Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Assessment of Natural Gas Combined Cycle (NGCC) Plants with  

E-Print Network (OSTI)

Assessment of Natural Gas Combined Cycle (NGCC) Plants with CO2 Capture and Storage Mike Gravely.5 Million Annual Budget FY 10/11 · $62.5 million electric · $24 million natural gas · Program Research Areas:45 Bevilacqua-Knight, Inc's Role and Reference Documents Rich Myhre ­ Bevilacqua-Knight, Inc 3:05 Pacific Gas

2

Direct coal-fired gas turbines for combined cycle plants  

SciTech Connect

The combustion/emissions control island of the CFTCC plant produces cleaned coal combustion gases for expansion in the gas turbine. The gases are cleaned to protect the turbine from flow-path degeneration due to coal contaminants and to reduce environmental emissions to comparable or lower levels than alternate clean coal power plant tedmologies. An advantage of the CFTCC system over other clean coal technologies using gas turbines results from the CFTCC system having been designed as an adaptation to coal of a natural gas-fired combined cycle plant. Gas turbines are built for compactness and simplicity. The RQL combustor is designed using gas turbine combustion technology rather than process plant reactor technology used in other pressurized coal systems. The result is simpler and more compact combustion equipment than for alternate technologies. The natural effect is lower cost and improved reliability. In addition to new power generation plants, CFTCC technology will provide relatively compact and gas turbine compatible coal combustion/emissions control islands that can adapt existing natural gas-fired combined cycle plants to coal when gas prices rise to the point where conversion is economically attractive. Because of the simplicity, compactness, and compatibility of the RQL combustion/emission control island compared to other coal technologies, it could be a primary candidate for such conversions.

Rothrock, J.; Wenglarz, R.; Hart, P.; Mongia, H.

1993-11-01T23:59:59.000Z

3

Generation Maintenance Application Center: Fuel Gas System for Combustion Turbine Combined Cycle Plant Maintenance Guide  

Science Conference Proceedings (OSTI)

This guide provides information to assist personnel involved with the maintenance of the fuel gas system at a gas turbine combined cycle facility, including good maintenance practices, preventive maintenance techniques and troubleshooting guidance.BackgroundCombustion turbine combined cycle (CTCC) facilities utilize various components that can be unique to this particular type of power plant. As such, owners and operators of CTCC facilities may find ...

2013-05-15T23:59:59.000Z

4

Comparison of intergrated coal gasification combined cycle power plants with current and advanced gas turbines  

Science Conference Proceedings (OSTI)

Two recent conceptual design studies examined ''grass roots'' integrated gasification-combined cycle (IGCC) plants for the Albany Station site of Niagara Mohawk Power Corporation. One of these studies was based on the Texaco Gasifier and the other was developed around the British Gas Co.-Lurgi slagging gasifier. Both gasifiers were operated in the ''oxygen-blown'' mode, producing medium Btu fuel gas. The studies also evaluated plant performance with both current and advanced gas turbines. Coalto-busbar efficiencies of approximately 35 percent were calculated for Texaco IGCC plants using current technology gas turbines. Efficiencies of approximately 39 percent were obtained for the same plant when using advanced technology gas turbines.

Banda, B.M.; Evans, T.F.; McCone, A.I.; Westisik, J.H.

1984-08-01T23:59:59.000Z

5

DADICC: Intelligent system for anomaly detection in a combined cycle gas turbine plant  

Science Conference Proceedings (OSTI)

DADICC is the abbreviated name for an intelligent system able to detect on-line and diagnose anomalies as soon as possible in the dynamic evolution of the behaviour of a power plant based on a combined cycle gas turbine. In order to reach this objective, ... Keywords: Anomaly detection, Diagnosis, Expert system, Multi-agent system, Neural network, Normal behaviour

Antonio Arranz; Alberto Cruz; Miguel A. Sanz-Bobi; Pablo Ruz; Josu Coutio

2008-05-01T23:59:59.000Z

6

Retrofit of CO2 Capture of Natural Gas Combined Cycle Power Plants  

Science Conference Proceedings (OSTI)

A significant target for control of CO2 emission would be stationary power plants as they are large sources and relatively easy to control. Most of the focus of studies has been on new plants Only a few have looked at retrofits of the existing plants and those have mainly concentrated on coal-fired systems. However, there are a large number of existing gas-fired combined cycle plant in existence and understanding whether retrofit of these plants is realistic is important. This study considers retrofit of...

2005-12-08T23:59:59.000Z

7

Gas turbine effects on integrated-gasification-combined-cycle power plant operations  

SciTech Connect

This study used detailed thermodynamic modeling procedures to assess the influence of different gas turbine characteristics and steam cycle conditions on the design and off-design performance of integrated gasification-combined-cycle (IGCC) power plants. IGCC plant simulation models for a base case plant with Texaco gasifiers and both radiant and convective syngas coolers were developed, and three different types of gas turbines were evaluated as well as non-reheat and reheat steam systems. Results indicated that improving the gas turbine heat rate significantly improves the heat rate of the IGCC power plant. In addition results indicated that using a reheat steam system with current gas turbines improves IGCC performance, though as gas turbine efficiency increases, the impact of using a reheat steam system decreases. Increasing gas turbine temperatures from 1985{degree}F to 2500{degree}F was also found to have the potential to reduce overall IGCC system heat rates by approximately 700 BTU/kWh. The methodologies and models developed for this work are extremely useful tools for investigating the impact of specific gas turbine and steam cycle conditions on the overall performance of IGCC power plants. Moreover, they can assist utilities during the preliminary engineering phase of an IGCC project in evaluating the cost effectiveness of using specific gas turbines and steam cycles in the overall plant design. 45 refs., 20 figs., 10 tabs.

Eustis, F.H. (Stanford Univ., CA (USA). High Temperature Gasdynamics Lab.)

1990-03-01T23:59:59.000Z

8

Efficiency combined cycle power plant  

SciTech Connect

This patent describes a method of operating a combined cycle power plant. It comprises: flowing exhaust gas from a combustion turbine through a heat recovery steam generator (HRSG); flowing feed water through an economizer section of the HRSG at a flow rate and providing heated feed water; flowing a first portion of the heated feed water through an evaporator section of the HRSG and producing saturated steam at a production rate, the flow rate of the feed water through the economizer section being greater than required to sustain the production rate of steam in the evaporator section; flowing fuel for the turbine through a heat exchanger; and, flowing a second portion of the heated feed water provided by the economizer section through the heat exchanger then to an inlet of the economizer section, thereby heating the fuel flowing through the heat exchanger.

Pavel, J.; Meyers, G.A.; Baldwin, T.S.

1990-06-12T23:59:59.000Z

9

Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh?s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2013-06-30T23:59:59.000Z

10

Phased Construction of Natural Gas Combined-Cycle Plants with Coal Gasification and CO2 Recovery  

Science Conference Proceedings (OSTI)

This report is a brief review of technologies and key issues involved in a phased construction approach for a low-emission integrated-gasification-combined-cycle (IGCC) plant where carbon dioxide (CO2) removal for use or sequestration can be added at a later date.

2002-10-10T23:59:59.000Z

11

H gas turbine combined cycle  

SciTech Connect

A major step has been taken in the development of the Next Power Generation System--``H`` Technology Combined Cycle. This new gas turbine combined-cycle system increases thermal performance to the 60% level by increasing gas turbine operating temperature to 1,430 C (2,600 F) at a pressure ratio of 23 to 1. Although this represents a significant increase in operating temperature for the gas turbine, the potential for single digit NOx levels (based upon 15% O{sub 2}, in the exhaust) has been retained. The combined effect of performance increase and environmental control is achieved by an innovative closed loop steam cooling system which tightly integrates the gas turbine and steam turbine cycles. The ``H`` Gas Turbine Combined Cycle System meets the goals and objectives of the DOE Advanced Turbine System Program. The development and demonstration of this new system is being carried out as part of the Industrial/Government cooperative agreement under the ATS Program. This program will achieve first commercial operation of this new system before the end of the century.

Corman, J.

1995-12-31T23:59:59.000Z

12

Combined cycle power plant incorporating coal gasification  

DOE Patents (OSTI)

A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

Liljedahl, Gregory N. (Tariffville, CT); Moffat, Bruce K. (Simsbury, CT)

1981-01-01T23:59:59.000Z

13

Evaluation of Thermal Zero Liquid Discharge Treatment Technologies for Combined Cycle Gas Turbine Power Plants  

Science Conference Proceedings (OSTI)

A study was conducted to identify and update key details of zero liquid discharge (ZLD) water management systems currently operating at U.S. gas-fired combined cycle generating stations (CC). The study focused on not only the technologies applied, but also on the advantages and shortcomings of the various processes and summarized the lessons learned from the operating systems. Most ZLD's were found to employ one of four different types of water pretreatment process assemblies consisting of the following:...

2011-12-19T23:59:59.000Z

14

Development of a dynamic simulator for a natural gas combined cycle (NGCC) power plant with post-combustion carbon capture  

Science Conference Proceedings (OSTI)

The AVESTAR Center located at the U.S. Department of Energys National Energy Technology Laboratory and West Virginia University is a world-class research and training environment dedicated to using dynamic process simulation as a tool for advancing the safe, efficient and reliable operation of clean energy plants with CO{sub 2} capture. The AVESTAR Center was launched with a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with pre-combustion carbon capture. The IGCC dynamic simulator offers full-scope Operator Training Simulator (OTS) Human Machine Interface (HMI) graphics for realistic, real-time control room operation and is integrated with a 3D virtual Immersive Training Simulator (ITS), thus allowing joint control room and field operator training. The IGCC OTS/ITS solution combines a gasification with CO{sub 2} capture process simulator with a combined cycle power simulator into a single high-performance dynamic simulation framework. This presentation will describe progress on the development of a natural gas combined cycle (NGCC) dynamic simulator based on the syngas-fired combined cycle portion of AVESTARs IGCC dynamic simulator. The 574 MW gross NGCC power plant design consisting of two advanced F-class gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine in a multi-shaft 2x2x1 configuration will be reviewed. Plans for integrating a post-combustion carbon capture system will also be discussed.

Liese, E.; Zitney, S.

2012-01-01T23:59:59.000Z

15

Wood Burning Combined Cycle Power Plant  

E-Print Network (OSTI)

A combined cycle power plant utilizing wood waste products as a fuel has been designed. This plant will yield a 50% efficiency improvement compared to conventional wood-fueled steam power plants. The power plant features an externally-fired gas turbine combined cycle system that obtains its heat input from a high temperature, high pressure ceramic air heater burning wood waste products as a fuel. This paper presents the results of the design study including the cycle evaluation and a description of the major components of the power plant. The cycle configuration is based on maximum fuel efficiency with minimum capital equipment risk. The cycle discussion includes design point performance of the power plant. The design represents a significant step forward in wood-fueled power plants.

Culley, J. W.; Bourgeois, H. S.

1984-01-01T23:59:59.000Z

16

Reliability and Availability of Gas Turbines and Combined-Cycle Plants  

Science Conference Proceedings (OSTI)

High reliability, availability, and maintainability (RAM) of gas turbine plants are important attributes affecting the cost of generating electricity. RAM performance is a key indicator of the certainty that the power plant can deliver the electricity required to the grid when needed. Furthermore, events affecting reliability, availability, and starting reliability directly influence the profitability of the plant, equity return to the owner, and ultimately the price consumers pay for generation. Changes...

2008-12-01T23:59:59.000Z

17

System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134  

DOE Green Energy (OSTI)

The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.

Annen, K.D.

1981-08-01T23:59:59.000Z

18

Cost and Performance Baseline for Fossil Energy Plants; Volume 3c: Natural Gas Combined Cycle at Elevation  

NLE Websites -- All DOE Office Websites (Extended Search)

Baseline for Fossil Energy Plants Volume 3c: Natural Gas Combined Cycle at Elevation March 2011 DOE/NETL-2010/1396 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States

19

Combined cycle electric power plant having a control system which enables dry steam generator operation during gas turbine operation  

SciTech Connect

A control system for a combined cycle electric power plant is described. It contains: at least one gas turbine including an exit through which heated exhaust gases pass; means for generating steam coupled to said gas turbine exit for transferring heat from the exhaust gases to a fluid passing through the steam generator; a steam turbine coupled to the steam generator and driven by the steam supplied thereby; means for generating electric power by the driving power of the turbines; condenser means for receiving and converting the spent steam from the steam turbine into condensate; and steam generating means comprising a low pressure storage tank, a first heat exchange tube, a boiler feedwater pump for directing fluid from a low pressure storage tank through the first heat exchange tube, a main storage drum, a second heat exchange tube, and a high pressure recirculation pump for directing fluid from the main storage pump through the second heat exchange tube. The control system monitors the temperature of the exhaust gas turbine gases as directed to the steam generator and deactuates the steam turbine when a predetermined temperature is exceeded.

Martz, L.F.; Plotnick, R.J.

1974-08-08T23:59:59.000Z

20

California Energy Commission Assessment of Natural Gas Combined Cycle  

E-Print Network (OSTI)

California Energy Commission 1 Assessment of Natural Gas Combined Cycle Plants for Carbon Dioxide Capture and Storage in a Gas-Dominated Electricity Market California Energy Commission Request for Proposals RFP # 500-10-502 Pre-Bid Conference Date: Wednesday, November 3, 2010 #12;California Energy

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

AVESTAR® - Natural Gas Combined Cycle (NGCC) Dynamic Simulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Combined Cycle (NGCC) Dynamic Simulator Natural Gas Combined Cycle (NGCC) Dynamic Simulator A simulator that can provide future engineers with realistic, hands-on experience for operating advanced natural gas combined cycle (NGCC) power plants will soon be available at an innovative U.S. Department of Energy training center. Under a new cooperative research and development agreement signed by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) and Invensys Operations Management, the partners will develop, test, and deploy a dynamic simulator and operator training system (OTS) for a generic NGCC power plant equipped for use with post-combustion carbon capture. NETL will operate the new dynamic simulator/OTS at the AVESTAR (Advanced Virtual Energy Simulation Training and Research) Center in Morgantown, W.Va.

22

Hybrid solar central receiver for combined cycle power plant  

DOE Patents (OSTI)

A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

Bharathan, Desikan (Lakewood, CO); Bohn, Mark S. (Golden, CO); Williams, Thomas A. (Arvada, CO)

1995-01-01T23:59:59.000Z

23

Hybrid solar central receiver for combined cycle power plant  

DOE Patents (OSTI)

A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

Bharathan, D.; Bohn, M.S.; Williams, T.A.

1995-05-23T23:59:59.000Z

24

Advanced Control Demonstration on a Combined Cycle Plant  

Science Conference Proceedings (OSTI)

Southern Company, Electricit de France (EDF), and EPRI have undertaken a project to demonstrate the applicability of advanced control techniques on a combined-cycle heat recovery steam generator (HRSG). This report describes progress on the project during 2005 including model identification, the advanced controller design, controller program development, and controller testing in a simulation environment. A combined-cycle plant was selected as the host plant because many combined-cycle plants have chang...

2006-03-31T23:59:59.000Z

25

State estimation of an acid gas removal (AGR) plant as part of an integrated gasification combined cycle (IGCC) plant with CO2 capture  

Science Conference Proceedings (OSTI)

An accurate estimation of process state variables not only can increase the effectiveness and reliability of process measurement technology, but can also enhance plant efficiency, improve control system performance, and increase plant availability. Future integrated gasification combined cycle (IGCC) power plants with CO2 capture will have to satisfy stricter operational and environmental constraints. To operate the IGCC plant without violating stringent environmental emission standards requires accurate estimation of the relevant process state variables, outputs, and disturbances. Unfortunately, a number of these process variables cannot be measured at all, while some of them can be measured, but with low precision, low reliability, or low signal-to-noise ratio. As a result, accurate estimation of the process variables is of great importance to avoid the inherent difficulties associated with the inaccuracy of the data. Motivated by this, the current paper focuses on the state estimation of an acid gas removal (AGR) process as part of an IGCC plant with CO2 capture. This process has extensive heat and mass integration and therefore is very suitable for testing the efficiency of the designed estimators in the presence of complex interactions between process variables. The traditional Kalman filter (KF) (Kalman, 1960) algorithm has been used as a state estimator which resembles that of a predictor-corrector algorithm for solving numerical problems. In traditional KF implementation, good guesses for the process noise covariance matrix (Q) and the measurement noise covariance matrix (R) are required to obtain satisfactory filter performance. However, in the real world, these matrices are unknown and it is difficult to generate good guesses for them. In this paper, use of an adaptive KF will be presented that adapts Q and R at every time step of the algorithm. Results show that very accurate estimations of the desired process states, outputs or disturbances can be achieved by using the adaptive KF.

Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

26

An Engineering and Economic Evaluation of Post-Combustion CO2 Capture for Natural Gas-Fired Combined-Cycle Power Plants  

Science Conference Proceedings (OSTI)

This report presents an Electric Power Research Institute (EPRI) assessment on the technical feasibility, performance, and associated costs of applying post-combustion carbon dioxide (CO2) capture technology to a natural gasfired combined-cycle (NGCC) power station.

2012-03-23T23:59:59.000Z

27

Optimal Instrumentation for Combined Cycle Plant Performance  

Science Conference Proceedings (OSTI)

Power plants today rely on distributed control systems (DCS) to operate their equipment. These control systems subsequently rely on process information provided by various instruments in the field. The accuracy and reliability of field instrumentation has a direct correlation to the ability of the control system to operate correctly, including the ability to control the plant in a safe and reliable manner.Beyond instrumentation relied on for control of the power plant, additional ...

2013-11-11T23:59:59.000Z

28

Application of the Concept of Exergy in the Selection of a Gas-Turbine Engine for Combined-Cycle Power Plant Design  

E-Print Network (OSTI)

It has been shown that the second-law efficiency of a gas-turbine engine may be calculated in a rational and simple manner by making use of an algebraic equation giving the exergy content of turbine exhaust as a function of exhaust temperature only. Since a high second-law efficiency of a gas-turbine engine is necessary to have high overall system efficiency, the decision maker may thus make use of the procedure presented in this work to quickly identify those gas-turbine engines that could be good candidates for combined-cycle operation.

Huang, F. F.; Naumowicz, T.

2001-05-01T23:59:59.000Z

29

Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture  

Science Conference Proceedings (OSTI)

Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS) and the Parallel Computing toolbox from Mathworks. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB environment and present the overall approach for achieving higher computational efficiency in this framework.

Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

30

Flue Gas Cleanup at Temperatures about 1400 C for a Coal Fired Combined Cycle Power Plant: State and Perspectives in the Pressurized Pulverized Coal Combustion (PPCC) Project  

Science Conference Proceedings (OSTI)

The PPCC technology, a combined cycle, requires comprehensive cleaning of the flue gases because coal contains a large variety of minerals and other substances. This would lead to fast destruction of the gas turbine blades due to erosion and corrosion. The present specifications of the turbine manufacturers for the required flue gas quality are at a maximum particulate content of 5 mg/m3 s.t.p., diameter of Kraftwerke GmbH, SaarEnergie GmbH, Siemens AG, and Steag AG.

Foerster, M.E.C.; Oeking, K.; Hannes, K.

2002-09-18T23:59:59.000Z

31

Cost and carbon emissions of coal and combined cycle power plants...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost and carbon emissions of coal and combined cycle power plants in India: international implications Title Cost and carbon emissions of coal and combined cycle power plants in...

32

Deaerator heat exchanger for combined cycle power plant  

SciTech Connect

This patent describes a combined cycle power plant. It comprises a steam turbine including an inlet portion for receiving motive steam and an exhaust portion for exhausting the motive steam that is spent by the steam turbine; a condenser connected to the exhaust portion of the steam turbine for receiving the spent motive steam and for condensing the spent motive steam to a supply of condensate; a gas turbine including an exhaust portion for exhausting waste heat that is produced by the gas turbine in the form of exhaust gases; a heat recovery steam generator connected between the exhaust portion of the gas turbine and the steam turbine, for receiving the waste heat exhausted by the gas turbine, for generating the motive steam from a supply of feedwater heated by the waste heat, and for supplying the motive steam to the steam turbine; a deaerator connected to the condenser for receiving the supply of condensate and for deaerating the condensate to provide the supply of feedwater to the heat recovery steam generator; and a heat exchanger.

Pavel, J.; Richardson, B.L.

1990-10-09T23:59:59.000Z

33

Willamina Project Report : Indirect-Fired, Biomass-Fueled, Combined-Cycle, Gas Turbine Power Plant Using a Ceramic Heat Exchanger. Volume 1. Conceptual Plant Design and Analysis. Final report. [Contains Glossary  

SciTech Connect

A new technology for a wood-fueled electrical generation plant was evaluated. The proposed plant utilizes an indirectly fired gas turbine (IFGT) using a ceramic heat exchanger for high efficiency, due to its high temperature capability. The proposed plant utilizes a wood-fueled furnace with a ceramic heat exchanger to heat compressed air for a gas turbine. The configuration proposed is a combined cycle power plant that can produce 6 to 12 MW, depending upon the amount of wood used to supplementally fire a heat recovery steam generator (HRSG), which in turn powers a steam turbine. Drawings, specifications, and cost estimates based on a combined cycle analysis and wood-fired HRSG were developed. The total plant capital cost was estimated to be $13.1 million ($1640/kW). The heat rate for a 8-MW plant was calculated to be 10,965 Btu/kW when using wood residues with a 42% moisture content. Levelized electric energy costs were estimated to be 6.9 cents/kWh.

F.W. Braun Engineers.

1984-05-01T23:59:59.000Z

34

Operational strategies for dispatchable combined cycle plants, Part I  

SciTech Connect

The Brush Cogeneration Facility is a dual-unit, combined cycle, cogeneration plant operating in a daily cycling, automatically-dispatchable mode. According to the PSCO tariff for cogenerators, the Independent Power Production Facility Policy, the highest payment schedule is reserved for those facilities capable of automatic generation control (AGC), the so-called `Category 4A Facilities.` AGC entails the ability to receive microwave signals from PSCO`s Load Control Center at Lookout Mountain, Colorado, and automatically adjust output at a rate of 2% of contract maximum load per minute, over at least the top 40% of contract load range. Perhaps the most critical equipment modification enabling AGC was the re-enabling of automatic variable inlet guide vane (IGV) control. During control system modifications for automatic IGVs, the operators realized that the Woodward NetCon control system`s capabilities of control, monitoring and information display were better than anticipated. The relative ease with which IGV changes were made encouraged the operating team to continue to maximize efficiency and optimize plant operations. In fact, the ease of use and modification led to the purchase of an additional NetCon system for plant-wide performance monitoring. The retrofit of the gas turbine control system with the NetCon system was a success. 1 tab.

Nolan, J.P.; Landis, F.P. [Brush Cogeneration Facility, Brush, CO (United States)

1996-07-01T23:59:59.000Z

35

Secondary steam models of a combined cycle power plant simulator  

Science Conference Proceedings (OSTI)

In this paper, the general description of a full scope simulator for a combined cycle power plant is presented; the antecedents of this work are explained; the basis of the models of the auxiliary and turbine gland steam systems are exposed and some ...

Edgardo J. Roldan-Villasana; Ma. de Jesus Cardoso-Goroztieta; Adriana Verduzco-Bravo; Jorge J. Zorrilla-Arena

2011-04-01T23:59:59.000Z

36

Economics of Phased Gasification-Combined-Cycle Plants: Utility Results  

Science Conference Proceedings (OSTI)

Phased gasification-combined-cycle power plants can help utilities match load growth and respond to changes in demand and fuel prices. After evaluating the economic merits of phased additions, seven utilities considered the technology a viable option for electricity generation in the 1990s.

1987-11-01T23:59:59.000Z

37

Application of RBF-type ARX Modeling and Control to Gas Turbine Combined Cycle SCR Systems  

E-Print Network (OSTI)

Application of RBF-type ARX Modeling and Control to Gas Turbine Combined Cycle SCR Systems Y, nonlinear model-based predictive control, energy saving. 1. INTRODUCTION In Japan, GTCC(Gas Turbine Combined gas-firing GTCC power plant is most effective in terms of thermal efficiency and lower CO2 energy

Ozaki, Tohru

38

NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE  

SciTech Connect

The objective of this program is to develop and evaluate novel sorbents for the Siemens Westinghouse Power Company's (SWPC's) ''Ultra-Clean Gas Cleaning Process'' for reducing to near-zero levels the sulfur- and chlorine-containing gas emissions and fine particulate matter (PM2.5) caused by fuel bound constituents found in carbonaceous materials, which are processed in Integrated Gasification Combined Cycle (IGCC) technologies.

Javad Abbasian

2001-07-01T23:59:59.000Z

39

Combined-cycle plants can challenge feedwater control  

Science Conference Proceedings (OSTI)

Stable feedwater control is critical to the reliable operation of any power plant steam generator system. This is particularly true for combustion turbine/heat recovery steam generator/steam turbine combined-cycle power plants where steam production may have to be sustained under varying modes of operation. Feedwater control system implementation in this type of installation often requires specialized designs to accommodate equipment limitations and the system's process dynamics. In particular, combined-cycle power plants that include integral deaerator and multiple pressure heat recovery steam generators may pose special control challenges in several areas. These include integral deaerator pressure, boiler feed pump recirculation control, boiler feed pump protective interlocks, and drum level control. This article describes a number of basic feedwater control logic features, derived from conventional fired boiler designs adapted for specific cycle configuration, applied in recent medium and large combustion turbine-heat recovery steam generator projects.

Bossio, R.A.

1994-03-01T23:59:59.000Z

40

NOVEL GAS CLEANING/ CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE  

NLE Websites -- All DOE Office Websites (Extended Search)

INTEGRATED GASIFICATION COMBINED CYCLE VOLUME I - CONCEPTUAL COMMERCIAL EVALUATION OPTIONAL PROGRAM FINAL REPORT September 1, 2001 - December 31, 2005 By Dennis A. Horazak (Siemens), Program Manager Richard A. Newby (Siemens) Eugene E. Smeltzer (Siemens) Rachid B. Slimane (GTI) P. Vann Bush (GTI) James L. Aderhold, Jr. (GTI) Bruce G. Bryan (GTI) December 2005 DOE Award Number: DE-AC26-99FT40674 Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Siemens Power Generation, Inc. 4400 Alafaya Trail Orlando, FL 32826 & Gas Technology Institute 1700 S. Mt. Prospect Rd. Des Plaines, Illinois 60018 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government.

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Model Predictive Control of Integrated Gasification Combined Cycle Power Plants  

SciTech Connect

The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

B. Wayne Bequette; Priyadarshi Mahapatra

2010-08-31T23:59:59.000Z

42

Life Cycle Analysis: Integrated Gasification Combined Cycle (IGCC) Power Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Analysis: Integrated Life Cycle Analysis: Integrated Gasification Combined Cycle (IGCC) Power Plant Revision 2, March 2012 DOE/NETL-2012/1551 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

43

Method and apparatus for operating a combined cycle power plant having a defective deaerator  

Science Conference Proceedings (OSTI)

This patent describes a combined cycle power plant. It comprises: a deaerator having primary and secondary functions, the primary function to degasify feedwater for use in the combined cycle power plant; means for normally coupling the deaerator to the combined cycle power plant as a normally functioning part thereof; means for isolating the deaerator from the combined cycle power plant during operations thereof; and alternate means for performing the primary and secondary functions when the deaerator is isolated from the combined cycle power plant, during operations thereof, by the isolating means.

Pavel, J.; Richardson, B.L.; Myers, G.A.

1990-01-30T23:59:59.000Z

44

NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE  

DOE Green Energy (OSTI)

Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the individual gas cleaning stages, and the probable operating conditions of the gas cleaning stages to conceptually satisfy the gas cleaning requirements; (2) Estimate process material & energy balances for the major plant sections and for each gas cleaning stage; (3) Conceptually size and specify the major gas cleaning process equipment; (4) Determine the resulting overall performance of the application; and (5) Estimate the investment cost and operating cost for each application. Analogous evaluation steps were applied for each application using conventional gas cleaning technology, and comparison was made to extract the potential benefits, issues, and development needs of the Filter-Reactor Novel Gas Cleaning technology. The gas cleaning process and related gas conditioning steps were also required to meet specifications that address plant environmental emissions, the protection of the gas turbine and other Power Island components, and the protection of the methanol synthesis reactor. Detailed material & energy balances for the gas cleaning applications, coupled with preliminary thermodynamic modeling and laboratory testing of candidate sorbents, identified the probable sorbent types that should be used, their needed operating conditions in each stage, and their required levels of performance. The study showed that Filter-Reactor Novel Gas Cleaning technology can be configured to address and conceptually meet all of the gas cleaning requirements for IGCC, and that it can potentially overcome several of the conventional IGCC power plant availability issues, resulting in improved power plant thermal efficiency and cost. For IGCC application, Filter-Reactor Novel Gas Cleaning yields 6% greater generating capacity and 2.3 percentage-points greater efficiency under the Current Standards case, and more than 9% generating capacity increase and 3.6 percentage-points higher efficiency in the Future Standards case. While the conceptual equipment costs are estimated to be only slightly lower for the Filter-Reactor Novel Gas Cleaning processes than for the conventional processes, the improved power plant capacity results in the potentia

Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

2005-12-01T23:59:59.000Z

45

Average utilization of the nation's natural gas combined-cycle ...  

U.S. Energy Information Administration (EIA)

... (purple line) and 2010 (red line) average capacity factors for natural gas plant operations between 10 p.m. and 6 a.m. rose from 26% to 32%.

46

Conversion to Dual Fuel Capability in Combustion Turbine Plants: Addition of Distillate Oil Firing for Combined Cycles  

Science Conference Proceedings (OSTI)

During development of combined cycle projects, key assumptions and estimates regarding markets and technology on which the project is based may change. With fuel costs of combined cycle plants representing over 90 percent of annual operating cost, sudden changes in fuel pricing demand attention and re-evaluation. Conversion from natural gas fuel only to dual fuel capability with the addition of distillate oil firing systems is a technical response to market conditions that may have long-term as well as s...

2001-09-26T23:59:59.000Z

47

Combined cycle electric power plant with coordinated steam load distribution control  

SciTech Connect

A combined cycle electric power plant includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes a superheater tube through which a fluid, e.g., water, is directed to be additionally heated into superheated steam by the exhaust gas turbine gases. An afterburner further heats the exhaust gas turbine gases passed to the superheater tube. The temperature of the gas turbine exhaust gases is sensed for varying the fuel flow to the afterburner by a fuel valve, whereby the temperatures of the gas turbine exhaust gases and therefore of the superheated steam, are controlled. Loading and unloading of the steam turbine is accomplished automatically in coordinated plant control as a function of steam throttle pressure.

