Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Desulfurization of coke oven gas from the coking of coking coal blended with a sorbent and waste plastic  

Science Journals Connector (OSTI)

A new way to implement the simultaneous reutilization of solid waste, the desulfurization of coke oven gas (COG), and even the desulfurization of coke by the co-coking of coking coal (CC) and waste plastic (WP).....

Zhao Rongfang; Ye Shufeng; Xie Yusheng…

2007-03-01T23:59:59.000Z

2

New packing in absorption systems for trapping benzene from coke-oven gas  

SciTech Connect (OSTI)

The efficiency of benzene removal from coke-oven gas in absorption units OAO Alchevskkoks with new packing is assessed.

V.V. Grabko; V.M. Li; T.A. Shevchenko; M.A. Solov'ev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

3

Innovative coke oven gas cleaning system for retrofit applications  

SciTech Connect (OSTI)

Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This project combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE is providing cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct an Environmental Monitoring Plan (EMP) for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. This report is the third quarterly status report of the EMP. It covers the Environmental Monitoring Plan activities for the full year of 1991 from January 1, 1991 through December 31, 1991, including the forth quarter. See Sections 2, 3 and 4 for status reports of the Project Installation and Commissioning, the Environmental Monitoring activities and the Compliance Monitoring results for the period. Section 5 contains a list of Compliance Reports submitted to regulatory agencies during the period. The EMP describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) document the extent of compliance of monitoring activities, i.e. those monitoring required to meet permit requirements, (2) confirm the specific impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base for the assessment of the environmental performance of the technology demonstrated by the project.

Not Available

1992-10-16T23:59:59.000Z

4

Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast  

E-Print Network [OSTI]

of coal and coke are consumed for heating and reducing iron oxides [2,3]. As a result, BFs have becomeHydrogen production from steam reforming of coke oven gas and its utility for indirect reduction 2012 Available online 18 June 2012 Keywords: Steam reforming Hydrogen and syngas production Coke oven

Leu, Tzong-Shyng "Jeremy"

5

Production of Syngas via Partial Oxidation and CO2 Reforming of Coke Oven Gas over a Ni Catalyst  

Science Journals Connector (OSTI)

Production of Syngas via Partial Oxidation and CO2 Reforming of Coke Oven Gas over a Ni Catalyst ... The yield of produced syngas increases with an increase in temperature. ...

Jianzhong Guo; Zhaoyin Hou; Jing Gao; Xiaoming Zheng

2008-04-05T23:59:59.000Z

6

A new technology for producing hydrogen and adjustable ratio syngas from coke oven gas  

SciTech Connect (OSTI)

About 15 billion Nm{sup 3} coke oven gas (COG) is emitted into the air in Shanxi Province in China as air pollutants. It is also a waste of precious chemical resources. In this study, COG was purified respectively by four methods including refrigeration, fiberglass, silica gel, and molecular sieve. Purified COG was separated by a prism membrane into two gas products. One consists mainly of H{sub 2} ({gt}90 vol %) and the other is rich in CH{sub 4} ({gt}60 vol %) with their exact compositions to vary with the membrane separation pressure and outlet gas flow ratio. The gas rich in CH{sub 4} was partially oxidized with oxygen in a high-temperature fixed-bed quartz reactor charged with coke particles of 10 mm size. At 1200-1300{sup o}C, a CH{sub 4} conversion of {gt}99% could be obtained. The H{sub 2}/CO ratio in the synthesis product gas can be adjusted in the range 0.3-1.4, very favorable for further C1 synthesis. 10 refs., 17 figs., 1t ab.

Jun Shen; Zhi-zhong Wang; Huai-wang Yang; Run-sheng Yao [Taiyuan University of Technology, Taiyuan (China). Department of Chemical Engineering

2007-12-15T23:59:59.000Z

7

Innovative coke oven gas cleaning system for retrofit applications. Environmental Monitoring program. Volume 1 - sampling progrom report. Baseline Sampling Program report  

SciTech Connect (OSTI)

Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This innovative coke oven gas cleaning system combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE provided cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct and Environmental Monitoring Plan for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. It also requires the preparation of a final report on the results of the Baseline Compliance and Supplemental Sampling Programs that are part of the EMP and which were conducted prior to the startup of the innovative coke oven gas cleaning system. This report is the Baseline Sampling Program report.

Stuart, L.M.

1994-05-27T23:59:59.000Z

8

Determining the environmental and thermal characteristics of coke oven batteries  

Science Journals Connector (OSTI)

A method is proposed for assessing the environmental and thermal characteristics of coke oven batteries and is tested for coke oven batteries 1 and 5 at OAO Zaporozhkoks. On ... the basis of data for the environm...

E. I. Toryanik; A. L. Borisenko; A. S. Malysh; A. A. Lobov…

2009-12-01T23:59:59.000Z

9

SOURCE ACTIVITY TITLE: SOLID FUEL TRANSFORMATION PLANTS Coke Oven Furnaces Coke Oven (Door Leakage and Extinction) NOSE CODE: 104.12 NFR CODE:  

E-Print Network [OSTI]

1 ACTIVITIES INCLUDED Coke-production in general can be divided into the following steps: Coal handling and storage, coke oven charging, coal coking, extinction of coke, and coke oven gas purification. Combustion in coke oven furnaces (SNAP 010406) is treated in this chapter as well as door leakage and extinction (SNAP 040201). Figure 1-1 gives a key plan of a coke plant with emission relevant process steps and the byproduct recovery section. Figure 1-1: Key plan of a coke plant (Rentz et al. 1995) C o a l S lu d g e B l a s t F u r n a c e G a s f r o m S t e e l M il l A i r E m is s io n s G a s H o ld e r

Ic Activities; So Nox Nmv

10

Production of syngas via partial oxidation and CO{sub 2} reforming of coke oven gas over a Ni catalyst  

SciTech Connect (OSTI)

The partial oxidation and CO{sub 2} reforming of coke oven gas (COG) to syngas was investigated on differently sized Ni catalysts in a fluidized-bed reactor. It was found that the catalytic performance of Ni depends strongly on its particle size. The small-sized Ni catalyst exhibited higher activity and higher selectivity in the partial oxidation of COG. The conversion of CH{sub 4} was kept at 80.7% at a lower temperature (750{sup o}C) and a wide space velocity (from 8000 to 80 000 h{sup -1}). CO{sub 2} reforming of COG is also an efficient route for syngas production. The H{sub 2}/CO ratio in the COG-derived syngas could be controlled by manipulating the concentration of O{sub 2} or CO{sub 2} added in the feed. The yield of produced syngas increases with an increase in temperature. 19 refs., 10 figs., 2 tabs.

Jianzhong Guo; Zhaoyin Hou; Jing Gao; Xiaoming Zheng [Zhejiang University, Hangzhou (China). Institute of Catalysis, Department of Chemistry

2008-05-15T23:59:59.000Z

11

Innovative coke oven gas cleaning system for retrofit applications. Quarterly environmental monitoring report No. 3, January 1, 1991--December 31, 1991  

SciTech Connect (OSTI)

Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This project combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE is providing cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct an Environmental Monitoring Plan (EMP) for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. This report is the third quarterly status report of the EMP. It covers the Environmental Monitoring Plan activities for the full year of 1991 from January 1, 1991 through December 31, 1991, including the forth quarter. See Sections 2, 3 and 4 for status reports of the Project Installation and Commissioning, the Environmental Monitoring activities and the Compliance Monitoring results for the period. Section 5 contains a list of Compliance Reports submitted to regulatory agencies during the period. The EMP describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) document the extent of compliance of monitoring activities, i.e. those monitoring required to meet permit requirements, (2) confirm the specific impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base for the assessment of the environmental performance of the technology demonstrated by the project.

Not Available

1992-10-16T23:59:59.000Z

12

Hydrogen production by reforming of simulated hot coke oven gas over nickel catalysts promoted with lanthanum and cerium in a membrane reactor  

SciTech Connect (OSTI)

Catalysts of Ni/Mg(Al)O promoted with lanthanum and cerium were tested in a BaCo{sub 0.7}Fe{sub 0.2}Nb{sub 0.1}O{sub 3{delta}} (BCFNO) membrane reactor by catalytic partial oxidation of simulated hot coke oven gas (COG) with toluene as a model tar compound under atmospheric pressure. Analysis of the catalysts suggested that the hydrotalcite precursor after thermal treatment lead to a good dispersion of nickel forming the solid solution NiO-MgO and spinel (Ni,Mg)Al{sub 2}O{sub 4}. The promoted catalysts had higher oxygen permeation flux, better catalytic activity, and better resistance to carbon formation, which will be promising catalysts in the catalytic partial oxidation reforming of hot COG. 29 refs., 11 figs., 2 tabs.

Hongwei Cheng; Xionggang Lu; Yuwen Zhang; Weizhong Ding [Shanghai University, Shanghai (China). Shanghai Key Laboratory of Modern Metallurgy and Materials Processing

2009-05-15T23:59:59.000Z

13

Syngas production by CO2 reforming of coke oven gas over Ni/La2O3–ZrO2 catalysts  

Science Journals Connector (OSTI)

Abstract Syngas production by CO2 reforming of coke oven gas (COG) was studied in a fixed-bed reactor over Ni/La2O3–ZrO2 catalysts. The catalysts were prepared by sol–gel technique and tested by XRF, BET, XRD, H2-TPR, TEM and TG–DSC. The influence of nickel loadings and calcination temperature of the catalysts on reforming reaction was measured. The characterization results revealed that all of the catalysts present excellent resistance to coking. The catalyst with appropriate nickel content and calcination temperature has better dispersion of active metal and higher conversion. It is found that the Ni/La2O3–ZrO2 catalyst with 10 wt% nickel loading provides the best catalytic activity with the conversions of CH4 and CO2 both more than 95% at 800 °C under the atmospheric pressure. The Ni/La2O3–ZrO2 catalysts show excellent catalytic performance and anti-carbon property, which will be of great prospects for catalytic CO2 reforming of COG in the future.

Wei Tao; Hongwei Cheng; Weilin Yao; Xionggang Lu; Qiuhua Zhu; Guangshi Li; Zhongfu Zhou

2014-01-01T23:59:59.000Z

14

Effect of Indian Medium Coking Coal on Coke Quality in Non-recovery Stamp Charged Coke Oven  

Science Journals Connector (OSTI)

Abstract The maximum possibility of utilizing the Indian coking coals and inferior grade coking coal for producing metallurgical coke through non-recovery stamp charging technology was investigated. Indian indigenous coals contained low percent of vitrinite ( 15%) compared to imported coking coal. Therefore, the selection of appropriate proportion of different types of coals was a major challenge for coke makers. Coal blend selection criterion based on a single coefficient, named as composite coking potential (CCP), was developed. The use of increased proportion of semi-soft coal (crucible swelling number of 2.5) and high ash (? 15%) indigenous coal in the range of 20%–35% and 20%–65% respectively in the blends resulted in good quality of coke. Plant data of a non-recovery coke oven were used for developing and validating the model. The results showed that the coke strength after reaction (CSR) varied in the range of 63. 7%–67.7% and the M40 value was between 81.8 and 89.3 in both the cases.

H.P. Tiwari; P.K. Banerjee; V.K. Saxena; S.K. Haldar

2014-01-01T23:59:59.000Z

15

Developing indicators for the assessment and proper management of the different levels of exposure to polycyclic aromatic hydrocarbons (PAH)s generally associated with coke-oven workers.  

E-Print Network [OSTI]

??Coke ovens may occur in the aluminium, steel, graphite, electrical, and construction industries. In the work area coke-oven workers may be exposed to various chemical… (more)

Wang, Tianyuan

2011-01-01T23:59:59.000Z

16

Modelling of a coke oven heating wall M. Landreau, D. Isler, Centre de Pyrolyse de Marienau (CPM)  

E-Print Network [OSTI]

- 1 - Modelling of a coke oven heating wall M. Landreau, D. Isler, Centre de Pyrolyse de Marienau with thermomechanical modelling of a coke oven heating wall. The objective is to define the safe limits of coke oven of walls, roof and larry car, pre-stresses (anchoring system), lateral pressure due to coal pushing A 3D

Boyer, Edmond

17

Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas  

SciTech Connect (OSTI)

The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

18

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

factors for production of coal products -- patent fuel, cokeoven coke,coke oven gas, blast furnace gas and briquettes (BKB) --

2006-01-01T23:59:59.000Z

19

Gas treatment and by-products recovery of Thailand`s first coke plant  

SciTech Connect (OSTI)

Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

Diemer, P.E.; Seyfferth, W. [Krupp Uhde GmbH, Dortmund (Germany)

1997-12-31T23:59:59.000Z

20

Spatial variation of coke quality in the non-recovery beehive coke ovens.  

E-Print Network [OSTI]

??More than 50% of hot metal production worldwide takes place in blast furnaces. Coke is the most expensive raw material in the blast furnace. It… (more)

Segers, Magrieta

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Air pollution from a large steel factory: polycyclic aromatic hydrocarbon emissions from coke-oven batteries  

SciTech Connect (OSTI)

A systematic investigation of solid and gaseous atmospheric emissions from some coke-oven batteries of one of Europe's largest integrated steel factory (Taranto, Italy) has been carried out. These emissions, predominantly diffuse, originate from oven leakages, as well as from cyclic operations of coal loading and coke unloading. In air monitoring samples, polycyclic aromatic hydrocarbons (PAHs) were consistently detected at concentrations largely exceeding threshold limit values. By means of PAHs speciation profile and benzo-(a)pyrene (BaP) equivalent dispersion modeling from diffuse sources, the study indicated that serious health risks exist not only in working areas, but also in a densely populated residential district near the factory. 30 refs., 5 figs., 3 tabs.

Lorenzo Liberti; Michele Notarnicola; Roberto Primerano; Paolo Zannetti [Technical University of Bari, Bari (Italy). Department of Environmental Engineering and Sustainable Development

2006-03-15T23:59:59.000Z

22

Ovens  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

M206 Mechanical Convection Oven The M206 oven is dedicated to CAMD staff use only. M326 Mechanical Convection Oven Located next to the spinners, the M326 oven is availabe to...

