liquids in the northern limb of the field. Steam-rich portions of the reservoir also indicate distinctive gas compositions. Steam sampled from wells in the central and southwestern Coso reservoir is unusually enriched in both H{sub 2}S and H{sub 2}. Such a large enrichment in both a soluble and insoluble gas cannot be produced by boiling of any liquid yet observed in single-phase portions of the field. In accord with an upflow-lateral mixing model for the Coso field, at least three end-member thermal fluids having distinct gas and liquid compositions appear to have interacted (through mixing, boiling and steam migration) to produce the observed natural state of the reservoir.

  6. Evaporation monitoring and composition control of alloy systems with widely differing vapor pressures

    SciTech Connect (OSTI)

    Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; McClelland, M.A.; Meier, T.

    1994-10-01T23:59:59.000Z

    Lawrence Livermore National Laboratory is developing sensors and controls to improve and extend electron beam materials processing technology to alloy systems with constituents of widely varying vapor pressure. The approach under development involves using tunable lasers to measure the density and composition of the vapor plume. A laser based vaporizer control system for vaporization of a uranium-iron alloy has been previously demonstrated in multi-hundred hour, high rate vaporization experiments at LLNL. This paper reviews the design and performance of the uranium vaporization sensor and control system and discusses the extension of the technology to monitoring of uranium vaporization. Data is presented from an experiment in which titanium wire was fed into a molten niobium pool. Laser data is compared to deposited film composition and film cross sections. Finally, the potential for using this technique for composition control in melting applications is discussed.

  7. Evaporation monitoring and composition control of alloy systems with widely differing vapor pressures

    SciTech Connect (OSTI)

    Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; McClelland, M.A.; Meier, T. [Lawrence Livermore National Lab., CA (United States)

    1994-12-31T23:59:59.000Z

    Lawrence Livermore National Laboratory is developing sensors and controls to improve and extend electron beam materials processing technology to alloy systems with constituents of widely varying vapor pressure. The approach under development involves using tunable lasers to measure the density and composition of the vapor plume. A laser based vaporizer control system for vaporization of a uranium-iron alloy has been previously demonstrated in multi-hundred hour, high rate vaporization experiments at LLNL. This paper reviews the design and performance of the uranium vaporization sensor and control system and discusses the extension of the technology to monitoring of titanium vaporization. Data is presented from an experiment in which titanium wire was fed into a molten niobium pool. Laser data is compared to deposited film composition and film cross sections. Finally, the potential for using this technique for composition control in melting applications is discussed.

  8. Separation of gases through gas enrichment membrane composites

    DOE Patents [OSTI]

    Swedo, R.J.; Kurek, P.R.

    1988-07-19T23:59:59.000Z

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  9. Separation of gases through gas enrichment membrane composites

    DOE Patents [OSTI]

    Swedo, Raymond J. (Mt. Prospect, IL); Kurek, Paul R. (Schaumburg, IL)

    1988-01-01T23:59:59.000Z

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  10. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    SciTech Connect (OSTI)

    Deborah L. Layton; Kimberly Frerichs

    2010-07-01T23:59:59.000Z

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

  11. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    SciTech Connect (OSTI)

    Deborah L. Layton; Kimberly Frerichs

    2011-12-01T23:59:59.000Z

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

  12. Development of ceramic composite hot-gas filters

    SciTech Connect (OSTI)

    Judkins, R.R.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Smith, R.G.; Fischer, E.M.; Eaton, J.H.; Weaver, B.L.; Kahnke, J.L.; Pysher, D.J. [3M Co., St. Paul, MN (United States)

    1995-04-01T23:59:59.000Z

    A novel type of hot-gas filter based on a ceramic fiber-reinforced ceramic matrix was developed and extended to fullsize, 60-mm OD by 1.5-meter-long, candle filters. A commercially viable process for producing the filters was developed, and the filters are undergoing testing and demonstration throughout the world for applications in pressurized fluidized-bed combustion (PFBC) and integrated gasification combined cycle (IGCC) plants. Development activities at Oak Ridge National Laboratory (ORNL) and at the 3M Company, and testing at the Westinghouse Science and Technology Center (STC) are presented. Demonstration tests at the Tidd PFBC are underway. Issues identified during the testing and demonstration phases of the development are discussed. Resolution of the issues and the status of commercialization of the filters are described.

  13. Guidelines for Energy Cost Savings Resulting from Tracking and Monitoring Electrical nad Natural Gas Usage, Cost, and Rates

    E-Print Network [OSTI]

    McClure, J. D.; Estes, M. C.; Estes, J. M.

    1989-01-01T23:59:59.000Z

    This paper discusses how improved energy information in schools and hospitals from tracking and monitoring electrical and natural gas usage, cost, and optional rate structures, can reduce energy costs. Recommendations, methods, and guidelines...

  14. Guidelines for Energy Cost Savings Resulting from Tracking and Monitoring Electrical nad Natural Gas Usage, Cost, and Rates 

    E-Print Network [OSTI]

    McClure, J. D.; Estes, M. C.; Estes, J. M.

    1989-01-01T23:59:59.000Z

    This paper discusses how improved energy information in schools and hospitals from tracking and monitoring electrical and natural gas usage, cost, and optional rate structures, can reduce energy costs. Recommendations, ...

  15. Method of making a continuous ceramic fiber composite hot gas filter

    DOE Patents [OSTI]

    Hill, Charles A. (Lynchburg, VA); Wagner, Richard A. (Lynchburg, VA); Komoroski, Ronald G. (Lynchburg, VA); Gunter, Greg A. (Lynchburg, VA); Barringer, Eric A. (Lynchburg, VA); Goettler, Richard W. (Lynchburg, VA)

    1999-01-01T23:59:59.000Z

    A ceramic fiber composite structure particularly suitable for use as a hot gas cleanup ceramic fiber composite filter and method of making same from ceramic composite material has a structure which provides for increased strength and toughness in high temperature environments. The ceramic fiber composite structure or filter is made by a process in which a continuous ceramic fiber is intimately surrounded by discontinuous chopped ceramic fibers during manufacture to produce a ceramic fiber composite preform which is then bonded using various ceramic binders. The ceramic fiber composite preform is then fired to create a bond phase at the fiber contact points. Parameters such as fiber tension, spacing, and the relative proportions of the continuous ceramic fiber and chopped ceramic fibers can be varied as the continuous ceramic fiber and chopped ceramic fiber are simultaneously formed on the porous vacuum mandrel to obtain a desired distribution of the continuous ceramic fiber and the chopped ceramic fiber in the ceramic fiber composite structure or filter.

  16. GULF OF MEXICO SEAFLOOR STABILITY AND GAS HYDRATE MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    J. Robert Woolsey; Thomas M. McGee; Robin C. Buchannon

    2004-11-01T23:59:59.000Z

    The gas hydrates research Consortium (HRC), established and administered at the University if Mississippi's Center for Marine Research and Environmental Technology (CMRET) has been active on many fronts in FY 03. Extension of the original contract through March 2004, has allowed completion of many projects that were incomplete at the end of the original project period due, primarily, to severe weather and difficulties in rescheduling test cruises. The primary objective of the Consortium, to design and emplace a remote sea floor station for the monitoring of gas hydrates in the Gulf of Mexico by the year 2005 remains intact. However, the possibility of levering HRC research off of the Joint Industries Program (JIP) became a possibility that has demanded reevaluation of some of the fundamental assumptions of the station format. These provisions are discussed in Appendix A. Landmark achievements of FY03 include: (1) Continuation of Consortium development with new researchers and additional areas of research contribution being incorporated into the project. During this period, NOAA's National Undersea Research Program's (NURP) National Institute for Undersea Science and Technology (NIUST) became a Consortium funding partner, joining DOE and Minerals Management Service (MMS); (2) Very successful annual and semiannual meetings in Oxford Mississippi in February and September, 2003; (3) Collection of piston cores from MC798 in support of the effort to evaluate the site for possible monitoring station installation; (4) Completion of the site evaluation effort including reports of all localities in the northern Gulf of Mexico where hydrates have been documented or are strongly suspected to exist on the sea floor or in the shallow subsurface; (5) Collection and preliminary evaluation of vent gases and core samples of hydrate from sites in Green Canyon and Mississippi Canyon, northern Gulf of Mexico; (6) Monitoring of gas activity on the sea floor, acoustically and thermally; (7) Design, construction, and successful deployment of an in situ pore-water sampling device; (8) Improvements to the original Raman spectrometer (methane sensor); (9) Laboratory demonstration of the impact of bacterially-produced surfactants' rates of hydrate formation; (10) Construction and sea floor emplacement and testing--with both watergun and ship noise sources--of the prototypal vertical line array (VLA); (11) Initiation of studies of spatial controls on hydrates; (12) Compilation and analyses of seismic data, including mapping of surface anomalies; (13) Additional field verification (bottom samples recovered), in support of the site selection effort; (14) Collection and preliminary analyses of gas hydrates from new sites that exhibit variant structures; (15) Initial shear wave tests carried out in shallow water; (16) Isolation of microbes for potential medicinal products development; (17) Preliminary modeling of occurrences of gas hydrates.

  17. Microwave plasma monitoring system for the elemental composition analysis of high temperature process streams

    DOE Patents [OSTI]

    Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnuthill, MA); Titus, Charles H. (Newtown Square, PA); Surma, Jeffrey E. (Kennewick, WA)

    1997-01-01T23:59:59.000Z

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, high temperature capability refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. The invention may be incorporated into a high temperature process device and implemented in situ for example, such as with a DC graphite electrode plasma arc furnace. The invention further provides a system for the elemental analysis of process streams by removing particulate and/or droplet samples therefrom and entraining such samples in the gas flow which passes through the plasma flame. Introduction of and entraining samples in the gas flow may be facilitated by a suction pump, regulating gas flow, gravity or combinations thereof.

  18. Pipeline Structural Health Monitoring Using Macro-fiber Composite Active Sensors

    SciTech Connect (OSTI)

    A.B. Thien

    2006-03-01T23:59:59.000Z

    The United States economy is heavily dependent upon a vast network of pipeline systems to transport and distribute the nation's energy resources. As this network of pipelines continues to age, monitoring and maintaining its structural integrity remains essential to the nation's energy interests. Numerous pipeline accidents over the past several years have resulted in hundreds of fatalities and billions of dollars in property damages. These accidents show that the current monitoring methods are not sufficient and leave a considerable margin for improvement. To avoid such catastrophes, more thorough methods are needed. As a solution, the research of this thesis proposes a structural health monitoring (SHM) system for pipeline networks. By implementing a SHM system with pipelines, their structural integrity can be continuously monitored, reducing the overall risks and costs associated with current methods. The proposed SHM system relies upon the deployment of macro-fiber composite (MFC) patches for the sensor array. Because MFC patches are flexible and resilient, they can be permanently mounted to the curved surface of a pipeline's main body. From this location, the MFC patches are used to monitor the structural integrity of the entire pipeline. Two damage detection techniques, guided wave and impedance methods, were implemented as part of the proposed SHM system. However, both techniques utilize the same MFC patches. This dual use of the MFC patches enables the proposed SHM system to require only a single sensor array. The presented Lamb wave methods demonstrated the ability to correctly identify and locate the presence of damage in the main body of the pipeline system, including simulated cracks and actual corrosion damage. The presented impedance methods demonstrated the ability to correctly identify and locate the presence of damage in the flanged joints of the pipeline system, including the loosening of bolts on the flanges. In addition to damage to the actual pipeline itself, the proposed methods were used to demonstrate the capability of detecting deposits inside of pipelines. Monitoring these deposits can prevent clogging and other hazardous situations. Finally, suggestions are made regarding future research issues which are needed to advance this research. Because the research of this thesis has only demonstrated the feasibility of the techniques for such a SHM system, these issues require attention before any commercial applications can be realized.

  19. Vertical composition gradient effects on original hydrocarbon in place volumes and liquid recovery for volatile oil and gas condensate reservoirs

    E-Print Network [OSTI]

    Jaramillo Arias, Juan Manuel

    2000-01-01T23:59:59.000Z

    Around the world, volatile oil and retrograde gas reservoirs are considered as complex thermodynamic systems and even more when they exhibit vertical composition variations. Those systems must be characterized by an equation of state (EOS...

  20. Chemical Composition of Gas-Phase Organic Carbon Emissions from Motor Vehicles and Implications for Ozone Production

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Chemical Composition of Gas-Phase Organic Carbon Emissions from Motor Vehicles and Implications, United States *S Supporting Information ABSTRACT: Motor vehicles are major sources of gas-phase organic the two methods except for products of incomplete combustion, which are not present in uncombusted fuels

  1. Feasibility of monitoring gas hydrate production with time-lapse VSP

    E-Print Network [OSTI]

    Kowalsky, M.B.

    2010-01-01T23:59:59.000Z

    density of the aqueous, gas, and hydrate phases, which isfunction of the aqueous, gas and hydrate phase saturations;in Marine Sediments with Gas Hydrates: Effective Medium

  2. Application of advanced composites for efficient on-board storage of fuel in natural gas vehicles

    SciTech Connect (OSTI)

    Sirosh, S.N. [EDO Canada Ltd., Calgary, Alberta (Canada)

    1995-11-01T23:59:59.000Z

    The following outlines the performance requirements for high pressure containers for on-board storage of fuel in Natural Gas Vehicles. The construction of state-of-the-art carbon-fiber reinforced all-composite cylinders is described and the validation testing and key advantages are discussed. Carbon-fiber reinforced advanced composite technology offers a number of key advantages to the NGV industry, by providing: improved range, including up to 30% more fuel storage for a given storage envelope and up to 300% more fuel storage for a given weight allowance; life-cycle cost advantages, including savings in non-recurring costs (installation), savings in recurring costs (fuel and maintenance), and increased revenues from more passengers/payload; and uncompromising safety, namely, superior resistance to degradation from fatigue or stress rupture and inherent resistance to corrosion; proven toughness/impact resistance.

  3. A greenhouse-gas information system monitoring and validating emissions reporting and mitigation

    SciTech Connect (OSTI)

    Jonietz, Karl K [Los Alamos National Laboratory; Dimotakis, Paul E [JPL/CAL TECH; Roman, Douglas A [LLNL; Walker, Bruce C [SNL

    2011-09-26T23:59:59.000Z

    Current GHG-mitigating regimes, whether internationally agreed or self-imposed, rely on the aggregation of self-reported data, with limited checks for consistency and accuracy, for monitoring. As nations commit to more stringent GHG emissions-mitigation actions and as economic rewards or penalties are attached to emission levels, self-reported data will require independent confirmation that they are accurate and reliable, if they are to provide the basis for critical choices and actions that may be required. Supporting emissions-mitigation efforts and agreements, as well as monitoring energy- and fossil-fuel intensive national and global activities would be best achieved by a process of: (1) monitoring of emissions and emission-mitigation actions, based, in part, on, (2) (self-) reporting of pertinent bottom-up inventory data, (3) verification that reported data derive from and are consistent with agreed-upon processes and procedures, and (4) validation that reported emissions and emissions-mitigation action data are correct, based on independent measurements (top-down) derived from a suite of sensors in space, air, land, and, possibly, sea, used to deduce and attribute anthropogenic emissions. These data would be assessed and used to deduce and attribute measured GHG concentrations to anthropogenic emissions, attributed geographically and, to the extent possible, by economic sector. The validation element is needed to provide independent assurance that emissions are in accord with reported values, and should be considered as an important addition to the accepted MRV process, leading to a MRV&V process. This study and report focus on attributes of a greenhouse-gas information system (GHGIS) needed to support MRV&V needs. These needs set the function of such a system apart from scientific/research monitoring of GHGs and carbon-cycle systems, and include (not exclusively): the need for a GHGIS that is operational, as required for decision-support; the need for a system that meets specifications derived from imposed requirements; the need for rigorous calibration, verification, and validation (CV&V) standards, processes, and records for all measurement and modeling/data-inversion data; the need to develop and adopt an uncertainty-quantification (UQ) regimen for all measurement and modeling data; and the requirement that GHGIS products can be subjected to third-party questioning and scientific scrutiny. This report examines and assesses presently available capabilities that could contribute to a future GHGIS. These capabilities include sensors and measurement technologies; data analysis and data uncertainty quantification (UQ) practices and methods; and model-based data-inversion practices, methods, and their associated UQ. The report further examines the need for traceable calibration, verification, and validation processes and attached metadata; differences between present science-/research-oriented needs and those that would be required for an operational GHGIS; the development, operation, and maintenance of a GHGIS missions-operations center (GMOC); and the complex systems engineering and integration that would be required to develop, operate, and evolve a future GHGIS. Present monitoring systems would be heavily relied on in any GHGIS implementation at the outset and would likely continue to provide valuable future contributions to GHGIS. However, present monitoring systems were developed to serve science/research purposes. This study concludes that no component or capability presently available is at the level of technological maturity and readiness required for implementation in an operational GHGIS today. However, purpose-designed and -built components could be developed and implemented in support of a future GHGIS. The study concludes that it is possible to develop and provide a capability-driven prototype GHGIS, as part of a Phase-1 effort, within three years from project-funding start, that would make use of and integrate existing sensing and system capabilities. As part of a Phase-2 effort, a requirem

  4. Composition, preparation, and gas generation results from simulated wastes of Tank 241-SY-101

    SciTech Connect (OSTI)

    Bryan, S.A.; Pederson, L.R.

    1994-08-01T23:59:59.000Z

    This document reviews the preparation and composition of simulants that have been developed to mimic the wastes temporarily stored in Tank 241-SY-101 at Hanford. The kinetics and stoichiometry of gases that are generated using these simulants are also compared, considering the roles of hydroxide, chloride, and transition metal ions; the identities of organic constituents; and the effects of dilution, radiation, and temperature. Work described in this report was conducted for the Flammable Gas Safety Program at Pacific Northwest Laboratory, (a) whose purpose is to develop information that is necessary to mitigate potential safety hazards associated with waste tanks at the Hanford Site. The goal of this research and of related efforts at the Georgia Institute of Technology (GIT), Argonne National Laboratory (ANL), and Westinghouse Hanford Company (WHC) is to determine the thermal and thermal/radiolytic mechanisms by which flammable and other gases are produced in Hanford wastes, emphasizing those stored in Tank 241-SY-101. A variety of Tank 241-SY-101 simulants have been developed to date. The use of simulants in laboratory testing activities provides a number of advantages, including elimination of radiological risks to researchers, lower costs associated with experimentation, and the ability to systematically alter simulant compositions to study the chemical mechanisms of reactions responsible for gas generation. The earliest simulants contained the principal inorganic components of the actual waste and generally a single complexant such as N-(2-hydroxyethyl) ethylenediaminetriacetic acid (HEDTA) or ethylenediaminetriacetic acid (EDTA). Both homogeneous and heterogeneous compositional forms were developed. Aggressive core sampling and analysis activities conducted during Windows C and E provided information that was used to design new simulants that more accurately reflected major and minor inorganic components.

  5. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    SciTech Connect (OSTI)

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07T23:59:59.000Z

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  6. Effect of steam partial pressure on gasification rate and gas composition of product gas from catalytic steam gasification of HyperCoal

    SciTech Connect (OSTI)

    Atul Sharma; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group

    2009-09-15T23:59:59.000Z

    HyperCoal was produced from coal by a solvent extraction method. The effect of the partial pressure of steam on the gasification rate and gas composition at temperatures of 600, 650, 700, and 750{sup o}C was examined. The gasification rate decreased with decreasing steam partial pressure. The reaction order with respect to steam partial pressure was between 0.2 and 0.5. The activation energy for the K{sub 2}CO{sub 3}-catalyzed HyperCoal gasification was independent of the steam partial pressure and was about 108 kJ/mol. The gas composition changed with steam partial pressure and H{sub 2} and CO{sub 2} decreased and CO increased with decreasing steam partial pressure. By changing the partial pressure of the steam, the H{sub 2}/CO ratio of the synthesis gas can be controlled. 18 refs., 7 figs., 2 tabs.

  7. Published in `AI Communications 9 journal', pp1-17. Published by IOS Press (1996) TIGERTM: Knowledge Based Gas Turbine Condition Monitoring

    E-Print Network [OSTI]

    Travé-Massuyès, Louise

    : Knowledge Based Gas Turbine Condition Monitoring Dr. Robert Milne and Dr. Charlie Nicol Intelligent, 11 Colon, Barcelona, 08222 Terrassa. Spain 1. INTRODUCTION Given the critical nature of gas turbines and increasing the availability of the gas turbine. Routine preventative maintenance techniques have been used

  8. FEMO, A FLOW AND ENRICHMENT MONITOR FOR VERIFYING COMPLIANCE WITH INTERNATIONAL SAFEGUARDS REQUIREMENTS AT A GAS CENTRIFUGE ENRICHMENT FACILITY

    SciTech Connect (OSTI)

    Gunning, John E [ORNL; Laughter, Mark D [ORNL; March-Leuba, Jose A [ORNL

    2008-01-01T23:59:59.000Z

    A number of countries have received construction licenses or are contemplating the construction of large-capacity gas centrifuge enrichment plants (GCEPs). The capability to independently verify nuclear material flows is a key component of international safeguards approaches, and the IAEA does not currently have an approved method to continuously monitor the mass flow of 235U in uranium hexafluoride (UF6) gas streams. Oak Ridge National Laboratory is investigating the development of a flow and enrichment monitor, or FEMO, based on an existing blend-down monitoring system (BDMS). The BDMS was designed to continuously monitor both 235U mass flow and enrichment of UF6 streams at the low pressures similar to those which exists at GCEPs. BDMSs have been installed at three sites-the first unit has operated successfully in an unattended environment for approximately 10 years. To be acceptable to GCEP operators, it is essential that the instrument be installed and maintained without interrupting operations. A means to continuously verify flow as is proposed by FEMO will likely be needed to monitor safeguards at large-capacity plants. This will enable the safeguards effectiveness that currently exists at smaller plants to be maintained at the larger facilities and also has the potential to reduce labor costs associated with inspections at current and future plants. This paper describes the FEMO design requirements, operating capabilities, and development work required before field demonstration.

  9. A Greenhouse-Gas Information System: Monitoring and Validating Emissions Reporting and Mitigation

    SciTech Connect (OSTI)

    Jonietz, Karl K. [Los Alamos National Laboratory; Dimotakis, Paul E. [JPL/CAL Tech; Rotman, Douglas A. [Lawrence Livermore National Laboratory; Walker, Bruce C. [Sandia National Laboratory

    2011-09-26T23:59:59.000Z

    This study and report focus on attributes of a greenhouse-gas information system (GHGIS) needed to support MRV&V needs. These needs set the function of such a system apart from scientific/research monitoring of GHGs and carbon-cycle systems, and include (not exclusively): the need for a GHGIS that is operational, as required for decision-support; the need for a system that meets specifications derived from imposed requirements; the need for rigorous calibration, verification, and validation (CV&V) standards, processes, and records for all measurement and modeling/data-inversion data; the need to develop and adopt an uncertainty-quantification (UQ) regimen for all measurement and modeling data; and the requirement that GHGIS products can be subjected to third-party questioning and scientific scrutiny. This report examines and assesses presently available capabilities that could contribute to a future GHGIS. These capabilities include sensors and measurement technologies; data analysis and data uncertainty quantification (UQ) practices and methods; and model-based data-inversion practices, methods, and their associated UQ. The report further examines the need for traceable calibration, verification, and validation processes and attached metadata; differences between present science-/research-oriented needs and those that would be required for an operational GHGIS; the development, operation, and maintenance of a GHGIS missions-operations center (GMOC); and the complex systems engineering and integration that would be required to develop, operate, and evolve a future GHGIS.

  10. Gas centrifuge enrichment plants inspection frequency and remote monitoring issues for advanced safeguards implementation

    SciTech Connect (OSTI)

    Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Ianakiev, Kiril D [Los Alamos National Laboratory; Reimold, Benjamin A [Los Alamos National Laboratory; Ward, Steven L [Los Alamos National Laboratory; Howell, John [GLASGOW UNIV.

    2010-09-13T23:59:59.000Z

    Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low enriched uranium (LEU) production, detect undeclared LEU production and detect high enriched uranium (BEU) production with adequate probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared cylinders of uranium hexafluoride that are used in the process of enrichment at GCEPs. This paper contains an analysis of how possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive analysis (DA) of samples could reduce the uncertainty of the inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We have also studied a few advanced safeguards systems that could be assembled for unattended operation and the level of performance needed from these systems to provide more effective safeguards. The analysis also considers how short notice random inspections, unannounced inspections (UIs), and the concept of information-driven inspections can affect probability of detection of the diversion of nuclear material when coupled to new GCEPs safeguards regimes augmented with unattended systems. We also explore the effects of system failures and operator tampering on meeting safeguards goals for quantity and timeliness and the measures needed to recover from such failures and anomalies.

  11. Carbon-Carbon Composites as Recuperator Material for Direct Gas Brayton Systems

    SciTech Connect (OSTI)

    RA Wolf

    2006-07-19T23:59:59.000Z

    Of the numerous energy conversion options available for a space nuclear power plant (SNPP), one that shows promise in attaining reliable operation and high efficiency is the direct gas Brayton (GB) system. In order to increase efficiency, the GB system incorporates a recuperator that accounts for nearly half the weight of the energy conversion system (ECS). Therefore, development of a recuperator that is lighter and provides better performance than current heat exchangers could prove to be advantageous. The feasibility of a carbon-carbon (C/C) composite recuperator core has been assessed and a mass savings of 60% and volume penalty of 20% were projected. The excellent thermal properties, high-temperature capabilities, and low density of carbon-carbon materials make them attractive in the GB system, but development issues such as material compatibility with other structural materials in the system, such as refractory metals and superalloys, permeability, corrosion, joining, and fabrication must be addressed.

  12. Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2004-11-23T23:59:59.000Z

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  13. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes

    SciTech Connect (OSTI)

    Margot Gerritsen

    2008-10-31T23:59:59.000Z

    Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids the redundant work generally done in the near-well regions. We improved the accuracy of the streamline simulator with a higher order mapping from pressure grid to streamlines that significantly reduces smoothing errors, and a Kriging algorithm is used to map from the streamlines to the background grid. The higher accuracy of the Kriging mapping means that it is not essential for grid blocks to be crossed by one or more streamlines. The higher accuracy comes at the price of increased computational costs, but allows coarser coverage and so does not generally increase the overall costs of the computations. To reduce errors associated with fixing the pressure field between pressure updates, we developed a higher order global time-stepping method that allows the use of larger global time steps. Third-order ENO schemes are suggested to propagate components along streamlines. Both in the two-phase and three-phase experiments these ENO schemes outperform other (higher order) upwind schemes. Application of the third order ENO scheme leads to overall computational savings because the computational grid used can be coarsened. Grid adaptivity along streamlines is implemented to allow sharp but efficient resolution of solution fronts at reduced computational costs when displacement fronts are sufficiently separated. A correction for Volume Change On Mixing (VCOM) is implemented that is very effective at handling this effect. Finally, a specialized gravity operator splitting method is proposed for use in compositional streamline methods that gives an effective correction of gravity segregation. A significant part of our effort went into the development of a parallelization strategy for streamline solvers on the next generation shared memory machines. We found in this work that the built-in dynamic scheduling strategies of OpenMP lead to parallel efficiencies that are comparable to optimal schedules obtained with customized explicit load balancing strategies as long as the ratio of number of streamlines to number of threads is sufficiently high, which is the case in real-fie

  14. To cite this document: SELVA Pierre, CHERRIER Olivier, BUDINGER, Valerie, LACHAUD, Frdric, MORLIER. Joseph.Smart EMI monitoring of thin composite structures. In: 16th

    E-Print Network [OSTI]

    Mailhes, Corinne

    of incipient damage. Damage indicators derived from the measured electromechanical impedance are commonly used: Composite structures, monitoring, EM impedance, neural networks. Summary. This paper presents a structural health monitoring (SHM) method for in-situ damage detection and localization in carbon fibre reinforced

  15. Ni(NiO)/single-walled carbon nanotubes composite: Synthesis of electro-deposition, gas sensing property for NO gas and density functional theory calculation

    SciTech Connect (OSTI)

    Li, Li; Zhang, Guo; Chen, Lei [Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, Heilongjiang University, Harbin 150080 (China)] [Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, Heilongjiang University, Harbin 150080 (China); Bi, Hong-Mei [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China)] [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Shi, Ke-Ying, E-mail: shikeying2008@yahoo.cn [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China)] [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China)

    2013-02-15T23:59:59.000Z

    Graphical abstract: The Ni(NiO)/semiconducting single-walled carbon nanotubes composite collected from the cathode after electro-deposition shows a high sensitivity to low-concentration NO gas at room temperature (18 °C). Display Omitted Highlights: ? Ni(NiO) nanoparticles were deposited on semiconducting SWCNTs by electro-deposition. ? Ni(NiO)/semiconducting SWCNTs film shows a high sensitivity to NO gas at 18 °C. ?Theoretical calculation reveals electron transfer from SWCNTs to NO via Ni. -- Abstract: Single-walled carbon nanotubes which contains metallic SWCNTs (m-SWCNTs) and semiconducting SWCNTs (s-SWCNTs) have been obtained under electric arc discharge. Their separation can be effectively achieved by the electro-deposition method. The Ni(NiO)/s-SWCNTs composite was found on cathode where Ni was partially oxidized to NiO at ambient condition with Ni(NiO) nanoparticles deposited uniformly on the bundles of SWCNTs. These results were confirmed by Raman spectra, transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV–vis–NIR and TG characterizations. Furthermore, investigation of the gas sensing property of Ni(NiO)/s-SWCNTs composite film to NO gas at 18 °C demonstrated the sensitivity was approximately 5% at the concentration of 97 ppb. Moreover, density functional theory (DFT) calculations were performed to explore the sensing mechanism which suggested the adsorption of NO molecules onto the composite through N–Ni interaction as well as the proposition of electron transfer mechanisms from SWCNTs to NO via the Ni medium.

  16. Supplementary Data: Monosaccharide Composition and Linkage Analysis of RPS Glycosyl composition analysis was done by gas chromatography-mass

    E-Print Network [OSTI]

    Bush, C. Allen

    Supplementary Data: Monosaccharide Composition and Linkage Analysis of RPS Methods: Glycosyl;corrected by pretreatment of the sample with HF. In the GC-MS of the PMAA, 3-linked rhamnose, 4-linked

  17. Toughened Silcomp composites for gas turbine engine applications. Continuous fiber ceramic composites program: Phase I final report, April 1992--June 1994

    SciTech Connect (OSTI)

    Corman, G.S.; Luthra, K.L.; Brun, M.K.; Meschter, P.J.

    1994-07-01T23:59:59.000Z

    The two main factors driving the development of new industrial gas turbine engine systems are fuel efficiency and reduced emissions. One method of providing improvements in both areas is to reduce the cooling air requirements of the hot gas path components. For this reason ceramic components are becoming increasingly attractive for gas turbine applications because of their greater refractoriness and oxidation resistance. Among the ceramics being considered, continuous fiber ceramic composites (CFCCs) are leading candidates because they combine the high temperature stability of ceramics with the toughness and damage tolerance of composites. The purpose of this program, which is part of DOE`s CFCC initiative, is to evaluate the use of CFCC materials as gas turbine engine components, and to demonstrate the feasibility of producing such components from Toughened Silcomp composites. Toughened silcomp is a CFCC material made by a reactive melt infiltration process, and consists of continuous SiC reinforcing fibers, with an appropriate fiber coating, in a fully dense matrix of SiC and Si. Based on the material physical properties, the material/process improvements realized in Phase 1, and the preliminary design analyses from Task 1, they feel the feasibility of fabricating Toughened Silcomp with the requisite physical and mechanical properties for the intended applications has been demonstrated. Remaining work for Phase 2 is to further improve the system for enhanced oxidation resistance, incorporate additional process controls to enhance the reproducibility of the material, transition the fabrication process to the selected vendors for scale-up, develop a more complete material property data base, including long-term mechanical behavior, and fabricate and test preliminary ``representative part`` specimens.