Uram, R.

1979-09-25T23:59:59.000Z

48

Feasibility Studies to Improve Plant Availability and Reduce Total Installed Cost in Integrated Gasification Combined Cycle Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Feasibility Studies to Improve Plant Feasibility Studies to Improve Plant Availability and Reduce Total Installed Cost in Integrated Gasification Combined Cycle Plants Background Gasification provides the means to turn coal and other carbonaceous solid, liquid and gaseous feedstocks as diverse as refinery residues, biomass, and black liquor into synthesis gas and valuable byproducts that can be used to produce low-emissions power, clean-burning fuels and a wide range of commercial products to support

49

A technical and economic analysis of a natural gas combined cycle power plant with carbon dioxide capture using membrane separation technology.  

E-Print Network (OSTI)

?? Carbon dioxide (CO2) capture and storage (CCS) is a key technology to reduce anthropogenic greenhouse gas emissions and mitigate the potential effects of climate (more)

Ducker, Michael Jay

2012-01-01T23:59:59.000Z

50

South Bangkok combined cycle plant technical feasibility study. Export trade information  

SciTech Connect

The report, written by Black and Veatch International, was funded by the U.S. Trade and Development Agency on behalf of the Electricity Generating Authority of Thailand. It establishes the conceptual design for the installation of a 300 MW combined cycle unit at the South Bangkok Plant. It is divided into the following sections: Gas/Oil Resource Assessment; Water Resources Assessment; Bases of Design; Site Arrangement; Generation Plant Arrangement; Conceptual Design; Transmission System Integration; Capital and Operating Cost Estimate; and Project Implementation.

1990-07-01T23:59:59.000Z

51

Integrated gasification-combined-cycle power plants - Performance and cost estimates  

SciTech Connect

Several studies of Integrated Gasification-combined-cycle (IGCC) power plants have indicated that these plants have the potential for providing performance and cost improvements over conventional coal-fired steam power plants with flue gas desulfurization. Generally, IGCC power plants have a higher energy-conversion efficiency, require less water, conform with existing environmental standards at lower cost, and are expected to convert coal to electricity at lower costs than coal-fired steam plants. This study compares estimated costs and performance of various IGCC plant design configurations. A second-law analysis identifies the real energy waste in each design configuration. In addition, a thermoeconomic analysis reveals the potential for reducing the cost of electricity generated by an IGCC power plant.

Tsatsaronis, G.; Tawfik, T.; Lin, L. (Tennessee State Univ., Nashville (USA))

1990-04-01T23:59:59.000Z

52

Tubular SOFC and SOFC/gas turbine combined cycle status and prospects  

DOE Green Energy (OSTI)

Presently under fabrication at Westinghouse for a consortium of Dutch and Danish utilities is the world`s first 100 kWe Solid Oxide Fuel Cell (SOFC) power generation system. This natural gas fueled experimental field unit will be installed near Arnhem, Netherlands, at an auxiliary district heating plant. Electrical generation efficiency of this simple cycle atmospheric pressure system will approach 50% [net ac/LHV]. For larger capacity systems, the horizon for the efficiency (atmospheric pressure) is about 55%. Pressurization would increase the efficiency. Objectives of the analyses reported were: (1) to document the improved performance potential of the two shaft turbine cycle given access to a better recuperator and lower lead losses, (2) to assess the performance of PSOFC/GT combined cycles in the 3 MW plant application that are based on use of a simple single shaft gas turbine having a design-point turbine inlet temperature that closely matches the temperature of the SOFC exhaust gas (about 850 C), (3) to estimate the performance potential of smaller combined cycle power plants employing a single SOFC submodule, and (4) to evaluate the cogeneration potential of such systems.

Veyo, S.E.; Lundberg, W.L.

1996-12-31T23:59:59.000Z

53

Shell-based gasification-combined-cycle power plant evaluations. Final report  

SciTech Connect

This report presents the results of a detailed engineering and economic evaluation of shell-based integrated gasification - combined-cycle (IGCC) power plants. Two complete nominal 1000 MW capacity Shell-based grass roots IGCC plant designs and cost estimates were prepared. The following conclusions were made: Shell-based IGCC plants firing Illinois coal and employing current technology gas turbines (2000/sup 0/F firing temperature) have the potential to be cost competitive with conventional coal-fired steam plants with FGD. Shell-based IGCC plants firing Texas lignite have the potential to generate power at costs that are competitive with those based on firing high rank coal. Shell-based IGCC plants firing Illinois No. 6 coal have equivalent performance and costs similar to Texaco-based IGCC systems.

Hartman, J.J.

1983-06-01T23:59:59.000Z

54

Catalytic combustor for integrated gasification combined cycle power plant  

DOE Patents (OSTI)

A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

Bachovchin, Dennis M. (Mauldin, SC); Lippert, Thomas E. (Murrysville, PA)

2008-12-16T23:59:59.000Z

55

Control system for single shaft combined cycle gas and steam turbine unit  

SciTech Connect

This patent describes a method for starting and controlling a combined cycle turbine of the type having a gas turbine with a fuel flow control valve and a steam turbine with at least one steam control valve both disposed on a single shaft and having a heat recovery steam generator heated by the gas turbine and connected to supply steam to the steam control valve, the combined cycle turbine having a unified control system and driving a load, and also having an auxiliary steam source connected to the steam control valve. It comprises controlling of steam from the auxiliary steam source with the steam control valve to crank the combined cycle turbine for starting, initiating and controlling fuel flow to the gas turbine with the fuel flow control valve and initiating combustion, controlling initial acceleration of the combined cycle turbine with the steam control valve on auxiliary steam, coordinating control of the combined cycle turbine by the steam control valve and the fuel control valve with the unified control system, transferring acceleration control during a smooth acceleration phase of the combined cycle turbine by the steam control valve and the fuel control valve with the unified control system, transferring acceleration control during a smooth acceleration phase of the combined cycle turbine to the fuel flow control valve and gradually reducing the opening of the steam control valve to a minimum value when the turbine reaches rated speed.

Moore, J.H.; Kure-Jensen, J.; Rowen, W.I.

1991-08-27T23:59:59.000Z

56

Condensers for Combined-Cycle Plants: Air-Cooled and Water-Cooled Condensers Design Best Practices and Procurement Specifications  

Science Conference Proceedings (OSTI)

Natural Gas Combined-Cycle (NGCC) power plants are expected to play an increasing role in the mix of new power generation. Additional guidance is needed for utilities, contracted engineering firms, and suppliers to better specify, design, supply, and operate these next-generation plants. This document focuses on the steam condensers, both wet and air-cooled, which are anticipated to serve these plants. It provides guidance, best practices, and lessons learned in regard to these condensers and offers insi...

2010-11-25T23:59:59.000Z

57

Cooldown control system for a combined cycle electrical power generation plant  

SciTech Connect

This patent describes a combined cycle electrical power plant including a steam turbine, a heat recovery steam generator for supplying steam to the steam turbine, a gas turbine for supplying heat to the heat recovery steam generator. The steam generator and gas turbine both produce electrical power under load, and the gas turbine has a control circuit determining the operation therof. A cooldown control system is described for the power generation plant. The system comprises: first means for detecting one of a steaming condition and a non-steaming condition in the heat recovery steam generator; second means responsive to the steaming condition and to a gas turbine STOP signal for reducing the load of the gas turbine toward a minimum load level; third means responsive to the non-steaming condition and to the minimum load level being reached for generating a STOP command and applying the STOP command to the control circuit of the gas turbine, thereby to indicate a sequence of steps to stop the gas turbine.

Martens, A.; Snow, B.E.

1987-01-27T23:59:59.000Z

58

Single pressure steam bottoming cycle for gas turbines combined cycle  

SciTech Connect

This patent describes a process for recapturing waste heat from the exhaust of a gas turbine to drive a high pressure-high temperature steam turbine and a low pressure steam turbine. It comprises: delivering the exhaust of the gas turbine to the hot side of an economizer-reheater apparatus; delivering a heated stream of feedwater and recycled condensate through the cold side of the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus to elevate the temperature below the pinch point of the boiler; delivering the discharge from the high pressure-high temperature steam turbine through the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus; driving the high pressure-high temperature steam turbine with the discharge stream of feedwater and recycled condensate which is heated to a temperature below the pinch point of the boiler by the economizer-reheater apparatus; and driving the low pressure steam turbine with the discharged stream of the high pressure-high temperature steam turbine reheated below the pinch point of the boiler by the economizer-reheater apparatus.

Zervos, N.

1990-01-30T23:59:59.000Z

59

A review of biomass integrated-gasifier/gas turbine combined cycle technology and its  

E-Print Network (OSTI)

A review of biomass integrated-gasifier/gas turbine combined cycle technology and its application Copersucar, CP 162, Piracicaba, SP ­ Brazil ­ 13400-970 Biomass integrated-gasifier/gas turbine combined-from-sugarcane program. 1. Introduction The biomass integrated-gasifier/gas turbine combined cy- cle (BIG

60

Carbon Dioxide Capture from Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate-Ammonium Bicarbonate Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate- Ammonium Bicarbonate Process Description Current commercial processes to remove carbon dioxide (CO 2 ) from conventional power plants are expensive and energy intensive. The objective of this project is to reduce the cost associated with the capture of CO 2 from coal based gasification processes, which convert coal and other carbon based feedstocks to synthesis gas.

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Technical and economic evaluation of a Brayton-Rankine combined-cycle solar-thermal power plant  

DOE Green Energy (OSTI)

The objective of this study is to conduct an assessment of gas-liquid direct-contact heat exchange and of a new storage-coupled system (the open-cycle Brayton/steam Rankine combined cycle). Both technical and economic issues are evaluated. Specifically, the storage-coupled combined cycle is compared with a molten salt system. The open Brayton cycle system is used as a topping cycle, and the reject heat powers the molten salt/Rankine system. In this study the molten salt system is left unmodified, the Brayton cycle is integrated on top of a Martin Marietta description of an existing molten salt plant. This compares a nonoptimized combined cycle with an optimized molten salt system.

Wright, J. D.

1981-05-01T23:59:59.000Z

62

Development of a plant-wide dynamic model of an integrated gasification combined cycle (IGCC) plant  

Science Conference Proceedings (OSTI)

In this presentation, development of a plant-wide dynamic model of an advanced Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture will be discussed. The IGCC reference plant generates 640 MWe of net power using Illinois No.6 coal as the feed. The plant includes an entrained, downflow, General Electric Energy (GEE) gasifier with a radiant syngas cooler (RSC), a two-stage water gas shift (WGS) conversion process, and two advanced 'F' class combustion turbines partially integrated with an elevated-pressure air separation unit (ASU). A subcritical steam cycle is considered for heat recovery steam generation. Syngas is selectively cleaned by a SELEXOL acid gas removal (AGR) process. Sulfur is recovered using a two-train Claus unit with tail gas recycle to the AGR. A multistage intercooled compressor is used for compressing CO2 to the pressure required for sequestration. Using Illinois No.6 coal, the reference plant generates 640 MWe of net power. The plant-wide steady-state and dynamic IGCC simulations have been generated using the Aspen Plus{reg_sign} and Aspen Plus Dynamics{reg_sign} process simulators, respectively. The model is generated based on the Case 2 IGCC configuration detailed in the study available in the NETL website1. The GEE gasifier is represented with a restricted equilibrium reactor model where the temperature approach to equilibrium for individual reactions can be modified based on the experimental data. In this radiant-only configuration, the syngas from the Radiant Syngas Cooler (RSC) is quenched in a scrubber. The blackwater from the scrubber bottom is further cleaned in the blackwater treatment plant. The cleaned water is returned back to the scrubber and also used for slurry preparation. The acid gas from the sour water stripper (SWS) is sent to the Claus plant. The syngas from the scrubber passes through a sour shift process. The WGS reactors are modeled as adiabatic plug flow reactors with rigorous kinetics based on the mid-life activity of the shift-catalyst. The SELEXOL unit consists of the H2S and CO2 absorbers that are designed to meet the stringent environmental limits and requirements of other associated units. The model also considers the stripper for recovering H2S that is sent as a feed to a split-flow Claus unit. The tail gas from the Claus unit is recycled to the SELEXOL unit. The cleaned syngas is sent to the GE 7FB gas turbine. This turbine is modeled as per published data in the literature. Diluent N2 is used from the elevated-pressure ASU for reducing the NOx formation. The heat recovery steam generator (HRSG) is modeled by considering generation of high-pressure, intermediate-pressure, and low-pressure steam. All of the vessels, reactors, heat exchangers, and the columns have been sized. The basic IGCC process control structure has been synthesized by standard guidelines and existing practices. The steady-state simulation is solved in sequential-modular mode in Aspen Plus{reg_sign} and consists of more than 300 unit operations, 33 design specs, and 16 calculator blocks. The equation-oriented dynamic simulation consists of more than 100,000 equations solved using a multi-step Gear's integrator in Aspen Plus Dynamics{reg_sign}. The challenges faced in solving the dynamic model and key transient results from this dynamic model will also be discussed.

Bhattacharyya, D.; Turton, R.; Zitney, S.

2009-01-01T23:59:59.000Z

63

Thermal energy storage for an integrated coal gasification combined-cycle power plant  

DOE Green Energy (OSTI)

This study investigates the use of molten nitrate salt thermal energy storage in an integrated gasification combined-cycle power plant allowing the facility to economically provide peak- and intermediate-load electric power. The results of the study show that an integrated gasification combined-cycle power plant with thermal energy storage can reduce the cost of coal-fired peak- or intermediate-load electric power by between 5% and 20% depending on the plants operating schedule. The use of direct-contact salt heating can further improve the economic attractiveness of the concept. 11 refs., 1 fig., 4 tabs.

Drost, M.K.; Antoniak, Z.I.; Brown, D.R.

1990-03-01T23:59:59.000Z

64

Thermal energy storage for an integrated coal gasification combined-cycle power plant  

Science Conference Proceedings (OSTI)

This study investigates the use of molten nitrate salt thermal energy storage in an integrated gasification combined-cycle power plant allowing the facility to economically provide peak- and intermediate-load electric power. The results of the study show that an integrated gasification combined-cycle power plant with thermal energy storage can reduce the cost of coal-fired peak- or intermediate-load electric power by between 5% and 20% depending on the plants operating schedule. The use of direct-contact salt heating can further improve the economic attractiveness of the concept. 12 refs., 1 fig., 5 tabs.

Drost, K.; Antoniak, Z.; Brown, D.; Somasundaram, S.

1991-10-01T23:59:59.000Z

65

Extractors manual for Integrated Gasification Combined Cycle Data Base System: Major Plants Data Base  

SciTech Connect

National concern over the depletion of conventional energy sources has prompted industry to evaluate coal gasification as an alternative source of energy. One approach being evaluated is gasifying coal in a gasifier and feeding the fuel gas to a combined-cycle power plant. This system is called an Integrated Gasification Combined-Cycle (IGCC) power plant. The US Department of Energy (DOE) is also encouraging the development of new technologies by sponsoring research and development (R and D) projects in IGCC. In order to make data generated from these projects available to government and private sector personnel, the IGCC Data System has been established. A technology-specific data system consists of data that are stored for that technology in each of the specialized data bases that make up the Morgantown Energy Technology Center (METC) data system. The IGCC Data System consists of data stored in the Major Plants Data Base (MPDB) and the Test Data Data Base (TDDB). To capture the results of government-sponsored IGCC research programs, documents have been written for the MPDB and TDDB to specify the data that contractors need to report and the procedures for reporting them. The IGCC documents identify and define the data that need to be reported for IGCC projects so that the data entered into the TDDB and MPDB will meet the needs of the users of the IGCC Data System. This document addresses what information is needed and how it must be formatted so that it can be entered into the MPDB for IGCC. The data that are most relevant to potential IGCC Data System users have been divided into four categories: project tracking needs; economic/commercialization needs; critical performance needs; and modeling and R and D needs. 4 figs., 28 tabs.

1986-11-01T23:59:59.000Z

66

Overspeed protection method for a gas turbine/steam turbine combined cycle  

SciTech Connect

This patent describes a method for achieving overspeed protection in a combined cycle gas and steam turbine power plant. It comprises solidly coupling together to rotate at all times as a single rotor unit, including during sudden loss of load occurrences, the rotating members of a gas turbine with its associated combustor and air compressor, a high pressure steam turbine at least one lower pressure stream turbine and an electrical generator; transferring heat from the gas turbine exhaust to steam exhausted from the high pressure steam turbine in a steam reheater before it is input to the at least one lower pressure steam turbine; connecting an output of the steam reheater with an input of the lower pressure steam turbine via a valveless steam conduit; and using a single overspeed control to detect a sudden loss of load occurrence and, in response, simultaneously reducing steam input to the high pressure steam turbine and reducing fuel input to the gas turbine combustor while permitting residual reheater output to continue to expand freely through the at least one lower pressure steam turbine.

Moore, J.H.

1991-08-27T23:59:59.000Z

67

Overspeed protection for a gas turbine/steam turbine combined cycle  

SciTech Connect

This paper describes an improved combined cycle power plant and overspeed protection system of the type having a reheat steam turbine. It comprises: a high pressure steam turbine section with at least one control valve, and a lower pressure steam turbine section; a gas turbine including a turbine section, a combustor, a fuel valve supplying the combustor, and an air compressor with a discharge end leading to the combustor; a load riven by the reheat steam turbine and the gas turbine; the reheat steam turbine, the gas turbine and the load all having rotating members; a heat recovery steam generator heated by the gas turbine, including a high pressure steam generating section supplying steam to the high pressure steam turbine section through the control valve, and a steam reheater section receiving steam exhausted from the high pressure steam turbine section. The improvement comprises: a valveless steam conduit connected between the outlet of the steam reheater section and the inlet of the lower pressure steam turbine section, and solid couplings serving to solidify couple the rotating members together as a single rotor, the rotor having a single thrust bearing.

Moore, J.H.

1991-12-03T23:59:59.000Z

68

Evaluation of a Dow-Based Gasification-Combined-Cycle Plant Using Low-Rank Coals  

Science Conference Proceedings (OSTI)

This feasibility study developed performance and cost data for two different Dow-based gasification-combined-cycle (GCC) power plants, designed to fire either Texas lignite or Wyoming subbituminous coals at a Gulf Coast location. It demonstrated the cost-effectiveness and efficiency of these plants for generating power from low-rank coals.

1989-04-25T23:59:59.000Z

69

Uncertainty analysis of integrated gasification combined cycle systems based on Frame 7H versus 7F gas turbines  

SciTech Connect

Integrated gasification combined cycle (IGCC) technology is a promising alternative for clean generation of power and coproduction of chemicals from coal and other feedstocks. Advanced concepts for IGCC systems that incorporate state-of-the-art gas turbine systems, however, are not commercially demonstrated. Therefore, there is uncertainty regarding the future commercial-scale performance, emissions, and cost of such technologies. The Frame 7F gas turbine represents current state-of-practice, whereas the Frame 7H is the most recently introduced advanced commercial gas turbine. The objective of this study was to evaluate the risks and potential payoffs of IGCC technology based on different gas turbine combined cycle designs. Models of entrained-flow gasifier-based IGCC systems with Frame 7F (IGCC-7F) and 7H gas turbine combined cycles (IGCC-7H) were developed in ASPEN Plus. An uncertainty analysis was conducted. Gasifier carbon conversion and project cost uncertainty are identified as the most important uncertain inputs with respect to system performance and cost. The uncertainties in the difference of the efficiencies and costs for the two systems are characterized. Despite uncertainty, the IGCC-7H system is robustly preferred to the IGCC-7F system. Advances in gas turbine design will improve the performance, emissions, and cost of IGCC systems. The implications of this study for decision-making regarding technology selection, research planning, and plant operation are discussed. 38 refs., 11 figs., 5 tabs.

Yunhua Zhu; H. Christopher Frey [Pacific Northwest National Laboratory, Richland, WA (United States)

2006-12-15T23:59:59.000Z

70

Thermal energy storage for integrated gasification combined-cycle power plants  

SciTech Connect

There are increasingly strong indications that the United States will face widespread electrical power generating capacity constraints in the 1990s; most regions of the country could experience capacity shortages by the year 2000. The demand for new generating capacity occurs at a time when there is increasing emphasis on environmental concerns. The integrated gasification combined-cycle (IGCC) power plant is an example of an advanced coal-fired technology that will soon be commercially available. The IGCC concept has proved to be efficient and cost-effective while meeting all current environmental regulations on emissions; however, the operating characteristics of the IGCC system have limited it to base load applications. The integration of thermal energy storage (TES) into an IGCC plant would allow it to meet cyclic loads while avoiding undesirable operating characteristics such as poor turn-down capability, impaired part-load performance, and long startup times. In an IGCC plant with TES, a continuously operated gasifier supplies medium-Btu fuel gas to a continuously operated gas turbine. The thermal energy from the fuel gas coolers and the gas turbine exhaust is stored as sensible heat in molten nitrate salt; heat is extracted during peak demand periods to produce electric power in a Rankine steam power cycle. The study documented in this report was conducted by Pacific Northwest Laboratory (PNL) and consists of a review of the technical and economic feasibility of using TES in an IGCC power plant to produce intermediate and peak load power. The study was done for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. 11 refs., 5 figs., 18 tabs.

Drost, M.K.; Antoniak, Z.I.; Brown, D.R.; Somasundaram, S.

1990-07-01T23:59:59.000Z

71

Thermal energy storage for integrated gasification combined-cycle power plants  

DOE Green Energy (OSTI)

There are increasingly strong indications that the United States will face widespread electrical power generating capacity constraints in the 1990s; most regions of the country could experience capacity shortages by the year 2000. The demand for new generating capacity occurs at a time when there is increasing emphasis on environmental concerns. The integrated gasification combined-cycle (IGCC) power plant is an example of an advanced coal-fired technology that will soon be commercially available. The IGCC concept has proved to be efficient and cost-effective while meeting all current environmental regulations on emissions; however, the operating characteristics of the IGCC system have limited it to base load applications. The integration of thermal energy storage (TES) into an IGCC plant would allow it to meet cyclic loads while avoiding undesirable operating characteristics such as poor turn-down capability, impaired part-load performance, and long startup times. In an IGCC plant with TES, a continuously operated gasifier supplies medium-Btu fuel gas to a continuously operated gas turbine. The thermal energy from the fuel gas coolers and the gas turbine exhaust is stored as sensible heat in molten nitrate salt; heat is extracted during peak demand periods to produce electric power in a Rankine steam power cycle. The study documented in this report was conducted by Pacific Northwest Laboratory (PNL) and consists of a review of the technical and economic feasibility of using TES in an IGCC power plant to produce intermediate and peak load power. The study was done for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. 11 refs., 5 figs., 18 tabs.

Drost, M.K.; Antoniak, Z.I.; Brown, D.R.; Somasundaram, S.

1990-07-01T23:59:59.000Z

72

Transient studies of an Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture  

SciTech Connect

Next-generation coal-fired power plants need to consider the option for CO2 capture as stringent governmental mandates are expected to be issued in near future. Integrated gasification combined cycle (IGCC) plants are more efficient than the conventional coal combustion processes when the option for CO2 capture is considered. However, no IGCC plant with CO2 capture currently exists in the world. Therefore, it is important to consider the operability and controllability issues of such a plant before it is commercially built. To facilitate this objective, a detailed plant-wide dynamic simulation of an IGCC plant with 90% CO2 capture has been developed in Aspen Plus Dynamics{reg_sign}. The plant considers a General Electric Energy (GEE)-type downflow radiant-only gasifier followed by a quench section. A two-stage water gas shift (WGS) reaction is considered for conversion of CO to CO2. A two-stage acid gas removal (AGR) process based on a physical solvent is simulated for selective capture of H2S and CO2. Compression of the captured CO2 for sequestration, an oxy-Claus process for removal of H2S and NH3, black water treatment, and the sour water treatment are also modeled. The tail gas from the Claus unit is recycled to the SELEXOL unit. The clean syngas from the AGR process is sent to a gas turbine followed by a heat recovery steam generator. This turbine is modeled as per published data in the literature. Diluent N2 is used from the elevated-pressure ASU for reducing the NOx formation. The heat recovery steam generator (HRSG) is modeled by considering generation of high-pressure, intermediate-pressure, and low-pressure steam. All of the vessels, reactors, heat exchangers, and the columns have been sized. The basic IGCC process control structure has been synthesized by standard guidelines and existing practices. The steady state results are validated with data from a commercial gasifier. In the future grid-connected system, the plant should satisfy the environmental targets and quality of the feed to other sections, wherever applicable, without violating the operating constraints, and without sacrificing the efficiency. However, it was found that the emission of acid gases may far exceed the environmental targets and the overshoot of some of the key variables may be unacceptable under transient operation while following the load. A number of operational strategies and control configurations is explored for achieving these stringent requirements. The transient response of the plant is also studied by perturbing a number of key inputs.

Bhattacharyya, D.; Turton, R.; Zitney, S.

2010-01-01T23:59:59.000Z

73

Thermal Design of an Ultrahigh Temperature Vapor Core Reactor Combined Cycle Nuclear Power Plant  

SciTech Connect

Current work modeling high temperature compact heat exchangers may demonstrate the design feasibility of a Vapor Core Reactor (VCR) driven combined cycle power plant. For solid nuclear fuel designs, the cycle efficiency is typically limited by a metallurgical temperature limit which is dictated by fuel and structural melting points. In a vapor core, the gas/vapor phase nuclear fuel is uniformly mixed with the topping cycle working fluid. Heat is generated homogeneously throughout the working fluid thus extending the metallurgical temperature limit. Because of the high temperature, magnetohydrodynamic (MHD) generation is employed for topping cycle power extraction. MHD rejected heat is transported via compact heat exchanger to a conventional Brayton gas turbine bottoming cycle. High bottoming cycle mass flow rates are required to remove the waste heat because of low heat capacities for the bottoming cycle gas. High mass flow is also necessary to balance the high Uranium Tetrafluoride (UF{sub 4}) mass flow rate in the topping cycle. Heat exchanger design is critical due to the high temperatures and corrosive influence of fluoride compounds and fission products existing in VCR/MHD exhaust. Working fluid compositions for the topping cycle include variations of Uranium Tetrafluoride, Helium and various electrical conductivity seeds for the MHD. Bottoming cycle working fluid compositions include variations of Helium and Xenon. Some thought has been given to include liquid metal vapor in the bottoming cycle for a Cheng or evaporative cooled design enhancement. The NASA Glenn Lewis Research Center code Chemical Equilibrium with Applications (CEA) is utilized for evaluating chemical species existing in the gas stream. Work being conducted demonstrates the compact heat exchanger design, utilization of the CEA code, and assessment of different topping and bottoming working fluid compositions. (authors)

Bays, Samuel E.; Anghaie, Samim; Smith, Blair; Knight, Travis [Innovative Space Power and Propulsion Institute, University of Florida, 202 Nuclear Science Building, Gainesville, FL 32611 (United States)

2004-07-01T23:59:59.000Z

74

CO2 Offset Options: Comparative Assessment of Terrestial Sinks vs. Natural Gas Combined Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

W. South (south@energyresources.com; 202-785-8833) W. South (south@energyresources.com; 202-785-8833) Energy Resources International, Inc. 1015 18 th Street, N.W., Suite 650 Washington, DC 20036 CO 2 Offset Options: Comparative Assessment of Terrestial Sinks vs. Natural Gas Combined Cycle 1 Abstract This study compares the economic value of two CO 2 mitigation actions: terrestrial reforestation to sequester CO 2 emitted from coal-fired power generation versus natural gas combined cycle (NGCC) power generation to avoid (minimize) CO 2 release. The same quantity of carbon offset was assumed for both actions. Tree stock growth, carbon absorption/release cycles, and replanting were considered to maintain the quantity of carbon offset via reforestation. The study identified important parameters with both CO 2 mitigation options that should be considered when examining alternative strategies.

75

Novel Power Cycle for Combined-Cycle Systems and Utility Power Plants  

E-Print Network (OSTI)

The description of a new power cycle, based on the use of a multicomponent working fluid, was published earlier. A thermodynamic analysis of this cycle has demonstrated its superiority over the currently used Rankine Cycle, and a distribution of losses in the subsystems of this cycle has been established. A new, improved variant of the cycle, which provides 10% efficiency improvement over the initial variant, has been developed. The new variant employs a cooling of the working fluid between turbine stages and a recuperation of the released heat for supplementation of the boiler heat supply. Analysis shows that with this new, improved cycle efficiencies of up to 52% for a combined-cycle system employing standard turbines, and of up to 55% when modern high-temperature gas turbines are employed, can be achieved. The same cycle can be utilized to retrofit existing direct-fired power plants, providing an efficiency of up to 42%. The possible implications off such a cycle implementation are briefly discussed. The Electric Power Research Institute (EPRI) is now conducting a study of this cycle.

Kalina, A. L.

1986-06-01T23:59:59.000Z

76

Standardization of HRSG production components for large, combined-cycle power plants  

SciTech Connect

Stein Industrie's experience in the development of heat recovery steam generators (HRSG) for combined cycle applications is briefly reviewed. Standardization of several components, the extended use of N.C. machine tools and automatic welding procedures have made it possible to improve quality as well as production costs. This process has been concentrated on three types of HRSG for 35, 100 and 200 MW class gas turbines. 4 figs.

Chellini, R.

1993-06-01T23:59:59.000Z

77

CoalFleet RD&D Augmentation Plan for Integrated Gasification Combined Cycle (IGCC) Power Plants  

Science Conference Proceedings (OSTI)

Advanced, clean coal technologies such as integrated gasification combined cycle (IGCC) offer societies around the world the promise of efficient, affordable power generation at markedly reduced levels of emissions8212including "greenhouse gases" linked to global climate change8212relative to today's current fleet of coal-fired power plants. To help accelerate the development, demonstration, and market introduction of IGCC and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiati...

2007-01-24T23:59:59.000Z

78

Coal combined cycle system study. Volume I. Summary  

Science Conference Proceedings (OSTI)

The potential advantages for proceeding with demonstration of coal-fueled combined cycle power plants through retrofit of a few existing utility steam plants have been evaluated. Two combined cycle concepts were considered: Pressurized Fluidized Bed (PFB) combined cycle and gasification combined cycle. These concepts were compared with AFB steam plants, conventional steam plants with Flue Gas Desulfurization (FGD), and refueling such as with coal-oil mixtures. The ultimate targets are both new plants and conversion of existing plants. Combined cycle plants were found to be most competitive with conventional coal plants and offered lower air emissions and less adverse environmental impact. A demonstration is a necessary step toward commercialization.