23

The association of XRCC1 haplotypes and chromosomal damage levels in peripheral blood lymphocyte among coke-oven workers  

SciTech Connect (OSTI)

Theoretically, a haplotype has a higher level of heterozygosity than individual single nucleotide polymorphism (SNP) and the association study based on the haplotype may have an increased power for detecting disease associations compared with SNP-based analysis. In this study, we investigated the effects of four haplotype-tagging SNPs (htSNP) and the inferred haplotype pairs of the X-ray cross-complementing group 1 (XRCC1) gene on chromosome damage detected by the cytokinesis-block micronucleus assay. The study included 141 coke-oven workers with exposure to a high level of polycyclic aromatic hydrocarbons and 66 nonexposed controls. The frequencies of total MN and MNed cells were borderline associated with the Arg{sup 194}Trp polymorphism (P = 0.053 and P = 0.050, respectively) but not associated with the Arg{sup 280}His, Arg{sup 399}Gln and Gln{sup 632}Gln polymorphisms among coke-oven workers. Five haplotypes, including CGGG, TGGG, CAGG, CGAG, and CGGA, were inferred based on the four htSNPs of XRCC1 gene. The haplotype CGGG was associated with the decreased frequencies of total MN and MNed cells, and the haplotypes TGGG and CGAG were associated with the increased frequencies of total MN and MNed cells with adjustment for covariates among coke-oven workers. This study showed that the haplotypes derived from htSNPs in the XRCC1 gene were more likely than single SNPs to correlate with the polycyclic aromatic hydrocarbon-induced chromosome damage among coke-oven workers.

Shuguang Leng; Juan Cheng; Linyuan Zhang; Yong Niu; Yufei Dai; Zufei Pan; Bin Li; Fengsheng He; Yuxin Zheng [Chinese Center for Disease Control and Prevention, Beijing (China). National Institute of Occupational Health and Poison Control

2005-05-15T23:59:59.000Z

24

Urinary 1-hydroxypyrene concentrations in Chinese coke oven workers relative to job category, respirator usage, and cigarette smoking  

SciTech Connect (OSTI)

1-Hydroxypyrene (1-OHP) is a biomarker of recent exposure to polycyclic aromatic hydrocarbons (PAHs). We investigated whether urinary 1-OHP concentrations in Chinese coke oven workers (COWs) are modulated by job category, respirator usage, and cigarette smoking. The present cross-sectional study measured urinary 1-OHP concentrations in 197 COWs from Coking plant I and 250 COWs from Coking plant II, as well as 220 unexposed referents from Control plant I and 56 referents from Control plant II. Urinary 1-OHP concentrations (geometric mean, {mu}mol/mol creatinine) were 5.18 and 4.21 in workers from Coking plants I and II, respectively. The highest 1-OHP levels in urine were found among topside workers including lidmen, tar chasers, and whistlers. Benchmen had higher 1-OHP levels than other workers at the sideoven. Above 75% of the COWs exceeded the recommended occupational exposure limit of 2.3 {mu}mol/mol creatinine. Respirator usage and increased body mass index (BMI) slightly reduced 1-OHP levels in COWs. Cigarette smoking significantly increased urinary 1-OHP levels in unexposed referents but had no effect in COWs. Chinese COWs, especially topside workers and benchmen, are exposed to high levels of PAHs. Urinary 1-OHP concentrations appear to be modulated by respirator usage and BMI in COWs, as well as by smoking in unexposed referents.

Bo Chen; Yunping Hu; Lixing Zheng; Qiangyi Wang; Yuanfen Zhou; Taiyi Jin [Fudan University, Shanghai (China). School of Public Health

2007-09-15T23:59:59.000Z

25

Effects of genetic polymorphisms of metabolic enzymes on cytokinesis-block micronucleus in peripheral blood lymphocyte among coke-oven workers  

SciTech Connect (OSTI)

Exploring the associations between genetic polymorphisms of metabolic enzymes and susceptibility to polycyclic aromatic hydrocarbon (PAH)-induced chromosomal damage is of great significance for understanding PAH carcinogenesis. Cytochrome P450, glutathione S-transferase, microsomal epoxide hydrolase, NAD(P)H:quinone oxidoreductase, and N-acetyltransferase are PAH-metabolizing enzymes. In this study, we genotyped for the polymorphisms of these genes and assessed their effects on cytokinesis-block micronucleus (CBMN) frequencies in peripheral blood lymphocytes among 141 coke-oven workers and 66 non-coke-oven worker controls. The geometric means of urinary 1-hydroxypyrene levels in coke-oven workers and the controls were 12.0 and 0.7 {mu}mol/mol creatinine, respectively. The CBMN frequency (number of micronuclei per 1,000 binucleated lymphocytes) was significantly higher in coke-oven workers (9.5 {+-} 6.6) than in the controls. Among the coke-oven workers, age was positively associated with CBMN frequency; the mEH His{sup 113} variant genotype exhibited significantly lower CBMN frequency than did the Tyr{sup 113}/Tyr{sup 113} genotype; the low mEH activity phenotype exhibited a lower CBMN frequency than did the high mEH activity phenotype; the GSTP1 Val{sup 105}/Val{sup 105} genotype exhibited a higher CBMN frequency than did the GSTP1 Ile{sup 105}/Ile{sup 105} or Ile{sup 105}/Val{sup 105} genotypes; the joint effect of high mEH activity phenotype and GSTM1 null genotype on CBMN frequencies was also found. Gene-environment interactions between occupational PAH exposure and polymorphisms of mEH and/or GSTM1 were also evident. These results indicate that the mEH, GSTP1, and GSTM1 polymorphisms may play a role in sensitivity or genetic susceptibility to the genotoxic effects of PAH exposure in the coke-oven workers.

Shuguang Leng; Yufei Dai; Yong Niu; Zufei Pan; Xiaohua Li; Juan Cheng; Fengsheng He; Yuxin Zheng [Chinese Center for Disease Control and Prevention, Beijing (China). National Institute for Occupational Health and Poison Control

2004-10-15T23:59:59.000Z

26

Innovative coke oven gas cleaning system for retrofit applications  

SciTech Connect (OSTI)

The EMP consists of a Compliance Monitoring Sampling Program and a Supplemental monitoring Sampling Program. The Compliance Monitoring Sampling Program will be conducted during a summer and a winter Baseline periods during the Pre-Construction/Construction phases of the Project and during a summer and a winter period following the successful Startup and Operational phase of the completed Project. compliance monitoring consist of conducting all the sampling and observation programs associated with existing required Federal, State, and Local Regulations, Permits and Orders. These include air, water, and waste monitoring and OSHA and NESHAP monitoring. The Supplemental Monitoring Program will also be conducted during a summer and a winter Baseline periods during the Pre-Construction/Construction phases of the Demonstration Facility and during a summer and a winter period following the successful startup and Operational phase of the completed Facility. Supplemental Monitoring includes sampling of 27 additional streams that are important to measure operational or environmental performance and impacts of the installation of the new COG treatment facilities.

Not Available

1992-09-21T23:59:59.000Z

27

Coking Plants, Coal-to-gas Plants, Gas Production and Distribution  

Science Journals Connector (OSTI)

This environmental brief covers various coal upgrading technologies, incl. coking and low-temperature carbonization as processes yielding the target products coke and gas plus tar products and diverse...

1995-01-01T23:59:59.000Z

28

Process analysis of syngas production by non-catalytic POX of oven gas  

Science Journals Connector (OSTI)

A non-catalytic POX of oven gas is proposed to solve the problem of secondary pollution due to solid wastes produced from the great amount of organic sulfur contained in oven gas in the traditional catalytic p...

Fuchen Wang; Xinwen Zhou; Wenyuan Guo…

2009-03-01T23:59:59.000Z

29

Process Parameters and Energy Use of Gas and Electric Ovens in Industrial Applications  

E-Print Network [OSTI]

for industrial applications where electric ovens have predominant use. Tests were performed to obtain the process efficiency and examine cost savings potential in converting electric ovens to natural gas. Preliminary results show that, for the plat studied, cost...

Kosanovic, D.; Ambs, L.

30

Improved cost calculations of coke-oven gas at coke plants  

Science Journals Connector (OSTI)

It is important to develop new methods of determining the costs of individual products within a complex process, ... to determine, with maximum precision, the direct costs of each stage of the production process ...

S. V. Vashchilin; T. V. Osipovich; T. A. Ermolenko; E. I. Kotlyarov…

2009-04-01T23:59:59.000Z

31

Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process  

DOE Patents [OSTI]

In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.

DeGeorge, Charles W. (Chester, NJ)

1981-01-01T23:59:59.000Z

32

Using coke-battery flue gas to dry coal batch before coking  

Science Journals Connector (OSTI)

The utilization of heat from coke-battery flue gases and other potential secondary energy resources in drying coal batch prior to coking is considered. The main factors that influence ... . The reduction in moist...

A. Ya. Eremin; V. G. Mishchikhin; S. G. Stakheev; R. R. Gilyazetdinov…

2011-03-01T23:59:59.000Z

33

Coke | OpenEI  

Open Energy Info (EERE)

18 18 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278418 Varnish cache server Coke Dataset Summary Description UK National coal (and solid fuels and gases derived from processing coal) are published in Chapter 2 (Solid Fuels and Derived Gases) of the Digest of UK Energy Statistics (DUKES). Included here are the datasets for commodity balances (1998 - 2009); supply and consumption (2005 - 2009) of coal and other fuels (e.g. coke oven gas, blast furnace gas, benzole and tars, etc). Chapter 2 of the report is available: http://www.decc.gov.uk/assets/decc/Statistics/publications/dukes/308-dukes-2010-ch2.pdf Source UK Department of Energy and Climate Change (DECC)

34

Blast-furnace smelting with the injection of natural gas and coke-oven gas  

Science Journals Connector (OSTI)

A multizone mathematical model developed at Nekrasov Institute of Ferrous Metallurgy reveals the internal relations between the processes in a blast furnace. Using this model, the smelting processes and parameter...

I. G. Tovarovskii; A. E. Merkulov

2011-06-01T23:59:59.000Z

35

PROCESS PARAMETERS AND ENERGY USE OF GAS AND ELECTRIC OVENS IN INDUSTRIAL APPLICATIONS  

E-Print Network [OSTI]

PROCESS PARAMETERS AND ENERGY USE OF GAS AND ELECTRIC OVENS IN INDUSTRIAL APPLICATIONS Dr for Energy Efficiency and Renewable Energy Department of Mechanical and Industrial Engineering University of Massachusetts, Amherst, Massachusetts ABSTRACT The study was conducted to evaluate the energy use of natural gas

Massachusetts at Amherst, University of

36

Priorities in the design of chemical shops at coke plants  

SciTech Connect (OSTI)

Recent trends in the design of chemical equipment at coke plants are described, through the lens of experience at Giprokoks. The main priorities were to improve the removal of impurities from coke oven gas; to improve equipment design on the basis of new materials; to reduce reagent consumption; to reduce the materials and energy consumed in the construction of new equipment; and to minimize impacts on the environment and worker health. Some technological equipment is briefly characterized.

V.I. Rudyka; Y.E. Zingerman; V.V. Grabko; L.A. Kazak [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

37

Dale Coke: Coke Farm  

E-Print Network [OSTI]

Dale Coke Photo by Benjamin J. Myers.2009. Coke FarmDale Coke grew up on an apricot orchard in California’s

Farmer, Ellen

2010-01-01T23:59:59.000Z

38

Association of polymorphisms in AhR, CYP1A1, GSTM1, and GSTT1 genes with levels of DNA damage in peripheral blood lymphocytes among coke-oven workers  

SciTech Connect (OSTI)

Accumulating evidence has shown that both DNA damage caused by the metabolites of polycyclic aromatic hydrocarbons (PAH) and genetic polymorphisms in PAH-metabolic genes contribute to individual susceptibility to PAH-induced carcinogenesis. However, the functional relevance of genetic polymorphisms in PAH-metabolic genes in exposed individuals is still unclear. In this study of 240 coke-oven workers (the exposed group) and 123 non-coke-oven workers (the control group), we genotyped for polymorphisms in the AhR, CYP1A1, GSTM1, and GSTT1 genes by PCR methods, and determined the levels of DNA damage in peripheral blood lymphocytes using the alkaline comet assay. It was found that the ln-transformed Olive tail moment (Olive TM) values in the exposed group were significantly higher than those in the control group. Furthermore, in the exposed group, the Olive TM values in subjects with the AhR Lys{sup 554} variant genotype were higher than those with the AhR Arg{sup 554}/Arg{sup 554} genotype. Similarly, the Olive TM values in the non-coke-oven workers with the CYP1A1 MspI CC + CT genotype were lower than the values of those with the CYP1A1 MspI TT genotype. However, these differences were not evident for GSTM1 and GSTT1. These results suggested that the polymorphism of AhR might modulate the effects of PAHs in the exposed group; however, the underlying molecular mechanisms by which this polymorphism may have affected the levels of PAH-induced DNA damage warrant further investigation.

Yongwen Chen; Yun Bai; Jing Yuan; Weihong Chen; Jianya Sun; Hong Wang; Huashan Liang; Liang Guo; Xiaobo Yang; Hao Tan; Yougong Su; Qingyi Wei; Tangchun Wu [Huazhong University of Science and Technology, Wuhan (China). Institute of Occupational Medicine and Ministry of Education Key Lab of Environment and Health

2006-09-15T23:59:59.000Z

39

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network [OSTI]

Coal Washed Coal Coke Coke Oven Gas Other Gas Other CokingTJ) Coal Coke Coke Oven Gas Other Gas Other Coking Products

Lu, Hongyou

2013-01-01T23:59:59.000Z

40

Selecting the optimum coke pushing sequence  

SciTech Connect (OSTI)

The sequence of pushing coke ovens is one of the most important aspects of battery operation. The sequence must satisfy a number of technical and process conditions: (1) achieve maximum heating-wall life by avoiding destructive expansion pressure in freshly charged ovens and during pushing of the finished coke; (2) ensure uniform brickwork temperature and prevent overheating by compensating for the high thermal flux in freshly charged ovens due to accumulated heat in adjacent ovens that are in the second half of the coking cycle; (3) ensure the most favorable working conditions and safety for operating personnel; (4) provide additional opportunities for repair personnel to perform various types of work, such as replacing coke-machine rails, without interrupting coal production; (5) perform the maximum number of coke-machine operations simultaneously: pushing, charging, and cleaning doors, frames, and standpipe elbows; and (6) reduce electricity consumption by minimizing idle travel of coke machines.

V.T. Krivoshein; A.V. Makarov [ZAO Trest Koksokhimmontazh (Russian Federation)

2007-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Relationship between coking pressure generated by coal blends and the composition of their primary tars  

Science Journals Connector (OSTI)

Four coals that develop different pressures during the coking process were selected together with 10 blends (7 binary and 3 ternary) prepared with the same coals. Their semicoke contraction/expansion was measured by means of two tests (the Koppers-INCAR and the sole heated oven) and the variation in coking pressure during coking was determined in a movable wall oven. The coals and blends were then pyrolysed and the tars were analysed by gas chromatography (GC-FID–MS). The additivity law was applied to the properties used to evaluate the dangerousness of the blends and to the composition of the tar produced from the blends. Afterwards, the composition of the tar was studied in relation to contraction/expansion and the coking pressure generated by the coals and blends.

