Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Natural Gas Combined Cycle  

E-Print Network [OSTI]

The “Coal Ash Corrosion Resistant Materials Testing Program ” is being conducted by B&W at Reliant Energy’s Niles plant in Niles, Ohio. The total estimated cost of $1,864,603 is co-funded by DOE contributing 37.5%, OCDO providing 33.3 % and B&W providing 17%. The remaining 12 % is in-kind contributions by Reliant Energy and tubing suppliers. Materials development is important to the power industry, and to the use of coal. Figure 1 compares the cost of electricity for subcritical and supercritical coal-fired plants with a natural gas combined cycle (NGCC) plant based on an 85 % capacity factor. This shows that at $1.20/MBtu for fuel, coal is competitive with NGCC when gas is at $3.40/MBtu or higher. An 85 % capacity factor is realistic for a coal-fired plant, but NGCC plants are currently only achieving about 60%. This gives coal an advantage if compared on the basis of cost per kW generated per year. When subcritical and supercritical plants are compared,

Dennis K. Mcdonald; Subcritical Coal Plant; Supercritical Coal Plant

2

Use of combined-cycle power units at cogeneration plants  

Science Journals Connector (OSTI)

Indices of reconstructed and new cogeneration plants (CPs) using combined cycle units (CCPUs) are considered. The conclusions...

V. M. Batenin; Yu. A. Zeigarnik; V. M. Maslennikov; Yu. L. Shekhter…

2008-12-01T23:59:59.000Z

3

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant  

Science Journals Connector (OSTI)

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant ... A natural gas combined cycle (NGCC) power plant with capacity of about 430 MW integrated to a chemical solvent absorber/stripping capture plant is investigated. ... The natural gas combined cycle (NGCC) is an advanced power generation technology that improves the fuel efficiency of natural gas. ...

Mehdi Karimi; Magne Hillestad; Hallvard F. Svendsen

2012-01-19T23:59:59.000Z

4

Modeling and Optimization of Membrane Reactors for Carbon Capture in Integrated Gasification Combined Cycle Units  

Science Journals Connector (OSTI)

Modeling and Optimization of Membrane Reactors for Carbon Capture in Integrated Gasification Combined Cycle Units ... This paper investigates the alternative of precombustion capture of carbon dioxide from integrated gasification combined cycle (IGCC) plants using membrane reactors equipped with H2-selective zeolite membranes for the water gas shift reaction. ...

Fernando V. Lima; Prodromos Daoutidis; Michael Tsapatsis; John J. Marano

2012-03-08T23:59:59.000Z

5

NOVEL GAS CLEANING/ CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INTEGRATED GASIFICATION COMBINED CYCLE VOLUME I - CONCEPTUAL COMMERCIAL EVALUATION OPTIONAL PROGRAM FINAL REPORT September 1, 2001 - December 31, 2005 By Dennis A. Horazak (Siemens), Program Manager Richard A. Newby (Siemens) Eugene E. Smeltzer (Siemens) Rachid B. Slimane (GTI) P. Vann Bush (GTI) James L. Aderhold, Jr. (GTI) Bruce G. Bryan (GTI) December 2005 DOE Award Number: DE-AC26-99FT40674 Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Siemens Power Generation, Inc. 4400 Alafaya Trail Orlando, FL 32826 & Gas Technology Institute 1700 S. Mt. Prospect Rd. Des Plaines, Illinois 60018 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government.

6

Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture  

SciTech Connect (OSTI)

Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.

Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

7

AVESTAR® - Natural Gas Combined Cycle (NGCC) Dynamic Simulator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Combined Cycle (NGCC) Dynamic Simulator Natural Gas Combined Cycle (NGCC) Dynamic Simulator A simulator that can provide future engineers with realistic, hands-on experience for operating advanced natural gas combined cycle (NGCC) power plants will soon be available at an innovative U.S. Department of Energy training center. Under a new cooperative research and development agreement signed by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) and Invensys Operations Management, the partners will develop, test, and deploy a dynamic simulator and operator training system (OTS) for a generic NGCC power plant equipped for use with post-combustion carbon capture. NETL will operate the new dynamic simulator/OTS at the AVESTAR (Advanced Virtual Energy Simulation Training and Research) Center in Morgantown, W.Va.

8

Potential solar thermal integration in Spanish combined cycle gas turbines  

Science Journals Connector (OSTI)

Abstract Combined cycle gas turbines (CCGTs) are volumetric machines, which means that their net power output decreases at air temperatures above the design point. Such temperatures generally occur during periods of high solar irradiation. Many countries where these conditions occur, including Spain, have installed a significant number of \\{CCGTs\\} in recent years, with the subsequent yield losses in the summer. This implies enormous potential for solar hybridization, increasing production in peak hours and overall efficiency and reducing CO2 emissions. This paper analyzes the overall potential for solar thermal integration in 51 CCGTS (25,340 MW) in mainland Spain under different operating scenarios based on increasing yield, solar fraction and the hourly operational range adapted to the Spanish electricity market, considering actual meteorological conditions. A production model for integrating solar energy into combined cycles is proposed and described and the code in R is freely released so that the assessment can be replicated.

J. Antonanzas; E. Jimenez; J. Blanco; F. Antonanzas-Torres

2014-01-01T23:59:59.000Z

9

An Edge-based Formulation for the Combined-Cycle Units  

E-Print Network [OSTI]

Oct 1, 2014 ... Abstract: As the number of combined-cycle units increases, efficient modeling approaches for these units play important roles for Independent ...

Lei Fan

2014-10-01T23:59:59.000Z

10

Enhancement of combined cycle performance using transpiration cooling of gas turbine blades with steam  

Science Journals Connector (OSTI)

Gas/steam combined cycle is synergetic combination of Brayton cycle based topping cycle and Rankine cycle based bottoming cycle, which have capability of operating independently too. Combined cycle performance de...

Sanjay Kumar; Onkar Singh

2014-06-01T23:59:59.000Z

11

The thermodynamic efficiency of the condensing process circuits of binary combined-cycle plants with gas-assisted heating of cycle air  

Science Journals Connector (OSTI)

The thermal efficiencies of condensing-type circuits of binary combined-cycle plants containing one, two, and three ... gas turbine unit, and with preheating of cycle air are analyzed by way of comparison ... ini...

V. P. Kovalevskii

2011-09-01T23:59:59.000Z

12

Chapter 4 - Natural Gas–fired Gas Turbines and Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Abstract Gas turbines can burn a range of liquid and gaseous fuels but most burn natural gas. Power plants based on gas turbines are one of the cheapest types of plant to build, but the cost of their electricity depends heavily on the cost of their fuel. Two types of gas turbine are used for power generation: aero-derivative gas turbines and heavy-duty gas turbines. The former are used to provide power to the grid at times of peak demand. The latter are most often found in combined cycle power stations. These are capable of more than 60% efficiency. There are a number of ways of modifying the gas turbine cycle to improve efficiency, including reheating and intercooling. Micro-turbines have been developed for very small-scale generation of both electricity and heat. The main atmospheric emissions from gas turbines are carbon dioxide and nitrogen oxide.

Paul Breeze

2014-01-01T23:59:59.000Z

13

Power Gas and Combined Cycles: Clean Power from Fossil Fuels  

Science Journals Connector (OSTI)

...gas has such a low heating value that it cannot...from residual fuel oil (the relatively...Oil Residual fuel oil with a low sulfur...stations in Maryland, Connecticut, and New York-has...low-sulfur residual fuel oil is growing and its price is rising. Residual...

William D. Metz

1973-01-05T23:59:59.000Z

14

Single pressure steam bottoming cycle for gas turbines combined cycle  

SciTech Connect (OSTI)

This patent describes a process for recapturing waste heat from the exhaust of a gas turbine to drive a high pressure-high temperature steam turbine and a low pressure steam turbine. It comprises: delivering the exhaust of the gas turbine to the hot side of an economizer-reheater apparatus; delivering a heated stream of feedwater and recycled condensate through the cold side of the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus to elevate the temperature below the pinch point of the boiler; delivering the discharge from the high pressure-high temperature steam turbine through the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus; driving the high pressure-high temperature steam turbine with the discharge stream of feedwater and recycled condensate which is heated to a temperature below the pinch point of the boiler by the economizer-reheater apparatus; and driving the low pressure steam turbine with the discharged stream of the high pressure-high temperature steam turbine reheated below the pinch point of the boiler by the economizer-reheater apparatus.

Zervos, N.

1990-01-30T23:59:59.000Z

15

Power Gas and Combined Cycles: Clean Power from Fossil Fuels  

Science Journals Connector (OSTI)

...a "gravitating bed" gasifier, manufactured by Lurgi...in diameter, and the size of the gasification unit...test a new design for a gasifier in early 1973. A coal...differently. The City College gasifier would be shaped so that...composed of larger coal sizes. The City College gasi-fier...

William D. Metz

1973-01-05T23:59:59.000Z

16

Thermodynamic evaluation of solar integration into a natural gas combined cycle power plant  

Science Journals Connector (OSTI)

Abstract The term integrated solar combined-cycle (ISCC) has been used to define the combination of solar thermal energy into a natural gas combined-cycle (NGCC) power plant. Based on a detailed thermodynamic cycle model for a reference ISCC plant, the impact of solar addition is thoroughly evaluated for a wide range of input parameters such as solar thermal input and ambient temperature. It is shown that solar hybridization into an NGCC plant may give rise to a substantial benefit from a thermodynamic point of view. The work here also indicates that a significant solar contribution may be achieved in an ISCC plant, thus implying substantial fuel savings and environmental benefits.

Guangdong Zhu; Ty Neises; Craig Turchi; Robin Bedilion

2015-01-01T23:59:59.000Z

17

Performance and emission characteristics of natural gas combined cycle power generation system with steam injection and oxyfuel combustion.  

E-Print Network [OSTI]

??Natural gas combined cycle power generation systems are gaining popularity due to their high power generation efficiency and reduced emission. In the present work, combined… (more)

Varia, Nitin

2014-01-01T23:59:59.000Z

18

Effect of Gas/Steam Turbine Inlet Temperatures on Combined Cycle Having Air Transpiration Cooled Gas Turbine  

Science Journals Connector (OSTI)

Worldwide efforts are being made for further improving the gas/steam combined cycle performance by having better ... . The scope of improvement is possible through turbines having higher turbine inlet temperature...

S. Kumar; O. Singh

2012-10-01T23:59:59.000Z

19

Connecting the second exhaust-heat boiler to the operating first one under the conditions of flow circuits of combined-cycle plants with two gas-turbine units and one steam turbine  

Science Journals Connector (OSTI)

Problems arising with connecting the second exhaust-heat boiler to the first exhaust-heat boiler under load in the case of flow circuits of combined-cycle plants of type PGU-450 are considered. Similar problem...

Yu. A. Radin; I. A. Grishin; T. S. Kontorovich…

2006-03-01T23:59:59.000Z

20

Thermionic-combustor combined-cycle system. Volume III. A thermionic converter design for gas-turbine combined-cycle systems  

SciTech Connect (OSTI)

Thermionic converter design is strongly influenced by the configuration of the heat source and heat sink. These two externally imposed conditions are of major importance in arriving at a viable converter design. In addition to these two factors, the economical and reliable transfer of energy internally within the converter is another major item in the design. The effects of the engineering trade-offs made in arriving at the design chosen for the Gas Turbine Combined Cycle combustor are reviewed.

Fitzpatrick, G.O.; Britt, E.J.; Dick, R.S. Jr.

1981-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

CO2 Offset Options: Comparative Assessment of Terrestial Sinks vs. Natural Gas Combined Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

W. South (south@energyresources.com; 202-785-8833) W. South (south@energyresources.com; 202-785-8833) Energy Resources International, Inc. 1015 18 th Street, N.W., Suite 650 Washington, DC 20036 CO 2 Offset Options: Comparative Assessment of Terrestial Sinks vs. Natural Gas Combined Cycle 1 Abstract This study compares the economic value of two CO 2 mitigation actions: terrestrial reforestation to sequester CO 2 emitted from coal-fired power generation versus natural gas combined cycle (NGCC) power generation to avoid (minimize) CO 2 release. The same quantity of carbon offset was assumed for both actions. Tree stock growth, carbon absorption/release cycles, and replanting were considered to maintain the quantity of carbon offset via reforestation. The study identified important parameters with both CO 2 mitigation options that should be considered when examining alternative strategies.

22

Carbon capture with low energy penalty: Supplementary fired natural gas combined cycles  

Science Journals Connector (OSTI)

Enhancing CO2 concentration in exhaust gas has been considered as a potentially effective method to reduce the penalty of electrical efficiency caused by CO2 chemical absorption in post-combustion carbon capture systems. Supplementary firing is an option that inherently has an increased CO2 concentration in the exhaust gas, albeit a relatively low electrical efficiency due to its increased mass flow of exhaust gas to treat and large temperature difference in heat recovery steam generator. This paper focuses on the methods that can improve the electrical efficiency of the supplementary fired combined cycles (SFCs) integrated with MEA-based CO2 capture. Three modifications have been evaluated: (I) integration of exhaust gas reheating, (II) integration of exhaust gas recirculation, and (III) integration of supercritical bottoming cycle. It is further showed that combining all three modifications results in a significant increase in electrical efficiency which is raised from 43.3% to 54.1% based on Lower Heating Value (LHV) of natural gas when compared to the original SFC. Compared with a conventional combined cycle with a subcritical bottoming cycle and without CO2 capture (56.7% of LHV), the efficiency penalty caused by CO2 capture is only 2.6% of LHV.

Hailong Li; Mario Ditaranto; Jinyue Yan

2012-01-01T23:59:59.000Z

23

Integrated Gasification Combined Cycle Dynamic Model: H2S Absorption/Stripping, Water?Gas Shift Reactors, and CO2 Absorption/Stripping  

Science Journals Connector (OSTI)

Integrated Gasification Combined Cycle Dynamic Model: H2S Absorption/Stripping, Water?Gas Shift Reactors, and CO2 Absorption/Stripping ... Future chemical plants may be required to have much higher flexibility and agility than existing process facilities in order to be able to handle new hybrid combinations of power and chemical units. ...

Patrick J. Robinson; William L. Luyben

2010-04-26T23:59:59.000Z

24

Improving a Pre-Combustion CCS Concept in Gas Turbine Combined Cycle for CHP Production  

Science Journals Connector (OSTI)

Abstract This paper describes modifications to improve the feasibility of a pre-combustion CCS concept for a gas turbine combined cycle. A natural gas-fired greenfield combined heat and power (CHP) plant equipped with pre-combustion capture was used as a base case, for which various improvement options were identified, assessed and selected. The base case was modified using the selected improvement options, after which the investment costs were re-evaluated. The results showed that the investment cost can be reduced with 8% by excluding the pre-reformer and the low temperature water-gas-shift reactor from the reforming process. The exclusion of the pre-reformer did not affect the performance of the plant, but the exclusion of the low temperature water-gas-shift reactor led to higher CO2 emissions.

Marjut S. Suomalainen; Antti Arasto; Sebastian Teir; Sari Siitonen

2013-01-01T23:59:59.000Z

25

Cost and Performance Baseline for Fossil Energy Plants; Volume 3c: Natural Gas Combined Cycle at Elevation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Baseline for Fossil Energy Plants Volume 3c: Natural Gas Combined Cycle at Elevation March 2011 DOE/NETL-2010/1396 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States

26

Exergetic analysis of solar concentrator aided natural gas fired combined cycle power plant  

Science Journals Connector (OSTI)

This article deals with comparative energy and exergetic analysis for evaluation of natural gas fired combined cycle power plant and solar concentrator aided (feed water heating and low pressure steam generation options) natural gas fired combined cycle power plant. Heat Transfer analysis of Linear Fresnel reflecting solar concentrator (LFRSC) is used to predict the effect of focal distance and width of reflector upon the reflecting surface area. Performance analysis of LFRSC with energetic and exergetic methods and the effect, of concentration ratio and inlet temperature of the fluid is carried out to determine, overall heat loss coefficient of the circular evacuated tube absorber at different receiver temperatures. An instantaneous increase in power generation capacity of about 10% is observed by substituting solar thermal energy for feed water heater and low pressure steam generation. It is observed that the utilization of solar energy for feed water heating and low pressure steam generation is more effective based on exergetic analysis rather than energetic analysis. Furthermore, for a solar aided feed water heating and low pressure steam generation, it is found that the land area requirement is 7 ha/MW for large scale solar thermal storage system to run the plant for 24 h.

V. Siva Reddy; S.C. Kaushik; S.K. Tyagi

2012-01-01T23:59:59.000Z

27

Study of Gas-steam Combined Cycle Power Plants Integrated with MCFC for Carbon Dioxide Capture  

Science Journals Connector (OSTI)

Abstract In the field of fossil-fuel based technologies, natural gas combined cycle (NGCC) power plants are currently the best option for electricity generation, having an efficiency close to 60%. However, they produce significant CO2 emissions, amounting to around 0.4 tonne/MWh for new installations. Among the carbon capture and sequestration (CCS) technologies, the process based on chemical absorption is a well-established technology, but markedly reduces the NGCC performances. On the other side, the integration of molten carbonate fuel cells (MCFCs) is recognized as an attractive option to overcome the main drawbacks of traditional CCS technologies. If the cathode side is fed by NGCC exhaust gases, the MCFC operates as a CO2 concentrator, beside providing an additional generating capacity. In this paper the integration of MCFC into a two pressure levels combined cycle is investigated through an energy analysis. To improve the efficiency of MCFC and its integration within the NGCC, plant configurations based on two different gas recirculation options are analyzed. The first is a traditional recirculation of exhaust gases at the compressor inlet; the second, mainly involving the MCFC stack, is based on recirculating a fraction of anode exhaust gases at the cathode inlet. Effects of MCFC operating conditions on energy and environmental performances of the integrated system are evaluated.

Roberto Carapellucci; Roberto Saia; Lorena Giordano

2014-01-01T23:59:59.000Z

28

A dynamic process model of a natural gas combined cycle -- Model development with startup and shutdown simulations  

SciTech Connect (OSTI)

Research in dynamic process simulation for integrated gasification combined cycles (IGCC) with carbon capture has been ongoing at the National Energy Technology Laboratory (NETL), culminating in a full operator training simulator (OTS) and immersive training simulator (ITS) for use in both operator training and research. A derivative work of the IGCC dynamic simulator has been a modification of the combined cycle section to more closely represent a typical natural gas fired combined cycle (NGCC). This paper describes the NGCC dynamic process model and highlights some of the simulator’s current capabilities through a particular startup and shutdown scenario.

Liese, Eric [U.S. DOE; Zitney, Stephen E. [U.S. DOE

2013-01-01T23:59:59.000Z

29

Retrofitting the Strogino district heat supply station with construction of a 260-MW combined-cycle power plant (Consisting of two PGU-130 combined-cycle power units)  

Science Journals Connector (OSTI)

The retrofitting carried out at the Strogino district heat supply station and the specific features of works accomplished in the course of constructing the thermal power station based on a combined-cycle power pl...

V. F. Aleksandrov

2010-02-01T23:59:59.000Z

30

Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2012-12-31T23:59:59.000Z

31

Combined-cycle gas and steam turbine power plants. 2. edition  

SciTech Connect (OSTI)

First published in 1991, this book is the leading reference on technical and economic factors of combined-cycle applications now leading the trend toward merchant plants and the peaking power needed in newly deregulated markets around the world, this long-awaited second edition is more important than ever. In it, Kehlhofer -- an internationally recognized authority in the field of new combined-cycle power plants -- and his co-authors widen the scope and detail found in the first edition. Included are tips on system layout, details on controls and automation, and operating instructions. Loaded with case studies, reference tables, and more than 150 figures, this text offers solid advice on system layout, controls and automation, and operating and maintenance instructions. The author provides real-world examples to apply to one`s own applications. The contents include: Introduction; The electricity market; Thermodynamic principles of combined-cycle plants; Combined-cycle concepts; Applications of combined-cycle; Components; Control and automation; Operating and part load behavior; Environmental considerations; Developmental trends; Typical combined-cycle plants already built; Conclusion; Appendices; Conversions; Calculation of the operating performance of combined-cycle installations; Definitions of terms and symbols; Bibliography; and Index.

Kehlhofer, R.; Bachmann, R.; Nielson, H.; Warner, J.

1999-01-01T23:59:59.000Z

32

Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994  

SciTech Connect (OSTI)

This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

NONE

1995-05-01T23:59:59.000Z

33

Erosion-corrosion modelling of gas turbine materials for coal-fired combined cycle power generation  

Science Journals Connector (OSTI)

The development of coal-fired combined cycle power generation systems is receiving considerable worldwide interest. The successful development and commercialisation of these new systems require that all the component parts are manufactured from appropriate materials and that these materials give predictable in-service performance. Corrosion and erosion-corrosion, resulting from coal derived particulates, deposition and gaseous species, have been identified as potential life limiting factors for these systems. Models to predict these modes of materials degradation are under active development. This paper outlines the development and testing of models suitable for use in gas turbine environments. The complexity of the corrosion processes means that an empirical approach to model development is required whereas a more mechanistic approach can be applied to erosion processes. For hot corrosion conditions, statistically based corrosion models have been produced using laboratory tests for two coatings and a base alloy at typical type I and type II hot corrosion temperatures (900 and 700°C). These models use the parameters of alkali sulphate deposition flux and \\{SOx\\} partial pressure (at each temperature and for set \\{HCl\\} partial pressures), to predict the rate of the most likely localised damage associated with hot corrosion reactions. For erosion-corrosion modelling, a series of laboratory tests have been carried out to investigate erosion behaviour in corrosive conditions appropriate to coal-fired gas turbines. Materials performance data have been obtained from samples located in the hot gas path of the Grimethorpe PFBC pilot plant, under well characterised conditions, for testing the corrosion and erosion-corrosion models. The models successfully predict the materials damage observed in the pilot plant environments.

N.J. Simms; J.E. Oakey; D.J. Stephenson; P.J. Smith; J.R. Nicholls

1995-01-01T23:59:59.000Z

34

Study on a gas-steam combined cycle system with CO2 capture by integrating molten carbonate fuel cell  

Science Journals Connector (OSTI)

Abstract This paper studies a gas-steam combined cycle system with CO2 capture by integrating the MCFC (molten carbonate fuel cell). With the Aspen plus software, this paper builds the model of the overall MCFC-GT hybrid system with CO2 capture and analyzes the effects of the key parameters on the performances of the overall system. The result shows that compared with the gas-steam combined cycle system without CO2 capture, the efficiency of the new system with CO2 capture does not decrease obviously and keeps the same efficiency with the original gas steam combined cycle system when the carbon capture percentage is 45%. When the carbon capture percentage reaches up to 85%, the efficiency of the new system is about 54.96%, only 0.67 percent points lower than that of the original gas-steam combined cycle system. The results show that the new system has an obvious superiority of thermal performance. However, its technical economic performance needs be improved with the technical development of MCFC and ITM (oxygen ion transfer membrane). Achievements from this paper will provide the useful reference for CO2 capture with lower energy consumption from the traditional power generation system.

Liqiang Duan; Jingnan Zhu; Long Yue; Yongping Yang

2014-01-01T23:59:59.000Z

35

Avestar® - Syngas-Fired Combined Cycle Dynamic Simulator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Syngas-Fired Combined Cycle Dynamic Simulator Syngas-Fired Combined Cycle Dynamic Simulator The AVESTAR® center offers courses using the Combined Cycle Simulator, focusing on the power generation process after gasification. This simulator is well-suited for concentrated training on operation and control of the gas and steam turbines; condensate, feed water, and circulating water systems; heat recovery steam generator; and selective catalytic reduction (SCR) unit. Combined cycle simulator startup operations include bringing up the gas turbine to rated speed on natural gas and then switching over to the firing of synthesis gas. Key capabilities of the Combined Cycle Simulator include: Combined Cycle Simulator Operator training station HMI display for overview of Gas Turbine - Train A Normal base load operation

36

Coordinated optimization of the parameters of the cooled gas-turbine flow path and the parameters of gas-turbine cycles and combined-cycle power plants  

Science Journals Connector (OSTI)

In the present paper, we evaluate the effectiveness of the coordinated solution to the optimization problem for the parameters of cycles in gas turbine and combined cycle power plants and to the optimization prob...

A. M. Kler; Yu. B. Zakharov; Yu. M. Potanina

2014-06-01T23:59:59.000Z

37

Carbon Dioxide Capture from Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate-Ammonium Bicarbonate Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate- Ammonium Bicarbonate Process Description Current commercial processes to remove carbon dioxide (CO 2 ) from conventional power plants are expensive and energy intensive. The objective of this project is to reduce the cost associated with the capture of CO 2 from coal based gasification processes, which convert coal and other carbon based feedstocks to synthesis gas.

38

Development of a dynamic simulator for a natural gas combined cycle (NGCC) power plant with post-combustion carbon capture  

SciTech Connect (OSTI)

The AVESTAR Center located at the U.S. Department of Energy’s National Energy Technology Laboratory and West Virginia University is a world-class research and training environment dedicated to using dynamic process simulation as a tool for advancing the safe, efficient and reliable operation of clean energy plants with CO{sub 2} capture. The AVESTAR Center was launched with a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with pre-combustion carbon capture. The IGCC dynamic simulator offers full-scope Operator Training Simulator (OTS) Human Machine Interface (HMI) graphics for realistic, real-time control room operation and is integrated with a 3D virtual Immersive Training Simulator (ITS), thus allowing joint control room and field operator training. The IGCC OTS/ITS solution combines a “gasification with CO{sub 2} capture” process simulator with a “combined cycle” power simulator into a single high-performance dynamic simulation framework. This presentation will describe progress on the development of a natural gas combined cycle (NGCC) dynamic simulator based on the syngas-fired combined cycle portion of AVESTAR’s IGCC dynamic simulator. The 574 MW gross NGCC power plant design consisting of two advanced F-class gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine in a multi-shaft 2x2x1 configuration will be reviewed. Plans for integrating a post-combustion carbon capture system will also be discussed.

Liese, E.; Zitney, S.

2012-01-01T23:59:59.000Z

39

Specific features of the schematic solutions adopted in the steam turbine units produced by the Ural Turbine Works and used as part of combined-cycle plants  

Science Journals Connector (OSTI)

Specific features of the schematic solutions adopted in the steam turbine units designed and produced by the Ural Turbine Works for use as part of combined-cycle plants are considered.

A. A. Gol’dberg; T. L. Shibaev; H. C. Paneque Aguilera…

2013-08-01T23:59:59.000Z

40

Determining the maximal capacity of a combined-cycle plant operating with afterburning of fuel in the gas conduit upstream of the heat-recovery boiler  

Science Journals Connector (OSTI)

The effect gained from afterburning of fuel in the gas conduit upstream of the heat-recovery boiler used as part of a PGU-450T combined-cycle plant is considered. The results obtained from ... electric and therma...

V. M. Borovkov; N. M. Osmanova

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Exergetic analysis and evaluation of coal-fired supercritical thermal power plant and natural gas-fired combined cycle power plant  

Science Journals Connector (OSTI)

The present work has been undertaken for energetic and exergetic analysis of coal-fired supercritical thermal power plant and natural gas-fired combined cycle power plant. Comparative analysis has been conducted ...

V. Siva Reddy; S. C. Kaushik; S. K. Tyagi

2014-03-01T23:59:59.000Z

42

Evaluation of Indirect Combined Cycle in Very High Temperature Gas--Cooled Reactor  

SciTech Connect (OSTI)

The U.S. Department of Energy and Idaho National Laboratory are developing a very high temperature reactor to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is twofold: (a) efficient, low-cost energy generation and (b) hydrogen production. Although a next-generation plant could be developed as a single-purpose facility, early designs are expected to be dual purpose, as assumed here. A dual-purpose design with a combined cycle of a Brayton top cycle and a bottom Rankine cycle was investigated. An intermediate heat transport loop for transporting heat to a hydrogen production plant was used. Helium, CO2, and a helium-nitrogen mixture were studied to determine the best working fluid in terms of the cycle efficiency. The relative component sizes were estimated for the different working fluids to provide an indication of the relative capital costs. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the cycle were performed to determine the effects of varying conditions in the cycle. This gives some insight into the sensitivity of the cycle to various operating conditions as well as trade-offs between efficiency and component size. Parametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling.

Chang Oh; Robert Barner; Cliff Davis; Steven Sherman; Paul Pickard

2006-10-01T23:59:59.000Z

43

9 - Hybrid fuel cell gas turbine (FC/GT) combined cycle systems  

Science Journals Connector (OSTI)

Abstract: Hybrid fuel cell gas turbine systems consisting of high-temperature fuel cells (HTFCs) integrated into cycles with gas turbines can significantly increase fuel-to-electricity conversion efficiency and lower emissions of greenhouse gases and criteria pollutants from the electric power sector. In addition, the separated anode and cathode compartments of the fuel cell can enable CO2 separation and sequestration for some cycle configurations. Hybrid fuel cell gas turbine technology has the potential to operate on natural gas, digester gas, landfill gas, and coal and biomass syngas. HTFC technologies are emerging with high reliability and durability, which should enable them to be integrated with gas turbine technology to produce modern hybrid power systems. Advanced thermodynamic and dynamic simulation capabilities have been developed and demonstrated to enable future system integration and control.

J. Brouwer

2012-01-01T23:59:59.000Z

44

Energy and Economic Analysis of the CO2 Capture from Flue Gas of Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Abstract Carbon capture and storage is considered as one of the key strategies for reducing the emissions of carbon dioxide from power generation facilities. Although post-combustion capture via chemical absorption is now a mature technology, the separation of CO2 from flue gases shows many issues, including the solvent degradation and the high regeneration energy requirement, that in turn reduces the power plant performances. Focusing on a triple pressure and reheat combined cycle with exhaust gas recirculation, this paper aims to evaluate the potential impacts of integrating a post-combustion capture system, based on an absorption process with monoethanolamine solvent. Energy and economic performances of the integrated system are evaluated varying the exhaust gas recirculation fraction and the CO2 capture ratio. The different configurations examined are then compared in terms of efficiency and rated capacity of the integrated system, as well as considering the cost of electricity generated and the cost of CO2 avoided.

Maura Vaccarelli; Roberto Carapellucci; Lorena Giordano

2014-01-01T23:59:59.000Z

45

Economic comparison between coal-fired and liquefied natural gas combined cycle power plants considering carbon tax: Korean case  

Science Journals Connector (OSTI)

Economic growth is main cause of environmental pollution and has been identified as a big threat to sustainable development. Considering the enormous role of electricity in the national economy, it is essential to study the effect of environmental regulations on the electricity sector. This paper aims at making an economic analysis of Korea's power plant utilities by comparing electricity generation costs from coal-fired power plants and liquefied natural gas (LNG) combined cycle power plants with environmental consideration. In this study, the levelized generation cost method (LGCM) is used for comparing economic analysis of power plant utilities. Among the many pollutants discharged during electricity generation, this study principally deals with control costs related only to CO2 and NO2, since the control costs of SO2 and total suspended particulates (TSP) are already included in the construction cost of utilities. The cost of generating electricity in a coal-fired power plant is compared with such cost in a LNG combined cycle power plant. Moreover, a sensitivity analysis with computer simulation is performed according to fuel price, interest rates and carbon tax. In each case, these results can help in deciding which utility is economically justified in the circumstances of environmental regulations.

Suk-Jae Jeong; Kyung-Sup Kim; Jin-Won Park; Dong-soon Lim; Seung-moon Lee

2008-01-01T23:59:59.000Z

46

Selective Exhaust Gas Recycle with Membranes for CO2 Capture from Natural Gas Combined Cycle Power Plants  

Science Journals Connector (OSTI)

The combination of the combustion turbine (Brayton cycle) and steam turbine (Rankine cycle) yields a combined cycle power plant with efficiencies as high as 50%–55% (compared to 35%–40% in a typical subcritical pulverized coal power plant). ... Of course, it is also possible to combine these designs so that both parallel and series membranes are used. ...

Timothy C. Merkel; Xiaotong Wei; Zhenjie He; Lloyd S. White; J. G. Wijmans; Richard W. Baker

2012-11-27T23:59:59.000Z

47

Proposing a novel combined cycle for optimal exergy recovery of liquefied natural gas  

Science Journals Connector (OSTI)

The effective utilization of the cryogenic exergy associated with liquefied natural gas (LNG) vaporization is important. In this paper, a novel combined power cycle is proposed which utilizes LNG in different ......

M. R. Salimpour; M. A. Zahedi

2012-08-01T23:59:59.000Z

48

Coal-Fuelled Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Combined cycle power plant, when used as a generic ... which converts heat into mechanical energy in a combined gas and steam turbine process. Combined cycle processes with coal gasification or coal combustion .....

Dr. Hartmut Spliethoff

2010-01-01T23:59:59.000Z

49

The Cost of Carbon Capture and Storage for Natural Gas Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Historically, natural gas has been used to provide peak-load power at a relatively high cost per kilowatt-hour during the daytime intervals when electricity demands peak and cannot be supplied wholly by baseload generators. ... (1) This share is projected to grow to 47% by 2035, with natural gas accounting for 60% of new generating capacity additions between 2010 and 2035 in the Department of Energy’s reference case scenario. ... To answer this question we use the LCOE results above to generate a probabilistic difference in cost, recognizing that some parameters should have the same value for plants with and without CCS, such as the power block capital cost, natural gas price, and the plant labor rate. ...

Edward S. Rubin; Haibo Zhai

2012-02-14T23:59:59.000Z

50

System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134  

SciTech Connect (OSTI)

The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.

Annen, K.D.

1981-08-01T23:59:59.000Z

51

La Spezia power plant: Conversion of units 1 and 2 to combined cycle with modification of steam turbines from cross compound to tandem compound  

SciTech Connect (OSTI)

Units 1 and 2 of ENEL's La Spezia power plant, rated 310 and 325 MW respectively, are going to be converted to combined cycle. This project will be accomplished by integrating components such as gas turbines and HRSGs with some of the existing components, particularly the steam turbines, which are of the cross compound type. Since the total power of each converted unit has to be kept at 335 MW because of permitting limitations, the power delivered by the steam turbine will be limited to about 115 MW. For this reason a study was carried out to verify the possibility of having only one shaft and modifying the turbine to tandem compound. As additional investments are required for this modification, a balance was performed that also took into account the incremental heat rate and, on the other hand, the benefits from decreased maintenance and increased availability and reliability calculated for the expected useful life. The result of this balance was in favor of the modification, and a decision was taken accordingly. The turbine modification will involve replacing the whole HP section with a new combined HP-IP section while retaining the corresponding LP rotor and cylinder and making the needed changes in the valve arrangements and piping. Work on the site began in the spring of 1997 by dismantling the existing boiler so as to have the space needed to install the GTs and HRSGs. The first synchronization of the converted unit 1 is scheduled for November 1999

Magneschi, P.; Gabiccini, S.; Bracaloni, N.; Fiaschi, C.

1998-07-01T23:59:59.000Z

52

The combined cycle  

Science Journals Connector (OSTI)

Any combination of at least two cyclic processes converting thermal energy (‘heat’) to work forms a combined cycle. In principle, the potential number of ... number of options reduces to a variety of cycles consi...