Not Available

1980-04-01T23:59:59.000Z

79

Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant  

DOE Patents (OSTI)

System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.

Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa

2013-09-17T23:59:59.000Z

80

Gas turbine procurement and combined-cycle repowering: 1986 workshop: Final report  

Science Conference Proceedings (OSTI)

Two workshops related to gas turbine utilization in the electric utility industry were held in Pittsburgh, Pennsylvania, on September 23-26, 1986. A total of 83 persons participated in the workshops, with 26 electric utilities represented by 44 of the participants. The balance of the participants included gas turbine manufacturers, architectural/engineering firms, EPRI representatives, and professional staff of Energy Systems Associates, the contractor for organizing and operating the workshops. The first workshop, ''Gas Turbine Procurement,'' included presentations on industrial gas turbines from four manufacturers, as well as presentations on specification, engineering, procurement, construction, instrumentation and control, and reliability, availability, and maintainability, as experienced by industry, engineering firms, and electric utilities. The second workshop, ''Combined Cycle Repowering,'' included presentations of repowering engineering feasibility studies by four electric utilities of selected generating stations, including one nuclear station under construction. Separate abstracts were prepared for 10 papers in this workshop.

Sanders, C.F.

1987-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Gas Turbine/Combined Cycle Post-Combustion Emission Control Best Maintenance Practices Guideline  

Science Conference Proceedings (OSTI)

Most simple cycle and combined cycle gas turbines installed in the last ten years have been equipped with selective catalytic reduction (SCR) controls for nitrogen oxides (NOx) and are required to maintain outlet NOx emissions as low as 2.5 ppm (at 15 oxygen content). In addition, many of these units are equipped with catalyst to oxidize carbon monoxide (CO) by as much as 90 or more, lowering CO emissions to less than 5 ppm (also at 15 oxygen content). With many of these units having acquired more than 5...

2011-12-13T23:59:59.000Z

82

Deaerator pressure control system for a combined cycle steam generator power plant  

Science Conference Proceedings (OSTI)

In a combined cycle steam generation power plant, until steam extraction can be used to reheat the deaerator, the economizer and/or the pegging recirculation are controlled so as to track the pressure upwards of the autocirculation reheater from the low pressure evaporator with a certain lag in pressure, and to establish pressure in the deaerator on the decreasing trend of the autocirculation reheater at a slower rate and without lowering below a minimum pressure so as to prevent the occurrence of bubbling and cavitation effect.

Martens, A.; Myers, G. A.

1985-12-03T23:59:59.000Z

83

Combined cycle electric power plant with a steam turbine having a sliding pressure main bypass and control valve system  

SciTech Connect

A combined cycle electric power plant includes two gas turbines, a steam turbine, and a digital control system with an operator analog or manual backup. Each of the gas turbines has an exhaust heat recovery steam generator connected to a common header from which the steam is supplied by one or both of the steam generators for operating the steam turbine. The control system is of the sliding pressure type and maintains a predetermined steam pressure as a function of steam flow according to a predetermined characterization depending on the number of steam generators in service to limit the maximum steam velocity through the steam generators, and reduce the probability of water carryover into the steam turbine. Such control is always maintained by the bypass valve. The turbine control valve responds to the speed/load demand only, except when the bypass valve is closed and the rate of steam generation is insufficient to maintain a predetermined pressure flow relationship.

Uram, R.

1980-05-06T23:59:59.000Z

84

SEI uraguay project: Technical specifications. Turn-key' contract for greenfield combined cycle plant. Export trade information  

SciTech Connect

The study, conducted by Southern Electric International (SEI), was funded by the U.S. Trade and Development Agency on behalf of U.T.E., the Government of Uruguay's electric power company. It is an assessment of three potential projects under consideration by U.T.E. The changes resulting from these projects would add 120 to 360 megawatts capacity to the current system. The first option would involve repowering Jose Batlle y Ordonez Units 3 and 4. As an alternate to this plan, U.T.E. is considering new combined cycle plant at a Greenfield site. The third project would increase capacity at La Tablada. Each of the plants under consideration will have dual-fuel capability to operate on natural gas and No. 2 distillate. A conceptual design was performed and budgetary capital costs were developed for each alternative. SEI ultimately makes recommendations for each of the three projects. This is volume 2 of 3.

Not Available

1994-01-21T23:59:59.000Z

85

Combined-cycle power tower  

DOE Green Energy (OSTI)

This paper evaluates a new power tower concept that offers significant benefits for commercialization of power tower technology. The concept uses a molten nitrate salt centralreceiver plant to supply heat, in the form of combustion air preheat, to a conventional combined-cycle power plant. The evaluation focused on first commercial plants, examined three plant capacities (31, 100, and 300 MWe), and compared these plants with a solar-only 100-MWe plant and with gas-only combined-cycle plants in the same three capacities. Results of the analysis point to several benefits relative to the solar-only plant including low energy cost for first plants, low capital cost for first plants, reduced risk with respect to business uncertainties, and the potential for new markets. In addition, the concept appears to have minimal technology development requirements. Significantly, the results show that it is possible to build a first plant with this concept that can compete with existing gas-only combined-cycle plants.

Bohn, M.S.; Williams, T.A.; Price, H.W.

1994-10-01T23:59:59.000Z

86

PERFORMANCE OF BLACK LIQUOR GASIFIER/GAS TURBINE COMBINED CYCLE COGENERATION IN mE KRAFT PULP  

E-Print Network (OSTI)

PERFORMANCE OF BLACK LIQUOR GASIFIER/GAS TURBINE COMBINED CYCLE COGENERATION IN mE KRAFT PULP the next 5 to 20 years. As a replacement for Tomlinson-based cogeneration, black liquor- gasifier/gas turbine cogeneration promises higher elecuical efficiency, with prospective environmental, safety

87

Overspeed protection for a gas turbine/steam turbine combined cycle  

SciTech Connect

This patent describes an improved combined cycle power plant and overspeed protection system of the type having a reheat steam turbine including a high pressure steam turbine section with at least one control valve, and a lower pressure steam turbine section. The improvement comprises: a valveless steam conduit connected between the outlet of the steam reheater section and the inlet of the lower pressure steam turbine section, a plurality of solid couplings serving to solidly couple the rotating members together as a single rotor, the rotor having a single thrust bearing, and control means for sensing a potential overspeed condition operatively connected to the control valves to prevent overspeed, whereby the steam in the steam reheater and in the valveless steam conduit may freely expand through the lower pressure steam turbine and potential overspeed of the rotor is resisted by the combined inertia of the coupled rotating members and by the braking torque of the air compressor, wherein the heat recovery steam generator includes a low pressure steam generating section connected to supply low pressure steam to the steam reheater section along with the steam exhausted from the high pressure steam turbine section.

Moore, J.H.

1992-03-31T23:59:59.000Z

88

CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants  

SciTech Connect

To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunities and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.

2007-01-15T23:59:59.000Z

89

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

natural-gas- fired combined cycle generation, and the othernatural-gas-fired combined cycle plants. This assumptionplants were efficient combined cycle plants. The four

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

90

CoalFleet User Design Basis Specification for Coal-Based Integrated Gasification Combined Cycle (IGCC) Power Plants  

Science Conference Proceedings (OSTI)

The Duke Edwardsport integrated gasification combined-cycle (IGCC) power plant started up in 2012, and Mississippi Powers Kemper County IGCC plant is in construction. The capital cost of these initial commercial scale IGCC plants is high. The industry needs specifications that encourage greater standardization in IGCC design in order to bring down the investment cost for the next generation of plants. Standardization also supports repeatable, reliable performance and reduces the time and cost ...

2012-12-12T23:59:59.000Z

91

Proceedings: Ninth International Conference on Cycle Chemistry in Fossil and Combined Cycle Plants with Heat Recovery Steam Generators  

Science Conference Proceedings (OSTI)

Proper selection, application, and optimization of cycle chemistry have long been recognized as integral to ensuring the highest possible levels of component availability and reliability in fossil-fired generating plant units. These proceedings of the Ninth EPRI International Conference on Cycle Chemistry in Fossil Plants address state-of-the-art practices in conventional and combined-cycle plants. The content provides a worldwide perspective on cycle chemistry practices and insight on industry issues an...

2010-01-22T23:59:59.000Z

92

Combined cycle electric power plant and a heat recovery steam generator having improved boiler feed pump flow control  

SciTech Connect

A combined cycle electric power plant is described that includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes an economizer tube and a high pressure evaporator tube and a boiler feed pump for directing the heat exchange fluid serially through the aforementioned tubes. A condenser is associated with the steam turbine for converting the spent steam into condensate water to be supplied to a deaerator for removing undesired air and for preliminarily heating the water condensate before being pumped to the economizer tube. Condensate flow through the economizer tube is maintained substantially constant by maintaining the boiler feed pump at a predetermined, substantially constant rate. A bypass conduit is provided to feed back a portion of the flow heated in the economizer tube to the deaerator; the portion being equal to the difference between the constant flow through the economizer tube and the flow to be directed through the high pressure evaporator tube as required by the steam turbine for its present load.

Martz, L.F.; Plotnick, R.J.

1976-06-29T23:59:59.000Z

93

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR. (authors)

Conklin, James C.; Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

2007-07-01T23:59:59.000Z

94

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

Science Conference Proceedings (OSTI)

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR.

Conklin, Jim [ORNL; Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

95

Combined-cycle solarised gas turbine with steam, organic and CO2 bottoming cycles  

E-Print Network (OSTI)

combined-cycle systems have been performed. Dersch et al, 2004 [2] studied how parabolic troughs could the other part. That approach is relevant for trough systems, but not appropriate in the case of point been used with solar ponds in Israel [5] and low-temperature parabolic

96

Lessons Learned in Startup and Commissioning of Simple-Cycle and Combined-Cycle Combustion Turbine Plants  

Science Conference Proceedings (OSTI)

Over the last ten years, hundreds of combustion turbines (CT) have been installed to meet the needs of the power generation market. A variety of CT models have been installed throughout this period, in both simple-cycle and combined-cycle configurations. Some of the initial plants had issues related to meeting performance requirements and acceptable operation, and each new plant design could be improved based on the experience gained on the earlier installations and startups. This report provides a summa...

2009-01-21T23:59:59.000Z

97

Impact of Cycling on the Operation and Maintenance Cost of Conventional and Combined-Cycle Power Plants  

Science Conference Proceedings (OSTI)

The ongoing privatization of electricity generation across the world, competition and shareholder demand for higher profits, stricter regulations on environmental impacts, changes in fuel prices, and the increasing penetration of nondispatchable energy have resulted in an increasing need for larger energy generators to operate as non-baseload units. As a result, both conventional power plants and combined-cycle power plants are increasingly being subjected to load-following and cyclic operation. ...

2013-09-30T23:59:59.000Z

98

The importance of combined cycle generating plants in integrating large levels of wind power generation  

Science Conference Proceedings (OSTI)

Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

Puga, J. Nicolas

2010-08-15T23:59:59.000Z

99

Start-up Optimization of a Combined Cycle Power Plant A. Linda, E. Sllberga,  

E-Print Network (OSTI)

bModelon AB, Lund, Sweden cSiemens AG, Energy Sector, Erlangen, Germany Abstract In the electricity market of today, with increasing de- mand for electricity production on short notice, the combined cycle to opti- mize are explored. Results are encouraging and show that energy production during start-up can

100

Assessment of Natural Gas Combined Cycle (NGCC) Plants with  

E-Print Network (OSTI)

Did Assembled design, capacity factor, and emissions data from public sources: EPA, eGRID, EIA-923 list in spreadsheet form. EPA eGRID and DOE EIA databases provide unit-by-unit data on rated capacity, fuel consumption, CO2 production, etc. http://www.epa.gov/cleanenergy/ener gy-resources/egrid

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Optimum cycle parameters of coal fired closed cycle gas turbine in regenerative and combined cycle configurations  

Science Conference Proceedings (OSTI)

This paper presents the methodology developed for the estimation of thermodynamic performance and reports the optimum cycle parameters of coal fired CCGT in regenerative and combined cycle configurations using air, helium and carbon dioxide as working gases. A rigorous approach has been followed for the determination of the cycle efficiency by assuming the specific heat of working gases as a continuous function of temperature for accurate estimation of cycle parameters. 14 refs.

Rao, J.S.

1982-01-01T23:59:59.000Z

102

Heat recovery steam generator outlet temperature control system for a combined cycle power plant  

Science Conference Proceedings (OSTI)

This patent describes a command cycle electrical power plant including: a steam turbine and at least one set comprising a gas turbine, an afterburner and a heat recovery steam generator having an attemperator for supplying from an outlet thereof to the steam turbine superheated steam under steam turbine operating conditions requiring predetermined superheated steam temperature, flow and pressure; with the gas turbine and steam turbine each generating megawatts in accordance with a plant load demand; master control means being provided for controlling the steam turbine and the heat recovery steam generator so as to establish the steam operating conditions; the combination of: first control means responsive to the gas inlet temperature of the heat recovery steam generator and to the plant load demand for controlling the firing of the afterburner; second control means responsive to the superheated steam predetermined temperature and to superheated steam temperature from the outlet for controlling the attemperator between a closed and an open position; the first and second control means being operated concurrently to maintain the superheated steam outlet temperature while controlling the load of the gas turbine independently of the steam turbine operating conditions.

Martens, A.; Myers, G.A.; McCarty, W.L.; Wescott, K.R.

1986-04-01T23:59:59.000Z

103

Tampa Electric Company Polk Integrated Gasification Combined Cycle Plant Carbon Capture Retrofit Study  

Science Conference Proceedings (OSTI)

In support of the Industry Technology Demonstration Program on Integrated Gasification Combined Cycle (IGCC) with carbon capture and storage (CCS), an engineering study was conducted to evaluate the cost and performance impacts of various CCS schemes at the Tampa Electric Polk Power Station. The portion of the work presented here was funded by the Electric Power Research Institute (EPRI) IGCC with CCS demonstration program collaborative and focuses on novel CO2 capture and purification systems integrated...

2010-03-30T23:59:59.000Z

104

Steady-state simulation and optimization of an integrated gasification combined cycle power plant with CO2 capture  

SciTech Connect

Integrated gasification combined cycle (IGCC) plants are a promising technology option for power generation with carbon dioxide (CO2) capture in view of their efficiency and environmental advantages over conventional coal utilization technologies. This paper presents a three-phase, top-down, optimization-based approach for designing an IGCC plant with precombustion CO2 capture in a process simulator environment. In the first design phase, important global design decisions are made on the basis of plant-wide optimization studies with the aim of increasing IGCC thermal efficiency and thereby making better use of coal resources and reducing CO2 emissions. For the design of an IGCC plant with 90% CO2 capture, the optimal combination of the extent of carbon monoxide (CO) conversion in the water-gas shift (WGS) reactors and the extent of CO2 capture in the SELEXOL process, using dimethylether of polyethylene glycol as the solvent, is determined in the first phase. In the second design phase, the impact of local design decisions is explored considering the optimum values of the decision variables from the first phase as additional constraints. Two decisions are made focusing on the SELEXOL and Claus unit. In the third design phase, the operating conditions are optimized considering the optimum values of the decision variables from the first and second phases as additional constraints. The operational flexibility of the plant must be taken into account before taking final design decisions. Two studies on the operational flexibility of the WGS reactors and one study focusing on the operational flexibility of the sour water stripper (SWS) are presented. At the end of the first iteration, after executing all the phases once, the net plant efficiency (HHV basis) increases to 34.1% compared to 32.5% in a previously published study (DOE/NETL-2007/1281; National Energy Technology Laboratory, 2007). The study shows that the three-phase, top-down design approach presented is very useful and effective in a process simulator environment for improving efficiency and flexibility of IGCC power plants with CO2 capture. In addition, the study identifies a number of key design variables that has strong impact on the efficiency of an IGCC plant with CO2 capture.

Bhattacharyya, D.; Turton, R.; Zitney, S.

2011-01-01T23:59:59.000Z

105

Identification of hazards in non-nuclear power plants. [Public health hazards of fossil-fuel, combined cycle, combustion turbine, and geothermal power plants  

DOE Green Energy (OSTI)

Public health and safety hazards have been identified for five types of power plants: coal-fired, oil-fired steam turbine, combined cycle, combustion (gas) turbine, and geothermal. The results of the analysis show that air pollutants are the major hazard that affects the health and safety of the general public. A total of ninety plant hazards were identified for the five plant types. Each of these hazards were rated in six categories as to their affect on the general public. The criteria used in the analysis were: area/population exposed; duration; mitigation; quantity to toxicity ratio; nature of health effects; and public attitude. Even though ninety hazards were identified for the five plants analyzed, the large majority of hazards were similar for each plant. Highest ratings were given to the products of the combustion cycle or to hydrogen sulfide emissions from geothermal plants. Water pollution, cooling tower effects and noise received relatively low ratings. The highest rated of the infrequent or hypothetical hazards were those associated with potential fires, explosions, and chlorine releases at the plant. Hazards associated with major cooling water releases, water pollution and missiles received the lowest ratings. Since the results of the study clearly show that air pollutants are currently considered the most severe hazard, additional effort must be made to further understand the complex interactions of pollutants with man and his environment. Of particular importance is the determination of dose-response relationships for long term, low level exposure to air pollutants. (EDB)

Roman, W.S.; Israel, W.J.; Sacramo, R.F.

1978-07-01T23:59:59.000Z

106

Combined cycle meets Thailand's growing power demands  

SciTech Connect

This article describes how an ample supply of natural gas led the Electricity Generating Authority of Thailand (EGAT) to choose gas-fired combustion turbines. Thailand's rapid industrialization, which began in the late 1980's, placed a great strain on the country's electricity supply system. The demand for electricity grew at an astonishing 14% annually. To deal with diminishing reserve capacity margins, the EGAT announced, in 1988, a power development program emphasizing gas-fired combined cycle power plants. Plans included six 320-MW combined cycle blocks at three sites, and an additional 600-MW gas- and oil-fired thermal plant at Bang Pakong. As electricity demand continued to increase, EGAT expanded its plans to include two additional 320-MW combined cycle blocks, a 600-MW combined cycle block, and a 650-MW gas- and oil-fired thermal plant. All are currently in various stages of design and construction.

Sheets, B.A. (Black and Veatch, Kansas City, MO (United States)); Takabut, K. (Electricity Generating Authority of Thailand, Nonthaburi (Thailand))

1993-08-01T23:59:59.000Z

107

A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage  

E-Print Network (OSTI)

Integrated Gasification Combined Cycle Technology: IGCC.integrated gasification combined cycle (IGCC) power plants (output. Integrated gas combined cycle (IGCC) plants are

Apps, J.A.

2006-01-01T23:59:59.000Z

108

Life Cycle Assessment of a Natural Gas Combined Cycle Power Generation...  

NLE Websites -- All DOE Office Websites (Extended Search)

% of total from natural gas production & distribution % of total from ammonia production & distribution Natural gas (in ground) 169.2 97.6% 0.0% 99.9% 0.1% Coal (in ground) 1.8...

109

Avestar® - Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator The AVESTAR® center offers courses using the Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator. The IGCC simulator builds on and reaches beyond existing combined-cycle and conventional-coal power plant simulators to combine--for the first time--a Gasification with CO2 Capture process simulator with a Combined-Cycle power simulator together in a single dynamic simulation framework. The AVESTAR® center IGCC courses provide unique, comprehensive training on all aspects of an IGCC plant, illustrating the high-efficiency aspects of the gasifier, gas turbine, and steam turbine integration. IGCC Operator training station HMI display for overview of IGCC Plant - Train A Reference:

110

Thermodynamics of combined-cycle electric power plants Harvey S. Leffa)  

E-Print Network (OSTI)

by the fuel. In 2010, U.S. Department of Energy data shows a net generation of 3:97 ? 1012 kWh of electrical an average thermal efficiency of about 0.34 for U.S. electricity generating plants. With clever use fossil fuel, nuclear, and geothermal electric power plants. For example, a plant with combustion

111

An evaluation of integrated-gasification-combined-cycle and pulverized-coal-fired steam plants: Volume 1, Base case studies: Final report  

SciTech Connect

An evaluation of the performance and costs for a Texaco-based integrated gasification combined cycle (IGCC) power plant as compared to a conventional pulverized coal-fired steam (PCFS) power plant with flue gas desulfurization (FGD) is provided. A general set of groundrules was used within which each plant design was optimized. The study incorporated numerous sensitivity cases along with up-to-date operating and cost data obtained through participation of equipment vendors and process developers. Consequently, the IGCC designs presented in this study use the most recent data available from Texaco's ongoing international coal gasification development program and General Electric's continuing gas turbine development efforts. The Texaco-based IGCC has advantages over the conventional PCFS technology with regard to environmental emissions and natural resource requirements. SO/sub 2/, NOx, and particulate emissions are lower. Land area and water requirements are less for IGCC concepts. Coal consumption is less due to the higher plant thermal efficiency attainable in the IGCC plant. The IGCC plant also has the capability to be designed in several different configurations, with and without the use of natural gas or oil as a backup fuel. This capability may prove to be particularly advantageous in certain utility planning and operation scenarios. 107 figs., 114 tabs.

Pietruszkiewicz, J.; Milkavich, R.J.; Booras, G.S.; Thomas, G.O.; Doss, H.

1988-09-01T23:59:59.000Z

112

An evaluaton of integrated-gasification-combined-cycle and pulverized-coal-fired steam plants: Volume 2, Sensitivity studies and appendixes: Final report  

SciTech Connect

The Electric Power Research Institute contracted with Bechtel Group, Inc., to provide an evaluation of the performance and costs for a Texaco-based integrated gasification combined cycle (IGCC) power plant as compared to a conventional pulverized coal-fired steam (PCFS) power plant with flue gas desulfurization (FGD). A general set of groundrules was used within which each plant design was optimized. The study incorporated numerous sensitivity cases along with up-to-date operating and cost data obtained through participation of equipment vendors and process developers. Consequently, the IGCC designs presented in this study use the most recent data available from Texaco's ongoing international coal gasification development program and General Electric's continuing gas turbine development efforts. The study confirms that the Texaco-based IGCC has advantages over the conventional PCFS technology with regard to environmental emissions and natural resource requirements. SO/sub 2/, NOx, and particulate emissions are lower. Land area and water requirements are less for IGCC concepts. In addition, coal consumption is less due to the higher plant thermal efficiency attainable in the IGCC plant. The IGCC plant also has the capability to be designed in several different configurations, with and without the use of natural gas or oil as a backup fuel. This capability may prove to be particularly advantageous in certain utility planning and operation scenarios.

Pietruszkiewicz, J.; Milkavich, R.J.; Booras, G.S.; Thomas, G.O.; Doss, H.

1988-09-01T23:59:59.000Z

113

Analysis of Carbon Dioxide Capture Retrofit Options: Duke Edwardsport Integrated-Gasification Combined-Cycle Plant  

Science Conference Proceedings (OSTI)

This report summarizes the results of a project supported by Duke Energy using tailored collaboration funds to study the potential impact to plant performance of retrofitted carbon dioxide (CO2) capture on the Duke Edwardsport integrated-gasificationcombined-cycle (IGCC) plant. The Duke Edwardsport IGCC plant is under construction and scheduled to begin operation in September 2012. Details on the project have been published in a 2010 Electric Power Research Institute (EPRI) report, Duke Edwardsport Gener...

2011-09-27T23:59:59.000Z

114

Economic Rationale for Safety Investment in Integrated Gasification Combined-Cycle Gas Turbine Membrane Reactor Modules  

E-Print Network (OSTI)

utilized in the petrochemical,, chemical processing industries as well as natural gas?based power generation, However, their integration represents a fairly recently conceived technology option to produce commercial electricity... . Please notice that after the condensation of steam and given the fact that CO2 is at a high pressure (~25 atm), a significant reduction in the compression costs associated with the operation of the sequestration units downstream...

Koc, Reyyan; Kazantzis, Nikolaos K.; Nuttall, William J.; Ma, Yi Hua

2012-05-09T23:59:59.000Z

115

Integrated gasification combined cycle and steam injection gas turbine powered by biomass joint-venture evaluation  

DOE Green Energy (OSTI)

This report analyzes the economic and environmental potential of biomass integrated gasifier/gas turbine technology including its market applications. The mature technology promises to produce electricity at $55--60/MWh and to be competitive for market applications conservatively estimated at 2000 MW. The report reviews the competitiveness of the technology of a stand-alone, mature basis and finds it to be substantial and recognized by DOE, EPRI, and the World Bank Global Environmental Facility.

Sterzinger, G J [Economics, Environment and Regulation, Washington, DC (United States)

1994-05-01T23:59:59.000Z

116

Pridneprovsk Power Plant Dniperpetrosk, Ukraine. Combined cycle project. Export trade information  

Science Conference Proceedings (OSTI)

The report presents the results of an inspection of the Pridneprovsk Power Plant near Kiev, Ukraine made by a team of engineers to assess the feasibility of repowering the 600 MW portion of the existing 2400 MW plant. The study develops concepts and cost estimates for repowering the Pridneprovsk plant in two phases or blocks. The study develops costs for Phase I only. The report is presented in seven sections which include an Introduction, a Summary, a Facsimile of Protocol Agreement Signed by the NRG and the Ministry of Power and Electrification of Ukraine, a description of the Mechanical Systems and Equipment, a description of the Structural Systems and Equipment, a description of the Chemical Systems and Equipment, and a description of the Electrical Equipment and Systems. The report includes appendices which provide detailed information on the cost, schedules, heat balances, and piping instrument diagrams for the first block of the project.

NONE

1992-11-01T23:59:59.000Z

117

Combined Cycle Performance Tracking Guideline: Interim Report  

Science Conference Proceedings (OSTI)

The Electric Power Research Institutes (EPRIs) Combined Cycle Performance Monitoring and Recovery Guideline (EPRI report 1023971) was developed in 2012 to provide plant owners and operators with a comprehensive guideline for identifying and quantifying combined-cycle performance losses and appropriate recovery activities for a generic F-Class combined-cycle power plant (CCPP). This report, Combined-Cycle Performance Tracking Guideline, has been developed as an adjunct ...

2013-12-23T23:59:59.000Z

118

Solid oxide fuel cell combined cycles  

DOE Green Energy (OSTI)

The integration of the solid oxide fuel cell and combustion turbine technologies can result in combined-cycle power plants, fueled with natural gas, that have high efficiencies and clean gaseous emissions. Results of a study are presented in which conceptual designs were developed for 3 power plants based upon such an integration, and ranging in rating from 3 to 10 MW net ac. The plant cycles are described and characteristics of key components summarized. Also, plant design-point efficiency estimates are presented as well as values of other plant performance parameters.

Bevc, F.P. [Westinghouse Electric Corp., Orlando, FL (United States). Power Generation Business Unit; Lundberg, W.L.; Bachovchin, D.M. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center

1996-12-31T23:59:59.000Z

119

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions  

E-Print Network (OSTI)

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions October 17, 2006 Simple- and combined-cycle gas turbine power plants fuelled by natural gas are among the bulk-emission and efficient gas turbine technology made combined-cycle gas turbine power plants the "resource of choice

120

Combined cycle electric power plant and heat recovery steam generator having improved multi-loop temperature control of the steam generated  

SciTech Connect

A combined cycle electric power plant is described that includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes a superheater tube and a steam drum from which heated steam is directed through the superheater to be additionally heated into superheated steam by the exhaust gas turbine gases. An afterburner serves to further heat the exhaust gas turbine gases passed to the superheater tube and a bypass conduit is disposed about the superheater tube whereby a variable steam flow determined by a bypass valve disposed in the bypass conduit may be directed about the superheater tube to be mixed with the superheated steam therefrom, whereby the temperature of the superheated steam supplied to the steam turbine may be accurately controlled. Steam temperature control means includes a first control loop responsive to the superheated steam temperature for regulating the position of the bypass valve with respect to a first setpoint, and a second control loop responsive to the superheated steam temperature for controlling the fuel supply to the afterburner with respect to a second setpoint varying in accordance with the bypass valve position. In particular, as the bypass valve position increases, the second setpoint, originally higher, is lowered toward a value substantially equal to that of the first setpoint.

Martz, L.F.; Plotnick, R.J.

1976-08-17T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

California's Greenhouse Gas Policies: Local Solutions to a Global Problem?  

E-Print Network (OSTI)

greater than a current combined-cycle natural gas plant. Inemissions level based on a Combined Cycle Gas Turbine (CCGT)profiles worse than the combined cycle gas plants upon which

Bushnell, Jim B; Peterman, Carla Joy; Wolfram, Catherine D

2007-01-01T23:59:59.000Z

122

Model of the Feed Water System Including a Generic Model of the Deaerator for a Full Scope Combined Cycle Power Plant Simulator  

Science Conference Proceedings (OSTI)

This paper presents the modelling of the Feed water System and an original generic model for closed vessels containing a fluid in two phases at equilibrium conditions with an incondensable gas. The model was used for the deaerator of a Combined Cycle ... Keywords: deaerator, pressurised vessels model, feedwater simulation

Edgardo J. Roldan-Villasana; Ana K. Vazquez

2010-11-01T23:59:59.000Z

123

Descriptions of Past Research in Program 80: New Combustion Turbine/Combined-Cycle Plant Design and Technology Selection  

Science Conference Proceedings (OSTI)

BackgroundAt a time when the power industry needs to meet growing demand and capacity requirements, informed decisions on gas turbine selection and plant designs are especially important. Technology selection impacts efficiency, emissions, availability, maintainability, and durability. Flexible operational capabilities are needed for plant dispatch, and planners need to understand upcoming trends and potential improvements for future growth.The Electric Power ...

2012-09-19T23:59:59.000Z

124

Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant  

Science Conference Proceedings (OSTI)

Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok [Engineering Center of the Ural Power Industry (Russian Federation)

2007-01-15T23:59:59.000Z

125

Proceedings: Eighth International Conference on Cycle Chemistry in Fossil and Combined Cycle Plants with Heat Recovery Steam Generators, June 20-22, 2006, Calgary, Alberta Canada  

Science Conference Proceedings (OSTI)

Proper selection, application, and optimization of the cycle chemistry have long been recognized as integral to ensuring the highest possible levels of component availability and reliability in fossil-fired generating plant units. These proceedings of the Eighth EPRI International Conference on Cycle Chemistry in Fossil Plants address state-of-the-art practices in conventional and combined cycle plants. The content provides a worldwide perspective on cycle chemistry practices, and insight as to industry ...