C. Barriocanal; M.A. Díez; R. Alvarez; M.D. Casal

2009-01-01T23:59:59.000Z

42

Modélisation thermomécanique d'un piédroit de four à coke.  

E-Print Network [OSTI]

??Inscrite dans le cadre du projet européen Coke Oven Operating Limits, cette thèse porte sur la modélisation thermomécanique d'un piédroit de cokerie. Le piédroit est… (more)

Landreau, Matthieu

2009-01-01T23:59:59.000Z

43

coking coal  

Science Journals Connector (OSTI)

coking coal [A caking coal suitable for the production of coke for metallurgical use] ? Kokskohle f, verkokbare Kohle

2014-08-01T23:59:59.000Z

44

Theoretical and experimental investigations into the particular features of the process of converting coal gas hydrocarbons on incandescent coke  

SciTech Connect (OSTI)

The prospects of the use of reducing gases in ferrous metallurgy and the possibilities for using them as a basis for coke production have been presented by the authors of the present article in the past. In the present report, the authors present certain results of theoretical and experimental investigations into the process of converting coal gas hydrocarbons on incandescent coke. The modification of the present-day method of thermodynamically calculating stable compositions of coking products, which was developed by the authors, has made it possible to apply it to specific chemical systems and process conditions not met with before, such as the conversion of hydrocarbons in mixtures of actual industrial gases (coal gas and blast furnace gas) in the presence of carbon and considerable amounts of hydrogen.

Zubilin, I.G.; Umanskii, V.E.

1984-01-01T23:59:59.000Z

45

Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz  

SciTech Connect (OSTI)

The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

Yuan Zhang; Jin-hu Wu; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

2008-03-15T23:59:59.000Z

46

Features of hydrotreating catalytic cracking feed and heavy slow coking gas oils  

SciTech Connect (OSTI)

A possible means of more extensive processing of crude oil is the use, in catalytic cracking, of heavy coking gas oils (HCGOs), a feature of which is a higher content of polycyclic aromatic compounds and resins by comparison with straight-run vacuum distillates. The presence of these compounds in catalytic cracking feed causes a reduction in the product yield and increased coke formation. Therefore, one of the problems of hydrotreating feedstock of this kind is the hydrogenation of polycyclic arenes. Processes of extensive desulphurization and denitration occur in parallel, since the sulphur and nitrogen compounds of HCGO are chiefly condensed benzoderivatives of thiophene, pyridine and carbazole, and largely concentrated in heavy aromatic and resinous fractions. The composition of the saturated part of the cracking feed plays a large role in achieving the optimum yields of gaseous and gasoline fractions. Thus an increase in the proportion of cyclanes in the feed raises the gasoline yield. In this way, an investigation of the hydrocarbon conversions during the hydrotreatment of cracking feed is of great importance. The present paper sets out the results for studying the change in the group-structural characteristics of the hydrogenation products of a mixture containing 30% HCGOs according to data of {sup 1}H and {sup 13}C NMR spectroscopy. 7 refs., 7 figs., 1 tab.

Yefremov, N.I.; Kushnarev, D.F.; Frolov, P.A.; Chagovets, A.N.; Kalabin, G.A.

1993-12-31T23:59:59.000Z

47

Effects of preheating and highly heat-conductive brick on coke quality  

SciTech Connect (OSTI)

In replacing the coke ovens available currently, the introduction of a combined technique of a preheated coal charging method (preheating temperature:175 C) and the use of highly heat-conductive brick is under examination for raising the productivity of coke ovens. With such background, a study of the effects of this combined technique on the coke quality, especially the coke size was conducted. The experimental results revealed that the primary size of coke produced by the combined technique is noticeably larger than that of the coke made from wet coal and after five revolutions of drum (equivalent to mechanical impact given at a time of dropping from coke oven chamber to wharf), the coke size reduces even compared with an ordinary coke. This may be due to the fact that the coke produced by the combined technique includes a lot of fissures inside the coke lump.

Fukuda, K.; Arima, T. [Nippon Steel Corp., Chiba (Japan). Process Technology, Research Labs.

1995-12-31T23:59:59.000Z

48

Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination  

Broader source: Energy.gov [DOE]

Coke calcination is a process that involves the heating of green petroleum coke in order to remove volatile material and purify the coke for further processing. Calcined coke is vital to the...

49

The mechanism of coking pressure generation II: Effect of high volatile matter coking coal, semi-anthracite and coke breeze on coking pressure and contraction  

Science Journals Connector (OSTI)

One of the most important aspects of the cokemaking process is to control and limit the coking pressure since excessive coking pressure can lead to operational problems and oven wall damage. Following on from a previous paper on plastic layer permeability we have studied the effect of contraction of semi-coke on coking pressure and the effect of organic additives on contraction. A link between contraction (or simulated contraction) outside the plastic layer and coking pressure was demonstrated. The interaction between this contraction, local bulk density around the plastic layer and the dependence of the permeability of the plastic layer on bulk density was discussed as possible mechanisms for the generation of coking pressure. The effect of blending either a high volatile matter coal or one of two semi-anthracites with low volatile matter, high coking pressure coals on the coking pressure of the binary blends has been explained using this mechanism.

Merrick Mahoney; Seiji Nomura; Koichi Fukuda; Kenji Kato; Anthony Le Bas; David R. Jenkins; Sid McGuire

2010-01-01T23:59:59.000Z

50

12.2 Coke Production 12.2.1 General  

E-Print Network [OSTI]

Metallurgical coke is produced by the destructive distillation of coal in coke ovens. Prepared coal is heated in an oxygen-free atmosphere (–coked–) until most volatile components in the coal are removed. The material remaining is a carbon mass called coke. Metallurgical coke is used in iron and steel industry processes (primarily in blast furnaces) to reduce iron ore to iron. Over 90 percent of the total coke production is dedicated to blast furnace operations. Foundry coke comprises most of the balance and is used by foundries in furnaces for melting metal and in the preparation of molds. Foundry coke production uses a different blend of coking coals, longer coking times, and lower coking temperatures relative to those used for metallurgical coke. Most coke plants are collocated with iron and steel production facilities, and the demand for coke generally corresponds with the production of iron and steel. There has been a steady decline in the number of coke plants over the past several years for many reasons, including a decline in the demand for iron/steel, increased production of steel by mini-mills (electric arc furnaces that do not use coke), and the lowering of the coke:iron ratio used in the blast furnace (e. g., increased use of pulverized coal injection). There were 18 coke plants operating in the U. S. in 2007.

unknown authors

51

Clean Production of Coke from Carbonaceous Fines  

SciTech Connect (OSTI)

In order to produce steel (a necessary commodity in developed nations) using conventional technologies, you must have metallurgical coke. Current coke-making technology pyrolyzes high-quality coking coals in a slot oven, but prime coking coals are becoming more expensive and slot ovens are being shut-down because of age and environmental problems. The United States typically imports about 4 million tons of coke per year, but because of a world-wide coke scarcity, metallurgical coke costs have risen from about $77 per tonne to more than $225. This coke shortage is a long-term challenge driving up the price of steel and is forcing steel makers to search for alternatives. Combustion Resources (CR) has developed a technology to produce metallurgical coke from alternative feedstocks in an environmentally clean manner. The purpose of the current project was to refine material and process requirements in order to achieve improved economic benefits and to expand upon prior work on the proposed technology through successful prototype testing of coke products. The ultimate objective of this project is commercialization of the proposed technology. During this project period, CR developed coke from over thirty different formulations that meet the strength and reactivity requirements for use as metallurgical coke. The technology has been termed CR Clean Coke because it utilizes waste materials as feedstocks and is produced in a continuous process where pollutant emissions can be significantly reduced compared to current practice. The proposed feed material and operating costs for a CR Clean Coke plant are significantly less than conventional coke plants. Even the capital costs for the proposed coke plant are about half that of current plants. The remaining barrier for CR Clean Coke to overcome prior to commercialization is full-scale testing in a blast furnace. These tests will require a significant quantity of product (tens of thousands of tons) necessitating the construction of a demonstration facility. Talks are currently underway with potential partners and investors to build a demonstration facility that will generate enough coke for meaningful blast furnace evaluation tests. If the testing is successful, CR Clean Coke could potentially eliminate the need for the United States to import any coke, effectively decreasing US Steel industry dependence on foreign nations and reducing the price of domestic steel.

Craig N. Eatough

2004-11-16T23:59:59.000Z

52

Proposal of a novel multifunctional energy system for cogeneration of coke, hydrogen, and power - article no. 052001  

SciTech Connect (OSTI)

This paper proposes a novel multifunctional energy system (MES), which cogenerates coke, hydrogen, and power, through the use of coal and coke oven gas (COG). In this system, a new type of coke oven, firing coal instead of COG as heating resource for coking, is adopted. The COG rich in H{sub 2} is sent to a pressure swing adsorption (PSA) unit to separate about 80% of hydrogen first, and then the PSA purge gas is fed to a combined cycle as fuel. The new system combines the chemical processes and power generation system, along with the integration of chemical conversion and thermal energy utilization. In this manner, both the chemical energy of fuel and thermal energy can be used more effectively. With the same inputs of fuel and the same output of coking heat, the new system can produce about 65% more hydrogen than that of individual systems. As a result, the thermal efficiency of the new system is about 70%, and the exergy efficiency is about 66%. Compared with individual systems, the primary energy saving ratio can reach as high as 12.5%. Based on the graphical exergy analyses, we disclose that the integration of synthetic utilization of COG and coal plays a significant role in decreasing the exergy destruction of the MES system. The promising results obtained may lead to a clean coal technology that will utilize COG and coal more efficiently and economically.

Jin, H.G.; Sun, S.; Han, W.; Gao, L. [Chinese Academy of Sciences, Beijing (China)

2009-09-15T23:59:59.000Z

53

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 7.2;" 2 Relative Standard Errors for Table 7.2;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

54

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

Relative Standard Errors for Table 7.1;" Relative Standard Errors for Table 7.1;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

55

Trends in the automation of coke production  

SciTech Connect (OSTI)

Up-to-date mathematical methods, such as correlation analysis and expert systems, are employed in creating a model of the coking process. Automatic coking-control systems developed by Giprokoks rule out human error. At an existing coke battery, after introducing automatic control, the heating-gas consumption is reduced by {>=}5%.

R.I. Rudyka; Y.E. Zingerman; K.G. Lavrov [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

56

Determination of electrical resistivity of dry coke beds  

SciTech Connect (OSTI)

The electrical resistivity of the coke bed is of great importance when producing FeMn, SiMn, and FeCr in a submerged arc furnace. In these processes, a coke bed is situated below and around the electrode tip and consists of metallurgical coke, slag, gas, and metal droplets. Since the basic mechanisms determining the electrical resistivity of a coke bed is not yet fully understood, this investigation is focused on the resistivity of dry coke beds consisting of different carbonaceous materials, i.e., coke beds containing no slag or metal. A method that reliably compares the electrical bulk resistivity of different metallurgical cokes at 1500{sup o} C to 1600{sup o}C is developed. The apparatus is dimensioned for industrial sized materials, and the electrical resistivity of anthracite, charcoal, petroleum coke, and metallurgical coke has been measured. The resistivity at high temperatures of the Magnitogorsk coke, which has the highest resistivity of the metallurgical cokes investigated, is twice the resistivity of the Corus coke, which has the lowest electrical resistivity. Zdzieszowice and SSAB coke sort in between with decreasing resistivities in the respective order. The electrical resistivity of anthracite, charcoal, and petroleum coke is generally higher than the resistivity of the metallurgical cokes, ranging from about two to about eight times the resistivity of the Corus coke at 1450{sup o}C. The general trend is that the bulk resistivity of carbon materials decreases with increasing temperature and increasing particle size.

Eidem, P.A.; Tangstad, M.; Bakken, J.A. [NTNU, Trondheim (Norway)

2008-02-15T23:59:59.000Z

57

Innovative coke oven gas cleaning system for retrofit applications. Quarterly environmental monitoring report No. 2, July 1, 1991--September 30, 1991  

SciTech Connect (OSTI)

The EMP consists of a Compliance Monitoring Sampling Program and a Supplemental monitoring Sampling Program. The Compliance Monitoring Sampling Program will be conducted during a summer and a winter Baseline periods during the Pre-Construction/Construction phases of the Project and during a summer and a winter period following the successful Startup and Operational phase of the completed Project. compliance monitoring consist of conducting all the sampling and observation programs associated with existing required Federal, State, and Local Regulations, Permits and Orders. These include air, water, and waste monitoring and OSHA and NESHAP monitoring. The Supplemental Monitoring Program will also be conducted during a summer and a winter Baseline periods during the Pre-Construction/Construction phases of the Demonstration Facility and during a summer and a winter period following the successful startup and Operational phase of the completed Facility. Supplemental Monitoring includes sampling of 27 additional streams that are important to measure operational or environmental performance and impacts of the installation of the new COG treatment facilities.

Not Available

1992-09-21T23:59:59.000Z

58

Innovative coke oven gas cleaning system for retrofit applications: Environmental Monitoring Program. Baseline sampling program report: Volume 2, Appendix sections 1--7  

SciTech Connect (OSTI)

This report contains no text. It consist entirely of results monitoring stack opacity, benzene surveys, chemical effluent in wastewater, etc.

Stuart, L.M.

1994-05-27T23:59:59.000Z

59

Making a Solar Oven  

Broader source: Energy.gov [DOE]

Students make solar ovens. Student background information is provided. The expected outcome is that students will learn about solar energy transfer.

60

A novel technique for assessing the coking potential of coals/coal blends for non-recovery coke making process  

Science Journals Connector (OSTI)

Abstract In an effort to broaden the scope of coal selection, the authors have developed a novel procedure based on a coefficient, named as Composite Coking Potential (CCP). CCP value assesses the suitability of a coal/coal blend for producing coke of desired quality; measured by the parameter coke strength after reaction (CSR). The coking potential takes into account of various properties of the coals and their proportions in a given coal blend and convert them into a single value. This technique is having advantage since each of these parameters represents different aspects of the coking phenomena along with inter dependence of some of these parameters also exists. This makes the coal selection process extremely difficult and in majority of the cases, decision is taken based on experience. In this investigation, CCP model has been used for selecting the least expensive coal blends which will comply with the minimum coke quality requirements of blast furnace. The study confirms the inter relations between the CCP and the hot strength of coke i.e. CSR. Actual plant data of a non-recovery coke oven have been used for developing and validation of the model. The technique was successfully used in identifying cheaper coals for producing coke with desired quality.