R. U. Pitt

1995-01-01T23:59:59.000Z

53

Generating Resources Combined Cycle Combustion Turbine  

E-Print Network [OSTI]

turbine (s) Heat recovery steam generator (s) - HRSG with or without duct firing Natural gas supply11/17/2014 1 Generating Resources Combined Cycle Combustion Turbine Utility Scale Solar PV Steven doing recently around two key supply-side resource technologies 1. Combined Cycle Combustion Turbine

54

Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system  

DOE Patents [OSTI]

In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

55

World experience with development of combined-cycle and gas turbine technologies and prospects for employing them in the thermal power engineering of Russia using the capacities of the country’s industry producing power machinery and equipment  

Science Journals Connector (OSTI)

World experience gained from using combined-cycle and gas-turbine technologies in power engineering is analyzed. The technical and production capacities of the Russian industry constructing power machinery and...

O. N. Favorskii; V. L. Polishchuk; I. M. Livshits…

2007-09-01T23:59:59.000Z

56

First results from operation of the Adler thermal power station equipped with two PGU-180 combined-cycle power units  

Science Journals Connector (OSTI)

We present technical characteristics of the equipment used in the PGU-180 power units of the Adler thermal power station (a branch of OGK-2) commissioned in November 2012 after the entire power plant had succe...

Yu. A. Radin; S. N. Lenev; O. N. Nikandrov; D. V. Rudenko

2013-09-01T23:59:59.000Z

57

Parametric study for the penetration of combined cycle technologies into Cyprus power system  

Science Journals Connector (OSTI)

In this work, a parametric study concerning the use of combined cycle technologies for power generation, by independent power producers in Cyprus, is carried out. The cost–benefit analysis is carried out using the Independent Power Producers optimization algorithm in which the electricity unit cost is calculated. Various conventional generation options are examined, such as, steam turbines and open cycle gas turbines, and compared with a parametric study (variations in fuel type, capital cost and efficiency) for combined cycle technologies. The results indicate that the future use of combined cycle technology with natural gas as fuel is recommended. Furthermore, it is estimated that by the use of natural gas combined cycle, the CO2 emissions environmental indicator of Cyprus power industry would be significantly reduced.

Andreas Poullikkas

2004-01-01T23:59:59.000Z

58

Carbon dioxide recovery from an integrated coal gasifier, combined cycle plant using membrane separation and a CO2 gas turbine  

Science Journals Connector (OSTI)

A scheme is described for electricity production based on coal gasification with recovery of carbon dioxide. In this scheme, coal is gasified into a coal gas, consisting mainly of hydrogen and carbon monoxide. A ...

Chris Hendriks

1994-01-01T23:59:59.000Z

59

Combined cycle power plant incorporating coal gasification  

DOE Patents [OSTI]

A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

Liljedahl, Gregory N. (Tariffville, CT); Moffat, Bruce K. (Simsbury, CT)

1981-01-01T23:59:59.000Z

60

Integrated Gasification Combined Cycle Based on Pressurized Fluidized Bed Gasification  

Science Journals Connector (OSTI)

Enviropower Inc. has developed a modern power plant concept based on an integrated pressurized fluidized bed gasification and gas turbine combined cycle (IGCC)....

Kari Salo; J. G. Patel

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Off-design Simulations of Offshore Combined Cycles.  

E-Print Network [OSTI]

?? This thesis presents an off-design simulation of offshore combined cycles. Offshore installations have a substantial power demand to facilitate the oil and gas production.… (more)

Flatebø, Øystein

2012-01-01T23:59:59.000Z

62

Kalina combined cycle performance and operability  

SciTech Connect (OSTI)

Gas turbine combined cycles using Rankine bottoming cycles have gained broad market acceptance. The favorable plant economics derive from their high efficiency, short construction cycles and excellent environmental performance. The responsive operating characteristics of combined cycles is another key advantage for customers. Duty cycles cover the spectrum from daily start stop (DSS) to base load. Performance and economics of combined cycles have progressed with advances in gas turbine technology as well as the introduction of increasingly efficient multi-pressure Rankine bottoming cycles. Further advances in gas turbine technology and Rankine bottoming cycle performance are becoming incrementally more difficult and costly to achieve. The availability of the Kalina cycle presents a clear path toward improved combined-cycle system performance and reduced cost of electricity. This paper presents detailed performance and operating characteristics of a STAG 207FA combined cycle employing the Kalina bottoming cycle. These characteristics are compared to a conventional three-pressure reheat Rankine bottoming cycle. The Kalina cycle is shown to have performance and operability advantages throughout the range of site conditions and operating regimes, such as base load, load following, DSS duty, wet and dry cooling tower applications and unattended operation. These advantages derive from a single-pressure once-through heat recovery system, above atmospheric working fluid pressure throughout the system, above atmospheric working fluid pressure throughout the system, very high thermal efficiency ({approximately}2.0 to 2.5 percentage points better than the best Rankine), and compatibility with sub-freezing ambient conditions.

Smith, R.W.; Ranasinghe, J.; Stats, D.; Dykas, S.

1996-12-31T23:59:59.000Z

63

Biomass Gasification Combined Cycle  

SciTech Connect (OSTI)

Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

Judith A. Kieffer

2000-07-01T23:59:59.000Z

64

Efficiency combined cycle power plant  

SciTech Connect (OSTI)

This patent describes a method of operating a combined cycle power plant. It comprises: flowing exhaust gas from a combustion turbine through a heat recovery steam generator (HRSG); flowing feed water through an economizer section of the HRSG at a flow rate and providing heated feed water; flowing a first portion of the heated feed water through an evaporator section of the HRSG and producing saturated steam at a production rate, the flow rate of the feed water through the economizer section being greater than required to sustain the production rate of steam in the evaporator section; flowing fuel for the turbine through a heat exchanger; and, flowing a second portion of the heated feed water provided by the economizer section through the heat exchanger then to an inlet of the economizer section, thereby heating the fuel flowing through the heat exchanger.

Pavel, J.; Meyers, G.A.; Baldwin, T.S.

1990-06-12T23:59:59.000Z

65

Advanced Feed Water and Cooling Water Treatment at Combined Cycle Power Plant  

Science Journals Connector (OSTI)

Tokyo Gas Yokosuka Power Station is an IPP combined cycle power plant supplied by Fuji Electric Systems...

Ryo Takeishi; Kunihiko Hamada; Ichiro Myogan…

2007-01-01T23:59:59.000Z

66

SOFC combined cycle systems for distributed generation  

SciTech Connect (OSTI)

The final phase of the tubular SOFC development program will focus on the development and demonstration of pressurized solid oxide fuel cell (PSOFC)/gas turbine (GT) combined cycle power systems for distributed power applications. The commercial PSOFC/GT product line will cover the power range 200 kWe to 50 MWe, and the electrical efficiency for these systems will range from 60 to 75% (net AC/LHV CH4), the highest of any known fossil fueled power generation technology. The first demonstration of a pressurized solid oxide fuel cell/gas turbine combined cycle will be a proof-of-concept 250 kWe PSOFC/MTG power system consisting of a single 200 kWe PSOFC module and a 50 kWe microturbine generator (MTG). The second demonstration of this combined cycle will be 1.3 MWe fully packaged, commercial prototype PSOFC/GT power system consisting of two 500 kWe PSOFC modules and a 300 kWe gas turbine.

Brown, R.A.

1997-05-01T23:59:59.000Z

67

Integration of coal utilization and environmental control in integrated gasification combined cycle systems  

Science Journals Connector (OSTI)

Integration of coal utilization and environmental control in integrated gasification combined cycle systems ... The Cost of Carbon Capture and Storage for Natural Gas Combined Cycle Power Plants ... The Cost of Carbon Capture and Storage for Natural Gas Combined Cycle Power Plants ...

H. Christopher Frey; Edward S. Rubin

1992-10-01T23:59:59.000Z

68

Avestar® - Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator The AVESTAR® center offers courses using the Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator. The IGCC simulator builds on and reaches beyond existing combined-cycle and conventional-coal power plant simulators to combine--for the first time--a Gasification with CO2 Capture process simulator with a Combined-Cycle power simulator together in a single dynamic simulation framework. The AVESTAR® center IGCC courses provide unique, comprehensive training on all aspects of an IGCC plant, illustrating the high-efficiency aspects of the gasifier, gas turbine, and steam turbine integration. IGCC Operator training station HMI display for overview of IGCC Plant - Train A Reference:

69

Studies of the thermal circuit of an advanced integrated gasification combined-cycle power plant  

Science Journals Connector (OSTI)

The results obtained from a study of the thermal circuit of a combined-cycle plant with coal gasification are presented, and ... of producer gas and calculated values of the combined-cycle power plant efficiency ...

D. G. Grigoruk; A. V. Turkin

2010-02-01T23:59:59.000Z

70

The United States of America and the People`s Republic of China experts report on integrated gasification combined-cycle technology (IGCC)  

SciTech Connect (OSTI)

A report written by the leading US and Chinese experts in Integrated Gasification Combined Cycle (IGCC) power plants, intended for high level decision makers, may greatly accelerate the development of an IGCC demonstration project in the People`s Republic of China (PRC). The potential market for IGCC systems in China and the competitiveness of IGCC technology with other clean coal options for China have been analyzed in the report. Such information will be useful not only to the Chinese government but also to US vendors and companies. The goal of this report is to analyze the energy supply structure of China, China`s energy and environmental protection demand, and the potential market in China in order to make a justified and reasonable assessment on feasibility of the transfer of US Clean Coal Technologies to China. The Expert Report was developed and written by the joint US/PRC IGCC experts and will be presented to the State Planning Commission (SPC) by the President of the CAS to ensure consideration of the importance of IGCC for future PRC power production.

NONE

1996-12-01T23:59:59.000Z

71

Solid-Fueled Pressurized Chemical Looping with Flue-Gas Turbine Combined Cycle for Improved Plant Efficiency and CO{sub 2} Capture  

SciTech Connect (OSTI)

The purpose of this document is to report the final result of techno-economic analysis for the proposed 550MWe integrated pressurized chemical looping combustion combined cycle process. An Aspen Plus based model is delivered in this report along with the results from three sensitivity scenarios including the operating pressure, excess air ratio and oxygen carrier performance. A process flow diagram and detailed stream table for the base case are also provided with the overall plant energy balance, carbon balance, sulfur balance and water balance. The approach to the process and key component simulation are explained. The economic analysis (OPEX and CAPX) on four study cases via DOE NETL Reference Case 12 are presented and explained.

Liu, Kunlei; Chen, Liangyong; Zhang, Yi; Richburg, Lisa; Simpson, James; White, Jay; Rossi, Gianalfredo

2013-12-31T23:59:59.000Z

72

Viable combined cycle design for automotive applications  

Science Journals Connector (OSTI)

A relatively new approach for improving fuel economy and automotive engine performance involves the use of automotive combined cycle generation technologies. The combined cycle generation, a process widely used i...

K. -B. Kim; K. -W. Choi; K. -H. Lee

2012-04-01T23:59:59.000Z

73

Performance improvement of combined cycle power plant based on the optimization of the bottom cycle and heat recuperation  

Science Journals Connector (OSTI)

Many F class gas turbine combined cycle (GTCC) power plants are built in ... the efficiency improvement of GTCC plant. A combined cycle with three-pressure reheat heat recovery steam ... HRSG inlet gas temperatur...

Wenguo Xiang; Yingying Chen

2007-03-01T23:59:59.000Z

74

The efficiency of technical retrofitting of cogeneration stations using combined-cycle plants  

Science Journals Connector (OSTI)

We consider the problem of technical retrofitting of gas-and-oil fired steam-turbine cogeneration stations by converting them into combined-cycle plants...

L. S. Popyrin; M. D. Dil’man; G. M. Belyaeva

2006-02-01T23:59:59.000Z

75

Changing Prospects for Natural Gas in the United States  

Science Journals Connector (OSTI)

...34). Diesel engine technology is...natural gas in reciprocating engines: (i) production...prob-lems when new models were first introduced...the capital cost of a combined-cycle...all based on reciprocating engine and gas turbine...

W. M. BURNET; T S. D. BAN

1989-04-21T23:59:59.000Z

76

Off-Design Performance of Power Plants: An Integrated Gasification Combined-Cycle Example  

Science Journals Connector (OSTI)

...that of a normal natural gas-fired combined-cycle...for operation in the natural gas-fired combined-cycle...inlet flow around the high-pressure section of the turbine...when converting from natural gas firing to IGCC opera-tion...

M. R. ERBES; J. N. PHILLIPS; M. S. JOHNSON; J. PAFFENBARGER; M. GLUCKMAN; R. H. EUSTIS

1987-07-24T23:59:59.000Z

77

"Integrated Gasification Combined Cycle"  

U.S. Energy Information Administration (EIA) Indexed Site

Status of technologies and components modeled by EIA" Status of technologies and components modeled by EIA" ,"Revolutionary","Evolutionary","Mature" "Pulverized Coal",,,"X" "Pulverized Coal with CCS" " - Non-CCS portion of Pulverized Coal Plant",,,"X" " - CCS","X" "Integrated Gasification Combined Cycle" " - Advanced Combustion Turbine",,"X" " - Heat Recovery Steam Generator",,,"X" " - Gasifier",,"X" " - Balance of Plant",,,"X" "Conventional Natural Gas Combined Cycle" " - Conventional Combustion Turbine",,,"X" " - Heat Recovery Steam Generator",,,"X" " - Balance of Plant",,,"X"

78

Investigation of Gasification Chemical Looping Combustion Combined Cycle Performance  

Science Journals Connector (OSTI)

Combining CLC with a gas turbine combined cycle offers a novel power generation technique with high efficiency and CO2 separation. ... Here, we have developed looping materials based on the integration of NiO, as solid reactants, with a composite metal oxide of NiAl2O4, as a binder, leading to a significant role in improving reaction rate, conversion, and regenerability in cyclic reaction in this combustor, compared with the other materials. ... Chemical looping combustion for combined cycles with CO2 capture. ...

Wenguo Xiang; Sha Wang; Tengteng Di

2008-02-19T23:59:59.000Z

79

Combined Cycles and Cogeneration - An Alternative for the Process Industries  

E-Print Network [OSTI]

SYSTEM Gasification Numerous programs are underway for gasification of solid fuels and heavy oils and it is among these systems that many feel medium Btu gas will be pro duced for use in combined cycle systems. Many of the problems now facing... the gasification approach are economic in nature caused by the compe titive costs of gas and oil. In addition, in areas lacking a coal infrastructure, extraordinary costs still exist in the early years. FIG. 13 INTEGRATED INTERMEDIATE Btu GASIFICATION CYCLE...

Harkins, H. L.

1981-01-01T23:59:59.000Z

80

Hybrid solar central receiver for combined cycle power plant  

DOE Patents [OSTI]

A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

Bharathan, Desikan (Lakewood, CO); Bohn, Mark S. (Golden, CO); Williams, Thomas A. (Arvada, CO)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Discussion of the Key Problems on Designing 350 MW-Class Combined Cycle Power Plant  

Science Journals Connector (OSTI)

With adjustment of energy structure and enhancement of environmental protection standard, gas-steam combined cycle power plants will be erupt gradually, especially...gas being moved from WEST to EAST and liquefie...

Tai Lu; Sike Hu; Wenrui Wu

2007-01-01T23:59:59.000Z

82

Changing Prospects for Natural Gas in the United States  

Science Journals Connector (OSTI)

...doubling ofoil life to 4000 hours...application of gas-fired combined-cycle...gas-fueled combustion turbine combined with...generation from the gas turbine part ofa facility...38, 39) and life cycle cost advantages...Steam-injected gas turbines represent a...

W. M. BURNET; T S. D. BAN

1989-04-21T23:59:59.000Z

83

Thermodynamics of combined-cycle electric power plants  

Science Journals Connector (OSTI)

Published data imply an average thermal efficiency of about 0.34 for U.S. electricity generating plants. With clever use of thermodynamics and technology modern gas and steam turbines can be coupled to effect dramatic efficiency increases. These combined-cycle power plants now reach thermal efficiencies in excess of 0.60. It is shown how the laws of thermodynamics make this possible.

Harvey S. Leff

2012-01-01T23:59:59.000Z

84

Exergoeconomic analysis of a biomass post-firing combined-cycle power plant  

Science Journals Connector (OSTI)

Abstract Biomass can be converted thermo- and bio-chemically to solid, liquid and gaseous biofuels. In this paper, energy, exergy and exergoeconomic analyses are applied to a biomass integrated post-firing combined-cycle power plant. The energy and exergy efficiencies of the cycle are found to be maximized at specific compressor pressure ratio values, and that higher pressure ratios reduce the total unit product cost. Increasing the gas turbine inlet temperature and decreasing the compressor pressure ratio decreases the CO2 mole fraction exiting the power plant. The exergoeconomic factor for the biomass integrated post-firing combined-cycle power plant at the optimum energy/exergy efficiency is 0.39. This implies that the major cost rate of this power plant configuration is attributable to the exergy destruction cost rate. Increasing the compressor pressure ratio decreases the mass of air per mass of steam in the power plant, implying a reduction in the gas turbine plant size. Increasing both the compressor pressure ratio and the heat recovery steam generator inlet gas temperature increases the capital investment cost compared with the exergy destruction cost. However, increasing the gas turbine inlet temperature decreases this ratio.

Hassan Athari; Saeed Soltani; Seyed Mohammad Seyed Mahmoudi; Marc A. Rosen; Tatiana Morosuk

2014-01-01T23:59:59.000Z

85

Improved System Integration for Integrated Gasification Combined Cycle (IGCC) Systems  

Science Journals Connector (OSTI)

Improved System Integration for Integrated Gasification Combined Cycle (IGCC) Systems ... The model is applied to evaluate integration schemes involving nitrogen injection, air extraction, and combinations of both, as well as different ASU pressure levels. ... The optimal nitrogen injection only case in combination with an elevated pressure ASU had the highest efficiency and power output and approximately the lowest emissions per unit output of all cases considered, and thus is a recommended design option. ...

H. Christopher Frey; Yunhua Zhu

2006-02-02T23:59:59.000Z

86

The Potential for Avoided Emissions from Photovoltaic Electricity in the United States  

E-Print Network [OSTI]

plants (coal plants and combined cycle natural gas). Theseramp rates for most combined-cycle natural gas plants rangedrates for coal and combined cycle natural gas power plants.

Zhai, Pei

2014-01-01T23:59:59.000Z

87

Investigation of coal fired combined-cycle cogeneration plants for power, heat, syngas, and hydrogen  

Science Journals Connector (OSTI)

The methodology for determination of technical and economic efficiency of coal fired combined-cycle cogeneration plant (CCCP) with low-pressure ... steam-gas generator and continuous flow gasifier at combined pro...

V. E. Nakoryakov; G. V. Nozdrenko; A. G. Kuzmin

2009-12-01T23:59:59.000Z

88

Combined Cycle (CC) and Combined Heat and Power (CHP) Systems: An Introduction  

Science Journals Connector (OSTI)

Combined Cycle (CC)...is a power plant system in which two types of turbines, namely a gas turbine and a steam turbine, are used to generate electricity. Moreover the turbines are combined in one cycle

Andrzej W. Ordys MScEE; PhD; A. W. Pike…

1994-01-01T23:59:59.000Z

89

Mathematical Modeling and Computer Simulation of a Combined Cycle Power Plant  

Science Journals Connector (OSTI)

This paper presents the simulation procedure developed to predict the performance of a combined cycle power plant from given performance characteristics of ... . Effects of gas turbine and steam turbine cycle par...

Nikhil Dev; Samsher; S. S. Kachhwaha; Mohit

2012-01-01T23:59:59.000Z

90

Technical and economic comparison of steam-injected versus combined- cycle retrofits on FT-4 engines  

SciTech Connect (OSTI)

The study discusses the findings of a conceptual site-specific investigation of the technical and economic aspects of converting the TPM FT4 simple cycle combustion turbines into either the steam injected gas turbine (SIGT) cycle or the combined cycle (CC). It describes the selection of the best retrofit alternatives through the evaluation and data analysis of a large number of sites and units at two utilities. Conceptual designs are performed on the best retrofit alternatives. Flow diagrams and general arrangement drawings are developed for various configurations utilizing drum type and once-through type multipressure heat recovery steam generators. Auxiliary power consumption and capital cost estimates are presented together with an economic evaluation and comparison of the retrofit alternatives. While the investigation is performed utilizing the FT4 combustion turbines, the steps presented in the report may be used as a guide for investigating the conversion of other gas turbines to either cycle at any utility site.

Silaghy, F.J. (Burns and Roe, Inc., Oradell, NJ (United States))

1992-01-01T23:59:59.000Z

91

Wind Power Development in the United States: Current Progress, Future Trends  

E-Print Network [OSTI]

Cost of Natural Gas Combined Cycle Wholesale Price Range foroffsets both coal and combined-cycle natural gas usage, but

Wiser, Ryan H

2009-01-01T23:59:59.000Z

92

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

natural-gas- fired combined cycle generation, and the othernatural-gas-fired combined cycle plants. This assumptionplants were efficient combined cycle plants. The four

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

93

Mastering the pilot domestic binary combined-cycle plants  

Science Journals Connector (OSTI)

Results are presented from mastering the pilot binary combined-cycle plants of Type PGU-450T (installed at...

Yu. A. Radin

2006-07-01T23:59:59.000Z

94

Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network [OSTI]

typical of an advanced combined cycle gas turbine), the $comparison between a combined cycle gas turbine and a fixed-

Bolinger, Mark

2008-01-01T23:59:59.000Z

95

Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network [OSTI]

typical of an advanced combined cycle gas turbine), the $comparison between a combined cycle gas turbine and a fixed-

Bolinger, Mark; Wiser, Ryan

2006-01-01T23:59:59.000Z

96

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network [OSTI]

comparison between a combined cycle gas turbine and a fixed-typical of an advanced combined cycle gas turbine), the $

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

97

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

E-Print Network [OSTI]

k. Integrated gasification combined cycle (IGCC) coal l. PCIntegrated Gasification Combined Cycle (IGCC) Power Plant,Analysis: Natural Gas Combined Cycle (NGCC) Power Plant,

Greenblatt, Jeffery B.

2014-01-01T23:59:59.000Z

98

Life Cycle Analysis: Integrated Gasification Combined Cycle (IGCC) Power Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life Cycle Analysis: Integrated Life Cycle Analysis: Integrated Gasification Combined Cycle (IGCC) Power Plant Revision 2, March 2012 DOE/NETL-2012/1551 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

99

Investigation of gasification chemical looping combustion combined cycle performance  

SciTech Connect (OSTI)

A novel combined cycle based on coal gasification and chemical looping combustion (CLC) offers a possibility of both high net power efficiency and separation of the greenhouse gas CO{sub 2}. The technique involves the use of a metal oxide as an oxygen carrier, which transfers oxygen from the combustion air to the fuel, and the avoidance of direct contact between fuel and combustion air. The fuel gas is oxidized by an oxygen carrier, an oxygen-containing compound, in the fuel reactor. The oxygen carrier in this study is NiO. The reduced oxygen carrier, Ni, in the fuel reactor is regenerated by the air in the air reactor. In this way, fuel and air are never mixed, and the fuel oxidation products CO{sub 2} and water vapor leave the system undiluted by air. All that is needed to get an almost pure CO{sub 2} product is to condense the water vapor and to remove the liquid water. When the technique is combined with gas turbine and heat recovery steam generation technology, a new type of combined cycle is formed which gives a possibility of obtaining high net power efficiency and CO{sub 2} separation. The performance of the combined cycle is simulated using the ASPEN software tool in this paper. The influence of the water/coal ratio on the gasification and the influence of the CLC process parameters such as the air reactor temperature, the turbine inlet supplementary firing, and the pressure ratio of the compressor on the system performance are discussed. Results show that, assuming an air reactor temperature of 1200{sup o}C, a gasification temperature of 1100 {sup o}C, and a turbine inlet temperature after supplementary firing of 1350{sup o}C, the system has the potential to achieve a thermal efficiency of 44.4% (low heating value), and the CO{sub 2} emission is 70.1 g/(kW h), 90.1% of the CO{sub 2} captured. 22 refs., 7 figs., 6 tabs.

Wenguo Xiang; Sha Wang; Tengteng Di [Southeast University, Nanjing (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of the Ministry of Education

2008-03-15T23:59:59.000Z

100

Fossil fuel combined cycle power generation method  

DOE Patents [OSTI]

A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

2008-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A Flashing Binary Combined Cycle For Geothermal Power Generation | Open  

Open Energy Info (EERE)

Flashing Binary Combined Cycle For Geothermal Power Generation Flashing Binary Combined Cycle For Geothermal Power Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Flashing Binary Combined Cycle For Geothermal Power Generation Details Activities (0) Areas (0) Regions (0) Abstract: The performance of a flashing binary combined cycle for geothermal power generation is analysed. It is proposed to utilize hot residual brine from the separator in flashing-type plants to run a binary cycle, thereby producing incremental power. Parametric variations were carried out to determine the optimum performance of the combined cycle. Comparative evaluation with the simple flashing plant was made to assess its thermodynamic potential and economic viability. Results of the analyses indicate that the combined cycle can generate 13-28% more power than the

102

Insights for Quantitative Risk Assessment of Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Traditional techniques of risk analysis have been fitted for the application to combined cycle power plants and the results of several...

Gabriele Ballocco; Andrea Carpignano…

2004-01-01T23:59:59.000Z

103

Optimizing the start-up operations of combined cycle power plants using soft computing methods  

Science Journals Connector (OSTI)

......megawatts. Industrial turbines produce high-quality...recovered to improve the efficiency of power generation...steam and drive a steam turbine in a combined-cycle...either gas or steam turbine alone because it performs...generation by their high efficiency and possibility to operate......

Ilaria Bertini; Matteo De Felice; Alessandro Pannicelli; Stefano Pizzuti

2012-08-01T23:59:59.000Z

104

Investigation of combined-cycle steam-plant problems. Final report  

SciTech Connect (OSTI)

The operation and maintenance of gas turbine combined-cycle steam generators is reviewed. Feedwater cycles and auxiliary equipment are also discussed, and the results of on-site discussions with operating and maintenance personnel are presented. Actual problems encountered are delineated, and recommendations are given for improving operation of existing plants, for design of new plants, and for future research and development.

Crutchfield, H.C.

1982-07-01T23:59:59.000Z

105

The United States has significant natural gas  

Broader source: Energy.gov (indexed) [DOE]

United States has significant natural gas United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to locate and bring into production. To help meet this challenge, the U.S. Department of Energy's Office of Fossil Energy over the years has amassed wide ranging expertise in areas related to deepwater resource location, production, safety and environmental protection. The goal of these activities has been to not only help overcome

106

Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050  

E-Print Network [OSTI]

Electricity (Natural Gas Combined Cycle) Electricity (Coal,efficiency enabled by combined cycle systems at stationarybut also using combined cycle and fuel cell-based power

Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

2008-01-01T23:59:59.000Z

107

Unit Cost Natural Gas | OpenEI  

Open Energy Info (EERE)

2 2 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281532 Varnish cache server Unit Cost Natural Gas Dataset Summary Description Provides annual energy usage for years 1989 through 2010 for UT at Austin; specifically, electricity usage (kWh), natural gas usage (Mcf), associated costs. Also provides water consumption for 2005 through 2010. Source University of Texas (UT) at Austin, Utilities & Energy Management Date Released Unknown Date Updated Unknown Keywords Electricity Consumption Natural Gas Texas Unit Cost Electricity Unit Cost Natural Gas University Water Data application/vnd.ms-excel icon Energy and Water Use Data for UT-Austin (xls, 32.8 KiB) Quality Metrics

108

FUEL CELL/MICRO-TURBINE COMBINED CYCLE  

SciTech Connect (OSTI)

A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

1999-12-01T23:59:59.000Z

109

California's Greenhouse Gas Policies: Local Solutions to a Global Problem?  

E-Print Network [OSTI]

greater than a current combined-cycle natural gas plant. Inemissions level based on a Combined Cycle Gas Turbine (CCGT)profiles worse than the combined cycle gas plants upon which

Bushnell, Jim B; Peterman, Carla Joy; Wolfram, Catherine D

2007-01-01T23:59:59.000Z

110

Modeling and Performance Prediction of a Solar Powered Rankin Cycle/Gas Turbine Cycle  

Science Journals Connector (OSTI)

The present study is dealing with the development and implementation of an integrated solar combined cycle power plant in which heat ... its energy from the waste heat of a gas turbine unit in additional to solar

Mohammed A. Elhaj; Kassim K. Matrawy…

2007-01-01T23:59:59.000Z

111

The development of Coke Carried-Heat Gasification Coal-Fired Combined Cycle  

Science Journals Connector (OSTI)

Carried-Heat Partial Gasification Combined cycle is a novel combined cycle which was proposed by Thermal Engineering Department ... technology, Coke Carried-Heat Gasification Coal-Fired Combined Cycle, as the imp...

Li Zhao; Xiangdong Xu

1999-12-01T23:59:59.000Z

112

Gasification combined cycle: Carbon dioxide recovery, transport, and disposal  

SciTech Connect (OSTI)

The objective of the project is to develop engineering evaluations of technologies for the capture, use, and disposal of carbon dioxide (CO{sub 2}). This project emphasizes CO{sub 2}-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems. Complementary evaluations address CO{sub 2} transportation, CO{sub 2} use, and options for the long-term sequestering of unused CO{sub 2}. Commercially available CO{sub 2}-capture technology is providing a performance and economic baseline against which to compare innovative technologies. The intent is to provide the CO{sub 2} budget, or an {open_quotes}equivalent CO{sub 2}{close_quotes} budget, associated with each of the individual energy-cycle steps, in addition to process design capital and operating costs. The value used for the {open_quotes}equivalent CO{sub 2}{close_quotes} budget is 1 kg of CO{sub 2} per kilowatt-hour (electric). The base case is a 458-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal feed, and in-bed sulfur removal. Mining, feed preparation, and conversion result in a net electric power production of 454 MW, with a CO{sub 2} release rate of 0.835 kg/kWhe. Two additional life-cycle energy balances for emerging technologies were considered: (1) high-temperature CO{sub 2} separation with calcium- or magnesium-based sorbents, and (2) ambient-temperature facilitated-transport polymer membranes for acid-gas removal.

Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.R.; Berry, G.F.; Livengood, C.D.

1994-09-01T23:59:59.000Z

113

Power Gas and Combined Cycles: Clean Power from Fossil Fuels  

Science Journals Connector (OSTI)

...in the 1930's. It is a "gravitating bed" gasifier, manufactured by Lurgi Gesellshaft fiir Mineraloltechnik...Godel is planning to test a new design for a gasifier in early 1973. A coal gasifier called the Ignifluid boiler was devel-oped...

William D. Metz

1973-01-05T23:59:59.000Z

114

Power Gas and Combined Cycles: Clean Power from Fossil Fuels  

Science Journals Connector (OSTI)

...from Mining Although coal is so plentiful the...of miners. Deep mining is one of the most...techniques for deep mining are very inefficient...European methods. Deep mining causes subsidence...apparent throughout Appalachia, and severe pollution...can be. Demand for coal from western states...

William D. Metz

1973-01-05T23:59:59.000Z

115

Price Liquefied Freeport, TX Natural Gas Exports Price to United...  

U.S. Energy Information Administration (EIA) Indexed Site

United Kingdom (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to United Kingdom (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1...

116

Optimization of Fog Inlet Air Cooling System for Combined Cycle Power Plants using Genetic Algorithm  

Science Journals Connector (OSTI)

Abstract In this research paper, a comprehensive thermodynamic modeling of a combined cycle power plant is first conducted and the effects of gas turbine inlet fogging system on the first and second law efficiencies and net power outputs of combined cycle power plants are investigated. The combined cycle power plant (CCPP) considered for this study consist of a double pressure heat recovery steam generator (HRSG) to utilize the energy of exhaust leaving the gas turbine and produce superheated steam to generate electricity in the Rankine cycle. In order to enhance understanding of this research and come up with optimum performance assessment of the plant, a complete optimization is using a genetic algorithm conducted. In order to achieve this goal, a new objective function is defined for the system optimization including social cost of air pollution for the power generation systems. The objective function is based on the first law efficiency, energy cost and the external social cost of air pollution for an operational system. It is concluded that using inlet air cooling system for the CCPP system and its optimization results in an increase in the average output power, first and second law efficiencies by 17.24%, 3.6% and 3.5%, respectively, for three warm months of year.

Mehdi A. Ehyaei; Mojtaba Tahani; Pouria Ahmadi; M. Esfandiari

2014-01-01T23:59:59.000Z

117

EIS-0409: Kemper County Integrated Gasification Combined Cycle Project, Mississippi  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to provide funding for the Kemper County Integrated Gasification Combined Cycle Project in Kemper County, Mississippi to assess the potential environmental impacts associated with the construction and operation of a project proposed by Southern Power Company, through its affiliate Mississippi Power Company, which has been selected by DOE for consideration under the Clean Coal Power Initiative (CCPI) program.

118

Utility-Scale Solar 2012: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States  

E-Print Network [OSTI]

steam to a co-located combined cycle gas plant (i.e. , thethe heat rate of the combined cycle gas plant. 4. Capacitysteam to a co-located combined cycle gas plant, with the

Bolinger, Mark

2014-01-01T23:59:59.000Z

119

Efficiency United (Gas) - Commercial Efficiency Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Efficiency United (Gas) - Commercial Efficiency Program Efficiency United (Gas) - Commercial Efficiency Program Efficiency United (Gas) - Commercial Efficiency Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Other Construction Manufacturing Water Heating Maximum Rebate See Page Four of Utility Application: $100-$50,000/customer/year depending on utility and remaining funding Custom:40% of project cost Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Trap Repair or Replacement: $50/unit Boilers: $1-$1.50/MBH Furnace Replacement: $1.50/MBH or $150/unit Boiler Modulation Burner Control Retrofit: $1000/unit Boiler Water Reset Control: $300/unit

120

Life cycle assessment of a biomass gasification combined-cycle power system  

SciTech Connect (OSTI)

The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

Mann, M.K.; Spath, P.L.

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Life Cycle Greenhouse Gas Analysis of Natural Gas Extraction & Delivery in the United Statesy  

E-Print Network [OSTI]

delivery to large end-users? 6. How does natural gas power generation compare to coal-fired powerLife Cycle Greenhouse Gas Analysis of Natural Gas Extraction & Delivery in the United Statesy of natural gas in the United States? 3. Who uses natural gas in the U.S.? 4 Wh d t l f ?4. Where does natural

Boyer, Elizabeth W.

122

Tsiklauri-Durst combined cycle (T-D Cycle{trademark}) application for nuclear and fossil-fueled power generating plants  

SciTech Connect (OSTI)

The Tsiklauri-Durst combined cycle is a combination of the best attributes of both nuclear power and combined cycle gas power plants. A technology patented in 1994 by Battelle Memorial Institute offers a synergistic approach to power generation. A typical combined cycle is defined as the combination of gas turbine Brayton Cycle, topping steam turbine Rankine Cycle. Exhaust from the gas turbine is used in heat recovery steam generators to produce steam for a steam turbine. In a standard combined cycle gas turbine-steam turbine application, the gas turbine generates about 65 to 70 percent of system power. The thermal efficiency for such an installation is typically about 45 to 50 percent. A T-D combined cycle takes a new, creative approach to combined cycle design by directly mixing high enthalpy steam from the heat recovery steam generator, involving the steam generator at more than one pressure. Direct mixing of superheated and saturated steam eliminates the requirement for a large heat exchanger, making plant modification simple and economical.

Tsiklauri, B.; Korolev, V.N.; Durst, B.M.; Shen, P.K.