2007-03-20T23:59:59.000Z

126

Recovery, transport, and disposal of CO{sub 2} from an integrated gasification combined-cycle power plant  

SciTech Connect

Initiatives to limit CO{sub 2} emissions have drawn considerable interest to integrated gasification combined-cycle (IGCC) power generation, a process that reduces CO{sub 2} production and is amenable to CO{sub 2} capture. This paper presents a comparison of energy systems that encompass fuel supply, an IGCC system, CO{sub 2} recovery using commercial technologies, CO{sub 2} transport by pipeline, and land-based sequestering in geological reservoirs. The intent is to evaluate the energy efficiency impacts of controlling CO{sub 2} in such a system, and to provide the CO{sub 2} budget, or an equivalent CO{sub 2} budget, associated with each of the individual energy-cycle steps. The value used for the equivalent CO{sub 2} budget is 1 kg CO{sub 2}/kWh. The base case for the comparison is a 458-MW IGCC system using an air-blown Kellogg Rust Westinghouse (KRW) agglomerating fluidized-bed gasifier, Illinois No.6 bituminous coal, and in-bed sulfur removal. Mining, transportation, and preparation of the coal and limestone result in a net electric power production of 448 MW with a 0.872 kg/kWh CO{sub 2} release rate. For comparison, the gasifier output was taken through a water-gas shift to convert CO to CO{sub 2}, and processed in a Selexol unit to recover CO{sub 2} prior to the combustion turbine. A 500-km pipeline then took the CO{sub 2} to geological sequestering. The net electric power production was 383 MW with a 0.218 kg/kWh CO{sub 2} release rate.

Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.

1993-12-31T23:59:59.000Z

127

"Integrated Gasification Combined Cycle"  

U.S. Energy Information Administration (EIA) Indexed Site

Status of technologies and components modeled by EIA" Status of technologies and components modeled by EIA" ,"Revolutionary","Evolutionary","Mature" "Pulverized Coal",,,"X" "Pulverized Coal with CCS" " - Non-CCS portion of Pulverized Coal Plant",,,"X" " - CCS","X" "Integrated Gasification Combined Cycle" " - Advanced Combustion Turbine",,"X" " - Heat Recovery Steam Generator",,,"X" " - Gasifier",,"X" " - Balance of Plant",,,"X" "Conventional Natural Gas Combined Cycle" " - Conventional Combustion Turbine",,,"X" " - Heat Recovery Steam Generator",,,"X" " - Balance of Plant",,,"X"

128

Dynamic simulation and load-following control of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture  

Science Conference Proceedings (OSTI)

Load-following control of future integrated gasification combined cycle (IGCC) plants with pre-combustion CO{sub 2} capture is expected to be far more challenging as electricity produced by renewable energy is connected to the grid and strict environmental limits become mandatory requirements. To study control performance during load following, a plant-wide dynamic simulation of a coal-fed IGCC plant with CO{sub 2} capture has been developed. The slurry-fed gasifier is a single-stage, downward-fired, oxygen-blown, entrained-flow type with a radiant syngas cooler (RSC). The syngas from the outlet of the RSC goes to a scrubber followed by a two-stage sour shift process with inter-stage cooling. The acid gas removal (AGR) process is a dual-stage physical solvent-based process for selective removal of H{sub 2}S in the first stage and CO{sub 2} in the second stage. Sulfur is recovered using a Claus unit with tail gas recycle to the AGR. The recovered CO{sub 2} is compressed by a split-shaft multistage compressor and sent for sequestration after being treated in an absorber with triethylene glycol for dehydration. The clean syngas is sent to two advanced F-class gas turbines (GTs) partially integrated with an elevated-pressure air separation unit. A subcritical steam cycle is used for heat recovery steam generation. A treatment unit for the sour water strips off the acid gases for utilization in the Claus unit. The steady-state model developed in Aspen Plus is converted to an Aspen Plus Dynamics simulation and integrated with MATLAB for control studies. The results from the plant-wide dynamic model are compared qualitatively with the data from a commercial plant having different configuration, operating condition, and feed quality than what has been considered in this work. For load-following control, the GT-lead with gasifier-follow control strategy is considered. A modified proportionalintegralderivative (PID) control is considered for the syngas pressure control. For maintaining the desired CO{sub 2} capture rate while load-following, a linear model predictive controller (LMPC) is implemented in MATLAB. A combined process and disturbance model is identified by considering a number of model forms and choosing the final model based on an information-theoretic criterion. The performance of the LMPC is found to be superior to the conventional PID control for maintaining CO{sub 2} capture rates in an IGCC power plant while load following.

Bhattacharyya, D,; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

129

Generation Maintenance Application Center: Combustion Turbine Combined-Cycle Heat Recovery Steam Generator Maintenance Guide  

Science Conference Proceedings (OSTI)

This guide provides information to assist personnel involved with the maintenance of the heat recovery steam generator at a combustion gas turbine combined cycle facility, including good maintenance practices, preventive maintenance techniques and troubleshooting guidance.BackgroundCombustion turbine combined cycle (CTCC) facilities utilize various components that can be unique to this particular type of power plant. As such, owners and ...

2013-05-15T23:59:59.000Z

130

Combustion Turbine Combined Cycle Technology Developments, Reliability Issues, and Related Market Conditions: EPRI Gas Turbine Exper ience and Intelligence Report  

Science Conference Proceedings (OSTI)

Deregulating power generation markets worldwide present both business opportunities and challenges for combustion turbine (CT) plant owners, operators, and project developers. The "EPRI Gas Turbine Experience and Intelligence Report" (GTE&IR) provides concise, well-organized, up-to-date technical, strategic, and business information for combustion turbine (CT) power producers. This technical report assembles all of the content from the most recent three years of GTE&IR (seven editions) into a single docu...

2001-12-04T23:59:59.000Z

131

Program on Technology Innovation: Tampa Electric Company Polk Integrated Gasification Combined Cycle Plant Carbon Capture Retrofit Study  

Science Conference Proceedings (OSTI)

In support of the Industry Technology Demonstration Program on Integrated Gasification Combined Cycle (IGCC) with carbon capture and storage (CCS), an engineering study was conducted to evaluate the cost and performance impacts of various CCS schemes at the Tampa Electric Polk Power Station. The portion of the work presented here was funded by the Electric Power Research Institute (EPRI) Technology Innovation Program and focuses on a comparison of chemical and physical solvent-based CO2 capture systems i...

2010-03-30T23:59:59.000Z

132

Use of experience curves to estimate the future cost of power plants with CO2 capture  

E-Print Network (OSTI)

economics of the combined cycle gas turbinean experiencePC) and natural gas combined cycle (NGCC) plants with post-integrated gasi?cation combined cycle (IGCC) plants with

Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

2007-01-01T23:59:59.000Z

133

Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system  

DOE Patents (OSTI)

In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

134

Combined Cycle Performance Monitoring and Recovery Guideline  

Science Conference Proceedings (OSTI)

The benefits of improved combined cycle power plant performance continue to grow as the cost of fuel rises and international concerns over global warming increase.This guideline provides a framework for performance monitoring, assessment, recovery and optimization of combined cycle power plants. The guideline distills existing experience and documents on heat rate recovery and capacity improvement into a comprehensive manual for plant implementation and training applications. The purpose ...

2012-12-31T23:59:59.000Z

135

Rigorous Kinetic Modeling, Optimization, and Operability Studies of a Modified Claus Unit for an Integrated Gasification Combined Cycle (IGCC) Power Plant with CO{sub 2} Capture  

Science Conference Proceedings (OSTI)

The modified Claus process is one of the most common technologies for sulfur recovery from acid gas streams. Important design criteria for the Claus unit, when part of an Integrated Gasification Combined Cycle (IGCC) power plant, are the ability to destroy ammonia completely and the ability to recover sulfur thoroughly from a relatively low purity acid gas stream without sacrificing flame stability. Because of these criteria, modifications to the conventional process are often required, resulting in a modified Claus process. For the studies discussed here, these modifications include the use of a 95% pure oxygen stream as the oxidant, a split flow configuration, and the preheating of the feeds with the intermediate pressure steam generated in the waste heat boiler (WHB). In the future, for IGCC plants with CO{sub 2} capture, the Claus unit must satisfy emission standards without sacrificing the plant efficiency in the face of typical disturbances of an IGCC plant, such as rapid change in the feed flow rates due to load-following and wide changes in the feed composition because of changes in the coal feed to the gasifier. The Claus unit should be adequately designed and efficiently operated to satisfy these objectives. Even though the Claus process has been commercialized for decades, most papers concerned with the modeling of the Claus process treat the key reactions as equilibrium reactions. Such models are validated by manipulating the temperature approach to equilibrium for a set of steady-state operating data, but they are of limited use for dynamic studies. One of the objectives of this study is to develop a model that can be used for dynamic studies. In a Claus process, especially in the furnace and the WHB, many reactions may take place. In this work, a set of linearly independent reactions has been identified, and kinetic models of the furnace flame and anoxic zones, WHB, and catalytic reactors have been developed. To facilitate the modeling of the Claus furnace, a four-stage method was devised so as to determine which set of linearly independent reactions would best describe the product distributions from available plant data. Various approaches are taken to derive the kinetic rate expressions, which are either missing in the open literature or found to be inconsistent. A set of plant data is used for optimal estimation of the kinetic parameters. The final model agrees well with the published plant data. Using the developed kinetics models of the Claus reaction furnace, WHB, and catalytic stages, two optimization studies are carried out. The first study shows that there exists an optimal steam pressure generated in the WHB that balances hydrogen yield, oxygen demand, and power generation. In the second study, it is shown that an optimal H{sub 2}S/SO{sub 2} ratio exists that balances single-pass conversion, hydrogen yield, oxygen demand, and power generation. In addition, an operability study has been carried out to examine the operating envelope in which both the H{sub 2}S/SO{sub 2} ratio and the adiabatic flame temperature can be controlled in the face of disturbances typical for the operation of an IGCC power plant with CO{sub 2} capture. Impact of CO{sub 2} capture on the Claus process has also been discussed.

Jones, Dustin; Bhattacharyya, Debangsu; Turton, Richard; Zitney, Stephen E

2011-12-15T23:59:59.000Z

136

Rigorous Kinetic Modeling and Optimization Study of a Modified Claus Unit for an Integrated Gasification Combined Cycle (IGCC) Power Plant with CO{sub 2} Capture  

SciTech Connect

The modified Claus process is one of the most common technologies for sulfur recovery from acid gas streams. Important design criteria for the Claus unit, when part of an Integrated Gasification Combined Cycle (IGCC) power plant, are the ability to destroy ammonia completely and the ability to recover sulfur thoroughly from a relatively low purity acid gas stream without sacrificing flame stability. Because of these criteria, modifications to the conventional process are often required, resulting in a modified Claus process. For the studies discussed here, these modifications include the use of a 95% pure oxygen stream as the oxidant, a split flow configuration, and the preheating of the feeds with the intermediate pressure steam generated in the waste heat boiler (WHB). In the future, for IGCC plants with CO{sub 2} capture, the Claus unit must satisfy emission standards without sacrificing the plant efficiency in the face of typical disturbances of an IGCC plant, such as rapid change in the feed flow rates due to load-following and wide changes in the feed composition because of changes in the coal feed to the gasifier. The Claus unit should be adequately designed and efficiently operated to satisfy these objectives. Even though the Claus process has been commercialized for decades, most papers concerned with the modeling of the Claus process treat the key reactions as equilibrium reactions. Such models are validated by manipulating the temperature approach to equilibrium for a set of steady-state operating data, but they are of limited use for dynamic studies. One of the objectives of this study is to develop a model that can be used for dynamic studies. In a Claus process, especially in the furnace and the WHB, many reactions may take place. In this work, a set of linearly independent reactions has been identified, and kinetic models of the furnace flame and anoxic zones, WHB, and catalytic reactors have been developed. To facilitate the modeling of the Claus furnace, a four-stage method was devised so as to determine which set of linearly independent reactions would best describe the product distributions from available plant data. Various approaches are taken to derive the kinetic rate expressions, which are either missing in the open literature or found to be inconsistent. A set of plant data is used for optimal estimation of the kinetic parameters. The final model agrees well with the published plant data. Using the developed kinetics models of the Claus reaction furnace, WHB, and catalytic stages, two optimization studies are carried out. The first study shows that there exists an optimal steam pressure generated in the WHB that balances hydrogen yield, oxygen demand, and power generation. In the second study, it is shown that an optimal H{sub 2}S/SO{sub 2} ratio exists that balances single-pass conversion, hydrogen yield, oxygen demand, and power generation. In addition, an operability study has been carried out to examine the operating envelope in which both the H{sub 2}S/SO{sub 2} ratio and the adiabatic flame temperature can be controlled in the face of disturbances typical for the operation of an IGCC power plant with CO{sub 2} capture. Impact of CO{sub 2} capture on the Claus process has also been discussed.

Jones, Dustin; Bhattacharyya, Debangsu; Turton, Richard; Zitney, Stephen E.

2012-02-08T23:59:59.000Z

137

Modeling and optimization of a modified claus process as part of an integrted gasification combined cycle (IGCC) power plant with CO2 capture  

DOE Green Energy (OSTI)

The modified Claus process is one of the most common technologies for sulfur recovery from acid gas streams. Important design criteria for the Claus unit, when part of an Integrated Gasification Combined Cycle (IGCC) power plant, are the ability to destroy ammonia completely and recover sulfur thoroughly from a relatively low purity acid gas stream without sacrificing flame stability. Due to these criteria, modifications are often required to the conventional process, resulting in a modified Claus process. For the studies discussed here, these modifications include the use of a 95% pure oxygen stream as the oxidant, a split flow configuration, and the preheating of the feeds with the intermediate pressure steam generated in the waste heat boiler (WHB). In the future, for IGCC plants with CO2 capture, the Claus unit must satisfy emission standards without sacrificing the plant efficiency in the face of typical disturbances of an IGCC plant such as rapid change in the feed flowrates due to load-following and wide changes in the feed composition because of changes in the coal feed to the gasifier. The Claus unit should be adequately designed and efficiently operated to satisfy these objectives. Even though the Claus process has been commercialized for decades, most papers concerned with the modeling of the Claus process treat the key reactions as equilibrium reactions. Such models are validated by manipulating the temperature approach to equilibrium for a set of steady-state operating data, but are of limited use for dynamic studies. One of the objectives of this study is to develop a model that can be used for dynamic studies. In a Claus process, especially in the furnace and the WHB, many reactions may take place. In this work, a set of linearly independent reactions has been identified and kinetic models of the furnace flame and anoxic zones, WHB, and catalytic reactors have been developed. To facilitate the modeling of the Claus furnace, a four-stage method was devised so as to determine which set of linearly independent reactions would best describe the product distributions from available plant data. Various approaches are taken to derive the kinetic rate expressions which are either missing in the open literature or found to be inconsistent. A set of plant data is used for optimal estimation of the kinetic parameters. The final model agrees well with the published plant data. Using the developed kinetics models of the Claus reaction furnace, WHB, and catalytic stages, two optimization studies are carried out. The first study shows that there exists an optimal steam pressure generated in the WHB that balances hydrogen yield, oxygen demand, and power generation. In the second study, it is shown that an optimal H2S/SO2 ratio exists that balances single-pass conversion, hydrogen yield, oxygen demand, and power generation. In addition, an operability study has been carried out to examine the operating envelope in which both H2S/SO2 ratio and adiabatic flame temperature can be controlled in the face of disturbances typical for the operation of an IGCC power plant with CO2 capture. Impact of CO2 capture on the Claus process has also been discussed.

Jones, D.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2011-01-01T23:59:59.000Z

138

Combined cycle phosphoric acid fuel cell electric power system  

DOE Green Energy (OSTI)

By arranging two or more electric power generation cycles in series, combined cycle systems are able to produce electric power more efficiently than conventional single cycle plants. The high fuel to electricity conversion efficiency results in lower plant operating costs, better environmental performance, and in some cases even lower capital costs. Despite these advantages, combined cycle systems for the 1 - 10 megawatt (MW) industrial market are rare. This paper presents a low noise, low (oxides of nitrogen) NOx, combined cycle alternative for the small industrial user. By combining a commercially available phosphoric acid fuel cell (PAFC) with a low-temperature Rankine cycle (similar to those used in geothermal applications), electric conversion efficiencies between 45 and 47 percent are predicted. While the simple cycle PAFC is competitive on a cost of energy basis with gas turbines and diesel generators in the 1 to 2 MW market, the combined cycle PAFC is competitive, on a cost of energy basis, with simple cycle diesel generators in the 4 to 25 MW market. In addition, the efficiency and low-temperature operation of the combined cycle PAFC results in a significant reduction in carbon dioxide emissions with NO{sub x} concentration on the order of 1 parts per million (per weight) (ppmw).

Mollot, D.J.; Micheli, P.L.

1995-12-31T23:59:59.000Z

139

Configuration and performance of fuel cell-combined cycle options  

DOE Green Energy (OSTI)

The natural gas, indirect-fired, carbonate fuel-cell-bottomed, combined cycle (NG-IFCFC) and the topping natural-gas/solid-oxide fuel-cell combined cycle (NG-SOFCCC) are introduced as novel power-plant systems for the distributed power and on-site markets in the 20-200 mega-watt (MW) size range. The novel NG-IFCFC power-plant system configures the ambient pressure molten-carbonate fuel cell (MCFC) with a gas turbine, air compressor, combustor, and ceramic heat exchanger: The topping solid-oxide fuel-cell (SOFC) combined cycle is not new. The purpose of combining a gas turbine with a fuel cell was to inject pressurized air into a high-pressure fuel cell and to reduce the size, and thereby, to reduce the cost of the fuel cell. Today, the SOFC remains pressurized, but excess chemical energy is combusted and the thermal energy is utilized by the Carnot cycle heat engine to complete the system. ASPEN performance results indicate efficiencies and heat rates for the NG-IFCFC or NG-SOFCCC are better than conventional fuel cell or gas turbine steam-bottomed cycles, but with smaller and less expensive components. Fuel cell and gas turbine systems should not be viewed as competitors, but as an opportunity to expand to markets where neither gas turbines nor fuel cells alone would be commercially viable. Non-attainment areas are the most likely markets.

Rath, L.K.; Le, P.H.; Sudhoff, F.A.

1995-12-31T23:59:59.000Z

140

Effect of thermal barrier coatings on the performance of steam- and water-cooled gas turbine: steam turbine combined cycle systems  

SciTech Connect

An analytical study was made of the performance of air-, steam-, and water-cooled gas-turbine/steam-turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal-barrier coatings permit an increase in the turbine inlet temperature from 1205/sup 0/C to 1370/sup 0/C, resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4% when the turbine inlet temperature is increased from 1425/sup 0/C to 1675/sup 0/C and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683/sup 0/C and the maximum specific power improvement is 36.6% by increasing the turbine inlet temperature from 1425/sup 0/C to 1730/sup 0/C and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air-cooling at a turbine inlet temperature of 1205/sup 0/C. The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.

Nainiger, J.J.

1978-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Combined Cycle Cogeneration at NALCO Chemical  

E-Print Network (OSTI)

The Nalco Chemical Company, while expanding their corporate headquarters, elected to investigate the potential for cogeneration. The headquarters complex has a central physical plant for heating and chilling. The authors describe the analysis approach for determining the most economical system design. Generation capacity ranging from 2.7 MW up to 7.0 MW in both simple cycle cogeneration and combined cycle cogeneration was analyzed. Both single pressure and dual pressure waste heat boilers were included in the evaluation. In addition, absorption chilling and electrical centrifugal chilling capacity expansion were integrated into the model. The gas turbine selection procedure is outlined. Bid evaluation procedure involved a life cycle cost comparison wherein the bid specification responses for each model turbine were incorporated into the life cycle facility program. The recommendation for the facility is a 4.0MW combined cycle cogeneration system. This system is scheduled for startup in October of 1985. Most major equipment has been purchased and the building to house the system is nearing completion. A discussion of the purchase and scheduling integration will be included.

Thunem, C. B.; Jacobs, K. W.; Hanzel, W.

1985-05-01T23:59:59.000Z

142

Integrated gasification combined cycle -- A review of IGCC technology  

SciTech Connect

Over the past three decades, significant efforts have been made toward the development of cleaner and more efficient technology for power generation. Coal gasification technology received a big thrust with the concept of combined cycle power generation. The integration of coal gasification with combined cycle for power generation (IGCC) had the inherent characteristic of gas cleanup and waste minimization, which made this system environmentally preferable. Commercial-scale demonstration of a cool water plant and other studies have shown that the greenhouse gas and particulates emission from an IGCC plant is drastically lower than the recommended federal New Source Performance Standard levels. IGCC also offers a phased construction and repowering option, which allows multiple-fuel flexibility and the necessary economic viability. IGCC technology advances continue to improve efficiency and further reduce the emissions, making it the technology of the 21st century.

Joshi, M.M.; Lee, S. [Univ. of Akron, OH (United States)

1996-07-01T23:59:59.000Z

143

Westinghouse to launch coal gasifier with combined cycle unit  

Science Conference Proceedings (OSTI)

Westinghouse has designed a prototype coal gasifier which can be intergrated with a combined cycle unit and enable power plants to use coal in an efficient and environmentally acceptable way. Coal Gasification Combined Cycle (CGCC) technology burns gas made from coal in a gas turbine to generate power and then collects the hot exhaust gases to produce steam for further power generation. The commercialization of this process would meet the public's need for an economical and clean way to use coal, the utitities' need to meet electric power demands, and the nation's need to reduce dependence on imported oil. The Westinghouse process is described along with the company's plans for a demonstration plant and the option of a phased introduction to allow utilities to continue the use of existing equipment and generate revenue while adding to capacity. (DCK)

Stavsky, R.M.; Margaritis, P.J.

1980-03-01T23:59:59.000Z

144

Engineering and Economic Evaluations of Integrated-Gasification Combined-Cycle Plant Designs with Carbon Dioxide Capture  

Science Conference Proceedings (OSTI)

The objectives of this research were to assess the performance and costs of coal-fired integrated-gasificationcombined-cycle (IGCC) power plants. The base cases are Greenfield designs without carbon dioxide (CO2) capture; two additional cases were studied with retrofitted full CO2 capture. The study represents Phase 3 of a multiyear study executed on behalf of the CoalFleet for Tomorrow program, a collaborative research and development program that promotes the deployment of advanced coal technologies, i...

2011-09-29T23:59:59.000Z

145

Conservation Screening Curves to Compare Efficiency Investments to Power Plants  

E-Print Network (OSTI)

yr) Combustion Turbine Combined- Cycle Oil Coal Steam A B oJ I J J J GAS TURBINE COMBINED-CYCLE (OIL) BASELOAD COAL I JB. Intermediate Combined-Cycle Oil This plant represents an

Koomey, J.G.

2008-01-01T23:59:59.000Z

146

Southern Company Services' study of a Kellogg Rust Westinghouse (KRW)-based gasification-combined-cycle (GCC) power plant  

SciTech Connect

A site-specific evaluation of an integrated-gasification-combined- cycle (IGCC) unit was conducted by Southern Company Services, Inc. (SCS) to determine the effect of such a plant would have on electricity cost, load response, and fuel flexibility on the Southern electric system (SES). The design of the Plant Wansley IGCC plant in this study was configured to utilize three oxygen-blown Kellogg Rust Westinghouse (KRW) gasifiers integrated with two General Electric (GE) MS7001F combustion turbines. The nominal 400-MW IGCC plant was based on a nonphased construction schedule, with an operational start date in the year 2007. Illinois No. 6 bituminous coal was the base coal used in the study. Alabama lignite was also investigated as a potential low-cost feedstock for the IGCC plant, but was found to be higher in cost that the Illinois No. 6 coal when shipped to the Wansley site. The performance and cost results for the nominal 400-MW plant were used in an economic assessment that compared the replacement of a 777-MW pulverized-coal-fired unit with 777-MW of IGCC capacity based on the Southern electric system's expansion plans of installing 777-MW of baseload capacity in the year 2007. The economic analysis indicated that the IGCC plant was competitive compared to a baseload pulverized-coal-fired unit. Capital costs of the IGCC unit were approximately the same as a comparably sized pulverized-coal-fired plant, but the IGCC plant had a lower production cost due to its lower heat rate. 10 refs., 34 figs., 18 tabs.

Gallaspy, D.T.; Johnson, T.W.; Sears, R.E. (Southern Co. Services, Inc., Birmingham, AL (USA))

1990-07-01T23:59:59.000Z

147

Biomass Gasification Combined Cycle  

DOE Green Energy (OSTI)

Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

Judith A. Kieffer

2000-07-01T23:59:59.000Z

148

Avestar® - Syngas-Fired Combined Cycle Dynamic Simulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas-Fired Combined Cycle Dynamic Simulator Syngas-Fired Combined Cycle Dynamic Simulator The AVESTAR® center offers courses using the Combined Cycle Simulator, focusing on the power generation process after gasification. This simulator is well-suited for concentrated training on operation and control of the gas and steam turbines; condensate, feed water, and circulating water systems; heat recovery steam generator; and selective catalytic reduction (SCR) unit. Combined cycle simulator startup operations include bringing up the gas turbine to rated speed on natural gas and then switching over to the firing of synthesis gas. Key capabilities of the Combined Cycle Simulator include: Combined Cycle Simulator Operator training station HMI display for overview of Gas Turbine - Train A Normal base load operation

149

Off-design Simulations of Offshore Combined Cycles.  

E-Print Network (OSTI)

?? This thesis presents an off-design simulation of offshore combined cycles. Offshore installations have a substantial power demand to facilitate the oil and gas production. (more)

Flateb, ystein

2012-01-01T23:59:59.000Z

150

Split stream boilers for high-temperature/high-pressure topping steam turbine combined cycles  

SciTech Connect

Research and development work on high-temperature and high-pressure (up to 1,500 F TIT and 4,500 psia) topping steam turbines and associated steam generators for steam power plants as well as combined cycle plants is being carried forward by DOE, EPRI, and independent companies. Aeroderivative gas turbines and heavy-duty gas turbines both will require exhaust gas supplementary firing to achieve high throttle temperatures. This paper presents an analysis and examples of a split stream boiler arrangement for high-temperature and high-pressure topping steam turbine combined cycles. A portion of the gas turbine exhaust flow is run in parallel with a conventional heat recovery steam generator (HRSG). This side stream is supplementary fired opposed to the current practice of full exhaust flow firing. Chemical fuel gas recuperation can be incorporated in the side stream as an option. A significant combined cycle efficiency gain of 2 to 4 percentage points can be realized using this split stream approach. Calculations and graphs show how the DOE goal of 60 percent combined cycle efficiency burning natural gas fuel can be exceeded. The boiler concept is equally applicable to the integrated coal gas fuel combined cycle (IGCC).

Rice, I.G. [Rice (I.G.), Spring, TX (United States)

1997-04-01T23:59:59.000Z

151

West Coast Regional Carbon Sequestration Partnership Assessment of Natural Gas Combined Cycle Plants for Carbon  

E-Print Network (OSTI)

phaseout of once-through cooling now d f NGCC it d 5 fi d b il t it Ch t li t(HAYNES #3-#4 (eGRID Blr/Gen 9; sanitary septic system/leachfield. Notes: (1) From EPA e-GRID or pointer location on aerial photos at www Operating Data from 2008 December EIA-923 Monthly Time Series File Operating Data from EPA eGRID2007 Version

152

A Flashing Binary Combined Cycle For Geothermal Power Generation | Open  

Open Energy Info (EERE)

Flashing Binary Combined Cycle For Geothermal Power Generation Flashing Binary Combined Cycle For Geothermal Power Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Flashing Binary Combined Cycle For Geothermal Power Generation Details Activities (0) Areas (0) Regions (0) Abstract: The performance of a flashing binary combined cycle for geothermal power generation is analysed. It is proposed to utilize hot residual brine from the separator in flashing-type plants to run a binary cycle, thereby producing incremental power. Parametric variations were carried out to determine the optimum performance of the combined cycle. Comparative evaluation with the simple flashing plant was made to assess its thermodynamic potential and economic viability. Results of the analyses indicate that the combined cycle can generate 13-28% more power than the

153

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

natural gas combined-cycle and combustion turbine power plantsnatural gas combined-cycle and combustion turbine power plantsnatural gas has become the fuel of choice for new power plants

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

154

Choose best option for enhancing combined-cycle output  

SciTech Connect

This article describes several methods available for boosting the output of gas-turbine-based combined-cycle plants during warm-weather operation. The technology comparisons help choose the option that is most appropriate. Amidst the many advantages of gas-turbine (GT) combined cycles (CC), one drawback is that their achievable output decreases significantly as ambient temperature increases. Reason: The lower density of warm air reduces mass flow through the GT. Unfortunately, hot weather typically corresponds to peak power loads in many areas. Thus, the need to meet peak-load and power-sales contract requirements causes many plant developers to compensate for ambient-temperature-related output loss. The three most common methods of increasing output include: (1) injecting water or steam into the GT, (2) precooling GT inlet air, and/or (3) supplementary firing of the heat-recovery steam generator (HRSG). All of these options require significant capital outlays and affect other performance parameters. In addition, they may uniquely impact the operation and/or selection of other components, including boiler feedwater and condensate pumps, valves, steam turbine/generators, condensers, cooling towers, and emissions control systems. Although plant-specific issues will have a significant effect on selecting an option, comparing the performance of different systems based on a theoretical reference plant can be helpful. The comparisons here illustrate the characteristics, advantages, and disadvantages of the major power augmentation technologies now in use.

Boswell, M.; Tawney, R.; Narula, R.