H.P. Tiwari; P.K. Banerjee; V.K. Saxena

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Portable oven air circulator  

DOE Patents [OSTI]

A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

Jorgensen, Jorgen A. (Bloomington, MN); Nygren, Donald W. (Minneapolis, MN)

1983-01-01T23:59:59.000Z

62

Chemicals from Coal Coking  

Science Journals Connector (OSTI)

Chemicals from Coal Coking ... Since 2009, she has been at INCAR-CSIC, researching the preparation and characterization of carbon materials (cokes and fibers) and nanomaterials (nanotubes and graphenes) and their catalytic, environmental, and energy applications. ... He then joined the Fundamental Studies Section of the British Coke (later Carbonization) Research Association, eventually becoming Head of Fundamental Studies. ...

Marcos Granda; Clara Blanco; Patricia Alvarez; John W. Patrick; Rosa Menéndez

2013-09-30T23:59:59.000Z

63

Delayed coking of decant oil and coal in a laboratory-scale coking unit  

SciTech Connect (OSTI)

In this paper, we describe the development of a laboratory-scale delayed coker and present results of an investigation on the recovered liquid from the coking of decant oil and decant oil/coal mixtures. Using quantitative gas chromatography/mass spectroscopy (GC/MS) and {sup 1}H and {sup 13}C NMR, a study was made of the chemical composition of the distillate liquids isolated from the overheads collected during the coking and co-coking process. {sup 1}H and {sup 13}C NMR analyses of combined liquids from coking and co-coking did not show any substantial differences. These NMR results of coking and co-coking liquids agree with those of GC/MS. In these studies, it was observed that co-coking with coal resulted in a decrease in the paraffins contents of the liquid. The percentage of cycloparaffins, indenes, naphthalenes, and tetralins did not change significantly. In contrast, alkyl benzenes and polycyclic aromatic hydrocarbons in the distillate were higher in the co-coking experiments which may have resulted from the distillation of thermally cracked coal macromolecules and the contribution of these molecules to the overall liquid composition. 40 refs., 3 figs., 13 tabs.

Oemer Guel; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University Park, PA (United States). Energy Institute, C205 Coal Utilization Laboratory

2006-08-15T23:59:59.000Z

64

Influence of the permeability of the coal plastic layer on coking pressure  

Science Journals Connector (OSTI)

Ten coals of different rank and coking pressure characteristics were chosen in order to study the time of occurrence of the phenomena that take place during the coking of a coal and the way they affect the generation of dangerous coking pressures. Parameters derived from thermoplastic, thermogravimetric and permeability tests were studied together with semicoke contraction and the coking pressure generated by the coals in a movable wall oven. It was found that for safe coals, the maximum evolution of volatile matter occurs near the temperature of maximum fluidity. The position of the maximum rate of volatile matter evolution with respect to the zone of low permeability varies depending on the coking pressure characteristics of the coals. In addition, the relationship between the period of low permeability to the resolidification temperature may serve to indicate the degree of dangerousness of a coal. The fissure pattern of the semicoke was found to be related to the coking pressure and semicoke contraction.

M.D. Casal; E. Díaz-Faes; R. Alvarez; M.A. Díez; C. Barriocanal

2006-01-01T23:59:59.000Z

65

Fundamentals of Delayed Coking Joint Industry Project  

SciTech Connect (OSTI)

The coking test facilities include three reactors (or cokers) and ten utilities. Experiments were conducted using the micro-coker, pilot-coker, and stirred-batch coker. Gas products were analyzed using an on-line gas chromatograph. Liquid properties were analyzed in-house using simulated distillation (HP 5880a), high temperature gas chromatography (6890a), detailed hydrocarbon analysis, and ASTM fractionation. Coke analyses as well as feedstock analyses and some additional liquid analyses (including elemental analyses) were done off-site.

Volk Jr., Michael; Wisecarver, Keith D.; Sheppard, Charles M.

2003-02-07T23:59:59.000Z

66

Blast furnace coke quality in relation to petroleum coke addition  

SciTech Connect (OSTI)

The incorporation of petroleum coke as an additive in industrial coking coal blends is a practice often used by steel companies. A suitable blast furnace coke produced by replacing part of the coking coal blend with a suitable petroleum coke (addition of 5 to 15%), was made by Great Lakes Carbon Corporation and successfully tested at several blast furnaces. This coke had lower reactivity, less ash and slightly higher sulfur content than coke made without the addition of petroleum coke. In contrast with these results, it has been reported in a BCRA study that additions of petroleum coke to a strong coking coal, above 5 wt%, increased coke reactivity. These differences may be explained on the basis of the coal or blend characteristics to which petroleum coke is added. Petroleum coke addition seems to give better results if the coal/blend has high fluidity. The present situation in Spain is favorable for the use of petroleum coke. So, a study of laboratory and semi-industrial scale was made to assess the possibility of using petroleum coke as an additive to the typical industrial coal blend coked by the Spanish Steel Company, ENSIDESA. The influence of the petroleum coke particle size was also studied to semi-industrial scale.

Alvarez, R.; Diez, M.A.; Menendez, J.A.; Barriocanal, C.; Pis, J.J. [CSIC, Oviedo (Spain). Inst. Nacional del Carbon; Sirgado, M. [ENSIDESA, Aviles (Spain)

1995-12-01T23:59:59.000Z

67

Coke-free dry reforming of model diesel fuel by a pulsed spark plasma at low temperatures using an exhaust gas recirculation (EGR) system  

Science Journals Connector (OSTI)

Dry reforming of diesel fuel, an endothermic reaction, is an attractive process for on-board hydrogen/syngas production to increase energy efficiency. For operating this dry reforming process in a vehicle, we can use the exhaust gas from an exhaust gas recirculation (EGR) system as a source of carbon dioxide. Catalytic dry reforming of heavy hydrocarbon is a very difficult reaction due to the high accumulation of carbon on the catalyst. Therefore, we attempted to use a non-equilibrium pulsed plasma for the dry reforming of model diesel fuel without a catalyst. We investigated dry reforming of model diesel fuel (n-dodecane) with a low-energy pulsed spark plasma, which is a kind of non-equilibrium plasma at a low temperature of 523?K. Through the reaction, we were able to obtain syngas (hydrogen and carbon monoxide) and a small amount of C2 hydrocarbon without coke formation at a ratio of CO2/Cfuel = 1.5 or higher. The reaction can be conducted at very low temperatures such as 523?K. Therefore, it is anticipated as a novel and effective process for on-board syngas production from diesel fuel using an EGR system.

Yasushi Sekine; Naotsugu Furukawa; Masahiko Matsukata; Eiichi Kikuchi

2011-01-01T23:59:59.000Z

68

Fundamentals of Delayed Coking Joint Industry Project  

SciTech Connect (OSTI)

Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking.

Michael Volk; Keith Wisecarver

2004-09-26T23:59:59.000Z

69

Fundamentals of Delayed Coking Joint Industry Project  

SciTech Connect (OSTI)

Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking.

Michael Volk; Keith Wisecarver

2003-09-26T23:59:59.000Z

70

100% Pet coke or pet coke blends combustion  

SciTech Connect (OSTI)

Information is outlined on the combustion of 100 percent petroleum coke or petroleum coke blends. Data are presented on NISCO overviews; fuel (coke) characteristics; delayed coke analysis (1995-96); limestone characteristics/effects; limestone preparation; ash characteristics; vortex finders; agglomerization; and NISCO performance results.

Swindle, D.L.

1996-12-31T23:59:59.000Z

71

Coke Gasification - A Solution to Excess Coke Capacity and High Energy Costs  

E-Print Network [OSTI]

effectively to produce medium-Btu (300 Btu/scf) gas which, in turn, can fuel the refinery furnaces to replace natural gas. Coke gasification should prove economical with natural gas price decontrol and the average price projected to rise to over $14.0 per...

Patel, S. S.

1982-01-01T23:59:59.000Z

72

"Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 5.3;" 3 Relative Standard Errors for Table 5.3;" " Unit: Percents." " "," " " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural","LPG and","(excluding Coal" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"TOTAL FUEL CONSUMPTION",2,3,6,2,4,9

73

Effect of bulk density of coking coal on swelling pressure  

Science Journals Connector (OSTI)

Abstract Coking coals are the important raw materials for the iron and steel industries and play an important role on its sustainable development, especially on the stamp-charging coke making with the characteristics of increasing the bulk density. There is a significance on the reasonable usage of the coking coal resource with the reduced production cost, improved efficiency of the economy to develop the stamp-charging coke making technology. Important effects of the density of coking coal on the coking and caking properties were investigated. In the article, the maximum values of swelling pressure and variation of Laowan gas coal and Xinjian 1/3 coking coal, Longhu fat coal and Didao coking coal, which were mined at Shenyang and Qitaihe respectively, were investigated under different bulk densities during the coking. The results showed that when the values of density increased from 0.85 ton/m3 to 1.05 ton/m3, for the Laowan gas coal, swelling pressure variation and even the maximum value changed slightly. The swelling pressure was 3.63 \\{KPa\\} when the density was improved to 1.05 ton/m3; for the Xinjian 1/3 coking coal, the values of swelling pressure changed significantly and the maximum values was 82.88 \\{KPa\\} with the density improved to 1.05 when the coal was heated to 600°C. The coke porosity, which was investigated by automatic microphotometer, decreased from 47.4% to 33.1% with the increasing of the density from 0.85 ton/m3 to 1.05 ton/m3, and the decreased value was 14.3%. Meanwhile, the pore structures of four cokes were characterized by an optical microscope.

Jinfeng Bai; Chunwang Yang; Zhenning Zhao; Xiangyun Zhong; Yaru Zhang; Jun Xu; Bai Xi; Hongchun Liu

2013-01-01T23:59:59.000Z

74

Covered Product Category: Commercial Ovens  

Broader source: Energy.gov [DOE]

The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial ovens, which is a product category covered by the ENERGY STAR program.

75

Influence of coal preparation and coking conditions on coke reactivity  

Science Journals Connector (OSTI)

The influence of various technological factors on the high-temperature properties of coke is investigated. It is found that factors facilitating an orderly organic structure of the coke (fine grinding and comp...

D. V. Miroshnichenko

2009-02-01T23:59:59.000Z

76

Oven wall panel construction  

DOE Patents [OSTI]

An oven roof or wall is formed from modular panels, each of which comprises an inner fabric and an outer fabric. Each such fabric is formed with an angle iron framework and somewhat resilient tie-bars or welded at their ends to flanges of the angle irons to maintain the inner and outer frameworks in spaced disposition while minimizing heat transfer by conduction and permitting some degree of relative movement on expansion and contraction of the module components. Suitable thermal insulation is provided within the module. Panels or skins are secured to the fabric frameworks and each such skin is secured to a framework and projects laterally so as slidingly to overlie the adjacent frame member of an adjacent panel in turn to permit relative movement during expansion and contraction.

Ellison, Kenneth (20 Avondale Cres., Markham, CA); Whike, Alan S. (R.R. #1, Caledon East, both of Ontario, CA)

1980-04-22T23:59:59.000Z

77

Modified coal batch in coking  

Science Journals Connector (OSTI)

The influence of volatile products from low-metamorphic poorly clinkering G coal on plasticmass formation in rammed batch during coking is considered. An experimental batch of modified coke has been produced at P...

A. G. Starovoit; E. I. Malyi; M. S. Chemerinskii; M. A. Starovoit…

2013-05-01T23:59:59.000Z

78

Met coke world summit 2005  

SciTech Connect (OSTI)

Papers are presented under the following session headings: industry overview and market outlook; coke in the Americas; the global coke industry; and new developments. All the papers (except one) only consist of a copy of the overheads/viewgraphs.

NONE

2005-07-01T23:59:59.000Z

79

Investigating factors that influence carbon dissolution from Coke into Molten iron.  

E-Print Network [OSTI]

??The need for more efficient blast furnaces is even greater now that there are stricter environmental regulations on greenhouse gas (GHG) emissions. Coke within the… (more)

Cham, S. Tsuey

2007-01-01T23:59:59.000Z

80

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

in the India Iron and Steel ISF Coke- Making a. b. c. d.and Stamp Charging). Maximum Recovery of Coke OvenGas Using Coke Oven Gas for achieving higher blast

Sathaye, Jayant

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Coking and gasification process  

DOE Patents [OSTI]

An improved coking process for normally solid carbonaceous materials wherein the yield of liquid product from the coker is increased by adding ammonia or an ammonia precursor to the coker. The invention is particularly useful in a process wherein coal liquefaction bottoms are coked to produce both a liquid and a gaseous product. Broadly, ammonia or an ammonia precursor is added to the coker ranging from about 1 to about 60 weight percent based on normally solid carbonaceous material and is preferably added in an amount from about 2 to about 15 weight percent.

Billimoria, Rustom M. (Houston, TX); Tao, Frank F. (Baytown, TX)

1986-01-01T23:59:59.000Z

82

Cyanide Leaching from Soil Developed from Coking Plant Purifier Waste as Influenced by Citrate  

Science Journals Connector (OSTI)

...Coking Plant Purifier Waste as Influenced by Citrate...developed from gas purifier waste was investigated. Without...developed from gas purifier waste near a former coking...for the iron and steel industries. Their gas was a by-product...2003). During coal gasification, hydrogen cyanide...

Tim Mansfeldt; Heike Leyer; Kurt Barmettler; Ruben Kretzschmar

83

Coke and Coal Research  

Science Journals Connector (OSTI)

... A. Mott at the University of Sheffield, are concerned with problems affecting the hard coke industry, which enjoys facilities for large-scale experimentation through its member firms such as ... of the body organizing this work visited the Kingston and Fulham Laboratories of the British Coal Utilisation Research Association on September 9. Mr. J. G. Bennett, director of ...

1943-09-18T23:59:59.000Z

84

High coking value pitch  

SciTech Connect (OSTI)

A high coking value pitch prepared from coal tar distillate and has a low softening point and a high carbon value while containing substantially no quinoline insolubles is disclosed. The pitch can be used as an impregnant or binder for producing carbon and graphite articles.

Miller, Douglas J.; Chang, Ching-Feng; Lewis, Irwin C.; Lewis, Richard T.

2014-06-10T23:59:59.000Z

85

Investigation of Bonding Mechanism of Coking on Semi-coke from Lignite with Pitch and Tar  

Science Journals Connector (OSTI)

Investigation of Bonding Mechanism of Coking on Semi-coke from Lignite with Pitch and Tar ... Study on the coking mechanism of coal and coal tar pitches. ...