1998-07-01T23:59:59.000Z

123

Experimental and numerical study of gas dynamics of exhaust pipe of gas turbine unit  

Science Journals Connector (OSTI)

A few geometrical configurations of exhaust pipe of marine gas turbine unit were investigated experimentally in NPP “Mashproeykt...

Valery Solodov; Juriy Starodubtsev; Boris Isakov…

2004-02-01T23:59:59.000Z

124

Application of the integrated gasification combined cycle technology and BGL gasification design for power generation  

SciTech Connect (OSTI)

Integrated gasification combined cycle (IGCC) technology promises to be the power generation technology of choice in the late 1990s and beyond. Based on the principle that almost any fuel can be burned more cleanly and efficiently if first turned into a gas, an IGCC plant extracts more electricity from a ton of coal by burning it as a gas in a turbine rather than as a solid in a boiler. Accordingly, coal gasification is the process of converting coal to a clean-burning synthetic gas. IGCC technology is the integration of the coal-gasification plant with a conventional combined-cycle plant to produce electricity. The benefits of this technology merger are many and result in a highly efficient and environmentally superior energy production facility. The lGCC technology holds significant implications for Asia-Pacific countries and for other parts of the world. High-growth regions require additional baseload capacity. Current low prices for natural gas and minimal emissions that result from its use for power generation favor its selection as the fuel source for new power generation capacity. However, fluctuations in fuel price and fuel availability are undermining the industry`s confidence in planning future capacity based upon gas-fueled generation. With the world`s vast coal reserves, there is a continuing effort to provide coal-fueled power generation technologies that use coal cleanly and efficiently. The lGCC technology accomplishes this objective. This chapter provides a summary of the status of lGCC technology and lGCC projects known to date. It also will present a technical overview of the British Gas/Lurgi (BGL) technology, one of the leading and most promising coal gasifier designs.

Edmonds, R.F. Jr.; Hulkowich, G.J.

1993-12-31T23:59:59.000Z

125

Steam turbines of the Ural Turbine Works for combined-cycle plants  

Science Journals Connector (OSTI)

Matters concerned with selecting the equipment for combined-cycle plants within the framework of work on ... Works regarding the supplies of steam turbines for combined-cycle plants used at retrofitted and newly ...

G. D. Barinberg; A. E. Valamin; A. Yu. Kultyshev; T. Yu. Linder

2009-09-01T23:59:59.000Z

126

Off-design performance of integrated waste-to-energy, combined cycle plants  

Science Journals Connector (OSTI)

This paper focuses on the off-design operation of plants where a waste-to-energy (WTE) system fed with municipal solid waste (MSW) is integrated with a natural gas-fired combined cycle (CC). Integration is accomplished by sharing the steam cycle: saturated steam generated in a MSW grate combustor is exported to the heat recovery steam generator (HRSG) of the combined cycle, where it is superheated and then fed to a steam turbine serving both the CC and the WTE plant. Most likely, the WTE section and the natural gas-fired CC section are subject to different operation and maintenance schedules, so that the integrated plant operates in conditions different from those giving full power output. In this paper we discuss and give performance estimates for the two situations that delimit the range of operating conditions: (a) WTE plant at full power and gas turbine down; (b) WTE plant down and gas turbine at full power. This is done for two integrated plants having the same WTE section, i.e. grate combustors with an overall MSW combustion power of 180 MWLHV, coupled with Combined Cycles based on two different heavy-duty gas turbines: a medium-size, 70 MW class turbine and a large-size, 250 MW class turbine. For each situation we discuss the control strategy and the actions that can help to achieve safe and reliable off-design operation. Heat and mass balances and performances at off-design conditions are estimated by accounting for the constraints imposed by the available heat transfer areas in boilers, heaters and condenser, as well as the characteristic curve of the steam turbine. When the gas turbine is down the net electric efficiency of the WTE section is very close to the one of the stand-alone WTE plant; instead, when the WTE section is down, the efficiency of the CC is much below the one of a stand alone CC. These performances appear most congenial to what is likely to be the operational strategy of these plants, i.e. paramount priority to waste treatment and CC dispatched according to the requirements of the national grid.

Stefano Consonni; Paolo Silva

2007-01-01T23:59:59.000Z

127

Practical Operation of Prep-Scale Gas Chromatographic Units  

Science Journals Connector (OSTI)

......given in Table I. The cost of a recycling unit is...nitrogen is used as carrier gas. For narrower columns it depends on the length of production cycles. Once a recycling unit is used, the carrier gas cost becomes negligible, and......

B. Roz; R. Bonmati; G. Hagenbach; P. Valentin; G. Guiochon

1976-08-01T23:59:59.000Z

128

Modeling the Performance, Emissions, and Cost of an Entrained-Flow Gasification Combined Cycle System Using  

E-Print Network [OSTI]

1 Modeling the Performance, Emissions, and Cost of an Entrained-Flow Gasification Combined Cycle-based Integrated Gasification Combined Cycle (IGCC) system using ASPEN. ASPEN is a steady-state chemical process-flow Integrated Gasification Combined Cycle (IGCC) system. This study aims at developing a base case analysis

Frey, H. Christopher

129

Small UHV-compatible gas inlet unit  

Science Journals Connector (OSTI)

A simple versatile device is described for introducing a dose of a selected pure gas into an UHV system.

S Koc

1987-01-01T23:59:59.000Z

130

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect (OSTI)

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR.

Conklin, Jim [ORNL; Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

131

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect (OSTI)

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR. (authors)

Conklin, James C.; Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

2007-07-01T23:59:59.000Z

132

Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation  

SciTech Connect (OSTI)

The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

Lytle, J.M.; Marchant, D.D.

1980-11-01T23:59:59.000Z

133

Solar's combined-cycle system utilizes novel steam-generator concept  

SciTech Connect (OSTI)

As escalating fuel costs force equipment users to seek more efficient prime movers, the combined-cycle system will become increasingly attractive because it retains the advantages of simple-cycle gas turbines - low installation costs, high availability, low maintenance, and low emission levels - while adding 40% power output from the steam-based system operated on the turbine exhaust. Solar Turbines International has sought to develop an automated, remote-control combined-cycle system that can be easily retrofitted to existing simple-cycle power stations. The key component giving the system its advantages over the hazardous, complex steam-drum-type boiler systems is a once-through dual-pressure steam-generator device that eliminates the need for drums and elaborate control mechanisms. Forty identical parallel tube circuits suspended from a single frame are connected to common inlet and discharge manifolds; the individual circuits are made of dual high- and low-pressure bundles, with each bundle having economizer, vaporizer, and superheating sections. The 40 circuits comprise one complete steam-generator module core matrix. By injecting the superheated low-pressure steam into the latter stages of the steam turbine, the dual-pressure feature improves the heat recovery by more than 12% over conventional devices. The only water treatment that the corrosion-resistant tube material requires is the removal of dissolved solids.

Not Available

1980-06-01T23:59:59.000Z

134

Feasibility Studies to Improve Plant Availability and Reduce Total Installed Cost in Integrated Gasification Combined Cycle Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Feasibility Studies to Improve Plant Feasibility Studies to Improve Plant Availability and Reduce Total Installed Cost in Integrated Gasification Combined Cycle Plants Background Gasification provides the means to turn coal and other carbonaceous solid, liquid and gaseous feedstocks as diverse as refinery residues, biomass, and black liquor into synthesis gas and valuable byproducts that can be used to produce low-emissions power, clean-burning fuels and a wide range of commercial products to support

135

Efficiency United (Gas) - Residential Efficiency Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Efficiency United (Gas) - Residential Efficiency Program Efficiency United (Gas) - Residential Efficiency Program Efficiency United (Gas) - Residential Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Construction Design & Remodeling Other Ventilation Manufacturing Water Heating Windows, Doors, & Skylights Maximum Rebate Weatherization Measures: 50% of the cost Windows: $150 Water Heaters/Clothes Washers: 1 Pipe Wrap: Limit of 10 linear ft. Faucet Aerators: 2 High Efficiency Shower Head: 2 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Boiler: $200 Furnace: $100 - $200

136

Modern Shale Gas Development in the United States: A Primer  

Broader source: Energy.gov [DOE]

This Primer on Modern Shale Gas Development in the United States was commissioned through the Ground Water Protection Council (GWPC). It is an effort to provide sound technical information on and...

137

Natural Gas Processing Plants in the United States: 2010 Update  

Gasoline and Diesel Fuel Update (EIA)

This special report presents an analysis of natural gas processing plants This special report presents an analysis of natural gas processing plants in the United States as of 2009 and highlights characteristics of this segment of the industry. The purpose of the paper is to examine the role of natural gas processing plants in the natural gas supply chain and to provide an overview and summary of processing plant characteristics in the United States, such as locations, capacities, and operations. Key Findings There were 493 operational natural gas processing plants in the United States with a combined operating capacity of 77 billion cubic feet (Bcf) per day. Overall, operating capacity increased about 12 percent between 2004 and 2009, not including the processing capacity in Alaska1. At the same time, the number of all processing plants in the lower 48 States decreased

138

Model Predictive Control of Integrated Gasification Combined Cycle Power Plants  

SciTech Connect (OSTI)

The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

B. Wayne Bequette; Priyadarshi Mahapatra

2010-08-31T23:59:59.000Z

139

A review of integrated solar combined cycle system (ISCCS) with a parabolic trough technology  

Science Journals Connector (OSTI)

Abstract The huge amount of solar energy available on Earth?s surface has heightened awareness in Concentrating Solar Power, and more particularly in hybrid concepts. The integrated solar combined cycle system (ISCCS) is one of the more promising hybrid configurations for converting solar energy into electricity and it might become the technology of choice in the near future. This article reviews the R&D activities and published studies since the introduction of such a concept in the 1990s. The review includes the current status and describes different hybridizations of solar energy with natural gas, coal and other renewable energy sources. Furthermore, it provides in-depth analysis of real and expected R&D finding.

Omar Behar; Abdallah Khellaf; Kamal Mohammedi; Sabrina Ait-Kaci

2014-01-01T23:59:59.000Z

140

A combined cycle designed to achieve greater than 60 percent efficiency  

SciTech Connect (OSTI)

In cooperation with the US Department of Energy`s Morgantown Energy Technology Center, Westinghouse is working on Phase 2 of an 8-year Advanced Turbine Systems Program to develop the technologies required to provide a significant increase in natural gas-fired combined cycle power generation plant efficiency. In this paper, the technologies required to yield an energy conversion efficiency greater than the Advanced Turbine Systems Program target value of 60 percent are discussed. The goal of 60 percent efficiency is achievable through an improvement in operating process parameters for both the combustion turbine and steam turbine, raising the rotor inlet temperature to 2,600 F (1,427 C), incorporation of advanced cooling techniques in the combustion turbine expander, and utilization of other cycle enhancements obtainable through greater integration between the combustion turbine and steam turbine.

Briesch, M.S.; Bannister, R.L.; Diakunchak, I.S.; Huber, D.J. [Westinghouse Electric Corp., Orlando, FL (United States)

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A combined cycle designed to achieve greater than 60 percent efficiency  

SciTech Connect (OSTI)

In cooperation with the US Department of Energy`s Morgantown Energy Technology Center, Westinghouse is working on Phase 2 of an 8-year Advanced Turbine Systems Program to develop the technologies required to provide a significant increase in natural gas-fired combined cycle power generation plant efficiency. In this paper, the technologies required to yield an energy conversion efficiency greater than the Advanced Turbine Systems Program target value of 60% are discussed. The goal of 60% efficiency is achievable through an improvement in operating process parameters for both the combustion turbine and steam turbine, raising the rotor inlet temperature to 2,600 F (1,427 C), incorporation of advanced cooling techniques in the combustion turbine expander, and utilization of other cycle enhancements obtainable through greater integration between the combustion turbine and steam turbine.

Briesch, M.S.; Bannister, R.L.; Diakunchak, I.S.; Huber, D.J. [Westinghouse Electric Corp., Orlando, FL (United States)

1995-10-01T23:59:59.000Z

142

Catalytic combustor for integrated gasification combined cycle power plant  

DOE Patents [OSTI]

A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

Bachovchin, Dennis M. (Mauldin, SC); Lippert, Thomas E. (Murrysville, PA)

2008-12-16T23:59:59.000Z

143

System study on partial gasification combined cycle with CO{sub 2} recovery - article no. 051801  

SciTech Connect (OSTI)

S partial gasification combined cycle with CO{sub 2} recovery is proposed in this paper. Partial gasification adopts cascade conversion of the composition of coal. Active composition of coal is simply gasified, while inactive composition, that is char, is burnt in a boiler. Oxy-fuel combustion of syngas produces only CO{sub 2} and H{sub 2}O, so the CO{sub 2} can be separated through cooling the working fluid. This decreases the amount of energy consumption to separate CO{sub 2} compared with conventional methods. The novel system integrates the above two key technologies by injecting steam from a steam turbine into the combustion chamber of a gas turbine to combine the Rankine cycle with the Brayton cycle. The thermal efficiency of this system will be higher based on the cascade utilization of energy level. Compared with the conventional integrated gasification combined cycle (IGCC), the compressor of the gas turbine, heat recovery steam generator (HRSG) and gasifier are substituted for a pump, reheater, and partial gasifier, so the system is simplified. Furthermore, the novel system is investigated by means of energy-utilization diagram methodology and provides a simple analysis of their economic and environmental performance. As a result, the thermal efficiency of this system may be expected to be 45%, with CO{sub 2} recovery of 41.2%, which is 1.5-3.5% higher than that of an IGCC system. At the same time, the total investment cost of the new system is about 16% lower than that of an IGCC. The comparison between the partial gasification technology and the IGCC technology is based on the two representative cases to identify the specific feature of the proposed system.

Xu, Y.J.; Jin, H.G.; Lin, R.M.; Han, W. [Chinese Academy of Science, Beijing (China)

2008-09-15T23:59:59.000Z

144

Steam turbines produced by the Ural Turbine Works for combined-cycle plants  

Science Journals Connector (OSTI)

The most interesting and innovative solutions adopted in the projects of steam turbines for combined-cycle plants with capacities from...

A. E. Valamin; A. Yu. Kultyshev; T. L. Shibaev; A. A. Gol’dberg…

2013-08-01T23:59:59.000Z

145

Constructing the Russian combined-cycle cogeneration plant and mastering its operation  

Science Journals Connector (OSTI)

The main results obtained from the development, construction, mastering, and operation of the PGU-450T combined-cycle power plant are described.

P. A. Berezinets; V. M. Grinenko; I. V. Dolinin; V. N. Kondrat’ev…

2011-06-01T23:59:59.000Z

146

Adaptive hybrid predictive control for a combined cycle power plant optimization .  

E-Print Network [OSTI]

??The design and development of an adaptive hybrid predictive controller for the optimization of a real combined cycle power plant (CCPP) are presented. The real… (more)

Sáez, D.

2008-01-01T23:59:59.000Z

147

THERMODYNAMIC MODELLING OF BIOMASS INTEGRATED GASIFICATION COMBINED CYCLE (BIGCC) POWER GENERATION SYSTEM.  

E-Print Network [OSTI]

??An attractive and practicable possibility of biomass utilization for energy production is gasification integrated with a combined cycle. This technology seems to have the possibility… (more)

Desta, Melaku

2011-01-01T23:59:59.000Z

148

Preliminary Design of a Pulsed Detonation Based Combined Cycle Engine Ramakanth Munipalli*  

E-Print Network [OSTI]

1 Preliminary Design of a Pulsed Detonation Based Combined Cycle Engine Ramakanth Munipalli combined cycle engine using periodic detonation waves are presented here. Four modes of operation are used detonation rocket for take off to moderate supersonic Mach numbers (2) A pulsed normal detonation wave mode

Texas at Arlington, University of

149

Diagrams of regimes of cogeneration steam turbines for combined-cycle power plants  

Science Journals Connector (OSTI)

General considerations regarding the form of the steam-consumption diagram for a three-loop cogeneration-type combined-cycle plant are formulated on the basis of ... 12.4 steam turbine for the PGU-410 combined-cycle

A. Yu. Kultyshev; M. Yu. Stepanov; T. Yu. Linder

2012-12-01T23:59:59.000Z

150

A demonstrator for the SSTO launcher with combined cycle propulsion  

Science Journals Connector (OSTI)

...airflow almost to saturation. An expander turbo-compressor compresses cold gas before it is piped to an expander rocket. LACE = liquid air cycle...air. In the latter case, an expander cycle turbo- compressor compresses the cold...

1999-01-01T23:59:59.000Z

151

Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant  

SciTech Connect (OSTI)

Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok [Engineering Center of the Ural Power Industry (Russian Federation)

2007-01-15T23:59:59.000Z

152

Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production  

SciTech Connect (OSTI)

A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

Forsberg, Charles W [ORNL; Conklin, Jim [ORNL

2007-09-01T23:59:59.000Z

153

Analysis of a coal fired combined cycle with carried-heat gasification  

Science Journals Connector (OSTI)

In the research of a more efficient, less costly, more environmentally responsible and less technically difficult method for generating electrical power from coal, the Carried-heat Gasification Combined Cycle (CG...

Xiangdong Xu; Weimin Zhu; Li Zhao; F. N. Fett

154

Optimizing the start-up operations of combined cycle power plants using soft computing methods  

Science Journals Connector (OSTI)

......Fast Start-up of a Combined-Cycle Power Plant: a Simulation Study with Modelica. In: Proceedings 5th International Modelica Conference (2006) 3-10. Modelica Association eds. [4] Zimmerman HJ . Fuzzy set theory (1991) Kluwer Academic......

Ilaria Bertini; Matteo De Felice; Alessandro Pannicelli; Stefano Pizzuti

2012-08-01T23:59:59.000Z

155

Off-design performance of a chemical looping combustion (CLC) combined cycle: effects of ambient temperature  

Science Journals Connector (OSTI)

The present work investigates the influence of ambient temperature on the steady-state off-design thermodynamic performance of a chemical looping combustion (CLC) combined cycle. A sensitivity analysis...

Jinling Chi; Bo Wang; Shijie Zhang; Yunhan Xiao

2010-02-01T23:59:59.000Z

156

Technoeconomic Analysis and Life Cycle Assessment of an Integrated Biomass Gasification Combined Cycle System  

Science Journals Connector (OSTI)

A biomass gasification combined-cycle power plant, consisting of a low pressure...®...Economic analyses were then performed to determine the levelized cost of electricity. The economic viability and efficiency of...

M. K. Mann; P. L. Spath

1997-01-01T23:59:59.000Z

157

BYPASS FLOW PATTERN CHANGES AT TURBO-RAM TRANSIENT OPERATION OF A COMBINED CYCLE ENGINE  

Science Journals Connector (OSTI)

Turbo-Ramjet Combined Cycle Engine is composed of a turbofan engine ... are not available from the transient engine thermo-cycle simulation. CFD calculation showed that such flow ... , yielding rather good agreem...

Shinichi Takata Researcher…

2006-01-01T23:59:59.000Z

158

Fuzzy Optimization of Start-Up Operations for Combined Cycle Power Plants  

Science Journals Connector (OSTI)

In this paper we present a study on the application of fuzzy sets for the start-up optimisation of a combined cycle power plant. We fuzzyfy the output process variables and then we properly combine the resulting ...

Ilaria Bertini; Alessandro Pannicelli…

2010-01-01T23:59:59.000Z

159

Steam turbines of the Ural Turbine Works for advanced projects of combined-cycle plants  

Science Journals Connector (OSTI)

We describe the design features, basic thermal circuits, and efficiency of steam turbines developed on the basis of serially produced steam turbines of Ural Turbine Works and used as part of combined-cycle plants...

G. D. Barinberg; A. E. Valamin; A. Yu. Kultyshev

2009-09-01T23:59:59.000Z

160

An update technology for integrated biomass gasification combined cycle power plant  

Science Journals Connector (OSTI)

A discussion is presented on the technical analysis of a 6.4 MWe integrated biomass gasification combined cycle (IBGCC) plant. It features three numbers ... producing 5.85 MW electrical power in open cycle and 55...

Paritosh Bhattacharya; Suman Dey

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Optimization of a Combined-Cycle Plant with Thermodynamic, Economic and Environmental Considerations  

Science Journals Connector (OSTI)

Environmental considerations are combined with thermodynamics and economics for the design optimization of a double-pressure combined-cycle plant, which produces electricity. Two pollutants...2 and NOX, and a pen...

Christos A. Frangopoulos; Vasilios A. Bulmetis

1993-01-01T23:59:59.000Z

162

Advanced CO2 Capture Technology for Low Rank Coal Integrated Gasification Combined Cycle (IGCC) Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 Capture Technology for Low Rank Coal Integrated Gasification Combined Cycle (IGCC) Systems Background Gasification of coal or other solid feedstocks (wood waste, petroleum coke, etc.) is a clean way to produce electricity and produce or co-produce a variety of commercial products. The major challenge is cost reduction; current integrated gasification combined cycle (IGCC) technology is estimated to produce power at a cost higher than that of pulverized coal combustion. However, the Gasification

163

Creation of equipment for combined-cycle installations—One of the priority problems facing power-machinery builders  

Science Journals Connector (OSTI)

Offers of OAO Silovye Mashiny for delivery of equipment for combined-cycle installations (CCIs) of reconstructed and newly...

A. S. Lebedev; G. L. Butalov

2007-04-01T23:59:59.000Z

164

Qualifications of Candle Filters for Combined Cycle Combustion Applications  

SciTech Connect (OSTI)

The direct firing of coal produces particulate matter that has to be removed for environmental and process reasons. In order to increase the current advanced coal combustion processes, under the U.S. Department of Energy's auspices, Siemens Westinghouse Power Corporation (SWPC) has developed ceramic candle filters that can operate at high temperatures. The Coal Research Center of Southern Illinois University (SIUC), in collaboration with SWPC, developed a program for long-term filter testing at the SIUC Steam Plant followed by experiments using a single-filter reactor unit. The objectives of this program funded by the U.S. Department of Energy were to identify and demonstrate the stability of porous candle filter elements for use in high temperature atmospheric fluidized-bed combustion (AFBC) process applications. These verifications were accomplished through extended time slipstream testing of a candle filter array under AFBC conditions using SIUC's existing AFBC boiler. Temperature, mass flow rate, and differential pressure across the filter array were monitored for a duration of 45 days. After test exposure at SIUC, the filter elements were characterized using Scanning Electron Microscopy and BET surface area analyses. In addition, a single-filter reactor was built and utilized to study long term filter operation, the permeability exhibited by a filter element before and after the slipstream test, and the thermal shock resilience of a used filter by observing differential pressure changes upon rapid heating and cooling of the filter. The data acquired during the slipstream test and the post-test evaluations demonstrated the suitability of filter elements in advanced power generation applications.

Tomasz Wiltowski

2008-08-31T23:59:59.000Z

165

Reading the Tea Leaves: How Utilities in the West Are Managing Carbon Regulatory Risk in their Resource Plans  

E-Print Network [OSTI]

of a natural gas-fired combined cycle gas turbine (CCGT).integrated gasification combined cycle (IGCC) generationrate exceeding that of a combined-cycle natural gas unit.

Barbose, Galen

2008-01-01T23:59:59.000Z

166

The use of sustainable combined cycle technologies in Cyprus: a case study for the use of LOTHECO cycle  

Science Journals Connector (OSTI)

In this work, a cost–benefit analysis concerning the use of the low temperature heat combined cycle (LOTHECO cycle) in Cyprus is carried out. Also, the expected main emissions from the LOTHECO cycle are compared with existing commercial technologies. In particular, the future generation system of Cyprus power industry is simulated by the independent power producers optimization algorithm and by the long-term expansion software Wien Automatic System Planning. Various conventional generation options are examined and compared with LOTHECO cycle parametric studies. The economic analysis, based on the assumptions used and the candidate technologies examined, indicated that in the case of conventional technologies the least cost solution is the natural gas combined cycle. Additional computer runs with the various LOTHECO cycle parametric studies indicated that for efficiencies greater than 60% and capital cost between 700 and 900 €/kW, LOTHECO cycle is the least cost generation technology. Furthermore, the current state and future improvements of the environmental indicators of the power industry in Cyprus are presented. It is estimated that by the use of LOTHECO cycle instead of the business as usual scenario, the principal environmental indicators would be reduced by the year 2010 by approximately ?23% instead of ?8%. Further, the carbon dioxide environmental indicator will be reduced by +24% instead of +68%.

Andreas Poullikkas; Adonis Kellas

2004-01-01T23:59:59.000Z

167

A hydrogen and oxygen combined cycle with chemical-looping combustion  

Science Journals Connector (OSTI)

Abstract In the current paper, new systems integrating chemical-looping hydrogen (CLH) generation and the hydrogen (H2) and oxygen (O2) combined cycle have been proposed. The new methane-fueled cycle using CLH has been investigated with the aid of the exergy principle (energy utilization diagram methodology). First, H2 is produced in the CLH, in which FeO and Fe3O4 are used as the looping material. The H2 and O2 combined cycle then uses H2 as fuel. Two types of these combined cycles have been analyzed. Waste heat from the H2–O2 combined cycle is utilized in the CLH to produce H2. The advantages of CLH and the H2 and O2 combined cycle have resulted in a breakthrough in performance. The new system can achieve 59.8% net efficiency with CO2 separation when the turbine inlet temperature is 1300 °C. Meanwhile, the cycle is environmentally superior because of the recovery of CO2 without an energy penalty.

Xiaosong Zhang; Sheng Li; Hui Hong; Hongguang Jin

2014-01-01T23:59:59.000Z

168

Dynamic simulation and load-following control of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture  

SciTech Connect (OSTI)

Load-following control of future integrated gasification combined cycle (IGCC) plants with pre-combustion CO{sub 2} capture is expected to be far more challenging as electricity produced by renewable energy is connected to the grid and strict environmental limits become mandatory requirements. To study control performance during load following, a plant-wide dynamic simulation of a coal-fed IGCC plant with CO{sub 2} capture has been developed. The slurry-fed gasifier is a single-stage, downward-fired, oxygen-blown, entrained-flow type with a radiant syngas cooler (RSC). The syngas from the outlet of the RSC goes to a scrubber followed by a two-stage sour shift process with inter-stage cooling. The acid gas removal (AGR) process is a dual-stage physical solvent-based process for selective removal of H{sub 2}S in the first stage and CO{sub 2} in the second stage. Sulfur is recovered using a Claus unit with tail gas recycle to the AGR. The recovered CO{sub 2} is compressed by a split-shaft multistage compressor and sent for sequestration after being treated in an absorber with triethylene glycol for dehydration. The clean syngas is sent to two advanced “F”-class gas turbines (GTs) partially integrated with an elevated-pressure air separation unit. A subcritical steam cycle is used for heat recovery steam generation. A treatment unit for the sour water strips off the acid gases for utilization in the Claus unit. The steady-state model developed in Aspen Plus® is converted to an Aspen Plus Dynamics® simulation and integrated with MATLAB® for control studies. The results from the plant-wide dynamic model are compared qualitatively with the data from a commercial plant having different configuration, operating condition, and feed quality than what has been considered in this work. For load-following control, the GT-lead with gasifier-follow control strategy is considered. A modified proportional–integral–derivative (PID) control is considered for the syngas pressure control. For maintaining the desired CO{sub 2} capture rate while load-following, a linear model predictive controller (LMPC) is implemented in MATLAB®. A combined process and disturbance model is identified by considering a number of model forms and choosing the final model based on an information-theoretic criterion. The performance of the LMPC is found to be superior to the conventional PID control for maintaining CO{sub 2} capture rates in an IGCC power plant while load following.

Bhattacharyya, D,; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

169

Producer gas from citrus wood fuels irrigation power unit  

SciTech Connect (OSTI)

A 90-hp diesel engine operating a citrus irrigation system was converted to run on a dual-fuel mixture utilizing producer gas from citrus wood chips as the main fuel source. A chip feeder mechanism, gasifier, filter system and control unit were designed to meet typical irrigation power requirements. Blighted, unproductive and dead trees removed near the irrigation site were used for chipping. Data on chip moisture content, fuel analysis, drying rate and fuel/tree weight are presented but labour and equipment costs were not determined. 14 references.

Churchill, D.B.; Hedden, S.L.; Whitney, J.D.; Shaw, L.N.

1985-01-01T23:59:59.000Z

170

Analysis of Membrane and Adsorbent Processes for Warm Syngas Cleanup in Integrated Gasification Combined-Cycle Power with CO2 Capture and Sequestration  

Science Journals Connector (OSTI)

Analysis of Membrane and Adsorbent Processes for Warm Syngas Cleanup in Integrated Gasification Combined-Cycle Power with CO2 Capture and Sequestration ... The clean syngas is diluted with N2 from the ASU and enters the gas turbine burner. ... The amount of N2 diluent to be added is determined by the requirement of maintaining the appropriate lower heating value of the syngas feeding into the gas turbine burner to achieve sufficiently low NOx emissions (15–35 ppmv at 15% O2)(36) and to keep the temperature of the gas low enough to avoid blade failure. ...

David J. Couling; Kshitij Prakash; William H. Green

2011-08-11T23:59:59.000Z

171

Federal Register Notice for Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States  

Broader source: Energy.gov [DOE]

The Office of Fossil Energy of the Department of Energy gives notice of the availability of the report Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United...

172

Gas-turbine units of OAO Aviadvigatel’ designed for operation on synthesis gas obtained from gasification of coal  

Science Journals Connector (OSTI)

Problems that have to be solved for adapting a 16-MW gas-turbine unit used as part of a gas turbine-based power station for firing low-grade...

D. D. Sulimov

2010-02-01T23:59:59.000Z

173

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

8 8 U.S. Department of Energy Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project Final Environmental Impact Statement November 2002 U.S. Department of Energy National Energy Technology Laboratory COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project Final Environmental Impact Statement (EIS) (DOE/EIS-0318) Location: Clark County, Kentucky Contacts: For further information on this environmental For further information on the DOE National impact statement (EIS), call: Environmental Policy Act (NEPA) process, call: 1-800-432-8330 ext. 5460 1-800-472-2756 or contact: or contact: Mr. Roy Spears Ms. Carol Borgstrom

174

The importance of combined cycle generating plants in integrating large levels of wind power generation  

SciTech Connect (OSTI)

Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

Puga, J. Nicolas

2010-08-15T23:59:59.000Z

175

An Edge-based Formulation for the Combined-Cycle Units  

E-Print Network [OSTI]

Aug 31, 2014 ... guan@ise.ufl.edu. Yonghong Chen (Principal Advisor) is with the Midcontinent Independent. System Operator, Inc. (MISO), Carmel, IN, USA.

2014-08-31T23:59:59.000Z

176

Energetic analysis of a syngas-fueled chemical-looping combustion combined cycle with integration of carbon dioxide sequestration  

Science Journals Connector (OSTI)

Abstract Chemical-looping combustion for power generation has significant advantages over conventional combustion. Mainly, it allows an integration of CO2 capture in the power plant without energy penalty; secondly, a less exergy destruction in the combustion chemical transformation is achieved, leading to a greater overall thermal efficiency. Most efforts have been devoted to systems based on methane as a fuel, although other systems for alternative fuels have can be proposed. This paper focus on the study of the energetic performance of this concept of combustion in a gas turbine combined cycle when synthesis gas is used as fuel. After optimization of some thermodynamic parameters of the cycle, the power plant performance is evaluated under diverse working conditions and compared to a conventional gas turbine system. Energy savings related with CO2 capture and storage have been quantified. The overall efficiency increase is found to be significant, reaching values of around 5% (even more in some cases). In order to analyze the influence of syngas composition on the results, different H2-content fuels are considered. In a context of real urgency to reduce green house gas emissions, this work is intended to contribute to the conceptual development of highly efficient alternative power generation systems.

Ángel Jiménez Álvaro; Ignacio López Paniagua; Celina González Fernández; Rafael Nieto Carlier; Javier Rodríguez Martín

2014-01-01T23:59:59.000Z

177

Analysis of Biomass/Coal Co-Gasification for Integrated Gasification Combined Cycle (IGCC) Systems with Carbon Capture.  

E-Print Network [OSTI]

?? In recent years, Integrated Gasification Combined Cycle Technology (IGCC) has become more common in clean coal power operations with carbon capture and sequestration (CCS).… (more)

Long, Henry A, III

2011-01-01T23:59:59.000Z

178

Performance Diagnosis using Optical Torque Sensor for Selection of a Steam Supply Plant among Advanced Combined Cycle Power Plants  

Science Journals Connector (OSTI)

A newly developed optical torque sensor was applied to select a steam supply plant among advanced combined cycle, i.e. ACC, power plants of...

Shuichi Umezawa

2007-01-01T23:59:59.000Z

179

Using energy balances for processing the results from tests of a single-shaft combined-cycle power plant  

Science Journals Connector (OSTI)

Application of the balance method for dividing the overall power output produced by a single-shaft combined-cycle power plant between the steam turbine and...

G. G. Ol’khovskii

2012-09-01T23:59:59.000Z

180

Price of Lake Charles, LA Natural Gas LNG Imports from United...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Arab Emirates (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Natural Gas LNG Imports from United Arab Emirates (Dollars per Thousand Cubic Feet) Decade Year-0...

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Economic analysis of shale gas wells in the United States  

E-Print Network [OSTI]

Natural gas produced from shale formations has increased dramatically in the past decade and has altered the oil and gas industry greatly. The use of horizontal drilling and hydraulic fracturing has enabled the production ...

Hammond, Christopher D. (Christopher Daniel)

2013-01-01T23:59:59.000Z

182

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Warm Gas Multicontaminant Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Description Integrated Gasification Combined Cycle (IGCC) technology offers a means to utilize coal -the most abundant fuel in the United States-to produce a host of products, ranging from electricity to value-added chemicals like transportation fuels and hydrogen, in an efficient, environmentally friendly manner. However, the overall cost (capital, operating,

183

Changing Prospects for Natural Gas in the United States  

Science Journals Connector (OSTI)

...re-quired for compressed natural gas (26), and these vehicles...the lower energy price of natural gas would be sufficient to attract...added equipment, such as high-pressure tanks, needed to store natural gas on board automobiles with...

W. M. BURNET; T S. D. BAN

1989-04-21T23:59:59.000Z

184

90-MW single-shaft power generating steam-gas unit based on the GTÉ-65 gas turbine and K-30-60 steam turbine  

Science Journals Connector (OSTI)

This is an examination of a variant of the monoblock PGU-90 steam-gas unit developed at the “Leningradskii Metallicheskii Zavod” (LMZ) branch of “Silovye mashiny” based on a GTÉ-65 gas turbine unit and a K-30-...

A. S. Lebedev; O. V. Antonyuk; V. A. Mart’yanov…

2011-01-01T23:59:59.000Z

185

Operating experience of single cylinder steam turbine with 40 inch last blade applied for combined cycle plant  

SciTech Connect (OSTI)

Inquiries and orders for combined cycle plant have increased recently because of the better efficiency of combined cycle plant in comparison with the usual fossil fuel power plant. The typical features of the steam turbine for combined cycle plant are the lower inlet steam conditions and the more driving steam flow quantity compared with the steam turbine for usual fossil fuel plants. This paper introduces the design and results of operation about 122 MW single cylinder steam turbine. Furthermore, the results of periodical overhaul inspection carried out after one year`s commercial operation is also presented.