  18. A new chemodynamical tool to study the evolution of galaxies in the local Universe: a quick and accurate numerical technique to compute gas cooling rate for any chemical composition

    E-Print Network [OSTI]

    Nicolas Champavert; Hervé Wozniak

    2007-03-13T23:59:59.000Z

    We have developed a quick and accurate numerical tool to compute gas cooling whichever its chemical composition.

  19. Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process

    DOE Patents [OSTI]

    Schilke, Peter W. (4 Hempshire Ct., Scotia, NY 12302); Muth, Myron C. (R.D. #3, Western Ave., Amsterdam, NY 12010); Schilling, William F. (301 Garnsey Rd., Rexford, NY 12148); Rairden, III, John R. (6 Coronet Ct., Schenectady, NY 12309)

    1983-01-01T23:59:59.000Z

    In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

  20. Piezoelectric-based in-situ damage detection of composite materials for structural health monitoring systems

    E-Print Network [OSTI]

    Kessler, Seth Stovack, 1977-

    2002-01-01T23:59:59.000Z

    Cost-effective and reliable damage detection is critical for the utilization of composite materials. This thesis presents the conclusions of an analytical and experimental survey of candidate methods for in-situ damage ...

  1. Electrospun Polyaniline/Poly (ethylene oxide) Composite Nanofibers Based Gas Sensor

    E-Print Network [OSTI]

    Li, Changling

    2013-01-01T23:59:59.000Z

    polymer composite nanofibers ( i.e. , (+)- camphor-10-sulfonic acid (HCSA) doped polyanline PANI (conductive)conductive hosting polymers such as poly(ethylene oxide), polyvinylpyrrolidone and cellulose acetate which have been used to assist polyaniline to form composite

  2. From the Lab to the real world : sources of error in UF {sub 6} gas enrichment monitoring

    SciTech Connect (OSTI)

    Lombardi, Marcie L.

    2012-03-01T23:59:59.000Z

    Safeguarding uranium enrichment facilities is a serious concern for the International Atomic Energy Agency (IAEA). Safeguards methods have changed over the years, most recently switching to an improved safeguards model that calls for new technologies to help keep up with the increasing size and complexity of today’s gas centrifuge enrichment plants (GCEPs). One of the primary goals of the IAEA is to detect the production of uranium at levels greater than those an enrichment facility may have declared. In order to accomplish this goal, new enrichment monitors need to be as accurate as possible. This dissertation will look at the Advanced Enrichment Monitor (AEM), a new enrichment monitor designed at Los Alamos National Laboratory. Specifically explored are various factors that could potentially contribute to errors in a final enrichment determination delivered by the AEM. There are many factors that can cause errors in the determination of uranium hexafluoride (UF{sub 6}) gas enrichment, especially during the period when the enrichment is being measured in an operating GCEP. To measure enrichment using the AEM, a passive 186-keV (kiloelectronvolt) measurement is used to determine the {sup 235}U content in the gas, and a transmission measurement or a gas pressure reading is used to determine the total uranium content. A transmission spectrum is generated using an x-ray tube and a “notch” filter. In this dissertation, changes that could occur in the detection efficiency and the transmission errors that could result from variations in pipe-wall thickness will be explored. Additional factors that could contribute to errors in enrichment measurement will also be examined, including changes in the gas pressure, ambient and UF{sub 6} temperature, instrumental errors, and the effects of uranium deposits on the inside of the pipe walls will be considered. The sensitivity of the enrichment calculation to these various parameters will then be evaluated. Previously, UF{sub 6} gas enrichment monitors have required empty pipe measurements to accurately determine the pipe attenuation (the pipe attenuation is typically much larger than the attenuation in the gas). This dissertation reports on a method for determining the thickness of a pipe in a GCEP when obtaining an empty pipe measurement may not be feasible. This dissertation studies each of the components that may add to the final error in the enrichment measurement, and the factors that were taken into account to mitigate these issues are also detailed and tested. The use of an x-ray generator as a transmission source and the attending stability issues are addressed. Both analytical calculations and experimental measurements have been used. For completeness, some real-world analysis results from the URENCO Capenhurst enrichment plant have been included, where the final enrichment error has remained well below 1% for approximately two months.

  3. Development of self-monitoring structural composites with integrated sensing networks

    E-Print Network [OSTI]

    Huang, Yi

    2008-01-01T23:59:59.000Z

    coating layers, neat epoxy resin, and glass/epoxy composite.inner electrode BT250E-1LV epoxy resin S2/BT250E-1LV glass/Strength F BT250E-1LV epoxy resin [MPa] r Tensile strength F

  4. Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 1, Cooling season

    SciTech Connect (OSTI)

    Miller, J.D.

    1995-09-01T23:59:59.000Z

    The Federal government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL)is one of four DOE national multiprogram laboratories that participate in the NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer, Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.

  5. Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 2, Heating season

    SciTech Connect (OSTI)

    Miller, J.D.

    1995-11-01T23:59:59.000Z

    The Federal Government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US Government. Pacific Northwest Laboratory (PNL) is one of four DOE national multiprogram laboratories that participate in the NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer; Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.

  6. Lead Isotopic Composition of Fly Ash and Flue Gas Residues from Municipal Solid Waste Combustors in France: Implications for Atmospheric Lead Source Tracing.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Lead Isotopic Composition of Fly Ash and Flue Gas Residues from Municipal Solid Waste Combustors@crpg.cnrs-nancy.fr _______________________________________________________________________________________ Fly ash and flue gas residues from eight municipal solid waste combusters (MSWC) in France (1992 of "industrial Pb" is not an easy task because of its possible extreme heterogeneity. Municipal solid waste

  7. Analysis of condensate banking dynamics in a gas condensate reservoir under different injection schemes

    E-Print Network [OSTI]

    Sandoval Rodriguez, Angelica Patricia

    2002-01-01T23:59:59.000Z

    condensate reservoir under natural depletion, and injection of methane, injection of carbon dioxide, produced gas recycling and water injection. To monitor the condensate banking dynamics near the wellbore area, such as oil saturation and compositional...

  8. Laser Spectroscopic Trace-Gas Sensor Networks for Atmospheric Monitoring Applications

    E-Print Network [OSTI]

    Zhong, Lin

    a laser based chemical sensing technology with wide-area autonomous wireless sensor networking@princeton.edu ABSTRACT Laser-based atmospheric trace-gas sensors have great potential for long-term, real such as CO2, NOx, and methane with exceptionally high specificity. Categories and Subject Descriptors C.3

  9. Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field

    E-Print Network [OSTI]

    Santos, Juan

    ) and coal-bed methane production make CO2 geolog- ical storage cost-effective [e.g., Baines and Worden, describes the seismic properties of the reservoir rock saturated with CO2, methane and brine, and allows us response when injecting carbon dioxide (CO2) in a depleted gas reservoir. The petro-elastical model

  10. Monitoring aerosol elemental composition in particle size fractions of long-range transport

    SciTech Connect (OSTI)

    Metternich, P.; Georgii, H.W.; Groeneveld, K.O.

    1983-04-01T23:59:59.000Z

    Collection of atmospheric samples was performed at Malta, a semi-remote environment in the Mediterranean, in case of long-range transport studies of pollutants and natural substances. Using PIXE as a non-destructive trace-element analytical tool, the elemental composition of these samples was determined. Atmospheric concentrations obtained in this study were of one magnitude higher than those observed over the open North Alantic in purely marine air. For most of the anomalously enriched elements in the Mediterranean aerosol, the high concentrations can be explained by long-range transport.

  11. Real-Time Detection Methods to Monitor TRU Compositions in UREX+Process Streams

    SciTech Connect (OSTI)

    McDeavitt, Sean; Charlton, William; Indacochea, J Ernesto; taleyarkhan, Rusi; Pereira, Candido

    2013-03-01T23:59:59.000Z

    The U.S. Department of Energy has developed advanced methods for reprocessing spent nuclear fuel. The majority of this development was accomplished under the Advanced Fuel Cycle Initiative (AFCI), building on the strong legacy of process development R&D over the past 50 years. The most prominent processing method under development is named UREX+. The name refers to a family of processing methods that begin with the Uranium Extraction (UREX) process and incorporate a variety of other methods to separate uranium, selected fission products, and the transuranic (TRU) isotopes from dissolved spent nuclear fuel. It is important to consider issues such as safeguards strategies and materials control and accountability methods. Monitoring of higher actinides during aqueous separations is a critical research area. By providing on-line materials accountability for the processes, covert diversion of the materials streams becomes much more difficult. The importance of the nuclear fuel cycle continues to rise on national and international agendas. The U.S. Department of Energy is evaluating and developing advanced methods for safeguarding nuclear materials along with instrumentation in various stages of the fuel cycle, especially in material balance areas (MBAs) and during reprocessing of used nuclear fuel. One of the challenges related to the implementation of any type of MBA and/or reprocessing technology (e.g., PUREX or UREX) is the real-time quantification and control of the transuranic (TRU) isotopes as they move through the process. Monitoring of higher actinides from their neutron emission (including multiplicity) and alpha signatures during transit in MBAs and in aqueous separations is a critical research area. By providing on-line real-time materials accountability, diversion of the materials becomes much more difficult. The objective of this consortium was to develop real time detection methods to monitor the efficacy of the UREX+ process and to safeguard the separated TRUs against unlawful diversion from within a processing facility. To achieve this, a comprehensive strategy was implemented to incorporate traditional detectors and advanced Tensioned Metastable Fluid (TMFD) metastable fluid detectors (developed, in part, under this project) into a novel detector assembly coupled to the UREX+ centrifugal contactor array. The sections below provide a brief summary of the technical achievements completed during this project. The principal outcomes are documented in more complete details contained the doctoral dissertations and masters theses, journal papers, conference proceedings and additional items for more than the 35 publications that are listed in the program bibliography in Section 3.

  12. Neural net controlled tag gas sampling system for nuclear reactors

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Laug, Matthew T. (Idaho Fall, ID); Lambert, John D. B. (Wheaton, IL); Herzog, James P. (Downers Grove, IL)

    1997-01-01T23:59:59.000Z

    A method and system for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod.

  13. Neural net controlled tag gas sampling system for nuclear reactors

    DOE Patents [OSTI]

    Gross, K.C.; Laug, M.T.; Lambert, J.B.; Herzog, J.P.

    1997-02-11T23:59:59.000Z

    A method and system are disclosed for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod. 12 figs.

  14. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS

    SciTech Connect (OSTI)

    J. Douglas Way; Robert L. McCormick

    2001-06-01T23:59:59.000Z

    Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H{sub 2} separation. These membranes consist of a thin ({approx}10 {micro}m) film of metal deposited on the inner surface of a porous metal or ceramic tube. Based on preliminary results, thin Pd{sub 60}Cu{sub 40} films are expected to exhibit hydrogen flux up to ten times larger than commercial polymer membranes for H{sub 2} separation, and resist poisoning by H{sub 2}S and other sulfur compounds typical of coal gas. Similar Pd-membranes have been operated at temperatures as high as 750 C. The overall objective of the proposed project is to demonstrate the feasibility of using sequential electroless plating to fabricate Pd{sub 60}Cu{sub 40} alloy membranes on porous supports for H{sub 2} separation. These following advantages of these membranes for processing of coal-derived gas will be demonstrated: High H{sub 2} flux; Sulfur tolerant, even at very high total sulfur levels (1000 ppm); Operation at temperatures well above 500 C; and Resistance to embrittlement and degradation by thermal cycling. The proposed research plan is designed to providing a fundamental understanding of: Factors important in membrane fabrication; Optimization of membrane structure and composition; Effect of temperature, pressure, and gas composition on H{sub 2} flux and membrane selectivity; and How this membrane technology can be integrated in coal gasification-fuel cell systems.

  15. Structural and composition investigations at delayered locations of low k integrated circuit device by gas-assisted focused ion beam

    SciTech Connect (OSTI)

    Wang, Dandan, E-mail: dandan.wang@globalfoundries.com; Kee Tan, Pik; Yamin Huang, Maggie; Lam, Jeffrey; Mai, Zhihong [Technology Development Department, GLOBALFOUNDRIES Singapore Pte. Ltd., 60 Woodlands Industrial Park D, Street 2, Singapore 738406 (Singapore)

    2014-05-15T23:59:59.000Z

    The authors report a new delayering technique – gas-assisted focused ion beam (FIB) method and its effects on the top layer materials of integrated circuit (IC) device. It demonstrates a highly efficient failure analysis with investigations on the precise location. After removing the dielectric layers under the bombardment of an ion beam, the chemical composition of the top layer was altered with the reduced oxygen content. Further energy-dispersive x-ray spectroscopy and Fourier transform infrared analysis revealed that the oxygen reduction lead to appreciable silicon suboxide formation. Our findings with structural and composition alteration of dielectric layer after FIB delayering open up a new insight avenue for the failure analysis in IC devices.

  16. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS

    SciTech Connect (OSTI)

    J. Douglas Way

    2003-01-01T23:59:59.000Z

    For hydrogen from coal gasification to be used economically, processing approaches that produce a high purity gas must be developed. Palladium and its alloys, nickel, platinum and the metals in Groups 3 to 5 of the Periodic Table are all permeable to hydrogen. Hydrogen permeable metal membranes made of palladium and its alloys are the most widely studied due to their high hydrogen permeability, chemical compatibility with many hydrocarbon containing gas streams, and infinite hydrogen selectivity. Our Pd composite membranes have demonstrated stable operation at 450 C for over 70 days. Coal derived synthesis gas will contain up to 15000 ppm H{sub 2}S as well as CO, CO{sub 2}, N{sub 2} and other gases. Highly selectivity membranes are necessary to reduce the H{sub 2}S concentration to acceptable levels for solid oxide and other fuel cell systems. Pure Pd-membranes are poisoned by sulfur, and suffer from mechanical problems caused by thermal cycling and hydrogen embrittlement. Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H{sub 2} separation. These membranes consist of a thin ({le} 5 {micro}m) film of metal deposited on the inner surface of a porous metal or ceramic tube. With support from this DOE Grant, we have fabricated thin, high flux Pd-Cu alloy composite membranes using a sequential electroless plating approach. Thin, Pd{sub 60}Cu{sub 40} films exhibit a hydrogen flux more than ten times larger than commercial polymer membranes for H{sub 2} separation, resist poisoning by H{sub 2}S and other sulfur compounds typical of coal gas, and exceed the DOE Fossil Energy target hydrogen flux of 80 ml/cm{sup 2} {center_dot} min = 0.6 mol/m{sup 2} {center_dot} s for a feed pressure of 40 psig. Similar Pd-membranes have been operated at temperatures as high as 750 C. We have developed practical electroless plating procedures for fabrication of thin Pd-Cu composite membranes at any scale.

  17. In-line real time air monitor

    DOE Patents [OSTI]

    Wise, Marcus B. (Kingston, TN); Thompson, Cyril V. (Knoxville, TN)

    1998-01-01T23:59:59.000Z

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds.

  18. In-line real time air monitor

    DOE Patents [OSTI]

    Wise, M.B.; Thompson, C.V.

    1998-07-14T23:59:59.000Z

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds. 3 figs.

  19. Innovative coke oven gas cleaning system for retrofit applications. Quarterly environmental monitoring report No. 3, January 1, 1991--December 31, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-10-16T23:59:59.000Z

    Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This project combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE is providing cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct an Environmental Monitoring Plan (EMP) for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. This report is the third quarterly status report of the EMP. It covers the Environmental Monitoring Plan activities for the full year of 1991 from January 1, 1991 through December 31, 1991, including the forth quarter. See Sections 2, 3 and 4 for status reports of the Project Installation and Commissioning, the Environmental Monitoring activities and the Compliance Monitoring results for the period. Section 5 contains a list of Compliance Reports submitted to regulatory agencies during the period. The EMP describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) document the extent of compliance of monitoring activities, i.e. those monitoring required to meet permit requirements, (2) confirm the specific impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base for the assessment of the environmental performance of the technology demonstrated by the project.

  20. REMORA 3: The first instrumented fuel experiment with on-line gas composition measurement by acoustic sensor

    SciTech Connect (OSTI)

    Lambert, T.; Muller, E.; Federici, E. [CEA - Nuclear Energy Div., DEN - Fuel Research Dept. - Cadarache, F-13108 Saint-Paul-Lez-Durance (France); Rosenkrantz, E.; Ferrandis, J. Y. [CNRS - Univ. Montpellier 2, Southern Electronic Inst., UMR 5214, F-34095 Montpellier (France); Tiratay, X.; Silva, V. [CEA, Nuclear Energy Div., DEN, Nuclear Reactors and Facilities Dept., F-91191 Gif Sur Yvette (France); Machard, D. [EDF, SEPTEN, F-69628 Villeurbanne (France); Trillon, G. [AREVA-NP, F-69456 Lyon (France)

    2011-07-01T23:59:59.000Z

    With the aim to improve the knowledge of nuclear fuel behaviour, the development of advanced instrumentation used during in-pile experiments in Material Testing Reactor (MTR) is necessary. To obtain data on high Burn-Up MOX fuel performance under transient operating conditions, especially in order to differentiate between the kinetics of fission gas and helium releases and to acquire data on the degradation of the fuel conductivity, a highly instrumented in-pile experiment called REMORA 3 has been conducted by CEA and IES (Southern Electronic Inst. - CNRS - Montpellier 2 Univ.). A rodlet extracted from a fuel rod base irradiated for five cycles in a French EDF commercial PWR has been re-instrumented with a fuel centerline thermocouple, a pressure transducer and an advanced acoustic sensor. This latter, patented by CEA and IES, is 1 used in addition to pressure measurement to determine the composition of the gases located in the free volume and the molar fractions of fission gas and helium. This instrumented fuel rodlet has been re-irradiated in a specific rig, GRIFFONOS, located in the periphery of the OSIRIS experimental reactor core at CEA Saclay. First of all, an important design stage and test phases have been performed before the irradiation in order to optimize the response and the accuracy of the sensors: - To control the influence of the temperature on the acoustic sensor behaviour, a thermal mock-up has been built. - To determine the temperature of the gas located in the acoustic cavity as a function of the coolant temperature, and the average temperature of the gases located in the rodlet free volume as a function of the linear heat rate, thermal calculations have been achieved. The former temperature is necessary to calculate the molar fractions of the gases and the latter is used to calculate the total amount of released gas from the internal rod pressure measurements. - At the end of the instrumented rod manufacturing, specific internal free volume and pressure measurements have been carried out. Preliminary calculations of the REMORA 3 experiments have been performed from these measurements, with the aim to determine free volume evolution as a function of linear heat rate history. - A tracer gas has been added to the filling gas in order to optimize the accuracy of the helium balance at the time of the post irradiation examination. The two phases of the REMORA 3 irradiation have been achieved at the end of 2010 in the OSIRIS reactor. Slight acoustic signal degradation, observed during the test under high neutron and gamma flux, has led to an efficiency optimization of the signal processing. The instrumentation ran smoothly and allowed to reach all the experimental objectives. After non destructive examination performed in the Osiris reactor pool, typically gamma spectrometry and neutron radiography, the instrumented rod and the device have been disassembled. Then the instrumented rod has been transported to the LECA facility in Cadarache Centre for post irradiation examination. The internal pressure and volume of the rodlet as well as precise gas composition measurements will be known after puncturing step performed in a hot cell of this facility. That will allow us to qualify the in-pile measurements and to finalize the data which will be used for the validation of the fuel behaviour computer codes. (authors)

  1. Genetic optimization of two-material composite laminates Laurent Grosset

    E-Print Network [OSTI]

    Coello, Carlos A. Coello

    the power of GAs for this application. COMPOSITE LAMINATE DESIGN Composite laminate optimization typically

  2. Greenhouse gas (GHG) mitigation and monitoring technology performance: Activities of the GHG Technology Verification Center. Report for January 1998--January 1999

    SciTech Connect (OSTI)

    Masemore, S.; Kirchgessner, D.A.

    1999-05-01T23:59:59.000Z

    The paper discusses greenhouse gas (GHG) mitigation and monitoring technology performance activities of the GHG Technology Verification Center. The Center is a public/private partnership between Southern Research Institute and the US EPA`s Office of Research and Development. The Center is part of EPA`s Environmental Technology Verification (ETV) Program, which has established 12 verification centers to evaluate a wide range of technologies in various environmental media and technology areas. The Center has published the results of its first verification: use of a phosphoric acid fuel cell to produce electricity from landfill gas. It has also initiated three new field verifications, two on technologies that reduce methane emissions from natural gas transmissions compressors, and one on a new microturbine electricity production technology.

  3. Innovative coke oven gas cleaning system for retrofit applications. Environmental Monitoring program. Volume 1 - sampling progrom report. Baseline Sampling Program report

    SciTech Connect (OSTI)

    Stuart, L.M.

    1994-05-27T23:59:59.000Z

    Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This innovative coke oven gas cleaning system combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE provided cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct and Environmental Monitoring Plan for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. It also requires the preparation of a final report on the results of the Baseline Compliance and Supplemental Sampling Programs that are part of the EMP and which were conducted prior to the startup of the innovative coke oven gas cleaning system. This report is the Baseline Sampling Program report.

  4. Optical gas monitor

    DOE Patents [OSTI]

    Wu, Sheng (San Gabriel, CA); Deev, Andrei (Pasadena, CA); Palm, Steve L. (Escondido, CA); Tang, Yongchun (Walnut, CA); Goddard, William A. (Pasadena, CA)

    2010-11-30T23:59:59.000Z

    A frequency modulated spectroscopy system, including a photo-detector, a band-pass filter to filter the output of the photo-detector, and a rectifier to demodulate. The band-pass filter has a relatively high Q factor. With the high Q factor band-pass filter and rectifier, a reference sinusoid is not required for demodulation, resulting in phase-insensitive spectroscopy. Other embodiments are described and claimed.

  5. Final Report - Composite Fermion Approach to Strongly Interacting Quasi Two Dimensional Electron Gas Systems

    SciTech Connect (OSTI)

    John Quinn

    2009-11-30T23:59:59.000Z

    Work related to this project introduced the idea of an â??effective monopole strengthâ? Q* that acted as the effective angular momentum of the lowest shell of composite Fermions (CF). This allowed us to predict the angular momentum of the lowest band of energy states for any value of the applied magnetic field simply by determining N{sub QP} the number of quasielectrons (QE) or quasiholes (QH) in a partially filled CF shell and adding angular momenta of the N{sub QP} Fermions excitations. The approach reported treated the filled CF level as a â??vacuum stateâ? which could support QE and QH excitations. Numerical diagonalization of small systems allowed us to determine the angular momenta, the energy, and the pair interaction energies of these elementary excitations. The spectra of low energy states could then be evaluated in a Fermi liquidâ?like picture, treating the much smaller number of quasiparticles and their interactions instead of the larger system of N electrons with Coulomb interactions.

  6. Preparation and characterization of composite membrane for high temperature gas separation

    SciTech Connect (OSTI)

    Ilias, S.; King, F.G.

    1998-03-26T23:59:59.000Z

    A new class of perm-selective inorganic membrane was developed by electroless deposition of palladium thin-film on a microporous {alpha}-alumina ceramic substrate ({phi}39 mm x 2 mm thickness, nominal pore size 150 nm and open porosity {approx} 42 %). The new membrane was characterized by Scanning Electron Micrography (SEM), Energy Dispersive X-ray Analysis (EDX) and conducting permeability experiments with hydrogen, helium, argon and carbon dioxide at temperatures from 473 K to 673 K and feed pressures from 136 kPa to 274 kPa. The results indicate that the membrane has both high permeability and selectivity for hydrogen. The hydrogen transport through the Pd-composite membrane closely followed Sievert's law. A theoretical model is presented to describe the performance of a single-stage permeation process. The model uses a unified mathematical formulation and calculation methods for two flow patterns (cocurrent and countercurrent) with two permeable components and a nonpermeable fraction in the feed and a sweep stream in the permeate. The countercurrent flow pattern is always better than the cocurrent flow pattern with respect to stage cut and membrane area. The effect of flow configuration decreases with increasing membrane selectivity or with decreasing permeate/feed ratio.

  7. Air quality model evaluation data for organics. 1. Bulk chemical composition and gas/particle distribution factors

    SciTech Connect (OSTI)

    Fraser, M.P.; Cass, G.R. [California Inst. of Technology, Pasadena, CA (United States)] [California Inst. of Technology, Pasadena, CA (United States); Grosjean, D.; Grosjean, E. [DGA, Inc., Ventura, CA (United States)] [DGA, Inc., Ventura, CA (United States); Rasmussen, R.A. [Oregon Graduate Inst. of Science and Technology, Beaverton, OR (United States)] [Oregon Graduate Inst. of Science and Technology, Beaverton, OR (United States)

    1996-05-01T23:59:59.000Z

    During the period of September 8-9, 1993, the South Coast Air Basin that surrounds Los Angeles experienced the worst photochemical smog episode in recent years; ozone concentrations exceeded 0.29 ppm 1-h average, and NO{sub 2} concentrations peaked at 0.21 ppm 1-h average. Field measurements were conducted at a five-station air monitoring network to obtain comprehensive data on the identity and concentration of the individual organic compounds present in both the gas and particle phases during that episode. The data will also serve to support future tests of air quality models designed to study organic air pollutant transport and reaction. Air samples taken in stainless steel canisters were analyzed for 141 volatile organic compounds by GC/ECD, GC/FID, and GC/MS; PAN and PPN were measured by GC/ECD; particulate organics collected by filtration were analyzed for total organics and elemental carbon by thermal evolution and combustion and for individual organic compounds by GC/ MS; semivolatile organics were analyzed by GC/MS after collection on polyurethane foam cartridges. The present paper describes this experiment and present the concentrations of major organic compound classes and their relationship to the inorganic pollutants present. 104 refs., 9 figs.

  8. The effects of ionized gas exposure on the toughness and fatigue properties of aluminum alloys and composites

    SciTech Connect (OSTI)

    Zaat, S.V.

    1992-01-01T23:59:59.000Z

    The effects of an oxygen ionized gas from simulated space exposure on the toughness and fatigue properties of several aerospace aluminum alloys and aluminum composites have been analyzed. The test matrix consisted of four aluminum systems: the 6000 and 1100 series and two 8090 aluminum-lithium alloys. The test specimens were prepared as Charpy V-notched impact and disk-shaped compact fracture toughness specimens. A small specimen size is used for the compact tension specimens to facilitate exposure in a Radio Frequency (RF) Plasma Prep 2 unit. Radio frequency plasma, sometimes referred to as the electrodeless plasma, is used in dissociative ionization of molecular oxygen to simulate high fluence, relatively low energy, low earth orbit (LEO) space atomic oxygen. Atomic Force Microscopy (AFM) was also employed to determine the effect of short exposure to the oxygen plasma environment. AFM indicates that sharp spikes of oxygen rich material are produced above the aluminum specimen surface resulting in stress concentrations with gradual roughing of the surface.

  9. Vapor spill pipe monitor

    DOE Patents [OSTI]

    Bianchini, G.M.; McRae, T.G.

    1983-06-23T23:59:59.000Z

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  10. Atmospheric composition, radiative forcing, and climate change as a consequence of a massive methane release from gas hydrates

    E-Print Network [OSTI]

    methane release from gas hydrates Gavin A. Schmidt and Drew T. Shindell National Aeronautics and Space of methane gas (CH4) from hydrate deposits on the continental slope. We investigate whether reported PETM, and climate change as a consequence of a massive methane release from gas hydrates, Paleoceanography, 18

  11. Processing of transient signals from damage in CFRP composite materials monitored with embedded intensity-modulated fiber optic sensors

    E-Print Network [OSTI]

    intensity-modulated fiber optic sensors M. Weversa , L. Ripperta , J.-M. Papyb , S. Van Huffelb a Department-modulated fiber optic sensors, whose working principle is based on the microbending concept, are used to monitor. In this approach fibre optic sensors may offer an alternative for the robust piezoelectric transducers used

  12. Vapor spill monitoring method

    DOE Patents [OSTI]

    Bianchini, Gregory M. (Livermore, CA); McRae, Thomas G. (Livermore, CA)

    1985-01-01T23:59:59.000Z

    Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

  13. Vibration-based structural health monitoring of highway bridges

    E-Print Network [OSTI]

    Guan, Hong

    2006-01-01T23:59:59.000Z

    Principles of Structural Health Monitoring, Class Notes .Web-Based Structural Health Monitoring of a FRP CompositeA Review of Structural Health Monitoring Literature: 1996-

  14. U.S. Department of Energy Monitoring Results for Natural Gas Wells, 1st Quarter FY 2015, Rulison Site

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O'1repositoryShiprock, NewMonitoring

  15. Multifunctional composites and structures with integrated mechanical and electromagnetic properties

    E-Print Network [OSTI]

    Amirkhizi, Alireza Vakil

    2006-01-01T23:59:59.000Z

    Mal, A. , 2004. Structural health monitoring. Mechanics 33,field of Structural Health Monitoring, or SHM. Researchersfor structural composites with in-situ health monitoring

  16. Multifunctional Nanowire/film Composites based Bi-modular Sensors for In-situ and Real-time High Temperature Gas Detection

    SciTech Connect (OSTI)

    Gao, Pu-Xian; Lei, Yu

    2013-06-01T23:59:59.000Z

    This final report to the Department of Energy/National Energy Technology Laboratory for DE-FE0000870 covers the period from 2009 to June, 2013 and summarizes the main research accomplishments, which can be divided in sensing materials innovation, bimodular sensor demonstration, and new understanding and discoveries. As a matter of fact, we have successfully completed all the project tasks in June 1, 2013, and presented the final project review presentation on the 9th of July, 2013. Specifically, the major accomplishments achieved in this project include: 1) Successful development of a new class of high temperature stable gas sensor nanomaterials based on composite nano-array strategy in a 3D or 2D fashion using metal oxides and perovskite nanostructures. 2) Successful demonstration of bimodular nanosensors using 2D nanofibrous film and 3D composite nanowire arrays using electrical resistance mode and electrochemical electromotive force mode. 3) Series of new discoveries and understandings based on the new composite nanostructure platform toward enhancing nanosensor performance in terms of stability, selectivity, sensitivity and mass flux sensing. In this report, we highlight some results toward these accomplishments.

  17. Tritium monitor

    DOE Patents [OSTI]

    Chastagner, Philippe (Augusta, GA)

    1994-01-01T23:59:59.000Z

    A system for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream.

  18. Tritium monitor

    DOE Patents [OSTI]

    Chastagner, P.

    1994-06-14T23:59:59.000Z

    A system is described for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream. 1 fig.