Vedat Arslan

2006-08-16T23:59:59.000Z

86

Coke formation during pyrolysis of 1,2-dichloroethane  

SciTech Connect (OSTI)

Most processes involving hydrocarbons or carbon oxides at high temperatures suffer from the disadvantage of coke formation. The formation of coke deposits during pyrolysis of hydrocarbons or chlorinated hydrocarbons is of significant practical importance. Examples of such processes are the steam cracking of alkanes to produce olefins and the thermal decomposition of 1,2-dichloroethane (EDC) for the production of vinyl chloride monomer (VCM). Even id the rate of coke production is low, the cumulative nature of the solid product will result in reactor fouling. The present work deals with the thermal decomposition of EDC. Coke formation has been studied on metal surfaces in a quartz tubular reactor. The rate of coke deposition was measures on metal foils hanging from one arm of a microbalance. A complete analysis of the product gas was accomplished using on-line gas chromatography. The results show that coke deposition during thermal decomposition of EDC depends on the composition of the feed as well as on the nature of the surface of the metal foil. Small amounts of other components (contamination with other chlorinated hydrocarbons as an example) may have a large influence on the rate of coke formation. The results are discussed in terms of surface composition/morphology of the metal foil and the free radical mechanism for thermal decomposition of FDC.

Holmen, A. [Norwegian Institute of Technology, Trondheim (Norway); Lindvag, O.A. [SINTEF Applied Chemistry, Trondheim (Norway)

1995-12-31T23:59:59.000Z

87

Ovenized microelectromechanical system (MEMS) resonator  

DOE Patents [OSTI]

An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

2014-03-11T23:59:59.000Z

88

Convection automated logic oven control  

SciTech Connect (OSTI)

For the past few years, there has been a greater push to bring more automation to the cooling process. There have been attempts at automated cooking using a wide range of sensors and procedures, but with limited success. The authors have the answer to the automated cooking process; this patented technology is called Convection AutoLogic (CAL). The beauty of the technology is that it requires no extra hardware for the existing oven system. They use the existing temperature probe, whether it is an RTD, thermocouple, or thermistor. This means that the manufacturer does not have to be burdened with extra costs associated with automated cooking in comparison to standard ovens. The only change to the oven is the program in the central processing unit (CPU) on the board. As for its operation, when the user places the food into the oven, he or she is required to select a category (e.g., beef, poultry, or casseroles) and then simply press the start button. The CAL program then begins its cooking program. It first looks at the ambient oven temperature to see if it is a cold, warm, or hot start. CAL stores this data and then begins to look at the food`s thermal footprint. After CAL has properly detected this thermal footprint, it can calculate the time and temperature at which the food needs to be cooked. CAL then sets up these factors for the cooking stage of the program and, when the food has finished cooking, the oven is turned off automatically. The total time for this entire process is the same as the standard cooking time the user would normally set. The CAL program can also compensate for varying line voltages and detect when the oven door is opened. With all of these varying factors being monitored, CAL can produce a perfectly cooked item with minimal user input.

Boyer, M.A.; Eke, K.I. [Apollo U.S.A. Inc., Orlando, FL (United States)] [Apollo U.S.A. Inc., Orlando, FL (United States)

1998-03-01T23:59:59.000Z

89

Design and construction of coke battery 1A at Radlin coke plant, Poland  

SciTech Connect (OSTI)

In the design and construction of coke battery 1A at Radlin coke plant (Poland), coking of rammed coke with a stationary system was employed for the first time. The coke batteries are grouped in blocks. Safety railings are provided on the coke and machine sides of the maintenance areas.

A.M. Kravchenko; D.P. Yarmoshik; V.B. Kamenyuka; G.E. Kos'kova; N.I. Shkol'naya; V.V. Derevich; A.S. Grankin [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

90

Integration of stripping of fines slurry in a coking and gasification process  

DOE Patents [OSTI]

In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.

DeGeorge, Charles W. (Chester, NJ)

1980-01-01T23:59:59.000Z

91

Characterization of Liquids Derived From Laboratory Coking of Decant Oil and Co-Coking of Pittsburgh Seam Bituminous Coal with Decant Oil  

Science Journals Connector (OSTI)

(41-43) Co-coking of decant oil/coal blend produced higher coke and gas yields but less liquid product than those of coking. ... When the same decant oil was blended with the Pittsburgh Seam coal and then delayed co-coked, the overhead liquid contained 2.1% gasoline, 3.6% jet fuel, 4.6% diesel, and 88.8% fuel oil on average. ... It is also possible that catalytic cracking reactions may occur via the coal mineral matter (e.g., clays, which are abundant minerals in coals, can serve as cracking catalysts) (Table 1). ...

Ömer Gül; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert

2009-04-21T23:59:59.000Z

92

An Integrated Model of Coal/Coke Combustion in a Blast Furnace  

Science Journals Connector (OSTI)

A three?dimensional integrated mathematical model of the combustion of pulverized coal and coke is developed. The model is applied to the region of lance?blowpipe?tuyere?raceway?coke bed to simulate the operation of pulverized coal injection in an ironmaking blast furnace. The model integrates two parts: pulverized coal combustion model in the blowpipe?tuyere?raceway?coke bed and the coke combustion model in the coke bed. The model is validated against the measurements in terms of coal burnout and gas composition respectively. The comprehensive in?furnace phenomena are simulated in the raceway and coke bed in terms of flow temperature gas composition and coal burning characteristics. In addition underlying mechanisms for the in?furnace phenomena are analyzed. The model provides a cost?effective tool for understanding and optimizing the in?furnace flow?thermo?chemical characteristics of the PCI process in full?scale blast furnaces.

Y. S. Shen; B. Y. Guo; A. B. Yu; P. Austin; P. Zulli

2010-01-01T23:59:59.000Z

93

Co-gasification of petroleum coke and biomass  

Science Journals Connector (OSTI)

Abstract Gasification may be an attractive alternative for converting heavy oil residue – petroleum coke into valuable synthetic gas. Due to the low reactivity of petroleum coke, it is maybe preferable to convert it in combination with other fuels such as biomass. Co-gasification of petroleum coke and biomass was studied in an atmospheric bubbling fluidised bed reactor and a thermogravimetric analyser (TGA) at KTH Royal University of Technology. Biomass ash in the blends was found to have a catalytic effect on the reactivity of petroleum coke during co-gasification. Furthermore, this synergetic effect between biomass and petcoke was observed in the kinetics data. The activation energy Ea determined from the Arrhenius law for pure petcoke steam gasification in the TGA was 121.5 kJ/mol, whereas for the 50/50 mixture it was 96.3, and for the 20/80 blend – 83.5 kJ/mol.

Vera Nemanova; Araz Abedini; Truls Liliedahl; Klas Engvall

2014-01-01T23:59:59.000Z

94

GREET Development and Applications for Life-Cycle Analysis of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gas Animal Waste Waste water treatment 6 Coke Oven Gas Petroleum Coke Nuclear Energy Hydrogen GREET Examines More Than 85 VehicleFuel Systems Conventional Spark-Ignition...

95

Factors influencing coke gasification with carbon dioxide.  

E-Print Network [OSTI]

??Of all coke properties the influence of the catalytic mineral matter on reactivity of metallurgical cokes is least understood. There is limited information about the… (more)

Grigore, Mihaela

2007-01-01T23:59:59.000Z

96

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network [OSTI]

coal mining, petroleum extraction and refining, coking, andCoal Mining and Dressing Petroleum and Natural Gas Extraction Petroleum Processing, Coking andCoal Mining and Dressing Petroleum and Natural Gas Extraction Petroleum Processing, Coking and

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

97

Coke from coal and petroleum  

DOE Patents [OSTI]

A carbonaceous coke is manufactured by the delayed coking of a slurry mixture of from about 10 to about 30 weight percent of caking or non-caking coal and the remainder a petroleum resid blended at below 50.degree. C.

Wynne, Jr., Francis E. (Allison Park, PA); Lopez, Jaime (Pittsburgh, PA); Zaborowsky, Edward J. (Harwick, PA)

1981-01-01T23:59:59.000Z

98

Definition: Petroleum coke | Open Energy Information  

Open Energy Info (EERE)

coke coke Jump to: navigation, search Dictionary.png Petroleum coke A residue high in carbon content and low in hydrogen that is the final product of thermal decomposition in the condensation process in cracking (breaking of carbon-carbon bonds). This product is reported as marketable coke or catalyst coke.Coke from petroleum has a heating value of 6.024 million Btu per barrel.[1] View on Wikipedia Wikipedia Definition Petroleum coke (often abbreviated Pet coke or petcoke) is a carbonaceous solid derived from oil refinery coker units or other cracking processes. Other coke has traditionally been derived from coal. This coke can either be fuel grade (high in sulphur and metals) or anode grade (low in sulphur and metals). The raw coke directly out of the coker is often

99

Build a Pizza Box Solar Oven  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Check out this staightforward lesson, that can be adapted for all grade levels, on how to build a solar oven.

100

Thermodynamics of water superheated in the microwave oven  

Science Journals Connector (OSTI)

Water is conveniently heated above its normal boiling point in a microwave oven in a glass microwave oven teapot. ...

B. H. Erné; Penny Snetsinger

2000-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network [OSTI]

Mining Accidents Table 2B.6. Coke Production, 1949-20062B.7. Coking Coal Used in Coke Production, 1980-2006 TableConversion (Mtce) Table 4A.19.1. Coke Oven Gas End Use and

Fridley, Ed., David

2008-01-01T23:59:59.000Z

102

China Energy Primer  

E-Print Network [OSTI]

37 Figure 2-8 Coke Production (1980-2006) 99 Figure 3-28 Coke Oven Gas End-use and Inputs35 Table 2-17 Coking Coal Used in Coke Production (1980-

Ni, Chun Chun

2010-01-01T23:59:59.000Z

103

Productivity benefits of industrial energy efficiency measures  

E-Print Network [OSTI]

the blast furnace means less coke is needed, so maintenancecontrol Foamy slag practices Coke making Oxy-fuel burners/Variable speed drive on coke oven gas compressors Coke dry

Worrell, Ernst

2011-01-01T23:59:59.000Z

104

Research on Coal and Coke  

Science Journals Connector (OSTI)

... THE third annual report of the Northern Coke Research Committee records the many-sided activities of its staff working in the Armstrong College ... activities of its staff working in the Armstrong College, Newcastle, on problems of the coals and ...

1932-10-22T23:59:59.000Z

105

Characteristics of coking coal burnout  

SciTech Connect (OSTI)

An attempt was made to clarify the characteristics of coking coal burnout by the morphological analysis of char and fly ash samples. Laboratory-scale combustion testing, simulating an ignition process, was carried out for three kinds of coal (two coking coals and one non-coking coal for reference), and sampled chars were analyzed for size, shape and type by image analysis. The full combustion process was examined in industrial-scale combustion testing for the same kinds of coal. Char sampled at the burner outlet and fly ash at the furnace exit were also analyzed. The difference between the char type, swelling properties, agglomeration, anisotropy and carbon burnout were compared at laboratory scale and at industrial scale. As a result, it was found that coking coals produced chars with relatively thicker walls, which mainly impeded char burnout, especially for low volatile coals.

Nakamura, M. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan); Bailey, J.G. [Univ. of Newcastle, New South Wales (Australia)

1996-12-31T23:59:59.000Z

106

Influence of petroleum coking additive on the quality of coal batch, coke, and tar  

Science Journals Connector (OSTI)

Given the shortage of coal with good coking properties, a petroleum coking additive is introduced in coal batch so as to expand the range of plasticity. This additive improves coke quality in every respect, excep...

I. I. Mel’nikov; V. M. Kryachuk; D. A. Mezin; A. A. Gorbunov…

2011-12-01T23:59:59.000Z

107

Evaluation of coal and its influence on coke quality and the coking process  

Science Journals Connector (OSTI)

The evaluation of coal batch is considered, along with its influence on coke quality and the coking properties. The quality of the coal available for coking at OAO Zapadno-Sibirskii Metallurgicheskii Kombinat is ...

G. R. Gainieva; V. I. Byzova; N. N. Nazarov; L. D. Nikitin…

2008-10-01T23:59:59.000Z

108

Estimating Coke and Pepsi's Price and Advertising Strategies  

E-Print Network [OSTI]

Strategy Distributions for Coke (First Quarter 1977) a)Paper No. 789 ESTIMATING COKE AND PEPSI'S PRICE ADVERTISINGEconomics July, 1998 Estimating Coke and Pepsi’s Price and

Golan, Amos; Karp, Larry S.; Perloff, Jeffrey M.

1998-01-01T23:59:59.000Z

109

Experimental study of elastoplastic mechanical properties of coke drum materials.  

E-Print Network [OSTI]

??Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes the… (more)

Chen, Jie

2010-01-01T23:59:59.000Z

110

New coke-sorting system at OAO Koks  

SciTech Connect (OSTI)

A new coke-sorting system has been introduced at OAO Koks. It differs from the existing system in that it has no bunkers for all-purpose coke but only bunkers for commercial coke. In using this system with coke from battery 4, the crushing of the coke on conveyer belts, at roller screens, and in the commercial-coke bunkers is studied. After installing braking elements in the coke path, their effectiveness in reducing coke disintegration and improving coke screening is investigated. The granulometric composition and strength of the commercial coke from coke battery 3, with the new coke-sorting system, is evaluated.

B.Kh. Bulaevskii; V.S. Shved; Yu.V. Kalimin; S.D. Filippov [OAO Koks, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

111

Utilization of coke and functionalized coke-based composite for uptake of heavy metals from wastewater .  

E-Print Network [OSTI]

??This study investigated the functionalization of coke particles and their utilization for the preparation of coke-polymer composite. Looking at the possibility of using it for… (more)

Mdlalose, Lindani Mbalenhle

2014-01-01T23:59:59.000Z

112

Process for converting coal into liquid fuel and metallurgical coke  

DOE Patents [OSTI]

A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

Wolfe, Richard A. (Abingdon, VA); Im, Chang J. (Abingdon, VA); Wright, Robert E. (Bristol, TN)

1994-01-01T23:59:59.000Z

113

Coke quality for blast furnaces with coal-dust fuel  

SciTech Connect (OSTI)

Recently, plans have been developed for the introduction of pulverized coal injection (PCI) at various Russian metallurgical enterprises. The main incentive for switching to PCI is the recent price rises for Russian natural gas. The paper discusses the quality of coke for PCI into blast furnaces.

Y.A. Zolotukhin; N.S. Andreichikov [Eastern Coal-Chemistry Institute, Yekaterinburg (Russian Federation)

2009-07-01T23:59:59.000Z

114

Effect of Adsorption Contact Time on Coking Coal Particle Desorption Characteristics  

Science Journals Connector (OSTI)

Effect of Adsorption Contact Time on Coking Coal Particle Desorption Characteristics ... Esp. in the last decade a large amt. of data has been published characterizing coals from various coal basins world-wide for their gas sorption capacity. ...