1993-09-01T23:59:59.000Z

155

Combined cycle solar central receiver hybrid power system study. Volume III. Appendices. Final technical report  

DOE Green Energy (OSTI)

A design study for a 100 MW gas turbine/steam turbine combined cycle solar/fossil-fuel hybrid power plant is presented. This volume contains the appendices: (a) preconceptual design data; (b) market potential analysis methodology; (c) parametric analysis methodology; (d) EPGS systems description; (e) commercial-scale solar hybrid power system assessment; and (f) conceptual design data lists. (WHK)

None

1979-11-01T23:59:59.000Z

156

SOFC combined cycle systems for distributed generation  

SciTech Connect

The final phase of the tubular SOFC development program will focus on the development and demonstration of pressurized solid oxide fuel cell (PSOFC)/gas turbine (GT) combined cycle power systems for distributed power applications. The commercial PSOFC/GT product line will cover the power range 200 kWe to 50 MWe, and the electrical efficiency for these systems will range from 60 to 75% (net AC/LHV CH4), the highest of any known fossil fueled power generation technology. The first demonstration of a pressurized solid oxide fuel cell/gas turbine combined cycle will be a proof-of-concept 250 kWe PSOFC/MTG power system consisting of a single 200 kWe PSOFC module and a 50 kWe microturbine generator (MTG). The second demonstration of this combined cycle will be 1.3 MWe fully packaged, commercial prototype PSOFC/GT power system consisting of two 500 kWe PSOFC modules and a 300 kWe gas turbine.

Brown, R.A.

1997-05-01T23:59:59.000Z

157

Demonstration Development Project - Combustion Turbine Low Power Turndown Technologies: A Review of Current and Emerging Technologies for Combined Cycle Gas Turbines  

Science Conference Proceedings (OSTI)

EPRI has established a Demonstration Development Program that supports projects that evaluate developing technologies which will potentially decrease cost and increase performance of power generating assets. This report provides a review of recent developments in combined cycle technologies that provide improved performance in the areas of response time (start-up and ramp time), power turndown while maintaining low emissions, and fuel flexibility.A review of technologies either ...

2012-11-30T23:59:59.000Z

158

Induced-Draft Cooling Towers and Parallel Wet/Dry Cooling for Combined-Cycle Plants: Design Best Practices and Procurement Specifica tions  

Science Conference Proceedings (OSTI)

This report contains information and examples of best practices for the design and specification of wet and parallel (hybrid) cooling towers for combined-cycle applications. Two reference (template) specifications are includedone for totally wet cooling systems and one for parallel cooling systems with a wet cooling tower and air-cooled condensers (ACC) in parallel. These template specifications are intended to be the starting point from which the utility or developer can "customize" as needed to fit its...

2011-10-14T23:59:59.000Z

159

Comparative Assessment of Coal-and Natural Gas-fired Power Plants under a  

E-Print Network (OSTI)

Comparative Assessment of Coal- and Natural Gas-fired Power Plants under a CO2 Emission Performance standard (EPS) for pulverized coal (PC) and natural gas combined cycle (NGCC) power plants; · Evaluate · Coal-fired Power Plant: Supercritical pulverized coal (SC PC) Illinois #6 Coal Capacity Factor 75

160

Descriptions of Past Research in Program 79: Combustion Turbine and Combined-Cycle Operations and Maintenance  

Science Conference Proceedings (OSTI)

The asset value of natural-gas-fired combustion turbines, especially in combined cycle plants, is on the rise, driven by their inherent efficiency, emissions, operational characteristics, broader market fit with a forecast affordable fuel supply, and complementary role covering load swings such as those from intermittent renewables. Cycling and high-temperature operations adversely affect combustion turbine life, as well as plant reliability and availability. The risks associated with hot section durabil...

2011-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

2009 Integrated Gasification Combined Cycle Engineering Economic Evaluation  

Science Conference Proceedings (OSTI)

The 2009 Electric Power Research Institute (EPRI) report Integrated Gasification Combined Cycle (IGCC) Design Considerations for Carbon Dioxide (CO2) Capture (1015690) contains engineering and economic evaluations of state-of-the-art integrated gasification combined cycle (IGCC) power plant designs available for near-term deployment. The study assessed the expected performance and costs of coal-fed IGCC power plants before and after retrofit for carbon dioxide (CO2) capture. The study evaluated paired ca...

2009-09-30T23:59:59.000Z

162

Integrated gasifier combined cycle polygeneration system to produce liquid hydrogen  

SciTech Connect

An integrated gasifier combined cycle (IGCC) system which simultaneously produces electricity, process steam, and liquid hydrogen was evaluated and compared to IGCC systems which cogenerate electricity and process steam. A number of IGCC plants, all employing a 15 MW gas turbine and producing from 0 to 20 tons per day of liquid hydrogen and from 0 to 20 MW of process steam were considered. The annual revenue required to own and operate such plants was estimated to be significantly lower than the potential market value of the products. The results indicate a significant potential economic benefit to configuring IGCC systems to produce a clean fuel in addition to electricity and process steam in relatively small industrial applications.

Burns, R.K.; Staiger, P.J.; Donovan, R.M.

1982-07-01T23:59:59.000Z

163

AVESTAR - Training - Combined Cycle Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Exercise Startup Circulating Water System Startup Fuel Systems Draw vacuum in Condenser Start Gas Turbine (GT) and bring to rated speed on natural gas ITS operations to...

164

Opportunities in Liquefied Natural Gas - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Natural gas burns more cleanly than petroleum fuels or coal, and new gas-fired combined-cycle turbine power plants can turn heat into electricity more efficiently ...

165

Westinghouse fuel cell combined cycle systems  

DOE Green Energy (OSTI)

Efficiency (voltage) of the solid oxide fuel cell (SOFC) should increase with operating pressure, and a pressurized SOFC could function as the heat addition process in a Brayton cycle gas turbine (GT) engine. An overall cycle efficiency of 70% should be possible. In cogeneration, half of the waste heat from a PSOFC/GT should be able to be captured in process steam and hot water, leading to a fuel effectiveness of about 85%. In order to make the PSOFC/GT a commercial reality, satisfactory operation of the SOFC at elevated pressure must be verified, a pressurized SOFC generator module must be designed, built, and tested, and the combined cycle and parameters must be optimized. A prototype must also be demonstrated. This paper describes progress toward making the PSOFC/GT a reality.

Veyo, S.

1996-12-31T23:59:59.000Z

166

Duke Energy's Edwardsport Integrated Gasification Combined Cycle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Duke Energy's Edwardsport Integrated Gasification Combined Cycle (IGCC) Station presently under construction in Knox County, Indiana. (Photos courtesy of Duke Energy.) Gasification...

167

Assessment of the Cheng Simplified Combined Cycle  

Science Conference Proceedings (OSTI)

This report will help resource planners assess the cost-effectiveness of retrofitting increased steam injection to a cogeneration plant or power station with gas turbines.

2010-12-17T23:59:59.000Z

168

INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION  

DOE Green Energy (OSTI)

With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

FuelCell Energy

2005-05-16T23:59:59.000Z

169

Program on Technology Innovation: Drying of Low-Rank Coal with Supercritical Carbon Dioxide (CO2) in Integrated Gasification Combined Cycle (IGCC) Plants  

Science Conference Proceedings (OSTI)

This study is part of the Electric Power Research Institute (EPRI) Technology Innovation Program to assess the potential to achieve increased process efficiency and reduced capital cost by drying low-rank coal with supercritical carbon dioxide (SCCO2). This study follows the EPRI report Program on Technology Innovation: Assessment of the Applicability of Drying Low-Rank Coal With Supercritical Carbon Dioxide in IGCC Plants (1016216), which concluded that this system has potential benefits with respect to...

2010-07-30T23:59:59.000Z

170

Combined cycle total energy system  

SciTech Connect

A system is described for the co-generation of steam and electricity comprising: a source of gaseous fuel, a source of air, means for mixing the fuel and air to form a relatively lean fuel/air mixture, a gas turbine, a first fuel/air mixture compressor directly driven by the turbine, a second fuel/air mixture compressor driven by the turbine for further compressing the fuel/air mixture, a catalytic burner between the second compressor and gas turbine, a motor/generator, a steam turbine, means coupling the gas turbine, motor/generator, first and second compressors and steam turbine to one another, a source of water, a steam boiler connected to the source of water and to the exhaust system of the gas turbine, a steam economizer connected to the boiler, a steam superheater in heat exchange relationship with the exhaust system of the gas turbine disposed between the economizer and the steam turbine, and controllable means for bypassing superheated steam from the superheater around the steam turbine to maximize steam or electric power output of the system selectively.

Joy, J.R.

1986-06-17T23:59:59.000Z

171

GE Upgrades Top Selling Advanced Gas Turbine  

Science Conference Proceedings (OSTI)

Oct 30, 2009 ... According to GE, a typical power plant operating two new 7FA gas turbines with a single steam turbine in combined cycle configuration would...

172

Aspen Process Flowsheet Simulation Model of a Battelle Biomass-Based Gasification, Fischer-Tropsch Liquefaction and Combined-Cycle Power Plant  

SciTech Connect

This study was done to support the research and development program of the National Renewable Energy Laboratory (NREL) in the thermochemical conversion of biomass to liquid transportation fuels using current state-of-the-art technology. The Mitretek study investigated the use of two biomass gasifiers; the RENUGAS gasifier being developed by the Institute of Gas Technology, and the indirectly heated gasifier being developed by Battelle Columbus. The Battelle Memorial Institute of Columbus, Ohio indirectly heated biomass gasifier was selected for this model development because the syngas produced by it is better suited for Fischer-Tropsch synthesis with an iron-based catalyst for which a large amount of experimental data are available. Bechtel with Amoco as a subcontractor developed a conceptual baseline design and several alternative designs for indirect coal liquefaction facilities. In addition, ASPEN Plus process flowsheet simulation models were developed for each of designs. These models were used to perform several parametric studies to investigate various alternatives for improving the economics of indirect coal liquefaction.

None

1998-10-30T23:59:59.000Z

173

Integrated Gasification Combined Cycle (IGCC) Design Considerations for High Availability  

Science Conference Proceedings (OSTI)

This report analyses public domain availability data from Integrated Gasification Combined Cycles (IGCC) and other significant coal gasification facilities, backed up with additional data gained from interviews and discussions with plant operators. Predictions for the availability of future IGCCs are made based on the experience of the existing fleet and anticipated improvements from the implementation of lessons learned.

2007-03-26T23:59:59.000Z

174

2012 Integrated Gasification Combined Cycle (IGCC) Research and Development Roadmap  

Science Conference Proceedings (OSTI)

BackgroundThe second generation of integrated gasification combined cycle (IGCC) power plants is now being built or planned following nearly two decades of commercial demonstration at multiple units. State-of-the-art IGCC plants have efficiencies equivalent to that of pulverized coal power plants while exhibiting equal or superior environmental performance and lower water usage. Precombustion CO2 capture technology is commercially available and has been ...

2012-10-30T23:59:59.000Z

175

NETL: Innovations for Existing Plants Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

to develop a new dynamic simulator for supercritical pulverized coal and natural gas combined cycle power plants. 05.31.2013 News Finding Alternative Water Sources for...

176

Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation  

E-Print Network (OSTI)

natural gas combined-cycle and combustion turbine power plantsnatural gas has become the fuel of choice for new power plants

Bolinger, Mark; Wiser, Ryan

2003-01-01T23:59:59.000Z

177

Natural Gas Combined Cycle 3 Study Matrix  

E-Print Network (OSTI)

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

Workshop On Gasification; Power Plants; Subcritical Pulverized Coal; Supercritical Pulverized Coal; F Cop

2007-01-01T23:59:59.000Z

178

They`re he-e-re (almost): The 60% efficient combined cycle  

SciTech Connect

This article examines the technology that promises 60% efficiency from combined-cycle power plants. The topics of the article include advancing design, off-peak thermal energy storage, improving heat recovery steam generator performance, Kalina thermal cycle, performance of Kalina combined-cycle plants, and heat recovery in vapor generators.

DeMoss, T.B.

1996-07-01T23:59:59.000Z

179

An Evaluation of Gas Turbines for APFBC Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

EVALUATION OF GAS TURBINES FOR APFBC POWER PLANTS EVALUATION OF GAS TURBINES FOR APFBC POWER PLANTS Donald L. Bonk U.S. DOE National Energy Technology Laboratory Morgantown, West Virginia eMail: dbonk@netl.doe.gov phone: (304) 285-4889 Richard E. Weinstein, P.E. Parsons Infrastructure & Technology Group Inc. Reading, Pennsylvania eMail: richard.e.weinstein@parsons.com phone: (610) 855-2699 Abstract This paper describes a concept screening evaluation of gas turbines from several manufacturers that assessed the merits of their respective gas turbines for advanced circulating pressurized fluidized bed combustion combined cycle (APFBC) applications. The following gas turbines were evaluated for the modifications expected for APFBC service: 2 x Rolls-Royce Industrial Trent aeroderivative gas turbine configurations; a 3 x Pratt & Whitney Turbo Power FT8 Twin-

180

Axisymmetric Inlet Design for Combined Cycle Engines.  

E-Print Network (OSTI)

??Performance considerations for a turbine-based combined-cycle engine inlet are presented using the inlet of the Lockheed SR-71 as a baseline. A numerical model is developed (more)

Colville, Jesse

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Gas turbine plant emissions  

SciTech Connect

Many cogeneration facilities use gas turbines combined with heat recovery boilers, and the number is increasing. At the start of 1986, over 75% of filings for new cogeneration plants included plans to burn natural gas. Depending on the geographic region, gas turbines are still one of the most popular prime movers. Emissions of pollutants from these turbines pose potential risks to the environment, particularly in geographical areas that already have high concentrations of cogeneration facilities. Although environmental regulations have concentrated on nitrogen oxides (NO/sub x/) in the past, it is now necessary to evaluate emission controls for other pollutants as well.

Davidson, L.N.; Gullett, D.E.

1987-03-01T23:59:59.000Z

182

Combustion Turbine/Combined-Cycle Operations and Maintenance Cost Analyzer, Version 8.61  

Science Conference Proceedings (OSTI)

The CTCC O&M Cost Analyzer is a spreadsheet software product that estimates operations and maintenance (O&M) costs for combustion turbine and combined-cycle plants for specific gas turbine models over the operating life of the assetThe CTCC O&M Cost Analyzer software contains powerful capabilities to assist users in evaluating non-fuel O&M costs and in supporting a life-cycle cost evaluation perspective. The software uses a "bottoms-up" approach for ...

2013-05-06T23:59:59.000Z

183

Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation  

DOE Green Energy (OSTI)

The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

Lytle, J.M.; Marchant, D.D.

1980-11-01T23:59:59.000Z

184

Coal Fleet Integrated Gasification Combined Cycle (IGCC Permitting) Guidelines  

Science Conference Proceedings (OSTI)

This report provides guidance to owners of planned Integrated Gasification Combined Cycle (IGCC) power plants in order to assist them in permitting these advanced coal power generation facilities. The CoalFleet IGCC Permitting Guidelines summarize U.S. federal requirements for obtaining air, water, and solid waste permits for a generic IGCC facility, as described in the CoalFleet User Design Basis Specification (UDBS). The report presents characteristics of IGCC emissions that must be considered in the p...

2006-03-14T23:59:59.000Z

185

Changes related to "A Flashing Binary Combined Cycle For Geothermal...  

Open Energy Info (EERE)

Twitter icon Changes related to "A Flashing Binary Combined Cycle For Geothermal Power Generation" A Flashing Binary Combined Cycle For Geothermal Power Generation...

186

Natural gas use in the electric power sector is growing - Today in ...  

U.S. Energy Information Administration (EIA)

Uranium fuel, nuclear reactors, ... the Nation's fleet of natural gas combined-cycle power plants is contributing significantly more to baseload electricity needs.

187

INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION  

DOE Green Energy (OSTI)

Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

2003-03-01T23:59:59.000Z

188

Comprehensive Cycle Chemistry Guidelines for Combined Cycle/Heat Recovery Steam Generators (HRSGs)  

Science Conference Proceedings (OSTI)

The purity of water and steam is central to ensuring combined cycle/heat recovery steam generator (HRSG) plant component availability and reliability. These guidelines for combined cycle/HRSG plants provide information on the application of all-volatile treatment (AVT), oxygenated treatment (OT), phosphate treatment (PT), caustic treatment (CT), and amine treatment. The guidelines will help operators reduce corrosion and deposition and thereby achieve significant operation and maintenance cost ...

2013-11-08T23:59:59.000Z

189

Steam Turbine and Generator Designs for Combined-Cycle Applications: Durability, Reliability, and Procurement Considerations  

Science Conference Proceedings (OSTI)

Combined-cycle power plants are currently preferred for new power generation capacity in much of the world, particularly in the United States. Steam turbines and electrical generators are vital components affecting plant performance and reliability. Over 90 percent of the world's combined-cycle steam turbines are provided by six major manufacturers: Alstom, General Electric, Siemens-Westinghouse, Mitsubishi, Toshiba, and Hitachi. This report provides information on their model offerings and consideration...

2003-03-18T23:59:59.000Z

190

Externally-fired combined cycle: An effective coal fueled technology for repowering and new generation  

SciTech Connect

The Externally-Fired Combined Cycle (EFCC) is an attractive emerging technology for powering high efficiency combined gas and steam turbine cycles with coal or other ash bearing fuels. In the EFCC, the heat input to a gas turbine is supplied indirectly through a ceramic air heater. The air heater, along with an atmospheric coal combustor and ancillary equipment, replaces the conventional gas turbine combustor. A steam generator located downstream from the ceramic air heater and steam turbine cycle, along with an exhaust cleanup system, completes the combined cycle. A key element of the EFCC Development Program, the 25 MMBtu/h heat-input Kennebunk Test Facility (KTF), has recently begun operation. The KTF has been operating with natural gas and will begin operating with coal in early 1995. The US Department of Energy selected an EFCC repowering of the Pennsylvania Electric Company`s Warren Station for funding under the Clean Coal Technology Program Round V. The project focuses on repowering an existing 48 MW (gross) steam turbine with an EFCC power island incorporating a 30 MW gas turbine, for a gross power output of 78 MW and a net output of 72 MW. The net plant heat rate will be decreased by approximately 30% to below 9,700 Btu/kWh. Use of a dry scrubber and fabric filter will reduce sulfur dioxide (SO{sub 2}) and particulate emissions to levels under those required by the Clean Air Act Amendments (CAAA) of 1990. Nitrogen oxides (NO{sub x}) emissions are controlled by the use of staged combustion. The demonstration project is currently in the engineering phase, with startup scheduled for 1997. This paper discusses the background of the EFCC, the KTF, the Warren Station EFCC Clean Coal Technology Demonstration Project, the commercial plant concept, and the market potential for the EFCC.

Stoddard, L.E.; Bary, M.R. [Black and Veatch, Kansas City, MO (United States); Gray, K.M. [Pennsylvania Electric Co., Johnstown, PA (United States); LaHaye, P.G. [Hague International, South Portland, ME (United States)

1995-06-01T23:59:59.000Z

191

,"California Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Plant Processing",3,"Annual",2011,"6301967" ,"Release Date:","1031...

192

,"Texas Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Processing",3,"Annual",2011,"6301967" ,"Release Date:","1031...

193

FUEL CELL/MICRO-TURBINE COMBINED CYCLE  

SciTech Connect

A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

1999-12-01T23:59:59.000Z

194

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

natural gas combined-cycle and combustion turbine power plantsnatural gas has become the fuel of choice for new power plantspower plants (Awerbuch 1993, 1994; Kahn & Stoft 1993). Specifically, in the context of natural gas-

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

195

Use of experience curves to estimate the future cost of power plants with CO2 capture  

E-Print Network (OSTI)

the combined cycle gas turbinean experience curve analysis.reduction (SCR) systems, gas turbine combined cycle (GTCC)catalytic reduction (SCR) Gas turbine combined cycle (GTCC)

Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

2007-01-01T23:59:59.000Z

196

Integration of Ion Transport Membrane Technology with Integrated Gasification Combined Cycle Power Generation Systems  

Science Conference Proceedings (OSTI)

EPRI, in conjunction with Air Products and Chemicals, Inc. (AP), has reviewed the integrated gasification combined cycle (IGCC) process, whereby coal (or some other hydrocarbon such as petroleum coke or heavy oil) is broken down into its constituent volatile and nonvolatile components through the process of oxidative-pyrolysis. Combustible synthetic gas created in the process can be used in a traditional combined cycle. IGCC is particularly appealing for its potentially higher efficiencies compared ...

2013-10-30T23:59:59.000Z

197

Demonstration plant for IGCC using the U-GAS process  

SciTech Connect

Tampella, Ltd., in cooperation with the Institute of Gas Technology (IGT), is developing the gasification technology for U-GAS{reg_sign} to produce electricity from coal using the integrated gasification combined-cycle (IGCC). The concept of IGCC is to join the clean burning gasification island with a more efficient gas and stream turbine island to produce electric power with minimal environmental impact. IGT has developed the U-GAS process to produce a low- or medium-Btu gas from different types of coal feedstocks. The process uses a combination of fluidized=bed gasification and ash agglomeration in a single-stage reactor. A 30-tons/day-capacity pilot plant located in Chicago has been used to develop the process. Feedstocks ranging from relatively unreactive metallurgical coke to highly reactive peat have been gasified successfully in the this pilot plant, indicating its ability to handle a feedstock with widely varying properties. A new 10 megawatt pilot plant has been designed and is under construction in Tampere, Finland, as the first step toward the commercialization of this technology. Tampella is planning to design and deliver a commercial-scale IGCC demonstration plant by 1994. 7 refs., 5 figs.

Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Salo, K. [Tampella Power, Tampere (Finland)

1991-12-01T23:59:59.000Z

198

An inlet air washer/chiller system for combined cycle planet repowering  

Science Conference Proceedings (OSTI)

A conditioning method to achieve increased output at any relative humidity condition is an air washer and absorption chiller arrangement. At elevated temperatures and low humidity, the air washer operates as an evaporative cooler without the chiller in operation. In this mode, the air washer will give similar results as a media type evaporative cooler at a fraction of the pressure loss. In the air washer plus chiller operating mode the chiller maintains cooling effectiveness of the air washer during periods of high relative humidity. This makes such a system very appropriate anywhere relative humidity is high. Many combined cycle plants utilize supplemental firing of the heat recovery steam generators to offset the loss of gas turbine power at high ambient temperatures. This paper shows that in contrast to supplementary firing, the combination air washer/chiller system can generate power more efficiently and at lower cost.

Sengupta, U.; Soroka, G. (Bechtel Power Corp., Gaithersburg, MD (USA))

1989-01-01T23:59:59.000Z

199

A combined cycle designed to achieve greater than 60 percent efficiency  

Science Conference Proceedings (OSTI)

In cooperation with the US Department of Energy`s Morgantown Energy Technology Center, Westinghouse is working on Phase 2 of an 8-year Advanced Turbine Systems Program to develop the technologies required to provide a significant increase in natural gas-fired combined cycle power generation plant efficiency. In this paper, the technologies required to yield an energy conversion efficiency greater than the Advanced Turbine Systems Program target value of 60% are discussed. The goal of 60% efficiency is achievable through an improvement in operating process parameters for both the combustion turbine and steam turbine, raising the rotor inlet temperature to 2,600 F (1,427 C), incorporation of advanced cooling techniques in the combustion turbine expander, and utilization of other cycle enhancements obtainable through greater integration between the combustion turbine and steam turbine.

Briesch, M.S.; Bannister, R.L.; Diakunchak, I.S.; Huber, D.J. [Westinghouse Electric Corp., Orlando, FL (United States)

1995-10-01T23:59:59.000Z

200

Alkali removal at about 1400{sup o}C for the pressurized pulverized coal combustion combined cycle. 1. Thermodynamics and concept  

SciTech Connect

The limitation of fossil fuel resources and the necessity of reducing CO{sub 2} emission require an increase of the efficiency of power plants by using combined cycle power systems. The pressurized pulverized coal combustion (PPCC) combined cycle is a coal fired combined cycle concept which is able to achieve efficiencies in excess of 53%. The direct use of the hot flue gas for driving a gas turbine requires a hot gas cleanup to achieve corrosion prevention of the turbine blading. One of the main problems is the release of alkalis during the coal combustion process. Therefore, the thermodynamic basics for the control of alkali vapor pressures in the hot flue gas of PPCC have been investigated by thermodynamic equilibrium calculations and Knudsen effusion mass spectrometric measurements on alkali oxide activities in and alkali partial pressures over coal ash slags with and without additives and alkali laden model sorbents. The obtained results reveal that the requirements of the gas turbine manufacturers regarding alkali concentration in the hot flue gas should be satisfiable by certain aluminosilicate sorbents. On the basis of these results, a concept for alkali vapor removal is proposed. 20 refs., 9 figs., 2 tabs.

Winfried Willenborg; Michael Mueller; Klaus Hilpert [Forschungszentrum Juelich GmbH, Juelich (Germany)

2006-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Efficient gas stream cooling in Second-Generation PFBC plants  

SciTech Connect

The coal-fueled Advanced or Second-Generation Pressurized Fluidized Bed Combustor concept (APFBC) is an efficient combined cycle in which coal is carbonized (partially gasified) to fuel a gas turbine, gas turbine exhaust heats feedwater for the steam cycle, and carbonizer char is used to generate steam for a steam turbine while heating combustion air for the gas turbine. The system can be described as an energy cascade in which chemical energy in solid coal is converted to gaseous form and flows to the gas turbine followed by the steam turbine, where it is converted to electrical power. Likewise, chemical energy in the char flows to both turbines generating electrical power in parallel. The fuel gas and vitiated air (PFBC exhaust) streams must be cleaned of entrained particulates by high-temperature equipment representing significant extensions of current technology. The energy recovery in the APFBC cycle allows these streams to be cooled to lower temperatures without significantly reducing the efficiency of the plant. Cooling these streams would allow the use of lower-temperature gas cleanup equipment that more closely approaches commercially available equipment, reducing cost and technological risk, and providing an earlier path to commercialization. This paper describes the performance effects of cooling the two hottest APFBC process gas streams: carbonizer fuel gas and vitiated air. Each cooling variation is described in terms of energy utilization, cycle efficiency, and cost implications.

White, J.S.; Horazak, D.A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States)

1994-07-01T23:59:59.000Z

202

Fossil fuel combined cycle power generation method  

SciTech Connect

A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

Labinov, Solomon D. (Knoxville, TN); Armstrong, Timothy R. (Clinton, TN); Judkins, Roddie R. (Knoxville, TN)

2008-10-21T23:59:59.000Z

203

Investigation of gasification chemical looping combustion combined cycle performance  

SciTech Connect

A novel combined cycle based on coal gasification and chemical looping combustion (CLC) offers a possibility of both high net power efficiency and separation of the greenhouse gas CO{sub 2}. The technique involves the use of a metal oxide as an oxygen carrier, which transfers oxygen from the combustion air to the fuel, and the avoidance of direct contact between fuel and combustion air. The fuel gas is oxidized by an oxygen carrier, an oxygen-containing compound, in the fuel reactor. The oxygen carrier in this study is NiO. The reduced oxygen carrier, Ni, in the fuel reactor is regenerated by the air in the air reactor. In this way, fuel and air are never mixed, and the fuel oxidation products CO{sub 2} and water vapor leave the system undiluted by air. All that is needed to get an almost pure CO{sub 2} product is to condense the water vapor and to remove the liquid water. When the technique is combined with gas turbine and heat recovery steam generation technology, a new type of combined cycle is formed which gives a possibility of obtaining high net power efficiency and CO{sub 2} separation. The performance of the combined cycle is simulated using the ASPEN software tool in this paper. The influence of the water/coal ratio on the gasification and the influence of the CLC process parameters such as the air reactor temperature, the turbine inlet supplementary firing, and the pressure ratio of the compressor on the system performance are discussed. Results show that, assuming an air reactor temperature of 1200{sup o}C, a gasification temperature of 1100 {sup o}C, and a turbine inlet temperature after supplementary firing of 1350{sup o}C, the system has the potential to achieve a thermal efficiency of 44.4% (low heating value), and the CO{sub 2} emission is 70.1 g/(kW h), 90.1% of the CO{sub 2} captured. 22 refs., 7 figs., 6 tabs.

Wenguo Xiang; Sha Wang; Tengteng Di [Southeast University, Nanjing (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of the Ministry of Education

2008-03-15T23:59:59.000Z

204

Extractors manual for Integrated Gasification Combined Cycle Data Base System: Test Data Data Base  

SciTech Connect

National concern over the depletion of conventional energy sources has prompted industry to evaluate coal gasification as an alternative source of energy. One approach being evaluated is gasifying coal in a gasifier and feeding the fuel gas to a combined-cycle power plant. This system is called an Integrated Gasification Combined-Cycle (IGCC) power plant. The US Department of Energy (DOE) is also encouraging the development of new technologies by sponsoring research and development (R and D) projects in IGCC. In order to make data generated from these projects available to government and private sector personnel, the IGCC Data System has been established. A technology-specific data system consists of data that are stored for that technology in each of the specialized data bases that make up the Morgantown Energy Technology Center (METC) data system. The IGCC Data System consists of data stored in the Major Plants Data Base (MPDB) and the Test Data Data Base (TDDB). To capture the results of government-sponsored IGCC research programs, documents have been written for the TDDB and MPDB to specify the data that contractors need to report and the procedures for reporting them. The IGCC documents identify and define the data that need to be reported for IGCC projects so that the data entered into the TDDB and MPDB will meet the needs of the users of the IGCC Data System. This document addresses what information is needed and how it must be formatted so that it can be entered into the TDDB for IGCC. The data that are most relevant to potential IGCC Data System users have been divided into four categories: project tracking needs; economic/commercialization needs; critical performance needs; and modeling and R and D needs.

1986-11-01T23:59:59.000Z

205

Repowering Fossil Steam Plants with Gas Turbines and Heat Recovery Steam Generators: Design Considerations, Economics, and Lessons L earned  

Science Conference Proceedings (OSTI)

This report describes repowering fossil steam plants using gas turbines (GTs) and heat recovery steam generators (HRSGs) in combined-cycle mode. Design considerations and guidance, comparative economics, and lessons learned in the development of such projects are included. Various other methods of fossil plant repowering with GTs are also briefly discussed. The detailed results and comparisons that are provided relate specifically to a generic GT/HRSG repowering. Design parameters, limitations, schedulin...

2012-08-08T23:59:59.000Z

206

Generation Maintenance Applications Center: Combined-Cycle Combustion Turbine Steam Bypass Model Maintenance Guide  

Science Conference Proceedings (OSTI)

BackgroundCombustion turbine combined-cycle (CTCC) facilities use various systems and components that are unique to this type of power generation plants and are not typically found in a nuclear or fossil power plant. As such, current CTCC facility owners use of the Electric Power ...