  19. A Spouted Bed Reactor Monitoring System for Particulate Nuclear Fuel

    SciTech Connect (OSTI)

    D. S. Wendt; R. L. Bewley; W. E. Windes

    2007-06-01T23:59:59.000Z

    Conversion and coating of particle nuclear fuel is performed in spouted (fluidized) bed reactors. The reactor must be capable of operating at temperatures up to 2000°C in inert, flammable, and coating gas environments. The spouted bed reactor geometry is defined by a graphite retort with a 2.5 inch inside diameter, conical section with a 60° included angle, and a 4 mm gas inlet orifice diameter through which particles are removed from the reactor at the completion of each run. The particles may range from 200 µm to 2 mm in diameter. Maintaining optimal gas flow rates slightly above the minimum spouting velocity throughout the duration of each run is complicated by the variation of particle size and density as conversion and/or coating reactions proceed in addition to gas composition and temperature variations. In order to achieve uniform particle coating, prevent agglomeration of the particle bed, and monitor the reaction progress, a spouted bed monitoring system was developed. The monitoring system includes a high-sensitivity, low-response time differential pressure transducer paired with a signal processing, data acquisition, and process control unit which allows for real-time monitoring and control of the spouted bed reactor. The pressure transducer is mounted upstream of the spouted bed reactor gas inlet. The gas flow into the reactor induces motion of the particles in the bed and prevents the particles from draining from the reactor due to gravitational forces. Pressure fluctuations in the gas inlet stream are generated as the particles in the bed interact with the entering gas stream. The pressure fluctuations are produced by bulk movement of the bed, generation and movement of gas bubbles through the bed, and the individual motion of particles and particle subsets in the bed. The pressure fluctuations propagate upstream to the pressure transducer where they can be monitored. Pressure fluctuation, mean differential pressure, gas flow rate, reactor operating temperature data from the spouted bed monitoring system are used to determine the bed operating regime and monitor the particle characteristics. Tests have been conducted to determine the sensitivity of the monitoring system to the different operating regimes of the spouted particle bed. The pressure transducer signal response was monitored over a range of particle sizes and gas flow rates while holding bed height constant. During initial testing, the bed monitoring system successfully identified the spouting regime as well as when particles became interlocked and spouting ceased. The particle characterization capabilities of the bed monitoring system are currently being tested and refined. A feedback control module for the bed monitoring system is currently under development. The feedback control module will correlate changes in the bed response to changes in the particle characteristics and bed spouting regime resulting from the coating and/or conversion process. The feedback control module will then adjust the gas composition, gas flow rate, and run duration accordingly to maintain the bed in the desired spouting regime and produce optimally coated/converted particles.

  20. Performance analysis of compositional and modified black-oil models for rich gas condensate reservoirs with vertical and horizontal wells 

    E-Print Network [OSTI]

    Izgec, Bulent

    2004-09-30T23:59:59.000Z

    It has been known that volatile oil and gas condensate reservoirs cannot be modeled accurately with conventional black-oil models. One variation to the black-oil approach is the modified black-oil (MBO) model that allows the use of a simple...

  1. Performance analysis of compositional and modified black-oil models for rich gas condensate reservoirs with vertical and horizontal wells

    E-Print Network [OSTI]

    Izgec, Bulent

    2004-09-30T23:59:59.000Z

    It has been known that volatile oil and gas condensate reservoirs cannot be modeled accurately with conventional black-oil models. One variation to the black-oil approach is the modified black-oil (MBO) model that allows the use of a simple...

  2. Data Observations on Double Shell Tank (DST) Flammable Gas Watch List Tank Behavior

    SciTech Connect (OSTI)

    HEDENGREN, D.C.

    2000-09-28T23:59:59.000Z

    This report provides the data from the retained gas sampler, void fraction instrument, ball rheometer, standard hydrogen monitoring system, and other tank data pertinent to gas retention and release behavior in the waste stored in double-shelled Flammable Gas Watch List tanks at Hanford. These include tanks 241-AN-103,241-AN-104, 241-AN-105, 241-AW-101, 241-SY-101, and 241-SY-103. The tanks and the waste they contain are described in terms of fill history and chemistry. The results of mixer pump operation and recent waste transfers and back-dilution in SY-101 are also described. In-situ measurement and monitoring systems are described and the data are summarized under the categories of thermal behavior, waste configuration and properties, gas generation and composition, gas retention and historical gas release behavior.

  3. Liquid crystalline composites containing phyllosilicates

    DOE Patents [OSTI]

    Chaiko, David J.

    2004-07-13T23:59:59.000Z

    The present invention provides phyllosilicate-polymer compositions which are useful as liquid crystalline composites. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while at the same time be transparent. Because of the ordering of the particles liquid crystalline composite, liquid crystalline composites are particularly useful as barriers to gas transport.

  4. Development and characterization of Textron continuous fiber ceramic composite hot gas filter materials. Final report, September 30, 1994--October 31, 1997

    SciTech Connect (OSTI)

    DiPietro, S.G.; Alvin, M.A.

    1997-12-31T23:59:59.000Z

    Uncertainties about the long-term ability of monolithic ceramics to survive in the IGCC or PFBC hot gas filter environment led DOE/METC to consider the merits of using continuous fiber reinforced ceramic composites (CFCCs) as potential next-generation high temperature filter elements. This seems to be a logical strategy to pursue in light of the fact that properly-engineered CFCC materials have shown much-improved damage tolerance and thermal shock behavior as compared to existing monolithic ceramic materials. Textron`s Advanced Hot Gas Filter Development Program was intended to be a two year, two phase program which transitioned developmental materials R and D into prototype filter element fabrication. The first phase was to demonstrate the technical feasibility of fabricating CFCC hot gas filter elements which could meet the pressure drop specifications of less than ten inches of water (iwg) at a face velocity of ten feet per minute (fpm), while showing sufficient integrity to survive normal mechanical loads and adequate environmental resistance to steam/alkali corrosion conditions at a temperature of approximately 870 C (1600 F). The primary objective of the second phase of the program was to scale up fabrication methods developed in Phase 1 to produce full-scale CFCC candle filters for validation testing. Textron encountered significant process-related and technical difficulties in merely meeting the program permeability specifications, and much effort was expended in showing that this could indeed be achieved. Thus, by the time the Phase 1 program was completed, expenditure of program funds precluded continuing on with Phase 2, and Textron elected to terminate their program after Phase 1. This allowed Textron to be able to focus technical and commercialization efforts on their largely successful DOE CFCC Program.

  5. Liquid crystalline composites containing phyllosilicates

    DOE Patents [OSTI]

    Chaiko; David J. (Naperville, IL)

    2007-05-08T23:59:59.000Z

    The present invention provides barrier films having reduced gas permeability for use in packaging and coating applications. The barrier films comprise an anisotropic liquid crystalline composite layer formed from phyllosilicate-polymer compositions. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while remaining transparent. Because of the ordering of the particles in the liquid crystalline composite, barrier films comprising liquid crystalline composites are particularly useful as barriers to gas transport.

  6. Innovative coke oven gas cleaning system for retrofit applications: Environmental Monitoring Program. Baseline sampling program report: Volume 2, Appendix sections 1--7

    SciTech Connect (OSTI)

    Stuart, L.M.

    1994-05-27T23:59:59.000Z

    This report contains no text. It consist entirely of results monitoring stack opacity, benzene surveys, chemical effluent in wastewater, etc.

  7. Shale gas production: potential versus actual greenhouse gas emissions*

    E-Print Network [OSTI]

    Shale gas production: potential versus actual greenhouse gas emissions* Francis O, monitor and verify greenhouse gas emissions and climatic impacts. This reprint is one of a series intended Environ. Res. Lett. 7 (2012) 044030 (6pp) doi:10.1088/1748-9326/7/4/044030 Shale gas production: potential

  8. Installation and Final Testing of an On-Line, Multi-Spectrometer Fission Product Monitoring System (FPMS) to Support Advanced Gas Reactor (AGR) Fuel Testing and Qualification in the Advanced Test Reactor

    SciTech Connect (OSTI)

    J. K. Hartwell; D. M. Scates; M. W. Drigert; J. B. Walter

    2006-10-01T23:59:59.000Z

    The US Department of Energy (DOE) is initiating tests of reactor fuel for use in an Advanced Gas Reactor (AGR). The AGR will use helium coolant, a low-power-density ceramic core, and coated-particle fuel. A series of eight (8) fuel irradiation tests are planned for the Idaho National Laboratory’s (INL’s) Advanced Test Reactor (ATR). One important measure of fuel performance in these tests is quantification of the fission gas releases over the nominal 2-year duration of each irradiation experiment. This test objective will be met using the AGR Fission Product Monitoring System (FPMS) which includes seven (7) on-line detection stations viewing each of the six test capsule effluent lines (plus one spare). Each station incorporates both a heavily-shielded high-purity germanium (HPGe) gamma-ray spectrometer for quantification of the isotopic releases, and a NaI(Tl) scintillation detector to monitor the total count rate and identify the timing of the releases. The AGR-1 experiment will begin irradiation after October 1, 2006. To support this experiment, the FPMS has been completely assembled, tested, and calibrated in a laboratory at the INL, and then reassembled and tested in its final location in the ATR reactor basement. This paper presents the details of the equipment performance, the control and acquisition software, the test plan for the irradiation monitoring, and the installation in the ATR basement. Preliminary on-line data may be available by the Conference date.

  9. Innovative coke oven gas cleaning system for retrofit applications. Quarterly environmental monitoring report No. 2, July 1, 1991--September 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-09-21T23:59:59.000Z

    The EMP consists of a Compliance Monitoring Sampling Program and a Supplemental monitoring Sampling Program. The Compliance Monitoring Sampling Program will be conducted during a summer and a winter Baseline periods during the Pre-Construction/Construction phases of the Project and during a summer and a winter period following the successful Startup and Operational phase of the completed Project. compliance monitoring consist of conducting all the sampling and observation programs associated with existing required Federal, State, and Local Regulations, Permits and Orders. These include air, water, and waste monitoring and OSHA and NESHAP monitoring. The Supplemental Monitoring Program will also be conducted during a summer and a winter Baseline periods during the Pre-Construction/Construction phases of the Demonstration Facility and during a summer and a winter period following the successful startup and Operational phase of the completed Facility. Supplemental Monitoring includes sampling of 27 additional streams that are important to measure operational or environmental performance and impacts of the installation of the new COG treatment facilities.

  10. Monitoring of tritium

    DOE Patents [OSTI]

    Corbett, James A. (Turtle Creek, PA); Meacham, Sterling A. (Greensburg, PA)

    1981-01-01T23:59:59.000Z

    The fluid from a breeder nuclear reactor, which may be the sodium cooling fluid or the helium reactor-cover-gas, or the helium coolant of a gas-cooled reactor passes over the portion of the enclosure of a gaseous discharge device which is permeable to hydrogen and its isotopes. The tritium diffused into the discharge device is radioactive producing beta rays which ionize the gas (argon) in the discharge device. The tritium is monitored by measuring the ionization current produced when the sodium phase and the gas phase of the hydrogen isotopes within the enclosure are in equilibrium.

  11. Gas generation over plutonium oxides in the 94-1 shelf-life surveillance program.

    SciTech Connect (OSTI)

    Berg, J. M. (John M.); Harradine, D. M. (David M.); Hill, D. D. (Dallas D.); McFarlan, James T.; Padilla, D. D. (Dennis D.); Prenger, F. Coyne; Veirs, D. K. (Douglas Kirk); Worl, L. A. (Laura A.)

    2002-01-01T23:59:59.000Z

    The Department of Energy (DOE) is embarking upon a program to store large quantities of plutonium-bearing materials for up to fifty years. The Los Alamos National Laboratory Shelf Life Project was established to bound the behavior of plutonium-bearing material meeting the DOE 3013 Standard. The shelf life study monitors temperature, pressure and gas composition over oxide materials in a limited number of large-scale 3013 inner containers and in many small-scale containers. For the large-scale study, baseline plutonium oxides, oxides exposed to high-humidity atmospheres, and oxides containing chloride salt impurities are planned. The first large-scale container represents a baseline and contains dry plutonium oxide prepared according to the 3013 Standard. This container has been observed for pressure, temperature and gas compositional changes for less than a year. Results indicate that no detectable changes in pressure and gas composition are observed.

  12. Effects of arrival rate and gas pressure on the chemical bonding and composition in titanium nitride films prepared on Si(100) substrates by ion beam and vapor deposition

    SciTech Connect (OSTI)

    Matsuoka, M.; Isotani, S.; Mittani, J.C.R.; Chubaci, J.F.D.; Ogata, K.; Kuratani, N. [Institute of Physics, University of Sao Paulo, C. P. 66318, 05315-970, Sao Paolo, SP (Brazil); Nissin Electric Company, Ltd., 47, Umezu-Takase-cho, Ukyo-ku, Kyota 615-8686 (Japan)

    2005-01-01T23:59:59.000Z

    Thin titanium nitride films were prepared at room temperature by titanium metal vapor deposition on silicon substrates with simultaneous irradiation by a 2 keV nitrogen ion beam. Arrival rate ratios, ARR(N/Ti), defined as the ratio of the flux of incident atomic nitrogen particles in the ion beam relative to the flux of titanium atoms transported to the substrate, ranged from 0.17 to 2.5. The gas pressure in the vacuum chamber was maintained at 1.3x10{sup -3} or 6.7x10{sup -3} Pa during the deposition and irradiation process. Analyses of Ti 2p x-ray photoelectron spectroscopy spectra indicated the presence of metal Ti{sup 0}, nitride TiN, oxide TiO{sub 2}, oxynitride TiN{sub x}O{sub y}, and carbide TiC phases. The Ti{sup 0} phase was observed exclusively and predominantly in the films prepared at 1.3x10{sup -3} Pa and ARR(N/Ti)=0.17, 0.21, and 0.28, and the TiN phase is major in the others, as confirmed by the x-ray diffractometry analyses. The chemical composition ratio N/Ti in the films prepared at 1.3x10{sup -3} Pa increased linearly with increasing ARR(N/Ti) up to ARR(N/Ti)=0.42 and tended to be constant with further increase in ARR(N/Ti), while this ratio in the films prepared at 6.7x10{sup -3} Pa was almost constant independently of ARR(N/Ti), similar to the constant value observed at 1.3x10{sup -3} Pa and higher ARR(N/Ti). This dependence may be understood by comparison with the flux of evaporated titanium atoms, the flux of nitrogen in the beam, and the impingement rate of nitrogen gas in the vacuum chamber, evaluated through the kinetic theory of gases. On the other hand, titanium is known to be one of the chemically active materials which form stable compounds with gases by chemisorption, this fact leading to considerable incorporation of contaminant oxygen and carbon in the depositing titanium film.

  13. Development of a Spectroscopic Technique for Continuous Online Monitoring of Oxygen and Site-Specific Nitrogen Isotopic Composition of Atmospheric Nitrous Oxide

    E-Print Network [OSTI]

    Harris, Eliza

    Nitrous oxide is an important greenhouse gas and ozone-depleting-substance. Its sources are diffuse and poorly characterized, complicating efforts to understand anthropogenic impacts and develop mitigation policies. Online, ...

  14. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    SciTech Connect (OSTI)

    Hai Xiao; Junhang Dong; Jerry Lin; Van Romero

    2011-12-31T23:59:59.000Z

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project â??DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases.â? This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  15. Acidic gas capture by diamines

    DOE Patents [OSTI]

    Rochelle, Gary (Austin, TX); Hilliard, Marcus (Missouri City, TX)

    2011-05-10T23:59:59.000Z

    Compositions and methods related to the removal of acidic gas. In particular, the present disclosure relates to a composition and method for the removal of acidic gas from a gas mixture using a solvent comprising a diamine (e.g., piperazine) and carbon dioxide. One example of a method may involve a method for removing acidic gas comprising contacting a gas mixture having an acidic gas with a solvent, wherein the solvent comprises piperazine in an amount of from about 4 to about 20 moles/kg of water, and carbon dioxide in an amount of from about 0.3 to about 0.9 moles per mole of piperazine.

  16. Innovative coke oven gas cleaning system for retrofit applications. Quarterly environmental monitoring report No. 1, January 1, 1991--June 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-08-24T23:59:59.000Z

    The coke plant at the Sparrows Point Plant consist of three coke oven batteries and two coal chemical plants. The by-product coke oven gas (COG) consists primarily of hydrogen, methane, carbon monoxide, nitrogen and contaminants consisting of tars, light oils (benzene, toluene, and xylene) hydrogen sulfide, ammonia, water vapor and other hydrocarbons. This raw coke oven gas needs to be cleaned of most of its contaminants before it can be used as a fuel at other operations at the Sparrows Point Plant. In response to environmental concerns, BSC decided to replace much of the existing coke oven gas treatment facilities in the two coal chemical Plants (A and B) with a group of technologies consisting of: Secondary Cooling of the Coke oven Gas; Hydrogen Sulfide Removal; Ammonia Removal; Deacification of Acid Gases Removed; Ammonia Distillation and Destruction; and, Sulfur Recovery. This combination of technologies will replace the existing ammonia removal system, the final coolers, hydrogen sulfide removal system and the sulfur recovery system. The existing wastewater treatment, tar recovery and one of the three light oil recovery systems will continue to be used to support the new innovative combination of COG treatment technologies.

  17. analysis gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Renewable Energy Websites Summary: Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder A China Paper on Type 4;Industrial Computed Tomography (CT)...

  18. Monitoring materials

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    The apparatus and method provide techniques for effectively implementing alpha and/or beta and/or gamma monitoring of items or locations as desired. Indirect alpha monitoring by detecting ions generated by alpha emissions, in conjunction with beta and/or gamma monitoring is provided. The invention additionally provides for screening of items prior to alpha monitoring using beta and/or gamma monitoring, so as to ensure that the alpha monitoring apparatus is not contaminated by proceeding direct to alpha monitoring of a heavily contaminated item or location. The invention provides additional versatility in the emission forms which can be monitored, whilst maintaining accuracy and avoiding inadvertent contamination.

  19. Performance Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization Performance Monitoring Performance Monitoring A redirector page has been set up without anywhere to redirect to. Last edited: 2014-08-25 14:37:27...

  20. Rulison Monitoring Plan

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    The Project Rulison Monitoring Plan has been developed as part of the U.S. Department of Energy (DOE) Office of Legacy Management's mission to protect human health and the environment. The purpose of the plan is to monitor fluids from gas wells for radionuclides that would indicate contamination is migrating from the Rulison detonation zone to producing gas wells, allowing action to be taken before the contamination could pose a risk. The Monitoring Plan (1) lists the contaminants present and identifies those that have the greatest potential to migrate from the detonation zone (radionuclide source term), (2) identifies locations that monitor the most likely transport pathways, (3) identifies which fluids will be sampled (gas and liquid) and why, (4) establishes the frequency of sampling, and (5) specifies the most practical analyses and where the analysis results will be reported. The plan does not affect the long-term hydrologic sampling conducted by DOE since 1972, which will continue for the purpose of sampling shallow groundwater and surface water near the site. The Monitoring Plan was developed in anticipation of gas wells being drilled progressively nearer the Rulison site. DOE sampled 10 gas wells in 1997 and 2005 at distances ranging from 2.7 to 7.6 miles from the site to establish background concentrations for radionuclides. In a separate effort, gas industry operators and the Colorado Oil and Gas Conservation Commission (COGCC) developed an industry sampling and analysis plan that was implemented in 2007. The industry plan requires the sampling of gas wells within 3 miles of the site, with increased requirements for wells within 1 mile of the site. The DOE plan emphasizes the sampling of wells near the site (Figure 1), specifically those with a bottom-hole location of 1 mile or less from the detonation, depending on the direction relative to the natural fracture trend of the producing formation. Studies indicate that even the most mobile radionuclides created by the test are unlikely to migrate appreciable distances (hundreds of feet) from the detonation zone (Cooper et al. 2007, 2009). The Monitoring Plan was developed to provide a cautious and comprehensive approach for detecting any potential contaminant migration from the Rulison test site. It also provides an independent confirmation of results from the industry sampling and analysis plan while effectively increasing the sampling frequency of wells near the site.

  1. Controls on Gas Hydrate Formation and Dissociation

    SciTech Connect (OSTI)

    Miriam Kastner; Ian MacDonald

    2006-03-03T23:59:59.000Z

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both up-flow and down-flow of fluid at rates that range between 0.5 to 214 cm/yr and 2-162 cm/yr, respectively. The fluid flow system at the mound and background sites are coupled having opposite polarities that oscillate episodically between 14 days to {approx}4 months. Stability calculations suggest that despite bottom water temperature fluctuations, of up to {approx}3 C, the Bush Hill gas hydrate mound is presently stable, as also corroborated by the time-lapse video camera images that did not detect change in the gas hydrate mound. As long as methane (and other hydrocarbon) continues advecting at the observed rates the mound would remain stable. The {_}{sup 13}C-DIC data suggest that crude oil instead of methane serves as the primary electron-donor and metabolic substrate for anaerobic sulfate reduction. The oil-dominated environment at Bush Hill shields some of the methane bubbles from being oxidized both anaerobically in the sediment and aerobically in the water column. Consequently, the methane flux across the seafloor is higher at Bush hill than at non-oil rich seafloor gas hydrate regions, such as at Hydrate Ridge, Cascadia. The methane flux across the ocean/atmosphere interface is as well higher. Modeling the methane flux across this interface at three bubble plumes provides values that range from 180-2000 {_}mol/m{sup 2} day; extrapolating it over the Gulf of Mexico basin utilizing satellite data is in progress.

  2. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09T23:59:59.000Z

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  3. Defect Analysis of Vehicle Compressed Natural Gas

    E-Print Network [OSTI]

    Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder A China Paper on Type 4;Industrial Computed Tomography (CT) Examination of Composite Gas Cylinder #12;CT of 01-01 Layer at 4.8MPa during the gas compressing and releasing processes are the direct causes for liner defect - Since

  4. An Optically Stimulated Luminescence Uranium Enrichment Monitor

    SciTech Connect (OSTI)

    Miller, Steven D.; Tanner, Jennifer E.; Simmons, Kevin L.; Conrady, Matthew M.; Benz, Jacob M.; Greenfield, Bryce A.

    2010-08-11T23:59:59.000Z

    The Pacific Northwest National Laboratory (PNNL) has pioneered the use of Optically Stimulated Luminescence (OSL) technology for use in personnel dosimetry and high dose radiation processing dosimetry. PNNL has developed and patented an alumina-based OSL dosimeter that is being used by the majority of medical X-ray and imaging technicians worldwide. PNNL has conceived of using OSL technology to passively measure the level of UF6 enrichment by attaching the prototype OSL monitor to pipes containing UF6 gas within an enrichment facility. The prototype OSL UF6 monitor utilizes a two-element approach with the first element open and unfiltered to measure both the low energy and high energy gammas from the UF6, while the second element utilizes a 3-mm thick tungsten filter to eliminate the low energy gammas and pass only the high energy gammas from the UF6. By placing a control monitor in the room away from the UF6 pipes and other ionizing radiation sources, the control readings can be subtracted from the UF6 pipe monitor measurements. The ratio of the shielded to the unshielded net measurements provides a means to estimate the level of uranium enrichment. PNNL has replaced the commercially available MicroStar alumina-based dosimeter elements with a composite of polyethylene plastic, high-Z glass powder, and BaFBr:Eu OSL phosphor powder at various concentrations. The high-Z glass was added in an attempt to raise the average “Z” of the composite dosimeter and increase the response. Additionally, since BaFBr:Eu OSL phosphor is optimally excited and emits light at different wavelengths compared to alumina, the commercially available MicroStar reader was modified for reading BaFBr:Eu in a parallel effort to increase reader sensitivity. PNNL will present the design and performance of our novel OSL uranium enrichment monitor based on a combination of laboratory and UF6 test loop measurements. PNNL will also report on the optimization effort to achieve the highest possible performance from both the OSL enrichment monitor and the new custom OSL reader modified for this application. This project has been supported by the US Department of Energy’s National Nuclear Security Administration’s Office of Dismantlement and Transparency (DOE/NNSA/NA-241).

  5. Preliminary Results of an On-Line, Multi-Spectrometer Fission Product Monitoring System to Support Advanced Gas Reactor Fuel Testing and Qualification in the Advanced Test Reactor at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Dawn M. Scates; John K. Hartwell; John B. Walter; Mark W. Drigert

    2007-10-01T23:59:59.000Z

    The Advanced Gas Reactor -1 (AGR-1) experiment is the first experiment in a series of eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments scheduled for placement in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The experiment began irradiation in the ATR with a cycle that reached full power on December 26, 2006 and will continue irradiation for about 2.5 years. During this time six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The goals of the irradiation experiment is to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. This paper presents the preliminary test details of the fuel performance, as measured by the control and acquisition software.

  6. DOE HydrogenDOE Hydrogen Composite Tank ProgramComposite Tank Program

    E-Print Network [OSTI]

    Device (thermal) In Tank Gas Temperature Sensor Carbon Composite Shell (structural) Gas Outlet SolenoidDOE HydrogenDOE Hydrogen Composite Tank ProgramComposite Tank Program Dr. Neel Sirosh DIRECTOR materials, design, process to improve weight efficiency (5,000 psi tanks) · Develop & validate

  7. Gas Atomization of Amorphous Aluminum: Part I. Thermal Behavior Calculations

    E-Print Network [OSTI]

    Zheng, Baolong; Lin, Yaojun; Zhou, Yizhang; Lavernia, Enrique J.

    2009-01-01T23:59:59.000Z

    which are summarized below: 1. Gas composition is moree?ective than gas pressure on in?uencing cooling rate for app. 210–11. 37. J.E.A. John: Gas Dynamics, Allyn and Bacon,

  8. Influence of gas feed composition and pressure on the catalytic conversion of CO{sub 2} to hydrocarbons using a traditional cobalt-based Fischer-Tropsch catalyst

    SciTech Connect (OSTI)

    Robert W. Dorner; Dennis R. Hardy; Frederick W. Williams; Burtron H. Davis; Heather D. Willauer [Naval Research Laboratory, Washington, DC (United States). Navy Technology Center for Safety and Survivability Branch

    2009-08-15T23:59:59.000Z

    The hydrogenation of CO{sub 2} using a traditional Fischer-Tropsch Co-Pt/Al{sub 2}O{sub 3} catalyst for the production of valuable hydrocarbon materials is investigated. The ability to direct product distribution was measured as a function of different feed gas ratios of H{sub 2} and CO{sub 2} (3:1, 2:1, and 1:1) as well as operating pressures (ranging from 450 to 150 psig). As the feed gas ratio was changed from 3:1 to 2:1 and 1:1, the production distribution shifted from methane toward higher chain hydrocarbons. This change in feed gas ratio is believed to lower the methanation ability of Co in favor of chain growth, with possibly two different active sites for methane and C2-C4 products. Furthermore, with decreasing pressure, the methane conversion drops slightly in favor of C{sub 2}-C{sub 4} paraffins. Even though under certain reaction conditions product distribution can be shifted slightly away from the formation of methane, the catalyst studied behaves like a methanation catalyst in the hydrogenation of CO{sub 2}. 36 refs., 2 figs., 4 tabs.

  9. PEM fuel cell monitoring system

    DOE Patents [OSTI]

    Meltser, M.A.; Grot, S.A.

    1998-06-09T23:59:59.000Z

    Method and apparatus are disclosed for monitoring the performance of H{sub 2}--O{sub 2} PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H{sub 2} sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken. 2 figs.

  10. UNFCCC-Consolidated baseline and monitoring methodology for landfill...

    Open Energy Info (EERE)

    UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC-Consolidated baseline...

  11. Comparison of thermoelectric and permeation dryers for sulfur dioxide removal during sample conditioning of wet gas streams

    SciTech Connect (OSTI)

    Dunder, T.A. [Entropy, Inc., Research Triangle Park, NC (United States). Research Div.; Leighty, D.A. [Perma Pure, Inc., Toms River, NJ (United States)

    1997-12-31T23:59:59.000Z

    Flue gas conditioning for moisture removal is commonly performed for criteria pollutant measurements, in particular for extractive CEM systems at combustion sources. An implicit assumption is that conditioning systems specifically remove moisture without affecting pollutant and diluent concentrations. Gas conditioning is usually performed by passing the flue gas through a cold trap (Peltier or thermoelectric dryer) to remove moisture by condensation, which is subsequently extracted by a peristaltic pump. Many air pollutants are water-soluble and potentially susceptible to removal in a condensation dryer from gas interaction with liquid water. An alternative technology for gas conditioning is the permeation dryer, where the flue gas passes through a selectively permeable membrane for moisture removal. In this case water is transferred through the membrane while other pollutants are excluded, and the gas does not contact condensed liquid. Laboratory experiments were performed to measure the relative removal of a water-soluble pollutant (sulfur dioxide, SO{sub 2}) by the two conditioning techniques. A wet gas generating system was used to create hot, wet gas streams of known composition (15% and 30% moisture, balance nitrogen) and flow rate. Pre-heated SO{sub 2} was dynamically spiked into the wet stream using mass flow meters to achieve concentrations of 20, 50, and 100 ppm. The spiked gas was directed through a heated sample line to either a thermoelectric or a permeation conditioning system. Two gas analyzers (Western Research UV gas monitor, KVB/Analect FTIR spectrometer) were used to measure the SO{sub 2} concentration after conditioning. Both analytic methods demonstrated that SO{sub 2} is removed to a significantly greater extent by the thermoelectric dryer. These results have important implications for SO{sub 2} monitoring and emissions trading.

  12. Microfabricated fuel heating value monitoring device

    DOE Patents [OSTI]

    Robinson, Alex L. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM); Moorman, Matthew W. (Albuquerque, NM)

    2010-05-04T23:59:59.000Z

    A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

  13. Ion Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2003-11-18T23:59:59.000Z

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  14. Reactor monitoring with Neutrinos Michel Cribier

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    it the automatic and non intrusive monitoring of nuclear reactor by its antineutrino signal could be very valuable, but also book keeping of the fuel element composition before and after their use in the nuclear powerReactor monitoring with Neutrinos Michel Cribier Astroparticule & Cosmologie 10, rue Alice Domon et

  15. Flashback Detection Sensor for Hydrogen Augmented Natural Gas Combustion

    SciTech Connect (OSTI)

    Thornton, J.D.; Chorpening, B.T.; Sidwell, T.; Strakey, P.A.; Huckaby, E.D.; Benson, K.J. (Woodward)

    2007-05-01T23:59:59.000Z

    The use of hydrogen augmented fuel is being investigated by various researchers as a method to extend the lean operating limit, and potentially reduce thermal NOx formation in natural gas fired lean premixed (LPM) combustion systems. The resulting increase in flame speed during hydrogen augmentation, however, increases the propensity for flashback in LPM systems. Real-time in-situ monitoring of flashback is important for the development of control strategies for use of hydrogen augmented fuel in state-of-the-art combustion systems, and for the development of advanced hydrogen combustion systems. The National Energy Technology Laboratory (NETL) and Woodward Industrial Controls are developing a combustion control and diagnostics sensor (CCADS), which has already been demonstrated as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff. Since CCADS is a flame ionization sensor technique, the low ion concentration produced in pure hydrogen combustion raises concerns of whether CCADS can be used to monitor flashback in hydrogen augmented combustion. This paper discusses CCADS tests conducted at 0.2-0.6 MPa (2-6 atm), demonstrating flashback detection with fuel compositions up to 80% hydrogen (by volume) mixed with natural gas. NETL’s Simulation Validation (SimVal) combustor offers full optical access to pressurized combustion during these tests. The CCADS data and high-speed video show the reaction zone moves upstream into the nozzle as the hydrogen fuel concentration increases, as is expected with the increased flame speed of the mixture. The CCADS data and video also demonstrate the opportunity for using CCADS to provide the necessary in-situ monitor to control flashback and lean blowoff in hydrogen augmented combustion applications.