Wei Zhao; Yuanping Cheng; Meng Yuan; Fenghua An

2014-03-20T23:59:59.000Z

115

Hydrogen Generation and Coke Formation over a Diesel Oxidation Catalyst under Fuel Rich Conditions  

Science Journals Connector (OSTI)

Hydrogen Generation and Coke Formation over a Diesel Oxidation Catalyst under Fuel Rich Conditions† ... Hydrogen production via hydrocarbon steam reforming and water gas shift reactions was investigated over a monolith-supported Pt-based diesel oxidation catalyst. ...

Meshari AL-Harbi; Jin-Yong Luo; Robert Hayes; Martin Votsmeier; William S. Epling

2010-12-08T23:59:59.000Z

116

Russian coking coal in 2008 and 2009  

Science Journals Connector (OSTI)

Coal resources and coke production in the second half of 2009 ... are considered. The unsuitability of the available coal for the production of high-strength coke is analyzed.

B. P. Kiselev

2010-10-01T23:59:59.000Z

117

Technological value of coal used for coking  

Science Journals Connector (OSTI)

The technological value of coal used for coking is analyzed, with particular attention to clinkering coal, the coke group, and lean additives, as well as G and GZhO coal. A relation is established between the tec...

A. S. Stankevich; V. S. Stankevich

2013-09-01T23:59:59.000Z

118

Oxidized coal in coking: A review  

Science Journals Connector (OSTI)

A literature review shows that the oxidation of coal changes its granulometric composition, packing density, ... clinkering properties, the quality of the resulting coke, and the yield of coking byproducts. On ac...

N. A. Desna; D. V. Miroshnichenko

2011-05-01T23:59:59.000Z

119

Russian coking coal in 2008 and 2009  

Science Journals Connector (OSTI)

The distribution and quality of Russian coal and coke resources are compared for periods before (the ... definition and determination of the technological value of coal. Analysis of coke strength suggests that, i...

B. P. Kiselev

2009-12-01T23:59:59.000Z

120

Coal fractionation by density for coking purposes  

Science Journals Connector (OSTI)

Scarce coal with good coking properties may be obtained by separating less valuable coal into different density fractions. The use of valuable fractions released in enrichment ensures optimal coking-batch composi...

S. G. Gagarin

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Integrated two stage coking and steam cracking process and apparatus therefor  

SciTech Connect (OSTI)

The invention relates to an improvement in an integrated, two stage coking and steam cracking process for the production of unsaturated light hydrocarbons. A heavy hydrocarbonaceous oil is first coked in a fluidized bed coking zone. The vaporous conversion product is passed to a dilute phase. High temperature cracking in the presence of steam is carried out on the vaporous coker conversion product by injecting into the vapors a stream of hot coke particles at a sufficient temperature and in sufficient amount to raise the coker vapors to steam cracking temperature and supply the endothermic heat of reaction. Solids are separated from product gas in a gas-solids separation zone such as one or more cyclones and sent to the fluid coking zone and the gas is quenched to stop olefin degradation reactions. According to the improvement, relatively low temperature steam is introduced into contact with the separated solids to superheat the steam and cool the solids. Suitably this is effected in a riser on the cyclone dipleg. The solids, after having given up heat to the steam, pass into the coking zone and the superheated steam passes into the dilute phase and serves as part of the dilution steam therefor. Conservation of fuel and mitigation of coke on reactor walls and equipment are advantages of the process.

Oldweiler, M.E.

1983-10-25T23:59:59.000Z

122

Modification of sub-bituminous coal by steam treatment: Caking and coking properties  

Science Journals Connector (OSTI)

A Chinese sub-bituminous Shenfu (SF) coal was steam treated under atmospheric pressure and the caking and coking properties of the treated coals were evaluated by caking indexes (GRI) and crucible coking characterizations. The results show that steam treatment can obviously increase the GRI of SF coal. When the steam treated coals were used in the coal blends instead of SF raw coal, the micro-strength index (MSI) and particle coke strength after reaction (PSR) of the coke increased, and particle coke reactivity index (PRI) decreased, which are beneficial for metallurgical coke to increase the gas permeability in blast furnace. The quality of the coke obtained from 8% of 200 °C steam treated SF coal in coal blends gets to that of the coke obtained from the standard coal blends, in which there was no SF coal addition in the coal blends. The removal of oxygen groups, especially hydroxyl group thus favoring the breakage of the coal macromolecules and allowing the treated coal formation of much more amount of hydrocarbons, may be responsible for the modified results. The mechanism of the steam treatment was proposed based on the elemental analysis, thermo gravimetric (TG) and FTIR spectrometer characterizations of the steam treated coal.

Hengfu Shui; Haiping Li; Hongtao Chang; Zhicai Wang; Zhi Gao; Zhiping Lei; Shibiao Ren

2011-01-01T23:59:59.000Z

123

New Energy Efficiency Standards for Microwave Ovens to Save Consumers...  

Energy Savers [EERE]

New Energy Efficiency Standards for Microwave Ovens to Save Consumers on Energy Bills New Energy Efficiency Standards for Microwave Ovens to Save Consumers on Energy Bills May 31,...

124

Energy Efficiency Standards for Microwave Ovens Saves Consumers...  

Energy Savers [EERE]

Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy...

125

Use of resin-bearing wastes from coke and coal chemicals production at the Novokuznetsk Metallurgical Combine  

SciTech Connect (OSTI)

The coke and coal chemicals plant at the Novokuznetsk Metallurgical Combine is making trial use of a technology that recycles waste products in 'tar ponds.' Specialists from the Ekomash company have installed a recycling unit in one area of the plant's dump, the unit including an inclined conveyor with a steam heater and a receiving hopper The coal preparation shop receives the wastes in a heated bin, where a screw mixes the wastes with pail of the charge for the coking ovens. The mixture subsequently travels along a moving conveyor belt together with the rest of the charge materials. The addition of up to 2% resin-bearing waste materials to the coal charge has not had any significant effect on the strength properties of the coke.

Kul'kova, T.N.; Yablochkin, N.V.; Gal'chenko, A.I.; Karyakina, E.A.; Litvinova, V.A.; Gorbach, D.A.

2007-03-15T23:59:59.000Z

126

Coke–pitch interactions during anode preparation  

Science Journals Connector (OSTI)

Abstract The information on the interactions between coke and pitch is of great value for the aluminum industry. This information can help choose the suitable coke and pitch pairs as well as the appropriate mixing parameters to be used during the production of anodes. In this study, the interaction mechanisms of pitch and coke at the mixing stage were studied by a sessile-drop test using two coal-tar pitches as the liquid and three petroleum cokes as the substrate. The results showed that the coke–pitch interactions are related to both pitch and coke chemical compositions. The contact angle of different coke–pitch systems decreased with increasing time and temperature. At high temperatures, decreasing the pitch viscosity facilitated the spreading of pitch and its penetration into the coke bed. The chemical behavior of petroleum cokes and coal tar pitches were studied using the FT-IR spectroscopy and XPS. The results showed that the wettability behavior of cokes by pitches depends on their physical properties as well as the presence of surface functional groups of coke and pitch which can form chemical bonds.

Arunima Sarkar; Duygu Kocaefe; Yasar Kocaefe; Dilip Sarkar; Dipankar Bhattacharyay; Brigitte Morais; Jérôme Chabot

2014-01-01T23:59:59.000Z

127

Characterization of liquids derived from laboratory coking of decant oil and co-coking of Pittsburgh seam bituminous coal with decant oil  

SciTech Connect (OSTI)

In this study, decant oil and a blend of Pittsburgh seam bituminous coal with decant oil were subjected to coking and co-coking in a laboratory-scale delayed coker. Higher yields of coke and gas were obtained from co-coking than from coking. Coal addition into the feedstock resulted in lighter overhead liquid. GC/MS analyses of gasoline, jet fuel, and diesel show that co-coking of coal/decant oil gave higher quantity aromatic components than that of coking of decant oil alone. Simulated distillation gas chromatography analyses of overhead liquids and GC/MS analyses of vacuum fractions show that when coal was reacted with a decant oil, the coal constituents contributed to the distillable liquids. To address the reproducibility of the liquid products, overhead liquid samples collected at the first, third, and fifth hours of experiments of 6 h duration were evaluated using simulated distillation gas chromatography and {sup 1}H and {sup 13}C NMR. NMR analyses of the liquid products showed that, even though there were slight changes in the {sup 1}H and {sup 13}C spectra, the standard deviation was low for the time-dependent samples. Simulated distillation gas chromatography showed that the yields of refinery boiling range materials (i.e., gasoline, jet fuel, diesel, and fuel oil cuts) were reproducible between runs. Fractionation of the overhead liquids into refinery boiling range materials (gasoline, jet fuel, diesel, fuel oil fractions) showed that the boiling range materials and chemical compositions of fractions were found to be reproducible. 54 refs., 17 tabs.

Omer Gul; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University, University Park, PA (United States)

2009-05-15T23:59:59.000Z

128

Technological value of coal concentrates for coking  

Science Journals Connector (OSTI)

Options are outlined for calculating the technological value of coal and coal concentrates in the context of contractual obligations and the quality of the coke produced.

E. N. Stepanov; G. V. Larin; A. E. Stepanova; I. V. Semiokhina

2010-02-01T23:59:59.000Z

129

Caking and coking properties of the thermal dissolution soluble fraction of a fat coal  

Science Journals Connector (OSTI)

Abstract In the coal blending for coke-making, fat coal has a very important role for the caking and coking properties of the coal blends. In this study, a fat coal was thermally dissolved, and the caking and coking properties of the thermal dissolution soluble factions (TDSFs) from different solvents and temperatures were characterized. It was found that the caking properties of \\{TDSFs\\} were better than that of fat raw coal. The \\{TDSFs\\} obtained from non-polar solvents have a higher caking property than those obtained from polar solvents at the same thermal dissolution (TD) temperature. During TD process, polar solvents can thermally dissolve more polyaromatic compounds into TDSF, thus increasing the softening temperature and decreasing the caking property of the TDSF. For the same TD solvent, the \\{TDSFs\\} obtained from higher temperatures have a lower caking property compared to those obtained from lower temperatures because of more aromatic components and oxygen functional groups entering them. Crucible coking determinations were carried out to evaluate the coking property of the TDSFs. The result suggests that when 5% of TDSF and 5% of non-caking sub-bituminous coal were used instead of the same amount of fat coal and gas coal, respectively in the coal blends, the quality of the coke obtained could get to the level of the coke obtained from the standard coal blends (i.e. without TDSF and sub-bituminous coal). Therefore, the use of TDSF in coal blending for coke-making is one of the effective methods for opening the coking coal resources.

Hengfu Shui; Wenjuan Zhao; Chuanjun Shan; Tao Shui; Chunxiu Pan; Zhicai Wang; Zhiping Lei; Shibiao Ren; Shigang Kang

2014-01-01T23:59:59.000Z

130

Estimating Coke and Pepsi's price and advertising strategies  

E-Print Network [OSTI]

Working Paper No. 789 ESTIMATING COKE AND PEPSI’ PRICE S ANDand Advertising Strategies: Coke and Pepsi) by Amos Golan,Revised, March 1999 Estimating Coke and Pepsi’s Price and

Golan, Amos; Karp, Larry; Perloff, Jeffrey M.

1999-01-01T23:59:59.000Z

131

Influence of the batch's coke-ore ratio and distribution on the porosity of the melting zone  

SciTech Connect (OSTI)

The variation in gas permeability in the melting zone is considered as a function of the height and configuration of the coke packing and the ore component of the batch.

V.P. Tarasov; L.V. Bykov; P.V. Tarasov [Priazovsk State Technical University, Mariupol (Ukraine)

2008-09-15T23:59:59.000Z

132

Interaction of low-metamorphic coal components in coking batch  

Science Journals Connector (OSTI)

The interaction of low-metamorphic coal components in coking batch during pyrolysis is studied. The characteristics of the resulting coke are presented, and the partial hydrogenation is...

E. I. Malyi; A. S. Koverya; M. A. Starovoit

2010-08-01T23:59:59.000Z

133

Clinkering properties of rammed coking coal and coal batches  

Science Journals Connector (OSTI)

The clinkering properties of rammed coking coal and coal batches are investigated. There is a close relation between the clinkering properties and coke quality.

V. M. Shmal’ko; M. A. Solov’ev

2009-03-01T23:59:59.000Z

134

Strength of the coke fillers of carbon materials  

SciTech Connect (OSTI)

Relationships between the ultimate compression strengths of coke fillers for carbon materials determined by various techniques and structures, final coke treatment temperatures, etc., are considered.

V.S. Ostrovskii [Research Institute of Structural Graphite Materials, Moscow (Russian Federation)

2008-12-15T23:59:59.000Z

135

New designs in the reconstruction of coke-sorting systems  

SciTech Connect (OSTI)

In recent Giprokoks designs for the reconstruction of coke-sorting systems, high-productivity vibrational-inertial screens have been employed. This permits single-stage screening and reduction in capital and especially operating expenditures, without loss of coke quality. In two-stage screening, >80 mm coke (for foundry needs) is additionally separated, with significant improvement in quality of the metallurgical coke (25-80 mm). New designs for the reconstruction of coke-sorting systems employ mechanical treatment of the coke outside the furnace, which offers new scope for stabilization of coke quality and permits considerable improvement in mechanical strength and granulometric composition of the coke by mechanical crushing.

A.S. Larin; V.V. Demenko; V.L. Voitanik [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

136

Mechanism of physical transformations of mineral matter in the blast furnace coke with reference to its reactivity and strength  

SciTech Connect (OSTI)

Examinations of polished and dry cut sections of feed and tuyere coke revealed some possible mechanisms for the physical influence of mineral compounds on the reactivity and strength of coke. It was observed that rounded particles of mineral phases that are exposed to the pore walls and surface of coke at high temperature create an inorganic cover, thus reducing the surface available for gas-solid reactions. The particles of mineral matter that have a low melting point and viscosity can affect the coke at earlier stages in the blast furnace process, acting in the upper parts of the blast furnace (BF). The temperature-driven redistribution of mineral phases within the coke matrix probably leads to the creation of weak spots and in general to anisotropy in its properties, thus reducing its strength. 9 refs., 2 figs., 1 tab.

Stanislav S. Gornostayev; Jouko J. Haerkki [University of Oulu, Oulu (Finland). Laboratory of Process Metallurgy

2006-12-15T23:59:59.000Z

137

Oven Baked Sweet Potato Fries Ingredients  

E-Print Network [OSTI]

Oven Baked Sweet Potato Fries Ingredients: Vegetable cooking spray 1 1/2 pounds sweet potato (about spray a 10 x 14 cookie sheet with non-stick cooking spray. 2. Scrub potatoes under tap water with a vegetable brush. With a knife remove any bad spots or defects on the potato. Do not peel. 3. On a cutting

Liskiewicz, Maciej

138

Carol G. Cokely's recent Presentations Cokely, C. (2007). Incorporating Service Learing in to the AuD Curriculum. Invited  

E-Print Network [OSTI]

Carol G. Cokely's recent Presentations Cokely, C. (2007). Incorporating Service Learing in to the AuD Curriculum. Invited speaker, Teaching the Management of Hearing Loss, Pittsburgh, PA. Cokely, C, Pittsburgh, PA. Kricos, P.B., Weinstein, B., Lesner, S., Cokely, C., Milstein, D., & Chisolm, T. (2006) How

O'Toole, Alice J.