Kishimoto, Masaru; Yamamoto, Tetsuya [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Yokota, Hiroshi [Mitsubishi Heavy Industries, Ltd., Nagasaki (Northern Mariana Islands); Umaya, Masahide [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)

1994-12-31T23:59:59.000Z

186

Optimal control system design of an acid gas removal unit for an IGCC power plants with CO2 capture  

SciTech Connect (OSTI)

Future IGCC plants with CO{sub 2} capture should be operated optimally in the face of disturbances without violating operational and environmental constraints. To achieve this goal, a systematic approach is taken in this work to design the control system of a selective, dual-stage Selexol-based acid gas removal (AGR) unit for a commercial-scale integrated gasification combined cycle (IGCC) power plant with pre-combustion CO{sub 2} capture. The control system design is performed in two stages with the objective of minimizing the auxiliary power while satisfying operational and environmental constraints in the presence of measured and unmeasured disturbances. In the first stage of the control system design, a top-down analysis is used to analyze degrees of freedom, define an operational objective, identify important disturbances and operational/environmental constraints, and select the control variables. With the degrees of freedom, the process is optimized with relation to the operational objective at nominal operation as well as under the disturbances identified. Operational and environmental constraints active at all operations are chosen as control variables. From the results of the optimization studies, self-optimizing control variables are identified for further examination. Several methods are explored in this work for the selection of these self-optimizing control variables. Modifications made to the existing methods will be discussed in this presentation. Due to the very large number of candidate sets available for control variables and due to the complexity of the underlying optimization problem, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. The second stage is a bottom-up design of the control layers used for the operation of the process. First, the regulatory control layer is designed followed by the supervisory control layer. Finally, an optimization layer is designed. In this paper, the proposed two-stage control system design approach is applied to the AGR unit for an IGCC power plant with CO{sub 2} capture. Aspen Plus Dynamics® is used to develop the dynamic AGR process model while MATLAB is used to perform the control system design and for implementation of model predictive control (MPC).

Jones, D.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

187

Optimization of waste heat recovery boiler of a combined cycle power plant  

SciTech Connect (OSTI)

This paper describes the details of a procedure developed for optimization of a waste heat recovery boiler (WHRB) of a combined cycle power plant (CCPP) using the program for performance prediction of a typical CCPP, details of which have been presented elsewhere (Seyedan et al., 1994). In order to illustrate the procedure, the optimum design of a WHRB for a typical CCPP (employing dual-pressure bottoming cycle) built by a prominent Indian company, has been carried out. The present design of a WHRB is taken as the base design and the newer designs generated by this procedure are compared with it to assess the extent of cost reduction possible.

Seyedan, B.; Dhar, P.L.; Gaur, R.R. [Indian Inst. of Tech., New Delhi (India). Dept. of Mechanical Engineering; Bindra, G.S. [Bharat Heavy Electrical Ltd., New Delhi (India)

1996-07-01T23:59:59.000Z

188

Filter system cost comparison for integrated gasification combined cycle and pressurized fluidized-bed combustion power systems  

SciTech Connect (OSTI)

To assess the relative cost of components and sub-systems for a hot gas particulate cleanup system a cost comparison between the filter systems for two advanced coal-based power plants was conducted. Assessing component and sub-system costs permits the most beneficial areas for product improvement to be identified. The results from this study are presented. The filter system is based on a Westinghouse Advanced Particulate Filter Concept which is designed to operate with ceramic candle filters. The Foster Wheeler second Generation 453 MWe (net) Pressurized Fluidized-Bed Combustor (PFBC) and the KRW 458 MWe (net) Integrated Gasification Combined Cycle (IGCC) power plants are used for the comparison. The comparison presents the general differences of the two power plants and the process related filtration conditions for PFBC and IGCC systems. The results present the conceptual designs for the PFBC and IGCC filter systems as well as a cost summary comparison. The cost summary comparison includes the total plant cost, the fixed operating and maintenance cost, the variable operating and maintenance cost and the effect on the cost of electricity for the two filter systems. The most beneficial areas for product improvement are identified.

Dennis, R.A.; McDaniel, H.M. [Dept. of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center; Buchanan, T.; Chen, H.; Harbaugh, L.B.; Klett, M.; Zaharchuk, R. [Gilbert/Commonwealth, Reading, PA (United States)

1995-12-31T23:59:59.000Z

189

Combined cycle and run performance is maximised when the cycle is completed at the highest sustainable intensity  

Science Journals Connector (OSTI)

The aim of this study was to determine the effect of cycle intensity on subsequent running performance and combined cycle–run (CR) performance. Seven triathletes undertook a cycling graded exercise test to exhaus...

Robert Suriano; David Bishop

2010-11-01T23:59:59.000Z

190

Investigation of the effect of organic working fluids on thermodynamic performance of combined cycle Stirling-ORC  

Science Journals Connector (OSTI)

This paper presents thermodynamic investigation and environmental consideration of combined Stirling-organic Rankine cycle (ORC) power cycle. Combined cycle can be assisted by solar energy and ... side heat rejec...

Mohammad Bahrami; Ali A Hamidi…

2013-02-01T23:59:59.000Z

191

DOE`s high performance power systems program: Development of advanced coal-fired combined-cycle systems  

SciTech Connect (OSTI)

Coal currently provides more than one third of the world`s electricity and more than one half of the US`s electricity. However, for coal to be the fuel of choice in the future, highly efficient, environmentally acceptable, and economically competitive, coal-fired power plants are needed. The US Department of Energy, Federal Energy Technology Center, under its High Performance Power Systems (HIPPS) Program, has two contracts in place, one with Foster Wheeler Development Corporation and one with United Technologies Research Center, to develop advanced power generation systems. Based on an indirectly fired cycle, HIPPS uses a combined cycle for power generation at efficiencies of 47--50% (HHV) with superior environmental performance (1/10 of New Source Performance Standards) and a lower cost-of-electricity (10% reduction relative to current coal-fired plants). HIPPS, scheduled to be ready for commercialization by the year 2005, could provide a solution to the anticipated worldwide demand for clean, efficient electricity generation. In this paper, the two HIPPS designs are reviewed and on-going research is discussed.

Ruth, L.; Plasynski, S.; Shaffer, F. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center; Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1997-09-01T23:59:59.000Z

192

Draft Addendum to Environmental Review Documents Concerning Exports of Natural Gas from the United States  

Broader source: Energy.gov [DOE]

On August 15, 2014, the Department of Energy's Office of Fossil Energy published the final Addendum To Environmental Review Documents Concerning Exports Of Natural Gas From The United States ...

193

Patent analysis to identify shale gas development in China and the United States  

Science Journals Connector (OSTI)

Abstract Shale gas has become an increasingly important form of hydrocarbon energy, and related technologies reflect the geographical characteristics of the countries where the gas is extracted and stored. The United States (U.S.) produces most of the world’s shale gas, while China has the world’s largest shale gas reserves. In this research, we focused on identifying the trends in shale-gas related technologies registered to the United States Patent and Trademark Office (USPTO) and to the State Intellectual Property Office of the People’s Republic of China (SIPO) respectively. To cluster shale-gas related technologies, we text-mined the abstracts of patent specifications. It was found that in the U.S., the key advanced technologies were related to hydraulic fracturing, horizontal drilling, and slick water areas, whereas China had a focus on proppants. The results of our study are expected to assist energy experts in designing energy policies related to technology importation.

Woo Jin Lee; So Young Sohn

2014-01-01T23:59:59.000Z

194

Uncertainty in Life Cycle Greenhouse Gas Emissions from United States Coal  

E-Print Network [OSTI]

analyses involving coal. Greenhouse gas emissions from fuel use and methane releases at coal mines, fuel.5 million metric tons of methane emissions. Close to 95% of domestic coal was consumed by the electricityUncertainty in Life Cycle Greenhouse Gas Emissions from United States Coal Aranya Venkatesh

Jaramillo, Paulina

195

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

S-1 S-1 SUMMARY The U.S. Department of Energy (DOE) prepared this environmental impact statement (EIS) on the proposed Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project in compliance with the National Environmental Policy Act (NEPA). The National Environmental Policy Act Process NEPA is a federal law that serves as the basic national charter for protection of the environment. For major federal actions that may significantly affect the quality of the environment, NEPA requires federal agencies to prepare a detailed statement that includes the potential environmental impacts of the Proposed Action and reasonable alternatives. A fundamental objective of NEPA is to foster better decisionmaking by ensuring that high quality environmental information is available to public officials and members of the

196

Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant  

DOE Patents [OSTI]

System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.

Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa

2013-09-17T23:59:59.000Z

197

Black liquor gasification combined cycle with Co2 capture – Technical and economic analysis  

Science Journals Connector (OSTI)

Abstract The pulp and paper sector is intensive in the use of energy, and presents a high participation in the industrial context, specially based in the black liquor, a renewable source generated in the pulp process. Black liquor gasification is not still completely dominated; however, it has the potential of becoming an important alternative for the pulp and paper sector. In this article, the traditional steam cycle based on chemical recovery and biomass boilers associated to backpressure/extraction turbine is compared to black liquor gasification combined cycle schemes, associated to biomass boiler, considering the technical and economic attractiveness of capturing and sequestering CO2. Results show that despite its interesting exergetic efficiency, the adoption CO2 capture system for BLGCC did not prove to be attractive under the prescribed conditions without major incentive.

Elzimar Tadeu de Freitas Ferreira; José Antonio Perrella Balestieri

2014-01-01T23:59:59.000Z

198

Model predictive control system and method for integrated gasification combined cycle power generation  

SciTech Connect (OSTI)

Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

2013-04-09T23:59:59.000Z

199

Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States  

Science Journals Connector (OSTI)

Abstract Extraction of natural gas from shale rock in the United States (US) is one of the landmark events in the 21st century. The combination of horizontal drilling and hydraulic fracturing can extract huge quantities of natural gas from impermeable shale formations, which were previously thought to be either impossible or uneconomic to produce. This review offers a comprehensive insight into US shale gas opportunities, appraising the evolution, evidence and the challenges of shale gas production in the US. The history of US shale gas in this article is divided into three periods and based on the change of oil price (i.e., the period before the 1970s oil crisis, the period from 1970s to 2000, and the period since 2000), the US has moved from being one of the world's biggest importers of gas to being self-sufficient in less than a decade, with the shale gas production increasing 12-fold (from 2000 to 2010). The US domestic natural gas price hit a 10-year low in 2012. The US domestic natural gas price in the first half of 2012 was about $2 per million British Thermal Unit (BTU), compared with Brent crude, the world benchmark price for oil, now about $ 80–100/barrel, or $14–17 per million BTU. Partly due to an increase in gas-fired power generation in response to low gas prices, US carbon emissions from fossil-fuel combustion fell by 430 million ton CO2 – more than any other country – between 2006 and 2011. Shale gas also stimulated economic growth, creating 600,000 new jobs in the US by 2010. However, the US shale gas revolution would be curbed, if the environmental risks posed by hydraulic fracturing are not managed effectively. The hydraulic fracturing is water intensive, and can cause pollution in the marine environment, with implications for long-term environmental sustainability in several ways. Also, large amounts of methane, a powerful greenhouse gas, can be emitted during the shale gas exploration and production. Hydraulic fracturing also may induce earthquakes. These environmental risks need to be managed by good practices which is not being applied by all the producers in all the locations. Enforcing stronger regulations are necessary to minimize risk to the environment and on human health. Robust regulatory oversight can however increase the cost of extraction, but stringent regulations can foster an historic opportunity to provide cheaper and cleaner gas to meet the consumer demand, as well as to usher in the future growth of the industry.

Qiang Wang; Xi Chen; Awadhesh N. Jha; Howard Rogers

2014-01-01T23:59:59.000Z

200

Changing Prospects for Natural Gas in the United States  

Science Journals Connector (OSTI)

...value (LHV), which excludes the heat of condensation of the water vapor in the exhaust. For natural gas combustion...Commonly used absorption fluid pairs are ammonia-water and lithium bromide-water. 51. D. R. Kosar, B. M. Cohen, W...

W. M. BURNET; T S. D. BAN

1989-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States  

Broader source: Energy.gov [DOE]

This analysis calculates the life cycle greenhouse gas (GHG) emissions for regional coal and imported natural gas power in Europe and Asia. The primary research questions are as follows:...

202

Portugal Egypt Figure 2. Natural gas supply and disposition in the United States, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Portugal Egypt Figure 2. Natural gas supply and disposition in the United States, 2012 (trillion cubic feet) Natural Gas Plant Liquids Production Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 29.5 0.8 0.2 3.3 2.963 0.112 0.620 0.971 0.014 24.1 1.3 2.9 2.8 2.5 2.9 7.2 0.03 9.1 0.003 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895, "Annual Quantity and

203

Economics of Residential Gas Furnaces and Water Heaters in United States  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Economics of Residential Gas Furnaces and Water Heaters in United States Economics of Residential Gas Furnaces and Water Heaters in United States New Construction Market Speaker(s): Alex Lekov Gabrielle Wong-Parodi James McMahon Victor Franco Date: May 8, 2009 - 12:00pm Location: 90-3122 In the new single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this study, the authors use a life-cycle cost analysis approach that accounts for uncertainty and variability of inputs to assess the economic benefits of installing different gas furnace and water heater combinations. Among other factors, it assesses the economic feasibility of eliminating the traditional metal vents and replacing them with vents made of plastic materials used in condensing and power vent

204

Restoration islands supplied by gas turbines  

Science Journals Connector (OSTI)

The paper describes how gas turbine based plants (open cycle and combined cycle) can be profitably used in power system restoration for supplying restoration areas. In recent times, in fact, several gas turbine sections entered the power system due to the improved efficiency of gas turbines and to the development of high efficiency combined-cycle plants. These units can be easily improved to provide black-start capability and can therefore largely increase the black-start capacity of the entire system. Restoration islands to be used for minimizing the time to supply critical areas, such as urban and industrial zones, can support the usual restoration paths designed to provide cranking power to large steam units. The paper presents the defining criteria for the procedures to be followed during restoration. An example referred to as an urban area is reported with simulation results. The Italian System Operator recently carried out some tests on an open cycle gas turbine aimed at checking the island operation of the unit. Some results are described.

S. Barsali; D. Poli; A. Praticò; R. Salvati; M. Sforna; R. Zaottini

2008-01-01T23:59:59.000Z

205

United States Producing and Nonproducting Crude Oil and Natural Gas Reserves From 1985 Through 2004  

Gasoline and Diesel Fuel Update (EIA)

United States Producing and Nonproducing Crude Oil and Natural Gas Reserves From 1985 Through 2004 By Philip M. Budzik Abstract The Form EIA-23 survey of crude oil and natural gas producer reserves permits reserves to be differentiated into producing reserves, i.e., those reserves which are available to the crude oil and natural gas markets, and nonproducing reserves, i.e., those reserves which are unavailable to the crude oil and natural gas markets. The proportion of nonproducing reserves relative to total reserves grew for both crude oil and natural gas from 1985 through 2004, and this growth is apparent in almost every major domestic production region. However, the growth patterns in nonproducing crude oil and natural gas reserves are

206

U.S. Liquefied Natural Gas Exports to United Kingdom  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

207

United States, Canada and Mexico Release the "North American Natural Gas  

Broader source: Energy.gov (indexed) [DOE]

and Mexico Release the "North American and Mexico Release the "North American Natural Gas Vision" United States, Canada and Mexico Release the "North American Natural Gas Vision" February 25, 2005 - 10:29am Addthis WASHINGTON, DC -- The North American Energy Working Group (NAEWG), a group of senior energy officials from Canada, Mexico and the United States, today released the "North American Natural Gas Vision," a trilateral report by the three governments that includes information on the natural gas market in the North American region, including forecasts through the year 2012. U.S. Energy Secretary Samuel Bodman joined Minister of Natural Resources Canada R. John Efford and Mexico's Energy Secretary Fernando Elizondo in announcing the report's release. "This document is a key cooperative effort among the three countries to

208

A 25 kWe low concentration methane catalytic combustion gas turbine prototype unit  

Science Journals Connector (OSTI)

Abstract Low concentration methane, emitted from various industries e.g. coal mines and landfills into atmosphere, is not only an important greenhouse gas, but also a wasted energy resource if not utilized. In the past decade, we have been developing a novel VAMCAT (ventilation air methane catalytic combustion gas turbine) technology. This turbine technology can be used to mitigate methane emissions for greenhouse gas reduction, and also to utilize the low concentration methane as an energy source. This paper presents our latest research results on the development and demonstration of a 25 kWe lean burn catalytic combustion gas turbine prototype unit. Recent experimental results show that the unit can be operated with 0.8 vol% of methane in air, producing about 19–21 kWe of electricity output.

Shi Su; Xinxiang Yu

2014-01-01T23:59:59.000Z

209

Limiting net greenhouse gas emissions in the United States  

SciTech Connect (OSTI)

In 1988, Congress requested that DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity) and the relationship between energy production and use and the emission of radiatively important gases. Topics discussed include: state of the science in estimating atmosphere/climate change relationships, the potential consequences of atmosphere/climate change, us greenhouse emissions past and present, an approach to analyzing the technical potential and cost of reducing US energy-related greenhouse gas emissions, current policy base and National Energy Strategy actions, fiscal instruments, regulatory instruments, combined strategies and instruments, macroeconomic impacts, carbon taxation and international trade, a comparison to other studies.

Bradley, R A; Watts, E C; Williams, E R [eds.] [eds.

1991-09-01T23:59:59.000Z

210

Figure A1. Natural gas processing plant capacity in the United States, 2013 2012  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Figure A1. Natural gas processing plant capacity in the United States, 2013 2012 Table A2. Natural gas processing plant capacity, by state, 2013 (million cubic feet per day) Alabama 1,403 Arkansas 24 California 926 Colorado 5,450 Florida 90 Illinois 2,100 Kansas 1,818 Kentucky 240 Louisiana 10,737 Michigan 479 Mississippi 1,123

211

U.S. Liquefied Natural Gas Exports to United Kingdom  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

212

Testing the technical state of gas-transferring unit compressor cases and their repair under the conditions of compressor stations  

Science Journals Connector (OSTI)

Problems related to the use of nondestructive testing methods during engineering diagnostics of the cast cases of compressors that are used in gas-transfer units that operate in gas-main pipelines are considered....

I. I. Kryukov; N. A. Kalinin; S. A. Leont’ev…

2011-02-01T23:59:59.000Z

213

Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States  

Broader source: Energy.gov [DOE]

On May 29, 2014, the Department of Energy’s (DOE) Office of Fossil Energy announced the availability for public review and comment the report Life Cycle Greenhouse Gas Perspective on Exporting...

214

Kinetic mechanism of dimethyl ether production process using syngas from integrated gasification combined cycle power plant  

Science Journals Connector (OSTI)

In a 1-step synthesis gas-to-dimethyl ether process, synthesis gas is converted into dimethyl ether (DME) in a single reactor. Three reactions are involved in this process: methanol synthesis, methanol dehydra...

Hee-Woo Park; Jin-Kuk Ha; Euy Soo Lee

2014-07-01T23:59:59.000Z

215

The desulfurization of flue gas at the Mae Moh Power Plant Units 12 and 13  

SciTech Connect (OSTI)

As pollution of air, water and ground increasingly raises worldwide concern, the responsible national and international authorities establish and issue stringent regulations in order to maintain an acceptable air quality in the environment. In Thailand, the Electricity Generating Authority of Thailand (EGAT) takes full responsibility in environmental protection matters as well as in generating the electricity needed to supply the country`s very rapid power demand growth. Due to the rapidly increasing electricity demand of the country, EGAT had decided to install two further lignite-fired units of 300 MW each (Units 12 and 13) at the Mae Moh power generation station and they are now under construction. The arrangement and the capacity of all the power plant units are as shown. In 1989, EGAT started the work on the flue gas desulfurization system of Mae Moh power plant units 12 and 13 as planned. A study has been conducted to select the most suitable and most economical process for flue gas desulfurization. The wet scrubbing limestone process was finally selected for the two new units. Local limestone will be utilized in the process, producing a by-product of gypsum. Unfortunately, natural gypsum is found in abundance in Thailand, so the produced gypsum will be treated as landfill by mixing it with ash from the boilers of the power plants and then carrying it to the ash dumping area. The water from the waste ash water lake is utilized in the process as much as possible to minimize the requirement of service water, which is a limited resource. The Mae Moh power generation station is situated in the northern region of Thailand, 600 km north of Bangkok and about 30 km east of the town of Lampang, close to the Mae Moh lignite mine. Three lignite-fired units (Units 1-3) of 75 MW each, four units (Units 4-7) of 150 MW each and four units (Units 8-11) of 300 MW each are in operation.

Haemapun, C.

1993-12-31T23:59:59.000Z

216

Optimizing the start-up operations of combined cycle power plants using soft computing methods  

Science Journals Connector (OSTI)

......Energy, New technologies and sustainable Economic development Agency...Detection in Gas Turbines using Fuzzy...fusion for gas turbine power plants...Research Development Center Technical...Energy, New technologies and sustainable Economic development Agency...combination of a gas turbine and a steam......

Ilaria Bertini; Matteo De Felice; Alessandro Pannicelli; Stefano Pizzuti

2012-08-01T23:59:59.000Z

217

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico States Gulf of Mexico States Gulf of Mexico States The Gulf of Mexico area, which includes the States of Texas, Louisiana, Mississippi, Alabama, and Florida, has in the past accounted for the majority of natural gas production. Processing plants are especially important in this part of the country because of the amount of NGLs in the natural gas produced and existence of numerous petro-chemical plants seeking that feedstock in this area. Consequently, the States along the Gulf of Mexico are home to the largest number of plants and the most processing capacity in the United States. Natural gas produced in this area of the country is typically rich in NGLs and requires processing before it is pipeline-quality dry natural gas. Offshore natural gas production can contain more than 4 gallons of

218

EIA Data: 2011 United States Oil and Gas Supply | OpenEI  

Open Energy Info (EERE)

Oil and Gas Supply Oil and Gas Supply Dataset Summary Description This dataset is the 2011 United States Oil and Gas Supply, part of the Annual Energy Outlook that highlights changes in the AEO Reference case projections for key energy topics. Source EIA Date Released December 16th, 2010 (3 years ago) Date Updated Unknown Keywords AEO EIA energy gas oil Supply Data application/vnd.ms-excel icon Oil and Gas Supply (xls, 32.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment http://www.eia.gov/abouteia/copyrights_reuse.cfm Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote

219

CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants  

SciTech Connect (OSTI)

To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunities and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.

NONE

2007-01-15T23:59:59.000Z

220

Development of Gas Turbine Combustors for Low BTU Gas  

Science Journals Connector (OSTI)

Large-capacity combined cycles with high-temperature gas turbines burning petroleum fuel or LNG have already ... the other hand, as the power generation technology utilizing coal burning the coal gasification com...

I. Fukue; S. Mandai; M. Inada

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Combined-Cycle Power Generation — A Promising Alternative for the Generation of Electric Power from Coal  

Science Journals Connector (OSTI)

The classic concept of generating electric power from a fossil energy source (coal, oil, gas) comprises the following essential process steps (Fig. 1): Combustion of coal and g...

Eberhard Nitschke

1987-01-01T23:59:59.000Z

222

An evaluation of integrated-gasification-combined-cycle and pulverized-coal-fired steam plants: Volume 1, Base case studies: Final report  

SciTech Connect (OSTI)

An evaluation of the performance and costs for a Texaco-based integrated gasification combined cycle (IGCC) power plant as compared to a conventional pulverized coal-fired steam (PCFS) power plant with flue gas desulfurization (FGD) is provided. A general set of groundrules was used within which each plant design was optimized. The study incorporated numerous sensitivity cases along with up-to-date operating and cost data obtained through participation of equipment vendors and process developers. Consequently, the IGCC designs presented in this study use the most recent data available from Texaco's ongoing international coal gasification development program and General Electric's continuing gas turbine development efforts. The Texaco-based IGCC has advantages over the conventional PCFS technology with regard to environmental emissions and natural resource requirements. SO/sub 2/, NOx, and particulate emissions are lower. Land area and water requirements are less for IGCC concepts. Coal consumption is less due to the higher plant thermal efficiency attainable in the IGCC plant. The IGCC plant also has the capability to be designed in several different configurations, with and without the use of natural gas or oil as a backup fuel. This capability may prove to be particularly advantageous in certain utility planning and operation scenarios. 107 figs., 114 tabs.

Pietruszkiewicz, J.; Milkavich, R.J.; Booras, G.S.; Thomas, G.O.; Doss, H.

1988-09-01T23:59:59.000Z

223

Natural Gas Processing Plants in the United States: 2010 Update / Appendix  

Gasoline and Diesel Fuel Update (EIA)

Appendix Appendix The preceding report is the most comprehensive report published by the EIA on natural gas processing plants in the United States. The data in the report for the year 2008 were collected on Form EIA-757, Natural Gas Processing Survey Schedule A, which was fielded to EIA respondents in the latter part of 2008 for the first time. This survey was used to collect information on the capacity, status, and operations of natural gas processing plants and to monitor constraints of natural gas processing plants during periods of supply disruption in areas affected by an emergency, such as a hurricane. EIA received authorization to collect information on processing plants from the Office of Management and Budget in early 2008. The form consists of two parts, Schedule A and Schedule B. Schedule A is

224

EIS-0428: Department of Energy Loan Guarantee for Mississippi Integrated Gasification Combined Cycle, Moss Point, Mississippi  

Broader source: Energy.gov [DOE]

This EIS evaluates the environmental impacts of a petroleum coke-to-substitute natural gas facility proposed to be built by Mississippi Gasification. The facility would be designed to produce 120 million standard cubic feet of gas per day. Other products would be marketable sulfuric acid, carbon dioxide, argon, and electric power.

225

Is Integrated Gasification Combined Cycle with Carbon Capture-Storage the Solution for Conventional Coal Power Plants  

E-Print Network [OSTI]

Engineering Management Field Project Is Integrated Gasification Combined Cycle with Carbon Capture-Storage the Solution for Conventional Coal Power Plants By Manish Kundi Fall Semester, 2011 An EMGT Field Project report... 2.4 Environmental Aspects-Emissions 23 3.0 Procedure & Methodology 3.1 Working technology – Conventional Coal Plants 30 3.2 Working technology – IGCC Power Plants 32 3.3 Carbon Capture and Storage 35 3...

Kundi, Manish

2011-12-16T23:59:59.000Z

226

Generation risk assessment in volatile conditions with wind, hydro, and natural gas units  

Science Journals Connector (OSTI)

This paper studies a generating company (GENCO)’s midterm (a few months to a year) scheduling payoffs and risks in volatile operating conditions. The proposed algorithm considers the integration of intermittent wind units into a GENCO’s generation assets and coordinates the GENCO’s hourly wind generation schedule with that of natural gas (NG) units (with volatile gas prices) and hydro units (with water inflow forecast) for maximizing the GENCO’s payoff. The proposed midterm GENCO model applies market price forecasts to the risk-constrained stochastic price-based unit commitment (PBUC) for calculating the GENCO’s risk in energy and ancillary services markets. The proposed PBUC minimizes the cost of (a) NG contracts, storage, startup and shutdown, (b) startup and shutdown of cascaded hydro units, and (c) penalty for defaulting on the scheduled power delivery. Simulation results show that the diversification of generating assets including bilateral contracts (BCs) could enhance the GENCO’s midterm planning by increasing the expected payoff and decreasing the financial risk.

Cem Sahin; Mohammad Shahidehpour; Ismet Erkmen

2012-01-01T23:59:59.000Z

227

Oil and Gas Wells: Rules Relating to Spacing, Pooling, and Unitization  

Broader source: Energy.gov (indexed) [DOE]

Wells: Rules Relating to Spacing, Pooling, and Wells: Rules Relating to Spacing, Pooling, and Unitization (Minnesota) Oil and Gas Wells: Rules Relating to Spacing, Pooling, and Unitization (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting The Department of Natural Resources is given the authority to create and promulgate regulations related to spacing, pooling, and utilization of oil

228

Simulation and optimization of hot syngas separation processes in integrated gasification combined cycle  

E-Print Network [OSTI]

IGCC with CO2 capture offers an exciting approach for cleanly using abundant coal reserves of the world to generate electricity. The present state-of-the-art synthesis gas (syngas) cleanup technologies in IGCC involve ...

Prakash, Kshitij

2009-01-01T23:59:59.000Z

229

Thermodynamics of combined-cycle electric power plants Harvey S. Leffa)  

E-Print Network [OSTI]

of thermodynamics and technology, modern gas and steam turbines can be coupled, to effect dramatic efficiency to examine reversible heat engine models. One learns that the maximum efficiency of a heat engine operating gcarnot engineering

230

Optimizing the start-up operations of combined cycle power plants using soft computing methods  

Science Journals Connector (OSTI)

......keeping the life-time consumption of the more critically...1200 s) the rotor engine velocity of the gas...1170029416] Y2 Fuel consumption (Kg) [53000230330...minimize time minimize fuel consumption maximize energy production......

Ilaria Bertini; Matteo De Felice; Alessandro Pannicelli; Stefano Pizzuti

2012-08-01T23:59:59.000Z

231

Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasifiction combined sycle (IGCC) power plant with CO2 capture  

SciTech Connect (OSTI)

Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.

Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

232

This section presents systems analyses of integrated gasification fuel cell (IGFC) combined cycles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

30, 2007 30, 2007 The Benefits of SOFC for Coal-Based Power Generation Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States

233

EIS-0429: Department of Energy Loan Guarantee for Indiana Integrated Gasification Combined Cycle, Rockport, IN  

Broader source: Energy.gov [DOE]

This EIS evaluates the environmental impacts of a coal-to-substitute natural gas facility proposed to be built in Rockport, IN by Indiana Gasification. The facility would utilize Illinois Basin coal. Other products would be marketable sulfuric acid, argon, and electric power.

234

Federal Register Notice for Addendum to Environmental Review Documents Concerning Exports of Natural Gas from the United States  

Broader source: Energy.gov [DOE]

The Office of Fossil Energy (FE) of the Department of Energy (DOE) announces the availability of the Addendum To Environmental Review Documents Concerning Exports Of Natural Gas From The United...

235

A Study of the Causes of the Service Fracture of Turbine Rotor Blade of Compressor Station Gas-Turbine Unit  

Science Journals Connector (OSTI)

On the basis of structural and fractographic the analysis of the fractured surface of working turbine blade of GTK-10-2 gas-turbine unit of compressor station it is established...

A. Ya. Krasovs’kyi; O. E. Gopkalo; I. O. Makovets’ka; O. O. Yanko

2013-07-01T23:59:59.000Z

236

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

Comments Comments Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement Clark County Public Library Winchester, KY Page 1 of 5 D-1 Comment No. 1 Issue Code: 11 Gasification is different from incineration. It is a better, more environmentally responsible approach to generating energy from the use of fossil fuels and refuse derived fuel (RDF). Incineration produces criteria pollutants, semi-volatile and volatile organic compounds and dioxin/furan compounds. Ash from hazardous waste incinerators is considered a hazardous waste under the Resource Conservation and Recovery Act (RCRA). In contrast, gasification, which occurs at high temperatures and pressures, produces no air emissions, only small amounts of wastewater containing salts. Synthesis gas (syngas)

237

NETL: News Release - First Commercial Application of Advanced Natural Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

February 19, 2004 February 19, 2004 First Commercial Application of Advanced Natural Gas Turbine Announced Turbine Developed Through Department of Energy's Advanced Turbine Systems Program GE Energy has announced that the world's first application of their next-generation 7H gas turbine technology will be an 800-megawatt class, combined-cycle project with Hydro-Quebec Production. The new natural-gas-fired power plant, to be built at Beauharnois, Quebec, southwest of Montreal, will be based on two GE 107H combined-cycle systems. The plant is expected to enter commercial service in mid 2007. The 7H gas turbine is one of two H System gas turbines developed by GE Energy as part of the U.S. Department of Energy's advanced turbine systems program. The Hydro-Quebec plant will be the first commercial application of the 60-hertz 7H, the H System turbine suitable for use in the United States and Canada. The 50-hertz 9H, suitable for the overseas market, got its commercial start in 2003 at the Baglan Bay Power Station in Wales, UK. The Baglan Bay plant has received a number of prestigious industry awards for its use of the innovative H System turbine.

238

Corrective action decision document, Second Gas Station, Tonopah test range, Nevada (Corrective Action Unit No. 403)  

SciTech Connect (OSTI)

This Corrective Action Decision Document (CADD) for Second Gas Station (Corrective Action Unit [CAU] No. 403) has been developed for the U.S. Department of Energy`s (DOE) Nevada Environmental Restoration Project to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO) of 1996 as stated in Appendix VI, {open_quotes}Corrective Action Strategy{close_quotes} (FFACO, 1996). The Second Gas Station Corrective Action Site (CAS) No. 03-02-004-0360 is the only CAS in CAU No. 403. The Second Gas Station CAS is located within Area 3 of the Tonopah Test Range (TTR), west of the Main Road at the location of former Underground Storage Tanks (USTs) and their associated fuel dispensary stations. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada, by air and approximately 56 km (35 mi) southeast of Tonopah, Nevada, by road. The TTR is bordered on the south, east, and west by the Nellis Air Force Range and on the north by sparsely populated public land administered by the Bureau of Land Management and the U.S. Forest Service. The Second Gas Station CAS was formerly known as the Underground Diesel Tank Site, Sandia Environmental Restoration Site Number 118. The gas station was in use from approximately 1965 to 1980. The USTs were originally thought to be located 11 meters (m) (36 feet [ft]) east of the Old Light Duty Shop, Building 0360, and consisted of one gasoline UST (southern tank) and one diesel UST (northern tank) (DOE/NV, 1996a). The two associated fuel dispensary stations were located northeast (diesel) and southeast (gasoline) of Building 0360 (CAU 423). Presently the site is used as a parking lot, Building 0360 is used for mechanical repairs of vehicles.

NONE

1997-11-01T23:59:59.000Z

239

An approach for assessing engineering risk from shale gas wells in the United States  

Science Journals Connector (OSTI)

Abstract In response to a series of “energy crises” in the 1970s, the United States government began investigating the potential of unconventional, domestic sources of energy to offset imported oil. Hydraulic fracturing applied to vertical tight sand and coal bed methane wells achieved some degree of success during a period of high energy prices in the early 1980s, but shale gas remained largely untapped until the late 1990s with the application of directional drilling, a mature technology adapted from deepwater offshore platforms that allowed horizontal wells to penetrate kilometers of organic-rich shale, and staged hydraulic fracturing, which created high permeability flowpaths from the horizontal wells into a much greater volume of the target formations than previous completion methods. These new engineering techniques opened up vast unconventional natural gas and oil reserves, but also raised concerns about potential environmental impacts. These include short-term and long-term impacts to air and water quality from rig operations, potential migration of gas, fluids and chemicals through the ground, and effects on small watersheds and landscapes from roads, pads and other surface structures. Engineering risk assessment commonly uses integrated assessment models (IAMs), which define sources of risk from features, events and processes. The risk from each system element is assessed using high-fidelity models. Output from these is simplified into reduced-order models, so that a large, integrated site performance assessment can be run using the IAM. The technique has been applied to engineered systems in geologic settings for sequestering carbon dioxide, and it is also applicable to shale gas, albeit with some modifications of the various system elements. Preliminary findings indicate that shale gas well drilling and hydraulic fracturing techniques are generally safe when properly applied. Incident reports recorded by state environmental agencies suggest that human error resulting from the disregard of prescribed practices is the greatest cause of environmental incidents. This can only be addressed through education, regulations and enforcement.