  16. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems

    SciTech Connect (OSTI)

    Nick Soelberg; Joe Enneking

    2011-05-01T23:59:59.000Z

    Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat radioactive wastes can be controlled using fixed beds of activated sulfur-impregnated carbon, to levels low enough to comply with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. Carbon bed hot spots or fires have occurred several times during these tests, and also during a remediation of tanks that contained mixed waste. Hot spots occur when localized areas in a carbon bed become heated to temperatures where oxidation occurs. This heating typically occurs due to heat of absoption of gas species onto the carbon, but it can also be caused through external means such as external heaters used to heat the carbon bed vessel. Hot spots, if not promptly mitigated, can grow into bed fires. Carbon bed hot spots and fires must be avoided in processes that treat radioactive and mixed waste. Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring of bed outlet gas CO concentrations. Hot spots are mitigated by (a) designing for appropriate in-bed gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) appropriate monitoring and control of gas and bed temperatures and compositions, and (c) prompt implementation of corrective actions if bed hot spots are detected. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from.

  17. Isotopic Composition of Carbon in Fluids from the Long Valley...

    Open Energy Info (EERE)

    Isotopic Composition of Carbon in Fluids from the Long Valley Geothermal System, California, In- Proceedings of the Second Workshop on Hydrologic and Geochemical Monitoring in the...

  18. Electrostatic monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry (Cumbria, GB); Luff, Craig Janson (Cumbria, GB); Dockray, Thomas (Cumbria, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2001-01-01T23:59:59.000Z

    The apparatus and method provide a technique for more simply measuring alpha and/or beta emissions arising from items or locations. The technique uses indirect monitoring of the emissions by detecting ions generated by the emissions, the ions being attracted electrostatically to electrodes for discharge of collection. The apparatus and method employ a chamber which is sealed around the item or location during monitoring with no air being drawn into or expelled from the chamber during the monitoring process. A simplified structure and operations arises as a result, but without impairing the efficiency and accuracy of the detection technique.

  19. Method and apparatus for monitoring mercury emissions

    DOE Patents [OSTI]

    Durham, M.D.; Schlager, R.J.; Sappey, A.D.; Sagan, F.J.; Marmaro, R.W.; Wilson, K.G.

    1997-10-21T23:59:59.000Z

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber. 15 figs.

  20. Method and apparatus for monitoring mercury emissions

    DOE Patents [OSTI]

    Durham, Michael D. (Castle Rock, CO); Schlager, Richard J. (Aurora, CO); Sappey, Andrew D. (Golden, CO); Sagan, Francis J. (Lakewood, CO); Marmaro, Roger W. (Littleton, CO); Wilson, Kevin G. (Littleton, CO)

    1997-01-01T23:59:59.000Z

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

  1. Total Energy Monitor

    SciTech Connect (OSTI)

    Friedrich, S

    2008-08-11T23:59:59.000Z

    The total energy monitor (TE) is a thermal sensor that determines the total energy of each FEL pulse based on the temperature rise induced in a silicon wafer upon absorption of the FEL. The TE provides a destructive measurement of the FEL pulse energy in real-time on a pulse-by-pulse basis. As a thermal detector, the TE is expected to suffer least from ultra-fast non-linear effects and to be easy to calibrate. It will therefore primarily be used to cross-calibrate other detectors such as the Gas Detector or the Direct Imager during LCLS commissioning. This document describes the design of the TE and summarizes the considerations and calculations that have led to it. This document summarizes the physics behind the operation of the Total Energy Monitor at LCLS and derives associated engineering specifications.

  2. Automated gas chromatography

    DOE Patents [OSTI]

    Mowry, Curtis D. (Albuquerque, NM); Blair, Dianna S. (Albuquerque, NM); Rodacy, Philip J. (Albuquerque, NM); Reber, Stephen D. (Corrales, NM)

    1999-01-01T23:59:59.000Z

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute.

  3. Solid state electrochemical composite

    DOE Patents [OSTI]

    Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (Moraga, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2009-06-30T23:59:59.000Z

    Provided is a composite electrochemical device fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems including oxygen generation system.

  4. Robust high temperature composite and CO sensor made from such composite

    DOE Patents [OSTI]

    Dutta, Prabir K.; Ramasamy, Ramamoorthy; Li, Xiaogan; Akbar, Sheikh A.

    2010-04-13T23:59:59.000Z

    Described herein is a composite exhibiting a change in electrical resistance proportional to the concentration of a reducing gas present in a gas mixture, detector and sensor devices comprising the composite, a method for making the composite and for making devices comprising the composite, and a process for detecting and measuring a reducing gas in an atmosphere. In particular, the reducing gas may be carbon monoxide and the composite may comprise rutile-phase TiO2 particles and platinum nanoclusters. The composite, upon exposure to a gas mixture containing CO in concentrations of up to 10,000 ppm, exhibits an electrical resistance proportional to the concentration of the CO present. The composite is useful for making sensitive, low drift, fast recovering detectors and sensors, and for measuring CO concentrations in a gas mixture present at levels from sub-ppm up to 10,000 ppm. The composites, and devices made from the composites, are stable and operable in a temperature range of from about 450.degree. C. to about 700.degree. C., such as may be found in a combustion chamber.

  5. Monitoring well

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    The present invention relates to a monitoring well which includes an enclosure defining a cavity and a water reservoir enclosed within the cavity and wherein the reservoir has an inlet and an outlet. The monitoring well further includes a porous housing borne by the enclosure and which defines a fluid chamber which is oriented in fluid communication with the outlet of the reservoir, and wherein the porous housing is positioned in an earthen soil location below-grade. A geophysical monitoring device is provided and mounted in sensing relation relative to the fluid chamber of the porous housing; and a coupler is selectively moveable relative to the outlet of reservoir to couple the porous housing and water reservoir in fluid communication. An actuator is coupled in force transmitting relation relative to the coupler to selectively position the coupler in a location to allow fluid communication between the reservoir and the fluid chamber defined by the porous housing.

  6. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26T23:59:59.000Z

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  7. Short-range wireless sensor networks for high density seismic monitoring

    E-Print Network [OSTI]

    Spagnolini, Umberto

    new oil and gas reservoir. The envisioned production peak of current oil and gas reservoirs is pushing for sub-surface diagnostic (for small earthquake monitoring) and exploration (for new oil and gas Receivers time Delivery time Source Receivers Shot Gas/Oil/Water Gas/Oil/Water Dip-slip fault Active seismic

  8. Monitoring well

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A monitoring well including a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto.

  9. Monitoring well

    DOE Patents [OSTI]

    Hubbell, J.M.; Sisson, J.B.

    1999-06-29T23:59:59.000Z

    A monitoring well is described which includes: a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto. 8 figs.

  10. Continuous Fiber Ceramic Composites (CFCC)

    SciTech Connect (OSTI)

    R. A. Wagner

    2002-12-18T23:59:59.000Z

    This report summarizes work to develop CFCC's for various applications in the Industries of the Future (IOF) and power generation areas. Performance requirements range from relatively modest for hot gas filters to severe for turbine combustor liners and infrared burners. The McDermott Technology Inc. (MTI) CFCC program focused on oxide/oxide composite systems because they are known to be stable in the application environments of interest. The work is broadly focused on dense and porous composite systems depending on the specific application. Dense composites were targeted at corrosion resistant components, molten aluminum handling components and gas turbine combustor liners. The development work on dense composites led to significant advances in fiber coatings for oxide fibers and matrix densification. Additionally, a one-step fabrication process was developed to produce low cost composite components. The program also supported key developments in advanced oxide fibers that resulted in an improved version of Nextel 610 fiber (commercially available as Nextel 650) and significant progress in the development of a YAG/alumina fiber. Porous composite development focused on the vacuum winding process used to produce hot gas filters and infrared burner components.

  11. Freeze drying for gas chromatography stationary phase deposition

    DOE Patents [OSTI]

    Sylwester, Alan P. (Livermore, CA)

    2007-01-02T23:59:59.000Z

    The present disclosure relates to methods for deposition of gas chromatography (GC) stationary phases into chromatography columns, for example gas chromatography columns. A chromatographic medium is dissolved or suspended in a solvent to form a composition. The composition may be inserted into a chromatographic column. Alternatively, portions of the chromatographic column may be exposed or filled with the composition. The composition is permitted to solidify, and at least a portion of the solvent is removed by vacuum sublimation.

  12. Method for removing undesired particles from gas streams

    DOE Patents [OSTI]

    Durham, Michael Dean (Castle Rock, CO); Schlager, Richard John (Aurora, CO); Ebner, Timothy George (Westminster, CO); Stewart, Robin Michele (Arvada, CO); Hyatt, David E. (Denver, CO); Bustard, Cynthia Jean (Littleton, CO); Sjostrom, Sharon (Denver, CO)

    1998-01-01T23:59:59.000Z

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  13. Method of Liquifying a gas

    DOE Patents [OSTI]

    Zollinger, William T.; Bingham, Dennis N.; McKellar, Michael G.; Wilding, Bruce M.; Klingler, Kerry M.

    2006-02-14T23:59:59.000Z

    A method of liquefying a gas is disclosed and which includes the steps of pressurizing a liquid; mixing a reactant composition with the pressurized liquid to generate a high pressure gas; supplying the high pressure gas to an expansion engine which produces a gas having a reduced pressure and temperature, and which further generates a power and/or work output; coupling the expansion engine in fluid flowing relation relative to a refrigeration assembly, and wherein the gas having the reduced temperature is provided to the refrigeration assembly; and energizing and/or actuating the refrigeration assembly, at least in part, by supplying the power and/or work output generated by the expansion engine to the refrigeration assembly, the refrigeration assembly further reducing the temperature of the gas to liquefy same.

  14. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the Site Monitoring Area (SMA) The Site Monitoring Area sampler Control measures (best management practices) installed at the Site Monitoring Area Structures such as...

  15. Method of manufacturing aerogel composites

    DOE Patents [OSTI]

    Cao, Wanqing (Alameda, CA); Hunt, Arlon Jason (Oakland, CA)

    1999-01-01T23:59:59.000Z

    Disclosed herewith is a process of forming an aerogel composite which comprises introducing a gaseous material into a formed aerogel monolith or powder, and causing decomposition of said gaseous material in said aerogel in amounts sufficient to cause deposition of the decomposition products of the gas on the surfaces of the pores of the said aerogel.

  16. Method of manufacturing aerogel composites

    DOE Patents [OSTI]

    Cao, W.; Hunt, A.J.

    1999-03-09T23:59:59.000Z

    Disclosed herewith is a process of forming an aerogel composite which comprises introducing a gaseous material into a formed aerogel monolith or powder, and causing decomposition of said gaseous material in said aerogel in amounts sufficient to cause deposition of the decomposition products of the gas on the surfaces of the pores of the said aerogel.

  17. Solar composition from the Genesis Discovery Mission

    E-Print Network [OSTI]

    Solar composition from the Genesis Discovery Mission D. S. Burnett1 and Genesis Science Team2: the isoto- pic compositions of O, N, and noble gases differ in the Sun from other inner solar system objects in the noble gas data from solar wind implanted in lunar soils. (ii) The most advanced analytical instruments

  18. Suncatcher Monitoring Project. Quarterly technical report 1, October-December 1977

    SciTech Connect (OSTI)

    Maeda, B T

    1980-03-01T23:59:59.000Z

    Progress in monitoring the Suncatcher solar home is reviewed. The following are included: equipment purchase and preparations, sensor installation, house comfort monitoring, experiments, and natrual gas and electric use. Some data are given. (MHR)

  19. Electrode compositions

    DOE Patents [OSTI]

    Block, J.; Fan, X.

    1998-10-27T23:59:59.000Z

    An electrode composition is described for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C{sub 8}-C{sub 15} alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5--4.5 volts.

  20. Method for detecting gas turbine engine flashback

    DOE Patents [OSTI]

    Singh, Kapil Kumar; Varatharajan, Balachandar; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin Paul

    2012-09-04T23:59:59.000Z

    A method for monitoring and controlling a gas turbine, comprises predicting frequencies of combustion dynamics in a combustor using operating conditions of a gas turbine, receiving a signal from a sensor that is indicative of combustion dynamics in the combustor, and detecting a flashback if a frequency of the received signal does not correspond to the predicted frequencies.

  1. Proceedings: EPRI Manufactured Gas Plants 2003 Forum

    SciTech Connect (OSTI)

    None

    2004-02-01T23:59:59.000Z

    The EPRI Manufactured Gas Plants 2003 Forum covered a range of topics related to remediation and management of former manufactured gas plant (MGP) sites, with emphasis on technological advances and current issues associated with site cleanup. In specific, the forum covered MGP coal-tar delineation, soil and groundwater remediation technologies, improvements in air monitoring, and ecological risk characterization/risk management tools.

  2. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect (OSTI)

    MEIYU SHEN; ROYCE ABBOTT; T.D. WHEELOCK

    1998-09-30T23:59:59.000Z

    The agglomeration of ultrafine-size coal particles in an aqueous suspension by means of microscopic gas bubbles was demonstrated in numerous experiments with a scale model mixing system. Coal samples from both the Pittsburgh No. 8 Seam and the Upper Freeport Seam were used for these experiments. A small amount of i-octane was added to facilitate the process. Microscopic gas bubbles were generated by saturating the water used for suspending coal particles with gas under pressure and then reducing the pressure. Microagglomerates were produced which appeared to consist of gas bubbles encapsulated in coal particles. Since dilute particle suspensions were employed, it was possible to monitor the progress of agglomeration by observing changes in turbidity. By such means it became apparent that the rate of agglomeration depends on the concentration of microscopic gas bubbles and to a lesser extent on the concentration of i-octane. Similar results were obtained with both Pittsburgh No. 8 coal and Upper Freeport coal.

  3. Electrical condition monitoring method for polymers

    DOE Patents [OSTI]

    Watkins, Jr., Kenneth S. (Dahlonega, GA); Morris, Shelby J. (Hampton, VA); Masakowski, Daniel D. (Worcester, MA); Wong, Ching Ping (Duluth, GA); Luo, Shijian (Boise, ID)

    2008-08-19T23:59:59.000Z

    An electrical condition monitoring method utilizes measurement of electrical resistivity of an age sensor made of a conductive matrix or composite disposed in a polymeric structure such as an electrical cable. The conductive matrix comprises a base polymer and conductive filler. The method includes communicating the resistivity to a measuring instrument and correlating resistivity of the conductive matrix of the polymeric structure with resistivity of an accelerated-aged conductive composite.

  4. In-situ continuous water monitoring system

    DOE Patents [OSTI]

    Thompson, C.V.; Wise, M.B.

    1998-03-31T23:59:59.000Z

    An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer. 2 figs.

  5. In-situ continuous water monitoring system

    DOE Patents [OSTI]

    Thompson, Cyril V. (Knoxville, TN); Wise, Marcus B. (Kingston, TN)

    1998-01-01T23:59:59.000Z

    An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer.

  6. Near-Surface Co2 Monitoring And Analysis To Detect Hidden Geothermal...

    Open Energy Info (EERE)

    Available technologies for monitoring CO2 in the near-surface environment include the infrared gas analyzer, the accumulation chamber method, the eddy covariance method,...

  7. Paper Presented at International Instrumentation Symposium PNNL-SA-35920 Embedded Health Monitoring Workshop, May 2002

    E-Print Network [OSTI]

    for the gas turbine engine used on the M1 Abrams tank. Research was performed on methods for real time Monitoring (PHM) system for the gas turbine engine used on the M1 Abrams tank. The purpose of this paper

  8. Therapeutic tin-117m compositions

    DOE Patents [OSTI]

    Srivastava, Suresh C. (Setauket, NY); Meinken, George E. (Middle Island, NY); Mausner, Leonard F. (Stony Brook, NY); Atkins, Harold L. (Setauket, NY)

    2003-01-01T23:59:59.000Z

    The invention provides a method for the palliation of bone pain due to cancer by the administration of a unique dosage of a tin-117m (Sn-117m) stannic chelate complex in a pharmaceutically acceptable composition. In addition, the invention provides a method for simultaneous palliation of bone pain and radiotherapy in cancer patients using compositions containing Sn-117m chelates. The invention also provides a method for palliating bone pain in cancer patients using Sn-117m-containing compositions and monitoring patient status by imaging the distribution of the Sn-117m in the patients. Also provided are pharmaceutically acceptable compositions containing Sn-117m chelate complexes for the palliation of bone pain in cancer patients.

  9. Regenerable activated bauxite adsorbent alkali monitor probe

    DOE Patents [OSTI]

    Lee, S.H.D.

    1992-12-22T23:59:59.000Z

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  10. Structural Health Monitoring Using FFT Kevin Loewkea, David Meyerb, Anthony Starra and Sia Nemat-Nasser*a

    E-Print Network [OSTI]

    Nemat-Nasser, Sia

    Structural Health Monitoring Using FFT Kevin Loewkea, David Meyerb, Anthony Starra and Sia Nemat of microprocessors. Keywords: Fast Fourier Transform, FFT, Structural Health Monitoring 1. INTRODUCTION Composite composite materials that monitor their own health using em- bedded micro-sensors and local network

  11. NANOCOMPOSITE BASED STRUCTURAL HEALTH MONITORING APPROACHES FOR FIBRE REINFORCED POLYMERS

    E-Print Network [OSTI]

    Boyer, Edmond

    NANOCOMPOSITE BASED STRUCTURAL HEALTH MONITORING APPROACHES FOR FIBRE REINFORCED POLYMERS for Polymers and Composites, Denickestr. 15, 21073 Hamburg, Germany 2 Physics Department, Faculty of Science reinforced polymer (FRP) structures in many industrial branches. Different approaches for Structural Health

  12. Higher modulus compositions incorporating particulate rubber

    DOE Patents [OSTI]

    Bauman, Bernard D. (Emmaus, PA); Williams, Mark A. (Souderton, PA); Bagheri, Reza (Bethlehem, PA)

    1997-12-02T23:59:59.000Z

    Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles.

  13. Higher modulus compositions incorporating particulate rubber

    DOE Patents [OSTI]

    McInnis, E.L.; Scharff, R.P.; Bauman, B.D.; Williams, M.A.

    1995-01-17T23:59:59.000Z

    Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figures.

  14. Higher modulus compositions incorporating particulate rubber

    SciTech Connect (OSTI)

    McInnis, Edwin L. (Allentown, PA); Scharff, Robert P. (Louisville, KY); Bauman, Bernard D. (Emmaus, PA); Williams, Mark A. (Souderton, PA)

    1995-01-01T23:59:59.000Z

    Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles.

  15. Higher modulus compositions incorporating particulate rubber

    SciTech Connect (OSTI)

    Bauman, B.D.; Williams, M.A.; Bagheri, R.

    1997-12-02T23:59:59.000Z

    Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figs.

  16. Higher modulus compositions incorporating particulate rubber

    SciTech Connect (OSTI)

    McInnis, Edwin L. (Allentown, PA); Bauman, Bernard D. (Emmaus, PA); Williams, Mark A. (Souderton, PA)

    1996-04-09T23:59:59.000Z

    Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles.

  17. Higher modulus compositions incorporating particulate rubber

    DOE Patents [OSTI]

    McInnis, E.L.; Bauman, B.D.; Williams, M.A.

    1996-04-09T23:59:59.000Z

    Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figs.

  18. Flammable gas project topical report

    SciTech Connect (OSTI)

    Johnson, G.D.

    1997-01-29T23:59:59.000Z

    The flammable gas safety issue was recognized in 1990 with the declaration of an unreviewed safety question (USQ) by the U. S. Department of Energy as a result of the behavior of the Hanford Site high-level waste tank 241-SY-101. This tank exhibited episodic releases of flammable gas that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years there has been a considerable amount of knowledge gained about the chemical and physical processes that govern the behavior of tank 241-SY-1 01 and other tanks associated with the flammable gas safety issue. This report was prepared to provide an overview of that knowledge and to provide a description of the key information still needed to resolve the issue. Items covered by this report include summaries of the understanding of gas generation, retention and release mechanisms, the composition and flammability behavior of the gas mixture, the amounts of stored gas, and estimated gas release fractions for spontaneous releases. `Me report also discusses methods being developed for evaluating the 177 tanks at the Hanford Site and the problems associated with these methods. Means for measuring the gases emitted from the waste are described along with laboratory experiments designed to gain more information regarding rates of generation, species of gases emitted and modes of gas storage and release. Finally, the process for closing the USQ is outlined as are the information requirements to understand and resolve the flammable gas issue.

  19. Primordial Compositions of Refractory Inclusions

    SciTech Connect (OSTI)

    Grossman, L; Simon, S B; Rai, V K; Thiemens, M H; Hutcheon, I D; Williams, R W; Galy, A; Ding, T; Fedkin, A V; Clayton, R N; Mayeda, T K

    2008-02-20T23:59:59.000Z

    Bulk chemical and oxygen, magnesium and silicon isotopic compositions were measured for each of 17 Types A and B refractory inclusions from CV3 chondrites. After bulk chemical compositions were corrected for non-representative sampling in the laboratory, the Mg and Si isotopic compositions of each inclusion were used to calculate its original chemical composition assuming that the heavy-isotope enrichments of these elements are due to Rayleigh fractionation that accompanied their evaporation from CMAS liquids. The resulting pre-evaporation chemical compositions are consistent with those predicted by equilibrium thermodynamic calculations for high-temperature nebular condensates but only if different inclusions condensed from nebular regions that ranged in total pressure from 10{sup -6} to 10{sup -1} bar, regardless of whether they formed in a system of solar composition or in one enriched in OC dust relative to gas by a factor of ten relative to solar composition. This is similar to the range of total pressures predicted by dynamic models of the solar nebula for regions whose temperatures are in the range of silicate condensation temperatures. Alternatively, if departure from equilibrium condensation and/or non-representative sampling of condensates in the nebula occurred, the inferred range of total pressure could be smaller. Simple kinetic modeling of evaporation successfully reproduces observed chemical compositions of most inclusions from their inferred pre-evaporation compositions, suggesting that closed-system isotopic exchange processes did not have a significant effect on their isotopic compositions. Comparison of pre-evaporation compositions with observed ones indicates that 80% of the enrichment in refractory CaO + Al{sub 2}O{sub 3} relative to more volatile MgO + SiO{sub 2} is due to initial condensation and 20% due to subsequent evaporation for both Type A and Type B inclusions.

  20. Bitumen composition

    SciTech Connect (OSTI)

    Halasz, A.; Spinell, G.; Doolittle, D.H.

    1989-11-07T23:59:59.000Z

    This patent describes a bitumen composition. It comprises: asphalt and from about 1 wt.% to about 10 wt.%, based on asphalt, of an {alpha} -olefin polymer having a molecular weight within the range from about 750 to 5000.

  1. Hydraulic Fracture Monitoring: A Jonah Field Case Study

    E-Print Network [OSTI]

    Seher, T.

    2011-01-01T23:59:59.000Z

    Hydraulic fracturing involves the injection of a fluid to fracture oil and gas reservoirs, and thus increase their permeability. The process creates numerous microseismic events, which can be used to monitor subsurface ...

  2. Hydride compositions

    DOE Patents [OSTI]

    Lee, Myung, W.

    1994-01-01T23:59:59.000Z

    Disclosed are a composition for use in storing hydrogen and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the H equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to H, and then heating below the softening temperature of any of the constituents. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P{sub H}{sub 2} and determining H/M from the isothermic function of the composition.

  3. Study of Multi-scale Transport Phenomena in Tight Gas and Shale Gas Reservoir Systems 

    E-Print Network [OSTI]

    Freeman, Craig Matthew

    2013-11-25T23:59:59.000Z

    . In this work we contribute a numerical model which captures multicomponent desorption, diffusion, and phase behavior in ultra-tight rocks. We also describe a workflow for incorporating measured gas composition data into modern production analysis....

  4. Phosphorescent compositions, methods of making the compositions, and methods of using the compositions

    DOE Patents [OSTI]

    Jia, Weiyi; Wang, Xiaojun; Jia, George D.; Lewis, Linda; Yen, Laurel C.

    2014-06-24T23:59:59.000Z

    Compositions, methods of making compositions, materials including compositions, crayons including compositions, paint including compositions, ink including compositions, waxes including compositions, polymers including compositions, vesicles including the compositions, methods of making each, and the like are disclosed.

  5. Phosphorescent compositions, methods of making the compositions, and methods of using the compositions

    DOE Patents [OSTI]

    Jia, Weiyi; Wang, Xiaojun; Yen, William; Yen, Laurel C.; Jia, George D.

    2012-12-04T23:59:59.000Z

    Compositions, methods of making compositions, materials including compositions, crayons including compositions, paint including compositions, ink including compositions, waxes including compositions, polymers including compositions, vesicles including the compositions, methods of making each, and the like are disclosed.

  6. Automated gas chromatography

    DOE Patents [OSTI]

    Mowry, C.D.; Blair, D.S.; Rodacy, P.J.; Reber, S.D.

    1999-07-13T23:59:59.000Z

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute. 7 figs.

  7. MONITORING AND CONTROL OF UREX RADIOCHEMICAL PROCESSES

    SciTech Connect (OSTI)

    Bryan, Samuel A.; Levitskaia, Tatiana G.

    2007-07-01T23:59:59.000Z

    There is urgent need for methods to provide on-line monitoring and control of the radiochemical processes that are currently being developed and demonstrated under the Global Nuclear Energy Partnership (GNEP) initiative. The methods used to monitor these processes must be robust (require little or no maintenance) and must be able to withstand harsh environments (e.g., high radiation fields and aggressive chemical matrices). The ability for continuous online monitoring allows the following benefits: • Accountability of the fissile materials; • Control of the process flowsheet; • Information on flow parameters, solution composition, and chemical speciation; • Enhanced performance by eliminating the need for traditional analytical “grab samples”; • Improvement of operational and criticality safety; • Elimination of human error. The objective of our project is to use a system of flow, chemical composition, and physical property measurement techniques for developing on-line real-time monitoring systems for the UREX process streams. We will use our past experience in adapting and deploying Raman spectrometer combined with Coriolis meters and conductivity probes in developing a deployable prototype monitor for the UREX radiochemical streams. This system will be augmented with UV-vis-NIR spectrophotomter. Flow, temperature, density, and chemical composition and concentration measurements will be combined for real-time data analysis during processing. Currently emphasis of our research is placed on evaluation of the commercial instrumentation for the UREX flowsheet.

  8. Process Design and Integration of Shale Gas to Methanol 

    E-Print Network [OSTI]

    Ehlinger, Victoria M.

    2013-02-04T23:59:59.000Z

    pathways for the production of methanol from shale gas. The composition of the shale gas feedstock is assumed to come from the Barnett Shale Play located near Fort Worth, Texas, which is currently the most active shale gas play in the US. Process...

  9. Photoimageable composition

    DOE Patents [OSTI]

    Dentinger, Paul; Krafick, Karen L.; Simison, Kelby Liv

    2005-02-22T23:59:59.000Z

    The use of photoacid generators including an alkoxyphenylphenyliodonium salt and/or bis(t-butylphenyl)iodonium salt in a photoimageable composition helps improve resolution. Suitable photoimageable compositions includes: (a) a multifuctional polymeric epoxy resin that is dissolved in an organic solvent wherein the epoxy resin comprises oligomers of bisphenol A that is quantitatively protected by glycidyl ether and wherein the oligomers have an average functionality that ranges from about 3 to 12; and a photoacid generator comprising an alkoxyphenylphenyliodonium salt and/or bis(t-butylphenyl)iodonium salt. Preferred alkoxyphenylphenyliodonium salts include 4-octyloxyphenyl phenyliodonium hexafluoroantimonate and 4-methoxyphenyl phenyliodonium hexafluoroantimonate. The photoimageable composition is particularly suited for producing high aspect ratio microstructures.

  10. Photoimageable composition

    DOE Patents [OSTI]

    Simison, Kelby Liv; Dentinger, Paul

    2003-11-11T23:59:59.000Z

    The use of selected buffering amines in a photoimageable composition prevents process bias which with conventional photoresists causes designed features to be distorted, especially in corners and high resolution features. It is believed that the amines react with the catalysts, e.g., photoacids, generated to create an inert salt. The presence of the amines also increases resolution. Suitable photoimageable compositions includes: (a) a multifunctional polymeric epoxy resin that is dissolved in an organic solvent wherein the epoxy resin comprises oligomers of bisphenol A that is quantitatively protected by glycidyl ether and wherein the oligomers have an average functionality that ranges from about 3 to 12; (b) a photoactive compound; and (c) an amine that is selected from the group consisting of triisobutylamine, 1,8-bis(dimethylamino)naphthalene (also known as PROTON SPONGET.TM.), 2,2'-diazabicyclo[2.2.2] octane and mixtures thereof. The photoimageable composition is particularly suited for producing high aspect ratio metal microstructures.

  11. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A. (Knoxville, TN); Woodward, Jonathan (Solihull, GB); Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN)

    2012-02-07T23:59:59.000Z

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  12. AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA

    SciTech Connect (OSTI)

    Carerras-Sospedra, Marc; Brouwer, Jack; Dabdub, Donald; Lunden, Melissa; Singer, Brett

    2011-07-01T23:59:59.000Z

    The effects of liquefied natural gas (LNG) on pollutant emission inventories and air quality in the South Coast Air Basin of California were evaluated using recent LNG emission measurements by Lawrence Berkeley National Laboratory and the Southern California Gas Company (SoCalGas), and with a state-of-the-art air quality model. Pollutant emissions can be affected by LNG owing to differences in composition and physical properties, including the Wobbe index, a measure of energy delivery rate. This analysis uses LNG distribution scenarios developed by modeling Southern California gas flows, including supplies from the LNG receiving terminal in Baja California, Mexico. Based on these scenarios, the projected penetratino of LNG in the South Coast Air Basin is expected to be limited. In addition, the increased Wobbe index of delivered gas (resulting from mixtures of LNG and conventional gas supplies) is expected to cause increases smaller than 0.05 percent in overall (area-wide) emissions of nitrogen oxides (NOx). BAsed on the photochemical state of the South Coast Air Basin, any increase in NOx is expected to cause an increase in the highest local ozone concentrations, and this is reflected in model results. However, the magnitude of the increase is well below the generally accepted accuracy of the model and would not be discernible with the existing monitoring network. Modeling of hypothetical scenarios indicates that discernible changes to ambient ozone and particulate matter concentrations would occur only at LNG distribution rates that are not achievable with current or planned infrastructure and with Wobbe index vlaues that exceed current gas quality tariffs. Results of these hypothetical scenarios are presented for consideration of any proposed substantial expansion of LNG supply infrastructure in Southern California.

  13. Packed-Bed Reactor Study of NETL Sample 196c for the Removal of Carbon Dioxide from Simulated Flue Gas Mixture

    SciTech Connect (OSTI)

    Hoffman, James S.; Hammache, Sonia; Gray, McMahan L.; Fauth Daniel J.; Pennline, Henry W.