139

Delayed Coking of Decant Oil and Coal in a Laboratory-Scale Coking Unit  

Science Journals Connector (OSTI)

The fact that coke quality varies with the chemical composition of the precursor feedstock creates a significant incentive to examine the process of coking and how it relates to the composition of the feedstock. ... (7)?Derbyshire, F. J.; Odoerfer, G. A.; Rudnick, L. R.; Varghese, P.; Whitehurst, D. D. Fundamental studies in the conversion of coals to fuels of increased hydrogen content. ... Bituminous coal/petroleum co-cokes were produced by coking 4:1 blends of vacuum resid (VR)/coal and decant oil (DO)/coal at temperatures of 465 and 500 °C for reaction times of 12 and 18 h, under autogenous pressure in microautoclave reactors. ...

Ömer Gül; Leslie R. Rudnick; Harold H. Schobert

2006-05-18T23:59:59.000Z

140

Market boundaries for coking-coal concentrates  

Science Journals Connector (OSTI)

The construction of geographic and commodity boundaries is considered in relation to the Russian market for coking-coal concentrates. In this market, uniform commodities ... construction of the market boundaries....

V. A. Brodskii

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Mozambique becomes a major coking coal exporter?  

SciTech Connect (OSTI)

In addition to its potential role as a major international supplier of coking coal, Mozambique will also become a major source of power generation for southern Africa. 3 figs.

Ruffini, A.

2008-06-15T23:59:59.000Z

142

New and revised standards for coke production  

SciTech Connect (OSTI)

The need for new and revised standards for coke production in Ukraine and Russia is outlined. Such standards should address improvements in plant operation, working conditions, environmental protection, energy conservation, fire and explosion safety, and economic indices.

G.A. Kotsyuba; M.I. Alpatov; Y.G. Shapoval [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

143

Possibilities of coke manufacture in nonpollutant conditions  

SciTech Connect (OSTI)

The paper presents some possibilities to obtain coke briquettes from anthracite, using as binders petroleum pitch, wheat flour, cement, plaster, ashes from power-plants dried from the electrofilters. Specific thermal post-treatment were proposed for each case, such as: oxidation or heating at low temperatures (under 300 C). As a result the authors obtained coke briquettes to be used in small equipment, with no pollutant pyrogenetic treatment.

Barca, F.; Panaitescu, C.; Vidrighin, C.; Peleanu, I. [Politehnica Univ. Bucharest (Romania); Albastroiu, P. [S.C. ICEM S.A., Bucharest (Romania)

1994-12-31T23:59:59.000Z

144

Réactivité de l'anode et désulfuration : effet du niveau de calcination du coke.  

E-Print Network [OSTI]

??Les propriétés du coke et la performance des anodes sont affectées par le niveau de calcination du coke. Une densité de coke (VBD) élevée implique… (more)

Bergeron-Lagacé, Charles-Luc

2012-01-01T23:59:59.000Z

145

Physical, chemical and thermal changes of coals and coal maceral concentrates during coke formation.  

E-Print Network [OSTI]

??Research Doctorate - Doctor of Philosophy (PhD) The measured coke reactivity index (CRI) and coke strength after reaction (CSR) determined in experiments based on coke… (more)

Xie, Wei

2013-01-01T23:59:59.000Z

146

Giprokoks proposals for improvement in air quality at coke battery 1A of Radlin coke plant  

SciTech Connect (OSTI)

Coke battery 1A, which uses rammed batch, has gone into production at Radlin coke plant (Poland), on the basis of Giprokoks designs. Up-to-date dust-trapping methods are used for the first time within the aspiration systems in the coal-preparation shop and in improving dust collection within the production buildings.

T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

147

Investigation of bonding mechanism of coking on semi-coke from lignite with pitch and tar  

SciTech Connect (OSTI)

In coking, the bonding ability of inert macerals by reactive macerals is dependent on various parameters and also is related to the wettability of the inert macerals. In this study, the effect of carbonization temperature on the wettability of semi-cokes produced at various temperatures has been investigated. Soma and Yatagan semicokes represent inert macerals, and pitch was used as a reactive structure in the experiments. The briquetted pitch blocks were located on the semi-cokes and heated from the softening temperature of pitch (60{sup o}C) to 140{sup o}C to observe the wettability. In addition, liquid tar was also used to determine the wettability of semi-cokes. From the standpoint of wettability, the temperature of 900{sup o}C was determined to be the critical point for coke produced from sub-bituminous coals. 15 refs., 6 figs., 2 tabs.

Vedat Arslan [Dokuz Eylul University, Izmir (Turkey). Engineering Faculty

2006-10-15T23:59:59.000Z

148

Relationship between the technical parameters of cokes produced from blends of three Polish coals of different coking ability  

Science Journals Connector (OSTI)

The demand for metallurgical coke for blast furnaces is forcing the coking industry to look for new sources of coking coals. The physical and chemical parameters of coals used in coking blends determine the quality (reactivity and strength) of the finished cokes. This study examines the technical properties of the cokes produced from various blends of three Polish coals with different coking. These coals were collected from three mines: Zofiówka, Szczyg?owice, and Krupi?ski (Upper Silesian Coal Basin, Poland). The coal charges were coked in the laboratory scale, at temperatures of up to 1000 °C, in an inert atmosphere. The coke reactivity (index CRI) and the coke strength after reaction (CSR) were measured and correlated to the properties of parent coals using statistical analysis. The result of this study shows strong relationships between the concentration of the best coking coal (Zofiówka) in the blend and the CRI and CSR of the resulting coke. The CRI and CSR parameters for cokes obtained from single coals and from their blends show the additive character. This study also confirms the linear relationship between CRI and CSR parameters of the cokes.

A. Koszorek; M. Krzesi?ska; S. Pusz; B. Pilawa; B. Kwieci?ska

2009-01-01T23:59:59.000Z

149

Interactions among Different Fractions in the Thermoplastic State of Goonyella Coking Coal  

Science Journals Connector (OSTI)

An understanding of thermoplastic behavior in coking coal is essential in ascertaining appropriate procedures for the efficient conversion of slightly coking coals into good quality cokes. ... The conversion of coal into coke is detd. ...

Takahiro Yoshida; Toshimasa Takanohashi; Masashi Iino; Haruo Kumagai; Kenji Kato

2004-01-09T23:59:59.000Z

150

Hydrothermal Treatment of a Sub-bituminous Coal and Its Use in Coking Blends  

Science Journals Connector (OSTI)

Crucible coking determinations suggest that hydrothermal treatment can greatly increase the coke strength and the particle coke strength after reaction toward CO2 and decrease the coke reactivity when the hydrothermally treated coals were used in the coal blends instead of the raw coal. ... While the cokes from the crucible coking experiments were subjected to 800 rotations at a speed of 25 rpm, the weight percent of coke particles (>0.2 ... The coal charges were coked in the lab. ...

Hengfu Shui; Ye Wu; Zhicai Wang; Zhiping Lei; Changhui Lin; Shibiao Ren; Chunxiu Pan; Shigang Kang

2012-11-26T23:59:59.000Z

151

Elegest coal in coking batch at OAO EVRAZ ZSMK  

Science Journals Connector (OSTI)

The coking of batch with different proportions of Elegest coal from the Ulug-Khemsk Basin is investigated ... production conditions. The mechanical strength of the coke is improved when such coal is used in the b...

V. L. Osetkovskii; M. M. Naimark; V. G. Lupenko; A. E. Bazegskiy…

2013-03-01T23:59:59.000Z

152

Modification of poorly clinkering coal for use in coking  

Science Journals Connector (OSTI)

If coal is modified by the volatile products formed in pyrolysis, high-quality blast-furnace coke may be produced from batch with a smaller proportion of expensive clinkering coal. In such coking, the batch is mo...

E. I. Malyi

2014-03-01T23:59:59.000Z

153

Improving the preparation of coal batch for coking  

Science Journals Connector (OSTI)

Various methods of preparing coal for coking are analyzed. Laboratory experiments are conducted with a view to obtaining higher-quality coke from batch with a high content of poorly clinkering coal.

M. S. Chemerinskii; A. G. Starovoit; E. I. Malyi

2012-07-01T23:59:59.000Z

154

Coking of coal batch with different content of oxidized coal  

Science Journals Connector (OSTI)

The use of oxidized coal in coking batch increases the analytical moisture content and ... increases the oxygen content; reduces the gross coke yield and the yield of tar, benzene ... of carbon dioxide, pyrogenet...

D. V. Miroshnichenko; I. D. Drozdnik; Yu. S. Kaftan; N. B. Bidolenko…

2012-05-01T23:59:59.000Z

155

Kuznetsk Basin coking coal: Reserves and technological value  

Science Journals Connector (OSTI)

Reserves of Kuznetsk Basin coking coal are analyzed, in terms of rank composition and scope for coke production. The technological value of the coal is evaluated by the OOO VNITs Ugol...

V. P. Ivanov; V. Yu. Sushkov; A. A. Torgunakov; S. A. Pantykin

2008-09-01T23:59:59.000Z

156

Development of coke strength after reaction (CSR) at Dofasco  

SciTech Connect (OSTI)

In order to prevent coke degradation without detrimentally affecting blast furnace service life, Dofasco initiated a project to improve coke strength after reaction. The results of the program and Dofasco's prediction model are presented. 9 refs., 12 figs., 9 tabs.

T.W. Todoschuk; J.P. Price; J.F. Gransden

2004-03-01T23:59:59.000Z

157

Accepted Manuscript Title: Fuel Pyrolysis through Porous Media: Coke Formation  

E-Print Network [OSTI]

Accepted Manuscript Title: Fuel Pyrolysis through Porous Media: Coke Formation and Coupled effect. Gascoin, P. Gillard, M. Bouchez, J. Steelant, Fuel Pyrolysis through Porous Media: Coke Formation Coke Formation and Coupled effect on Permeability2 G. Fau1* , N. Gascoin1 , P. Gillard1 , M. Bouchez2

Paris-Sud XI, Université de

158

Working Paper No. 789 ESTIMATING COKE AND PEPSI'S PRICE  

E-Print Network [OSTI]

Working Paper No. 789 ESTIMATING COKE AND PEPSI'S PRICE AND ADVERTISING STRATEGIES (formerly Estimating Firms'Mixed Price and Advertising Strategies: Coke and Pepsi) by Amos Golan, Larry S. Karp. #12;Estimating Coke and Pepsi's Price and Advertising Strategies Amos Golan* Larry S. Karp** Jeffrey M

Karp, Larry S.

159

Fundamental factors influencing coke strength.  

E-Print Network [OSTI]

??Research Doctorate - Doctor of Philosophy (PhD) In an ironmaking blast furnace solid-gas reactions are important and the rate of iron production is strongly dependent… (more)

Curran, Joel

2009-01-01T23:59:59.000Z

160

The behaviors and fate of polycyclic aromatic hydrocarbons (PAHs) in a coking wastewater treatment plant  

Science Journals Connector (OSTI)

The occurrence, behaviors and fate of 18 \\{PAHs\\} were investigated in a coking wastewater treatment plant in Songshan coking plant, located in Shaoguan, Guangdong Province of China. It was found that the target compounds occurred widely in raw coking wastewater, treated effluent, sludge and gas samples. In raw coking wastewater, high molecular weight (MW) \\{PAHs\\} were the dominant compounds, while 3–6 ring \\{PAHs\\} predominated in the final effluent. The dominant compounds in gas samples were phenathrene, fluoranthene and pyrene, while they were fluoranthene, pyrene, chrysene and benzo[k]fluoranthene for sludge. The process achieved over 97% removal for all the PAHs, 47–92% of eliminations of these target compounds in liquid phase were achieved in biological stage. Different behaviors of \\{PAHs\\} were observed in the primary tank, anaerobic tank, aerobic tank, hydrolytic tank and coagulation tank units, while heavier and lower ones were mainly removed in anaerobic tank and aerobic tanks, respectively. Regarding the fate of PAHs, calculated fractions of mass losses for low MW \\{PAHs\\} due to transformation and adsorption to sludge accounted for 15–50% and 24–49%, respectively, while the rest was less than 1%. For high MW PAHs, the mass losses were mainly due to adsorption to sludge and separation with tar (contributing 56–76% and 22–39%, respectively), and the removal through transformation was less.

Wanhui Zhang; Chaohai Wei; Xinsheng Chai; Jingying He; Ying Cai; Man Ren; Bo Yan; Pingan Peng; Jiamo Fu

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Influence of the coking properties of coal batch on coke properties  

Science Journals Connector (OSTI)

At OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (ZSMK), research is undertaken to improve the optimization of coking batch. The basic approach, proposed by...K opt..., which characterizes the ...

D. A. Zavalishin; L. S. Belaya; G. R. Gainieva; V. G. Lupenko

2009-10-01T23:59:59.000Z

162

Water protection in coke-plant design  

SciTech Connect (OSTI)

Wastewater generation, water consumption, and water management at coke plants are considered. Measures to create runoff-free water-supply and sewer systems are discussed. Filters for water purification, corrosion inhibitors, and biocides are described. An integrated single-phase technology for the removal of phenols, thiocyanides, and ammoniacal nitrogen is outlined.

G.I. Alekseev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

163

Reducing dust emissions at OAO Alchevskkoks coke battery 10A  

SciTech Connect (OSTI)

Coke battery 10A with rammed batch is under construction at OAO Alchevskkoks. The design documentation developed by Giprokoks includes measures for reducing dust emissions to the atmosphere. Aspiration systems with dry dust trapping are employed in the new components of coke battery 10A and in the existing coke-sorting equipment. Two-stage purification of dusty air in cyclones and bag filters is employed for the coke-sorting equipment. This system considerably reduces coke-dust emissions to the atmosphere.