2013-12-14T23:59:59.000Z

207

HTGR-GT closed-cycle gas turbine: a plant concept with inherent cogeneration (power plus heat production) capability  

SciTech Connect

The high-grade sensible heat rejection characteristic of the high-temperature gas-cooled reactor-gas turbine (HTGR-GT) plant is ideally suited to cogeneration. Cogeneration in this nuclear closed-cycle plant could include (1) bottoming Rankine cycle, (2) hot water or process steam production, (3) desalination, and (4) urban and industrial district heating. This paper discusses the HTGR-GT plant thermodynamic cycles, design features, and potential applications for the cogeneration operation modes. This paper concludes that the HTGR-GT plant, which can potentially approach a 50% overall efficiency in a combined cycle mode, can significantly aid national energy goals, particularly resource conservation.

McDonald, C.F.

1980-04-01T23:59:59.000Z

208

Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

typical of an advanced combined cycle gas turbine), the $comparison between a combined cycle gas turbine and a fixed-

Bolinger, Mark

2008-01-01T23:59:59.000Z

209

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

comparison between a combined cycle gas turbine and a fixed-typical of an advanced combined cycle gas turbine), the $

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

210

Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

typical of an advanced combined cycle gas turbine), the $comparison between a combined cycle gas turbine and a fixed-

Bolinger, Mark; Wiser, Ryan

2006-01-01T23:59:59.000Z

211

Unusual plant features gas turbines  

SciTech Connect

Gas turbines were chosen by Phillips Petroleum Co. to operate the first gas-injection plant in the world to use gas-type turbines to drive reciprocating compressors. The plant is located in Lake Maracaibo, Venezuela. Gas turbines were chosen because of their inherent reliability as prime movers and for their lack of vibration. Reciprocating compressors were decided upon because of their great flexibility. Now, for the first time, the advantages of both gas turbines and reciprocating compressors are coupled on a very large scale. In this installation, the turbines will operate at about 5,000 rpm, while the compressors will run at only 270 rpm. Speed will be reduced through the giant gear boxes. The compressor platform rests on seventy- eight 36-in. piles in 100 ft of water. Piles were driven 180 ft below water level. To dehydrate the gas, Phillips will install a triethylene glycol unit. Two nearby flow stations will gather associated gas produced at the field and will pipe the gas underwater to the gas injection platform. Lamar Field is in the S. central area of Lake Maracaibo. To date, it has produced a 150 million bbl in 10 yr. Studies have indicated that a combination of waterflooding and repressuring by gas injection could double final recovery. Waterflooding began in 1963.

Franco, A.

1967-08-01T23:59:59.000Z

212

Single-shaft combined cycle packs power in at low cost  

Science Conference Proceedings (OSTI)

Worldwide demand for combined cycle (CC) powerplants has grown exponentially over the past decade, and most forecasts call for the boom to continue. Reasons, by now, are clear: the CC powerplant--in its basic form, a gas turbine exhausting into a heat-recovery steam generator (HRSG) that supplies a steam turbine--is the most efficient electric generating system commercially available today. It also exhibits capital costs significantly lower than competing nuclear, fossil-fired steam, and renewable-energy stations. In addition, its low air emissions, water consumption, space requirements, and physical profile are no trifling advantages in an era marked by tough permitting and siting processes. A relatively recent advance that may further cement the CC`s front-running position is combining the gas turbine, steam turbine, and electric generator on a single shaft. Locking together the turbines and generator to form one single-train operating system promises to simplify plant design and operation, and may lower first costs. Trade-offs of the single-shaft approach, however, include the need for higher starting power and less operating flexibility, particularly if no synchronous clutch is used between the gas and steam turbine. Also worth noting: the arrangement takes away the phased construction option where a simple-cycle gas turbine is installed first and the steam cycle is added later. But depending on project specifics, the rewards of the single-shaft CC can outweigh its drawbacks, as a look at several recent installations reveals in this article.

Swanekamp, R.

1996-01-01T23:59:59.000Z

213

Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production  

DOE Green Energy (OSTI)

A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

Forsberg, Charles W [ORNL; Conklin, Jim [ORNL

2007-09-01T23:59:59.000Z

214

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project Draft Environmental Impact Statement  

DOE Green Energy (OSTI)

The Kentucky Pioneer IGCC Demonstration Project DEIS assesses the potential environmental impacts that would result from a proposed DOE action to provide cost-shared financial support for construction and operation of an electrical power station demonstrating use of a Clean Coal Technology in Clark County, Kentucky. Under the Proposed Action, DOE would provide financial assistance, through a Cooperative Agreement with Kentucky Pioneer Energy, LLC, for design, construction, and operation of a 540 megawatt demonstration power station comprised of two synthesis gas-fired combined cycle units in Clark County, Kentucky. The station would also be comprised of a British Gas Lurgi (BGL) gasifier to produce synthesis gas from a co-feed of coal and refuse-derived fuel pellets and a high temperature molten carbonate fuel cell. The facility would be powered by the synthesis gas feed. The proposed project would consist of the following major components: (1) refuse-derived fuel pellets and coal receipt and storage facilities; (2) a gasification plant; (3) sulfur removal and recovery facilities; (4) an air separation plant; (5) a high-temperature molten carbonate fuel cell; and (6) two combined cycle generation units. The IGCC facility would be built to provide needed power capacity to central and eastern Kentucky. At a minimum, 50 percent of the high sulfur coal used would be from the Kentucky region. Two No Action Alternatives are analyzed in the DEIS. Under the No Action Alternative 1, DOE would not provide cost-shared funding for construction and operation of the proposed facility and no new facility would be built. Under the No Action Alternative 2, DOE would not provide any funding and, instead of the proposed demonstration project, Kentucky Pioneer Energy, LLC, a subsidiary of Global Energy, Inc., would construct and operate, a 540 megawatt natural gas-fired power station. Evaluation of impacts on land use, socioeconomics, cultural resources, aesthetic and scenic resources, geology, air resources, water resources, ecological resources, noise, traffic and transportation, occupational and public health and safety, and environmental justice were included in the assessment.

N /A

2001-11-16T23:59:59.000Z

215

Copyright 1999 by ASMEGas Turbines for Advanced Pressurized Fluidized Bed Combustion Combined Cycles (APFBC)  

E-Print Network (OSTI)

This paper describes gas turbines from several manufacturers that, with modification, have potential for repowering existing steam plants with high efficiency advanced circulating pressurized fluidized bed combustion combined cycle (APFBC) technology. The paper discusses the issues that must be addressed by these manufacturers if they are to have units suited for entry into the APFBC market. APFBC repowering retains the continued use of existing coal-fired capacity with acceptable economy. APFBC repowering significantly improves the energy efficiency of an existing plant, the plants environmental performance, and reduces operating costs. Coal-fired APFBC is now under test in large scale demonstrations, and will be ready for commercial repowering installations around year 2005, so it is prudent to begin evaluating the types of APFBC-modified units that might be offered from different manufacturers. APFBC repowering has some important advantages for the power generating company owner. For example, repowering the 106 MWe output Carolina Power & Light Companys (CP&L) L.V. Sutton steam station Unit 2 with APFBC would boost output and improve the energy efficiency.

John M. Rockey; Richard E. Weinstein

1999-01-01T23:59:59.000Z

216

2012 Integrated Gasification Combined Cycle (IGCC) Research and Development Roadmap - PUBLIC  

Science Conference Proceedings (OSTI)

The second generation of integrated-gasification combined-cycle (IGCC) power plants is now being built or planned following nearly two decades of commercial demonstration at multiple units. State-of-the-art IGCC plants have efficiencies equivalent to that of pulverized coal power plants while exhibiting equal or superior environmental performance and lower water usage. Pre-combustion CO2 capture technology is commercially available and has been demonstrated in several gasification plants, ...

2012-12-20T23:59:59.000Z

217

The role of Integrated Gasification Combined Cycle in the USDOE`s Clean Coal Research, Development and Demonstration Program  

SciTech Connect

For many years, the US Department of Energy (DOE) has been funding research, development, and demonstration (RD&D) projects to develop advanced power generation technologies. The goal of this activity is to catalyze the private sector to commercialize technologies that will provide reasonably priced electricity and still meet stringent environmental standards. Integrated Gasification Combined Cycle (IGCC) systems are emerging as one of the more attractive candidate technologies to meet this goal. The Morgantown Energy Technology Center (METC) has been assigned the responsibility for implementing IGCC projects in DOE`s Clean Coal RD&D program. The IGCC technology offers the potential for significant Improvements in environmental performance, compared to today`s coal-fired power plants. Sulfur dioxide and nitrogen oxide emissions from IGCC systems will be less than one-tenth of existing environmental standards. Thus, the IGCC technology will make coal-based plants as clean as plants that bum natural gas.

Bajura, R.A.; Schmidt, D.K.

1993-06-01T23:59:59.000Z

218

A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage  

E-Print Network (OSTI)

and related Natural Gas Combined Cycle (NGCC) power plantspower plants, petroleum refining, chemical processing industries, and natural gasnatural gas. If CO 2 capture and geologic sequestration from coal-fired power plants

Apps, J.A.

2006-01-01T23:59:59.000Z

219

Heat Recovery Steam Generators for Combined Cycle Applications: HRSG Procurement, Design, Construction, and Operation Update  

Science Conference Proceedings (OSTI)

Design alternatives and procurement approaches for heat recovery steam generators, supplemental firing duct burners, and ancillary steam systems are addressed in this report. Power engineers and project developers will find an up-to-date, comprehensive resource for planning, specification and preliminary design in support of combined cycle plant development.

2005-03-29T23:59:59.000Z

220

Cycle Chemistry Guidelines for Combined Cycle/Heat Recovery Steam Generators (HRSGs)  

Science Conference Proceedings (OSTI)

The cycle chemistry in combined cycle plants influences about 70 of the heat recovery steam generator (HRSG) tube failure mechanisms. These guidelines have been assembled to assist operators and chemists in developing an effective overall cycle chemistry program which will prevent HRSG tube failures (HTF).

2006-03-09T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Generation Maintenance Application Center: Combined Cycle Combustion Turbine Continuous Emissions Monitoring Maintenance Guide  

Science Conference Proceedings (OSTI)

Combustion turbine combined cycle (CTCC) facilities utilize various components that are unique to these types of power-generation plants and that are not typically found in a nuclear or fossil-power plant. As such, use of the EPRI PM Basis Database (PMDB) by current owners of CTCC facilities is limited to only those components that are common to both types of power plants and already in the database. With the projected growth in the number of CTCC facilities, EPRI General Maintenance ...

2012-12-31T23:59:59.000Z

222

GM and Amtrak opt for combined-cycle cogeneration: GM figures 2-year payback; electricity sell-back is gravy  

Science Conference Proceedings (OSTI)

General Motors anticipates a $2 million reduction in annual energy costs with a 10 MW gas-fired combined-cycle cogeneration system that will have a two-year payback. The system will provide about two-thirds of the plant's total power and one-third of its steam requirements. The revenues from selling power generated during weekends and off-shifts to Detroit Edison are not part of the calculations. This system includes two model 501-KB5 gas turbines and a 10 MW, air-cooled generator, with exhaust gases captured and sent to a waste heat recovery boiler that can produce up to 40,000 pph of high-pressure steam, which is fed to a steam turbine to boost capacity to 12 MW when steam loads are low. Low pressure steam contributes to the space heating system. The system will serve as a model for other GM facilities.

Barber, J.

1985-06-10T23:59:59.000Z

223

Apparatus and methods for supplying auxiliary steam in a combined cycle system  

SciTech Connect

To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.

Gorman, William G. (Ballston Spa, NY); Carberg, William George (Ballston Spa, NY); Jones, Charles Michael (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

224

Natural Gas Processing Plant- Sulfur (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

This regulation establishes sulfur emission standards for natural gas processing plants. Standards are stated for both existing and new plants. There are also rules for stack height requirements,...

225

Outline of plan for advanced reheat gas turbine  

SciTech Connect

A new reheat gas turbine system is being developed in Japan. The machine consists of two axial flow compressors, three turbines, intercooler, combustor and reheater. The pilot plant is expected to go into operation in 1982, and a prototype plant will be set up in 1984. The major objective of this reheat gas turbine is application to a combined cycle power plant, with LNG burning, and the final target of combined cycle thermal efficiency is to be 55 percent (LHV).

Hori, A.; Takeya, K.

1981-10-01T23:59:59.000Z

226

Sauget Plant Flare Gas Reduction Project  

E-Print Network (OSTI)

Empirical analysis of stack gas heating value allowed the Afton Chemical Corporation Sauget Plant to reduce natural gas flow to its process flares by about 50% while maintaining the EPA-required minimum heating value of the gas streams.

Ratkowski, D. P.

2007-01-01T23:59:59.000Z

227

Life cycle assessment of a biomass gasification combined-cycle power system  

DOE Green Energy (OSTI)

The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a t echnoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

Mann, M.K.; Spath, P.L.

1997-12-01T23:59:59.000Z

228

Life cycle assessment of a biomass gasification combined-cycle power system  

DOE Green Energy (OSTI)

The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

Mann, M.K.; Spath, P.L.

1997-12-01T23:59:59.000Z

229

CoalFleet Integrated Gasification Combined Cycle Research and Development Roadmap  

Science Conference Proceedings (OSTI)

This report is an update of EPRI technical report 1013219, CoalFleet RD&D Augmentation Plan for Integrated Gasification Combined Cycle (IGCC) Power Plants that was published in January 2007. The purpose of the current study is to evaluate the state of IGCC technology, gauge technology development progress made since 2007, and discuss updated estimates on the potential for advanced technologies to improve power plant performance and economics. The report consists of the following four parts: establishme...

2011-10-31T23:59:59.000Z

230

Generation Maintenance Application Center: Combined Cycle Combustion Turbine Attemperator Maintenance Guide  

Science Conference Proceedings (OSTI)

Combustion turbine combined-cycle (CTCC) facilities use various components that are unique to these types of power-generation plants. Therefore, use of the Electric Power Research Institute (EPRI) Preventive Maintenance Basis Database (1018758) by owners of CTCC facilities is limited to only those components that are common to both types of power plants and that have been previously added to the database. Because of the projected growth in the number of CTCC facilities, the EPRI Generation ...

2012-12-31T23:59:59.000Z

231

Generation Maintenance Application Center: Combustion Turbine Combined-Cycle Steam Valves Maintenance Guide  

Science Conference Proceedings (OSTI)

BackgroundCombustion turbine combined-cycle (CTCC) facilities use various components that are unique to these types of power generation plants. Therefore, use of the Electric Power Research Institute (EPRI) Preventive Maintenance Basis Database (1018758) by owners of CTCC facilities is somewhat limited to only those components that are common to both CTCC facilities and nuclear or fossil power plants. With the projected growth in the number of CTCC facilities, the ...

2013-05-14T23:59:59.000Z

232

Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050  

E-Print Network (OSTI)

Electricity (Natural Gas Combined Cycle) Electricity (Coal,efficiency enabled by combined cycle systems at stationarybut also using combined cycle and fuel cell-based power

Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

2008-01-01T23:59:59.000Z

233

Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants  

SciTech Connect

This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant.

1992-06-01T23:59:59.000Z

234

Conservation Screening Curves to Compare Efficiency Investments to Power Plants  

E-Print Network (OSTI)

Y TECHNOLOGIES CT COMBINED BASELOAD PARAMETER GAS CYCLE OILcapacity factor. For a baseload plant, one kW that generatesTURBINE COMBINED-CYCLE (OIL) BASELOAD COAL I J J I CFHIGHUSE

Koomey, J.G.

2008-01-01T23:59:59.000Z

235

Tampa Electric Company Integrated Gasification Combined Cycle Project  

SciTech Connect

The proposed project will utilize commercially available gasification technology as provided by Texaco in their licensed oxygen-blown entrained-flow gasifier. In this arrangement, coal is ground to specification and slurried in water to the desired concentration (60--70% solids) in rod mills. This coal slurry and an oxidant (95 % pure oxygen) are then mixed in the gasifier burner where the coal partially combusts, in an oxygen deficient environment, to produce syngas with a heat content of about 250 BTU/SCF (LHV) at a temperature in excess of 2500{degrees}F. The oxygen will be produced from an Air Separation Unit (ASU). The gasifier is expected to achieve greater than 95% carbon conversion in a single pass. It is currently planned for the gasifier to be a single vessel feeding into one radiant syngas cooler where the temperature will be reduced from about 2500{degrees}F to about 1300{degrees}F. After the radiant cooler, the gas will then be split into two (2) parallel convective coolers, where the temperature will be cooled further to about 900{degrees}F. One stream will go to the 50% HGCU system and the other stream to the traditional CGCU system with 100% capacity. This flow arrangement was selected to provide assurance to Tampa Electric that the IGCC capability would not be restricted due to the demonstration of the HGCU system. A traditional amine scrubber type system with conventional sulfur recovery will be used. Sulfur from the HGCU and CGCU systems will be recovered in the form of H{sub 2}SO{sub 4} and elemental sulfur respectively.The key components of the combined cycle are the advanced combustion.turbine (CT), heat recovery steam generator (HRSG), and steam turbine (ST), and generators. The advanced CT will be a GE 7F operating with a firing temperature of about 2300{degrees}F.

Pless, D.E.; Black, C.R.

1992-11-01T23:59:59.000Z

236

Tampa Electric Company Integrated Gasification Combined Cycle Project  

SciTech Connect

The proposed project will utilize commercially available gasification technology as provided by Texaco in their licensed oxygen-blown entrained-flow gasifier. In this arrangement, coal is ground to specification and slurried in water to the desired concentration (60--70% solids) in rod mills. This coal slurry and an oxidant (95 % pure oxygen) are then mixed in the gasifier burner where the coal partially combusts, in an oxygen deficient environment, to produce syngas with a heat content of about 250 BTU/SCF (LHV) at a temperature in excess of 2500[degrees]F. The oxygen will be produced from an Air Separation Unit (ASU). The gasifier is expected to achieve greater than 95% carbon conversion in a single pass. It is currently planned for the gasifier to be a single vessel feeding into one radiant syngas cooler where the temperature will be reduced from about 2500[degrees]F to about 1300[degrees]F. After the radiant cooler, the gas will then be split into two (2) parallel convective coolers, where the temperature will be cooled further to about 900[degrees]F. One stream will go to the 50% HGCU system and the other stream to the traditional CGCU system with 100% capacity. This flow arrangement was selected to provide assurance to Tampa Electric that the IGCC capability would not be restricted due to the demonstration of the HGCU system. A traditional amine scrubber type system with conventional sulfur recovery will be used. Sulfur from the HGCU and CGCU systems will be recovered in the form of H[sub 2]SO[sub 4] and elemental sulfur respectively.The key components of the combined cycle are the advanced combustion.turbine (CT), heat recovery steam generator (HRSG), and steam turbine (ST), and generators. The advanced CT will be a GE 7F operating with a firing temperature of about 2300[degrees]F.

Pless, D.E.; Black, C.R.

1992-01-01T23:59:59.000Z

237

Gasification combined cycle: Carbon dioxide recovery, transport, and disposal  

SciTech Connect

The objective of the project is to develop engineering evaluations of technologies for the capture, use, and disposal of carbon dioxide (CO{sub 2}). This project emphasizes CO{sub 2}-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems. Complementary evaluations address CO{sub 2} transportation, CO{sub 2} use, and options for the long-term sequestering of unused CO{sub 2}. Commercially available CO{sub 2}-capture technology is providing a performance and economic baseline against which to compare innovative technologies. The intent is to provide the CO{sub 2} budget, or an {open_quotes}equivalent CO{sub 2}{close_quotes} budget, associated with each of the individual energy-cycle steps, in addition to process design capital and operating costs. The value used for the {open_quotes}equivalent CO{sub 2}{close_quotes} budget is 1 kg of CO{sub 2} per kilowatt-hour (electric). The base case is a 458-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal feed, and in-bed sulfur removal. Mining, feed preparation, and conversion result in a net electric power production of 454 MW, with a CO{sub 2} release rate of 0.835 kg/kWhe. Two additional life-cycle energy balances for emerging technologies were considered: (1) high-temperature CO{sub 2} separation with calcium- or magnesium-based sorbents, and (2) ambient-temperature facilitated-transport polymer membranes for acid-gas removal.

Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.R.; Berry, G.F.; Livengood, C.D.

1994-09-01T23:59:59.000Z

238

Gas Turbine Procurement: 1988 Workshop  

Science Conference Proceedings (OSTI)

Specifying the levels of reliability and availability needed for new gas turbines or combined-cycle plants can help utilities meet plant operating requirements. Equipment specifiers can use information presented in this workshop to help them formulate more effective specifications for new gas turbine generating equipment.

1989-04-06T23:59:59.000Z

239

Integrated Gasification Combined Cycle (IGCC) Design Considerations for CO2 Capture and Storage (CCS)  

Science Conference Proceedings (OSTI)

The objectives of this research were to assess the performance and costs of coal-fired integrated gasification combined cycle (IGCC) power plants with Greenfield and retrofitted carbon dioxide (CO2) capture. The study is part of the CoalFleet Program, a collaborative research and development program that promotes deployment of advanced coal technologies, including IGCC, ultrasupercritical pulverized, oxy-fuel combustion, and supercritical circulating fluidized bed technologies. Two types of coalPittsburg...

2010-10-01T23:59:59.000Z

240

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Steam expansion turbine Combined Cycle Natural gas expansionis commonly referred to as a combined-cycle system. In theseto Oland (2004). Combined Cycle. Conventional cogeneration

Worrell, Ernst

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Conceptual design and techno-economic assessment of integrated solar combined cycle system with DSG technology  

SciTech Connect

Direct steam generation (DSG) in parabolic trough collectors causes an increase to competitiveness of solar thermal power plants (STPP) by substitution of oil with direct steam generation that results in lower investment and operating costs. In this study the integrated solar combined cycle system with DSG technology is introduced and techno-economic assessment of this plant is reported compared with two conventional cases. Three considered cases are: an integrated solar combined cycle system with DSG technology (ISCCS-DSG), a solar electric generating system (SEGS), and an integrated solar combined cycle system with HTF (heat transfer fluid) technology (ISCCS-HTF). This study shows that levelized energy cost (LEC) for the ISCCS-DSG is lower than the two other cases due to reducing O and M costs and also due to increasing the heat to electricity net efficiency of the power plant. Among the three STPPs, SEGS has the lowest CO{sub 2} emissions, but it will operate during daytime only. (author)

Nezammahalleh, H.; Farhadi, F.; Tanhaemami, M. [Chemical and Petroleum Engineering Department, Sharif University of Technology, No 593 Azadi Ave., Tehran (Iran)

2010-09-15T23:59:59.000Z

242

Combined power plants -- Past, present, and future  

Science Conference Proceedings (OSTI)

The early history of combined power plants is described, together with the birth of the CCGT plant (the combined cycle gas turbine). Sustained CCGT development in the 1970s and 1980s, based on sound thermodynamic considerations, is outlined. Finally more recent developments and future prospects for the combined gas turbine/steam turbine combined plant are discussed.

Horlock, J.H. [Whittle Lab., Cambridge (United Kingdom)

1995-10-01T23:59:59.000Z

243

Microsoft Word - RBL-RUL_Gas-Plant  

Office of Legacy Management (LM)

Page 1 Project Rulison Monitoring Results For Separated Water at a Natural Gas Plant, Parachute, Colorado U.S. Department of Energy Office of Legacy Management Grand Junction,...

244

,"Natural Gas Plant Liquids Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Liquids Proved Reserves",49,"Annual",2011,"6301979" ,"Release Date:","81...

245

,"Natural Gas Plant Liquids Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Liquids Proved Reserves",49,"Annual",2011,"6301979" ,"Release...

246

,"Texas Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","1031...

247

,"New Mexico Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Processing",3,"Annual",2011,"6301967" ,"Release Date:","1031...

248

Pages that link to "A Flashing Binary Combined Cycle For Geothermal...  

Open Energy Info (EERE)

Twitter icon Pages that link to "A Flashing Binary Combined Cycle For Geothermal Power Generation" A Flashing Binary Combined Cycle For Geothermal Power Generation...

249

Integrated gasification combined cycle - a view to the future  

SciTech Connect

DOE is involved in research, development, and demonstration of Integrated Gasification Combined Cycle because of a strong belief that it will result in widespread commercialization that will be of great benefit to this nation. METC`s long-range vision comprises (1) product goals that require improvements to known technical advantages, and (2) market goals that are based on expectations of market pull.

Schmidt, D.K.

1994-10-01T23:59:59.000Z

250

Mercury Fate in IGCC Power Plants  

Science Conference Proceedings (OSTI)

Integrated Gasification Combined Cycle (IGCC) power plants are an alternative to conventional pulverized coal boilers. In an IGCC facility, coal or other feedstocks are converted to synthetic gas (syngas) at high temperature and pressure. The syngas can be used to produce electrical power in a combined cycle combustion turbine. One of the advantages of IGCC technology is that contaminants can be removed from the syngas prior to combustion, reducing the volume of gas that must be treated and leading to lo...

2006-12-21T23:59:59.000Z

251

Solid oxide fuel cell/gas turbine power plant cycles and performance estimates  

DOE Green Energy (OSTI)

SOFC pressurization enhances SOFC efficiency and power performance. It enables the direct integration of the SOFC and gas turbine technologies which can form the basis for very efficient combined- cycle power plants. PSOFC/GT cogeneration systems, producing steam and/or hot water in addition to electric power, can be designed to achieve high fuel effectiveness values. A wide range of steam pressures and temperatures are possible owing to system component arrangement flexibility. It is anticipated that Westinghouse will offer small PSOFC/GT power plants for sale early in the next decade. These plants will have capacities less than 10 MW net ac, and they will operate with efficiencies in the 60-65% (net ac/LHV) range.

Lundberg, W.L.

1996-12-31T23:59:59.000Z

252

Environmental Assessment for the Warren Station externally fired combined cycle demonstration project  

SciTech Connect

The proposed Penelec project is one of 5 projects for potential funding under the fifth solicitation under the Clean Coal Technology program. In Penelec, two existing boilers would be replaced at Warren Station, PA; the new unit would produce 73 MW(e) in a combined cycle mode (using both gas-fired and steam turbines). The project would fill the need for a full utility-size demonstration of externally fire combined cycle (EFCC) technology as the next step toward commercialization. This environmental assessment was prepared for compliance with NEPA; its purpose is to provide sufficient basis for determining whether to prepare an environmental impact statement or to issue a finding of no significant impact. It is divided into the sections: purpose and need for proposed action; alternatives; brief description of affected environment; environmental consequences, including discussion of commercial operation beyond the demonstration period.

NONE

1995-04-01T23:59:59.000Z

253

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

EIA), natural gas combined-cycle and combustion turbineof energy from a new combined cycle gas turbine, and moregas needed to fuel an 85 MW combined-cycle gas turbine (heat

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

254

Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study  

SciTech Connect

Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

1992-07-01T23:59:59.000Z

255

Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study  

SciTech Connect

Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

1992-07-01T23:59:59.000Z

256

Proceedings: EPRI Manufactured Gas Plants 2003 Forum  

SciTech Connect

The EPRI Manufactured Gas Plants 2003 Forum covered a range of topics related to remediation and management of former manufactured gas plant (MGP) sites, with emphasis on technological advances and current issues associated with site cleanup. In specific, the forum covered MGP coal-tar delineation, soil and groundwater remediation technologies, improvements in air monitoring, and ecological risk characterization/risk management tools.

None

2004-02-01T23:59:59.000Z

257

Feasibility Study for an Integrated Gasification Combined Cycle Facility at a Texas Site  

Science Conference Proceedings (OSTI)

Interest in integrated gasification combined-cycle technology (IGCC) has grown sharply since the passage of the Energy Policy Act in 2005. Many new projects are being planned since the AEP and Duke 600-MW IGCC plants were announced nearly two years ago. This report compares the cost and performance of IGCC with a supercritical pulverized coal plant (SCPC) based on lower-rank Powder River Basin (PRB) coal. IGCC options included 100% PRB and 50/50 PRB/petcoke cases. The addition of CO2 capture equipment al...

2006-10-23T23:59:59.000Z

258

Improving steam turbine-gas turbine plants  

SciTech Connect

Leningrad Polytechnic Institute investigated the main characteristics of combined plants according to their structure, determined by very important parameters. The following parameters were selected: utilization factor (ratio of heat added to the steam-water working medium from the heat of the exhaust gases to the entire amount of heat added to the steam-water working medium) and fuel consumption factor (ratio of heat from fuel added to the steam-water working medium to the entire consumption of heat in the combined plant). It is concluded that steam turbine-gas turbine plants working at comparatively low gas temperatures (about 800/sup 0/C) must be constructed as plants of maximum capacity, i.e., with large steam flows. Gas turbine-steam turbine plants with high-temperature gas turbines operating at a high utilization factor (approaching binary plants) ensure a qualitative rise in efficiency and have high flexibility characteristics. They are the most promising power plants. A long-term plan for development of combined plants on the basis of standard steam turbine and gas turbine equipment, the production of which is planned in the USSR and in Comecon countries, is required. This plan must be closely connected with solution of the problem of using coals for gas turbine plants.

Kirillov, I.I.; Arsen' ev, L.V.; Khodak, E.A.; Romakhova, G.A.

1979-01-01T23:59:59.000Z

259

Integrated gasification combined-cycle research development and demonstration activities  

Science Conference Proceedings (OSTI)

The United States Department of Energy (DOE) has selected six integrated gasification combined-cycle (IGCC) advanced power systems for demonstration in the Clean Coal Technology (CCT) Program. DOE`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D) program that supports the CCT program, and addresses long-term improvements in support of IGCC technology. This overview briefly describes the CCT projects and the supporting RD&D activities.

Ness, H.M.; Reuther, R.B.

1995-12-01T23:59:59.000Z

260

Model predictive control system and method for integrated gasification combined cycle power generation  

DOE Patents (OSTI)

Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

2013-04-09T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Economic comparison of cogeneration/combined-cycle alternatives for industry  

SciTech Connect

This paper examines various cogeneration alternatives available today and provides an economic comparison for a range of conditions that will enable the most significant factors to be considered in the selection of cogeneration alternatives, and to determine which alternatives are most suitable for the particular application. The cogeneration methods considered are: a combustion turbine electric generating unit followed by an unfired heat recovery steam generator, a combustion turbine electric generating unit followed by a supplementary fired heat recovery steam generator, a combustion turbine electric generating unit followed by a fully fired boiler, a combined-cycle combustion turbine electric generating unit followed by a supplementary fired high-pressure heat recovery boiler delivering steam to a noncondensing steam turbine-generator, a combined-cycle combustion turbine electric generating unit followed by a fully fired boiler delivering steam to a noncondensing steam turbine-generator, and a conventional coal-fired boiler and a noncondensing steam turbine-generator. It is concluded that over a wide range of financial and operating conditions, almost all of the cogeneration/combined-cycle alternatives are more economical than continued operation of an existing conventional boiler generating steam only.