Daniel J. Soeder; Shikha Sharma; Natalie Pekney; Leslie Hopkinson; Robert Dilmore; Barbara Kutchko; Brian Stewart; Kimberly Carter; Alexandra Hakala; Rosemary Capo

2014-01-01T23:59:59.000Z

240

Coal diesel combined-cycle project. Annual report, January 1996--January 1997  

SciTech Connect (OSTI)

The Clean Coal Diesel project will demonstrate a new Clean Coal Technology that has technical, economic and environmental advantages over conventional power generating methods. This innovative technology enables utilization of coal-based fuel in large-bore, medium-speed, diesel engines. Modular power generating applications in the 10 to 100 megawatt size range are the target applications. The University of Alaska campus in Fairbanks, Alaska, is the project`s host site. At this location, the University will construct and operate the Clean Coal Diesel System, which will serve as a 6.2 MW diesel powerplant addition. The University will also assemble and operate a 5-ton per hour coal-water fuel processing plant. The plant will utilize local coal, brought by truck from Usibelli`s mine in Healey, AK. The estimated performance characteristics of the mature commercial embodiment of the Clean Coal Diesel, if achieved, will make this technology quite competitive: 48% efficiency; $1,300/kW installed cost; and emission levels controlled to 50--70% below New Source Performance Standards. Specific objectives are to demonstrate that the Coal Diesel Technology: is durable and can operate 6,000 hours in a realistic commercial setting; will meet efficiency targets; can effectively control criteria pollutants to levels that are well below anticipated standards, as well as reduce greenhouse gas emissions; and can accommodate substantial power demand swings.

NONE

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Are fluctuations in natural gas consumption per capita transitory? Evidence from time series and panel unit root tests  

Science Journals Connector (OSTI)

Abstract The stationary properties of natural gas consumption are essential for predicting the impacts of exogenous shocks on energy demand, which can help modeling the energy-growth nexus. Then, this paper proposes to investigate the panel unit root proprieties of natural gas energy consumption of 48 countries over the period of 1971–2010. We apply the Harvey et al. [69] linearity test in order to determine the type of the unit root tests (the Kruse (2010) nonlinear unit root or LM (Lagrange Multiplier) linear unit root tests). Our results show that the stationarity of natural gas consumption cannot be rejected for more than 60% of countries. In order to provide corroborating evidence, we employed not only the first and second generation panel unit root tests, but also the recent LM panel unit root test developed by Im et al. [28]. This test allows for structural breaks both in intercept and slope. The empirical findings support evidence in favor of stationarity of natural gas consumption for all panels. These results announce that any shock to natural gas consumption has a transitory impact for almost all countries implying that energy consumption will turn back to its time trend.

Muhammad Shahbaz; Naceur Khraief; Mantu Kumar Mahalik; Khair Uz Zaman

2014-01-01T23:59:59.000Z

242

United States natural gas markets, contracts and risks: What lessons for the European Union and Asia-Pacific natural gas markets?  

Science Journals Connector (OSTI)

Abstract The article examines the natural gas markets of the United States, the European Union and the Asia-Pacific region and their regulation and contractual structures. The article?s main focus is on the United States natural gas markets. The European Union and Asia-Pacific markets are compared to this more developed market. By comparing the physical and ideological characteristics of, and differences between, the three main international gas markets, the article exposes the limits of regulatory and contractual transplants in this area of law and policy. Each of these markets is unique, which limits the opportunities for modelling certain market institutions on the basis of the more developed markets in the United States. This applies for both the EU and the Asia-Pacific region.

Kim Talus

2014-01-01T23:59:59.000Z

243

Table 1. Summary statistics for natural gas in the United States, 2007-2011  

Gasoline and Diesel Fuel Update (EIA)

Table 1. Summary statistics for natural gas in the United States, 2007-2011 See footnotes at end of table. Number of Wells Producing at End of Year 452,945 476,652 493,100 487,627 514,637 Production (million cubic feet) Gross Withdrawals From Gas Wells R 14,991,891 R 15,134,644 R 14,414,287 R 13,247,498 12,291,070 From Oil Wells R 5,681,871 R 5,609,425 R 5,674,120 R 5,834,703 5,907,919 From Coalbed Wells R 1,999,748 R 2,022,228 R 2,010,171 1,916,762 1,779,055 From Shale Gas Wells 1,990,145 R 2,869,960 R 3,958,315 5,817,122 8,500,983 Total 24,663,656 25,636,257 26,056,893 R 26,816,085 28,479,026 Repressuring 3,662,685 3,638,622 3,522,090 3,431,587 3,365,313 Vented and Flared 143,457 166,909 165,360

244

Coupled flow and geomechanical analysis for gas production in the Prudhoe Bay Unit L-106 well Unit C gas hydrate deposit in Alaska  

E-Print Network [OSTI]

Hydrate deposits that are desirable gas production targets almost invari- ably involve coarse, unlithified, unconsolidated media (such as sands

Kim, J.

2014-01-01T23:59:59.000Z

245

Optimization and the effect of steam turbine outlet quality on the output power of a combined cycle power plant  

Science Journals Connector (OSTI)

Abstract A narrow path exists to a sustainable solution which passes through careful steps of efficiency improvement (resource management) and provides environmental friendly energies. Thermal power plants are more common in many power production sites around the world. Therefore, in this current research study a comprehensive thermodynamic modeling of a combined cycle power plant with dual pressure heat recovery steam generator is presented. Since the steam turbine outlet quality is a restrictive parameter, optimization of three cases with different steam quality are conducted and discussed. In other hand, energy and exergy analysis of each components for these three different cases estimated and compared. Obtained results show that it is really important to keep the quality of the vapor at turbine outlet constant in 88% for the results to be more realistic and also optimization and data are more technically feasible and applicable.

A. Ganjehkaviri; M.N. Mohd Jaafar; S.E. Hosseini

2015-01-01T23:59:59.000Z

246

Thermochemical Gasification of Biomass: Fuel Conversion, Hot Gas Cleanup and Gas Turbine Combustion  

Science Journals Connector (OSTI)

Air-blown fluidized bed biomass gasification integrated with a gas- and steam turbine combined cycle (BIGCC) is a potentially attractive way to convert biomass into electricity and heat with a high efficiency.

J. Andries; W. de Jong; P. D. J. Hoppesteyn…

2002-01-01T23:59:59.000Z

247

Natural Gas Processing Plants in the United States: 2010 Update / National  

Gasoline and Diesel Fuel Update (EIA)

National Overview National Overview Processing Plant Utilization Data collected for 2009 show that the States with the highest total processing capacity are among the States with the highest average utilization rates. This is to be expected as most of the plants are located in production areas that have been prolific for many years. In fact, the five States situated along the Gulf of Mexico accounted for nearly 49 percent of total processing volume in 2009. The total utilization rate in the United States averaged 66 percent of total capacity in 2009 (Table 2). Plants in Alaska ran at 86 percent of total capacity during the year, the highest capacity utilization rate in the country. Texas had significant utilization capacity at 71 percent, for an average of 14 Bcf per day of natural gas in 2009. However, a number of

248

Reductions of NO{sub x} emissions on oil and gas firing at Bowline Unit 1  

SciTech Connect (OSTI)

In response to the NYSDEC, Part 227 regulations for the emissions of nitrogen oxides (NO{sub x}), Orange and Rockland Utilities, Inc. (ORU) and Burns & Roe Company (BRC) evaluated the options available to reduce the NO{sub x} emissions at two oil and gas fired units at Bowline Point Generating Station. Replacement of all of the existing burners with new low NO{sub x} burners and possibly overfire air ports presents the most costly method of achieving this goal. Therefore, other methods of NO{sub x} reduction were considered including utilizing some form of off-stoichiometric, burners out of service (BOOS), firing. It was determined that the stringent emission limits could be met utilizing off-stoichiometric firing techniques. New oil gun atomizer tips allowing off-stoichiometric firing with mechanical atomization and swirlers of a new design are replacing the existing atomizers. The new hardware eliminates the problems of opacity while operating with off-stoichiometric firing.

Paschedag, A.E.; Martinsen, R.A.; O`Sullivan, R.C.; Schmidt, D.W. [and others

1996-01-01T23:59:59.000Z

249

Influence of Turbine Inlet Temperature on the Efficiency of Externally Fired Gas Turbines  

Science Journals Connector (OSTI)

Many researchers have considered externally fired gas turbines (EFGT) as an option for the ... . The EFGT cycle with regeneration or the gas-vapor combined cycle using one EFGT, also ... is used to investigate th...

Paulo Eduardo Batista de Mello…

2014-01-01T23:59:59.000Z

250

Domestic equipment for the development of gas-turbine based power engineering  

Science Journals Connector (OSTI)

A brief analysis of characteristics and specific features of foreign gas-turbine installations is presented. Prospects of introduction of combined-cycle and gas-turbine technologies in power engineering of Rus...

G. G. Ol’khovskii

2008-06-01T23:59:59.000Z

251

Modeling of the rock bed thermal energy storage system of a combined cycle solar thermal power plant in South Africa  

Science Journals Connector (OSTI)

Abstract A thermocline-based rock bed thermal energy storage system potentially offers a cheap and simple way of achieving dispatchability in an air-cooled central receiver CSP plant. In order to efficiently match heliostat field size, storage dimensions, back-up fuel consumption and turbine sizes for non-stop power generation and economic feasibility, year-long power plant simulations have to be run. This paper focuses on the storage as the center of in- and outgoing thermal energy. The derived storage model has one spatial dimension which is justified by the high tube-to-particle diameter ratio and because yearly aggregated – and not momentary – values are of interest. A validation of the correlations with data from the literature shows acceptable agreement. Sensitivity analyses indicate that, due to low costs of the storage system, above certain minimum storage dimensions, the influence on energetic and monetary performance indicators is marginal. The calculated LCOE is in the range of 0.11–0.18 EUR/kW h and in agreement with other studies on combined cycle CSP plants.

Lukas Heller; Paul Gauché

2013-01-01T23:59:59.000Z

252

The effects of potential changes in United States beef production on global grazing systems and greenhouse gas emissions  

E-Print Network [OSTI]

and greenhouse gas emissions Jerome Dumortier1 , Dermot J Hayes2 , Miguel Carriquiry2 , Fengxia Dong3 , Xiaodong in the U.S. causes a net increase in GHG emissions on a global scale. We couple a global agricultural production in the United States. The effects on emissions from agricultural production (i.e., methane

Zhou, Yaoqi

253

Eco Logic International gas-phase chemical reduction process: The thermal desorption unit. Applications analysis report. Final report  

SciTech Connect (OSTI)

The report details the Superfund Innovative Technology Evaluation of the Eco Logic International`s gas-phase chemical reduction process, with an emphasis on their thermal desorption unit. The Eco Logic process employs a high temperature reactor filled with hydrogen as a means to destroy chlorinated organic wastes. The process is designed around a reduction reaction, which reduces the organic wastes into a high-BTU gas product. The thermal desorption unit is designed to work in conjunction with the Eco Logic Reactor system. It is intended to process soils and sludges, desorbing the organic contaminants into a hydrogen gas stream for subsequent treatment and destruction within the Reactor System. The demonstration program was conducted at the Middleground Island Landfill in Bay City, Michigan during October to December, 1992. The report provides details of the test program, summaries of analytical tests conducted on a variety of process streams, process economics, and case study information.

Sudell, G.

1994-09-01T23:59:59.000Z

254

Table B1. Summary Statistics for Natural Gas in the United States, Metric Equivalents, 2002-2006  

Gasoline and Diesel Fuel Update (EIA)

5 5 Table B1. Summary Statistics for Natural Gas in the United States, Metric Equivalents, 2002-2006 See footnotes at end of table. Number of Gas and Gas Condensate Wells Producing at End of Year .................................. 387,772 393,327 406,147 R 425,887 448,641 Production (million cubic meters) Gross Withdrawals From Gas Wells .............................................. 503,894 506,356 506,454 R 494,748 508,075 From Oil Wells ................................................ 174,047 176,617 172,292 R 169,476 157,583 Total ................................................................. 677,942 682,973 678,746 R 664,223 665,657 Repressuring .................................................... 97,839 100,462 104,819 R 104,759 92,453 Vented and Flared

255

Hot-Gas Filter Testing with a Transport Reactor Gasifier  

SciTech Connect (OSTI)

Today, coal supplies over 55% of the electricity consumed in the United States and will continue to do so well into the next century. One of the technologies being developed for advanced electric power generation is an integrated gasification combined cycle (IGCC) system that converts coal to a combustible gas, cleans the gas of pollutants, and combusts the gas in a gas turbine to generate electricity. The hot exhaust from the gas turbine is used to produce steam to generate more electricity from a steam turbine cycle. The utilization of advanced hot-gas particulate and sulfur control technologies together with the combined power generation cycles make IGCC one of the cleanest and most efficient ways available to generate electric power from coal. One of the strategic objectives for U.S. Department of Energy (DOE) IGCC research and development program is to develop and demonstrate advanced gasifiers and second-generation IGCC systems. Another objective is to develop advanced hot-gas cleanup and trace contaminant control technologies. One of the more recent gasification concepts to be investigated is that of the transport reactor gasifier, which functions as a circulating fluid-bed gasifier while operating in the pneumatic transport regime of solid particle flow. This gasifier concept provides excellent solid-gas contacting of relatively small particles to promote high gasification rates and also provides the highest coal throughput per unit cross-sectional area of any other gasifier, thereby reducing capital cost of the gasification island.

Swanson, M.L.; Hajicek, D.R.

2002-09-18T23:59:59.000Z

256

Interdependency of electricity and natural gas markets in the United States : a dynamic computational model  

E-Print Network [OSTI]

Due to high storage costs and limited storage availability, natural gas is generally used as a just-in- time resource that needs to be delivered as it is consumed. With the shale gas revolution, coal retirements and ...

Jenkins, Sandra Elizabeth

2014-01-01T23:59:59.000Z

257

Cooled turbine blades in the GTÉ-65 gas turbine power unit  

Science Journals Connector (OSTI)

Experience with the development, study, and manufacturing of cooled blades for the GTÉ-65 high temperature gas turbine is described.

V. V. Rtishchev; V. V. Krivonosova; Yu. M. Sundukov…

2009-11-01T23:59:59.000Z

258

Robert H. Williams (United States) CONTRIBUTING AUTHORS: Matthew Bunn (United States), Stefano Consonni (Italy),  

E-Print Network [OSTI]

-term goal. The technological revolution under way in power generation-- where advanced systems are replacing steam turbine tech- nologies--supports this long-term goal. Natural-gas-fired combined cycles offering towards the long-term goal of near-zero air pollutant and greenhouse gas emissions--without complicated

259

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...and conventional gas are not significantly...harmonized estimates of life cycle GHG emissions...unconventional gas used for electricity...combined cycle turbine (NGCC) compared...explanation of the remaining harmonization...evaluated shale gas LCAs: inclusion of missing life cycle stages...

Garvin A. Heath; Patrick O’Donoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

260

Table B1. Summary Statistics for Natural Gas in the United States, Metric Equivalents, 2005-2009  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table B1. Summary Statistics for Natural Gas in the United States, Metric Equivalents, 2005-2009 See footnotes at end of table. Number of Wells Producing at End of Year .... 425,887 440,516 452,945 R 476,652 493,100 Production (million cubic meters) Gross Withdrawals From Gas Wells .............................................. 494,748 509,577 483,238 R 442,265 420,197 From Oil Wells ................................................ 169,476 156,860 164,759 R 162,742 164,611 From Coalbed Wells ....................................... NA NA 50,400 R 56,249 55,990 From Shale Gas Wells .................................... NA NA NA 64,682 95,811 Total ................................................................. 664,223 666,438 698,397 R 725,938 736,609

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Addendum To Environmental Review Documents Concerning Exports Of Natural Gas From The United States  

Broader source: Energy.gov [DOE]

The purpose of the Addendum is to provide additional information to the public regarding the potential environmental impacts of unconventional natural gas exploration and production activities. DOE...

262

How to quantify uncertainty and variability in life cycle assessment: the case of greenhouse gas emissions of gas power generation in the US  

Science Journals Connector (OSTI)

This study quantified the contributions of uncertainty and variability to the range of life-cycle greenhouse gas (LCGHG) emissions associated with conventional gas-fired electricity generation in the US. Whereas uncertainty is defined as lack of knowledge and can potentially be reduced by additional research, variability is an inherent characteristic of supply chains and cannot be reduced without physically modifying the system. The life-cycle included four stages: production, processing, transmission and power generation, and utilized a functional unit of 1 kWh of electricity generated at plant. Technological variability requires analyses of life cycles of individual power plants, e.g. combined cycle plants or boilers. Parameter uncertainty was modeled via Monte Carlo simulation. Our approach reveals that technological differences are the predominant cause for the range of LCGHG emissions associated with gas power, primarily due to variability in plant efficiencies. Uncertainties in model parameters played a minor role for 100 year time horizon. Variability in LCGHG emissions was a factor of 1.4 for combined cycle plants, and a factor of 1.3 for simple cycle plants (95% CI, 100 year horizon). The results can be used to assist decision-makers in assessing factors that contribute to LCGHG emissions despite uncertainties in parameters employed to estimate those emissions.

M Hauck; Z J N Steinmann; I J Laurenzi; R Karuppiah; M A J Huijbregts

2014-01-01T23:59:59.000Z

263

Measurements of methane emissions at natural gas production sites in the United States  

Science Journals Connector (OSTI)

...to a lower pressure destination...atmospheric pressure tank, rather...This lower pressure end point allows more gas to flow...such as a combustor. The nine unloading...population of high emitting wells...America’s Natural Gas Alliance...

David T. Allen; Vincent M. Torres; James Thomas; David W. Sullivan; Matthew Harrison; Al Hendler; Scott C. Herndon; Charles E. Kolb; Matthew P. Fraser; A. Daniel Hill; Brian K. Lamb; Jennifer Miskimins; Robert F. Sawyer; John H. Seinfeld

2013-01-01T23:59:59.000Z

264

Co-Production of Substitute Natural Gas/Electricity Via Catalytic Coal Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 Co-ProduCtion of SubStitute natural GaS / eleCtriCity via CatalytiC Coal GaSifiCation Description The United States has vast reserves of low-cost coal, estimated to be sufficient for the next 250 years. Gasification-based technology, such as Integrated Gasification Combined Cycle (IGCC), is the only environmentally friendly technology that provides the flexibility to co-produce hydrogen, substitute natural gas (SNG), premium hydrocarbon liquids including transportation fuels, and electric power in desired combinations from coal and other carbonaceous feedstocks. Rising costs and limited domestic supply of crude oil and natural gas provide a strong incentive for the development of coal gasification-based co-production processes. This project addresses the co-production of SNG and electricity from coal via gasification

265

Natural Gas Processing Plants in the United States: 2010 Update / National  

Gasoline and Diesel Fuel Update (EIA)

National Overview National Overview Btu Content The natural gas received and transported by the major intrastate and interstate mainline transmission systems must be within a specific energy (Btu) content range. Generally, the acceptable Btu content is 1,035 Btu per cubic foot, with an acceptable deviation of +/-50 Btu. However, when natural gas is extracted, its Btu content can be very different from acceptable pipeline specifications. The Btu content of natural gas extracted varies depending on the presence of water, NGLs, as well as CO2, nitrogen, helium, and others. Significant amounts of NGLs in natural gas is generally associated with higher Btu values. Consistent with this, Btu values reported by plants in Texas and other Gulf of Mexico States are comparatively high (Table 3). On

266

Automatic control systems for gas-turbine units in mini power stations: Testing automation at the stages of design and tuning  

Science Journals Connector (OSTI)

This paper presents the testing automation procedure for automatic control systems of gas-turbine units used as drives in small-size power stations. We substantiate the applicability of mathematical modeling...

B. V. Kavalerov

2013-11-01T23:59:59.000Z

267

Table B1. Summary Statistics for Natural Gas in the United States, Metric Equivalents, 2004-2008  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table B1. Summary Statistics for Natural Gas in the United States, Metric Equivalents, 2004-2008 See footnotes at end of table. Number of Wells Producing at End of Year .... 406,147 425,887 440,516 R 452,945 478,562 Production (million cubic meters) Gross Withdrawals From Gas Wells .............................................. 506,454 494,748 509,577 R 483,238 510,019 From Oil Wells ................................................ 172,292 169,476 156,860 R 164,759 165,506 From Coalbed Wells ....................................... NA NA NA 50,400 53,757 Total ................................................................. 678,746 664,223 666,438 R 698,397 729,282 Repressuring .................................................... 104,819 104,759

268

Table B1. Summary Statistics for Natural Gas in the United States, Metric Equivalents, 2003-2007  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table B1. Summary Statistics for Natural Gas in the United States, Metric Equivalents, 2003-2007 See footnotes at end of table. Number of Wells Producing at End of Year .... 393,327 406,147 425,887 R 440,516 452,768 Production (million cubic meters) Gross Withdrawals From Gas Wells .............................................. 506,356 506,454 494,748 R 509,577 530,629 From Oil Wells ................................................ 176,617 172,292 169,476 R 156,860 165,699 Total ................................................................. 682,973 678,746 664,223 R 666,438 696,328 Repressuring .................................................... 100,462 104,819 104,759 92,453 107,274 Vented and Flared ............................................

269

Tampa Electric Company, Polk Power Station Unit No. 1, preliminary public design report  

SciTech Connect (OSTI)

This preliminary Public Design Report (PDR) provides design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. This project is partially funded by the US Department of Energy (DOE) under Round III of its Clean Coal Technology (CCT) Program under the provisions of Cooperative Agreement between DOE and Tampa Electric Company, novated on March 5,1992. The project is highlighted by the inclusion of a new hot gas cleanup system. DOE`s project management is based at its Morgantown Energy Technology Center (METC) in West Virginia. This report is preliminary, and the information contained herein is subject to revision. Definitive information will be available in the final PDR, which will be published at the completion of detailed engineering.

NONE

1994-06-01T23:59:59.000Z

270

A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators  

E-Print Network [OSTI]

. Material: Four turbine- based ventilators and nine conventional servo-valve compressed-gas ventilators were1 A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators Arnaud W. Thille,1 MD; Aissam Lyazidi,1 Biomed Eng MS; Jean-Christophe M

Paris-Sud XI, Université de

271

Price Discovery in the Natural Gas Markets of the United States and Canada  

E-Print Network [OSTI]

of stored natural gas. Weather variations have an obvious effect on natural gas prices. According to U.S. Department of Energy (U.S. Department of Energy (U.S.DOE), 2003), natural gas demand during winter months is more than 1.5 times daily winter... Deviation Minimum (Date) Maximum (Date) Henry Huba 4.54 2.71 1.03 (12/04/1998) 19.38 (02/25/2003) Chicago 4.55 2.64 1.23 (12/04/1998) 23.00 (02/02/1996) New York 5.36 3.61 1.34 (12/04/1998) 55.00 (01/14/2004) Malin 4.22 2.97 0.93 (02...

Olsen, Kyle

2011-02-22T23:59:59.000Z

272

PROPERTY TABLES AND CHARTS (SI UNITS) Table A1 Molar mass, gas constant, and  

E-Print Network [OSTI]

.0943 Carbon monoxide CO 28.011 0.2968 133 3.50 0.0930 Carbon tetrachloride CCl4 153.82 0.05405 556.4 4.56 0 Table A­20 Ideal-gas properties of carbon dioxide, CO2 Table A­21 Ideal-gas properties of carbon.1355 n-Butane C4H10 58.124 0.1430 425.2 3.80 0.2547 Carbon dioxide CO2 44.01 0.1889 304.2 7.39 0

Kostic, Milivoje M.

273

Recoverable Natural Gas Resource of the United States: Summary of Recent Estimates  

Science Journals Connector (OSTI)

...Summary of Recent Estimates John B. Curtis 1 Scott L. Montgomery...montgomery@prodigy.net John B. Curtis is associate professor...Technology Institute (Holtberg and Cochener, 2001), the National Petroleum...the Potential Gas Committee: John D. Haun, David F. Morehouse...

John B. Curtis; Scott L. Montgomery

274

The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power Plants  

E-Print Network [OSTI]

1 The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power, Pennsylvania Presentation to the Natural Gas CCS Forum Washington, DC November 4, 2011 E.S. Rubin, Carnegie Mellon MotivationMotivation · Electric utilities again looking to natural gas combined cycle (NGCC

275

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Regional Analysis Regional Analysis Rocky Mountain States and California Rocky Mountain States and California The Rocky Mountain States, which include all of the States west of the Great Plains and Texas and those east of California, have seen significant natural gas production increases over the last decade. With the development of new production basins, including the San Juan Basin, Powder River Basin, and Green River Basin, natural gas processing capacity in this region has expanded significantly. In 2009, California and Rocky Mountain States accounted for a total of 16.9 Bcf per day or about 22 percent of total U.S. capacity. Since 2004, only California and New Mexico noted a decrease in overall processing capacity, falling by 17 and 12 percent, respectively. Processing capacity in all of the remaining States (Colorado, Montana, New

276

Natural Gas Processing Plants in the United States: 2010 Update / National  

Gasoline and Diesel Fuel Update (EIA)

National Overview National Overview Processing Capacity Processing plants are typically clustered close to major producing areas, with a high number of plants close to the Federal Gulf of Mexico offshore and the Rocky Mountain production areas (Figure 1). In terms of both the number of plants and processing capacity, about half of these plants are concentrated in the States along the Gulf of Mexico. Gulf States have been some of the most prolific natural gas producing areas. U.S. natural gas processing capacity showed a net increase of about 12 percent between 2004 and 2009 (not including the State of Alaska), with the largest increase occurring in Texas, where processing capacity rose by more than 4 Bcf per day. In fact, increases in Texas' processing capacity accounted for 57 percent of the total lower 48 States' capacity increase

277

Greenhouse Gas Emissions for Refrigerant Choices in Room Air Conditioner Units  

Science Journals Connector (OSTI)

In this work, potential replacement refrigerants for window-mounted room air conditioners (RACs) in the U.S. have been evaluated using a greenhouse gas (GHG) emissions analysis. ... De Kleine, R. D.; Keoleian, G. A.; Kelly, J. C.Optimal replacement of residential air conditioning equipment to minimize energy, greenhouse gas emissions, and consumer cost in the US Energy Policy 2011, 39, 3144– 3153 ... Most of the inventory data have been collected from Thailand, except for the upstream of fuel oil and fuel transmission, which have been computed from Greenhouse gases, Regulated Emissions, and Energy use in Transportation version 1.7 and Global Emission Model for Integrated Systems version 4.3. ...

Michael D. Galka; James M. Lownsbury; Paul Blowers

2012-11-08T23:59:59.000Z

278

Natural Gas Processing Plants in the United States: 2010 Update / Table 1  

Gasoline and Diesel Fuel Update (EIA)

1. Natural Gas Processing Plant Capacity by State 1. Natural Gas Processing Plant Capacity by State Natural Gas Processing Capacity (Million Cubic Feet per Day) Number of Natural Gas Plants Average Plant Capacity (Million Cubic Feet per Day) Change Between 2004 and 2009 State 2009 Percent of U.S. Total 2009 Percent of U.S. Total 2004 2009 Capacity (Percent) Number of Plants Texas 19,740 25.5 163 33.1 95 121 24.7 -3 Louisiana 18,535 23.9 60 12.2 271 309 12.3 -1 Wyoming 7,273 9.4 37 7.5 154 197 5.1 -8 Colorado 3,791 4.9 44 8.9 49 86 81.1 1 Oklahoma 3,740 4.8 58 11.8 58 64 8.8 -1 New Mexico 3,022 3.9 24 4.9 137 126 -11.8 -1 Mississippi 2,273 2.9 4 0.8 262 568 44.6 -2 Illinois 2,102 2.7 2 0.4 1101 1,051 -4.6 0 Kansas 1,250 1.6 6 1.2 353 208 -64.6 -4 Alabama 1,248 1.6 12 2.4 87 104 -4.7 -3 Utah 1,185 1.5 12 2.4 61 99 22.2 -4 Michigan 977 1.3 10 2.0 30 98 102.2 -6 California 876 1.1 20 4.1 43 44 -15.5 -4 Arkansas 710 0.9 4 0.8 10 178

279

Economics of residential gas furnaces and water heaters in United States new construction market  

SciTech Connect (OSTI)

New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2009-05-06T23:59:59.000Z

280

Table B1. Summary statistics for natural gas in the United States, metric equivalents, 2008-2012  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Table B1. Summary statistics for natural gas in the United States, metric equivalents, 2008-2012 See footnotes at end of table. Number of Wells Producing at End of Year 476,652 493,100 487,627 514,637 482,822 Production (million cubic meters) Gross Withdrawals From Gas Wells 428,565 408,167 375,127 348,044 360,663 From Oil Wells 158,841 160,673 165,220 167,294 140,725 From Coalbed Wells 57,263 56,922 54,277 50,377 43,591 From Shale Gas Wells 81,268 112,087 164,723 240,721 291,566 Total 725,938 737,849 759,347 806,436 836,545 Repressuring 103,034 99,734 97,172 95,295 92,304 Vented and Flared 4,726 4,682 4,699 5,931 6,027 Nonhydrocarbon Gases Removed 20,351 20,431 23,693 24,577 21,573

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Tampa Electric Company Polk Power Station Unit Number 1. Annual report, January--December, 1993  

SciTech Connect (OSTI)

This report satisfies the requirements of Cooperative Agreement DE-FC21-91MC27363, novated as of March 5, 1992, to provide an annual update report on the year`s activities associated with Tampa Electric Company`s 250 MW IGCC demonstration project for the year 1993. Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Approximately 50% of the raw, hot syngas is cooled to 900 F and passed through a moving bed of zinc-based sorbent which removes sulfur containing compounds from the syngas. The remaining portion of the raw, hot syngas is cooled to 400 F for conventional acid gas removal. Sulfur-bearing compounds from both cleanup systems are sent to a conventional sulfuric acid plant to produce a marketable, high-purity sulfuric acid by-product. The cleaned medium-BTU syngas from these processes is routed to the combined cycle power generation system where it is mixed with air and burned in the combustion section of the combustion turbine. Heat is extracted from the expanded exhaust gases in a heat recovery steam generator (HRSG) to produce steam at three pressure levels for use throughout the integrated process. A highly modular, microprocessor-based distributed control system (DCS) is being developed to provide continuous and sequential control for most of the equipment on PPS-1.

Not Available

1994-08-01T23:59:59.000Z

282

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network [OSTI]

gasification with combined cycles biological oxygen demandsintegrated gasification combined cycle Intergovernmentalbe integrated with combined-cycle (CC) technology (BLGCC),

Kong, Lingbo

2014-01-01T23:59:59.000Z

283

FLNG compared to LNG carriers - Requirements and recommendations for LNG production facilities and re-gas units.  

E-Print Network [OSTI]

??An increasing price and demand for natural gas has made it possible to explore remote gas fields. Traditional offshore production platforms for natural gas have… (more)

Aronsson, Erik

2012-01-01T23:59:59.000Z

284

Top-down and bottom-up estimates of CO2 storage capacity in the United Kingdom sector of the southern North Sea basin  

Science Journals Connector (OSTI)

...formations oil and gas fields, if any...on the injection strategy, the reservoir properties...except in oil- and gas-bearing regions...Combined Cycle Gas Turbine power plant. Their...has been a prolific gas-producing basin...gas fields under development. This is realistic...

Sam Holloway; Ceri J. Vincent; Michelle S. Bentham; Karen L. Kirk

285

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Midwestern and Eastern States Midwestern and Eastern States Midwestern and Eastern States Midwestern and Eastern States combined accounted for about 13 percent of total U.S. processing capacity in 2009, accounting for the smallest portion of any region in the lower 48 States. The combined processing capacity in these States more than doubled, although a few of the States saw decreased capacity compared with 2004. Processing capacity in Illinois, Kansas, North Dakota, and Pennsylvania fell since 2004, with the highest decrease occurring in Kansas, which saw a 65 percent drop in processing capacity. At the same time, the number of plants in Kansas decreased by four. The decrease was likely the result of falling natural gas proved reserves, which decreased in this State between 1995 and 2005. While the proved reserves have

286

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Regional Analysis Regional Analysis Alaska Alaska The State of Alaska had the third-largest processing capacity, trailing only Texas and Louisiana. While much of the natural gas processed in Alaska does not enter any transmission system and is instead re-injected into reservoirs, its processing capability is nonetheless significant. At 9.5 Bcf per day of processing capacity, the State of Alaska accounted for about 12 percent of total U.S. capacity. As of 2009, there were a total of 4 plants in the State, with the largest one reporting a capacity of 8.5 Bcf per day. Average plant size of 2.4 Bcf per day far exceeded any other State, with Illinois noting the next largest average plant size of 1.1 Bcf per day. In addition to the significant processing total capacity, plants in

287

Operator Trainer System for the Petrobras P-26 Semi-Submersible Oil and Gas Production Unit  

Science Journals Connector (OSTI)

Abstract Operator trainer systems aim to improve operator performance, by simulating scenarios such as emergency conditions, thus reducing accidents and increasing processes economical results. In this paper, we present PETROBRAS' Oil & Gas Production Process and Utilities Simulator Environment called AMBTREI (Training Environment) that mimics the actual Control Room of an E&P semi-submersible Platform at a very high fidelity level. This training environment was created utilizing Soteica's Operator Training System solution (S-OTS). The dynamic process model will be described as well as the Process Control Interface that was implemented. The software used will be explained in detail and the conclusions that have been reached in almost 2 years of use will be presented.

A.C. Pereira; A. Riera; G. Padilla; E. Musulin; N.J. Nakamura

2009-01-01T23:59:59.000Z

288

Development of a micro-cogeneration laboratory and testing of a natural gas CHP unit based on PEM fuel cells  

Science Journals Connector (OSTI)

Abstract This work discusses the design and the development of a Laboratory of Micro-Cogeneration (LMC) at Politecnico di Milano. The LMC laboratory is a unique structure devoted to small-scale power generation, with the main goals of testing and improving the performance of systems that produce or utilize electric and thermal (hot and/or cold) power in a very general sense, spanning from combined heat and power (CHP) units to heaters, from absorption chillers to heat pumps, but also able to perform tests on fuel processors and electrolyzers. The laboratory features a supply of natural gas as well as H2 and O2 from a high pressure electrolyzer and of CO, CO2 and N2 from bottles, permitting to carry out experiments with simulated synthesis fuels. The maximum allowable electrical power produced, exported to the grid or to an electronic loadbank, or consumed by the system under test is 100 kW; maximum allowable thermal power is roughly 200 kW with variable temperature water circuits (from chilled water up to a 150 °C at 8 bar superheated water loop). This work outlines also the instruments used for on-line recording of thermodynamic properties, emissions and power, aiming at monitoring and reconstructing mass and energy balances. One of the first experimental campaign has been carried out on a CHP system based on polymer electrolyte membrane fuel cells (PEM), a promising candidate for distributed CHP thanks to low pollutant emissions and good efficiency, rapid startup and flexibility, although affected by a rather complex fuel processing section to provide the appropriate fuel to the PEM. This work presents the experimental analysis of a 20 kW prototype PEM CHP system complete of natural gas processor. The prototype is operated at LMC to characterize the processing section and the thermodynamic performances of the overall system. Despite its non-optimized layout, the unit has shown encouraging total efficiency (76%) and primary energy saving index (6%).