    2012-04-24T23:59:59.000Z

    An amine-based solid sorbent process to remove CO2 from flue gas has been investigated. The sorbent consists of polyethylenimine (PEI) immobilized onto silica (SiO2) support. Experiments were conducted in a packed-bed reactor and exit gas composition was monitored using mass spectrometry. The effects of feed gas composition (CO2 and H2O), temperature, and simulated steam regeneration were examined for both the silica support as well as the PEI-based sorbent. The artifact of the empty reactor was also quantified. Sorbent CO2 capacity loading was compared to thermogravimetric (TGA) results to further characterize adsorption isotherms and better define CO2 working capacity. Sorbent stability was monitored by periodically repeating baseline conditions throughout the parametric testing and replacing with fresh sorbent as needed. The concept of the Basic Immobilized Amine Sorbent (BIAS) Process using this sorbent within a system where sorbent continuously flows between the absorber and regenerator was introduced. The basic tenet is to manipulate or control the level of moisture on the sorbent as it travels around the sorbent circulation path between absorption and regeneration stages to minimize its effect on regeneration heat duty.

  14. Transformation Composition

    E-Print Network [OSTI]

    Drewes, Frank

    Proc. AGTIVE'99, to appear in LNCS Graph Transformation Modules and their Composition ? Frank,knirsch,kreo,kuskeg@informatik.uni-bremen.de Abstract. In this paper, we investigate the notion of transformation modules as a structuring principle. Based on the notion of transformation units, a concept that allows to specify binary relations on graphs

  15. DIGESTER GAS - FUEL CELL - PROJECT

    SciTech Connect (OSTI)

    Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

    2002-03-01T23:59:59.000Z

    GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

  16. Spirometer techniques for measuring molar composition in argon carbon dioxide mixtures

    E-Print Network [OSTI]

    Chonde, Daniel Burje

    2007-01-01T23:59:59.000Z

    This paper examines a new technique for measuring gas composition through the use of a spirometer. A spirometer is high precision pressure transducer which measures the speed of sound in a gas through the emission and ...

  17. AUTOMATED PROCESS MONITORING: APPLYING PROVEN AUTOMATION TECHNIQUES TO INTERNATIONAL SAFEGUARDS NEEDS

    SciTech Connect (OSTI)

    O'Hara, Matthew J.; Durst, Philip C.; Grate, Jay W.; Devol, Timothy A.; Egorov, Oleg; Clements, John P.

    2008-07-13T23:59:59.000Z

    Identification and quantification of specific alpha- and beta-emitting radionuclides in complex liquid matrices is highly challenging, and is typically accomplished through laborious wet chemical sample preparation and separations followed by analysis using a variety of detection methodologies (e.g., liquid scintillation, gas proportional counting, alpha energy analysis, mass spectrometry). Analytical results may take days or weeks to report. Chains of custody and sample security measures may also complicate or slow the analytical process. When an industrial process-scale plant requires the monitoring of specific radionuclides as an indication of the composition of its feed stream or of plant performance, radiochemical measurements must be fast, accurate, and reliable. Scientists at Pacific Northwest National Laboratory have assembled a fully automated prototype Process Monitor instrument capable of a variety of tasks: automated sampling directly from a feed stream, sample digestion / analyte redox adjustment, chemical separations, radiochemical detection and data analysis / reporting. The system is compact, its components are fluidically inter-linked, and analytical results could be immediately transmitted to on- or off-site locations. The development of a rapid radiochemical Process Monitor for 99Tc in Hanford tank waste processing streams, capable of performing several measurements per hour, will be discussed in detail. More recently, the automated platform was modified to perform measurements of 90Sr in Hanford tank waste stimulant. The system exemplifies how automation could be integrated into reprocessing facilities to support international nuclear safeguards needs.

  18. Thermal barrier and overlay coating systems comprising composite metal/metal oxide bond coating layers

    DOE Patents [OSTI]

    Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL); Vance, Steven J. (Orlando, FL)

    2001-01-01T23:59:59.000Z

    The present invention generally describes multilayer coating systems comprising a composite metal/metal oxide bond coat layer. The coating systems may be used in gas turbines.

  19. DOE's AMO Releases Workshop "Save the Date" and New RFI on Composite...

    Energy Savers [EERE]

    Fiber reinforced polymer composites can be used in vehicles, industrial equipment, wind turbines, compressed gas storage, buildings and infrastructure, and many other...

  20. Single chamber fuel cells: Flow geometry, rate and composition considerations

    SciTech Connect (OSTI)

    Stefan, Ionel C.; Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2003-11-17T23:59:59.000Z

    Four different single chamber fuel cell designs were compared using propane-air gas mixtures. Gas flow around the electrodes has a significant influence on the open circuit voltage and the power density of the cell. The strong influence of flow geometry is likely due to its effect on gas composition, particularly on the oxygen chemical potential at the two electrodes as a result of gas mixing. The chamber design which exposes the cathode first to the inlet gas was found to yield the best performance at lower flow rates, while the open tube design with the electrodes equally exposed to the inlet gas worked best at higher flow rates.

  1. HP Steam Trap Monitoring

    E-Print Network [OSTI]

    Pascone, S.

    2011-01-01T23:59:59.000Z

    STEAM MONITORING HP Steam Trap Monitoring HP Steam Trap Monitoring ? 12-18 months payback! ? 3-5% permanent reduction in consumption ? LEED Pt.? Innovation in Operations EB O&M ? Saved clients over $1,000,000 Annual consumption... Steam Trap Monitoring ? Real-time monitoring for high-pressure critical traps (>15 PSIG) ? Average total system cost $25K - $50K ? Web-Based or Modbus/BMS Integration Basic Installation Wireless Signal Transmitter Receiver Repeater...

  2. All-optical remote monitoring of propane gas using a 5-km-long, low-loss optical fiber link and an InGaP light-emitting diode in the 1. 68-. mu. m region

    SciTech Connect (OSTI)

    Chan, K.; Ito, H.; Inaba, H.

    1984-08-01T23:59:59.000Z

    We report the fully optical remote detection of low-level propane (C/sub 3/H/sub 8/) gas realized by the scheme based on a long distance, very low-loss silica optical fiber link connected to a compact absorption cell in conjunction with a high radiant InGaP light-emitting diode at 1.68 ..mu..m. For this application, the near-infrared absorption spectrum of propane was measured and studied to find very complicated bands around 1.69, 1.53, and 1.38 ..mu..m. This simple system, employing a 5-km-long silica optical fiber link, was demonstrated to be capable of achieving reproducibly the detection sensitivity less than 2.4 Torr for propane gas in air, i.e., about 14% of the lower explosion limit of propane density. This result verifies a large capability for major applications to various strategic points within the environment, such as industrial complexes as well as urban and residential areas, with considerably increased reliability and safety over the existing techniques.

  3. Stochastic Programming Approaches for the Placement of Gas Detectors in Process Facilities

    E-Print Network [OSTI]

    Legg, Sean W

    2013-05-21T23:59:59.000Z

    of these detectors is required in order to have a well-functioning gas detection system. However, the uncertainty in leak locations, gas composition, process and weather conditions, and process geometries must all be considered when attempting to determine...

  4. craton, where the pattern matches that expected from the gas-hydrate model. Fur-

    E-Print Network [OSTI]

    Kilgard, Michael P.

    craton, where the pattern matches that expected from the gas-hydrate model. Fur- ther, values-lived changes in the carbon-isotopic composition of the ocean. But the gas-hydrate model avoids some

  5. Aerogel composites and method of manufacture

    DOE Patents [OSTI]

    Cao, Wanqing (Alameda, CA); Hunt, Arlon Jason (Oakland, CA)

    1999-01-01T23:59:59.000Z

    Disclosed herewith is a process of forming an aerogel composite which comprises introducing a gaseous material into a formed aerogel monolith or powder, and causing decomposition of said gaseous material in said aerogel in amounts sufficient to cause deposition of the decomposition products of the gas on the surfaces of the pores of the said aerogel. Also disclosed are the composites made by the process.

  6. Feasibility of an alpha particle gas densimeter for stack sampling applications 

    E-Print Network [OSTI]

    Johnson, Randall Mark

    1983-01-01T23:59:59.000Z

    , for conceivable ranges of flue gas composition, the maximum error in density due to the uncertainty in gas composition is less than 2%. ACKNOWLEDGEMENTS I wish to express my appreciation to Dr. R. A. Fjeld and Dr. A. R. McFarland for their patience... LISTING APPENDIX C TABULATED RESULTS 58 60 72 VI TA 84 Vi LIST OF TABLES TABLE P age I Typical Flue Gas Compositions II Model Flue Gas Compositions 35 Coeff icients for Alpha particle Stopping Power Functions 59 Computed and Experimental...

  7. Methods developed for detecting hazardous elements in produced gas

    SciTech Connect (OSTI)

    Chao, S.; Attari, A. (Inst. of Gas Technology, Des Plaines, IL (United States))

    1995-01-16T23:59:59.000Z

    The Institute of Gas Technology, Des Plaines, Ill. has been developing sampling and analytical methods to detect in natural gas various trace constituents that may pose health, safety, or operational risks. The constituents of interest include paraffinic and aromatic hydrocarbons, H[sub 2]S, organic sulfur compounds, arsenic, mercury, radon, and others. Better sampling and analytical techniques for produced natural gas, similar to those developed by IGT for processed gas, will enhance producers and processors' abilities to monitor undesirable constituents in raw gas streams and improve their clean-up processes. The methods developed at IGT were modifications of air sampling and analytical methods that are commonly used for air toxic substances. These monitoring methods, when applied to natural gas, present special challenges because gas has a much more complex matrix than the air. Methods for the analysis of the following are discussed: arsenic, mercury, radon, sulfur compounds, hydrocarbons, and aromatics including BTEX and PAHs.

  8. ORNL Environmental Monitoring Programs 5-1 5. ORNL Environmental Monitoring Programs

    E-Print Network [OSTI]

    Pennycook, Steve

    , which includes 3500 and 4500 areas' cell ven- tilation system, isotope solid-state ventilation system, 3025 and 3026 areas' cell ventilation system, 3042 ventilation system, and 3092 central off-gas system Monitoring Programs source is composed of any ventilation system or component such as a vent, a laboratory

  9. Method and apparatus for decreased undesired particle emissions in gas streams

    DOE Patents [OSTI]

    Durham, Michael Dean (Castle Rock, CO); Schlager, Richard John (Aurora, CO); Ebner, Timothy George (Westminster, CO); Stewart, Robin Michele (Arvada, CO); Bustard, Cynthia Jean (Littleton, CO)

    1999-01-01T23:59:59.000Z

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  10. Electrical condition monitoring method for polymers

    DOE Patents [OSTI]

    Watkins, Jr. Kenneth S. (Dahlonega, GA); Morris, Shelby J. (Hampton, VA); Masakowski, Daniel D. (Worcester, MA); Wong, Ching Ping (Duluth, GA); Luo, Shijian (Boise, ID)

    2010-02-16T23:59:59.000Z

    An electrical condition monitoring method utilizes measurement of electrical resistivity of a conductive composite degradation sensor to monitor environmentally induced degradation of a polymeric product such as insulated wire and cable. The degradation sensor comprises a polymeric matrix and conductive filler. The polymeric matrix may be a polymer used in the product, or it may be a polymer with degradation properties similar to that of a polymer used in the product. The method comprises a means for communicating the resistivity to a measuring instrument and a means to correlate resistivity of the degradation sensor with environmentally induced degradation of the product.

  11. Gas treating alternatives for LNG plants

    SciTech Connect (OSTI)

    Clarke, D.S.; Sibal, P.W. [Mobil Technology Co., Dallas, TX (United States)

    1998-12-31T23:59:59.000Z

    This paper covers the various gas treating processes available for treating sour natural gas to specifications required for LNG production. The LNG product specification requires that the total sulfur level be less than 30--40 ppmv, the CO{sub 2} level be less than 50 ppmv and the water level be less than 100 ppmv to prevent freezing problems in the LNG cryogenic column. A wide variety of natural gas compositions are encountered in the various fields and the gas treating process selection is dependent on the type of impurities present in the gas, namely, levels of H{sub 2}S, CO{sub 2}, mercaptans and other organic sulfur compounds. This paper discusses the implications various components in the feed to the LNG plant can have on process selection, and the various treating processes that are available to condition the gas. Process selection criteria, design and operating philosophies are discussed. An economic comparison for two treating schemes is provided.

  12. Lubricant compositions

    SciTech Connect (OSTI)

    Johnson, A.L.; Lawson, R.D.; Root, J.C.

    1981-12-15T23:59:59.000Z

    Lubricant compositions adapted for use under extreme pressure conditions are disclosed. They comprise a major proportion of a lubricating grease, and a minor proportion of an additive consisting essentially of a solid, oil insoluble arylene sulfide polymer, and a metal salt, particularly an alkali metal or alkaline earth metal salt, particularly an alkali metal or alkaline earth metal salt of a phosphorus acid, for example, mono- or dicalcium phosphate, or an alkali metal or alkaline earth metal carbonate exemplified by calcium carbonate, or a mixture of such a phosphate salt and carbonate.

  13. Continuous Emissions Monitoring System Monitoring Plan for the Y-12 Steam Plant

    SciTech Connect (OSTI)

    None

    2003-02-28T23:59:59.000Z

    The Oak Ridge Y-12 National Security Complex (Y-12), managed by BWXT, is submitting this Continuous Emissions Monitoring System (CEMS) Monitoring Plan in conformance with the requirements of Title 40 of the U.S. Code of Federal Regulations (CFR) Part 75. The state of Tennessee identified the Y-12 Steam Plant in Oak Ridge, Tennessee, as a non-electrical generation unit (EGU) nitrogen oxides (NO{sub x}) budget source as a result of the NO{sub x} State Implementation Plan (SIP) under the Tennessee Department of Environment and Conservation (TDEC) Rule 1200-3-27. Following this introduction, the monitoring plan contains the following sections: CEMS details, NO{sub x} emissions, and quality assurance (QA)/quality control (QC). The following information is included in the attachments: fuel and flue gas diagram, system layout, data flow diagrams, Electronic Monitoring Plan printouts, vendor information on coal and natural gas feed systems, and the Certification Test Protocol. The Y-12 Steam Plant consists of four Wickes boilers. Each is rated at a maximum heat input capacity of 296.8 MMBtu/hour or 250,000 lb/hour of 250-psig steam. Although pulverized coal is the principal fuel, each of the units can fire natural gas or a combination of coal and gas. Each unit is equipped with a Joy Manufacturing Company reverse air baghouse to control particulate emissions. Flue gases travel out of the baghouse, through an induced draft fan, then to one of two stacks. Boilers 1 and 2 exhaust through Stack 1. Boilers 3 and 4 exhaust through Stack 2. A dedicated CEMS will be installed in the ductwork of each boiler, downstream of the baghouse. The CEMS will be designed, built, installed, and started up by URS Group, Inc. (URS). Data acquisition and handling will be accomplished using a data acquisition and handling system (DAHS) designed, built, and programmed by Environmental Systems Corporation (ESC). The installed CEMS will continuously monitor NO{sub x}, flue gas flowrate, and carbon dioxide (CO{sub 2}). The CEMS will be utilized to report emissions from each unit for each ozone season starting May 1, 2003. Each boiler has independent coal and natural gas metering systems. Coal is fed to each boiler by belt-type coal feeders. Each boiler has two dedicated coal feeders. Natural gas may be burned along with coal for flame stability. The boilers may also be fired on natural gas alone. Orifice meters measure the natural gas flow to each boiler.

  14. Portal radiation monitor

    DOE Patents [OSTI]

    Kruse, Lyle W. (Albuquerque, NM)

    1985-01-01T23:59:59.000Z

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  15. APS Building Monitors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Monitors For non-401 Building Monitors, select: LOMs Other APS Buildings 401 West WCtr Lab Wing ECtr East 5th Floor Yiying Ge na na na na 4th Floor Rick Fenner Karen...

  16. Corrosion monitoring apparatus

    DOE Patents [OSTI]

    Isaacs, Hugh S. (Shoreham, NY); Weeks, John R. (Stony Brook, NY)

    1980-01-01T23:59:59.000Z

    A corrosion monitoring device in an aqueous system which includes a formed crevice and monitoring the corrosion of the surfaces forming the crevice by the use of an a-c electrical signal.

  17. NATURAL GAS MARKET ASSESSMENT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

  18. Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    springs, and fumaroles. These samples were analyzed for noble gas abundances and their helium isotropic compositions. It was found that the geothermal fluids range from 0.70 to...

  19. Liquid absorbent solutions for separating nitrogen from natural gas

    DOE Patents [OSTI]

    Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Redmond, OR); Lyon, David K. (Bend, OR); Miller, Warren K. (Bend, OR)

    2000-01-01T23:59:59.000Z

    Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  20. Gas Detector LCLS Engineering Specifications Document

    SciTech Connect (OSTI)

    Hau-Riege, S

    2007-02-09T23:59:59.000Z

    There are two Gas Detectors, located upstream and downstream of the FEL attenuation materials, which provide a non-intrusive measure of the FEL pulse energy in the fundamental, in real-time, on a pulse-by-pulse basis. The FEL operators and the users will use this information to monitor the performance of the FEL and the Attenuator and to cross-calibrate other detectors. The Gas Detectors measure the FEL pulse energy by measuring the fluorescence induced in a small volume of N{sub 2} gas by the passage of the FEL.

  1. Method of making a modified ceramic-ceramic composite

    DOE Patents [OSTI]

    Weaver, Billy L. (Eagan, MN); McLaughlin, Jerry C. (Oak Ridge, TN); Stinton, David P. (Knoxville, TN)

    1995-01-01T23:59:59.000Z

    The present invention provides a method of making a shaped ceramic-ceramic composite articles, such as gas-fired radiant heat burner tubes, heat exchangers, flame dispersers, and other furnace elements, having a formed-on ceramic-ceramic composite thereon.

  2. Method and apparatus for manufacturing gas tags

    DOE Patents [OSTI]

    Gross, Kenny C. (Bolingbrook, IL); Laug, Matthew T. (Idaho Falls, ID)

    1996-01-01T23:59:59.000Z

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.

  3. Method and apparatus for manufacturing gas tags

    DOE Patents [OSTI]

    Gross, K.C.; Laug, M.T.

    1996-12-17T23:59:59.000Z

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.

  4. Method for removing undesired particles from gas streams

    DOE Patents [OSTI]

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.

    1998-11-10T23:59:59.000Z

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.

  5. Silicon-based nanoenergetic composites

    SciTech Connect (OSTI)

    Asay, Blaine [Los Alamos National Laboratory; Son, Steven [PURDUE UNIV; Mason, Aaron [PURDUE UNIV; Yarrington, Cole [PURDUE UNIV; Cho, K Y [PURDUE UNIV; Gesner, J [PSU; Yetter, R A [PSU

    2009-01-01T23:59:59.000Z

    Fundamental combustion properties of silicon-based nano-energetic composites was studied by performing equilibrium calculations, 'flame tests', and instrumented burn-tube tests. That the nominal maximum flame temperature and for many Si-oxidizer systems is about 3000 K, with exceptions. Some of these exceptions are Si-metal oxides with temperatures ranging from 2282 to 2978 K. Theoretical maximum gas production of the Si composites ranged from 350-6500 cm{sup 3}/g of reactant with NH{sub 4}ClO{sub 4} - Si producing the most gas at 6500 cm{sup 3}/g and Fe{sub 2}O{sub 3} producing the least. Of the composites tested NH{sub 4}ClO{sub 4} - Si showed the fastest burning rates with the fastest at 2.1 km/s. The Si metal oxide burning rates where on the order of 0.03-75 mls the slowest of which was nFe{sub 2}O{sub 3} - Si.

  6. Method and apparatus for monitoring aircraft components

    DOE Patents [OSTI]

    Dickens, L.M.; Haynes, H.D.; Ayers, C.W.

    1996-01-16T23:59:59.000Z

    Operability of aircraft mechanical components is monitored by analyzing the voltage output of an electrical generator of the aircraft. Alternative generators, for a turbine-driven rotor aircraft, include the gas producer turbine tachometer generator, the power turbine tachometer generator, and the aircraft systems power producing starter/generator. Changes in the peak amplitudes of the fundamental frequency and its harmonics are correlated to changes in condition of the mechanical components. 14 figs.

  7. Method and apparatus for monitoring aircraft components

    DOE Patents [OSTI]

    Dickens, Larry M. (Oak Ridge, TN); Haynes, Howard D. (Knoxville, TN); Ayers, Curtis W. (Clinton, TN)

    1996-01-01T23:59:59.000Z

    Operability of aircraft mechanical components is monitored by analyzing the voltage output of an electrical generator of the aircraft. Alternative generators, for a turbine-driven rotor aircraft, include the gas producer turbine tachometer generator, the power turbine tachometer generator, and the aircraft systems power producing starter/generator. Changes in the peak amplitudes of the fundamental frequency and its harmonics are correlated to changes in condition of the mechanical components.

  8. Condensing Hybrid Water Heater Monitoring Field Evaluation

    SciTech Connect (OSTI)

    Maguire, J.; Earle, L.; Booten, C.; Hancock, C. E.

    2011-10-01T23:59:59.000Z

    This paper summarizes the Mascot home, an abandoned property that was extensively renovated. Several efficiency upgrades were integrated into this home, of particular interest, a unique water heater (a Navien CR240-A). Field monitoring was performed to determine the in-use efficiency of the hybrid condensing water heater. The results were compared to the unit's rated efficiency. This unit is Energy Star qualified and one of the most efficient gas water heaters currently available on the market.

  9. Seismic Imaging and Monitoring

    SciTech Connect (OSTI)

    Huang, Lianjie [Los Alamos National Laboratory

    2012-07-09T23:59:59.000Z

    I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

  10. The Northwest Infrared (NWIR) gas-phase spectral database of industrial and environmental chemicals: Recent updates

    SciTech Connect (OSTI)

    Brauer, Carolyn S.; Johnson, Timothy J.; Blake, Thomas A.; Sharpe, Steven W.; Sams, Robert L.; Tonkyn, Russell G.

    2014-05-22T23:59:59.000Z

    With continuing improvements in both standoff- and point-sensing techniques, there is an ongoing need for high-quality infrared spectral databases. The Northwest Infrared Database (NWIR) contains quantitative, gas-phase infrared spectra of nearly 500 pure chemical species that can be used for a variety of applications such as atmospheric monitoring, biomass burning studies, etc. The data, recorded at 0.1 cm-1 resolution, are pressure broadened to one atmosphere (N2) in order to mimic atmospheric conditions. Each spectrum is a composite composed of multiple individual measurements. Recent updates to the database include over 60 molecules that are known or suspected biomass-burning effluents. Examples from this set of measurements will be presented and experimental details will be discussed in the context of the utility of NWIR for environmental applications.

  11. Georgia Tech Dangerous Gas

    E-Print Network [OSTI]

    Sherrill, David

    1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

  12. Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Holland, R.C. [Science Applications International Corp., San Diego, CA (United States)

    1993-07-01T23:59:59.000Z

    This Environmental Monitoring Plan was written to fulfill the requirements of Department of Energy (DOE) Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories/California. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. This revision to the Environmental Monitoring Plan was written to document the changes made to the Monitoring Program during 1992. Some of the data (most notably the statistical analyses of past monitoring data) has not been changed.

  13. Composites with Negative Refractive Index, Thermal, Self-healing and Self-sensing Functionality

    E-Print Network [OSTI]

    Nemat-Nasser, Sia

    138 Composites with Negative Refractive Index, Thermal, Self-healing and Self-sensing Functionality-NASSER ABSTRACT Here, we outline recent achievements in creating structural composite materials with controlled render the composite information-based, so that it can monitor and report on the local structural

  14. Sandia Energy - Structural Health Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Health Monitoring Home Stationary Power Energy Conversion Efficiency Wind Energy Materials, Reliability, & Standards Structural Health Monitoring Structural Health...

  15. Measurement and monitoring of tritium and other critical issues in Lead Lithium Ceramic Breeder (LLCB)

    SciTech Connect (OSTI)

    Tangri, V. K.; Mohan, S. [Heavy Water Div., Bhabha Atomic Research Centre (India); Narayanan, A.; Narayan, K. K. [Radiation Safety Systems Div., Bhabha Atomic Research Centre (India)

    2008-07-15T23:59:59.000Z

    A new Indian concept involving a lead lithium ceramic breeder is being explored. LLCB based tritium blanket modules require tritium extraction from lead-lithium as well as from helium purge gas. This paper addresses the concept of efficiency enhancement using high surface area, low-pressure drop structured gas liquid contactors for tritium extraction from the lead lithium. Conceptual flow schemes for both loops are discussed and critical issues are highlighted. Tritium monitoring systems (TMS) for measurement and monitoring of tritium is also dealt. A fast responding tritium monitor has also been developed for in situ measurement of tritium in water or gas form. It has been tested for liquid effluents. (authors)

  16. ART CCIM Phase II-A Off-Gas System Evaluation Test Plan

    SciTech Connect (OSTI)

    Nick Soelberg; Jay Roach

    2009-01-01T23:59:59.000Z

    This test plan defines testing to be performed using the Idaho National Laboratory (INL) engineering-scale cold crucible induction melter (CCIM) test system for Phase II-A of the Advanced Remediation Technologies (ART) CCIM Project. The multi-phase ART-CCIM Project is developing a conceptual design for replacing the joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) with a cold crucible induction melter. The INL CCIM test system includes all feed, melter off-gas control, and process control subsystems needed for fully integrated operation and testing. Testing will include operation of the melter system while feeding a non-radioactive slurry mixture prepared to simulate the same type of waste feed presently being processed in the DWPF. Process monitoring and sample collection and analysis will be used to characterize the off-gas composition and properties, and to show the fate of feed constituents, to provide data that shows how the CCIM retrofit conceptual design can operate with the existing DWPF off-gas control system.

  17. Method for cracking hydrocarbon compositions using a submerged reactive plasma system

    DOE Patents [OSTI]

    Kong, P.C.

    1997-05-06T23:59:59.000Z

    A method is described for cracking a liquid hydrocarbon composition (e.g. crude oil) to produce a cracked hydrocarbon product. A liquid hydrocarbon composition is initially provided. An electrical arc is generated directly within the hydrocarbon composition so that the arc is entirely submerged in the composition. Arc generation is preferably accomplished using a primary and secondary electrode each having a first end submerged in the composition. The first ends of the electrodes are separated from each other to form a gap there between. An electrical potential is then applied to the electrodes to generate the arc within the gap. A reactive gas is thereafter delivered to the arc which forms a bubble around the arc. Gas delivery may be accomplished by providing a passageway through each electrode and delivering the gas through the passageways. The arc and gas cooperate to produce a plasma which efficiently cracks the hydrocarbon composition. 6 figs.

  18. Method for cracking hydrocarbon compositions using a submerged reactive plasma system

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    1997-01-01T23:59:59.000Z

    A method for cracking a liquid hydrocarbon composition (e.g. crude oil) to produce a cracked hydrocarbon product. A liquid hydrocarbon composition is initially provided. An electrical arc is generated directly within the hydrocarbon composition so that the arc is entirely submerged in the composition. Arc generation is preferably accomplished using a primary and secondary electrode each having a first end submerged in the composition. The first ends of the electrodes are separated from each other to form a gap therebetween. An electrical potential is then applied to the electrodes to generate the arc within the gap. A reactive gas is thereafter delivered to the arc which forms a bubble around the arc. Gas delivery may be accomplished by providing a passageway through each electrode and delivering the gas through the passageways. The arc and gas cooperate to produce a plasma which efficiently cracks the hydrocarbon composition.

  19. Stability of natural gas in the deep subsurface

    SciTech Connect (OSTI)

    Barker, C.

    1996-07-01T23:59:59.000Z

    Natural gas is becoming increasingly important as a fuel because of its widespread occurrence and because it has a less significant environmental impact than oil. Many of the known gas accumulations were discovered by accident during exploration for oil, but with increasing demand for gas, successful exploration will require a clearer understanding of the factors that control gas distribution and gas composition. Natural gas is generated by three main processes. In oxygen-deficient, sulfate-free, shallow (few thousand feet) environments bacteria generate biogenic gas that is essentially pure methane with no higher hydrocarbons ({open_quotes}dry gas{close_quotes}). Gas is also formed from organic matter ({open_quotes}kerogen{close_quotes}), either as the initial product from the thermal breakdown of Type III, woody kerogens, or as the final hydrocarbon product from all kerogen types. In addition, gas can be formed by the thermal cracking of crude oil in the deep subsurface. The generation of gas from kerogen requires higher temperatures than the generation of oil. Also, the cracking of oil to gas requires high temperatures, so that there is a general trend from oil to gas with increasing depth. This produces a well-defined {open_quotes}floor for oil{close_quotes}, below which crude oil is not thermally stable. The possibility of a {open_quotes}floor for gas{close_quotes} is less well documented and understanding the limits on natural gas occurrence was one of the main objectives of this research.

  20. An improved method for the determination of the wellstream gas specific gravity for retrograde gases

    E-Print Network [OSTI]

    Gold, David Keith

    1988-01-01T23:59:59.000Z

    calculations. The wellstream gas specific gravity for a retrograde gas reservoir can be determined using two methods. The first method requires fluid samples of the primary separator liquid and gas to be obtained from the well, their respective compositions... the most accurate estimate of the wellstream gas specific gravity, but using the field production information can provide a very reliable estimate as well. The equation for calculating the wellstream gas specific gravity using production information...

  1. Enhanced catalyst for converting synthesis gas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY)

    1986-01-01T23:59:59.000Z

    The conversion of synthesis gas to liquid molar fuels by means of a cobalt Fischer-Tropsch catalyst composition is enhanced by the addition of molybdenum, tungsten or a combination thereof as an additional component of said composition. The presence of the additive component increases the olefinic content of the hydrocarbon products produced. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  2. The effect of condensate dropout on pressure transient analysis of a high-pressure gas condensate well

    E-Print Network [OSTI]

    Briens, Frederic Jean-Louis

    1986-01-01T23:59:59.000Z

    of drawdown or buildup tests, the formation permeability can be estimated. Although these conventional techniques have been successfully applied to 'dry' gas well analysis, they have not been extended to high-pressure gas condensate wells. The application... Condensate Reser voir Data. . 43 Elf Aquitaine Gas Condensate Reservoir Fluid Composition Elf Aquitaine Gas Condensate Well Production Test Data. Drawdown Test F1 of Elf Aquitaine Gas Condensate Mell 45 46 Drawdown Test F2 of Elf Aquitaine Gas...

  3. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Morrow, Marvin S. (Kingston, TN)

    1994-01-01T23:59:59.000Z

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  4. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, C.E.; Morrow, M.S.

    1994-07-19T23:59:59.000Z

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  5. The effect of fuel composition on flame dynamics

    SciTech Connect (OSTI)

    Hendricks, Adam G.; Vandsburger, Uri [Department of Mechanical Engineering - 0238, Virginia Tech, Blacksburg, VA 24061 (United States)

    2007-10-15T23:59:59.000Z

    As fuel sources diversify, the gas turbine industry is under increasing pressure to develop fuel-flexible plants, able to use fuels with a variety of compositions from a large range of sources. However, the dynamic characteristics vary considerably with composition, in many cases altering the thermoacoustic stability of the combustor. We compare the flame dynamics, or the response in heat release rate of the flame to acoustic perturbations, of the three major constituents of natural gas: methane, ethane, and propane. The heat release rate is quantified using OH* chemiluminescence and product gas temperature. Gas temperature is measured by tracking the absorption of two high-temperature water lines, via Tunable Diode Laser Absorption Spectroscopy. The flame dynamics of the three fuels differ significantly. The changes in flame dynamics due to variations in fuel composition have the potential to have a large effect on the thermoacoustic stability of the combustor. (author)

  6. Electrical swing adsorption gas storage and delivery system

    DOE Patents [OSTI]

    Judkins, R.R.; Burchell, T.D.