Cahill, G.J.; Germinaro, B.D.; Martin, D.L.

1983-01-01T23:59:59.000Z

262

KRW oxygen-blown gasification combined cycle: Carbon dioxide recovery, transport, and disposal  

SciTech Connect

This project emphasizes CO{sub 2}-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems. Complementary evaluations address CO{sub 2} transportation, CO{sub 2} use, and options for the long-term sequestration of unused CO{sub 2}. The intent is to provide the CO{sub 2} budget, or an equivalent CO{sub 2} budget, associated with each of the individual energy-cycle steps, in addition to process design capital and operating costs. The base case is a 458-MW (gross generation) IGCC system that uses an oxygen-blown Kellogg-Rust-Westinghouse agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal feed, and low-pressure glycol sulfur removal followed by Claus/SCOT treatment to produce a saleable product. Mining, feed preparation, and conversion result in a net electric power production for the entire energy cycle of 411 MW, with a CO{sub 2} release rate of 0.801 kg/k Whe. For comparison, in two cases, the gasifier output was taken through water-gas shift and then to low-pressure glycol H{sub 2}S recovery, followed by either low-pressure glycol or membrane CO{sub 2} recovery and then by a combustion turbine being fed a high-hydrogen-content fuel. Two additional cases employed chilled methanol for H{sub 2}S recovery and a fuel cell as the topping cycle with no shift stages. From the IGCC plant, a 500-km pipeline took the CO{sub 2} to geological sequestering. In a comparison of air-blown and oxygen-blown CO{sub 2}-release base cases, the cost of electricity for the air-blown IGCC was 56.86 mills/kWh, and the cost of oxygen-blown IGCC was 58.29 mills/kWh.

Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.R.

1996-08-01T23:59:59.000Z

263

Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint  

DOE Green Energy (OSTI)

A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

Turchi, C. S.; Ma, Z.; Erbes, M.

2011-03-01T23:59:59.000Z

264

New type gas-injection plant readied  

SciTech Connect

A unique gas-injection plant is about to go on stream in Venezuela's Lake Maracaibo. The $10-million installation, designed for unattended operation, is a joint venture of Phillips Petroleum Co., as operator for itself, and Cia. Shell de Venezuela. The plant, housed on a 120 by 130-ft platform, will be the first in the world to use gas turbines to drive reciprocating compressors. The 130 MMscfd facility will use 2 General Electric 15,000-hp gas turbines with gear reducers to drive a pair of 4-stage Cooper- Bessemer LM-8 compressors. No previous attempt has ever been made to drive this type of unit by gas turbines. Phillips says the gas turbines were selected because of inherent flexibility reliability as prime movers, and lack of vibration--an important advantage in offshore gas plants.

Franco, A.

1967-07-17T23:59:59.000Z

265

Gas turbine-steam power plant  

SciTech Connect

The pressure vessel of the gas turbine-steam power plant is provided with a recuperator and a heat exchanger in order to reduce the temperature of the hot flue gas before separating out gas-entrained particles. The dust separator is connected to the recuperator on a secondary side so that the hot gas can be reheated for delivery to the gas turbine. By cooling the flue gas before entering the separator, use can be made of electrostatic dust filters or cloth filters.

Aguet, E.

1984-07-31T23:59:59.000Z

266

Generation Maintenance Applications Center: Combined Cycle Combustion Turbine Maintenance Guide for the Turbine Section of the Combu stion Turbine  

Science Conference Proceedings (OSTI)

Combustion turbine combined cycle (CTCC) facilities utilize various components that are unique to these types of power-generation plants and that are not typically found in a nuclear or fossil-power plant. As such, use of the EPRI PM Basis Database (PMDB) by current owners of CTCC facilities is limited to only those components that are common to both types of power plants. With the projected growth in the number of CTCC facilities, EPRI General Maintenance Applications Center (GenMAC) ...

2012-12-31T23:59:59.000Z

267

Generation Maintenance Applications Center: Combined Cycle Combustion Turbine Maintenance Guide for the Compressor Section of the C ombustion Turbine  

Science Conference Proceedings (OSTI)

Combustion turbine combined cycle (CTCC) facilities utilize various components that are unique to these types of power-generation plants and that are not typically found in a nuclear or fossil-power plant. As such, use of the EPRI PM Basis Database (PMDB) by current owners of CTCC facilities is limited to only those components that are common to both types of power plants. With the projected growth in the number of CTCC facilities, EPRI General Maintenance Applications Center (GenMAC) ...

2012-12-31T23:59:59.000Z

268

General Maintenance Applications Center: Combined Cycle Combustion Turbine Maintenance Guide for the Combustor Section of the Combus tion Turbine  

Science Conference Proceedings (OSTI)

Combustion turbine combined cycle (CTCC) facilities utilize various components that are unique to these types of power-generation plants and that are not typically found in a nuclear or fossil-power plant. As such, use of the EPRI PM Basis Database (PMDB) by current owners of CTCC facilities is limited to only those components that are common to both types of power plants. With the projected growth in the number of CTCC facilities, EPRI General Maintenance Applications Center (GenMAC) ...

2012-12-31T23:59:59.000Z

269

California Federal Offshore Natural Gas Plant Liquids, Proved...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

270

California State Offshore Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

271

California - Los Angeles Basin Onshore Natural Gas Plant Liquids...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

272

California--Coastal Region Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Coastal Region Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California--Coastal Region Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels)...

273

California - Coastal Region Onshore Natural Gas Plant Liquids...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California - Coastal Region Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

274

Louisiana - South Onshore Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Louisiana - South Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

275

Gulf of Mexico Federal Offshore - Texas Natural Gas Plant Liquids...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

276

California--San Joaquin Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

277

Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

and Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

278

California--Los Angeles Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

279

Natural Gas Processing Plants in the United States: 2010 Update...  

Gasoline and Diesel Fuel Update (EIA)

3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Figure 3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Note: Average utilization rates...

280

South Dakota Natural Gas Lease and Plant Fuel Consumption (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Lease and Plant Fuel...

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Microsoft Word - RBL-RUL_Gas-Plant  

Office of Legacy Management (LM)

Page 1 Project Rio Blanco Monitoring Results For Separated Water at a Natural Gas Plant, Parachute, Colorado U.S. Department of Energy Office of Legacy Management Grand Junction,...

282

Optimize control of natural gas plants  

SciTech Connect

Multivariable constraint control (MCS) has a very beneficial and profitable impact on the operation of natural gas plants. The applications described operate completely within a distributed control system (DCS) or programmable logic controllers (PLCs). That makes MCS accessible to almost all gas plant operators. The technology's relative ease of use, low maintenance effort and software sensor,'' make it possible to operate these control applications without increasing technical support staff. MCS improves not only profitability but also regulatory compliance of gas plants. It has been applied to fractionation units, cryogenic units, amine treaters, sulfur recovery units and utilities. The application typically pay for the cost of software and engineering in less than one month. If a DCS is installed within such a project the advanced control applications can generate a payout in less than one year. In the case here (an application on the deethanizers of a 500 MMscfd gas plant) product revenue increased by over $2 million/yr.

Treiber, S.; Walker, J.; Tremblay, M. de (Treiber Controls Inc., Toronto, Ontario (Canada)); Delgadillo, R.L.; Velasquez, R.N.; Valarde, M.J.G. (PEMEX, Villahermosa (Mexico))

1994-04-01T23:59:59.000Z

283

Analysis of potential benefits of integrated-gasifier combined cycles for a utility system  

SciTech Connect

Potential benefits of integrated gasifier combined cycle (IGCC) units were evaluated for a reference utility system by comparing long range expansion plans using IGCC units and gas turbine peakers with a plan using only state of the art steam turbine units and gas turbine peakers. Also evaluated was the importance of the benefits of individual IGCC unit characteristics, particularly unit efficiency, unit equivalent forced outage rate, and unit size. A range of IGCC units was analyzed, including cases achievable with state of the art gas turbines and cases assuming advanced gas turbine technology. All utility system expansion plans that used IGCC units showed substantial savings compared with the base expansion plan using the steam turbine units.

Choo, Y.K.

1983-10-01T23:59:59.000Z

284

Exxon Chemical's Coal-Fired Combined Cycle Power Technology  

E-Print Network (OSTI)

Exxon Chemical's Central Engineering Division has recently developed and patented CAT-PAC for Industrial Cogeneration and Utility Power Plants. It involves the marriage of a conventional direct pulverized coal-fired boiler radiant section with a convection section adapted from our furnace experience. In particular, it is an open-cycle, hot air turbine arrangement with indirect heating of the air in the boiler convection section. The turbine exhaust is then used as pre-heated combustion air for the boiler. The air coil heats the 150 psig air from the standard gas turbine axial compressor to approximately, 1750F. Today, CAT-PAC would require about 10% less fuel (or 1000 Btu/kwh) than the best coal-fired Utility Plant for the same net power output, at a comparable investment. With improved air heater metallurgy, and/or trim firing of a premium fuel (up to 2000 F permissible gas turbine temperature), CAT-PAC savings would double to 20%. Today, in an industrial coal-fired cogeneration plant, CAT-PAC can produce up to 75% more power for a given steam load, while maintaining the highest cogeneration efficiencies. With improved metallurgy, and/or trim firing, the additional power would approach 100%.

Guide, J. J.

1985-05-01T23:59:59.000Z

285

Evaluation of Innovative Fossil Fuel Power Plants with CO2 Removal  

Science Conference Proceedings (OSTI)

This interim report presents initial results of an ongoing study of the potential cost of electricity (COE) produced in both conventional and innovative fossil fueled power plants that incorporate carbon dioxide (CO2) removal for subsequent sequestration or use. The baseline cases are natural gas combined cycle (NGCC) and ultra-supercritical pulverized coal (PC) plants, with and without post combustion CO2 removal, and integrated gasification combined cycle (IGCC) plants, with and without pre-combustion ...

2000-12-07T23:59:59.000Z

286

Combustion gas turbine/steam generator plant  

SciTech Connect

A fired steam generator is described that is interconnected with a gas turbine/steam generator plant having at least one gas turbine group followed by an exhaust-gas steam generator. The exhaust-gas steam generator has a preheater and an evaporator. The inlet of the preheater is connected to a feedwater distribution line which also feeds a preheater in the fired steam generator. The outlet of the preheater is connected to the evaporator of the fired steam generator. The evaporator outlet of the exhaust-gas steam generator is connected to the input of a superheater in the fired steam generator.

Aguet, E.

1975-11-18T23:59:59.000Z

287

"NATURAL GAS PROCESSING PLANT SURVEY"  

U.S. Energy Information Administration (EIA) Indexed Site

2 3 "Operator Company:" "PART 3. CONTACTS" "Section A: Contact information during an emergency (such as a hurricane):" "Processing Plant Operations Contact:",,,...

288

Combined Cycles and Cogeneration - An Alternative for the Process Industries  

E-Print Network (OSTI)

Cogeneration may be described as an efficient method for the production of electric power sequentially with process steam or heat which optimizes the energy supplied as fuel to maximize the energy produced for consumption. The state-of-the-art combined cycle system consisting of combustion turbines, heat recovery steam generators, and steam turbine-generator units, offers a high efficiency method for the production of electrical and heat energy at relatively low installed and operating costs. This paper describes the various aspects of cogeneration in a manner which will illustrate the energy saving potential available utilizing proven technology.

Harkins, H. L.

1981-01-01T23:59:59.000Z

289

Natural Gas Processing Plants in the United States: 2010 ...  

U.S. Energy Information Administration (EIA)

Natural Gas Processing Plants and Production Basins, 2009 Source: U.S. Energy Information Administration, GasTran Natural Gas Transportation ...

290

Tennessee Natural Gas Plant Processing  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 2011 View History Natural Gas Processed (Million Cubic Feet) 6,146 6,200 1989-2011 Total Liquids Extracted (Thousand Barrels) 347 356 2010-2011 Extraction Loss...

291

Generation Maintenance Application Center: Combined-Cycle Combustion Turbine Steam Turbine Stop and Control Valve Maintenance Guide  

Science Conference Proceedings (OSTI)

BackgroundCombustion turbine combined-cycle (CTCC) facilities use various components that are unique to these types of power generation plants. Therefore, use of the Electric Power Research Institute (EPRI) Preventive Maintenance Basis Database (1018758) by owners of CTCC facilities is somewhat limited to only those components that are common to both CTCC facilities and nuclear or fossil power plants. With the projected growth in the number of CTCC facilities, ...

2013-03-27T23:59:59.000Z

292

California - Los Angeles Basin Onshore Natural Gas Plant ...  

U.S. Energy Information Administration (EIA)

California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Reserves New Field Discoveries (Million Barrels)

293

California - Los Angeles Basin Onshore Natural Gas Plant ...  

U.S. Energy Information Administration (EIA)

California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Reserves Acquisitions (Million Barrels)

294

U.S. Gas Plant Production of Natural Gas Liquids and Liquid ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Natural Gas Liquids and Liquid Refinery Gases (Thousand Barrels per Day)

295

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network (OSTI)

between a combined cycle gas turbine and a fixed-priceadvanced combined cycle gas turbine), the $2.3/MMBtu NYMEX

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

296

Selective Catalytic Reduction (SCR) Procurement Guideline for Simple- and Combined-Cycle Combustion Turbines  

Science Conference Proceedings (OSTI)

This report is a selective catalytic reduction (SCR) procurement guideline for simple- and combined-cycle combustion turbines.

2008-03-17T23:59:59.000Z

297

Oxygen-blown gasification combined cycle: Carbon dioxide recovery, transport, and disposal  

SciTech Connect

This project emphasizes CO2-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems, CO2 transportation, and options for the long-term sequestration Of CO2. The intent is to quantify the CO2 budget, or an ``equivalent CO2`` budget, associated with each of the individual energy-cycle steps, in addition to process design capital and operating costs. The base case is a 458-MW (gross generation) IGCC system that uses an oxygen-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, bituminous coal feed, and low-pressure glycol sulfur removal, followed by Claus/SCOT treatment, to produce a saleable product. Mining, feed preparation, and conversion result in a net electric power production for the entire energy cycle of 411 MW, with a CO2 release rate of 0.801 kg/kV-Whe. For comparison, in two cases, the gasifier output was taken through water-gas shift and then to low-pressure glycol H2S recovery, followed by either low-pressure glycol or membrane CO2 recovery and then by a combustion turbine being fed a high-hydrogen-content fuel. Two additional cases employed chilled methanol for H2S recovery and a fuel cell as the topping cycle, with no shift stages. From the IGCC plant, a 500-km pipeline takes the CO2 to geological sequestering. For the optimal CO2 recovery case, the net electric power production was reduced by 37.6 MW from the base case, with a CO2 release rate of 0.277 kg/kWhe (when makeup power was considered). In a comparison of air-blown and oxygen-blown CO2-release base cases, the cost of electricity for the air-blown IGCC was 56.86 mills/kWh, while the cost for oxygen-blown IGCC was 58.29 mills/kWh. For the optimal cases employing glycol CO2 recovery, there was no clear advantage; the cost for air-blown IGCC was 95.48 mills/kWh, and the cost for the oxygen-blown IGCC was slightly lower, at 94.55 mills/kWh.

Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.R.

1996-12-31T23:59:59.000Z

298

Aero-engine derivative gas turbines for power generation: Thermodynamic and economic perspectives  

Science Conference Proceedings (OSTI)

Aero-engine technology has played a major part in the development of both the industrial gas turbine and, more recently, the combined cycle gas turbine (CCGT) plant. A distinction may be drawn between the direct use of developed aero-engine hardware in power generation (and in marine applications), and the more indirect influence of aero-engine technology, particularly in design of heavy-duty gas turbines. Both the direct use of aero-engine hardware, in gas turbines for power generation, and the indirect influence of aero-engine technology, in the design of more conventional heavy-duty plants (including combined cycle gas turbines, CCGTs), are reviewed.

Horlock, J.H. [Whittle Lab., Cambridge (United Kingdom)

1997-01-01T23:59:59.000Z

299

Conservation screening curves to compare efficiency investments to power plants: Applications to commercial sector conservation programs  

E-Print Network (OSTI)

7/kWh Gas Turbine 5/kWh Combined-Cycle Oil Baseload Coal7/kWh Gas Turbine 5/kWh Combined-Cycle Oi Baseload Coalof Supply Technologies CT Combined- Cycle Oil Baseload Coal

Koomey, Jonathan; Rosenfeld, Arthur H.; Gadgil, Ashok J.

2008-01-01T23:59:59.000Z

300

Combustion Turbine Experience and Intelligence Reports: 2004 Combustion Turbine/Combined Cycle Technology Developments, Reliability Issues, and Related Markets Conditions  

Science Conference Proceedings (OSTI)

Deregulating power generation markets worldwide present both business opportunities and challenges for combustion turbine plant owners, operators, and project developers. EPRI's comprehensive Combustion Turbine/Combined Cycle (CT/CC) program provides a range of tools, methodologies, and approaches to help owner/operators and project developers face these challenges and prosper in this evolving marketplace. Access to this resource base in a timely, concise manner is key to delivering benefits in the new e...

2005-03-23T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Combustion Turbine Experience and Intelligence Report: 2003: Combustion Turbine/Combined Cycle Technology Developments, Reliability Issues, and Related Markets Conditions  

Science Conference Proceedings (OSTI)

The deregulation of power generation markets worldwide presents both business opportunities and challenges for combustion turbine plant owners, operators, and project developers. EPRI's comprehensive Combustion Turbine/Combined Cycle (CT/CC) program provides a range of tools, methodologies, and approaches to help owner/operators and project developers face these challenges and prosper in this evolving marketplace. Access to this resource base in a timely, concise manner is key to delivering benefits in t...

2004-01-28T23:59:59.000Z

302

Gasification combined cycle: Carbon dioxide recovery, transport, and disposal  

SciTech Connect

Initiatives to limit carbon dioxide (CO[sub 2]) emissions have drawn considerable interest to integrated gasification combined-cycle (IGCC) power generation. This process can reduce C0[sub 2] production because of its higher efficiency, and it is amenable to C0[sub 2] capture, because C0[sub 2] can be removed before combustion and the associated dilution with atmospheric nitrogen. This paper presents a process-design baseline that encompasses the IGCC system, C0[sub 2] transport by pipeline, and land-based sequestering of C0[sub 2] in geological reservoirs.The intent of this study is to provide the C0[sub 2] budget, or an equivalent C0[sub 2]'' budget, associated with each of the individual energy-cycle steps. Design capital and operating costs for the process are included in the full study but are not reported in the present paper. The value used for the equivalent C0[sub 2]'' budget will be 1 kg C0[sub 2]/kWh[sub e].

Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.; Livengood, C.D. (Argonne National Lab., IL (United States)); Johnson, R.A. (USDOE Morgantown Energy Technology Center, WV (United States))

1993-01-01T23:59:59.000Z

303

Gasification combined cycle: Carbon dioxide recovery, transport, and disposal  

SciTech Connect

Initiatives to limit carbon dioxide (CO[sub 2]) emissions have drawn considerable interest to integrated gasification combined-cycle (IGCC) power generation. This process can reduce C0[sub 2] production because of its higher efficiency, and it is amenable to C0[sub 2] capture, because C0[sub 2] can be removed before combustion and the associated dilution with atmospheric nitrogen. This paper presents a process-design baseline that encompasses the IGCC system, C0[sub 2] transport by pipeline, and land-based sequestering of C0[sub 2] in geological reservoirs.The intent of this study is to provide the C0[sub 2] budget, or an equivalent C0[sub 2]'' budget, associated with each of the individual energy-cycle steps. Design capital and operating costs for the process are included in the full study but are not reported in the present paper. The value used for the equivalent C0[sub 2]'' budget will be 1 kg C0[sub 2]/kWh[sub e].

Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.; Livengood, C.D. (Argonne National Lab., IL (United States)); Johnson, R.A. (USDOE Morgantown Energy Technology Center, WV (United States))

1993-01-01T23:59:59.000Z

304

Integrated gasification combined cycle overview of FETC--S program  

Science Conference Proceedings (OSTI)

Changing market conditions, brought about by utility deregulation and increased environmental regulations, have encouraged the Department of Energy/Federal Energy Technology Center (DOE/FETC) to restructure its Integrated Gasification Combined Cycle (IGCC) program. The program emphasis, which had focused on baseload electricity production from coal, is now expanded to more broadly address the production of a suite of energy and chemical products. The near-term market barrier for baseload power applications for conventional IGCC systems combines with increasing opportunities to process a range of low- and negative-value opportunity feedstocks. The new program is developing a broader range of technology options that will increase the versatility and the technology base for commercialization of gasification-based technologies. This new strategy supports gasification in niche markets where, due to its ability to coproduce a wide variety of commodity and premium products to meet market requirements, it is an attractive alternative. By obtaining operating experience in industrial coproduction applications today, gasification system modules can be refined and improved leading to commercial guarantees and acceptance of gasification technology as a cost-effective technology for baseload power generation and coproduction as these markets begin to open.

Stiegel, G.J.; Maxwell, R.C.

1999-07-01T23:59:59.000Z

305

Heat Exchanger Design for Solar Gas-Turbine Power Plant.  

E-Print Network (OSTI)

?? The aim of this project is to select appropriate heat exchangers out of available gas-gas heat exchangers for used in a proposed power plant. (more)

Yakah, Noah

2012-01-01T23:59:59.000Z

306

Alabama (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Alabama (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

307

Louisiana (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Louisiana (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

308

Indiana Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Indiana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

309

California (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

310

Technology Data for Energy Plants June 2010  

E-Print Network (OSTI)

.................................................................................... 37 04 Gas Turbine Single Cycle............................................................................................................. 39 05 Gas Turbine Combined Cycle ........................................................................................ 28 02 Re-powering of Steam Turbines

311

Resource Limits and Conversion Efficiency with Implications for Climate Change  

E-Print Network (OSTI)

using Integrated Gasification Combined Cycle (IGCC) plants.Natural gas-fired combined cycle plants can be converted toand more efficient combined-cycle plants. Combined cycle

Croft, Gregory Donald

2009-01-01T23:59:59.000Z

312

The future of U.S. natural gas production, use, and trade Sergey Paltsev a,b,n  

E-Print Network (OSTI)

capture and storage (CCS), and natural gas combined cycle (NGCC) plants are modeled as perfect subThe future of U.S. natural gas production, use, and trade Sergey Paltsev a,b,n , Henry D. Jacoby 19 May 2011 Available online 16 June 2011 Keywords: Natural gas Climate Policy International gas

313

System study on partial gasification combined cycle with CO{sub 2} recovery - article no. 051801  

Science Conference Proceedings (OSTI)

S partial gasification combined cycle with CO{sub 2} recovery is proposed in this paper. Partial gasification adopts cascade conversion of the composition of coal. Active composition of coal is simply gasified, while inactive composition, that is char, is burnt in a boiler. Oxy-fuel combustion of syngas produces only CO{sub 2} and H{sub 2}O, so the CO{sub 2} can be separated through cooling the working fluid. This decreases the amount of energy consumption to separate CO{sub 2} compared with conventional methods. The novel system integrates the above two key technologies by injecting steam from a steam turbine into the combustion chamber of a gas turbine to combine the Rankine cycle with the Brayton cycle. The thermal efficiency of this system will be higher based on the cascade utilization of energy level. Compared with the conventional integrated gasification combined cycle (IGCC), the compressor of the gas turbine, heat recovery steam generator (HRSG) and gasifier are substituted for a pump, reheater, and partial gasifier, so the system is simplified. Furthermore, the novel system is investigated by means of energy-utilization diagram methodology and provides a simple analysis of their economic and environmental performance. As a result, the thermal efficiency of this system may be expected to be 45%, with CO{sub 2} recovery of 41.2%, which is 1.5-3.5% higher than that of an IGCC system. At the same time, the total investment cost of the new system is about 16% lower than that of an IGCC. The comparison between the partial gasification technology and the IGCC technology is based on the two representative cases to identify the specific feature of the proposed system.

Xu, Y.J.; Jin, H.G.; Lin, R.M.; Han, W. [Chinese Academy of Science, Beijing (China)

2008-09-15T23:59:59.000Z

314

Louisiana - North Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Louisiana - North Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

315

Texas - RRC District 10 Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 10 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

316

Texas - RRC District 6 Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 6 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

317

New Mexico - East Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) New Mexico - East Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

318

New Mexico - West Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) New Mexico - West Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

319

Texas - RRC District 2 Onshore Natural Gas Plant Liquids, Proved...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 2 Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

320

Texas - RRC District 8 Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 8 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Texas - RRC District 9 Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 9 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

322

Louisiana State Offshore Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Louisiana State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

323

Texas State Offshore Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

324

Texas - RRC District 1 Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 1 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

325

Texas - RRC District 5 Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 5 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

326

Wabash River Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program. Environmental Assessment  

Science Conference Proceedings (OSTI)

The proposed project would result in a combined-cycle power plant with lower emissions and higher efficiency than most existing coal-fired power plants of comparable size. The net plant heat rate (energy content of the fuel input per useable electrical generation output; i.e., Btu/kilowatt hour) for the new repowered unit would be a 21% improvement over the existing unit, while reducing SO{sub 2} emissions by greater than 90% and limiting NO{sub x} emissions by greater than 85% over that produced by conventional coal-fired boilers. The technology, which relies on gasified coal, is capable of producing as much as 25% more electricity from a given amount of coal than today`s conventional coal-burning methods. Besides having the positive environmental benefit of producing less pollutants per unit of power generated, the higher overall efficiency of the proposed CGCC project encourages greater utilization to meet base load requirements in order to realize the associated economic benefits. This greater utilization (i.e., increased capacity factor) of a cleaner operating plant has global environmental benefits in that it is likely that such power would replace power currently being produced by less efficient plants emitting a greater volume of pollutants per unit of power generated.

Not Available

1993-05-01T23:59:59.000Z

327

Signature Metabolites at Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

This report presents results of research to demonstrate the biodegradation component of natural attenuation at former manufactured gas plant (MGP) sites. Researchers developed a target compound list of signature metabolites, biochemical intermediates of mono- and polycyclic aromatic hydrocarbon (MAH and PAH) biodegradation. They identified and tested appropriate methods of chemical analysis for these metabolites in MGP groundwater and sediments. Emphasis was placed on identifying natural microbiological ...

2008-10-14T23:59:59.000Z

328

Generation Maintenance Applications Center: Combustion Turbine Combined-Cycle Duct Burner Maintenance Guide  

Science Conference Proceedings (OSTI)

This report provides component-level information regarding the maintenance of major components associated with the compressor section of a combustion turbine typically installed at a combined-cycle facility. It combines recommendations offered by major equipment manufacturers with lessons learned from owner/operators of combined-cycle facilities. BackgroundCombustion turbine combined-cycle (CTCC) facilities utilize various components that are unique to ...

2013-11-15T23:59:59.000Z

329

Modeling the Performance, Emissions, and Costs of Texaco Gasifier-Based Integrated Gasification Combined Cycle Systems.  

E-Print Network (OSTI)

??Integrated Gasification Combined Cycle (IGCC) systems are an advanced power generation concept with the flexibility to use coal, heavy oils, petroleum coke, biomass, and waste (more)

Akunuri, Naveen

1999-01-01T23:59:59.000Z

330

Evaluation of 450-MWe BGL GCC Power Plants Fueled With Pittsburgh No. 8 Coal  

Science Conference Proceedings (OSTI)

Detailed design and cost estimates have been developed for conventionally and highly integrated 450-MWe, British Gas/Lurgi (BGL) gasification-combined-cycle (GCC) power plants employing two General Electric (GE) MS-7001F gas turbines and fueled with Pittsburgh No. 8 coal. The plants have attractive heat rates and capital costs that are competitive with conventional coal-based power technology.

1992-12-01T23:59:59.000Z

331

Reduction of NO/sub x/ through staged combustion in combined cycle supplemental boilers. Volume I. Systems optimization analyses. Final report  

SciTech Connect

An investigation directed to control of emissions from supplemental-fired combined cycles with the use of staged combustion in the steam generating portion of the system is discussed. A combined cycle, as considered in this report, is the assembly of any number of gas turbines, steam generators, and steam turbines for electric power generation in which the exhaust of the gas turbines is passed through the steam generators. A supplementary-fired combined cycle employs combustion of fuel in the gas turbine exhaust to increase temperatures in the steam system. Staged combustion is achieved by the separation of the exhaust from the gas turbines into two streams prior to entering the steam generator with provisions for primary combustion of fuel in one stream with a deficiency of air. Combustion is completed in a secondary stage by mixing the unfired stream into the products of the fired stream. The use of staged combustion provides conditions favorable for the occurrence of chemical reactions that result in a reduction of mass flow of nitric oxide (NO) present in the gas turbine exhaust. Volume I is concerned with the engineering analysis of combined cycle performance and NO/sub x/ reduction potential. (GRA)

1975-02-01T23:59:59.000Z

332

Gas consumption shrinks in commercial laundry plant  

SciTech Connect

The submerged-exhaust water-heating system with heat-recovery economizer operates above 90% efficiency compared to the 60% efficiency of the plant's old system. The system will require 3,936 therms/week compared to 5,887 with the old generator. Bubbles from the submerged downcomer tube rise through the surrounding bath, transferring heat through the gas-liquid interface as they rise to the surface. Heat transfer to the liquid bath is immediate and efficiency is high.