S. Campanari; G. Valenti; E. Macchi; G. Lozza; N. Ravidà

2014-01-01T23:59:59.000Z

289

Natural Gas Processing Plants in the United States: 2010 Update / Table 2  

Gasoline and Diesel Fuel Update (EIA)

2. Average Annual Flows and Utilization Rates for Processing Plants in the United States 2. Average Annual Flows and Utilization Rates for Processing Plants in the United States Average Annual Flows (Million Cubic Feet per Day) Minimum Plant Utilization Rate Maximum Plant Utilization Rate Average Utilization Rate (Percent) 2008 Percent of U.S. Total Texas 14,020 27.3 3 100 71 Louisiana 10,462 20.4 3 100 56 Alaska 8,105 15.8 77 100 86 Wyoming 4,462 8.7 21 100 61 Colorado 2,934 5.7 15 100 77 Oklahoma 2,789 5.4 12 100 75 New Mexico 2,221 4.3 17 95 73 Illinois 1,601 3.1 35 76 76 Kansas 852 1.7 51 84 68 Alabama 746 1.5 32 80 60 Utah 728 1.4 22 100 61 Mississippi 688 1.3 29 67 30 California 557 1.1 2 100 64 West Virginia 382 0.7 70 91 82 Kentucky 217 0.4 40 92 75 Michigan 182 0.4 5 100 19 North Dakota 158 0.3 33 94 80 Montana 89 0.2 27 88 54 Pennsylvania 36 0.1 43 89 70 Arkansas 27 0.1 3 90 4 Florida 20 0.0 22 22 22 Tennessee 16 0.0 64 64 64 TOTAL U.S. 51,289 100.0 2 100 66 Note: Average utilization rates are based on 2008 flows and 2009 capacity,

290

Combined cycle power plants: A comparison between two different dynamic models to evaluate transient behaviour and residual life  

Science Journals Connector (OSTI)

Abstract The deregulated energy market and the increasing quota of electrical capacity covered by non-predictable renewable sources require strongly irregular and discontinuous operation of thermoelectric plants to satisfy users demand and compensate the variability of renewable sources. As a consequence, due to thermo-mechanical fatigue, creep and corrosion, a lifetime reduction of the most critical components occurs. The availability of a procedure able to predict the residual life of plant devices is necessary to assist the management decisions about power plants’ operation and maintenance scheduling. The first step of this procedure is the capability of simulating the plant behaviour versus time by evaluating the trends of the main thermodynamic parameters that describe the plant operation during different transient periods. In this context, the main contribution of the present paper is to propose a complete procedure able to simulate the plant dynamic behaviour and estimate the residual life reduction of some components. Indeed, two different models, developed by two different research groups, of the same single pressure heat recovery steam generator unit are presented and utilized to characterize the dynamic behaviour of the above mentioned power plant. The main thermodynamic variables during different transient operation conditions are predicted and good correspondence between the two methods is obtained. It can be also noted that, when the geometry and size of the devices are considered, the thermal inertia related to heat exchangers tubes, pipes and other physical masses causes a delay in the system response. Moreover, a residual life estimation of the most stressed component is presented.

Alberto Benato; Anna Stoppato; Stefano Bracco

2014-01-01T23:59:59.000Z

291

A multi-level simulation platform of natural gas internal reforming solid oxide fuel cell–gas turbine hybrid generation system – Part II. Balancing units model library and system simulation  

Science Journals Connector (OSTI)

Following our integrated hierarchical modeling framework of natural gas internal reforming solid oxide fuel cell (IRSOFC), this paper firstly introduces the model libraries of main balancing units, including some state-of-the-art achievements and our specific work. Based on gPROMS programming code, flexible configuration and modular design are fully realized by specifying graphically all unit models in each level. Via comparison with the steady-state experimental data of Siemens–Westinghouse demonstration system, the in-house multi-level SOFC–gas turbine (GT) simulation platform is validated to be more accurate than the advanced power system analysis tool (APSAT). Moreover, some units of the demonstration system are designed reversely for analysis of a typically part-load transient process. The framework of distributed and dynamic modeling in most of units is significant for the development of control strategies in the future.

Cheng Bao; Ningsheng Cai; Eric Croiset

2011-01-01T23:59:59.000Z

292

Recent developments in gas turbine materials and technology and their implications for syngas firing  

Science Journals Connector (OSTI)

Gas turbine combined-cycle systems burning natural gas represent a reliable and efficient power generation technology that is widely used. A critical factor in their development was the rapid adaptation of aero-engine technology (single crystal airfoils, sophisticated cooling techniques, and thermal barrier coatings) in order to operate at the high rotor-inlet temperatures required for high efficiency generation. Early reliability problems have been largely overcome, so that this type of power generation system is now considered to be a mature technology capable of achieving high levels of availability. Current interest in replacing natural gas with gas derived from coal (syngas or hydrogen) in these gas turbine systems focuses attention on implications for the critical turbine components. In this paper, the development requirements for materials for critical hot gas-path parts in large gas turbines burning coal-derived syngas fuels are briefly considered in the context of the state-of-the-art in materials for engines burning natural gas. It is shown that, despite some difficult design issues, many of the materials used in current engines will be applicable to units burning syngas. However, there is the potential that the durability of some components may be prejudiced because of differences in the combustion environment (especially in terms of water vapor content, and possibly sulfur compounds and particulates). Consequently, effort to develop improved coatings to resist erosion and also attack by S-containing compounds may be necessary.

I.G. Wright; T.B. Gibbons

2007-01-01T23:59:59.000Z

293

" "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 8.3;" 3 Relative Standard Errors for Table 8.3;" " Unit: Percents." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," " " "," " ," " "NAICS Code(a)","Subsector and Industry","Establishments(b)","Establishments with Any Cogeneration Technology in Use(c)","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know"

294

Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units  

SciTech Connect (OSTI)

Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

2012-07-06T23:59:59.000Z

295

Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report  

SciTech Connect (OSTI)

A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

NONE

1996-03-01T23:59:59.000Z

296

Engineering support services for the DOE/GRI (Gas Research Institute) Coal Gasification Research Program: Quarterly report, March 28--June 26, 1987  

SciTech Connect (OSTI)

The following joint program projects comprised the scope of Foster Wheeler's current monitoring activities: KRW Energy System, Inc.-- Fluidized-Bed Gasification Process Development Unit (PDU), Madison, Pennsylvania. CNG Research Company--Acid Gas Removal System, Cleveland, Ohio. The test program in KRW's fluidized-bed gasifier PDU was resumed, following shutdown for winter maintenance. During this quarter, CNG completed construction on the new flash crystallizer PDU and started shakedown testing of the unit. Details of Foster Wheeler's monitoring activities on these projects are presented in Sections 3.0 and 4.0 of this report. Under the technical evaluation scope of modular integrated coal gasification combined cycle (IGCC) power systems. This study was authorized by DOE in mid-March 1987 and was initiated during the current period. Discussions on the status of the IGCC systems study is included in Section 5.0 of this report. 4 refs.

Mazzella, G.

1987-07-01T23:59:59.000Z

297

Reducing greenhouse gas emissions from deforestation : the United Nations Framework Convention on Climate Change and policy-making in Panama.  

E-Print Network [OSTI]

??The Framework Convention on Climate Change has yet to deal with tropical deforestation although it represents an important source of greenhouse gas emissions. In December… (more)

Guay, Bruno.

2007-01-01T23:59:59.000Z

298

,"Price of U.S. Liquefied Natural Gas Imports From The United Arab Emirates (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

The United Arab Emirates (Dollars per Thousand Cubic Feet)" The United Arab Emirates (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From The United Arab Emirates (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103ua3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103ua3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

299

Gas Turbine Manufacturers Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

300

Warm Gas Cleanup  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Warm Gas Cleanup Warm Gas Cleanup NETL Office of Research and Development Project Number: FWP-2012.03.03 Task 5 Project Description The Environmental Protection Agency (EPA) has established strict regulations for the trace contaminant emissions from integrated gasification combined cycle (IGCC) systems. The Department of Energy (DOE) performance goals for trace contaminant removal were selected to meet or exceed EPA's standard limits for contaminants, as well as to avoid poisoning of: the catalysts utilized in making liquids from fuel gas the electrodes in fuel cells selective catalytic reduction (SCR) catalysts The objective of the NETL's ORD Warm Gas Cleanup project is to assist in achieving both DOE and EPA targets for trace contaminant capture from coal gasification, while preserving the high thermal efficiency of the IGCC system. To achieve this, both lab and pilot-scale research is underway to develop sorbents capable of removing the following contaminants from high temperature syngas (up to 550°F):

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Addendum to the Closure Report for Corrective Action Unit 403: Second Gas Station, Tonopah Test Range, Nevada, Revision 0  

SciTech Connect (OSTI)

This document constitutes an addendum to the Closure Report for Corrective Action Unit 403: Second Gas Station, Tonopah Test Range, Nevada, September 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: • This page that refers the reader to the SIR document for additional information • The cover, title, and signature pages of the SIR document • The NDEP approval letter • The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the UR for CAS 03-02-004-0360, Underground Storage Tanks. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was reevaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above the risk-based FALs. Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at this site will be removed. Fencing and posting may be present at this site that are unrelated to the FFACO UR such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at this site.

Grant Evenson

2009-05-01T23:59:59.000Z

302

Natural gas and efficient technologies: A response to global warming  

SciTech Connect (OSTI)

It has become recognized by the international scientific community that global warming due to fossil fuel energy buildup of greenhouse CO{sub 2} in the atmosphere is a real environmental problem. Worldwide agreement has also been reached to reduce CO{sub 2} emissions. A leading approach to reducing CO{sub 2} emissions is to utilize hydrogen-rich fuels and improve the efficiency of conversion in the power generation, transportation and heating sectors of the economy. In this report, natural gas, having the highest hydrogen content of all the fossil fuels, can have an important impact in reducing CO{sub 2} emissions. This paper explores natural gas and improved conversion systems for supplying energy to all three sectors of the economy. The improved technologies include combined cycle for power generation, the Carnol system for methanol production for the transportation sector and fuel cells for both power generation and transportation use. The reduction in CO{sub 2} from current emissions range from 13% when natural gas is substituted for gasoline in the transportation sector to 45% when substituting methanol produced by the Carnol systems (hydrogen from thermal decomposition of methane reacting with CO{sub 2} from coal-fired power plants) used in the transportation sector. CO{sub 2} reductions exceeding 60% can be achieved by using natural gas in combined cycle for power generation and Carnol methanol in the transportation sector and would, thus, stabilize CO{sub 2} concentration in the atmosphere predicted to avoid undue climate change effects. It is estimated that the total fossil fuel energy bill in the US can be reduced by over 40% from the current fuel bill. This also allows a doubling in the unit cost for natural gas if the current energy bill is maintained. Estimates of the total net incremental replacement capital cost for completing the new improved equipment is not more than that which will have to be spent to replace the existing equipment conducting business as usual.

Steinberg, M.

1998-02-01T23:59:59.000Z

303

Reforming Brazil?s offshore oil and gas safety regulatory framework: Lessons from Norway, the United Kingdom and the United States  

Science Journals Connector (OSTI)

Abstract We propose reforming the Brazilian regulatory safety framework (BRSF) for offshore oil and gas production and drilling operations. Brazil has emerged as a leading offshore producer with extensive proven reserves yet to be exploited. However, the BRSF has not been updated since 2007, and there are now major concerns about the industry?s safety, particularly after the BP Deepwater Horizon accident, along with the technical challenges due to extreme conditions under which Brazil?s resources are located. Drawing on experiences from three leading offshore oil and gas producers (Norway, the UK, and the US), we recommend the adoption of three best practices: the UK?s ‘safety case’ approach (where operators are expected to provide convincing and valid arguments that a system is sufficiently safe for a given application in a specific environment), Norway?s ‘barrier management’ (evidence that there are at least two tested and independent barriers to avoid accidents) and greater investment in safety research and development, as suggested by the US?s National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling. We discuss implications for policy reform and how best practices can be applied within the Brazilian context.

Pietro A.S. Mendes; Jeremy Hall; Stelvia Matos; Bruno Silvestre

2014-01-01T23:59:59.000Z

304

Building commissioning: a golden opportunity for reducing energy costs and greenhouse gas emissions in the United States  

Science Journals Connector (OSTI)

Commissioning is arguably the single most cost-effective strategy for reducing energy, costs, and greenhouse gas emissions in buildings today. Although commissioning has earned increased recognition in recent ...

Evan Mills

2011-05-01T23:59:59.000Z

305

Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across the Continental United States  

Broader source: Energy.gov [DOE]

Data analysis from this study will provide insight into real-world performance of current emissions reduction devices, under various operating conditions, and with respect to greenhouse gas emissions.

306

Shale Gas Glossary | Department of Energy  

Office of Environmental Management (EM)

Glossary Shale Gas Glossary Shale Gas Glossary More Documents & Publications Natural Gas from Shale: Questions and Answers Modern Shale Gas Development in the United States: A...

307

An overview of current and future sustainable gas turbine technologies  

Science Journals Connector (OSTI)

In this work an overview of current and future sustainable gas turbine technologies is presented. In particular, the various gas turbine technologies are described and compared. Emphasis has been given to the various advance cycles involving heat recovery from the gas turbine exhaust, such as, the gas to gas recuperation cycle, the combined cycle, the chemical recuperation cycle, the Cheng cycle, the humid air turbine cycle, etc. The thermodynamic characteristics of the various cycles are considered in order to establish their relative importance to future power generation markets. The combined cycle technology is now well established and offers superior to any of the competing gas turbine based systems, which are likely to be available in the medium term for large-scale power generation applications. In small-scale generation, less than 50 MWe, it is more cost effective to install a less complex power plant, due to the adverse effect of the economics of scale. Combined cycle plants in this power output range normally have higher specific investment costs and lower electrical efficiencies but also offer robust and reliable performance. Mixed air steam turbines (MAST) technologies are among the possible ways to improve the performance of gas turbine based power plants at feasible costs (e.g. peak load gas turbine plants).

Andreas Poullikkas

2005-01-01T23:59:59.000Z

308

Studying the advisability of using gas-turbine unit waste gases for heating feed water in a steam turbine installation with a type T-110/120-12.8 turbine  

Science Journals Connector (OSTI)

Results of calculation studying of a possibility of topping of a steam-turbine unit (STU) with a type T-110/120-12.8 turbine of the Urals Turbine Works (UTZ) by a gas-turbine unit (GTU) of 25-MW capacity the wast...

A. D. Trukhnii; G. D. Barinberg; Yu. A. Rusetskii

2006-02-01T23:59:59.000Z

309

Computational and experimental test of self starting regimes for the in-house needs of the PGU-450 steam-gas unit at the Kaliningrad TÉTs-2 Heating and Power Plant during supply disruptions  

Science Journals Connector (OSTI)

The major stages of a computational test of the self starting regimes for the in-house needs of unit No. 1 of the 450 MW steam-gas unit at the Kaliningrad TÉTs-2 Heating and Electric Power Plant during supply ...

S. N. Sakharov; V. A. Kuz’michev

2008-05-01T23:59:59.000Z

310

Development of hot corrosion resistant coatings for gas turbines burning biomass and waste derived fuel gases  

Science Journals Connector (OSTI)

Carbon dioxide emission reductions are being sought worldwide to mitigate climate change. These need to proceed in parallel with optimisation of thermal efficiency in energy conversion systems on economic grounds to achieve overall sustainability. The use of renewable energy is one strategy being adopted to achieve these needs; with one route being the burning of biomass and waste derived fuels in the gas turbines of highly efficient, integrated gasification combined cycle (IGCC) electricity generating units. A major factor to be taken into account with gas turbines using such fuels, compared with natural gas, is the potentially higher rates of hot corrosion caused by molten trace species which can be deposited on hot gas path components. This paper describes the development of hot corrosion protective coatings for such applications. Diffusion coatings were the basis for coating development, which consisted of chemical vapour deposition (CVD) trials, using aluminising and single step silicon-aluminising processes to develop new coating structures on two nickel-based superalloys, one conventionally cast and one single crystal (IN738LC and CMSX-4). These coatings were characterised using SEM/EDX analysis and their performance evaluated in oxidation and hot corrosion screening tests. A variant of the single step silicon-aluminide coating was identified as having sufficient oxidation/hot corrosion resistance and microstructural stability to form the basis for future coating optimisation.

A. Bradshaw; N.J. Simms; J.R. Nicholls

2013-01-01T23:59:59.000Z

311

Fuel option for gas turbine  

SciTech Connect (OSTI)

Growth in electricity demand is an average of 10% per year. Energy, emission, and economy are importance of critical concerns for generating systems. Therefore, combined cycle power plant is preferred to Electricity Generating Authority of Thailand (EGAT) new power generating capacity. The various option of available fuel for gas turbine are natural gas, liquid fuel and coal fuel. Particularly with the tremendous price increases in imported and domestic fuel supplies, natural gas is an attractive low cost alternative for power generation. EGAT has researched using heavy fuel instead of natural gas since the year 1991. The problems of various corrosion characteristics have been found. In addition, fuel treatment for gas turbine are needed, and along with it, the environmental consideration are options that provide the limitation of environmental regulation.

Tantayakom, S. [Electricity Generating Authority of Thailand, Nonthaburi (Thailand). Chemical and Analysis Dept.

1995-12-31T23:59:59.000Z

312

Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies  

E-Print Network [OSTI]

larger ships, new combined cycle or diesel-electric engines,Fuel efficiency optimization, Combined cycle operation and2005; MARINTEK 2000). Combined-cycle diesel engines, which

McCollum, David L; Gould, Gregory; Greene, David L

2010-01-01T23:59:59.000Z

313

Demonstration of natural gas reburn for NO{sub x} emissions reduction at Ohio Edison Company`s cyclone-fired Niles Plant Unit Number 1  

SciTech Connect (OSTI)

Electric utility power plants account for about one-third of the NO{sub x} and two-thirds of the SO{sub 2} emissions in the US cyclone-fired boilers, while representing about 9% of the US coal-fired generating capacity, emit about 14% of the NO{sub x} produced by coal-fired utility boilers. Given this background, the Environmental Protection Agency, the Gas Research Institute, the Electric Power Research Institute, the Pittsburgh Energy Technology Center, and the Ohio Coal Development Office sponsored a program led by ABB Combustion Engineering, Inc. (ABB-CE) to demonstrate reburning on a cyclone-fired boiler. Ohio Edison provided Unit No. 1 at their Niles Station for the reburn demonstration along with financial assistance. The Niles Unit No. 1 reburn system was started up in September 1990. This reburn program was the first full-scale reburn system demonstration in the US. This report describes work performed during the program. The work included a review of reburn technology, aerodynamic flow model testing of reburn system design concepts, design and construction of the reburn system, parametric performance testing, long-term load dispatch testing, and boiler tube wall thickness monitoring. The report also contains a description of the Niles No. 1 host unit, a discussion of conclusions and recommendations derived from the program, tabulation of data from parametric and long-term tests, and appendices which contain additional tabulated test results.

Borio, R.W.; Lewis, R.D.; Koucky, R.W. [ABB Power Plant Labs., Windsor, CT (United States)] [ABB Power Plant Labs., Windsor, CT (United States); Lookman, A.A. [Energy Systems Associates, Pittsburgh, PA (United States)] [Energy Systems Associates, Pittsburgh, PA (United States); Manos, M.G.; Corfman, D.W.; Waddingham, A.L. [Ohio Edison, Akron, OH (United States)] [Ohio Edison, Akron, OH (United States); Johnson, S.A. [Quinapoxet Engineering Solutions, Inc., Windham, NH (United States)] [Quinapoxet Engineering Solutions, Inc., Windham, NH (United States)

1996-04-01T23:59:59.000Z

314

Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process  

SciTech Connect (OSTI)

The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of the gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char cyclonefiltration hybrid unit in the E-Gas (TM) gasification process. These reductions would help to keep the E-Gas (TM) technology competitive among other coal-fired power generation technologies. The Wabash combined cyclone and gas filtration slipstream test program was developed to provide design information, equipment specification and process control parameters of a hybrid cyclone and candle filter particulate removal system in the E-Gas (TM) gasification process that would provide the optimum performance and reliability for future commercial use. The test program objectives were as follows: 1. Evaluate the use of various cyclone materials of construction; 2. Establish the optimal cyclone efficiency that provides stable long term gas filter operation; 3. Determine the particle size distribution of the char separated by both the cyclone and candle filters. This will provide insight into cyclone efficiency and potential future plant design; 4. Determine the optimum filter media size requirements for the cyclone-filtration hybrid unit; 5. Determine the appropriate char transfer rates for both the cyclone and filtration portions of the hybrid unit; 6. Develop operating procedures for the cyclone-filtration hybrid unit; and, 7. Compare the installed capital cost of a scaled-up commercial cyclone-filtration hybrid unit to the current gas filtration design without a cyclone unit, such as currently exists at the Wabash facility.

Rizzo, Jeffrey J. [Phillips66 Company, West Terre Haute, IN (United States)

2010-04-30T23:59:59.000Z

315

Resource Limits and Conversion Efficiency with Implications for Climate Change  

E-Print Network [OSTI]

using Integrated Gasification Combined Cycle (IGCC) plants.Natural gas-fired combined cycle plants can be converted toand more efficient combined-cycle plants. Combined cycle

Croft, Gregory Donald

2009-01-01T23:59:59.000Z

316

Thermodynamic modelling of three-stage combined cycle power systems utilising ammonia-water mixture as a working fluid in bottoming cycle  

Science Journals Connector (OSTI)

In this study, two three-stage combined power cycles with ammonia-water mixture in bottoming cycle are introduced; one with variable ammonia fraction and the other with constant ammonia fraction. Energy and exergy analyses are carried out and optimal parameters of the proposed cycles are compared with the conventional power cycles. The second law efficiency of three-stage cycles with variable and constant ammonia fraction are 4.71% and 5.15% higher than steam-gas combined power cycle, respectively. Exergy flow diagram for each cycle is presented and exergy destruction of all components is investigated. Results quantitatively highlight the thermodynamic advantages of the proposed cycles in comparison with the conventional cycles. Three-stage cycle with constant ammonia fraction has the best performance in comparison with the others.

Amin Momeni; Hossein Shokouhmand

2014-01-01T23:59:59.000Z

317

Defining a Standard Metric for Electricity Savings  

E-Print Network [OSTI]

an advanced natural gas combined cycle (typical for recentlyoil Gas turbine Natural gas Combined cycle Distillateoil Combined cycle Natural gas New plants Steam turbine,

Koomey, Jonathan

2009-01-01T23:59:59.000Z

318

Compliance with revised acid rain monitoring requirements for gas and oil fired units: Appendix D and E of Part 75  

SciTech Connect (OSTI)

EPA`s CEM rule (40 CFR Part 75) implements the monitoring provisions of Title IV of the Clean Air Act Amendments of 1990. In most cases Part 75 requires utilities to monitor sulfur dioxide (SO{sub 2}), nitrogen oxide (NO{sub x}) and carbon dioxide emissions (CO{sub 2}), and volumetric flow and opacity using Continuous Emissions Monitoring Systems (CEMS). Appendix D and E of 40 CFR Part 75 provide alternatives to using Continuous Emissions Monitoring Systems (CEMS) to comply with the monitoring requirements of Title IV of the Clean Air Act. EPA is considering a number of changes to Part 75, including significant changes to Appendix D and E. Part 75 was originally promulgated on January 11, 1993. Due to both experience gained in the implementation of Phase 1 and the early implementation of Phase 2 and petitions filed by several groups, EPA has prepared a number of changes to Part 75. This paper discusses what EPA anticipates these changes will be and how EPA anticipates that these changes will affect the regulated community. In addition, it discusses EPA`s expectations for certification applications for units using Appendix D and E.

Sheppard, M.; Culligan, K. [EPA, Washington, DC (United States). Acid Rain Div.

1995-12-31T23:59:59.000Z

319

Deepwater Oil & Gas Resources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

320

Fuel gas conditioning process  

DOE Patents [OSTI]

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Maximum Rebate $1,000 Program Info Start Date 01/01/2013 Expiration Date 04/30/2013 State Illinois Program Type Utility Rebate Program Rebate Amount ComEd Rebates Central Air Conditioner Unit 14 SEER or above: $350 Central Air Conditioner Unit Energy Star rated: $500 Nicor Gas, Peoples Gas and North Shore Gas Furnace: $200 - $500 (varies based on gas company and unit installed) Provider ComEd Energy ComEd, Nicor Gas, Peoples Gas and North Shore Gas are offering a Complete System Replacement Rebate Program to residential customers. The program is

322

Advanced industrial gas turbine technology readiness demonstration. Quarterly technical progress report No. 12, 1 December 1979-29 February 1980  

SciTech Connect (OSTI)

The component technology base required for improved industrial gas turbine conversion efficiency is discussed. Specific goals are to demonstrate the high-pressure compressor and turbine cooling technologies required to achieve industrial gas turbine efficiencies of 34 to 36% simple cycle and 45 to 48% in combined cycle operation while reducing the number of compressor and turbine parts 80% over state-of-the-art units. The approach involves combining some of the most advanced aircraft turbine cooling and high-pressure compressor technology with the simplicity and ruggedness required of industrial engines to achieve not only improved performance, but also increased durability and low initial cost. The program currently consists of two phases. Phase I, which has been completed, included the conceptual definition of an industrial gas turbine capable of meeting the above goals and the aerothermodynamic designs of compressor and turbine component test rigs. Phase II, which is in progress, consists of component validation testing of the high-pressure compressor and turbine cooling designs which evolved in Phase I. During this quarter, work continued on Phase II, Task III - Compressor Rig Assembly and Test. Assembly of the compressor rig has been completed and final preparation of the rig for transporting to the test facility is in progress.

none,

1980-03-20T23:59:59.000Z

323

Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation  

E-Print Network [OSTI]

Outline of 145 MW Combined Cycle Power Plant for KawasakiGas Firing Gas Turbine Combined Cycle Plant,” Journal ofgasifier/gas turbine combined cycle technology and its

Bailey, Owen; Worrell, Ernst

2005-01-01T23:59:59.000Z

324

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

IGCC Integrated gasification combined cycle IID ImperialCorporation NGCC Natural gas combined-cycle NGCT Natural gas79% from natural gas combined cycle (NGCC) power plants, and

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

325

Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy  

E-Print Network [OSTI]

from new natural gas combined-cycle plants. • High RPS (come from new natural gas combined-cycle plants. Hydrogenand natural gas combined cycle capacity additions, we

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

326

Integrated production of fuel gas and oxygenated organic compounds from synthesis gas  

DOE Patents [OSTI]

An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.

Moore, Robert B. (Allentown, PA); Hegarty, William P. (State College, PA); Studer, David W. (Wescosville, PA); Tirados, Edward J. (Easton, PA)

1995-01-01T23:59:59.000Z

327

Shale gas production: potential versus actual greenhouse gas emissions  

E-Print Network [OSTI]

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O’Sullivan, Francis Martin

328

Natural Gas Weekly Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

at multiple commercial-scale Integrated Gasification Combined Cycle (IGCC) clean coal power plants. The FutureGen concept announced in 2003 planned the creation of a...

329

Chapter 7 - Gas Turbine Fuel Systems and Fuels  

Science Journals Connector (OSTI)

Abstract The basics of a gas turbine fuel system are similar for all turbines. The most common fuels are natural gas, LNG (liquid natural gas), and light diesel. With appropriate design changes, the gas turbine has proved to be capable of handling residual oil, pulverized coal, syngas from coal and various low BTU fluids, both liquid and gas, that may be waste streams of petrochemical processes or, for instance, gas from a steel (or other industry) blast furnace. Handling low BTU fuel can be a tricky operation, requiring long test periods and a willingness to trade the savings in fuel costs with the loss of turbine availability during initial prototype full load tests. This chapter covers gas turbine fuel systems and includes a case study (Case 5) on blast furnace gas in a combined cycle power plant (CCPP). “All truths are easy to understand once they are discovered, the point is to discover them.” —Plato

Claire Soares

2015-01-01T23:59:59.000Z

330

Energy Management in Olefins Units  

E-Print Network [OSTI]

to the point where waste heat from pyrolysis generates more than enough steam to power the olefins unit recovery section. Furthermore, incorporating gas turbine driven electrical generators or process compressors adds to the utility export potential of the unit...

Wells, T. A.

1982-01-01T23:59:59.000Z

331

Spatial and Temporal Impacts on Water Consumption in Texas from Shale Gas Development and Use  

Science Journals Connector (OSTI)

Spatial and Temporal Impacts on Water Consumption in Texas from Shale Gas Development and Use ... Despite the water intensity of hydraulic fracturing, recent life cycle analyses have concluded that increased shale gas development will lead to net decreases in water consumption if the increased natural gas production is used at natural gas combined cycle power plants, shifting electricity generation away from coal-fired steam cycle power plants. ... This work expands on these studies by estimating the spatial and temporal patterns of changes in consumptive water use in Texas river basins during a period of rapid shale gas development and use in electricity generation from August 2008 through December 2009. ...

Adam P. Pacsi; Kelly T. Sanders; Michael E. Webber; David T. Allen

2014-06-24T23:59:59.000Z

332

Molecular Gas, AGN Feedback and the Unusual Case of K. A. Alatalo (UC, Berkeley), T. A. Davis (Oxford University, United King-  

E-Print Network [OSTI]

Molecular Gas, AGN Feedback and the Unusual Case of NGC1266 K. A. Alatalo (UC, Berkeley), T. A effort. It remarkably hosts about 109 M of molecular gas and has a spectrum that exhibits extended wings and revealed that the bulk of the gas is concentrated within 100 pc of the nucleus. Combined with the presence

Bureau, Martin

333

United States of Agriculture  

E-Print Network [OSTI]

United States Department of Agriculture Forest Service Rocky Mountain Research Station Proceedings Research Station. 130 p. Declinesinhabitatofgreatersage, grazing practices, changes in wildfire regimes, increased spread of invasive species, gas and oil

334

Wood Burning Combined Cycle Power Plant  

E-Print Network [OSTI]

ESL-IE-84-04-136 Proceedings from the Sixth Annual Industrial Energy Technology Conference Volume II, Houston, TX, April 15-18, 1984 _ HEAT EXCHANGER RETURN AIR mlM SPILL FLOW INNER PIPE INSULATiON 1737'F HEATSHIELD Illlll'F \\ ...~.......- 826... ESL-IE-84-04-136 Proceedings from the Sixth Annual Industrial Energy Technology Conference Volume II, Houston, TX, April 15-18, 1984 _ HEAT EXCHANGER RETURN AIR mlM SPILL FLOW INNER PIPE INSULATiON 1737'F HEATSHIELD Illlll'F \\ ...~.......- 826...

Culley, J. W.; Bourgeois, H. S.

1984-01-01T23:59:59.000Z

335

Forecast of Advanced Technology Adoption for Coal Fired Power Generation Towards the Year of 2050  

Science Journals Connector (OSTI)

The considered systems of coal fired power generation are Supercritical Unit, Ultra Supercritical Unit, ... . In order to compare with the natural gas case, Natural Gas Combined Cycle (NGCC) is included. Evaluati...

Keiji Makino

2013-01-01T23:59:59.000Z

336

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

E-Print Network [OSTI]

scenarios) k. Integrated gasification combined cycle (IGCC)fuels via pyrolysis, gasification, and biochemicalAnalysis: Integrated Gasification Combined Cycle (IGCC)

Greenblatt, Jeffery B.

2014-01-01T23:59:59.000Z

337

1 - Introduction to gas turbines  

Science Journals Connector (OSTI)

Abstract: This chapter provides an overview of the importance of gas turbines for the power generation and oil and gas sector and – in less detail – the aviation sector. Worldwide trends in power generation and electricity conversion processes and the role of gas turbines to minimise CO2 emissions are addressed. Gas turbines are essential and crucial to reduce emissions both in aviation and in power production. Technologies for improving gas turbine and system efficiency, through higher turbine inlet temperatures, improved materials, cooling methods and thermal barrier coatings are described. New thermodynamic approaches, including intercooling, water and steam injection and hybrid cycles are addressed. Major issues are also fuel and operational flexibility, reliability and availability, cost reduction and power density, especially for the offshore sector. Market trends have been sketched. In the coming decades, gas turbines will be one of the major technologies for CO2 emission reductions in the power generation, aviation, oil and gas exploration and transport sectors. This prognosis is based on their high current efficiency and further efficiency improvement potential, both for simple cycle as for combined-cycle applications.

A.J.A. Mom

2013-01-01T23:59:59.000Z

338

United States Department of  

E-Print Network [OSTI]

play an important role in a national program for reducing greenhouse gas emissions. The conversion potential through conversion of nonforest land to forest land and through the management of forest lands and sinks in the United States can be identified. International treaties on greenhouse gas reduction require

339

Design of advanced fossil-fuel systems (DAFFS): a study of three developing technologies for coal-fired, base-load electric power generation. Integrated coal gasification/combined cycle power plant with Texaco gasification process  

SciTech Connect (OSTI)

The objectives of this report are to present the facility description, plant layouts and additional information which define the conceptual engineering design, and performance and cost estimates for the Texaco Integrated Gasification Combined Cycle (IGCC) power plant. Following the introductory comments, the results of the Texaco IGCC power plant study are summarized in Section 2. In Section 3, a description of plant systems and facilities is provided. Section 4 includes pertinent performance information and assessments of availability, natural resource requirements and environmental impact. Estimates of capital costs, operation and maintenance costs and cost of electricity are presented in Section 5. A Bechtel Group, Inc. assessment and comments on the designs provided by Burns and Roe-Humphreys and Glasgow Synthetic Fuel, Inc. are included in Section 6. The design and cost estimate reports which were prepared by BRHG for those items within their scope of responsibility are included as Appendices A and B, respectively. Appendix C is an equipment list for items within the BGI scope. The design and cost estimate classifications chart referenced in Section 5 is included as Appendix D. 8 references, 17 figures, 15 tables.

Not Available

1983-06-01T23:59:59.000Z

340

Gas vesicles.  

Science Journals Connector (OSTI)

...these costs can be compared is in units of energy expenditure per time (joules per second...requires 7.24 x 10-18 kg of Gvp. The energy cost of making this protein, Eg, is...Eg = 2.84 x 101- o J. The rate of energy expenditure in gas vesicle synthesis then...

A E Walsby

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network [OSTI]

integrated gasification combined cycle plants, and measuresrate of a new combined-cycle natural gas generator.displaces natural gas combined- cycle generation, and RPS

Chen, Cliff; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

342

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

IGCC PC advanced coal-wind hybrid combined cycle power plantnatural gas combined cycle gas turbine power plant carboncrude gasification combined cycle power plant with carbon

Phadke, Amol

2008-01-01T23:59:59.000Z

343

Water Challenges for Geologic Carbon Capture and Sequestration  

E-Print Network [OSTI]

represents natural gas combined cycle, PC Sub and PC Superintegrated gasi?cation combined cycle (IGCC) plants withand natural gas combined cycle (NGCC) with amine capture (

Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

2010-01-01T23:59:59.000Z

344

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network [OSTI]

such as natural gas combined cycle (NGCC) or solid oxidewind, natural gas combined cycle (NGCC), natural gascoal integrated gasi?cation combined cycle (IGCC), and coal

Yang, Christopher

2008-01-01T23:59:59.000Z

345

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

Electricity Natural gas combined cycle and renewablecoal gasification combined cycle with carbon captureand storage Natural gas combined cycle Price change and

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

346

Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications  

E-Print Network [OSTI]

ethanol; NGCC = natural gas combined-cycle; BIGCC =gasification combined-cycle. P ART III U NCERTAINTY Aaverage, (ii) natural gas combined-cycle (NGCC), (iii) coal

Plevin, Richard Jay

2010-01-01T23:59:59.000Z

347

Strategies for Mitigating the Reduction in Economic Value of Variable Generation with Increasing Penetration Levels  

E-Print Network [OSTI]

Puga. The importance of combined cycle generating plants inthe assumption that new combined cycle gas turbines (CCGTs)Ancillary services Combined cycle gas turbine Concentrating

Mills, Andrew

2014-01-01T23:59:59.000Z

348

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network [OSTI]

System Operator Combined cycle gas turbine Concentratingthe need to build new combined cycle natural gas plants. Atflat block, however, no new combined cycle plants need to be

Mills, Andrew D.