    1999-06-15T23:59:59.000Z

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided. 5 figs.

  7. Electrical swing adsorption gas storage and delivery system

    DOE Patents [OSTI]

    Judkins, Roddie R. (Knoxville, TN); Burchell, Timothy D. (Oak Ridge, TN)

    1999-01-01T23:59:59.000Z

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided.

  8. Gas custody measurement accuracy improved in Saudi Arabia

    SciTech Connect (OSTI)

    Ali, I. (Saudi Arabian Oil Co., Dhahran (Saudi Arabia))

    1994-06-06T23:59:59.000Z

    To comply with new and more accurate gas measurement standards, Saudi Arabian Oil Co. (Saudi Aramco) modified software for existing flow computers and installed an on-line gas chromatograph for measuring natural gas and ethane-rich gas sales. For gases of varying composition (e.g., ethane-rich gas), a knowledge of the pressure, volume, and temperature (PVT) relationship is required for determining supercompressibility factors. The BWR-Starling equation of state was determined to best represent ethane-rich gas properties and is programmed in the new flow computers. The paper discusses gas sales, previous installations, previous calculations, revised calculations, application to ethane-rich gas, the orifice-flow constant, and field modifications of computers.

  9. Apparatus and method for monitoring breath acetone and diabetic diagnostics

    DOE Patents [OSTI]

    Duan, Yixiang (Los Alamos, NM); Cao, Wenqing (Los Alamos, NM)

    2008-08-26T23:59:59.000Z

    An apparatus and method for monitoring diabetes through breath acetone detection and quantitation employs a microplasma source in combination with a spectrometer. The microplasma source provides sufficient energy to produce excited acetone fragments from the breath gas that emit light. The emitted light is sent to the spectrometer, which generates an emission spectrum that is used to detect and quantify acetone in the breath gas.

  10. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, J.E.; Bolton, R.D.

    1999-03-02T23:59:59.000Z

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  11. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, James E. (Los Alamos, NM); Bolton, Richard D. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  12. Sensors for monitoring waste glass quality and method of using the same

    DOE Patents [OSTI]

    Bickford, D.F.

    1994-03-15T23:59:59.000Z

    A set of three electrical probes is described for monitoring alkali and oxygen activity of a glass melt. On-line, real time measurements of the potential difference among the probes when they are placed in electrical contact with the melt yield the activity information and can be used to adjust the composition of the melt in order to produce higher quality glass. The first two probes each has a reference gas and a reference electrolyte and a pair of wires in electrical connection with each other in the reference gas but having one of the wires extending further into the reference electrolyte. The reference gases both include a known concentration of oxygen. The third electrode has a pair of wires extending through an otherwise solid body to join electrically just past the body but having one of the wires extend past this junction. Measuring the potential difference between wires of the first and second probes provides the alkali activity; measurement of the potential difference between wires of the second and third probes provides the oxygen activity of the melt. 1 figure.

  13. Building Energy Monitoring and Analysis

    SciTech Connect (OSTI)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01T23:59:59.000Z

    U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  14. Local Frequency Based Estimators for Anomaly Detection in Oil and Gas Applications

    E-Print Network [OSTI]

    Slatton, Clint

    Local Frequency Based Estimators for Anomaly Detection in Oil and Gas Applications Alexander Singh industrial applications such as the smart grid and oil and gas are continuously monitored. The massive to positively impact the bottom line. In the oil and gas industry, modern oil rigs are outfitted with thousands

  15. Parameter identification in large-scale models for oil and gas production

    E-Print Network [OSTI]

    Van den Hof, Paul

    Parameter identification in large-scale models for oil and gas production Jorn F.M. Van Doren: Models used for model-based (long-term) operations as monitoring, control and optimization of oil and gas information to the identification problem. These options are illustrated with examples taken from oil and gas

  16. Wireless sensor networks for off-shore oil and gas installations

    E-Print Network [OSTI]

    Gjessing, Stein

    1 Wireless sensor networks for off-shore oil and gas installations Martin Dalbro, Erik Eikeland ­ Underwater development and production of oil and gas needs networked sensors and actuators to monitor the production process, to either prevent or detect oil and gas leakage or to enhance the production flow

  17. Room-temperature mid-infrared laser sensor for trace gas detection

    E-Print Network [OSTI]

    , and pipeline leak detection. Applications such as landfill emissions monitoring require measurements of gasRoom-temperature mid-infrared laser sensor for trace gas detection Thomas To¨ pfer, Konstantin P of a compact, portable, room-temperature mid-infrared gas sensor is reported. The sensor is based on continuous

  18. Recognising Visual Patterns to Communicate Gas Turbine Time-Series Data

    E-Print Network [OSTI]

    Reiter, Ehud

    Recognising Visual Patterns to Communicate Gas Turbine Time-Series Data Jin Yu, Jim Hunter, Ehud analogue channels are sampled once per second and archived by the Tiger system for monitoring gas turbines is the generation of textual summaries. We are developing a knowledge-based system to summarise such data in the gas

  19. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01T23:59:59.000Z

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  20. Development of conformal respirator monitoring technology

    SciTech Connect (OSTI)

    Shonka, J.J.; Weismann, J.J.; Logan, R.J. [and others

    1997-04-01T23:59:59.000Z

    This report summarizes the results of a Small Business Innovative Research Phase II project to develop a modular, surface conforming respirator monitor to improve upon the manual survey techniques presently used by the nuclear industry. Research was performed with plastic scintillator and gas proportional modules in an effort to find the most conducive geometry for a surface conformal, position sensitive monitor. The respirator monitor prototype developed is a computer controlled, position-sensitive detection system employing 56 modular proportional counters mounted in molds conforming to the inner and outer surfaces of a commonly used respirator (Scott Model 801450-40). The molds are housed in separate enclosures and hinged to create a {open_quotes}waffle-iron{close_quotes} effect so that the closed monitor will simultaneously survey both surfaces of the respirator. The proportional counter prototype was also designed to incorporate Shonka Research Associates previously developed charge-division electronics. This research provided valuable experience into pixellated position sensitive detection systems. The technology developed can be adapted to other monitoring applications where there is a need for deployment of many traditional radiation detectors.

  1. Monitoring, safety systems for LNG and LPG operators

    SciTech Connect (OSTI)

    True, W.R.

    1998-11-16T23:59:59.000Z

    Operators in Korea and Australia have chosen monitoring and control systems in recent contracts for LNG and LPG storage. Korea Gas Corp. (Kogas) has hired Whessoe Varec, Calais, to provide monitoring systems for four LNG storage tanks being built at Kogas` Inchon terminal. For Elgas Ltd., Port Botany, Australia, Whessoe Varec has already shipped a safety valve-shutdown system to a new LPG cavern-storage facility under construction. The paper describes the systems, terminal monitoring, dynamic approach to tank management, and meeting the growing demand for LPG.

  2. Designing A New Elitist Nondominated Sorted Genetic Algorithm For A Multiobjective Long Term Groundwater Monitoring Application

    E-Print Network [OSTI]

    Coello, Carlos A. Coello

    . 61801 deg@uiuc.edu 217-333-0897 Abstract Although usage of genetic algorithms (GAs) has become a monitoring network to detect potential contaminant leaks from a hazardous waste landfill. Cieniawski (1993

  3. Global nuclear material monitoring

    SciTech Connect (OSTI)

    Howell, J.A.; Monlove, H.O.; Goulding, C.A.; Martinez, B.J.; Coulter, C.A.

    1997-08-01T23:59:59.000Z

    This is the final report of a one-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project provided a detailed systems design for advanced integrated facility monitoring and identified the components and enabling technologies required to facilitate the development of the monitoring system of the future.

  4. Transmission Line Security Monitor

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  5. Transmission Line Security Monitor

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  6. Natural gas transport by plastic pipes. (Latest citations from the Compendex database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    The bibliography contains citations concerning the use of plastic piping to transport natural gas or liquid propane gas. The interaction between gas odorants and plastic pipe, the effects of aging on plastic pipe used to transport gas, and pipe failure analyses are examined. Bending, joining, and repair methods are discussed. Composite reinforced plastic pipes and plastic coated pipes are considered. Polyethylene and epoxy composites are among the materials discussed. Gas main upgrading projects that replaced old pipes with plastic ones are briefly cited. (Contains a minimum of 88 citations and includes a subject term index and title list.)

  7. Activated carbon fiber composite material and method of making

    DOE Patents [OSTI]

    Burchell, Timothy D. (Oak Ridge, TN); Weaver, Charles E. (Knoxville, TN); Chilcoat, Bill R. (Knoxville, TN); Derbyshire, Frank (Lexington, KY); Jagtoyen, Marit (Lexington, KY)

    2001-01-01T23:59:59.000Z

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  8. Activated carbon fiber composite material and method of making

    DOE Patents [OSTI]

    Burchell, Timothy D. (Oak Ridge, TN); Weaver, Charles E. (Knoxville, TN); Chilcoat, Bill R. (Knoxville, TN); Derbyshire, Frank (Lexington, KY); Jagtoyen, Marit (Lexington, KY)

    2000-01-01T23:59:59.000Z

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  9. New Tracers Identify Hydraulic Fracturing Fluids and Accidental Releases from Oil and Gas Operations

    E-Print Network [OSTI]

    Jackson, Robert B.

    New Tracers Identify Hydraulic Fracturing Fluids and Accidental Releases from Oil and Gas produced waters sampled from conventional oil and gas wells. We posit that boron isotope geochemistry can tool is validated by examining the composition of effluent discharge from an oil and gas brine

  10. CERAMIC COMPOSITES FOR NEAR TERM REACTOR APPLICATION

    SciTech Connect (OSTI)

    Snead, Lance Lewis [ORNL; Burchell, Timothy D [ORNL; Windes, Will [Idaho National Laboratory (INL); Katoh, Yutai [ORNL

    2010-01-01T23:59:59.000Z

    Currently, two composites types are being developed for incore application: carbon fiber carbon composite (CFC), and silicon carbide fiber composite (SiC/SiC.) Irradiation effects studies have been carried out over the past few decades yielding radiation-tolerant CFC's and a composite of SiC/SiC with no apparent degradation in mechanical properties to very high neutron exposure. While CFC's can be engineered with significantly higher thermal conductivity, and a slight advantage in manufacturability than SiC/SiC, they do have a neutron irradiation-limited lifetime. The SiC composite, while possessing lower thermal conductivity (especially following irradiation), appears to have mechanical properties insensitive to irradiation. Both materials are currently being produced to sizes much larger than that considered for nuclear application. In addition to materials aspects, results of programs focusing on practical aspects of deploying composites for near-term reactors will be discussed. In particular, significant progress has been made in the fabrication, testing, and qualification of composite gas-cooled reactor control rod sheaths and the ASTM standardization required for eventual qualification.

  11. Optical monitoring system for a turbine engine

    DOE Patents [OSTI]

    Lemieux, Dennis H; Smed, Jan P; Williams, James P; Jonnalagadda, Vinay

    2013-05-14T23:59:59.000Z

    The monitoring system for a gas turbine engine including a viewing tube assembly having an inner end and an outer end. The inner end is located adjacent to a hot gas flow path within the gas turbine engine and the outer end is located adjacent to an outer casing of the gas turbine engine. An aperture wall is located at the inner end of the viewing tube assembly and an optical element is located within the viewing tube assembly adjacent to the inner end and is spaced from the aperture wall to define a cooling and purge chamber therebetween. An aperture is defined in the aperture wall for passage of light from the hot gas flow path to the optical element. Swirl passages are defined in the viewing tube assembly between the aperture wall and the optical element for passage of cooling air from a location outside the viewing tube assembly into the chamber, wherein swirl passages effect a swirling movement of air in a circumferential direction within the chamber.

  12. Microcracking in fibrous composites 

    E-Print Network [OSTI]

    Conrad, Nicholas

    1973-01-01T23:59:59.000Z

    are conducted on a unidirectional graphite fiber-reinforced epoxy in order to determine some aspects of nonlinear behavior, and the results of microcracking. The nature. of the microstructure of composites and the microcracking that occurs in composites... of microscopy samples. 53 21. Graphite composite surfaces, as received (top, 60X) and as prepared (bottom, 100X) ~ 56 22, Graphite composite surfaces after peeling (1000X). 58 23. Scotchply surfaces after peeling (1000X). 60 24. Graphite composite damaged...

  13. Gas Storage Act (Illinois)

    Broader source: Energy.gov [DOE]

    Any corporation which is engaged in or desires to engage in, the distribution, transportation or storage of natural gas or manufactured gas, which gas, in whole or in part, is intended for ultimate...

  14. Gas Companies Program (Tennessee)

    Broader source: Energy.gov [DOE]

    The Gas Companies program is a set of rules that encourage the development of the natural gas industry in Tennessee. They empower gas companies to lay piped and extend conductors through the...

  15. Gas Utilities (Maine)

    Broader source: Energy.gov [DOE]

    Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one...

  16. Gas Utilities (New York)

    Broader source: Energy.gov [DOE]

    This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

  17. Future of Natural Gas

    Office of Environmental Management (EM)

    of Natural Gas Bill Eisele, CEM SC Electric & Gas Co Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida Agenda * Gas Facts *...

  18. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  19. Supervisory Natural Gas Analyst

    Broader source: Energy.gov [DOE]

    The Department of Energys Office of Fossil Energy, Office of Oil and Natural Gas, Office of Oil and Gas Global Security and Supply (FE) is responsible for regulating natural gas imports and exports...

  20. Screening the Hanford tanks for trapped gas

    SciTech Connect (OSTI)

    Whitney, P.

    1995-10-01T23:59:59.000Z

    The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Hydrogen gas is generated within the waste in these tanks. This document presents the results of a screening of Hanford`s nuclear waste storage tanks for the presence of gas trapped in the waste. The method used for the screening is to look for an inverse correlation between waste level measurements and ambient atmospheric pressure. If the waste level in a tank decreases with an increase in ambient atmospheric pressure, then the compressibility may be attributed to gas trapped within the waste. In this report, this methodology is not used to estimate the volume of gas trapped in the waste. The waste level measurements used in this study were made primarily to monitor the tanks for leaks and intrusions. Four measurement devices are widely used in these tanks. Three of these measure the level of the waste surface. The remaining device measures from within a well embedded in the waste, thereby monitoring the liquid level even if the liquid level is below a dry waste crust. In the past, a steady rise in waste level has been taken as an indicator of trapped gas. This indicator is not part of the screening calculation described in this report; however, a possible explanation for the rise is given by the mathematical relation between atmospheric pressure and waste level used to support the screening calculation. The screening was applied to data from each measurement device in each tank. If any of these data for a single tank indicated trapped gas, that tank was flagged by this screening process. A total of 58 of the 177 Hanford tanks were flagged as containing trapped gas, including 21 of the 25 tanks currently on the flammable gas watch list.

  1. Conductive ceramic composition and method of preparation

    DOE Patents [OSTI]

    Smith, James L. (Lemont, IL); Kucera, Eugenia H. (Downers Grove, IL)

    1991-01-01T23:59:59.000Z

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell.

  2. Conductive ceramic composition and method of preparation

    DOE Patents [OSTI]

    Smith, J.L.; Kucera, E.H.

    1991-04-16T23:59:59.000Z

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell. 4 figures.

  3. Composition, apparatus, and process, for sorption of gaseous compounds of group II-VII elements

    DOE Patents [OSTI]

    Tom, Glenn M. (New Milford, CT); McManus, James V. (Danbury, CT); Luxon, Bruce A. (Stamford, CT)

    1991-08-06T23:59:59.000Z

    Scavenger compositions are disclosed, which have utility for effecting the sorptive removal of hazardous gases containing Group II-VII elements of the Periodic Table, such as are widely encountered in the manufacture of semiconducting materials and semiconductor devices. Gas sorption processes including the contacting of Group II-VII gaseous compounds with such scavenger compositions are likewise disclosed, together with critical space velocity contacting conditions pertaining thereto. Further described are gas contacting apparatus, including mesh structures which may be deployed in gas contacting vessels containing such scavenger compositions, to prevent solids from being introduced to or discharged from the contacting vessel in the gas stream undergoing treatment. A reticulate heat transfer structure also is disclosed, for dampening localized exothermic reaction fronts when gas mixtures comprising Group II-VII constituents are contacted with the scavenger compositions in bulk sorption contacting vessels according to the invention.

  4. High-temperature Pump Monitoring - High-temperature ESP Monitoring...

    Broader source: Energy.gov (indexed) [DOE]

    7 4.4.4 High-temperature Pump Monitoring - High-temperature ESP Monitoring Presentation Number: 018 Investigator: Dhruva, Brindesh (Schlumberger Technology Corp.) Objectives: To...

  5. Environmental monitoring plan - environmental monitoring section. Revision 1

    SciTech Connect (OSTI)

    Wilt, G.C. [ed.; Tate, P.J.; Brigdon, S.L. [and others

    1994-11-01T23:59:59.000Z

    This report presents the environmental monitoring plan for the Lawrence Livermore National Laboratory. A site characterization is provided along with monitoring and measurement techniques and quality assurance measures.

  6. [PFBC Hot Gas Cleanup Test Program

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    Four hundred and fifty four clay bonded silicon carbide Schumacher Dia Schumalith candle filters were purchased for installation in the Westinghouse Advanced Particle Filtration (APF) system at the American Electric Power (AEP) plant in Brilliant, Ohio. A surveillance effort has been identified which will monitor candle filter performance and life during hot gas cleaning in AEP's pressurized fluidized-bed combustion system. A description of the candle surveillance program, strategy for candle filter location selection, as well as candle filter post-test characterization is provided in this memo. The period of effort for candle filter surveillance monitoring is planned through March 1994.

  7. Natural Gas Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue...

  8. Gas Production Tax (Texas)

    Broader source: Energy.gov [DOE]

    A tax of 7.5 percent of the market value of natural gas produced in the state of Texas is imposed on every producer of gas.

  9. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  10. Natural gas dehydration apparatus

    DOE Patents [OSTI]

    Wijmans, Johannes G; Ng, Alvin; Mairal, Anurag P

    2006-11-07T23:59:59.000Z

    A process and corresponding apparatus for dehydrating gas, especially natural gas. The process includes an absorption step and a membrane pervaporation step to regenerate the liquid sorbent.

  11. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  12. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  13. SYTMIS: SOFTWARE FOR REAL-TIME MICROSEISMIC MONITORING SYSTEMS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    industries, hydrocarbon fields; Underground gas-storage reservoirs, radioactive waste; studies of seismic to fulfil most field situations, SYTMIS also permit multiple moni- toring from an unique central site approach in such varied fields äs: the monitoring of rock masses and local subsidences: extractive

  14. A Cognitive Vision System for Nuclear Fusion Device Monitoring

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to produce controlled thermonuclear fusion power by magnetic confinement of a plasma (fully ionized gasA Cognitive Vision System for Nuclear Fusion Device Monitoring Vincent Martin1 , Victor Moncada1 optimizations. The framework is generic and can be easily adapted to different fusion device environ- ments

  15. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect (OSTI)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05T23:59:59.000Z

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

  16. LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE

    SciTech Connect (OSTI)

    Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

    2004-08-01T23:59:59.000Z

    In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

  17. Sensing Requirements for Real-Time Monitoring and Control in Energy Production

    E-Print Network [OSTI]

    Ghosh, Ruby N.

    of coal (syngas), requires physical and chemical sensors for exhaust gas monitoring as well as real-time control of the combustion process. Following a description of syngas production from coal, we outline species at 630 °C. Our SiC sensor can monitor the hydrogen concentration in a 350 °C simulated syngas

  18. Liquid Resin Infusion process monitoring with superimposed Fibre Bragg Grating sensor

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Liquid Resin Infusion process monitoring with superimposed Fibre Bragg Grating sensor Emmanuel Resin Infusion (LRI) , with the FBG/LPG sensor embedded in a composite part. Dielectric analysis the material and the structure. Among the various composite manufacturing processes, Liquid Resin Infusion (LRI

  19. OTC 19901 1 Fiberoptic Gas Monitoring of Flexible Risers

    E-Print Network [OSTI]

    frequency diode lasers operating at =1.58 m for detecting H2S as well as CO2 and at 1.65 m for detecting CH4. A minimum detectable H2S concentration of 10 ppmv (parts per million by volume) at the 1 level

  20. Third generation residual gas ionization profile monitors at Fermilab

    E-Print Network [OSTI]

    Zagel, J R; Fellenz, B; Jensen, C; Lundberg, C; McCrory, E; Slimmer, D; Thurman-Keup, R; Tinsley, D

    2015-01-01T23:59:59.000Z

    The latest generation of IPMs installed in the Fermilab Main Injector and Recycler incorporate a 1 kG permanent magnet, a newly designed high-gain, rad-tolerant preamp, and a control grid to moderate the charge that is allowed to arrive on the anode pick-up strips. The control grid is intended to select a single Booster batch measurement per turn. Initially it is being used to allow for a faster turn-on of a single, high-intensity cycle in either machine. The expectation is that this will extend the Micro Channel Plate lifetime, which is the high-cost consumable in the measurement system. We discuss the new design and data acquired with this system.

  1. Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation...

    Open Energy Info (EERE)

    of national actions that can also lead to improvements in long term agricultural productivity, enhancing food security and increasing environmental sustainability. Main...

  2. Technology Makes Solid State Multi-Gas Emission Monitoring Possible 

    E-Print Network [OSTI]

    Nelson, R. L.

    1986-01-01T23:59:59.000Z

    A recent breakthrough in the growth of excellent quality single crystal thallium arsenic selenide (TAS) on a production basis has made it possible to buLld an electronically controlled acousto optic tunable filter (AOTF) capable of operating...

  3. Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.JuneAsPipeline FirstLuncheon

  4. Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana(Tempel,MoeMonhegan Island

  5. Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen PolymersModular EnergyGTZ Development ofPotential

  6. Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen PolymersModular EnergyGTZ Development

  7. UNFCCC-Consolidated baseline and monitoring methodology for landfill gas

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinityTurnbull HydroUKFinance,Risoe Centreproject

  8. Monitoring Results Natural Gas Wells Near Project Rulison

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourth Five-Year38Report Second18295-1GWSHP

  9. Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4Visitors ChapterRequirements

  10. ORISE: Media Analysis and Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media Analysis and Monitoring The Oak Ridge Institute for Science and Education (ORISE) uses comprehensive media analysis and monitoring tools to define media interest and the...

  11. Composite Thermal Conductivity in a Large Heterogeneous PorousMethane Hydrate Sample

    SciTech Connect (OSTI)

    Gupta, Arvind; Kneafsey, Timothy J.; Moridis George J.; Seol,Yongkoo; Kowalsky, Michael B.; Sloan Jr., E.D.

    2006-08-01T23:59:59.000Z

    By employing inverse modeling to analyze the laboratorydata, we determined the composite thermal conductivity (k theta W/m/K) ofa porous methane hydrate sample ranged between 0.25 and 0.58 W/m/K as afunction of density. The calculated composite thermal diffusivities ofporous hydrate sample ranged between 2.59x10-7 m2/s and 3.71x10-7 m2/s.The laboratory study involved a large heterogeneous sample (composed ofhydrate, water, and methane gas). The measurements were conductedisobarically at 4.98 MPa over a temperature range of 277.3-279.1 K.Pressure and temperature were monitored at multiple locations in thesample. X-ray computed tomography (CT) was used to visualize and quantifythe density changes that occurred during hydrate formation from granularice. CT images showed that methane hydrate formed from granular ice washeterogeneous and provided an estimate of the sample density variation inthe radial direction. This facilitated quantifying the density effect oncomposite thermal conductivity. This study showed that the sampleheterogeneity should be considered in thermal conductivity measurementsof hydrate systems. Mixing models (i.e., arithmetic, harmonic, geometricmean, and square root models) were compared to the estimated compositethermal conductivity determined by inverse modeling. The results of thearithmetic mean model showed the best agreement with the estimatedcomposite thermal conductivity.

  12. Standard-D hydrogen monitoring system, system design description

    SciTech Connect (OSTI)

    Schneider, T.C.

    1996-09-26T23:59:59.000Z

    During most of the year, it is assumed that the vapor space in the 177 radioactive waste tanks on the Hanford Project site contain a uniform mixture of gases. Several of these waste tanks (currently twenty-five, 6 Double Shell Tanks and 19 Single Shell Tanks) were identified as having the potential for the buildup of gasses to a flammable level. An active ventilation system in the Double Shell Tanks and a passive ventilation system in the Single Shell Tanks provides a method of expelling gasses from the tanks. A gas release from a tank causes a temporary rise in the tank pressure, and a potential for increased concentration of hydrogen gas in the vapor space. The gas is released via the ventilation systems until a uniform gas mixture in the vapor space is once again achieved. The Standard Hydrogen Monitoring System (SHMS) is designed to monitor and quantify the percent hydrogen concentration during these potential gas releases. This document describes the design of the Standard-D Hydrogen Monitoring System, (SHMS-D) and its components as it differs from the original SHMS.

  13. Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 2, Radiation Monitoring and Sampling

    SciTech Connect (OSTI)

    NSTec Aerial Measurement Systems

    2012-07-31T23:59:59.000Z

    The FRMAC Monitoring and Sampling Manual, Volume 2 provides standard operating procedures (SOPs) for field radiation monitoring and sample collection activities that are performed by the Monitoring group during a FRMAC response to a radiological emergency.

  14. Multidimensionality of parental monitoring

    E-Print Network [OSTI]

    Secrest, Laura A

    2001-01-01T23:59:59.000Z

    whether the monitoring construct is unitary or multidimensional. The LISREL 8.3 program was used to perform confirmatory factor analyses and structural modeling analyses on the proposed theoretical models. A total of 419 elementary school children...

  15. Monitoring Energy Losses

    E-Print Network [OSTI]

    Eulinger, R. D.

    control systems. Older power plants may have nothing but gauges and dials on a control board. Plants such as these are not typically candidates for a performance monitor unless they ere also being considered for a control system upgrade, including a... planned future control system upgrade. With this method, a utility can have the benefits of a performance monitor prior to a major control system upgrade. When the system is finally upgraded, the data logger can be moved to another unit and reused...

  16. Structure function monitor

    DOE Patents [OSTI]

    McGraw, John T. (Placitas, NM); Zimmer, Peter C. (Albuquerque, NM); Ackermann, Mark R. (Albuquerque, NM)

    2012-01-24T23:59:59.000Z

    Methods and apparatus for a structure function monitor provide for generation of parameters characterizing a refractive medium. In an embodiment, a structure function monitor acquires images of a pupil plane and an image plane and, from these images, retrieves the phase over an aperture, unwraps the retrieved phase, and analyzes the unwrapped retrieved phase. In an embodiment, analysis yields atmospheric parameters measured at spatial scales from zero to the diameter of a telescope used to collect light from a source.

  17. The effects of marine microorganisms on the mechanical properties of graphite/epoxy composites 

    E-Print Network [OSTI]

    Puh, John Shui-Ming

    1997-01-01T23:59:59.000Z

    with two different lay-ups were conditioned in natural seawater and then tensile tested while simultaneously monitored for acoustic emission activity. Graphite/epoxy composite specimens were fabricated from prepreg tape and then conditioned for 4 and I I...

  18. ENVIRONMENTAL SAMPLING USING LOCATION SPECIFIC AIR MONITORING IN BULK HANDLING FACILITIES

    SciTech Connect (OSTI)

    Sexton, L.; Hanks, D.; Degange, J.; Brant, H.; Hall, G.; Cable-Dunlap, P.; Anderson, B.

    2011-06-07T23:59:59.000Z

    Since the introduction of safeguards strengthening measures approved by the International Atomic Energy Agency (IAEA) Board of Governors (1992-1997), international nuclear safeguards inspectors have been able to utilize environmental sampling (ES) (e.g. deposited particulates, air, water, vegetation, sediments, soil and biota) in their safeguarding approaches at bulk uranium/plutonium handling facilities. Enhancements of environmental sampling techniques used by the IAEA in drawing conclusions concerning the absence of undeclared nuclear materials or activities will soon be able to take advantage of a recent step change improvement in the gathering and analysis of air samples at these facilities. Location specific air monitoring feasibility tests have been performed with excellent results in determining attribute and isotopic composition of chemical elements present in an actual test-bed sample. Isotopic analysis of collected particles from an Aerosol Contaminant Extractor (ACE) collection, was performed with the standard bulk sampling protocol used throughout the IAEA network of analytical laboratories (NWAL). The results yielded bulk isotopic values expected for the operations. Advanced designs of air monitoring instruments such as the ACE may be used in gas centrifuge enrichment plants (GCEP) to detect the production of highly enriched uranium (HEU) or enrichments not declared by a State. Researchers at Savannah River National Laboratory in collaboration with Oak Ridge National Laboratory are developing the next generation of ES equipment for air grab and constant samples that could become an important addition to the international nuclear safeguards inspector's toolkit. Location specific air monitoring to be used to establish a baseline environmental signature of a particular facility employed for comparison of consistencies in declared operations will be described in this paper. Implementation of air monitoring will be contrasted against the use of smear ES when used during unannounced inspections, design information verification, limited frequency unannounced access, and complementary access visits at bulk handling facilities. Analysis of technical features required for tamper indication and resistance will demonstrate the viability of successful application of the system in taking ES within a bulk handling location. Further exploration of putting this technology into practice is planned to include mapping uranium enrichment facilities for the identification of optimal for installation of air monitoring devices.

  19. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect (OSTI)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-10-31T23:59:59.000Z

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  20. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect (OSTI)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-12-01T23:59:59.000Z

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  1. Composite bipolar plate for electrochemical cells

    DOE Patents [OSTI]

    Wilson, Mahlon S. (Los Alamos, NM); Busick, Deanna N. (Los Alamos, NM)

    2001-01-01T23:59:59.000Z

    A bipolar separator plate for fuel cells consists of a molded mixture of a vinyl ester resin and graphite powder. The plate serves as a current collector and may contain fluid flow fields for the distribution of reactant gases. The material is inexpensive, electrically conductive, lightweight, strong, corrosion resistant, easily mass produced, and relatively impermeable to hydrogen gas. The addition of certain fiber reinforcements and other additives can improve the properties of the composite material without significantly increasing its overall cost.

  2. Composition containing aerogel substrate loaded with tritium

    DOE Patents [OSTI]

    Ashley, Carol S. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Ellefson, Robert E. (Centerville, OH); Gill, John T. (Miamisburg, OH); Reed, Scott (Albuquerque, NM); Walko, Robert J. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    The invention provides a process for loading an aerogel substrate with tritium and the resultant compositions. According to the process, an aerogel substrate is hydrolyzed so that surface OH groups are formed. The hydrolyzed aerogel is then subjected to tritium exchange employing, for example, a tritium-containing gas, whereby tritium atoms replace H atoms of surface OH groups. OH and/or CH groups of residual alcohol present in the aerogel may also undergo tritium exchange.