1981-09-01T23:59:59.000Z

333

Technology Data for Electricity and Heat Generating Plants  

E-Print Network (OSTI)

.........................................................................................................31 06 Gas Turbine Single Cycle ............................................................................................................35 07 Gas Turbine Combined Cycle................................................................................................26 04 Re-powering of Steam Turbines

334

Multivariable model predictive control for a gas turbine power plant  

Science Conference Proceedings (OSTI)

In this brief, constrained multi variable model predictive control (MPC) strategy is investigated for a GE9001E gas turbine power plant. So the rotor speed and exhaust gas temperature are controlled manipulating the fuel command and compressor inlet ... Keywords: ARX, gas turbine, identification, modeling, multivariable control, power plant, predictive control

Hadi Ghorbani; Ali Ghaffari; Mehdi Rahnama

2008-05-01T23:59:59.000Z

335

ACTION TEAM PROGRESS REPORT Integrated Gasification Combined Cycle (IGCC) Initiative  

E-Print Network (OSTI)

the Subcommittee on Regulatory Innovation and Economic Incentives of the Clean Air Act Advisory Committee: Reliable, online electricity generation from multiple coal types; synthetic gas clean-up; and, capture and deployment of advanced coal technologies. FY'07 Objectives: Continue collaboration with DOE's Fossil Energy

336

Utility-scale combined-cycle power systems with Kalina bottoming cycles  

SciTech Connect

A new power-generation technology, often referred to as the Kalina cycle, is being developed as a direct replacement for the Rankine steam cycle. It can be applied to any thermal heat source, low or high temperature. Among several Kalina cycle variations, there is one that is particularly well suited as a bottoming cycle for utility combined-cycle applications. It is the subject of this paper. Using an ammonia/water mixture as the working fluid and a condensing system based on absorption-refrigeration principles, the Kalina bottoming cycle outperforms a triple-pressure steam cycle by 16%. Additionally, this version of the Kalina cycle is characterized by an intercooling feature between turbine stages, diametrically opposite to normal reheating practice in steam plants. Energy and mass balances are presented for a 200-MW(electric) Kalina bottoming cycle. Kalina cycle performance is compared to a triple-pressure steam plant. Energy and mass balances are presented as well for a 200-MW(electric) Kalina direct-fired cycle designed for utility purposes.

Kalina, A.I.

1987-01-01T23:59:59.000Z

337

Power plants with topping gas turbines and coal gasification planning of new plants and upgrading of existing plants  

Science Conference Proceedings (OSTI)

This paper reports on existing and new power plants improved environmentally and economically by integrating gas turbines in the plant process. The rate of additional firing has an influence on the overall plant efficiency. The influence of the additional firing of natural gas-fired power plants is compared to that of power plants with integrated coal gasification. The differences are explained. The result of the examination lead to recommendations for the design of new plants and for upgrading of existing plants. The advantages of topping gas turbines are shown by examples of new power plants and upgraded plants.

Schoedel, J.; Mertens, K. (ABB Kraftwerke AG, Mannheim (DE))

1990-01-01T23:59:59.000Z

338

Program on Technology Innovation: Evaluation of Amine-Based, Post-Combustion CO2 Capture Plants  

Science Conference Proceedings (OSTI)

In response to concerns over global warming, technologies need to be developed that capture and store the CO2 released by fossil- fueled power plants. A study carried out in 2000 by Parsons and co-funded by the US-DOE and EPRI investigated the thermal and economic performance of supercritical pulverized coal (PC) combustion, E-Gas integrated gasification combined cycle (IGCC), and natural gas combined cycle power plants with and without CO2 removal. The general conclusion was that for power plants with C...

2005-11-21T23:59:59.000Z

339

Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a Sandstone Formation  

E-Print Network (OSTI)

Integrated Gasification Combined Cycle Technology: IGCC.advanced integrated gas combined cycle (IGCC) plants, in

Xu, Tianfu; Apps, John A.; Pruess, Karsten; Yamamoto, Hajime

2008-01-01T23:59:59.000Z

340

CO2 Capture Membrane Process for Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Membrane Process for Power Plant Flue Gas Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Research and Development (R&D)...

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Alaska (with Total Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

342

Louisiana--North Natural Gas Plant Liquids, Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

343

Louisiana--South Onshore Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Louisiana--South Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

344

Lower 48 Federal Offshore Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Lower 48 Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

345

Federal Offshore--California Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

346

New Mexico--West Natural Gas Plant Liquids, Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) New Mexico--West Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

347

Federal Offshore--Texas Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Federal Offshore--Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

348

New Mexico--East Natural Gas Plant Liquids, Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) New Mexico--East Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

349

Lower 48 States Natural Gas Plant Liquids, Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Lower 48 States Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

350

Texas (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

351

Miscellaneous States Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

352

Texas--State Offshore Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

353

Louisiana--State Offshore Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

354

California--State Offshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) California--State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

355

California Natural Gas Lease and Plant Fuel Consumption (Million...  

Annual Energy Outlook 2012 (EIA)

and Plant Fuel Consumption (Million Cubic Feet) California Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

356

Ohio Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Fuel Consumption (Million Cubic Feet) Ohio Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

357

Idaho Natural Gas Lease and Plant Fuel Consumption (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Lease and Plant Fuel Consumption (Million Cubic Feet) Idaho Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

358

,"Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",20...

359

,"Utah Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011 ,"Release...

360

EIA-816 MONTHLY NATURAL GAS PLANT LIQUIDS REPORT INSTRUCTIONS ...  

U.S. Energy Information Administration (EIA)

EIA-816, Monthly Natural Gas Plant Liquids Report Page 3 Inputs During Month Report only inputs of normal butane being converted by an isomerization process into ...

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

/Gas Plant Operators Monthly Petroleum Product Sales Report. As  

U.S. Energy Information Administration (EIA)

sales to refiners and gas plant operators represented on the list. When using this list, ... (CNG Transmission) Dominion Transmission . DCP Midstream Partners.

362

EIA-782A EXCLUSIONARY LIST INSTRUCTIONS /Gas Plant Operators ...  

U.S. Energy Information Administration (EIA)

sales to refiners and gas plant operators represented on the list. When using this list, ... CNG Transmission (Dominion Field Serv.) Coastal Markets Limited .

363

,"North Dakota Natural Gas Plant Liquids Production, Gaseous...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

364

,"Tennessee Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet)",1,"Annual",2012...

365

Illinois Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Illinois Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

366

Table 18. Natural gas plant liquids proved reserves and production...  

Gasoline and Diesel Fuel Update (EIA)

: Natural gas plant liquids proved reserves and production, 2009 - 2011 (excludes Lease Condensate) million barrels Reserves Production State and Subdivision 2009 2010 2011 2009...

367

Miscellaneous States Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

368

Kentucky Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Plant Liquids Proved Reserves...

369

,"U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent (Bcf)",1,"Monthly","92013" ,"Release...

370

Michigan Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Plant Liquids Proved Reserves...

371

Oklahoma Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

372

Montana Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Plant Liquids Proved Reserves...

373

Tennessee Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Tennessee Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

374

Florida Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Florida Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

375

Ohio Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Ohio Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

376

Colorado Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Plant Liquids Proved Reserves...

377

Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

378

Mississippi (with State Offshore) Natural Gas Plant Liquids,...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) Mississippi (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

379

Montana Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Montana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

380

Nebraska Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Annual Energy Outlook 2012 (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Nebraska Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Kansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Gasoline and Diesel Fuel Update (EIA)

W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Plant Liquids Proved Reserves...

382

Oklahoma Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Plant Liquids Proved Reserves...

383

,"New Mexico Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

384

Utah Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Utah Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

385

Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Proved Reserves (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

386

Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

387

,"Arkansas Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

388

West Virginia Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) West Virginia Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

389

,"Colorado Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

390

Kansas Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Kansas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

391

,"Kentucky Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

392

,"West Virginia Natural Gas Plant Liquids Production, Gaseous...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

393

,"U.S. Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","10312013"...

394

,"Lower 48 Federal Offshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

395

Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

396

,"Louisiana--State Offshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

397

,"Alabama (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

398

Louisiana--State Offshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

399

,"Mississippi (with State Offshore) Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

400

,"Louisiana (with State Offshore) Natural Gas Plant Liquids,...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

,"Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million...

402

,"Alaska (with Total Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

403

,"Federal Offshore--California Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--California Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

404

Federal Offshore--California Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

405

California (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

406

,"California--San Joaquin Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

407

,"California--State Offshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Natural Gas Plant Liquids, Proved Reserves (Million...

408

,"California--Coastal Region Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--Coastal Region Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

409

,"California--Los Angeles Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

410

,"California (with State Offshore) Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million...

411

,"Colorado Natural Gas Plant Liquids, Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

412

Optical Gas Sensors for Advanced Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

Presentation Title, Optical Gas Sensors for Advanced Coal-Fired Power Plants. Author(s), Paul Ohodnicki, Congjun Wang, Douglas Kauffman, Kristi Kauffman,...

413

,"Michigan Natural Gas Plant Liquids, Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

414

,"New Mexico Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","1031...

415

,"New Mexico Natural Gas Lease and Plant Fuel Consumption (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Lease and Plant Fuel Consumption (MMcf)",1,"Annual",1998 ,"Release...

416

Natural gas processing plant data now available - Today in ...  

U.S. Energy Information Administration (EIA)

The EIA-757 survey has a baseline portion, Schedule A, to track the country's population of natural gas plants, and an emergency activation portion, ...

417

Texas (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

418

,"Texas (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million...

419

,"Federal Offshore--Texas Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

420

,"Texas--State Offshore Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Natural Gas Plant Liquids, Proved Reserves (Million...

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Thermodynamic Analysis of Combined Cycle District Heating System  

E-Print Network (OSTI)

This paper presents a thermodynamic analysis of the University of Massachusetts' Combined Heat and Power (CHP) District Heating System. Energy and exergy analyses are performed based on the first and second laws of thermodynamics for power generation systems that include a 10 MW Solar combustion gas turbine, a 4-MW steam turbine, a 100,000 pph heat recovery steam generator (HRSG), three 125,000 pph package boilers, and auxiliary equipment. In the analysis, actual system data is used to assess the district heating system performance, energy and exergy efficiencies, exergetic improvement potential and exergy losses. Energy and exergy calculations are conducted for the whole year on an hourly basis. System efficiencies are calculated for a wide range of component operating loads. The results show how thermodynamic analysis can be used to identify the magnitudes and location of energy losses in order to improve the existing system, processes or components.

Suresh, S.; Gopalakrishnan, H.; Kosanovic, D.

2011-01-01T23:59:59.000Z

422

Performance and operational economics estimates for a coal gasification combined-cycle cogeneration powerplant  

SciTech Connect

A performance and operational economics analysis is presented for an integrated-gasifier, combined-cycle (IGCC) system to meet the steam and baseload electrical requirements. The effect of time variations in steam and electrial requirements is included. The amount and timing of electricity purchases from sales to the electric utility are determined. The resulting expenses for purchased electricity and revenues from electricity sales are estimated by using an assumed utility rate structure model. Cogeneration results for a range of potential IGCC cogeneration system sizes are compared with the fuel consumption and costs of natural gas and electricity to meet requirements without cogeneration. The results indicate that an IGCC cogeneration system could save about 10 percent of the total fuel energy presently required to supply steam and electrical requirements without cogeneration. Also for the assumed future fuel and electricity prices, an annual operating cost savings of 21 percent to 26 percent could be achieved with such a cogeneration system. An analysis of the effects of electricity price, fuel price, and system availability indicates that the IGCC cogeneration system has a good potential for economical operation over a wide range in these assumptions.

Nainiger, J.J.; Burns, R.K.; Easley, A.J.

1982-03-01T23:59:59.000Z

423

Final Report Environmental Footprints and Costs of Coal-Based Integrated Gasification Combined Cycle and  

E-Print Network (OSTI)

Currently, over 50 percent of electricity in the U.S. is generated from coal. Given that coal reserves in the U.S. are estimated to meet our energy needs over the next 250 years, coal is expected to continue to play a major role in the generation of electricity in this country. With dwindling supplies and high prices of natural gas and oil, a large proportion of the new power generation facilities built in the U.S. can be expected to use coal as the main fuel. The environmental impact of these facilities can only be minimized by innovations in technology that allow for efficient burning of coal, along with an increased capture of the air pollutants that are an inherent part of coal combustion. EPA considers integrated gasification combined cycle (IGCC) as one of the most promising technologies in reducing environmental consequences of generating electricity from coal. EPA has undertaken several initiatives to facilitate and incentivize development and deployment of this technology. This report is the result of one of these initiatives and it represents the combined efforts of a joint EPA/DOE team formed to advance the IGCC technology. The various offices within DOE that participated in the development/review of this report were the Office of Fossil Energy, including the Clean Coal Office and the National Energy Technology Laboratory.

Pulverized Coal; Technologies Foreword

2006-01-01T23:59:59.000Z

424

Natural Gas Processing Plants in the United States: 2010 Update  

Gasoline and Diesel Fuel Update (EIA)

This special report presents an analysis of natural gas processing plants This special report presents an analysis of natural gas processing plants in the United States as of 2009 and highlights characteristics of this segment of the industry. The purpose of the paper is to examine the role of natural gas processing plants in the natural gas supply chain and to provide an overview and summary of processing plant characteristics in the United States, such as locations, capacities, and operations. Key Findings There were 493 operational natural gas processing plants in the United States with a combined operating capacity of 77 billion cubic feet (Bcf) per day. Overall, operating capacity increased about 12 percent between 2004 and 2009, not including the processing capacity in Alaska1. At the same time, the number of all processing plants in the lower 48 States decreased

425

Advanced CO2 Capture Technology for Low Rank Coal Integrated Gasification Combined Cycle (IGCC) Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Capture Technology for Low Rank Coal Integrated Gasification Combined Cycle (IGCC) Systems Background Gasification of coal or other solid feedstocks (wood waste, petroleum coke, etc.) is a clean way to produce electricity and produce or co-produce a variety of commercial products. The major challenge is cost reduction; current integrated gasification combined cycle (IGCC) technology is estimated to produce power at a cost higher than that of pulverized coal combustion. However, the Gasification

426

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project, Clean Coal Technology Program  

Science Conference Proceedings (OSTI)

The DOE entered into a cooperative agreement with Combustion Engineering, Inc. (C-E) under which DOE proposes to provide cost-shared funding to design, construct, and operate an Integrated Coal Gasification Combined Cycle (IGCC) project to repower an existing steam turbine generator set at the Springfield (Illinois) City Water, Light and Power (CWL P) Lakeside Generating Station, while capturing 90% of the coal's sulfur and producing elemental sulfur as a salable by-product. The proposed demonstration would help determine the technical and economic feasibility of the proposed IGCC technology on a scale that would allow the utility industry to assess its applicability for repowering other coal-burning power plants. This Environmental Assessment (EA) has been prepared by DOE in compliance with the requirements of National Environmental Policy Act (NEPA). The sources of information for this EA include the following: C-E's technical proposal for the project submitted to DOE in response to the Innovative Clean Coal Technology (ICCT) Program Opportunity Notice (PON); discussions with C-E and CWL P staff; the volume of environmental information for the project and its supplements provided by C-E; and a site visit to the proposed project site.

Not Available

1992-03-01T23:59:59.000Z

427

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project, Clean Coal Technology Program. Environmental Assessment  

Science Conference Proceedings (OSTI)

The DOE entered into a cooperative agreement with Combustion Engineering, Inc. (C-E) under which DOE proposes to provide cost-shared funding to design, construct, and operate an Integrated Coal Gasification Combined Cycle (IGCC) project to repower an existing steam turbine generator set at the Springfield (Illinois) City Water, Light and Power (CWL&P) Lakeside Generating Station, while capturing 90% of the coal`s sulfur and producing elemental sulfur as a salable by-product. The proposed demonstration would help determine the technical and economic feasibility of the proposed IGCC technology on a scale that would allow the utility industry to assess its applicability for repowering other coal-burning power plants. This Environmental Assessment (EA) has been prepared by DOE in compliance with the requirements of National Environmental Policy Act (NEPA). The sources of information for this EA include the following: C-E`s technical proposal for the project submitted to DOE in response to the Innovative Clean Coal Technology (ICCT) Program Opportunity Notice (PON); discussions with C-E and CWL&P staff; the volume of environmental information for the project and its supplements provided by C-E; and a site visit to the proposed project site.

Not Available

1992-03-01T23:59:59.000Z

428

Technical Support for the Development of the U.S. Department of Energy's Integrated Gasification Combined Cycle Dynamic Training Sim ulator  

Science Conference Proceedings (OSTI)

Integrated-gasification-combined-cycle (IGCC) is one technology option from the next generation of coal-fired power plants with high efficiency and near-zero emissions that has been evaluated by major utilities and developers for baseload capacity additions. The increased attention to IGCC power generation has created a growing demand for experience with the analysis, operation, and control of commercial-scale IGCC plants. To meet this need, DOEs National Energy Technology Laboratory (NETL) has led a pr...

2011-06-28T23:59:59.000Z

429

Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation  

E-Print Network (OSTI)

Outline of 145 MW Combined Cycle Power Plant for KawasakiGas Firing Gas Turbine Combined Cycle Plant, Journal ofgasifier/gas turbine combined cycle technology and its

Bailey, Owen; Worrell, Ernst

2005-01-01T23:59:59.000Z

430

Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy  

E-Print Network (OSTI)

from new natural gas combined-cycle plants. High RPS (come from new natural gas combined-cycle plants. Hydrogenand natural gas combined cycle capacity additions, we

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

431

HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM  

SciTech Connect

This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

J.L. Justice

1999-03-25T23:59:59.000Z

432

The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS  

E-Print Network (OSTI)

Integrated Gasification Combined Cycle (IGCC) Power Plant.Analysis: Natural Gas Combined Cycle (NGCC) Power Plant.assessment of natural gas combined cycle power plant with

Sathre, Roger

2011-01-01T23:59:59.000Z

433

A Framework for Environmental Assessment of CO2 Capture and Storage Systems  

E-Print Network (OSTI)

Integrated Gasification Combined Cycle (IGCC) Power Plant.Analysis: Natural Gas Combined Cycle (NGCC) Power Plant.assessment of natural gas combined cycle power plant with

Sathre, Roger

2013-01-01T23:59:59.000Z

434

Qualifications of Candle Filters for Combined Cycle Combustion Applications  

Science Conference Proceedings (OSTI)

The direct firing of coal produces particulate matter that has to be removed for environmental and process reasons. In order to increase the current advanced coal combustion processes, under the U.S. Department of Energy's auspices, Siemens Westinghouse Power Corporation (SWPC) has developed ceramic candle filters that can operate at high temperatures. The Coal Research Center of Southern Illinois University (SIUC), in collaboration with SWPC, developed a program for long-term filter testing at the SIUC Steam Plant followed by experiments using a single-filter reactor unit. The objectives of this program funded by the U.S. Department of Energy were to identify and demonstrate the stability of porous candle filter elements for use in high temperature atmospheric fluidized-bed combustion (AFBC) process applications. These verifications were accomplished through extended time slipstream testing of a candle filter array under AFBC conditions using SIUC's existing AFBC boiler. Temperature, mass flow rate, and differential pressure across the filter array were monitored for a duration of 45 days. After test exposure at SIUC, the filter elements were characterized using Scanning Electron Microscopy and BET surface area analyses. In addition, a single-filter reactor was built and utilized to study long term filter operation, the permeability exhibited by a filter element before and after the slipstream test, and the thermal shock resilience of a used filter by observing differential pressure changes upon rapid heating and cooling of the filter. The data acquired during the slipstream test and the post-test evaluations demonstrated the suitability of filter elements in advanced power generation applications.

Tomasz Wiltowski

2008-08-31T23:59:59.000Z

435

Optimization system for operation of gas cogeneration power plant  

Science Conference Proceedings (OSTI)

The paper presents a distributed control system for the realization of cogenerative supply of electricity and heat and, in given case, for their combination with waste heat recovery, particularly in combined (gas-steam) cycle industrial power plants. ... Keywords: cogenerative gas power plant, control of distributed parameter systems, optimization, process control

Ion Miciu

2008-09-01T23:59:59.000Z

436

How Gas Turbine Power Plants Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex machines, but they basically involve three main sections: The compressor, which draws air into the engine, pressurizes it, and feeds it to the combustion chamber at speeds of hundreds of miles per hour. The combustion system, typically made up of a ring of fuel injectors that inject a steady stream of fuel into combustion chambers where it mixes with the air. The mixture is burned at temperatures of more than 2000 degrees F. The combustion produces a high temperature, high pressure gas stream that enters and expands through the turbine section. The turbine is an intricate array of alternate stationary and

437

Evaluation of a 510-MWe Destec GCC Power Plant Fueled with Illinois No. 6 Coal  

Science Conference Proceedings (OSTI)

A detailed design and cost estimate has been developed for a 510-MWe, conventionally integrated, Destec gasification-combined-cycle (GCC) power plant employing two General Electric (GE) MS-7001F gas turbines and fueled with Illinois no. 6 coal. The plant has an attractive heat rate and a capital cost that is competitive with conventional coal-based power technology.

1992-07-14T23:59:59.000Z

438

U.S. Gas Plant Production of Natural Gas Liquids and Liquid ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Natural Gas Liquids and Liquid Refinery Gases (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

439

U.S. Gas Plant Production of Natural Gas Liquids and Liquid ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Natural Gas Liquids and Liquid Refinery Gases (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; ...

440

First U. S. sulfreen unit in Dakota gas plant  

SciTech Connect

This article describes the first natural gas processing plant in the U.S. that uses Sulfreen as the optimum process for tail gas cleanup. A minimum overall recovery of 98.9% is expected. The Sulfreen process appears to be a viable tail gas treater for Claus units in the U.S., providing high overall recoveries and process reliability. The North Dakota plant joins more than 30 other units operating in Canada, Greece, China and throughout Europe.

Davis, G.W.

1985-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Scrubbing CO/sub 2/ from plant exhausts provides economic sources of gas for EOR projects  

SciTech Connect

The impact of the combined-cycle/ CO/sub 2/ application on employment, income, and tax revenue could be significant. High efficiency power/steam generation in gas producing areas can compete strongly with other fuels and generate new revenue for these areas. The addition of CO/sub 2/ recovery for EOR in the area can add other new revenues directly, and indirectly from additional oil production. Further, energy system integration could provide strong arguments for greater usage intrastate.

Ellington, R.T.; Achilladelis, B.; Mueller, M.J.; Saldanha, K.; Warzel, L.

1984-10-15T23:59:59.000Z

442

Gas turbine power plant with supersonic gas compressor - Energy ...  

A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on ...

443

Defining a Standard Metric for Electricity Savings  

E-Print Network (OSTI)

an advanced natural gas combined cycle (typical for recentlyoil Gas turbine Natural gas Combined cycle Distillateoil Combined cycle Natural gas New plants Steam turbine,

Koomey, Jonathan

2009-01-01T23:59:59.000Z

444

Closed Loop Test Facility for hot dirty gas valves  

SciTech Connect

A design study of a closed loop test facility for eight-inch hot dirty gas valves is presented. The objective of the facility is to quality valves for use in coal gasifiers, combined cycle plants, and pressurized fluid bed combustors. Outline sketches and estimated costs are presented for the selected design.

Not Available

1980-02-06T23:59:59.000Z

445

Conceptual Design Review for Biomass Repowering at Plant Barry  

Science Conference Proceedings (OSTI)

Southern Company and its subsidiary, Alabama Power, have identified Alabama Power's Plant Barry as a potential target for biomass firing. Plant Barry is located in Bucks, Alabama. Five coal-fired units were built between 1954 and 1971 for a total of 1620 MW capacity. Three natural gasfired combined-cycle combustion turbines (173 MWe each of winter capacity) and two combined-cycle steam turbines (193 MWe each of winter capacity) were installed in 2000. Unit 1 is the boiler being considered initially for ...

2010-12-20T23:59:59.000Z

446

How many gas turbines. Part 1  

SciTech Connect

This paper reports that gas turbine technology can serve a range of application needs. The short lead time and low capital cost of simple-cycle gas turbines make these units ideally suitable for peaking applications. Should oil/natural gas fuel prices increase, existing simple-cycle plants can have a steam cycle added which leads to an efficient combines-cycle plant. Should the need arise, a coal gasifier can be added so that coal can be used as the fuel for the combined-cycle plant. Gas turbine technology has high reliability and availability. High gas turbine reliability leads to high system reliability and the ability to lower overall generation system serve margin requirements. Lower reserve margin requirements lead to decreased needs for future capacity which can yield large capital and economic savings. Based on EPRI TAG economic data DRI fuel cost projections, simple-cycle gas turbines and combined-cycle plants are and will remain the most economic capacity additions during the 1990s.

Kaupang, B.M.; Oplinger, J.L.; Stoll, H.G.; Taylor, T.M. (General Electric Corp. (US))

1991-07-01T23:59:59.000Z

447

The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS  

E-Print Network (OSTI)

assessment of natural gas combined cycle power plant withAnalysis: Natural Gas Combined Cycle (NGCC) Power Plant.

Sathre, Roger

2011-01-01T23:59:59.000Z

448

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

hybrid combined cycle power plant natural gas combined cyclePower Plants study, Volume 1: Bituminous Coal and Natural Gas

Phadke, Amol

2008-01-01T23:59:59.000Z

449

Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy  

Open Energy Info (EERE)

Olinda Landfill Gas Recovery Plant Biomass Facility Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gas Plant Liquids, Proved Reserves (Million Barrels) California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 77 1980's 81 57 124 117 105 120 109 107 101 95 1990's 86 75 83 85 75 80 80 82 58 60 2000's 64 52 68 78 95 112 100 103 97 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 CA, San Joaquin Basin Onshore Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of Dec.

451

The potential for control of carbon dioxide emissions from integrated gasification/combined-cycle systems  

SciTech Connect

Initiatives to limit carbon dioxide (CO{sub 2}) emissions have drawn considerable interest to integrated gasification/combined-cycle (IGCC) power generation, a process that reduces CO{sub 2} production through efficient fuel used is amenable to CO{sub 2} capture. This paper presents a comparison of energy systems that encompass fuel supply, an IGCC system, CO{sub 2} recovery using commercial technologies, CO{sub 2} transport by pipeline, and land-based sequestering in geological reservoirs. The intent is to evaluate the energy-efficiency impacts of controlling CO{sub 2} in such systems and to provide the CO{sub 2} budget, or an to equivalent CO{sub 2}`` budget, associated with each of the individual energy-cycle steps. The value used for the ``equivalent CO{sub 2}`` budget is 1 kg/kWh CO{sub 2}. The base case for the comparison is a 457-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal, and in-bed sulfur removal. Mining, preparation, and transportation of the coal and limestone result in a net system electric power production of 454 MW with a 0.835 kg/kwh CO{sub 2} release rate. For comparison, the gasifier output is taken through a water-gas shift to convert CO to CO{sub 2} and then processed in a glycol-based absorber unit to recover CO{sub 2} Prior to the combustion turbine. A 500-km pipeline then transports the CO{sub 2} for geological sequestering. The net electric power production for the system with CO{sub 2} recovery is 381 MW with a 0.156 kg/kwh CO{sub 2} release rate.

Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.

1994-06-01T23:59:59.000Z

452

Energy Saving in Ammonia Plant by Using Gas Turbine  

E-Print Network (OSTI)

An ammonia plant, in which the IHI-SULZER Type 57 Gas Turbine is integrated in order to achieve energy saving, has started successful operation. Tile exhaust gas of the gas turbine has thermal energy of relatively high temperature, therefore, if the thermal energy of this gas is utilized effectively, the gas turbine could be superior to effectively, the gas turbine could be superior to other thermal engines in view of total energy effectiveness. As a typical example of the above use of the gas turbine, its application in the ammonia plant has now been realized. In addition to the use of the gas turbine as the driver for the process air compressor which was driven by the steam turbine, its exhaust gas is introduced to the ammonia reformer. It leads to the saving of the reformer fuel, and subsequently the energy saving of the reformer section in the plant of about 20% has been achieved. This paper describes the outline of the project, energy saving effectiveness and investigation for the application of the gas turbine in the ammonia plant.

Uji, S.; Ikeda, M.

1981-01-01T23:59:59.000Z

453

Gas Fired Power Plants: Investment Timing, Operating Flexibility and Abandonment  

E-Print Network (OSTI)

Many firms are considering investment in gas fired power plants. We consider a firm holding a license, i.e. an option, to build a gas fired power plant. The operating cash flows from the plant depend on the spark spread, defined as the difference between the unit price of electricity and cost of gas. The plant produces electricity when the spark spread exceeds emission costs, otherwise the plant is ramped down and held idle. The owner has also an option to abandon the plant and realize the salvage value of the equipment. We compute optimal entry and exit threshold values for the spark spread. Also the effects of emission costs on the value of installing CO2 capture technology are analyzed.

Stein-erik Fleten; Erkka Nskkl

2003-01-01T23:59:59.000Z

454

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 U.S. Department of Energy Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project Final Environmental Impact Statement November 2002 U.S. Department of Energy National Energy Technology Laboratory COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project Final Environmental Impact Statement (EIS) (DOE/EIS-0318) Location: Clark County, Kentucky Contacts: For further information on this environmental For further information on the DOE National impact statement (EIS), call: Environmental Policy Act (NEPA) process, call: 1-800-432-8330 ext. 5460 1-800-472-2756 or contact: or contact: Mr. Roy Spears Ms. Carol Borgstrom

455

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

IGCC PC advanced coal-wind hybrid combined cycle power plantnatural gas combined cycle gas turbine power plant carboncrude gasification combined cycle power plant with carbon

Phadke, Amol

2008-01-01T23:59:59.000Z

456

Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

457

Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

458

U.S. Natural Gas Plant Liquids Reserves, Estimated Production...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Reserves, Estimated Production (Million Barrels) U.S. Natural Gas Plant Liquids Reserves, Estimated Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

459

Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

460

U.S. Natural Gas Plant Liquids, Reserves Revision Decreases ...  

Gasoline and Diesel Fuel Update (EIA)

Decreases (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

Note: This page contains sample records for the topic "gas combined-cycle plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Mississippi Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

Liquids, Proved Reserves (Million Barrels) Mississippi Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

462

California Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

Liquids, Proved Reserves (Million Barrels) California Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

463

New Mexico Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) New Mexico Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

464

Louisiana--North Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

465

U.S. Natural Gas Plant Liquids, Reserves Acquisitions (Million...  

Gasoline and Diesel Fuel Update (EIA)

Acquisitions (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

466

U.S. Natural Gas Plant Liquids, Reserves Adjustments (Million...  

Annual Energy Outlook 2012 (EIA)

Adjustments (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

467

North Dakota Natural Gas Plant Liquids, Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) North Dakota Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

468

U.S. Natural Gas Plant Liquids, Reserves Extensions (Million...  

Annual Energy Outlook 2012 (EIA)

Extensions (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

469

Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

470

Wyoming Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

471

Colorado Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Colorado Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

472

Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

Liquids, Proved Reserves (Million Barrels) Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

473

Utah Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) Utah Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

474

Louisiana Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

Liquids, Proved Reserves (Million Barrels) Louisiana Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

475

Kentucky Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

476

Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

Liquids, Proved Reserves (Million Barrels) Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

477

Kansas Natural Gas Plant Liquids, Reserves Based Production ...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Kansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

478

New Mexico Natural Gas Plant Liquids, Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) New Mexico Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

479

Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Gasoline and Diesel Fuel Update (EIA)

Liquids, Proved Reserves (Million Barrels) Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

480

Arkansas Natural Gas Plant Liquids, Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) Arkansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...