2014-01-01T23:59:59.000Z

349

The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS  

E-Print Network [OSTI]

Integrated Gasification Combined Cycle (IGCC) Power Plant.Analysis: Natural Gas Combined Cycle (NGCC) Power Plant.assessment of natural gas combined cycle power plant with

Sathre, Roger

2011-01-01T23:59:59.000Z

350

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

Electricity Natural gas combined cycle and renewablecoal gasification combined cycle with carbon captureand storage Natural gas combined cycle Price change and

2007-01-01T23:59:59.000Z

351

Federal Register Notice for Life Cycle Greenhouse Gas Perspective...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas from the United States (Life Cycle Analysis Greenhouse Gas Report, or LCA GHG Report) and invites the submission of comments. LifecycleGreenhouseGas.pdf More...

352

EIS-0140: Ocean State Power Project, Tennessee Gas Pipeline Company  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission prepared this statement to evaluate potential impacts of construction and operation of a new natural gas-fired, combined-cycle power plant which would be located on a 40.6-acre parcel in the town of Burrillville, Rhode Island, as well as construction of a 10-mile pipeline to transport process and cooling water to the plant from the Blackstone River and a 7.5-mile pipeline to deliver No. 2 fuel oil to the site for emergency use when natural gas may not be available. The Economic Regulatory Administration adopted the EIS on 7/15/1988.

353

An Evaluation of Gas Turbines for APFBC Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EVALUATION OF GAS TURBINES FOR APFBC POWER PLANTS EVALUATION OF GAS TURBINES FOR APFBC POWER PLANTS Donald L. Bonk U.S. DOE National Energy Technology Laboratory Morgantown, West Virginia eMail: dbonk@netl.doe.gov phone: (304) 285-4889 Richard E. Weinstein, P.E. Parsons Infrastructure & Technology Group Inc. Reading, Pennsylvania eMail: richard.e.weinstein@parsons.com phone: (610) 855-2699 Abstract This paper describes a concept screening evaluation of gas turbines from several manufacturers that assessed the merits of their respective gas turbines for advanced circulating pressurized fluidized bed combustion combined cycle (APFBC) applications. The following gas turbines were evaluated for the modifications expected for APFBC service: 2 x Rolls-Royce Industrial Trent aeroderivative gas turbine configurations; a 3 x Pratt & Whitney Turbo Power FT8 Twin-

354

Production Optimization in Shale Gas Reservoirs.  

E-Print Network [OSTI]

?? Natural gas from organic rich shales has become an important part of the supply of natural gas in the United States. Modern drilling and… (more)

Knudsen, Brage Rugstad

2010-01-01T23:59:59.000Z

355

Graphite-moderated, gas-cooled, and water-moderated, water-cooled reactors as power units in nuclearelectric power stations  

Science Journals Connector (OSTI)

The present article reviews a number of papers submitted at the Second International Conference on the Peaceful Uses of Atomic Energy bearing on water-cooled, water-moderated, graphite-moderated, and gas-coole...

Yu. I. Koryakin

1960-11-01T23:59:59.000Z

356

Natural Gas Reforming  

Broader source: Energy.gov [DOE]

Natural gas reforming is an advanced and mature production process that builds upon the existing natural gas pipeline delivery infrastructure. Today, 95% of the hydrogen produced in the United States is made by natural gas reforming in large central plants. This technology is an important pathway for near-term hydrogen production.

357

United States  

Gasoline and Diesel Fuel Update (EIA)

United States United States Coal ................................................ 4,367 4,077 4,747 4,181 4,473 4,125 4,983 4,330 4,414 4,003 4,796 4,178 4,344 4,479 4,348 Natural Gas .................................... 2,802 2,843 3,694 2,863 2,713 2,880 3,636 2,707 2,792 2,972 3,815 2,849 3,052 2,986 3,109 Petroleum (a) .................................. 74 73 81 67 73 70 75 66 75 70 76 66 74 71 71 Other Gases ................................... 32 33 36 32 32 34 37 33 33 35 39 34 33 34 35 Nuclear ........................................... 2,176 2,044 2,257 2,170 2,106 2,037 2,167 2,010 2,144 2,074 2,206 2,055 2,162 2,080 2,120 Renewable Energy Sources: Conventional Hydropower ........... 736 886 716 633 765 887 708 646 767 919 729 659 742 751 768 Wind ............................................ 491 520 353 449 477 521 379 475

358

Natural Gas Annual, 2001  

Gasoline and Diesel Fuel Update (EIA)

1 1 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2001 The Natural Gas Annual, 2001 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2001. Summary data are presented for each State for 1997 to 2001. The data that appear in the tables of the Natural Gas Annual, 2001 are available as self-extracting executable files in ASCII TXT or CSV file format. This volume emphasizes information for 2001, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1997-2001 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2001 (Table 2) ASCII TXT.

359

International Standards and Units of Radioactivity  

Science Journals Connector (OSTI)

... latter could be measured and their radium contents expressed in grams. For the measurement of radon, grams (or cubic centimetres) of this gas are impracticable as units, and it ... gas are impracticable as units, and it was therefore decided to use as unit of radon the quantity which is in radioactive equilibrium with 1 gm. of radium; it was ...

1947-12-06T23:59:59.000Z

360

Advanced coal-fueled gas turbine systems  

SciTech Connect (OSTI)

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EIS-0105: Conversion to Coal, Baltimore Gas & Electric Company, Brandon Shores Generating Station Units 1 and 2, Anne Arundel County, Maryland  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy’s Economic Regulatory Administration Office of Fuels Program, Coal and Electricity Division prepared this statement to assess the potential environmental and socioeconomic impacts associated with prohibiting the use of petroleum products as a primary energy source for Units 1 and 2 of the Brandon Shores Generating Station, located in Anne Arundel County, Maryland.

362

Development of the GE Quiet Combustor and Other Design Changes to Benefit Air Quality  

E-Print Network [OSTI]

The attractiveness of gas turbines in cogeneration facilities and combined-cycle (Brayton-Rankine) power plants is linked to high specific work; power per unit mass flow. Manufacturers have, over the years, increased gas turbine firing temperature...

Miller, H. E.

363

Natural Gas Fuel Basics | Department of Energy  

Energy Savers [EERE]

Natural Gas Fuel Basics Natural Gas Fuel Basics July 30, 2013 - 4:40pm Addthis Only about one-tenth of 1% of all the natural gas in the United States is currently used for...

364

Compressed Gas Cylinder Safe Handling, Use and  

E-Print Network [OSTI]

Compressed Gas Cylinder Safe Handling, Use and Storage 2012 Workplace Safety and Environmental Protection #12;i College/Unit: Workplace Safety and Environmental Protection Procedure Title: Compressed Gas................................................ 4 7 General Gas Cylinder Information

Saskatchewan, University of

365

Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies  

E-Print Network [OSTI]

new combined cycle or diesel-electric engines, and optimizeda series of smaller diesel-electric engines, each optimizednew combined cycle or diesel-electric engines, and optimized

McCollum, David L; Gould, Gregory; Greene, David L

2010-01-01T23:59:59.000Z

366

A Joint Workshop on Promoting the Development and Deployment of IGCC/Co-Production/CCS Technologies in China and the United States. Workshop report  

SciTech Connect (OSTI)

With both China and the United States relying heavily on coal for electricity, senior government officials from both countries have urged immediate action to push forward technology that would reduce carbon dioxide emissions from coal-fired plants. They discussed possible actions at a high-level workshop in April 2009 at the Harvard Kennedy School jointly sponsored by the Belfer Center's Energy Technology Innovation Policy (ETIP) research group, China's Ministry of Science and Technology, and the Chinese Academy of Sciences. The workshop examined issues surrounding Integrated Gasification Combined Cycle (IGCC) coal plants, which turn coal into gas and remove impurities before the coal is combusted, and the related carbon capture and sequestration, in which the carbon dioxide emissions are captured and stored underground to avoid releasing carbon dioxide into the atmosphere. Though promising, advanced coal technologies face steep financial and legal hurdles, and almost certainly will need sustained support from governments to develop the technology and move it to a point where its costs are low enough for widespread use.

Zhao, Lifeng; Ziao, Yunhan; Gallagher, Kelly Sims

2009-06-03T23:59:59.000Z

367

API unit  

Science Journals Connector (OSTI)

API unit [An arbitrary unit of the American Petroleum Institute for measuring natural radioactivity; used in certain well logging methods] ? API-Einheit f

2014-08-01T23:59:59.000Z

368

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Steam expansion turbine Combined Cycle Natural gas expansionis commonly referred to as a combined-cycle system. In theseto Oland (2004). Combined Cycle. Conventional cogeneration

Worrell, Ernst

2011-01-01T23:59:59.000Z

369

A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage  

E-Print Network [OSTI]

Integrated Gasification Combined Cycle Technology: IGCC.integrated gasification combined cycle (IGCC) power plants (output. Integrated gas combined cycle (IGCC) plants are

Apps, J.A.

2006-01-01T23:59:59.000Z

370

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network [OSTI]

integrated gasification combined cycle Integrated Planningwith regard to the gas combined-cycle capacity around theas integrated gasification combined cycle (IGCC) and carbon

Blair, N.

2010-01-01T23:59:59.000Z

371

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

of natural gas-powered combined cycle power plants. The mostintegrated gasification combined cycle (IGCC) coal plants,integrated gasification combined cycle (IGCC) technology for

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

372

Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry  

E-Print Network [OSTI]

savings of $1.5 Combined cycles (combining a gas turbine andfound through a However, combined cycles are generally lessturbine combined sites, combined cycles may be an attractive

Masanet, Eric

2014-01-01T23:59:59.000Z

373

"1. Victor J Daniel Jr","Gas","Mississippi Power Co",1992 "2. Grand Gulf","Nuclear","System Energy Resources, Inc",1251  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi" Mississippi" "1. Victor J Daniel Jr","Gas","Mississippi Power Co",1992 "2. Grand Gulf","Nuclear","System Energy Resources, Inc",1251 "3. Baxter Wilson","Gas","Entergy Mississippi Inc",1176 "4. Jack Watson","Coal","Mississippi Power Co",998 "5. Magnolia Power Plant","Gas","Magnolia Energy LP",863 "6. Batesville Generation Facility","Gas","LSP Energy Ltd Partnership",858 "7. Reliant Energy Choctaw County","Gas","RRI Energy Wholesale Generation LLC",848 "8. TVA Southaven Combined Cycle","Gas","Tennessee Valley Authority",774

374

Reduction in Unit Steam Production  

E-Print Network [OSTI]

In 2001 the company's Arch-Brandenburg facility faced increased steam costs due to high natural gas prices and decreased production due to shutdown of a process. The facility was challenged to reduce unit steam consumption to minimize the effects...

Gombos, R.

2004-01-01T23:59:59.000Z

375

United States Department of  

E-Print Network [OSTI]

United States Department of Agriculture Forest Service Pacific Northwest Research Station General.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 25 p. Estimates of forest of California's legislatively mandated green- house gas inventory. Reliable estimates of live-tree carbon stores

Fried, Jeremy S.

376

Optimizing heat integration in a flexible coal–natural gas power station with CO2 capture  

Science Journals Connector (OSTI)

Abstract Computational optimization is used to simultaneously determine the design and planned operating profile of a flexible coal–natural gas power station with CO2 capture, under a CO2 emission performance standard. The facility consists of a coal-fired power station undergoing retrofit with CO2 capture. The CO2 capture energy demand is provided by a specially designed combined cycle gas turbine (CCGT). The heat recovery steam generator (HRSG) component of the CCGT is modeled and optimized in detail, with explicit treatment of the discrete aspects of the HRSG configuration, including the number and sequential arrangement of HRSG internal components. Variable facility operations are represented by discrete operating modes selected based on the electricity price–duration curve. Two objectives, the minimization of capital requirement and the maximization of net present value, are considered in a bi-objective mixed-integer nonlinear programming formulation. Pareto frontiers, which define the optimal tradeoffs between these two objectives, are generated for six scenarios constructed from recent historical data from West Texas, the United Kingdom, and India. For a 440 MW coal plant in a scenario based on 2011 West Texas data, the minimum effective net present cost required for the retrofit (which meets the CO2 emission performance standard) varies from $278 to 383 million, and the minimum total capital investment requirement ranges from $346 to 517 million. The variations in these optimized values correspond to the range of the Pareto frontier within the bounds of the problem. The net present cost of the retrofit is less than the present value of the existing coal plant, $476 million, indicating that a retrofit is preferred over decommissioning. In the case of very low energy prices, however, decommissioning is shown to be the preferred option. The UK and India scenarios demonstrate that optimal designs can vary greatly depending upon location-specific economic conditions.

Charles A. Kang; Adam R. Brandt; Louis J. Durlofsky

2014-01-01T23:59:59.000Z

377

Ultra-high CO2 capture efficiency in CFB oxyfuel power plants by calcium looping process for CO2 recovery from purification units vent gas  

Science Journals Connector (OSTI)

Abstract This work presents a new option for the recovery of the CO2 losses from CO2 purification units in oxyfuel plants, by means of the Ca-looping process. The idea is to capture the CO2 in the vent stream from purification units by reaction with CaO sorbent in a carbonator reactor, where CaCO3 is formed. Sorbent is then regenerated in a calciner reactor by oxyfuel combustion of a fraction of the coal fed to the power plant. Since the Ca-looping process requires a continuous purge of exhaust sorbent and make-up of fresh limestone, the system is best coupled with a CFB boiler, where the exhausted Ca-rich sorbent can be used for in-furnace sulfur absorption. In this work, detailed mass and energy balances of the system proposed are reported, including a preliminary sizing of the reactors of the Ca-looping unit. A sensitivity analysis was also performed, by considering two types of coal as feed (mainly differing in sulfur content), two levels of non-condensable gases in the impure CO2 stream to be purified and different behaviors of the exhausted Ca-based sorbent injected in the CFB boiler, where it can experience different levels of recarbonation. Interesting results were obtained for this new system, which can capture about 90% of the CO2 vented from the purification unit in a reasonably compact reactors system, allowing an overall CO2 avoidance of the order of 99% with respect to conventional coal-fired steam plants without capture. As far as energy penalties are concerned, they were evaluated by the specific primary energy consumption for CO2 avoided index (SPECCA). Small differences with respect to reference oxyfuel plants without CO2 recovery were obtained, with either slightly better or slightly worse performances, depending on the sulfur content of the coal used. Penalties are associated to the export of CaO in the final exhausted sulfated sorbent from the CFB boiler, which increases when a higher sulfur coal is used. However, experimental analysis on the recarbonation level which can be attained by the CaL exhaust sorbent in the CFB boiler and further process optimization are needed to correctly account for these penalties and possibly minimize them.

Matteo C. Romano

2013-01-01T23:59:59.000Z

378

Preliminary Assessment of Hydrocarbon Gas Sources from the Mt. Elbert No. 1 Gas Hydrate Test Well  

E-Print Network [OSTI]

in two primary horizons; an upper zone, (“D ” Unit) containing 14 meters of gas hydrate-bearing sands

Thomas D. Lorenson; Timothy S. Collett; Robert B. Hunter

379

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS  

SciTech Connect (OSTI)

Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

Nsakala ya Nsakala; Gregory N. Liljedahl

2003-05-15T23:59:59.000Z

380

Sustainability and Energy Development: Influences of Greenhouse Gas Emission Reduction Options on Water Use in Energy Production  

Science Journals Connector (OSTI)

Sustainability and Energy Development: Influences of Greenhouse Gas Emission Reduction Options on Water Use in Energy Production ... Water consumption for nuclear energy could be reduced, while also increasing the safety of nuclear plants, by deploying new high temperature gas reactors that potentially allow for internal operating temperatures in excess of 900 °C and combined cycle turbine designs. ... Whittaker, S.; White, D.; Law, D.; Chalatumyk, R. In IEA GHG Weyburn CO2Monitoring and Storage Project Summary Report 2000 - 2004, 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada, Wilson, M.; Monea, M., Eds.; Petroleum Technology Research Centre: Vancouver, Canada, 2004. ...

D. Craig Cooper; Gerald Sehlke

2012-01-25T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Tracy Power Station -- Unit No. 4, Pinon Pine Power Project Public Design Report  

SciTech Connect (OSTI)

This Public Design Report describes the Pinon Pine Project which will be located at the Sierra Pacific Power Company`s (SPPCO) Tracy Station near Reno, Nevada. The integrated gasification combined-cycle (IGCC) plant is designed to process 880 tones per day (TPD) of bituminous coal producing approximately 107 gross megawatts of electric power (MWe). This project is receiving cost-sharing from the US Department of Energy (DOE) in accordance with DOE Cooperative Agreement DE-FC2192MC29309. The plant incorporates the Kellogg-Rust-Westinghouse (KRW) fluidized bed gasification technology which produces a low-Btu gas which is used as fuel in a combined cycle power plant which has been modified to accommodate the fuel gas produced by an air-blown gasifier. The gasification system also includes hot gas removal of particulates and sulfur compounds from the fuel gas resulting in a plant with exceptionally low atmospheric emissions. Desulfurization is accomplished by a combination of limestone injection into the KRW fluidized bed gasifier and by a transport reactor system. Particulate removal is accomplished by high efficiency cyclones and a barrier filter. The Pinon Pine Project Schedule is divided into three phases. Phase I includes permitting and preliminary design. Phase II, which overlaps Phase I, covers detailed design, procurement, and construction. Phase III will cover the initial operation and demonstration portion of the project.

NONE

1994-12-01T23:59:59.000Z

382

Intermountain Gas Company (IGC) - Gas Heating Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Intermountain Gas Company (IGC) - Gas Heating Rebate Program Intermountain Gas Company (IGC) - Gas Heating Rebate Program Intermountain Gas Company (IGC) - Gas Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Program Info State Idaho Program Type Utility Rebate Program Rebate Amount Furnace: $200/unit Provider Customer Service The Intermountain Gas Company's (IGC) Gas Heating Rebate Program offers customers a $200 per unit rebate when they convert to a high efficiency natural gas furnace that replaces a heating system using another energy source. New furnaces must meet a minimum AFUE efficiency rating of 90%, and the home must have been built at least three years prior to the furnace conversion to qualify for the rebate. Visit IGC's program web site for more

383

Life Cycle GHG Emissions from Conventional Natural Gas Power Generation: Systematic Review and Harmonization (Presentation)  

SciTech Connect (OSTI)

This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from conventionally produced natural gas in combustion turbines (NGCT) and combined-cycle (NGCC) systems. A process we term "harmonization" was employed to align several common system performance parameters and assumptions to better allow for cross-study comparisons, with the goal of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. This presentation summarizes preliminary results.

Heath, G.; O'Donoughue, P.; Whitaker, M.

2012-12-01T23:59:59.000Z

384

UNIT NUMBER:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

193 UNIT NUMBER: 197 UNIT NAME: CONCRETE RUBBLE PILE (30) REGULATORY STATUS: AOC LOCATION: Outside plant security fence, north of the plant on Big Bayou Creek on private property....

385

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 UNIT NUMBER UNIT NAME Rubble oile 41 REGULATORY STATUS: AOC LOCATION: Butler Lake Dam, West end of Butler Lake top 20 ft wide, 10 ft APPROXIMATE DIMENSIONS: 200 ft long, base 30...

386

Defining a Standard Metric for Electricity Savings  

E-Print Network [OSTI]

Existing coal = 1.0 Gas turbine Distillateoil Gas turbine Natural gas Combined cycle Distillate oilTable 1. (3) Steam turbine, gas turbine, and combined cycle

Koomey, Jonathan

2009-01-01T23:59:59.000Z

387

A Path to Reduce Methane Emissions from Gas Systems | Department...  

Broader source: Energy.gov (indexed) [DOE]

Ernest Moniz Secretary of Energy The United States is now the world's largest producer of natural gas. This natural gas revolution is driving economic growth across the country,...

388

"Assessment of the Adequacy of Natural Gas Pipeline Capacity...  

Broader source: Energy.gov (indexed) [DOE]

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

389

Assessment of the Adequacy of Natural Gas Pipeline Capacity in...  

Broader source: Energy.gov (indexed) [DOE]

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

390

Questar Gas - Home Builder Gas Appliance Rebate Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Program Info State Utah Program Type Utility Rebate Program Rebate Amount Exterior Wall Insulation: $350 (single family), $150 (multifamily) Windows: $2.50/sq. ft. Gas Furnace: $200 - $400 Gas Storage Water Heater: $50-$100 Gas Condensing Water Heater: $350 Gas Boiler: $400 -$600 Tankless Gas Water Heater: $350 Single Family Homes (New Construction): $50 - $500 Multifamily Homes (New Construction): $50 - $300/unit

391

Natural Gas Regulation - Other Gas-Related Information Sources | Department  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Regulation - Other Gas-Related Information Sources Natural Gas Regulation - Other Gas-Related Information Sources Natural Gas Regulation - Other Gas-Related Information Sources The single largest source of energy information available is the Department of Energy's Energy Information Administration (EIA). The EIA publishes extensive reports on natural gas and other energy sources. Domestic natural gas markets are regulated in part by the Federal Energy Regulatory Commission. The commission's chief area of concern is the interstate natural gas market. Natural gas moves for the most part by pipeline in the United States. The safety of those pipelines is the concern of the Department of Transportation's Office of Pipeline Safety. In Canada the regulation of interprovincial and international natural gas is the responsibility of the National Energy Board. Their areas of

392

EIA - Natural Gas Analysis Basics  

Gasoline and Diesel Fuel Update (EIA)

for Natural Gas Basics for Natural Gas Basics Where Our Natural Gas Comes From Natural Gas Prices Natural Gas Statistics Natural Gas Kid's Page (Not Just for Kids) How natural gas was formed, how we get it, how it is stored and delivered, how it is measured, what it is used for, how it affects the environment and more. Natural Gas Residential Choice This site provides an overview of the status of natural gas industry restructuring in each state, focusing on the residential customer class. About U.S. Natural Gas Pipelines State Energy Profiles What role does liquefied natural gas (LNG) play as an energy source for the United States? This Energy In Brief discusses aspects of LNG industry in the United States. LNG is natural gas that has been cooled to about minus 260 degrees Fahrenheit for shipment and/or storage as a liquid. Growth in LNG imports to the United States has been uneven in recent years, with substantial changes in year-over-year imports as a result of suppliersÂ’ decisions to either bring spare cargos to the United States or to divert cargos to countries where prices may be higher. Categories: Imports & Exports/Pipelines (Released, 12/11/2009)

393

Natural Gas Annual, 2004  

Gasoline and Diesel Fuel Update (EIA)

4 4 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2004 Natural Gas Annual 2004 Release date: December 19, 2005 Next release date: January 2007 The Natural Gas Annual, 2004 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2004. Summary data are presented for each State for 2000 to 2004. The data that appear in the tables of the Natural Gas Annual, 2004 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2004, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

394

The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification  

E-Print Network [OSTI]

economic comparison of IGCC power plants with cold gas cleanup and hot gas cleanup units using Indian coals.

Luo, Qian

2012-01-01T23:59:59.000Z

395

1 - An Overview of Gas Turbines  

Science Journals Connector (OSTI)

Publisher Summary The gas turbine is a power plant that produces a great amount of energy depending on its size and weight. The gas turbine has found increasing service in the past 60 years in the power industry among both utilities and merchant plants as well as the petrochemical industry throughout the world. The utilization of gas turbine exhaust gases, for steam generation or the heating of other heat transfer mediums, or the use of cooling or heating buildings or parts of cities is not a new concept and is currently being exploited to its full potential. The aerospace engines have been leaders in most of the technology in the gas turbine. The design criteria for these engines were high reliability, high performance, with many starts and flexible operation throughout the flight envelope. The industrial gas turbine has always emphasized long life and this conservative approach has resulted in the industrial gas turbine in many aspects giving up high performance for rugged operation. The gas turbine produces various pollutants in the combustion of the gases in the combustor. These include smoke, unburnt hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. The gas turbine is a power plant that produces a great amount of energy depending on its size and weight. It has found increasing service in the past 60 years in the power industry among both utilities and merchant plants, as well as in the petrochemical industry. Its compactness, low weight and multiple fuel application make it a natural power plant for offshore platforms. Today there are gas turbines that run on natural gas, diesel fuel, naphtha, methane, crude, low-BTU gases, vaporized fuel oils and biomass gases. The last 20 years have seen a large growth in gas turbine technology, spearheaded by the growth in materials technology, new coatings, new cooling schemes and combined cycle power plants. This chapter presents an overview of the development of modern gas turbines and gas turbine design considerations. The six categories of simple-cycle gas turbines (frame type heavy-duty; aircraft-derivative; industrial-type; small; vehicular; and micro) are described. The major gas turbine components (compressors; regenerators/recuperators; fuel type; and combustors) are outlined. A gas turbine produces various pollutants in the combustion of the gases in the combustor and the potential environmental impact of gas turbines is considered. The two different types of combustor (diffusion; dry low NOx, (DLN) or dry low emission (DLE)), the different methods to arrange combustors on a gas turbine, and axial-flow and radial-inflow turbines are described. Developments in materials and coatings are outlined.

Meherwan P. Boyce

2012-01-01T23:59:59.000Z

396

Produce synthesis gas by steam reforming natural gas  

SciTech Connect (OSTI)

For production of synthesis gas from natural gas the steam reforming process is still the most economical. It generates synthesis gas for ammonia and methanol production as well as hydrogen, oxo gas and town gas. After desulfurization, the natural gas is mixed with steam and fed to the reforming furnace where decomposition of hydrocarbons takes place in the presence of a nickel-containing catalyst. Synthesis gas that must be free of CO and CO/sub 2/ is further treated in a CO shift conversion, a CO/sub 2/ scrubbing unit and a methanation unit. The discussion covers the following topics - reforming furnace; the outlet manifold system; secondary reformer; reformed gas cooling. Many design details of equipment used are given.

Marsch, H.D.; Herbort, H.J.

1982-06-01T23:59:59.000Z

397

Weight and power optimization of steam bottoming cycle for offshore oil and gas installations  

Science Journals Connector (OSTI)

Abstract Offshore oil and gas installations are mostly powered by simple cycle gas turbines. To increase the efficiency, a steam bottoming cycle could be added to the gas turbine. One of the keys to the implementation of combined cycles on offshore oil and gas installations is for the steam cycle to have a low weight-to-power ratio. In this work, a detailed combined cycle model and numerical optimization tools were used to develop designs with minimum weight-to-power ratio. Within the work, single-objective optimization was first used to determine the solution with minimum weight-to-power ratio, then multi-objective optimization was applied to identify the Pareto frontier of solutions with maximum power and minimum weight. The optimized solution had process variables leading to a lower weight of the heat recovery steam generator while allowing for a larger steam turbine and condenser to achieve a higher steam cycle power output than the reference cycle. For the multi-objective optimization, the designs on the Pareto front with a weight-to-power ratio lower than in the reference cycle showed a high heat recovery steam generator gas-side pressure drop and a low condenser pressure.

Lars O. Nord; Emanuele Martelli; Olav Bolland

2014-01-01T23:59:59.000Z

398

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

174 10 12 92 UNIT NAME: C-745-K Low Level Storage Area REGULATORY STAU: -AOC LOCATION: Inside Security Fence , South of C-333 Cascade Building. APPROXIMATE...

399

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 UNIT NAME C-611 Underaround Diesel Tank REGULATORY STATUS: AOC LOCATION: Immediately southeast of C-611 APPROXIMATE DIMENSIONS: 1000 gallon FUNCTION: Diesel storage OPERATIONAL...

400

UNIT NUMBER:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 KOW Toluene SDill Area UNIT NAME: REGULATORY STATUS: AOC LOCATION: Southwest of plant site APPROXIMATE DIMENSIONS: 200 feet wide by 800 feet ong FUNCTION: Storage of Toluene...

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 UNIT NAME C-746-Al REGULATORY STATUS: AOC LOCATION: Northwest corner of C-746-A APPROXIMATE DIMENSIONS: 4000 gallons FUNCTION: Underground storage tanks OPERATIONAL STATUS:...

402

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 UNIT NAME C-611 Underaround Gasoline Tank REGULATORY STATUS: AOC LOCATION: Immediately east of C-61l APPROXIMATE DIMENSIONS: 50 ga on FUNCTION: Gasoline storage OPERATIONAL...

403

Ammonia synthesis gas purification  

SciTech Connect (OSTI)

This patent describes the purification of a reformed gas mixture following water gas shift conversion to produce a purified ammonia synthesis gas stream. The improved processing sequence consisting essentially of: (A) Selectively catalytically oxidizing the residual carbon monoxide content of the gas mixture to carbon dioxide so as to reduce the carbon monoxide content of the gas mixture to less than about 20 ppm, the selective catalytic oxidation being carried out with an excess of air, with the excess oxygen being catalytically reacted with a small amount of hydrogen so that the residual oxygen level is reduced to less than about 3 ppm; (B) removing the bulk of the carbon dioxide content of the gas mixture by liquid absorption; (C) Removing residual amounts of carbon monoxide, carbon dioxide and water by selective adsorption on the fixed beds of a thermal swing adsorption system, a dry, purified ammonia ammonia synthesis gas stream containing less than a total of 10 ppm of carbon monoxide and carbon dioxide being recovered from the thermal swing adsorption system; (D) Passing the resulting dry, purified ammonia synthesis gas stream having a low content of methane to an ammonia production operation without intermediate passage of the ammonia synthesis gas stream to a methanation unit or to a cryogenic unit for removal of carbon monoxide and carbon dioxide therefrom; whereby the efficiency of the overall purification operation and the effective utilization of hydrogen are enhanced.

Fuderer, A.

1986-02-25T23:59:59.000Z

404

Liquefied Natural Gas | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Liquefied Natural Gas Liquefied Natural Gas Liquefied Natural Gas Liquefied Natural Gas Natural gas plays a vital role in the U.S. energy supply and in achieving the nation's economic and environmental goals. One of several supply options involves increasing imports of liquefied natural gas (LNG) to ensure that American consumers have adequate supplies of natural gas for the future. Natural gas consumption in the United States is expected to increase slightly from about 24.3 trillion cubic feet (Tcf) in 2011 to 26.6 Tcf by 2035. Currently, most of the demand for natural gas in the United States is met with domestic production and imports via pipeline from Canada. A small percentage of gas supplies are imported and received as liquefied natural gas. A significant portion of the world's natural gas resources are

405

Natural Gas Annual, 2000  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 2000 are available as self-extracting executable files in ASCII TXT or CSV file formats. This volume emphasizes information for 2000, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1996-2000 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2000 (Table 2) ASCII TXT, are also available.

406

NATURAL GAS FROM SHALE: Questions and Answers  

Broader source: Energy.gov (indexed) [DOE]

Where is shale gas found Where is shale gas found in the United States? Shale gas is located in many parts of the United States. These deposits occur in shale "plays" - a set of discovered, undiscovered or possible natural gas accumulations that exhibit similar geological characteristics. Shale plays are located within large-scale basins or accumulations of sedimentary rocks, often hundreds of miles across, that also may contain other oil and gas resources. 1 Shale gas production is currently occurring in 16 states. 1 U.S. Government Accountability Office, Report to Congressional Requesters, "Oil and Gas: Information on Shale Resources, Development, and

407

System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines  

SciTech Connect (OSTI)

Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

Shahrokh Etemad; Lance Smith; Kevin Burns

2004-12-01T23:59:59.000Z

408

Three-part auctions versus self-commitment in day-ahead electricity markets Ramteen Sioshansi a  

E-Print Network [OSTI]

they are online. Other types of generating units, such as combined-cycle gas turbines (CCGT) and cascaded to the stochastic nature of demand fluctuations, generators must be able to adjust their real and reactive power

Oren, Shmuel S.

409

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network [OSTI]

Power; NGCC = Natural gas combined-cycle; NGCT = Natural gasSouthwest. Natural gas combined cycle and combined heat andNGCT), and natural gas combined cycle (NGCC) plants are

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

410

Efficient gas stream cooling in Second-Generation PFBC plants  

SciTech Connect (OSTI)

The coal-fueled Advanced or Second-Generation Pressurized Fluidized Bed Combustor concept (APFBC) is an efficient combined cycle in which coal is carbonized (partially gasified) to fuel a gas turbine, gas turbine exhaust heats feedwater for the steam cycle, and carbonizer char is used to generate steam for a steam turbine while heating combustion air for the gas turbine. The system can be described as an energy cascade in which chemical energy in solid coal is converted to gaseous form and flows to the gas turbine followed by the steam turbine, where it is converted to electrical power. Likewise, chemical energy in the char flows to both turbines generating electrical power in parallel. The fuel gas and vitiated air (PFBC exhaust) streams must be cleaned of entrained particulates by high-temperature equipment representing significant extensions of current technology. The energy recovery in the APFBC cycle allows these streams to be cooled to lower temperatures without significantly reducing the efficiency of the plant. Cooling these streams would allow the use of lower-temperature gas cleanup equipment that more closely approaches commercially available equipment, reducing cost and technological risk, and providing an earlier path to commercialization. This paper describes the performance effects of cooling the two hottest APFBC process gas streams: carbonizer fuel gas and vitiated air. Each cooling variation is described in terms of energy utilization, cycle efficiency, and cost implications.

White, J.S.; Horazak, D.A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States)

1994-07-01T23:59:59.000Z

411

Economics of Electric Compressors for Gas Transmission  

E-Print Network [OSTI]

) option. Outside of these regions, new electric drives as well as gas fueled reciprocating engines and turbines are being considered for replacement of older reciprocating gas engines and compressor units, based on improved operating efficiency. We review...

Schmeal, W. R.; Hibbs, J. J.

412

A New Global Unconventional Natural Gas Resource Assessment  

E-Print Network [OSTI]

. Very little is known publicly about technically recoverable unconventional gas resource potential on a global scale. Driven by a new understanding of the size of gas shale resources in the United States, we estimated original gas in place (OGIP...

Dong, Zhenzhen

2012-10-19T23:59:59.000Z

413

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network [OSTI]

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O'Sullivan, Francis

414

Siemens introduces 50 Hz 190 MW gas turbine  

SciTech Connect (OSTI)

According to market data for high power gas turbines compiled by Erlangen, Germany-based Siemens KWU, referring to machines above 50 MW, market demand will average approximately 22 GW per year from now to 2005, of which roughly 15 GW will be for combined-cycle plants and nearly half (11 GW) will be placed in the intermediate capacity class (M Class). Looking at the Siemens line of advanced machines for 50 Hz grids; from the V64.3A rated 70 MW one jumps to the V94.3A rated 240 MW leaving a gap of 170 MW uncovered aside from the existing model V94.2 at 159 MW. This article describes the design and specifications of Siemens new 50 Hz 190 MW gas turbines that hope to cater to this gap. 2 refs.

Chellini, R.