  3. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    fuels (eg diesel, compressed natural gas). Electricity (infossil fuels, such as compressed natural gas and liquefied

  4. Compressed gas manifold

    DOE Patents [OSTI]

    Hildebrand, Richard J. (Edgemere, MD); Wozniak, John J. (Columbia, MD)

    2001-01-01T23:59:59.000Z

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  5. Noble gas magnetic resonator

    DOE Patents [OSTI]

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15T23:59:59.000Z

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  6. OIL & GAS INSTITUTE Introduction

    E-Print Network [OSTI]

    Mottram, Nigel

    OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

  7. Heteroporphyrin nanotubes and composites

    DOE Patents [OSTI]

    Shelnutt, John A.; Medforth, Craig J.; Wang, Zhongchun

    2006-11-07T23:59:59.000Z

    Heteroporphyrin nanotubes, metal nanostructures, and metal/porphyrin-nanotube composite nanostructures formed using the nanotubes as photocatalysts and structural templates, and the methods for forming the nanotubes and composites.

  8. Heteroporphyrin nanotubes and composites

    DOE Patents [OSTI]

    Shelnutt, John A. (Tijeras, NM); Medforth, Craig J. (Winters, CA); Wang, Zhongchun (Albuquerque, NM)

    2007-05-29T23:59:59.000Z

    Heteroporphyrin nanotubes, metal nanostructures, and metal/porphyrin-nanotube composite nanostructures formed using the nanotubes as photocatalysts and structural templates, and the methods for forming the nanotubes and composites.

  9. Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling Results for 2012

    SciTech Connect (OSTI)

    None

    2012-12-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual natural gas sampling for the Gasbuggy, New Mexico, Site on June 20 and 21, 2012. This long-term monitoring of natural gas includes samples of produced water from gas production wells that are located near the site. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

  10. Two-boson composites

    E-Print Network [OSTI]

    Malte C. Tichy; Peter Alexander Bouvrie; Klaus Mølmer

    2013-12-16T23:59:59.000Z

    Composite bosons made of two bosonic constituents exhibit deviations from ideal bosonic behavior due to their substructure. This deviation is reflected by the normalization ratio of the quantum state of N composites. We find a set of saturable, efficiently evaluable bounds for this indicator, which quantifies the bosonic behavior of composites via the entanglement of their constituents. We predict an abrupt transition between ordinary and exaggerated bosonic behavior in a condensate of two-boson composites.

  11. Nano-composite materials

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25T23:59:59.000Z

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  12. Composite fuel cell membranes

    SciTech Connect (OSTI)

    Plowman, Keith R. (Lake Jackson, TX); Rehg, Timothy J. (Lake Jackson, TX); Davis, Larry W. (West Columbia, TX); Carl, William P. (Marble Falls, TX); Cisar, Alan J. (Cypress, TX); Eastland, Charles S. (West Columbia, TX)

    1997-01-01T23:59:59.000Z

    A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  13. Composite fuel cell membranes

    DOE Patents [OSTI]

    Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

    1997-08-05T23:59:59.000Z

    A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  14. Arylene fluorinated sulfonimide compositions

    DOE Patents [OSTI]

    Teasley, Mark F. (Landenberg, PA)

    2010-11-23T23:59:59.000Z

    Described herein are aromatic sulfonimide compositions that can be used to prepare polymers useful as membranes in electrochemical cells.

  15. Analysis of Halogen-Mercury Reactions in Flue Gas

    SciTech Connect (OSTI)

    Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

    2010-01-01T23:59:59.000Z

    Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation was observed at SO{sub 2} concentrations of 400 ppmv and higher. In contrast, SO{sub 2} concentrations as low as 50 ppmv significantly reduced mercury oxidation by bromine, this reduction could be due to both gas and liquid phase interactions between SO{sub 2} and oxidized mercury species. The simultaneous presence of chlorine and bromine in the flue gas resulted in a slight increase in mercury oxidation above that obtained with bromine alone, the extent of the observed increase is proportional to the chlorine concentration. The results of this study can be used to understand the relative importance of gas-phase mercury oxidation by bromine and chlorine in combustion systems. Two temperature profiles were tested: a low quench (210 K/s) and a high quench (440 K/s). For chlorine the effects of quench rate were slight and hard to characterize with confidence. Oxidation with bromine proved sensitive to quench rate with significantly more oxidation at the lower rate. The data generated in this program are the first homogeneous laboratory-scale data on bromine-induced oxidation of mercury in a combustion system. Five Hg-Cl and three Hg-Br mechanisms, some published and others under development, were evaluated and compared to the new data. The Hg-halogen mechanisms were combined with submechanisms from Reaction Engineering International for NO{sub x}, SO{sub x}, and hydrocarbons. The homogeneous kinetics under-predicted the levels of mercury oxidation observed in full-scale systems. This shortcoming can be corrected by including heterogeneous kinetics in the model calculations.

  16. Composition of Ices in Low-Mass Extrasolar Planets

    E-Print Network [OSTI]

    Ulysse Marboeuf; Olivier Mousis; David Ehrenreich; Yann Alibert; Arnaud Cassan; Valentine Wakelam; Jean-Philippe Beaulieu

    2008-04-02T23:59:59.000Z

    We study the formation conditions of icy planetesimals in protoplanetary disks in order to determine the composition of ices in small and cold extrasolar planets. Assuming that ices are formed from hydrates, clathrates, and pure condensates, we calculate their mass fractions with respect to the total quantity of ices included in planetesimals, for a grid of disk models. We find that the composition of ices weakly depends on the adopted disk thermodynamic conditions, and is rather influenced by the initial composition of the gas phase. The use of a plausible range of molecular abundance ratios and the variation of the relative elemental carbon over oxygen ratio in the gas phase of protoplanetary disks, allow us to apply our model to a wide range of planetary systems. Our results can thus be used to constrain the icy/volatile phase composition of cold planets evidenced by microlensing surveys, hypothetical ocean-planets and carbon planets, which could be detected by Corot or Kepler.

  17. Composition of Ices in Low-Mass Extrasolar Planets

    E-Print Network [OSTI]

    Marboeuf, Ulysse; Ehrenreich, David; Alibert, Yann; Cassan, Arnaud; Wakelam, Valentine; Beaulieu, Jean-Philippe

    2008-01-01T23:59:59.000Z

    We study the formation conditions of icy planetesimals in protoplanetary disks in order to determine the composition of ices in small and cold extrasolar planets. Assuming that ices are formed from hydrates, clathrates, and pure condensates, we calculate their mass fractions with respect to the total quantity of ices included in planetesimals, for a grid of disk models. We find that the composition of ices weakly depends on the adopted disk thermodynamic conditions, and is rather influenced by the initial composition of the gas phase. The use of a plausible range of molecular abundance ratios and the variation of the relative elemental carbon over oxygen ratio in the gas phase of protoplanetary disks, allow us to apply our model to a wide range of planetary systems. Our results can thus be used to constrain the icy/volatile phase composition of cold planets evidenced by microlensing surveys, hypothetical ocean-planets and carbon planets, which could be detected by Corot or Kepler.

  18. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    W/m 2 1 elevator Gas water heater PVs (not used any more)point Calculation *Dom Water Heater Gas Meter Average PowerConverted from Dom Water Heater Gas Meter Counter Calculated

  19. Phase change compositions

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1989-01-01T23:59:59.000Z

    Compositions containing crystalline, straight chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  20. Phase change compositions

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH); Griffen, Charles W. (Mason, OH)

    1986-01-01T23:59:59.000Z

    Compositions containing crystalline, long chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  1. Solid polymer electrolyte compositions

    DOE Patents [OSTI]

    Garbe, James E. (Stillwater, MN); Atanasoski, Radoslav (Edina, MN); Hamrock, Steven J. (St. Paul, MN); Le, Dinh Ba (St. Paul, MN)

    2001-01-01T23:59:59.000Z

    An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

  2. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

    2007-03-01T23:59:59.000Z

    Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

  3. Sandia National Laboratories: Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and NREL Announce Two New H2FIRST Reports New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel-Cell Vehicle Markets Sandians Participate in 46th Annual...

  4. Potential application of microsensor technology in radioactive waste management with emphasis on headspace gas detection.

    SciTech Connect (OSTI)

    Davis, Chad Edward; Thomas, Michael Loren; Wright, Jerome L.; Pohl, Phillip Isabio; Hughes, Robert Clark; Wang, Yifeng; McGrath, Lucas K.; Ho, Clifford Kuofei; Gao, Huizhen

    2004-09-01T23:59:59.000Z

    Waste characterization is probably the most costly part of radioactive waste management. An important part of this characterization is the measurements of headspace gas in waste containers in order to demonstrate the compliance with Resource Conservation and Recovery Act (RCRA) or transportation requirements. The traditional chemical analysis methods, which include all steps of gas sampling, sample shipment and laboratory analysis, are expensive and time-consuming as well as increasing worker's exposure to hazardous environments. Therefore, an alternative technique that can provide quick, in-situ, and real-time detections of headspace gas compositions is highly desirable. This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Potential Application of Microsensor Technology in Radioactive Waste Management with Emphasis on Headspace Gas Detection'. The objective of this project is to bridge the technical gap between the current status of microsensor development and the intended applications of these sensors in nuclear waste management. The major results are summarized below: {sm_bullet} A literature review was conducted on the regulatory requirements for headspace gas sampling/analysis in waste characterization and monitoring. The most relevant gaseous species and the related physiochemical environments were identified. It was found that preconcentrators might be needed in order for chemiresistor sensors to meet desired detection {sm_bullet} A long-term stability test was conducted for a polymer-based chemresistor sensor array. Significant drifts were observed over the time duration of one month. Such drifts should be taken into account for long-term in-situ monitoring. {sm_bullet} Several techniques were explored to improve the performance of sensor polymers. It has been demonstrated that freeze deposition of black carbon (CB)-polymer composite can effectively eliminate the so-called 'coffee ring' effect and lead to a desirable uniform distribution of CB particles in sensing polymer films. The optimal ratio of CB/polymer has been determined. UV irradiation has been shown to improve sensor sensitivity. {sm_bullet} From a large set of commercially available polymers, five polymers were selected to form a sensor array that was able to provide optimal responses to six target-volatile organic compounds (VOCs). A series of tests on the response of sensor array to various VOC concentrations have been performed. Linear sensor responses have been observed over the tested concentration ranges, although the responses over a whole concentration range are generally nonlinear. {sm_bullet} Inverse models have been developed for identifying individual VOCs based on sensor array responses. A linear solvation energy model is particularly promising for identifying an unknown VOC in a single-component system. It has been demonstrated that a sensor array as such we developed is able to discriminate waste containers for their total VOC concentrations and therefore can be used as screening tool for reducing the existing headspace gas sampling rate. {sm_bullet} Various VOC preconcentrators have been fabricated using Carboxen 1000 as an absorbent. Extensive tests have been conducted in order to obtain optimal configurations and parameter ranges for preconcentrator performance. It has been shown that use of preconcentrators can reduce the detection limits of chemiresistors by two orders of magnitude. The life span of preconcentrators under various physiochemical conditions has also been evaluated. {sm_bullet} The performance of Pd film-based H2 sensors in the presence of VOCs has been evaluated. The interference of sensor readings by VOC has been observed, which can be attributed to the interference of VOC with the H2-O2 reaction on the Pd alloy surface. This interference can be eliminated by coating a layer of silicon dioxide on sensing film surface. Our work has demonstrated a wide range of applications of gas microsensors in radioactive waste management. Such applications can poten

  5. Natural gas monthly

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

  6. Monitoring: The missing piece

    SciTech Connect (OSTI)

    Bjorkland, Ronald, E-mail: r_bjorkland@hotmail.com

    2013-11-15T23:59:59.000Z

    The U.S. National Environmental Policy Act (NEPA) of 1969 heralded in an era of more robust attention to environmental impacts resulting from larger scale federal projects. The number of other countries that have adopted NEPA's framework is evidence of the appeal of this type of environmental legislation. Mandates to review environmental impacts, identify alternatives, and provide mitigation plans before commencement of the project are at the heart of NEPA. Such project reviews have resulted in the development of a vast number of reports and large volumes of project-specific data that potentially can be used to better understand the components and processes of the natural environment and provide guidance for improved and efficient environmental protection. However, the environmental assessment (EA) or the more robust and intensive environmental impact statement (EIS) that are required for most major projects more frequently than not are developed to satisfy the procedural aspects of the NEPA legislation while they fail to provide the needed guidance for improved decision-making. While NEPA legislation recommends monitoring of project activities, this activity is not mandated, and in those situations where it has been incorporated, the monitoring showed that the EIS was inaccurate in direction and/or magnitude of the impact. Many reviews of NEPA have suggested that monitoring all project phases, from the design through the decommissioning, should be incorporated. Information gathered though a well-developed monitoring program can be managed in databases and benefit not only the specific project but would provide guidance how to better design and implement future activities designed to protect and enhance the natural environment. -- Highlights: • NEPA statutes created profound environmental protection legislative framework. • Contrary to intent, NEPA does not provide for definitive project monitoring. • Robust project monitoring is essential for enhanced environmental management. • Adaptive database framework is needed to accommodate project-monitoring data.

  7. Gas mixing system for imaging of nanomaterials under dynamic environments by environmental transmission electron microscopy

    SciTech Connect (OSTI)

    Akatay, M. Cem [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)] [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Zvinevich, Yury; Ribeiro, Fabio H., E-mail: fabio@purdue.edu, E-mail: estach@bnl.gov [Forney Hall of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Baumann, Philipp [Computer Sciences, University of Applied Sciences of Northeastern Switzerland, 4132 Muttenz, Switzerland and Department of Physics, Yeshiva University, New York, New York 10016 (United States)] [Computer Sciences, University of Applied Sciences of Northeastern Switzerland, 4132 Muttenz, Switzerland and Department of Physics, Yeshiva University, New York, New York 10016 (United States); Stach, Eric A., E-mail: fabio@purdue.edu, E-mail: estach@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2014-03-15T23:59:59.000Z

    A gas mixing manifold system that is capable of delivering a stable pressure stream of a desired composition of gases into an environmental transmission electron microscope has been developed. The system is designed to provide a stable imaging environment upon changes of either the composition of the gas mixture or upon switching from one gas to another. The design of the system is described and the response of the pressure inside the microscope, the sample temperature, and sample drift in response to flow and composition changes of the system are reported.

  8. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1991

    SciTech Connect (OSTI)

    Chaloud, D.J.; Dicey, B.B.; Mullen, A.A.; Neale, A.C.; Sparks, A.R.; Fontana, C.A.; Carroll, L.D.; Phillips, W.G.; Smith, D.D.; Thome, D.J.

    1992-01-01T23:59:59.000Z

    This report describes the Offsite Radiation Safety Program conducted during 1991 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory-Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to current NTS activities. Annual and long-term trends were evaluated in the Noble Gas, Tritium, Milk Surveillance, Biomonitoring, TLD, PIC networks, and the Long-Term Hydrological Monitoring Program.

  9. High Performance Network Monitoring

    SciTech Connect (OSTI)

    Martinez, Jesse E [Los Alamos National Laboratory

    2012-08-10T23:59:59.000Z

    Network Monitoring requires a substantial use of data and error analysis to overcome issues with clusters. Zenoss and Splunk help to monitor system log messages that are reporting issues about the clusters to monitoring services. Infiniband infrastructure on a number of clusters upgraded to ibmon2. ibmon2 requires different filters to report errors to system administrators. Focus for this summer is to: (1) Implement ibmon2 filters on monitoring boxes to report system errors to system administrators using Zenoss and Splunk; (2) Modify and improve scripts for monitoring and administrative usage; (3) Learn more about networks including services and maintenance for high performance computing systems; and (4) Gain a life experience working with professionals under real world situations. Filters were created to account for clusters running ibmon2 v1.0.0-1 10 Filters currently implemented for ibmon2 using Python. Filters look for threshold of port counters. Over certain counts, filters report errors to on-call system administrators and modifies grid to show local host with issue.

  10. Photon beam position monitor

    DOE Patents [OSTI]

    Kuzay, T.M.; Shu, D.

    1995-02-07T23:59:59.000Z

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  11. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    SciTech Connect (OSTI)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

    2010-11-01T23:59:59.000Z

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

  12. Rock Island Dam Smolt Monitoring; 1996 Annual Report.

    SciTech Connect (OSTI)

    McDonald, Robert (Chelan County Public Utility District No. 1, Power Operations Department, Wenatchee, WA)

    1996-10-01T23:59:59.000Z

    Downstream migrating salmon and steelhead (Oncoryhnchus spp.) smolts were monitored at the Rock Island Dam bypass trap from April 1--August 31, 1996. This was the twelfth consecutive year that the bypass trap was monitored. Data collected included: (1) number of fish collected by species, (2) number of fin clipped and/or Passive Integrated Transponder (PIT) tagged fish caught by species, (3) total number of fish showing signs of gas bubble trauma (GBT), (4) percent of descaled fish, and (5) daily average river flow, powerhouse {number_sign}1 flow, powerhouse {number_sign}2 flow and daily average spill. These data were transmitted to the Fish Passage Center (FPC), which manages the Smolt Monitoring Program throughout the Columbia River Basin. The Smolt Monitoring Program is used to manage the water budget, releasing upstream reservoir water storage allocated to supplement river flows during the downstream migration of juvenile salmonids.

  13. FAST-RESPONSE ISOTOPIC ALPHA CONTINUOUS AIR MONITOR (CAM)

    SciTech Connect (OSTI)

    Keith D. Patch

    2000-04-28T23:59:59.000Z

    The objective of this effort is to develop and test a novel Continuous Air Monitor (CAM) instrument for monitoring alpha-emitting radionuclides, using a technology that can be applied to Continuous Emission Monitoring (CEM) of thermal treatment system off gas streams. The CAM instrument will have very high alpha spectral resolution and provide real-time, on-line monitoring suitable for alerting workers of high concentrations of alpha-emitting radionuclides in the ambient air and for improved control of decontamination, dismantlement, and air emission control equipment. Base Phase I involves the design, development, and preliminary testing of a laboratory-scale instrument. Testing will initially be conducted using naturally-occurring radon progeny in ambient air. In the Optional Phase II, the Base Phase I instrument will be critically evaluated at the Lovelace Respiratory Research Institute (LRRI) with characterized plutonium aerosols; then an improved instrument will be built and field-tested at a suitable DOE site.

  14. Selective Plasmonic Gas Sensing: H2, NO2, and CO Spectral Discriminati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in oxygen backgrounds of 5.0, 10, and 21% O2. Changes in the localized surface plasmon resonance (LSPR) absorption peak were monitored during gas exposures and are believed...

  15. TIME-VARYING FLAME IONIZATION SENSING APPLIED TO NATURAL GAS AND PROPANE BLENDS IN A PRESSURIZED LEAN PREMIXED (LPM) COMBUSTOR

    SciTech Connect (OSTI)

    D. L. Straub; B. T. Chorpening; E. D. Huckaby; J. D. Thornton; W. L. Fincham

    2008-06-13T23:59:59.000Z

    In-situ monitoring of combustion phenomena is a critical need for optimal operation and control of advanced gas turbine combustion systems. The concept described in this paper is based on naturally occurring flame ionization processes that accompany the combustion of hydrocarbon fuels. Previous work has shown that flame ionization techniques may be applied to detect flashback, lean blowout, and some aspects of thermo-acoustic combustion instabilities. Previous work has focused on application of DC electric fields. By application of time-varying electric fields, significant improvements to sensor capabilities have been observed. These data have been collected in a lean premixed combustion test rig operating at 0.51-0.76 MPa (5-7.5 atm) with air preheated to 588 K (600°F). Five percent of the total fuel flow is injected through the centerbody tip as a diffusion pilot. The fuel composition is varied independently by blending approximately 5% (volume) propane with the pipeline natural gas. The reference velocity through the premixing annulus is kept constant for all conditions at a nominal value of 70 m/s. The fuel-air equivalence ratio is varied independently from 0.46 – 0.58. Relative to the DC field version, the time-varying combustion control and diagnostic sensor (TV-CCADS) shows a significant improvement in the correlation between the measured flame ionization current and local fuel-air equivalence ratio. In testing with different fuel compositions, the triangle wave data show the most distinct change in flame ionization current in response to an increase in propane content. Continued development of this sensor technology will improve the capability to control advanced gas turbine combustion systems, and help address issues associated with variations in fuel supplies.

  16. Monitoring of tritium purity during long-term circulation in the KATRIN test experiment LOOPINO using laser Raman spectroscopy

    E-Print Network [OSTI]

    Fischer, Sebastian; Schlösser, Magnus; Bornschein, Beate; Drexlin, Guido; Priester, Florian; Lewis, Richard J; Telle, Helmut H

    2012-01-01T23:59:59.000Z

    The gas circulation loop LOOPINO has been set up and commissioned at Tritium Laboratory Karlsruhe (TLK) to perform Raman measurements of circulating tritium mixtures under conditions similar to the inner loop system of the neutrino-mass experiment KATRIN, which is currently under construction. A custom-made interface is used to connect the tritium containing measurement cell, located inside a glove box, with the Raman setup standing on the outside. A tritium sample (purity > 95%, 20 kPa total pressure) was circulated in LOOPINO for more than three weeks with a total throughput of 770 g of tritium. Compositional changes in the sample and the formation of tritiated and deuterated methanes CT_(4-n)X_n (X=H,D; n=0,1) were observed. Both effects are caused by hydrogen isotope exchange reactions and gas-wall interactions, due to tritium {\\beta} decay. A precision of 0.1% was achieved for the monitoring of the T_2 Q_1-branch, which fulfills the requirements for the KATRIN experiment and demonstrates the feasibility ...

  17. Method for nonlinear optimization for gas tagging and other systems

    DOE Patents [OSTI]

    Chen, T.; Gross, K.C.; Wegerich, S.

    1998-01-06T23:59:59.000Z

    A method and system are disclosed for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established. 6 figs.

  18. Method for nonlinear optimization for gas tagging and other systems

    DOE Patents [OSTI]

    Chen, Ting (Chicago, IL); Gross, Kenny C. (Bolingbrook, IL); Wegerich, Stephan (Glendale Heights, IL)

    1998-01-01T23:59:59.000Z

    A method and system for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established.

  19. Wireless Technologies for Structural Wireless Technologies for Structural Health MonitoringHealth Monitoring

    E-Print Network [OSTI]

    Wireless Technologies for Structural Wireless Technologies for Structural Health MonitoringHealth responses · Structural monitoring structural health monitoring: ­ Very few structural "health" monitoring and buildings · Future directions and technology trends Structural Monitoring SystemsStructural Monitoring

  20. Requirements for Web Service Composition Babak Esfandiari, Vladimir Tosic

    E-Print Network [OSTI]

    . Our work on the Web Service Offerings Language (WSOL) [Tos04b] and the Web Service Offerings Infrastructure (WSOI) [Tos03, Tos04a, Tos04b] explores specification, monitoring, and management of classes compositions using manipulation of classes of service [Tos03]. But in addition to such direct work on Web

  1. Cost of Gas Adjustment for Gas Utilities (Maine)

    Broader source: Energy.gov [DOE]

    This rule, applicable to gas utilities, establishes rules for calculation of gas cost adjustments, procedures to be followed in establishing gas cost adjustments and refunds, and describes reports...

  2. High temperature coatings for gas turbines

    DOE Patents [OSTI]

    Zheng, Xiaoci Maggie

    2003-10-21T23:59:59.000Z

    Coating for high temperature gas turbine components that include a MCrAlX phase, and an aluminum-rich phase, significantly increase oxidation and cracking resistance of the components, thereby increasing their useful life and reducing operating costs. The aluminum-rich phase includes aluminum at a higher concentration than aluminum concentration in the MCrAlX alloy, and an aluminum diffusion-retarding composition, which may include cobalt, nickel, yttrium, zirconium, niobium, molybdenum, rhodium, cadmium, indium, cerium, iron, chromium, tantalum, silicon, boron, carbon, titanium, tungsten, rhenium, platinum, and combinations thereof, and particularly nickel and/or rhenium. The aluminum-rich phase may be derived from a particulate aluminum composite that has a core comprising aluminum and a shell comprising the aluminum diffusion-retarding composition.

  3. Natural gas transport by plastic pipes. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The bibliography contains citations concerning the use of plastic piping to transport natural gas or liquid propane gas. The interaction between gas odorants and plastic pipe, the effects of aging on plastic pipe used to transport gas, and pipe failure analyses are examined. Bending, joining, and repair methods are discussed. Composite reinforced plastic pipes and plastic coated pipes are considered. Polyethylene and epoxy composites are among the materials discussed. Gas main upgrading projects that replaced old pipes with plastic ones are briefly cited. (Contains a minimum of 89 citations and includes a subject term index and title list.)

  4. Enhanced membrane gas separations

    SciTech Connect (OSTI)

    Prasad, R.

    1993-07-13T23:59:59.000Z

    An improved membrane gas separation process is described comprising: (a) passing a feed gas stream to the non-permeate side of a membrane system adapted for the passage of purge gas on the permeate side thereof, and for the passage of the feed gas stream in a counter current flow pattern relative to the flow of purge gas on the permeate side thereof, said membrane system being capable of selectively permeating a fast permeating component from said feed gas, at a feed gas pressure at or above atmospheric pressure; (b) passing purge gas to the permeate side of the membrane system in counter current flow to the flow of said feed gas stream in order to facilitate carrying away of said fast permeating component from the surface of the membrane and maintaining the driving force for removal of the fast permeating component through the membrane from the feed gas stream, said permeate side of the membrane being maintained at a subatmospheric pressure within the range of from about 0.1 to about 5 psia by vacuum pump means; (c) recovering a product gas stream from the non-permeate side of the membrane; and (d) discharging purge gas and the fast permeating component that has permeated the membrane from the permeate side of the membrane, whereby the vacuum conditions maintained on the permeate side of the membrane by said vacuum pump means enhance the efficiency of the gas separation operation, thereby reducing the overall energy requirements thereof.

  5. Rack protection monitor

    DOE Patents [OSTI]

    Orr, Stanley G. (Wheaton, IL)

    2000-01-01T23:59:59.000Z

    A hardwired, fail-safe rack protection monitor utilizes electromechanical relays to respond to the detection by condition sensors of abnormal or alarm conditions (such as smoke, temperature, wind or water) that might adversely affect or damage equipment being protected. When the monitor is reset, the monitor is in a detection mode with first and second alarm relay coils energized. If one of the condition sensors detects an abnormal condition, the first alarm relay coil will be de-energized, but the second alarm relay coil will remain energized. This results in both a visual and an audible alarm being activated. If a second alarm condition is detected by another one of the condition sensors while the first condition sensor is still detecting the first alarm condition, both the first alarm relay coil and the second alarm relay coil will be de-energized. With both the first and second alarm relay coils de-energized, both a visual and an audible alarm will be activated. In addition, power to the protected equipment will be terminated and an alarm signal will be transmitted to an alarm central control. The monitor can be housed in a separate enclosure so as to provide an interface between a power supply for the protected equipment and the protected equipment.

  6. INTRODUCTION MONITORING SERVICE

    E-Print Network [OSTI]

    Jantsch, Axel

    , the heat level can be monitored in hotspot regions of the network. This is important for 3D systems consumption per cycle (based on the rate of packet flow) can be measured using the Energy meterC components and a single testbench simulation is performed by reading all input specification. Data samples

  7. Reactor Monitoring with Neutrinos

    E-Print Network [OSTI]

    M. Cribier

    2007-04-06T23:59:59.000Z

    The fundamental knowledge on neutrinos acquired in the recent years open the possibility of applied neutrino physics. Among it the automatic and non intrusive monitoring of nuclear reactor by its antineutrino signal could be very valuable to IAEA in charge of the control of nuclear power plants. Several efforts worldwide have already started.

  8. A network security monitor

    SciTech Connect (OSTI)

    Heberlein, L.T.; Dias, G.V.; Levitt, K.N.; Mukherjee, B.; Wood, J.; Wolber, D. (California Univ., Davis, CA (USA). Dept. of Electrical Engineering and Computer Science)

    1989-11-01T23:59:59.000Z

    The study of security in computer networks is a rapidly growing area of interest because of the proliferation of networks and the paucity of security measures in most current networks. Since most networks consist of a collection of inter-connected local area networks (LANs), this paper concentrates on the security-related issues in a single broadcast LAN such as Ethernet. Specifically, we formalize various possible network attacks and outline methods of detecting them. Our basic strategy is to develop profiles of usage of network resources and then compare current usage patterns with the historical profile to determine possible security violations. Thus, our work is similar to the host-based intrusion-detection systems such as SRI's IDES. Different from such systems, however, is our use of a hierarchical model to refine the focus of the intrusion-detection mechanism. We also report on the development of our experimental LAN monitor currently under implementation. Several network attacks have been simulated and results on how the monitor has been able to detect these attacks are also analyzed. Initial results demonstrate that many network attacks are detectable with our monitor, although it can surely be defeated. Current work is focusing on the integration of network monitoring with host-based techniques. 20 refs., 2 figs.

  9. COMPUTATIONAL OPTIMIZATION OF GAS COMPRESSOR ...

    E-Print Network [OSTI]

    2015-02-26T23:59:59.000Z

    Feb 26, 2015 ... When considering cost-optimal operation of gas transport net- works ..... The four most frequently used drive types are gas turbines, gas driven.

  10. Purchased Gas Adjustment Rules (Tennessee)

    Broader source: Energy.gov [DOE]

    The Purchased Gas Adjustment Rules are implemented by the Tennessee Regulatory Authority (Authority). Purchased Gas Adjustment (PGA) Rules are intended to permit the company/LDC (local gas...

  11. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    natural gas and liquefied petroleum gas have continued to make small contributions to transportation,transportation actions include electric power sector actions, eg coal to natural gas

  12. Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal...

    Open Energy Info (EERE)

    An Active Magmatic-Hydrothermal System- A Case Study Of The Geysers Geothermal Field, Usa Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  13. A Composite Scheme for Gas Dynamics in Lagrangian Coordinates

    E-Print Network [OSTI]

    and the Sedov blast wave problem, and for several one­dimensional problems including a Riemann problem is usually acceptable. In [7] and [8] it is shown that an effective way to overcome this behavior of the two, but the codes quickly generate a constant velocity and pressure at the origin, so the viscosity has no effect

  14. Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information Hydro IncEnergyInformationOpen EnergySystem- A

  15. Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton:

  16. Natural gas annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

  17. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, J.F.

    1992-02-25T23:59:59.000Z

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  18. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

    1992-01-01T23:59:59.000Z

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  19. Gas and Oil (Maryland)

    Broader source: Energy.gov [DOE]

    The Department of the Environment has the authority to enact regulations pertaining to oil and gas production, but it cannot prorate or limit the output of any gas or oil well. A permit from the...

  20. Microminiature gas chromatograph

    DOE Patents [OSTI]

    Yu, Conrad M. (Antioch, CA)

    1996-01-01T23:59:59.000Z

    A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.

  1. Microminiature gas chromatograph

    DOE Patents [OSTI]

    Yu, C.M.

    1996-12-10T23:59:59.000Z

    A microminiature gas chromatograph ({mu}GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode. 7 figs.