1997-01-01T23:59:59.000Z

415

Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications  

SciTech Connect (OSTI)

The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

Joseph Rabovitser

2009-06-30T23:59:59.000Z

416

UNITED STATES NATURAL GAS PRICES TO 2015  

E-Print Network [OSTI]

The contents of this paper are the sole responsibility of the author. They do not necessarily represent the views of the Oxford Institute for Energy Studies or any of its Members. Copyright © 2007 Oxford Institute for Energy Studies (Registered Charity, No. 286084) This publication may be reproduced in part for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgment of the source is made. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior

Michelle Michot Foss, Ph.D.

2007-01-01T23:59:59.000Z

417

Natural gas pipeline technology overview.  

SciTech Connect (OSTI)

The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

Folga, S. M.; Decision and Information Sciences

2007-11-01T23:59:59.000Z

418

United States  

Office of Legacy Management (LM)

- I - I United States Department of Energy D lSCk Al M E R "This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency

419

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 UNIT NAME C-333 North Side PCB Soil Contamination REGULATORY STATUS: AOC LOCATION: North side of C-333 Building APPROXIMATE OIMENSIONS: 150 ft by 100 ft FUNCTION: Dust Palliative...

420

UNIT NUMBER:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 KPDES Outfall Ditch 017 Flume- Soil Backfill UNIT NAME: - REGULATORY STATUS: AOC LOCATION: South of plant on the west side of the access road APPROXIMATE DIMENSIONS: 30 feet wide...

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

UNIT NUMBER:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 C-617-A Sanitarv Waterline- Soil Backfill UNIT NAME: - REGULATORY STATUS: AOC LOCATION: Between southeast corner of C-531 Switchyard and C-617-A Water Treatment Facility. 4 feet...

422

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 UNIT NAME C-720 Inactive TCE Oegreaser REGULATORY STATUS: AOC LOCATION: C-720 Building APPROXIMATE DIMENSIONS: Approx. 10 ft by 10 ft by 20 f1: deep FUNCTION: Used for cleaning...

423

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 UNIT NAME Rubble Dile 46 REGULATORY STATUS: AOC LOCATION: 2000 ft southwest of curve on Kentucky Highway 473- near east end of Mitchell Lake APPROXIMATE DIMENSIONS: About 100 ft...

424

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 UNIT NAME Rubble oile 45 REGULATORY STATUS AOC LOCATION: West end of Mitche Lake APPROXIMATE DIMENSIONS: 2000 ft long, ft thick 4 ft wide FUNCTION: Control erosion on face of dam...

425

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 UNIT NAME Rubble Dile 43 REGULATORY STATUS: AOC LOCATION: West end of Happy Ho ow Lake APPROXIMATE DIMENSIONS: 200 ft long by 4 ft wide -concrete 4-6 in thickness FUNCTION:...

426

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 UNIT NAME C-740 TCE Soill Site REGULATORY STATUS: AOC LOCATION: Northwest corner C-740 concrete pad area) APPROXIMATE DIMENSIONS: 5 ft by 5 ft spill FUNCTION: Drum storage area...

427

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 C-I00 South Side Berms UNIT NAME REGULATORY STATUS: AOC LOCATION: South Side C-IOO APPROXIMATE DIMENSIONS: 2 berms approximately 200 ft long by SO ft wide eac FUNCTION:...

428

UNIT NUMBER:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 UNIT NAME: C-331 PCB Soil Contamination -West Side REGULATORY STATUS: AOC LOCATION: West side C-331 building APPROXIMATE DIMENSIONS: 100 feet wide by 420 feet long FUNCTION: Dust...

429

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 C-750B Diesel UST UNIT NAME REGULATORY STATUS: AOC LOCATION: Southeast corner of C-750 APPROXIMATE DIMENSIONS: 10,000 gallon FUNCTION: Diesel storage OPERATIONAL STATUS: Removed...

430

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 UNIT NAME C-633 PCB So111 Site REGULATORY STATUS CERCLA LOCATION C-633 Transformer area (Mac location 75) APPROXIMATE DIMENSIONS I Unknown FUNCTION Soill site OPERATIONAL STATUS...

431

Natural Gas Annual 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 Released: January 28, 2009 The Natural Gas Annual 2007 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2007. Summary data are presented for each State for 2003 to 2007. The Natural Gas Annual 2007 Summary Highlights provides an overview of the supply and disposition of natural gas in 2007 and is intended as a supplement to the Natural Gas Annual 2007. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

432

Natural Gas Annual, 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2003 Natural Gas Annual 2003 Release date: December 22, 2004 Next release date: January 2006 The Natural Gas Annual, 2003 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2003. Summary data are presented for each State for 1999 to 2003. “The Natural Gas Industry and Markets in 2003” is a special report that provides an overview of the supply and disposition of natural gas in 2003 and is intended as a supplement to the Natural Gas Annual 2003. The data that appear in the tables of the Natural Gas Annual, 2003 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2003, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

433

Natural Gas Annual, 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2002 Natural Gas Annual 2002 Release date: January 29, 2004 Next release date: January 2005 The Natural Gas Annual, 2002 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2002. Summary data are presented for each State for 1998 to 2002. “The Natural Gas Industry and Markets in 2002” is a special report that provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Natural Gas Annual 2002. Changes to data sources for this Natural Gas Annual, as a result of ongoing data quality efforts, have resulted in revisions to several data series. Production volumes have been revised for the Federal offshore and several States. Several data series based on the Form EIA-176, including deliveries to end-users in several States, were also revised. Additionally, revisions have been made to include updates to the electric power and vehicle fuel end-use sectors.

434

Natural Gas Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

9 9 Released: December 28, 2010 The Natural Gas Annual 2009 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2009. Summary data are presented for each State for 2005 to 2009. The Natural Gas Annual 2009 Summary Highlights provides an overview of the supply and disposition of natural gas in 2009 and is intended as a supplement to the Natural Gas Annual 2009. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2009) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2009) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

435

Natural Gas Annual 2008  

Gasoline and Diesel Fuel Update (EIA)

8 8 Released: March 2, 2010 The Natural Gas Annual 2008 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2008. Summary data are presented for each State for 2004 to 2008. The Natural Gas Annual 2008 Summary Highlights provides an overview of the supply and disposition of natural gas in 2008 and is intended as a supplement to the Natural Gas Annual 2008. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2008) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2008) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

436

CO2 emission reduction from natural gas power stations using a precipitating solvent absorption process  

Science Journals Connector (OSTI)

Abstract There has been a rapid increase in the use of natural gas for power generation based on gas turbine technology which elevates the importance of carbon dioxide (CO2) capture technology to reduce CO2 emissions from gas turbine based power stations. The low content of CO2 in the gas turbine exhaust results in low rates of CO2 absorption and larger absorption equipment when compared to studies done on coal fired power stations. Furthermore the high oxygen (O2) content in the exhaust gas adversely affects the solvent stability, particularly for the traditional amine based solvents. This paper describes how exhaust gas recirculation (EGR) along with CO2CRC's low cost “UNO MK 3” precipitating potassium carbonate (K2CO3) process can overcome the challenges of CO2 capture from gas turbine power stations. To further bring down the energy requirements of the capture process, heat integration of the UNO MK 3 process with power generation process is carried out. An economic analysis of the various retrofit options is performed. The current study shows that in the case of retrofitting the UNO MK 3 process to a natural gas combined cycle (NGCC), the use of EGR can reduce the energy penalty of CO2 capture by 15%, whilst a reduction of up to 25% can be achieved with the heat integration strategies described. Significantly the study shows that converting an existing open cycle gas turbine (OCGT) to a combined cycle with steam generation along with retrofitting CO2 capture presents a different steam cycle design for the maximum power output from the combined cycle with CO2 capture. Such a conversion actually produces more power and offers an alternative low emission retrofit pathway for gas fired power. Cost analysis shows that inclusion of the UNO MK 3 CO2 capture process with EGR to an existing NGCC is expected to increase the cost of electricity (COE) by 20%. However, retrofit/repowering of an underutilised or peaking OCGT station with the inclusion of CO2 capture can reduce the COE as well as produce low emission power. This is achieved by increasing the load factor and incorporating a purpose built steam generation cycle.

Jai Kant Pandit; Trent Harkin; Clare Anderson; Minh Ho; Dianne Wiley; Barry Hooper

2014-01-01T23:59:59.000Z

437

Chapter 10 - Natural Gas Sweetening  

Science Journals Connector (OSTI)

Abstract Acid gas constituents present in most natural gas streams are mainly hydrogen sulfide (H2S) and carbon dioxide (CO2). Many gas streams, however, particularly those in a refinery or manufactured gases, may contain mercaptans, carbon sulfide, or carbonyl sulfide. The level of acid gas concentration in the sour gas is an important consideration for selecting the proper sweetening process. Some processes are applicable for removal of large quantities of acid gas, and other processes have the capacity for removing acid gas constituents to ppm range. This chapter covers the minimum process requirements, criteria, and features for accomplishment of process design of gas sweetening units. The basic principles for process design of main equipment, piping, and instrumentation together with guidelines on present developments and process selection in the gas sweetening process are the main objectives throughout this chapter.

Alireza Bahadori

2014-01-01T23:59:59.000Z

438

NETL: News Release - Advanced Natural Gas Turbine Hailed as Top Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

December 30, 2003 December 30, 2003 Advanced Natural Gas Turbine Hailed as Top Power Project of 2003 Power Engineering Cites Product of Energy Department's Advanced Turbine Systems Program WASHINGTON, DC - A power plant featuring a next-generation gas turbine developed as part of the U.S. Department of Energy's advanced turbine systems program has been selected by Power Engineering magazine as one of three "2003 Projects of the Year." Baglan Bay Power Station Baglan Bay Power Station, South Wales, U.K. Photo courtesy of GE Power Systems The Baglan Bay Power Station near Cardiff, Wales, UK reached a major milestone for the global power industry when GE Power System's H System gas turbine debuted there earlier this year. The most advanced combustion turbine in the world, the H System is the first gas turbine combined-cycle

439

Cascade utilization of chemical energy of natural gas in an improved CRGT cycle  

Science Journals Connector (OSTI)

In this paper three advanced power systems: the chemically recuperated gas turbine (CRGT) cycle, the steam injected gas turbine (STIG) cycle and the combined cycle (CC), are investigated and compared by means of exergy analysis. Making use of the energy level concept, cascaded use of the chemical exergy of natural gas in a CRGT cycle is clarified, and its performance of the utilization of chemical energy is evaluated. Based on this evaluation, a new CRGT cycle is designed to convert the exergy of natural gas more efficiently into electrical power. As a result, the exergy efficiency of the new CRGT cycle is about 55%, which is 8 percentage points higher than that of the reference CRGT cycle. The analysis gave a better interpretation of the inefficiencies of the CRGT cycle and suggested improvement options. This new approach can be used to design innovative energy systems.

Wei Han; Hongguang Jin; Na Zhang; Xiaosong Zhang

2007-01-01T23:59:59.000Z

440

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

6 6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1996 and detailed annual historical information by State for 1967-1996. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1996. The remaining tables contain detailed annual historical information, by State, for 1967-1996. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

7 7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1997 and detailed annual historical information by State for 1967-1997. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1997. The remaining tables contain detailed annual historical information, by State, for 1967-1997. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

442

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

8 8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1998 and detailed annual historical information by State for 1967-1998. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1998. The remaining tables contain detailed annual historical information, by State, for 1967-1998. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

443

United States  

Office of Legacy Management (LM)

Office of Research and EPA 600/R-941209 Environmental Protection Development January 1993 Agency Washington, DC 20460 Offsite Environmental 57,,7 Monitoring Report Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1992 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT ENVIRONMENTAL MONITORING SYSTEMS LABORATORY-LAS VEGAS P.O. BOX 93478 LAS VEGAS. NEVADA 891 93-3478 702/798-2100 Dear Reader: Since 1954, the U.S. Environmental Protection Agency (EPA) and its predecessor the U.S, Public Health Service (PHs) has conducted radiological monitoring in the offsite areas around United States nuclear test areas. The primary objective of this monitoring has been the protection of the health and safety of

444

United States  

Broader source: Energy.gov (indexed) [DOE]

BP Energy Company BP Energy Company OE Docket No. EA- 3 14 Order Authorizing Electricity Exports to Mexico Order No. EA-3 14 February 22,2007 BP Energy Company Order No. EA-314 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(Q of the Department of Energy Organization Act (42 U.S.C. 7 15 l(b), 7172(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.S24a(e)) . On May 22,2006, BP Energy Company (BP Energy) applied to DOE for an authorization to transmit electric energy from the United States to Mexico as a power marketer. BP Energy proposes to purchase surplus electric energy from electric utilities and other suppliers within the United States and to export that energy to ~Mexico. The cnergy

445

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

446

Techno-economic performance and cost reduction potential for the substitute/synthetic natural gas and power cogeneration plant with CO2 capture  

Science Journals Connector (OSTI)

Abstract The cogeneration of substitute/synthetic natural gas (SNG) and power from coal based plants with CO2 capture is an effective way to improve energy efficiency and to reduce CO2 emissions. In this paper, we evaluate the techno-economic performance of a SNG and power cogeneration technology with CO2 capture. Current localization level (the cost difference of a technology in different nations and districts) of each subunit of this technology is analyzed. The cost reduction potential of this technology is also predicted, and the role of technology localization and efficiency upgrade in cost reduction is investigated based on a range of learning rates and different coal prices from 90$/t to 150$/t. Results show that the unit investment of this cogeneration technology presented in our previous paper is around 1700$/kW currently and the investment of SNG synthesis, coal gasification and combined cycle unit comprises over 60% of the total investment. The equivalent SNG production cost is quite sensitive to coal prices and ranges from 0.15 to 0.50$/Nm3. Through localization, the unit investment of this technology can be decreased by 30% currently. The key technologies including coal gasification, SNG synthesis and high performance gas turbine need further localization because of their relatively low current localization levels and big localization potential. Through cost learning, the future investment of the technology can be decreased to 700–1100$/kW, which may be competitive with the unit investment of IGCC technology with CO2 capture and even may be lower than that of the pulverized coal power plant with CO2 capture. Technology localization and efficiency upgrade will play important roles in cost reduction, which can contribute 300–500$/kW and 125–225$/kW to cost reduction, respectively. The results presented in this paper indicate that the coal to SNG and power technology with CO2 capture is a promising and competitive option for energy saving and CO2 abatement, and can be a support for policy making, technology options etc.

Sheng Li; Hongguang Jin; Lin Gao; Xiaosong Zhang; Xiaozhou Ji

2014-01-01T23:59:59.000Z

447

Demand Response Valuation Frameworks Paper  

E-Print Network [OSTI]

Gas and Electric Base Residual Auctions California Independent System Operator Combined Cycle Gas Turbine

Heffner, Grayson

2010-01-01T23:59:59.000Z

448

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

pulverized coal plants, combined cycle natural gas plants,natural gas plants, and combined cycle natural gas plants.generated largely from combined-cycle Capacity (GW) yd r as

Hand, Maureen

2008-01-01T23:59:59.000Z

449

Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration  

E-Print Network [OSTI]

Coal plants and combined cycle gas plants can change theirThe start-up time for combined cycle gas plants is 30-60capacity of coal, combined cycle gas, hydropower, diesel,

Phadke, Amol

2014-01-01T23:59:59.000Z

450

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

States, acquire natural gas from foreign producers for resale States, acquire natural gas from foreign producers for resale in the United States, or sell U.S. gas to foreign consumers. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes unconventional gas recovery from low permeability formations of sandstone and shale, and coalbeds. Foreign gas transactions may occur via either pipeline (Canada or Mexico) or transport ships as liquefied natural gas (LNG). Energy Information Administration/Assumptions to the Annual Energy Outlook 2006 89 Figure 7. Oil and Gas Supply Model Regions Source: Energy Information Administration, Office of Integrated Analysis and Forecasting. Report #:DOE/EIA-0554(2006) Release date: March 2006

451

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

452

EIA - Natural Gas Pipeline Network - Natural Gas Imports/Exports Pipelines  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelines Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Import/Export Pipelines As of the close of 2008 the United States has 58 locations where natural gas can be exported or imported. 24 locations are for imports only 18 locations are for exports only 13 locations are for both imports and exports 8 locations are liquefied natural gas (LNG) import facilities Imported natural gas in 2007 represented almost 16 percent of the gas consumed in the United States annually, compared with 11 percent just 12 years ago. Forty-eight natural gas pipelines, representing approximately 28 billion cubic feet (Bcf) per day of capacity, import and export natural gas between the United States and Canada or Mexico.

453

United States  

Office of Legacy Management (LM)

WASHINGTON, TUESDAY, JUNE 28, 1983 @nngmeional Ruord United States of America .__ -- . . ,- PROCEEDINGS AND DEBATES OF THE 9@ CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washmgton, D C 20402 OFFICIAL BUSINESS Penalty Ior pwate use. $xX Congresstonal Record (USPS 087-390) Postage and Fees Pad U S Government Prlnhng 0ffv.X 375 SECOND CLASS NEWSPAPER H.4578 ' C.QNGRESSIONAL RECORD - HOUSE June 28, 1983 H.J. Res. 273: Mr. BOUND. Mr. W~.XMAN. Mr. OBERSTAR, Mr. BEDELL. Mr. BONER of Tennessee, Mr. OWENS. Mr. DAUB, Mr. CONTE. Mr. RAHALL; Mr. GRAY, Mr. VANDER JACT. Mr. TRAKLER, and Mr. Vxrrro. H. Con. Res. 107: Mr. KASICH. Mr. AUCOIN. Mr. CARPER, and Mr. SIZHFIJER. H. Con. Res. 118: Mr. FISH. Mr. LANTOS.

454

United States  

Office of Legacy Management (LM)

ongrees;ional Record ongrees;ional Record United States of America __._ -.. I. :- PROCEEDINGS AND DEBATES OF THE 9tth CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washmcqton. Cl C 20402 OFFICIAL BUSINESS Penalty Ior pwate use. $300 Congressmal Record (USPS 087-390) Postage and Fees Pad U S Governme3n:jPnntmg OfIce SECOND CLASS NEWSPAPER H.4578 ' June 28, 1983 -: I H.J. Res. 273: Mr. BOLAND, Mr. WA-. Mr. OBERSTAFC, M' r. BEDELL, Mr. BONER of Tennessee, Mr. OWENS. Mr. DAUB. Mr. CONTE. Mr. RAHALL,. Mr. GRAY, Mr. VANDER JAGT. Mr. TRAKLER. and Mr. VENTO. H. Con. Res. iO7: Mr. KASICH. Mr. ALCOIN. Mr. CARPER. and Mr. SCHEUER. H. Con. Res. 118: Mr. FISH, Mr. LANTOS. Mr. KILDEE. Mr. SOLARZ Mr. Bmrr, Mr. BELWLL, Mr. RANG~L, Mr. DYMALLY. Mr.

455

United States  

Broader source: Energy.gov (indexed) [DOE]

E-T Global Energy, LLC E-T Global Energy, LLC OE Docket No. EA-381 Order Authorizing Electricity Exports to Mexico Order No. EA-381 June 10, 2011 I. BACKGROUND E-T Global Energy, LLC Order No. EA-381 Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department ofEnergy Organization Act (42 U.S.C. 7151(b), 7172(f)) and require authorization under section 202(e) ofthe Federal Power Act (FPA) (16 U.S.C.824a(e)) 1 * On May 10,2011, DOE received an application from E-T Global Energy, LLC (E-T Global) for authority to transmit electric energy from the United States to Mexico for five years as a power marketer using existing international transmission facilities. E-

456

Total Petroleum Systems and Assessment Units (AU)  

E-Print Network [OSTI]

Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

Torgersen, Christian

457

APFBC Repowering for Four Corners Station Units 1, 2, and 3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

APFBC REPOWERING FOR FOUR CORNERS STATION UNITS 1, 2, AND 3 APFBC REPOWERING FOR FOUR CORNERS STATION UNITS 1, 2, AND 3 D. Craig Walling Arizona Public Service Company Fruitland, New Mexico eMail: cwalling@apsc.com phone: (505) 598-8200 Richard E. Weinstein, P.E. Parsons Infrastructure & Technology Group Inc. Reading, Pennsylvania eMail: richard.e.weinstein@parsons.com phone: (610) 855-2699 Mark D. Freier, Ph.D. U.S. DOE National Energy Technology Laboratory Morgantown, West Virginia eMail: mfreier@netl.doe.gov phone: (304) 285-4759 Walter F. Coles, P.E. Parsons Energy & Chemicals Group Inc. Reading, Pennsylvania eMail: walter.f.coles@parsons.com phone: (610) 855-2077 Abstract This paper describes a feasibility assessment that evaluated whether advanced circulating pressurized fluidized-bed combustion combined cycle (APFBC) repowering made sense at the

458

Montana-Dakota Utilities (Gas) - Commercial Natural Gas Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

(Gas) - Commercial Natural Gas Efficiency (Gas) - Commercial Natural Gas Efficiency Rebate Program Montana-Dakota Utilities (Gas) - Commercial Natural Gas Efficiency Rebate Program < Back Eligibility Commercial Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Program Info State South Dakota Program Type Utility Rebate Program Rebate Amount Furnace: $150 - $300 Custom: Varies by project Provider Montana-Dakota Utilities Co. Montana-Dakota Utilities (MDU) offers rebates on energy efficient natural gas furnaces to its eligible commercial customers. New furnaces are eligible for a rebate incentive between $150 and $300, if the equipment meets program efficiency standards. Furnaces with AFUE between 92% of 95% are eligible for rebates if they are being installed as replacement units

459

Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review  

E-Print Network [OSTI]

of Interchangeability of Vaporized LNG and Natural Gas. Deswith Domestic Natural Gas. LNG and the Changing U.S. NaturalInterchangeability, and LNG Utilization in the United

Lekov, Alex

2010-01-01T23:59:59.000Z

460

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2011 at 2:00 P.M. 9, 2011 at 2:00 P.M. Next Release: Thursday, June 16, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 8, 2011) Natural gas prices rose on the week across the board, with somewhat moderate increases in most areas and steep increases in the Northeast United States. The Henry Hub spot price rose 20 cents on the week from $4.63 per million Btu (MMBtu) last Wednesday, June 1, to $4.83 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the near-month (July 2011) contract rose about 5 percent, from $4.692 last Wednesday to $4.847 yesterday. Working natural gas in storage rose to 2,187 billion cubic feet (Bcf) as of Friday, June 3, according to EIAÂ’s Weekly Natural Gas Storage

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2008 3, 2008 Next Release: October 30, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, October 22) Natural gas spot prices in the Lower 48 States this report week increased as a result of cold weather in some major gas consuming areas of the country, several ongoing pipeline maintenance projects, and the continuing production shut-ins in the Gulf of Mexico region. At the New York Mercantile Exchange (NYMEX), the price of the near-month contract (November 2008) increased on the week to $6.777 per million British thermal units (MMBtu) as of yesterday (October 22). The net weekly increase occurred during a week in which the price increased in three trading sessions. As of Friday, October 17, working gas in underground storage totaled

462

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, September 29, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, September 21, 2011) Natural gas spot prices declined at most market locations across the United States, as moderate temperatures led to declines in demand. Prices at the Henry Hub fell from $4.01 per MMBtu last Wednesday, September 14, to $3.78 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the near-month futures contract (October 2011) dropped from $4.039 per MMBtu last Wednesday to $3.73 per MMBtu yesterday. Working natural gas in storage rose to 3,201 billion cubic feet (Bcf) as of Friday, September 16, according to EIAÂ’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

463

Externally fired gas turbine technology: A review  

Science Journals Connector (OSTI)

Abstract Externally fired heat engines were used widely since helium the industrial revolution using dirty solid fuels for example coal, due to the lack of refined fuels. However, with the availability of clean fuels, external firing mode was abandoned, except for steam power plants. Lately, with the global trend moving towards green power production, the idea of the external fired system has captured the attention again especially externally fired gas turbine (EFGT) due to its wider range of power generation and the potential of using environment friendly renewable energy sources like biomass. In this paper, a wide range of thermal power sources utilizing EFGT such as concentrated solar power (CSP), fossil, nuclear and biomass fuels are reviewed. Gas turbine as the main component of EFGT is investigated from micro scale below 1 MWe to the large scale central power generation. Moreover, the different high temperature heat exchanger (HTHE) materials and designs are reviewed. Finally, the methods of improving cycle efficiency such as the externally fired combined cycle (EFCC), humidified air turbine (HAT), EFGT with fuel cells and other cycles are reviewed thoroughly.

K.A. Al-attab; Z.A. Zainal

2015-01-01T23:59:59.000Z

464

United States  

Broader source: Energy.gov (indexed) [DOE]

5 5 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CC-1-I Availability: This rate schedule shall be available to public bodies and cooperatives served through the facilities of Carolina Power & Light Company, Western Division (hereinafter called the Customers). Applicability: This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereinafter called collectively the "Cumberland Projects") and sold in wholesale quantities. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating

465

Proceedings of the 1st Annual Gas Processing Symposium  

E-Print Network [OSTI]

pretreatment units, a gas-fired power plant, a CO2 separation unit and storage tanks. LNG and condensateProceedings of the 1st Annual Gas Processing Symposium H. Alfadala, G.V. Rex Reklaitis and M.M. El. An example of the latter arises if part of the gas output from the separation plant is fed back

Foss, Bjarne A.

466

United States  

Broader source: Energy.gov (indexed) [DOE]

TexMex Energy, LLC TexMex Energy, LLC OE Docket No. EA-294-A Order Authorizing Electricity Exports to Mexico Order No. EA-294-A February 22, 2007 TexMex Energy, LLC Order No. EA-294-A I. BACKGROUND Exports of electricity from the United States to a foreign count~y are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 15 1 (b), 71 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.824a(e)) . On August 25,2004, DOE issued Order No. EA-294 authorizing TexMex Energy LLC (TexMex) to transmit electric energy fiom the United States to Mexico as a power marketer. That authority expired on August 25, 2006. On September 8, 2006, TexMex applied to renew the electricity export authority

467

United States  

Broader source: Energy.gov (indexed) [DOE]

Tenaslta Power Services Co. Tenaslta Power Services Co. OE Docket No. EA-243-A Order Authorizing Electricity Exports to Canada Order No. EA-243-A March 1,2007 Tenaska Power Services Co. Order No. EA-243-A I. BACKGROUND Exports of elcctricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30 I(b) and 402(f) of the Departrncnt of' Energy Organizatio~l Act (42 U, S.C. 7 15 1 (b), 7 1 72Cf)) and rcquirc authorization under section 202(e) of the Federal Power Act (FPA) ( Z 6 U. s.c.824a(e)j1. On August 16,2001, DOE issued Order No. EA-243 authorizing Tenaska Power Scrvices Co. (Tenaska) to transmit electric cncrgy from the United States to Canada as a power marketer. That authority expired on August 16,2003. On August 14,2006, Teilaska applied to renew the electricity export authority

468

Cogeneration of substitute natural gas and power from coal by moderate recycle of the chemical unconverted gas  

Science Journals Connector (OSTI)

Abstract The thermodynamic analysis and the coupling and optimization between chemical synthesis and power generation in a polygeneration system are presented. Unlike full conversion of syngas into chemicals in the traditional SNG (synthetic natural gas) production system, by moderate conversion the sharp increase in energy consumption for SNG synthesis can be avoided in the new system. Also, by recovering the chemical unconverted gas for combined cycle, electricity is cogenerated efficiently. Results show that the overall efficiency of the novel system can be as high as 59%–65%. And compared to single production systems, the (energy saving ratio) ESR of the new system is over 11.0% and the energy consumption for SNG production can be decreased by around 12%. Sensitivity analysis shows that an optimized conversion ratio of SNG, (chemicals to power output ratio) CPOR, recycle ratio of the unconverted gas Ru, and pressure ratio of gas turbine can lead to the maximum of ESR. Abolishing the syngas composition adjustment and improving the inlet temperature of gas turbine both can help to enhance the system efficiency. Under low Ru, improving the H2/CO mole ratio in the syngas helps to improve system efficiency, while under high Ru, an optimized H2/CO can lead to the maximum of ESR.

Sheng Li; Hongguang Jin; Lin Gao

2013-01-01T23:59:59.000Z

469

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF)  

SciTech Connect (OSTI)

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R D plan to develop the concept further. The power generating system being developed in this project will be an improvement over current coal-fired systems. Goals have been specified that relate to the efficiency, emissions, costs, and general operation of the system. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800[degrees]F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400[degrees]F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only.

Not Available

1993-02-01T23:59:59.000Z

470

United States  

Broader source: Energy.gov (indexed) [DOE]

2-E 2-E Availability: This rate schedule shall be available public bodies and cooperatives (any one of which is hereinafter called the Customer) in South Carolina to whom power may be wheeled pursuant to contracts between the Government and the South Carolina Electric & Gas Company (hereinafter called the Company). The customer is responsible for providing a scheduling arrangement with the Government. Nothing in this rate schedule shall preclude an eligible customer from electing service under another rate schedule. Applicability: This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter F. George, Hartwell, Millers Ferry, West Point, Robert F. Henry, Carters and Richard B.

471

United States  

Broader source: Energy.gov (indexed) [DOE]

4-E 4-E Availability: This rate schedule shall be available public bodies and cooperatives (any one of which is hereinafter called the Customer) in South Carolina served through the transmission facilities of South Carolina Electric & Gas Company (hereinafter called the Company). The customer is responsible for providing a scheduling arrangement with the Government and for providing a transmission arrangement. Nothing in this rate schedule shall preclude an eligible customer from electing service under another rate schedule. Applicability: This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter F. George, Hartwell, Millers Ferry, West Point, Robert F. Henry, Carters and Richard B.

472

United States  

Broader source: Energy.gov (indexed) [DOE]

SCE&G-1-E SCE&G-1-E Availability: This rate schedule shall be available public bodies and cooperatives (any one of which is hereinafter called the Customer) in South Carolina to whom power may be wheeled and scheduled pursuant to contracts between the Government and the South Carolina Electric & Gas Company (hereinafter called the Company). Nothing in this rate schedule shall preclude an eligible customer from electing service under another rate schedule. Applicability: This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter F. George, Hartwell, Millers Ferry, West Point, Robert F. Henry, Carters and Richard B. Russell Projects and sold under appropriate contracts between the Government and

473

United States  

Broader source: Energy.gov (indexed) [DOE]

7 7 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CTV-1-H Availability: This rate schedule shall be available to the Tennessee Valley Authority (hereinafter called TVA). Applicability: This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the "Cumberland Projects") and the Laurel Project sold under agreement between the Department of Energy and TVA. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating current at a frequency of approximately 60 hertz at the outgoing terminals of the Cumberland

474

United States  

Broader source: Energy.gov (indexed) [DOE]

United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CTVI-1-A Availability: This rate schedule shall be available to customers (hereinafter called the Customer) who are or were formerly in the Tennessee Valley Authority (hereinafter called TVA) service area. Applicability: This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the "Cumberland Projects") and the Laurel Project sold under agreement between the Department of Energy and the Customer. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating

475

UNITED STATES  

Office of Legacy Management (LM)

f).~<~~ \--\c :y-,ai F p"- KG f).~<~~ \--\c :y-,ai F p"- KG WASHINOTDN 28.0. C. ' -lr ' \ ' ' --- ".I ?--" ' z I. .~;-4.' J frr*o& 2 ii, - - -4 70-147 LRL:JCD JAN !! 8 1958 Oregon Metallurgical Corporation P. 0. Box 484 Albany, Oregon Attention: Mr. Stephen M. Shelton General Manager Gentlemen: Enclosed is Special Nuclear Material License No. SNM-144, as amended. Very 33uly yours, r:; I,;, ll)~gQ""d".- Lyall Johnson Chief, Licensing Branch Division of Licensing & Regulation Enclosure: SNM-144, as amended Distribution: bRO0 Attn: Dr. H.M.Roth DFMusser NMM MMMann INS JCRyan FIN (2) HSteele LRL SRGustavson LRL Document room Formal file Suppl. file Br & Div rf's ' .b liwwArry s/VW- ' q+ ' yj/ 2; 2-' , COP' 1 J JAM01958 -- UNITED STATES ATOMIC ENERGY COMMISSION

476

United States  

Broader source: Energy.gov (indexed) [DOE]

United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule JW-2-F Availability: This rate schedule shall be available to the Florida Power Corporation (or Progress Energy Florida, hereinafter called the Company). Applicability: This rate schedule shall be applicable to electric energy generated at the Jim Woodruff Project (hereinafter called the Project) and sold to the Company in wholesale quantities. Points of Delivery: Power sold to the Company by the Government will be delivered at the connection of the Company's transmission system with the Project bus. Character of Service: Electric power delivered to the Company will be three-phase alternating current at a nominal frequency of 60 cycles per second.

477

United States  

Broader source: Energy.gov (indexed) [DOE]

Bangor Hydro-Electric Company Bangor Hydro-Electric Company OE Docket No. PP-89-1 Amendment to Presidential Permit Order No. PP-89-1 December 30,2005 PRESIDENTIAL PERMIT AMENDMENT Bangor Hydro-Electric Company Order No. PP-89-1 I. BACKGROUND The Department of Energy (DOE) has responsibility for implementing Executive Order (E.O.) 10485, as amended by E.O. 12038, which requires the issuance of a Presidential permit by DOE before electric trans~nission facilities may be constructed, operated, maintained, or connected at the borders of the United States. DOE may issue such a permit if it determines that the permit is in the public interest and after obtaining favorable recommendations from the U.S. Departments of State and Defense. On December 16, 1988, Bangor Hydro-Electric Company (BHE) applied to DOE

478

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network [OSTI]

Gas Turbine Gas Turbine Combined Cycle Steam Turbine CogenEastridge Sunrise Ii Combined Cycle Expansion Midway-Sunset0.33-0.39 a CHP/cogen/ Combined cycle O.4 b c 0.58-0.84 d

McKone, Thomas E.

2011-01-01T23:59:59.000Z

479

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network [OSTI]

gas facilities, mainly combined-cycle (CEC, 2002b). However,technology in parens. CC = combined cycle; GT = gas turbine;emission factors for new combined-cycle turbines, the most

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

480

Water Requirements for Future Energy production in California  

E-Print Network [OSTI]

megawatts) Coal Combined Cycle Gas Turbine Geothermal '"''"'construction of the more combined cycle power plants,Gas 0 j. J. TUL'oine Combined Cycle Nuclear(LWR+I-ITGR)24.72

Sathaye, J.A.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Renewable Hydrogen From Wind in California  

E-Print Network [OSTI]

of a Natural Gas Combined-Cycle Power Generation System”continues to install combined cycle gas facilities, afairly low heat rate combined cycle ga s facility was chosen

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

482

Use of experience curves to estimate the future cost of power plants with CO2 capture  

E-Print Network [OSTI]

economics of the combined cycle gas turbine—an experiencePC) and natural gas combined cycle (NGCC) plants with post-integrated gasi?cation combined cycle (IGCC) plants with

Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

2007-01-01T23:59:59.000Z

483

Conservation screening curves to compare efficiency investments to power plants: Applications to commercial sector conservation programs  

E-Print Network [OSTI]

7¢/kWh Gas Turbine 5¢/kWh Combined-Cycle Oil Baseload Coal7¢/kWh Gas Turbine 5¢/kWh Combined-Cycle Oi Baseload Coalof Supply Technologies CT Combined- Cycle Oil Baseload Coal

Koomey, Jonathan; Rosenfeld, Arthur H.; Gadgil, Ashok J.

2008-01-01T23:59:59.000Z

484

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

485