  2. Hydrogen storage compositions

    SciTech Connect (OSTI)

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19T23:59:59.000Z

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH4- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH4- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  3. Hydrogen storage compositions

    DOE Patents [OSTI]

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19T23:59:59.000Z

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  4. Residual gas analysis device

    DOE Patents [OSTI]

    Thornberg, Steven M. (Peralta, NM)

    2012-07-31T23:59:59.000Z

    A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

  5. Natural gas annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

  6. Natural gas annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-11-17T23:59:59.000Z

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

  7. Wireless device monitoring systems and monitoring devices, and associated methods

    DOE Patents [OSTI]

    McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W

    2014-05-27T23:59:59.000Z

    Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.

  8. Continuous Fiber Ceramic Composites

    SciTech Connect (OSTI)

    None

    2002-09-01T23:59:59.000Z

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  9. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17T23:59:59.000Z

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  10. Gas Cylinders: Proper Management

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    Compressed Gas Cylinders: Proper Management And Use Published by the Office of Environment, Health;1 Introduction University of California, Berkeley (UC Berkeley) departments that use compressed gas cylinders (MSDS) and your department's Job Safety Analyses (JSAs). Talk to your gas supplier about hands

  11. Static gas expansion cooler

    DOE Patents [OSTI]

    Guzek, J.C.; Lujan, R.A.

    1984-01-01T23:59:59.000Z

    Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

  12. Natural Gas Exploration

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    . Exploration and extraction of natural gas from the Marcellus shale is a potentially valuable economic stimulus for landowners. You might be wondering how the nation's economic situation is affecting the market for naturalNatural Gas Exploration: A Landowners Guide to Financial Management Natural Gas Exploration

  13. Leptons in Composite MFV

    E-Print Network [OSTI]

    Michele Redi

    2014-07-21T23:59:59.000Z

    We study the lepton sector of composite Higgs models with partial compositeness. The standard anarchic scenario is in conflict with the absence of observable charged lepton flavor violation. This tension can be completely solved in MFV scenarios that require either left-handed or right-handed SM leptons to be equally composite. Constraints on this scenario are weak and the composite lepton partners could be as light as few hundreds GeVs with interesting LHC signatures. The contribution to the muon (g-2) in theories where the Higgs is a pseudo Nambu-Goldstone boson is also discussed.

  14. Electrically conductive cellulose composite

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04T23:59:59.000Z

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  15. Method and apparatus for decreased undesired particle emissions in gas streams

    DOE Patents [OSTI]

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Bustard, C.J.

    1999-04-13T23:59:59.000Z

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 5 figs.

  16. Condition Monitoring System for Reinforced

    E-Print Network [OSTI]

    Painter, Kevin

    containing dissolved ionic species such as chlorides. Since concrete is a porous material, with timeCondition Monitoring System for Reinforced Concrete Structures PROBLEM THIS TECHNOLOGY SOLVES: Patent pending concrete condition monitoring system providing `real-time' information on temperature

  17. Monitoring/Verification using DMS: TATP Example

    SciTech Connect (OSTI)

    Stephan Weeks, Kevin Kyle, Manuel Manard

    2008-05-30T23:59:59.000Z

    Field-rugged and field-programmable differential mobility spectrometry (DMS) networks provide highly selective, universal monitoring of vapors and aerosols at detectable levels from persons or areas involved with illicit chemical/biological/explosives (CBE) production. CBE sensor motes used in conjunction with automated fast gas chromatography with DMS detection (GC/DMS) verification instrumentation integrated into situational operations-management systems can be readily deployed and optimized for changing application scenarios. The feasibility of developing selective DMS motes for a “smart dust” sampling approach with guided, highly selective, fast GC/DMS verification analysis is a compelling approach to minimize or prevent the illegal use of explosives or chemical and biological materials. DMS is currently one of the foremost emerging technologies for field separation and detection of gas-phase chemical species. This is due to trace-level detection limits, high selectivity, and small size. Fast GC is the leading field analytical method for gas phase separation of chemical species in complex mixtures. Low-thermal-mass GC columns have led to compact, low-power field systems capable of complete analyses in 15–300 seconds. A collaborative effort optimized a handheld, fast GC/DMS, equipped with a non-rad ionization source, for peroxide-based explosive measurements.

  18. Serum lipoprotein composition and amounts in eutrophic and hypotrophic

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Serum lipoprotein composition and amounts in eutrophic and hypotrophic newborn at term. H Merzouk 1 with that of eu- trophic newborn at term. Twelve eutrophic newborn (birth weight 3 570 ± 93 g) and 18 hypotrophic cholesterol was analyzed by gas liquid chromatography. In the hypotrophic newborn, compared with the eutrophic

  19. Fast and Robust Algorithm for Compositional Modeling: Part II--

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    later) we have noticed that compositional modeling of a rich-retrograde gas condensate het- erogeneous of our study, stability analysis testing in the reduced space was formulated, and its robustness- sitional modeling, stability analysis testing in the reduction method was presented.1 In this paper, Part

  20. Reactive composite compositions and mat barriers

    DOE Patents [OSTI]

    Langton, Christine A. (Aiken, SC); Narasimhan, Rajendran (Evans, GA); Karraker, David G. (Aiken, SC)

    2001-01-01T23:59:59.000Z

    A hazardous material storage area has a reactive multi-layer composite mat which lines an opening into which a reactive backfill and hazardous material are placed. A water-inhibiting cap may cover the hazardous material storage area. The reactive multi-layer composite mat has a backing onto which is placed an active layer which will neutralize or stabilize hazardous waste and a fronting layer so that the active layer is between the fronting and backing layers. The reactive backfill has a reactive agent which can stabilize or neutralize hazardous material and inhibit the movement of the hazardous material through the hazardous material storage area.

  1. CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite

    E-Print Network [OSTI]

    Rollins, Andrew M.

    materials. MATERIALS AND DESIRED DATA Carbon-Carbon Composites(T300 & SWB): Crush Resistance, Bend StrengthCARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite · C-C supplied in two forms · T300: C strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine

  2. Bonded carbon or ceramic fiber composite filter vent for radioactive waste

    DOE Patents [OSTI]

    Brassell, Gilbert W. (13237 W. 8th Ave., Golden, CO 80401); Brugger, Ronald P. (Lafayette, CO)

    1985-02-19T23:59:59.000Z

    Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

  3. Advanced monitoring of machining operations

    E-Print Network [OSTI]

    Teti, Roberto; Jemielniak, Krzysztof; O'Donnell, Garret; Dornfeld, David

    2010-01-01T23:59:59.000Z

    However, the latest modern open control systems allow accesssystems and paradigms In monitoring and control activities for modern

  4. Advanced monitoring of machining operations

    E-Print Network [OSTI]

    Teti, Roberto; Jemielniak, Krzysztof; O'Donnell, Garret; Dornfeld, David

    2010-01-01T23:59:59.000Z

    systems and paradigms In monitoring and control activities for modernHowever, the latest modern open control systems allow access

  5. Structural health monitoring by ultrasonic guided waves

    E-Print Network [OSTI]

    Bartoli, Ivan

    2007-01-01T23:59:59.000Z

    and Viola, E. , “Structural Health Monitoring of Multi-wireEncyclopedia of Structural Health Monitoring, C. Boller, F-D.L. (2001) “Structural health monitoring system based on

  6. Guided wave monitoring of prestressing tendons

    E-Print Network [OSTI]

    Nucera, Claudio

    2010-01-01T23:59:59.000Z

    20] and for structural health monitoring of post-tensionedNDE) and Structural Health Monitoring (SHM) purposes [1].NDE) and the structural health monitoring (SHM) of solids

  7. Effective Health Monitoring Strategies for Complex Structures /

    E-Print Network [OSTI]

    Haynes, Colin Michael

    2014-01-01T23:59:59.000Z

    to Optimization in Structural Health Monitoring, Proc. Worldaxioms of structural health monitoring, Proc. R. Soc. A.the future of structural health monitoring, Phil. Trans. R.

  8. Carbon Storage Monitoring, Verification and Accounting Research...

    Office of Environmental Management (EM)

    Monitoring, Verification and Accounting Research Carbon Storage Monitoring, Verification and Accounting Research Reliable and cost-effective monitoring, verification and accounting...

  9. Sandia Energy - Water Monitoring & Treatment Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Monitoring & Treatment Technology Home Climate & Earth Systems WaterEnergy Nexus Water Monitoring & Treatment Technology Water Monitoring & Treatment Technologyashoter2015-0...

  10. Welcome FUPWG- Natural Gas Overview

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—provides an overview of natural gas, including emissions, compressed natural gas (CNG) vehicles, and landfill gas supplement for natural gas system.

  11. Activated Carbon Composites for Air Separation

    SciTech Connect (OSTI)

    Contescu, Cristian I [ORNL; Baker, Frederick S [ORNL; Tsouris, Costas [ORNL; McFarlane, Joanna [ORNL

    2008-03-01T23:59:59.000Z

    In continuation of the development of composite materials for air separation based on molecular sieving properties and magnetic fields effects, several molecular sieve materials were tested in a flow system, and the effects of temperature, flow conditions, and magnetic fields were investigated. New carbon materials adsorbents, with and without pre-loaded super-paramagnetic nanoparticles of Fe3O4 were synthesized; all materials were packed in chromatographic type columns which were placed between the poles of a high intensity, water-cooled, magnet (1.5 Tesla). In order to verify the existence of magnetodesorption effect, separation tests were conducted by injecting controlled volumes of air in a flow of inert gas, while the magnetic field was switched on and off. Gas composition downstream the column was analyzed by gas chromatography and by mass spectrometry. Under the conditions employed, the tests confirmed that N2 - O2 separation occurred at various degrees, depending on material's intrinsic properties, temperature and flow rate. The effect of magnetic fields, reported previously for static conditions, was not confirmed in the flow system. The best separation was obtained for zeolite 13X at sub-ambient temperatures. Future directions for the project include evaluation of a combined system, comprising carbon and zeolite molecular sieves, and testing the effect of stronger magnetic fields produced by cryogenic magnets.

  12. Corrosion Monitoring System

    SciTech Connect (OSTI)

    Dr. Russ Braunling

    2004-10-31T23:59:59.000Z

    The Corrosion Monitoring System (CMS) program developed and demonstrated a continuously on-line system that provides real-time corrosion information. The program focused on detecting pitting corrosion in its early stages. A new invention called the Intelligent Ultrasonic Probe (IUP) was patented on the program. The IUP uses ultrasonic guided waves to detect small defects and a Synthetic Aperture Focusing Technique (SAFT) algorithm to provide an image of the pits. Testing of the CMS demonstrated the capability to detect pits with dimensionality in the sub-millimeter range. The CMS was tested in both the laboratory and in a pulp and paper industrial plant. The system is capable of monitoring the plant from a remote location using the internet.

  13. Tritium monitoring techniques

    SciTech Connect (OSTI)

    DeVore, J.R.; Buckner, M.A.

    1996-05-01T23:59:59.000Z

    As part of their operations, the U.S. Navy is required to store or maintain operational nuclear weapons on ships and at shore facilities. Since these weapons contain tritium, there are safety implications relevant to the exposure of personnel to tritium. This is particularly important for shipboard operations since these types of environments can make low-level tritium detection difficult. Some of these ships have closed systems, which can result in exposure to tritium at levels that are below normally acceptable levels but could still cause radiation doses that are higher than necessary or could hamper ship operations. This report describes the state of the art in commercial tritium detection and monitoring and recommends approaches for low-level tritium monitoring in these environments.

  14. Cycle isolation monitoring

    SciTech Connect (OSTI)

    Svensen, L.M. III; Zeigler, J.R.; Todd, F.D.; Alder, G.C. [Santee Copper, Moncks Corner, SC (United States)

    2009-07-15T23:59:59.000Z

    There are many factors to monitor in power plants, but one that is frequently overlooked is cycle isolation. Often this is an area where plant personnel can find 'low hanging fruit' with great return on investment, especially high energy valve leakage. This type of leakage leads to increased heat rate, potential valve damage and lost generation. The fundamental question to ask is 'What is 100 Btu/kW-hr of heat rate worth to your plant? On a 600 MW coal-fired power plant, a 1% leakage can lead to an 81 Btu/kW-hr impact on the main steam cycle and a 64 Btu/kW-hr impact on the hot reheat cycle. The article gives advice on methods to assist in detecting leaking valves and to monitor cycle isolation. A software product, TP. Plus-CIM was designed to estimate flow rates of potentially leaking valves.

  15. Texas Rangeland Monitoring: Level Three

    E-Print Network [OSTI]

    Hanselka, C. Wayne; Hart, Charles R.; McGinty, Allan

    2006-10-09T23:59:59.000Z

    L-5455 10/06 Texas Rangeland Monitoring: Level Three C. Wayne Hanselka, Charles R. Hart and Allan McGinty* Monitoring is an essential tool in rangeland management. Monitoring is the way to determine whether goals are being achieved with current...

  16. Natural gas leak mapper

    DOE Patents [OSTI]

    Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

    2008-05-20T23:59:59.000Z

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  17. Beatty Wind Monitoring Project

    SciTech Connect (OSTI)

    Hurt, Rick

    2009-06-01T23:59:59.000Z

    The UNLV Center for Energy Research (CER) and Valley Electric Association (VEA) worked with Kitty Shubert of the Beatty Economic Redevelopment Corporation (BERC) to install two wind monitoring stations outside the town of Beatty, Nevada. The following is a description of the two sites. The information for a proposed third site is also shown. The sites were selected from previous work by the BERC and Idaho National Laboratory. The equipment was provided by the BERC and installed by researchers from the UNLV CER.

  18. Scalable Node Monitoring

    SciTech Connect (OSTI)

    Drotar, Alexander P. [Los Alamos National Laboratory; Quinn, Erin E. [Los Alamos National Laboratory; Sutherland, Landon D. [Los Alamos National Laboratory

    2012-07-30T23:59:59.000Z

    Project description is: (1) Build a high performance computer; and (2) Create a tool to monitor node applications in Component Based Tool Framework (CBTF) using code from Lightweight Data Metric Service (LDMS). The importance of this project is that: (1) there is a need a scalable, parallel tool to monitor nodes on clusters; and (2) New LDMS plugins need to be able to be easily added to tool. CBTF stands for Component Based Tool Framework. It's scalable and adjusts to different topologies automatically. It uses MRNet (Multicast/Reduction Network) mechanism for information transport. CBTF is flexible and general enough to be used for any tool that needs to do a task on many nodes. Its components are reusable and 'EASILY' added to a new tool. There are three levels of CBTF: (1) frontend node - interacts with users; (2) filter nodes - filters or concatenates information from backend nodes; and (3) backend nodes - where the actual work of the tool is done. LDMS stands for lightweight data metric servies. It's a tool used for monitoring nodes. Ltool is the name of the tool we derived from LDMS. It's dynamically linked and includes the following components: Vmstat, Meminfo, Procinterrupts and more. It works by: Ltool command is run on the frontend node; Ltool collects information from the backend nodes; backend nodes send information to the filter nodes; and filter nodes concatenate information and send to a database on the front end node. Ltool is a useful tool when it comes to monitoring nodes on a cluster because the overhead involved with running the tool is not particularly high and it will automatically scale to any size cluster.

  19. Scintillator spent fuel monitor

    SciTech Connect (OSTI)

    Moss, C.E.; Nixon, K.V.; Bernard, W.

    1980-01-01T23:59:59.000Z

    A monitor for rapidly measuring the gross gamma-ray flux immediately above spent fuel assemblies in underwater storage racks has been developed. It consists of a plastic scintillator, photomultiplier, collimator, and a small battery-powered electronics package. The crosstalk from an isolated fuel assembly to an adjacent void is only about 2%. The mean difference between the measured gamma-ray flux and the flux estimated from the declared burnup and cooling time with a simple formula is 22%.

  20. Gas Hydrate Storage of Natural Gas

    SciTech Connect (OSTI)

    Rudy Rogers; John Etheridge

    2006-03-31T23:59:59.000Z

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

  1. Biodegradable synthetic bone composites

    DOE Patents [OSTI]

    Liu, Gao; Zhao, Dacheng; Saiz, Eduardo; Tomsia, Antoni P.

    2013-01-01T23:59:59.000Z

    The invention provides for a biodegradable synthetic bone composition comprising a biodegradable hydrogel polymer scaffold comprising a plurality of hydrolytically unstable linkages, and an inorganic component; such as a biodegradable poly(hydroxyethylmethacrylate)/hydroxyapatite (pHEMA/HA) hydrogel composite possessing mineral content approximately that of human bone.

  2. Atmospheric Thermodynamics Composition

    E-Print Network [OSTI]

    Russell, Lynn

    1 Atmospheric Thermodynamics Ch1 Composition Ch2 Laws Ch3 Transfers Ch12 EnergyBalance Ch4 Water Ch Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http #12;2 Review from Ch. 1 · Thermodynamic quantities · Composition · Pressure · Density · Temperature

  3. Energy efficiency in military housing: Monitoring to support revitalization guidebook

    SciTech Connect (OSTI)

    Levins, W.P.; Ternes, M.P.

    1994-11-01T23:59:59.000Z

    Oak Ridge National Laboratory is working with the US Army, the US Air Force, and the US Department of Energy to develop a guidebook to be used by architectural and engineering firms in the design phases of military family housing revitalization projects. The purpose of the guidebook is to ensure that energy efficiency is properly addressed in revitalization projects. Monitoring space-heating and cooling energy used in houses both before and after they are revitalized is necessary in order to assess the amount of energy saved by the revitalization process. Three different methods of conducting monitoring experiments are discussed, as well as the methods of data analysis to be used. Houses will be monitored individually using standard gas and electric meters to obtain heating and cooling data for the houses. The authors recommend conducting monitoring programs at Altus Air Force Base, Oklahoma, and Fort Monmouth, New Jersey, because of their project schedules and potential for savings. They do not recommend doing any monitoring at Malmstrom Air Force Base, Montana, because of the relatively small savings that they expect revitalization to accomplish there. They do not recommend seeking out alternative sites for monitoring because of the time required to become familiar with the installation and also because revitalization schedules at alternative sites may be no better than those at the sites they inspected.

  4. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2003-01-01T23:59:59.000Z

    gas reservoirs for carbon sequestration and enhanced gasproduction and carbon sequestration, Society of Petroleumfeasibiilty of carbon sequestration with enhanced gas

  5. Automotive Composites Consortium Focal Project 4: Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composites Consortium Focal Project 4: Automotive Components from Structural Composites Automotive Composites Consortium Focal Project 4: Automotive Components from Structural...

  6. Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations

    E-Print Network [OSTI]

    Nair, Sankar

    Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations Wun 20 March 2013 Available online 9 April 2013 Keywords: Layered silicates AMH-3 Composite membrane Exfoliation Interface CO2 separation a b s t r a c t Nanoporous layered silicate/polymer composite membranes

  7. Flue gas desulfurization

    DOE Patents [OSTI]

    Im, K.H.; Ahluwalia, R.K.

    1984-05-01T23:59:59.000Z

    The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

  8. Portal monitoring technology control process

    SciTech Connect (OSTI)

    York, R.L.

    1998-12-31T23:59:59.000Z

    Portal monitors are an important part of the material protection, control, and accounting (MPC and A) programs in Russia and the US. Although portal monitors are only a part of an integrated MPC and A system, they are an effective means of controlling the unauthorized movement of special nuclear material (SNM). Russian technical experts have gained experience in the use of SNM portal monitors from US experts ad this has allowed them to use the monitors more effectively. Several Russian institutes and companies are designing and manufacturing SNM portal monitors in Russia. Interactions between Russian and US experts have resulted in improvements to the instruments. SNM portal monitor technology has been effectively transferred from the US to Russia and should be a permanent part of the Russian MPC and A Program. Progress in the implementation of the monitors and improvements to how they are used are discussed.

  9. Gas chemistry and thermometry of the Cerro Prieto geothermal field

    SciTech Connect (OSTI)

    Nehring, N.L. (US Geological Survey, Menlo Park, CA); D'Amore, F.

    1981-01-01T23:59:59.000Z

    Geothermal gases at Cerro Prieto are derived from high temperature reactions within the reservoir or are introduced with recharge water. Gases collected from geothermal wells should, therefore, reflect reservoir conditions. Interpretation of gas compositions of wells indicates reservoir temperatures, controls of oxygen and sulfur fugacities, and recharge source and direction.

  10. A Study of Formation and Dissociation of Gas Hydrate

    E-Print Network [OSTI]

    Badakhshan Raz, Sadegh

    2012-07-16T23:59:59.000Z

    and the chemical composition of the water had little effect on the ice and gas hydrate formation temperatures, which were in the range of -8 +/- 0.2 degrees C in all the tests using the cooling rate of 0.45 degrees C/min. In contrast, the increase in the cooling...

  11. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect (OSTI)

    E.S. Connolly; G.D. Forsythe

    2000-09-30T23:59:59.000Z

    DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests being conducted by Westinghouse at Foster-Wheeler's Pressurized Circulating Fluidized Bed (PCFBC) test facility in Karhula, Finland. Task 5 was designed to demonstrate the improvements implemented in Task 4 by fabricating fifty 1.5-meter hot gas filters. These filters were to be made available for DOE-sponsored field trials at the Power Systems Development Facility (PSDF), operated by Southern Company Services in Wilsonville, Alabama.

  12. Correlation of Chemisorption and Electronic Effects for Metal Oxide Interfaces: Transducing Principles for Temperature Programmed Gas Microsensors (Final Report)

    SciTech Connect (OSTI)

    S. Semancik; R. E. Cavicchi; D. L. DeVoe; T. J. McAvoy [National Institute of Standards and Technology (US)]|[University of Maryland (US)

    2001-12-21T23:59:59.000Z

    This Final Report describes efforts and results for a 3-year DoE/OST-EMSP project centered at NIST. The multidisciplinary project investigated scientific and technical concepts critical for developing tunable, MEMS-based, gas and vapor microsensors that could be applied for monitoring the types of multiple analytes (and differing backgrounds) encountered at DoE waste sites. Micromachined ''microhotplate'' arrays were used as platforms for fabricating conductometric sensor prototypes, and as microscale research tools. Efficient microarray techniques were developed for locally depositing and then performance evaluating thin oxide films, in order to correlate gas sensing characteristics with properties including composition, microstructure, thickness and surface modification. This approach produced temperature-dependent databases on the sensitivities of sensing materials to varied analytes (in air) which enable application-specific tuning of microsensor arrays. Mechanistic studies on adsorb ate transient phenomena were conducted to better understand the ways in which rapid temperature programming schedules can be used to produce unique response signatures and increase information density in microsensor signals. Chemometric and neural network analyses were also employed in our studies for recognition and quantification of target analytes.

  13. Status of radiation detector and neutron monitor technology

    E-Print Network [OSTI]

    Kim, Y K; Ha, J H; Han, S H; Hong, S B; Hwang, I K; Lee, W G; Moon, B S; Park, S H; Song, M H

    2002-01-01T23:59:59.000Z

    In this report, we describe the current states of the radiation detection technology, detectors for industrial application, and neutron monitors. We also survey the new technologies being applied to this field. The method to detect radiation is the measurement of the observable secondary effect from the interaction between incident radiation and detector material, such as ionization, excitation, fluorescence, and chemical reaction. The radiation detectors can be categorized into gas detectors, scintillation detectors, and semiconductor detectors according to major effects and main applications. This report contains the current status and operational principles of these detectors. The application fields of radiation detectors are industrial measurement system, in-core neutron monitor, medical radiation diagnostic device, nondestructive inspection device, environmental radiation monitoring, cosmic-ray measurement, security system, fundamental science experiment, and radiation measurement standardization. The st...

  14. Eastern Gas Shales Project outgassing analysis. Special report

    SciTech Connect (OSTI)

    Streib, D.L.

    1980-02-01T23:59:59.000Z

    Two methods are used on the Eastern Gas Shales Project to measure the gas volume of encapsulated shale samples. The direct method measures pressure and volume and is initiated almost immediately upon encapsulation of the sample. A second method measures pressure, volume, and composition, and is initiated after pressure is allowed to build up over several weeks. A combination of the two methods has been used on selected samples, and yields more data as it allows extrapolation to account for gas lost prior to encapsulation. The stratigraphic horizons, characterized by dark shales with high organic and high carbon content and a relatively high gamma ray intensity of 200+ API units also have high gas contents (relative to other units within the same well). The Lower Huron, Rhinestreet, and Marcellus Shales are high in gas content relative to other stratigraphic units at the same sites. The difference in gas content of the same stratigraphic horizon between well sites appears to be controlled by the thermal maturity. Kinetic studies have shown that, in some samples, significant amounts of gas are released after the time when the gas volume would be initially measured. Additional work needs to be performed to determine why the rates and volume of gas released vary between samples.

  15. Enhanced catalyst and process for converting synthesis gas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY)

    1986-01-01T23:59:59.000Z

    The conversion of synthesis gas to liquid molar fuels by means of a cobalt Fischer-Tropsch catalyst composition is enhanced by the addition of molybdenum, tungsten or a combination thereof as an additional component of said composition. The presence of the additive component increases the olefinic content of the hydrocarbon products produced. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  16. Multifunctional composites : healing, heating and electromagnetic integration

    E-Print Network [OSTI]

    Plaisted, Thomas Anthony John

    2007-01-01T23:59:59.000Z

    Workshop on Structural Health Monitoring, Stanford. 879-886.Workshop on Structural Health Monitoring , Stanford. 879-

  17. Gas shielding apparatus

    DOE Patents [OSTI]

    Brandt, D.

    1984-06-05T23:59:59.000Z

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  18. Tantalum-base composite solves corrosion problem

    SciTech Connect (OSTI)

    Axler, K. [Los Alamos National Lab., NM (United States)

    1996-06-01T23:59:59.000Z

    Currently available conventional corrosion-resistant materials can usually handle typical corrosion problems. However, some very harsh environments, such as those involving chlorine gas and some molten salts and liquid metals (calcium and plutonium), are too corrosive even for materials generally considered to have good corrosion resistance. The inability of crucibles and furnace hardware made of conventional corrosion-resistant materials to maintain their integrity in severely corrosive chemical processing environments led to a materials development project at Los Alamos to find a suitable material for these applications. The tantalum-base composite developed during the program provides the corrosion resistance for containment of various molten salt/metal systems.

  19. Hybrid matrix fiber composites

    DOE Patents [OSTI]

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15T23:59:59.000Z

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  20. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1988-06-20T23:59:59.000Z

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  1. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, Haskell (Los Alamos, NM)

    1986-01-01T23:59:59.000Z

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  2. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, H.

    1983-07-26T23:59:59.000Z

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  3. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1989-05-23T23:59:59.000Z

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  4. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, Roger L. (Albuquerque, NM); Sylwester, Alan P. (Albuquerque, NM)

    1989-01-01T23:59:59.000Z

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  5. Composite Dirac Neutrinos

    E-Print Network [OSTI]

    Yuval Grossman; Dean J Robinson

    2011-01-25T23:59:59.000Z

    We present a mechanism that naturally produces light Dirac neutrinos. The basic idea is that the right-handed neutrinos are composite. Any realistic composite model must involve `hidden flavor' chiral symmetries. In general some of these symmetries may survive confinement, and in particular, one of them manifests itself at low energy as an exact $B-L$ symmetry. Dirac neutrinos are therefore produced. The neutrinos are naturally light due to compositeness. In general, sterile states are present in the model, some of them can naturally be warm dark matter candidates.

  6. Flexible composite radiation detector

    DOE Patents [OSTI]

    Cooke, D. Wayne (Santa Fe, NM); Bennett, Bryan L. (Los Alamos, NM); Muenchausen, Ross E. (Los Alamos, NM); Wrobleski, Debra A. (Los Alamos, NM); Orler, Edward B. (Los Alamos, NM)

    2006-12-05T23:59:59.000Z

    A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum response of photomultipliers (about 400 nanometers) or photodiodes (about 600 nanometers), which maximizes the overall detector efficiency.

  7. Lithium niobate explosion monitor

    DOE Patents [OSTI]

    Bundy, Charles H. (Clearwater, FL); Graham, Robert A. (Los Lunas, NM); Kuehn, Stephen F. (Albuquerque, NM); Precit, Richard R. (Albuquerque, NM); Rogers, Michael S. (Albuquerque, NM)

    1990-01-01T23:59:59.000Z

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

  8. Personal continuous air monitor

    DOE Patents [OSTI]

    Morgan, Ronald G. (Los Alamos, NM); Salazar, Samuel A. (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    A personal continuous air monitor capable of giving immediate warning of the presence of radioactivity has a filter/detector head to be worn in the breathing zone of a user, containing a filter mounted adjacent to radiation detectors, and a preamplifier. The filter/detector head is connected to a belt pack to be worn at the waist or on the back of a user. The belt pack contains a signal processor, batteries, a multichannel analyzer, a logic circuit, and an alarm. An air pump also is provided in the belt pack for pulling air through the filter/detector head by way of an air tube.

  9. Optical wet steam monitor

    DOE Patents [OSTI]

    Maxey, L.C.; Simpson, M.L.

    1995-01-17T23:59:59.000Z

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

  10. Milliwave melter monitoring system

    DOE Patents [OSTI]

    Daniel, William E. (North Augusta, SC); Woskov, Paul P. (Bedford, MA); Sundaram, Shanmugavelayutham K. (Richland, WA)

    2011-08-16T23:59:59.000Z

    A milliwave melter monitoring system is presented that has a waveguide with a portion capable of contacting a molten material in a melter for use in measuring one or more properties of the molten material in a furnace under extreme environments. A receiver is configured for use in obtaining signals from the melt/material transmitted to appropriate electronics through the waveguide. The receiver is configured for receiving signals from the waveguide when contacting the molten material for use in determining the viscosity of the molten material. Other embodiments exist in which the temperature, emissivity, viscosity and other properties of the molten material are measured.

  11. Monitoring international nuclear activity

    SciTech Connect (OSTI)

    Firestone, R.B.

    2006-05-19T23:59:59.000Z

    The LBNL Table of Isotopes website provides primary nuclearinformation to>150,000 different users annually. We have developedthe covert technology to identify users by IP address and country todetermine the kinds of nuclear information they are retrieving. Wepropose to develop pattern recognition software to provide an earlywarning system to identify Unusual nuclear activity by country or regionSpecific nuclear/radioactive material interests We have monitored nuclearinformation for over two years and provide this information to the FBIand LLNL. Intelligence is gleaned from the website log files. Thisproposal would expand our reporting capabilities.

  12. Optical wet steam monitor

    DOE Patents [OSTI]

    Maxey, Lonnie C. (Powell, TN); Simpson, Marc L. (Knoxville, TN)

    1995-01-01T23:59:59.000Z

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

  13. Sandia Energy - Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration Permalink Gallery MesaMonitoring Home Carbon

  14. Sandia Energy - Monitoring Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration Permalink Gallery MesaMonitoring Home

  15. WIPP Documents - Environmental Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEureka AnalyticsLarge file sizeMonitoring

  16. Monitoring Jobs on Carver

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174 This manuscript hasMonitoring

  17. Monitoring Jobs on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174 This manuscriptMonitoring Jobs

  18. Monitoring jobs with qs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174 This manuscriptMonitoringJobs »

  19. Monitoring your job

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174 This manuscriptMonitoringJobs

  20. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, Charles A. (Oak Ridge, TN); Burbage, Charles H. (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.