T.F. Trembach; E.N. Lanina [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

164

Solar Oven, Take One: FAIL | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Oven, Take One: FAIL Solar Oven, Take One: FAIL Solar Oven, Take One: FAIL June 15, 2011 - 11:56am Addthis Our homemade solar oven. | Courtesy of Moon Choe Our homemade solar oven. | Courtesy of Moon Choe Moon Choe EERE Summer Intern The first time I ever saw solar cookers was on the news in the summer of 2009 (though that would make it their winter, as I was living in Chile at the time), as part of a development project in the north, which is mostly desert. I had no idea solar cookers were so markedly simple in all various facets, such as appearance, use, and construction, and ever since then, it always remained on my to-do list to make one of my own. Another added benefit that I was unaware of is that a solar cooker works at any time of year, so long as it's receiving direct sunlight (i.e. not

165

Solar Oven, Take One: FAIL | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Oven, Take One: FAIL Solar Oven, Take One: FAIL Solar Oven, Take One: FAIL June 15, 2011 - 11:56am Addthis Our homemade solar oven. | Courtesy of Moon Choe Our homemade solar oven. | Courtesy of Moon Choe Moon Choe EERE Summer Intern The first time I ever saw solar cookers was on the news in the summer of 2009 (though that would make it their winter, as I was living in Chile at the time), as part of a development project in the north, which is mostly desert. I had no idea solar cookers were so markedly simple in all various facets, such as appearance, use, and construction, and ever since then, it always remained on my to-do list to make one of my own. Another added benefit that I was unaware of is that a solar cooker works at any time of year, so long as it's receiving direct sunlight (i.e. not

166

RESIDUA UPGRADING EFFICIENCY IMPROVEMENT MODELS: COKE FORMATION PREDICTABILITY MAPS  

SciTech Connect (OSTI)

The dispersed particle solution model of petroleum residua structure was used to develop predictors for pyrolytic coke formation. Coking Indexes were developed in prior years that measure how near a pyrolysis system is to coke formation during the coke formation induction period. These have been demonstrated to be universally applicable for residua regardless of the source of the material. Coking onset is coincidental with the destruction of the ordered structure and the formation of a multiphase system. The amount of coke initially formed appears to be a function of the free solvent volume of the original residua. In the current work, three-dimensional coke make predictability maps were developed at 400 C, 450 C, and 500 C (752 F, 842 F, and 932 F). These relate residence time and free solvent volume to the amount of coke formed at a particular pyrolysis temperature. Activation energies for two apparent types of zero-order coke formation reactions were estimated. The results provide a new tool for ranking residua, gauging proximity to coke formation, and predicting initial coke make tendencies.

John F. Schabron; A. Troy Pauli; Joseph F. Rovani Jr.

2002-05-01T23:59:59.000Z

167

Relation between the coking-chamber height, the coking pressure, and the packing density of regular or partially briquetted coal batch  

Science Journals Connector (OSTI)

Since coking coal is characterized by both elasticity and ductility in the plastic state, the coal charge of coke furnaces that contains a plastic layer exerts pressure (coking pressure) on the chamber walls. The...

L. V. Kopeliovich; V. I. Sukhorukov; V. I. Shvetsov

2012-07-01T23:59:59.000Z

168

Preparation and evaluation of hydrotreating catalysts based on activated carbon derived from oil sand petroleum coke  

Science Journals Connector (OSTI)

Novel Ni–Mo/activated carbon (AC) hydrotreating catalysts were prepared and evaluated for upgrading heavy vacuum gas oil (HVGO). The AC supports were derived from Alberta oil sand petroleum coke, i.e. fluid coke and/or delayed coke, hereafter referred to as OSP coke, through a chemical process. The BET surface area was as high as 2194 m2/g for the fluid coke derived AC and 2357 m2/g for the delayed coke derived AC. Both \\{ACs\\} contained a large number of micropores with pore volume as high as 1.2 cm3/g. Ni and Mo based active component precursors could be easily loaded on the activated carbon supports by chemical impregnation of nickel nitrate and ammonium molybdate followed by calcination in nitrogen at 773 K without further modification or oxidation treatment to the activated carbons. Scanning electron microscopy (SEM) observation showed highly porous surface structure of the bare activated carbon supports and well dispersed metal (oxide) precursor nanoparticles of 30–50 nm loaded on the AC supports. For comparison, two reference catalysts were also prepared by the same procedure but using commercial activated carbon and porous alumina as supports. After catalyst activation by sulfiding, the hydrotreating performance of the prepared catalysts was evaluated in a magnetically stirred autoclave with a HVGO feedstock to examine their hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) activities. Two commercial hydrotreating catalysts were also tested and compared under similar conditions with the same feed. The results showed that the catalysts based on the activated carbon supports prepared from OSP coke had better hydrotreating performance than the other catalysts. Scanning transmission electron microscopy (STEM) characterization of the catalysts after activation showed that small particles of nanostructure (2–5 nm in size) were evenly embedded in the carbon matrix except for some bigger particles that were located on the catalyst surface. Energy dispersive X-ray (EDX) spectroscopy revealed that these particles were composed of Ni, Mo and S elements. The dispersed nanoparticles formed the active sites and were responsible for the observed high HDS and HDN activity. Elemental analysis and surface characterization of the spent catalysts showed that the formation of coke precursors was favored on the alumina supported catalyst, which resulted in catalyst deactivation.

Yu Shi; Jinwen Chen; Jian Chen; Robb A. Macleod; Marek Malac

2012-01-01T23:59:59.000Z

169

REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE  

SciTech Connect (OSTI)

Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke (1, 2). Petroleum coke is most commonly blended with coal in proportions suitable to meet sulfur emission compliance. Petroleum coke is generally less reactive than coal; therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the combustion of petroleum coke alone. Although petroleum coke is a desirable fuel for producing relatively inexpensive electrical power, concerns about the effects of petroleum coke blending on combustion and pollution control processes exist in the coal-fired utility industry (3). The Energy & Environmental Research Center (EERC) completed a 2-year technical assessment of petroleum coke as a supplemental fuel. A survey questionnaire was sent to seven electric utility companies that are currently cofiring coal and petroleum coke in an effort to solicit specific suggestions on research needs and fuel selections. An example of the letter and survey questionnaire is presented in Appendix A. Interest was expressed by most utilities in evaluating the effects of petroleum coke blending on grindability, combustion reactivity, fouling, slagging, and fly ash emissions control. Unexpectedly, concern over corrosion was not expressed by the utilities contacted. Although all seven utilities responded to the question, only two utilities, Northern States Power Company (NSP) and Ameren, sent fuels to the EERC for evaluation. Both utilities sent subbituminous coals from the Power River Basin and petroleum shot coke samples. Petroleum shot coke is produced unintentionally during operational upsets in the petroleum refining process. This report evaluates the effects of petroleum shot coke blending on grindability, fuel reactivity, fouling/slagging, and electrostatic precipitator (ESP) fly ash collection efficiency.

Kevin C. Galbreath; Donald L. Toman; Christopher J. Zygarlicke

1999-09-01T23:59:59.000Z

170

Path Analysis of Biomarkers of Exposure and Early Biological Effects among Coke-Oven Workers Exposed to Polycyclic Aromatic Hydrocarbons  

Science Journals Connector (OSTI)

...8-diol of benzo(a)pyrene to more water-soluble trans-dihydrodiols, which...workers exposed to polycyclic aromatic hydrocarbons in engine repair workshops. Mutat Res...determination of exposure to polycyclic aromatic hydrocarbons. Int Arch Occup Environ Health 2002...

Li Qiu; Shuguang Leng; Zhongxu Wang; Yufei Dai; Yuxin Zheng; and Zengzhen Wang

2007-06-01T23:59:59.000Z

171

REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE  

SciTech Connect (OSTI)

A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance. Although the blending of petroleum coke with coal may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

NONE

1998-09-01T23:59:59.000Z

172

7, 14791506, 2007 apportionment of the  

E-Print Network [OSTI]

, coal residential, coke oven, coal power plant, biomass burning, natural gas (NG) combustion. The major showed distinct seasonal variations. High contributions of biomass burning and coal (residential and coke is the world's largest coal consumption region (IEA, 2006). Thu

Paris-Sud XI, Université de

173

Catalyst-Assisted Production of Olefins from Natural Gas Liquids...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Catalyst-Assisted Production of Olefins from Natural Gas Liquids: Prototype Development and Full-Scale Testing New Process Produces Ethylene More Efficiently and Reduces Coke...

174

Table 16. U.S. Coke Exports  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coke Exports U.S. Coke Exports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 16. U.S. Coke Exports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Destination April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 162,796 79,217 201,795 242,013 340,944 -29.0 Canada* 73,859 17,837 112,348 91,696 161,596 -43.3 Mexico 88,535 60,517 86,721 149,052 176,163 -15.4 Other** 402 863 2,726 1,265 3,185 -60.3 South America Total 223 217 591 440 1,158 -62.0 Other** 223 217 591 440 1,158 -62.0 Europe Total 48,972 59,197 - 108,169 6 NM Other** 347 11,743 - 12,090 - - United Kingdom 48,625 47,454 - 96,079 6 NM Asia Total 317 553 633 870 4,778

175

Table 21. U.S. Coke Imports  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coke Imports U.S. Coke Imports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 21. U.S. Coke Imports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Origin April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 10,284 2,293 159,462 12,577 183,712 -93.2 Canada 3,009 2,293 159,462 5,302 183,712 -97.1 Panama 7,275 - - 7,275 - - South America Total 25,267 13,030 88,424 38,297 106,612 -64.1 Brazil - - 78,595 - 78,595 - Colombia 25,267 13,030 9,829 38,297 28,017 36.7 Europe Total 6,044 40,281 165,027 46,325 485,791 -90.5 Czech Republic - 170 - 170 - - Spain 363 - - 363 - - Ukraine 5,681 40,111 5,047 45,792 53,543 -14.5 United Kingdom

176

Coking properties of perhydrous low-rank vitrains. Influence of pyrolysis conditions  

E-Print Network [OSTI]

generally lead to increased coking potential of coals characterised in the resulting cokes by large sizes equivalent to natural coking coals, since the cokes from these residues are always made of smaller MOD than those obtained for coking coals. For comparison, a similar characterisation, carried out

Paris-Sud XI, Université de

177

Reducing Energy Consumption on Process Ovens & Oxidation Systems  

E-Print Network [OSTI]

. The products manufactured include baked goods, cereals, pet food, tobacco, and many other products. Ovens are used to bake and cure surface coated materials. Such as building siding, window frames, window blinds, automotive parts, wood products...

Worachek, C.

178

PITTSBURGH REGIONAL ENVIRONMENTAL THREATS ANALYSIS  

E-Print Network [OSTI]

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Coke Oven Emissions.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Carbon Tetrachloride.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Acetaldehyde

Jiang, Huiqiang

179

Coke profile and effect on methane/ethylene conversion process.  

E-Print Network [OSTI]

??The objective of this study was to investigate the coke profile with respect to time on stream and the change of product distribution due to… (more)

Al-Solami, Bandar

2012-01-01T23:59:59.000Z

180

The methods of steam coals usage for coke production  

SciTech Connect (OSTI)

Nowadays, high volatile bituminous coals are broadly used for metallurgical coke production in Russia. The share of such coals in the coking blend is variable from 20 to 40% by weight. There are some large coal deposits in Kuznetskii basin which have coals with low caking tendency. The low caking properties of such coals limit of its application in the coking process. At the same time the usage of low caking coals for coke production would allow flexibility of the feedstock for coke production. Preliminary tests, carried out in COAL-C's lab has shown some differences in coal properties with dependence on the size distribution. That is why the separation of the well-caking fraction from petrographically heterogeneous coals and its further usage in coking process may be promising. Another way for low caking coals application in the coke industry is briquettes production from such coals. This method has been known for a very long time. It may be divided into two possible directions. First is a direct coking of briquettes from the low caking coals. Another way is by adding briquettes to coal blends in defined proportion and combined coking. The possibility of application of coal beneficiation methods mentioned above was investigated in present work.

Korobetskii, I.A.; Ismagilov, M.S.; Nazimov, S.A.; Sladkova, I.L.; Shudrikov, E.S.

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Reducing power production costs by utilizing petroleum coke. Annual report  

SciTech Connect (OSTI)

A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

Galbreath, K.C.

1998-07-01T23:59:59.000Z

182

Nippon Coke and Engineering Sumitomo Corp JV | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name: Nippon Coke and Engineering & Sumitomo Corp JV Place: Tokyo, Japan Zip: 135-6007 Product: Japan-based natural graphite base anode materials joint...

183

Systematic approach to industrial oven optimisation for energy saving  

Science Journals Connector (OSTI)

Abstract Industrial ovens consume a sizable proportion of energy within the manufacturing sector. Although there has been considerable research into energy reduction of industrial processes throughout literature, there is not yet a generalised tool to reduce energy within industrial ovens. The systematic approach presented aims to guide an engineer through five stages of oven optimisation. These involve defining the scope of the optimisation project, measuring and analysing process variables in order to develop fundamental understanding of the system so that an optimisation plan can be established and then implemented. The paper gives an application example of the methodology to a curing oven within a masking tape manufacturing facility. This approach showed an estimated annual saving of 1,658,000 kWh (29% reduction of the oven's energy consumption and a 4.7% reduction of the whole plant's energy consumption) with very little capital expenditure. As the methodology can be tailored to accommodate individual optimisation options for each oven scenario, while still providing a clear pathway, it has potential applications within the wider manufacturing industry.

F. Pask; J. Sadhukhan; P. Lake; S. McKenna; E.B. Perez; A. Yang

2014-01-01T23:59:59.000Z

184

Impact of Coal-Coking Effluent on Sediment Microbial Communities: a Multivariate Approach  

Science Journals Connector (OSTI)

...General Microbial Ecology Impact of Coal-Coking Effluent on Sediment Microbial...response to and recovery from coal-coking waste effluent was evaluated for...community response. Impact of coal-coking effluent on sediment microbial...

Gary S. Sayler; Timothy W. Sherrill; Richard E. Perkins; Lawrence M. Mallory; Michael P. Shiaris; Deana Pedersen

1982-11-01T23:59:59.000Z

185

DELAYED COKING OF SOLVENT EXTRACTED COAL FOR PRODUCTION OF ANODE GRADE COKE: CHARACTERIZATION OF SOLID AND LIQUID PRODUCTS.  

E-Print Network [OSTI]

??This study investigates the feasibility of using high temperature solvent extraction of coal to produce feedstock for the production of anode grade coke through delayed… (more)

Karri, Vamsi

2011-01-01T23:59:59.000Z

186

RELATION BETWEEN TEXTURE AND REACTIVITY IN METALLURGICAL COKES OBTAINED FROM COAL USING PETROLEUM COKE AS ADDITIVE  

E-Print Network [OSTI]

Reactivity to C O2 is, perhaps, the most importam quality parameter used to evaluate the performance of a metallurgical coke in the blast furnace [ 1]. A lot of effort has been made to study how it is influenced by the

J. J. Pis; J. A. Men~ndez; R. Alvarez; M. A. Diez; J. B. Parra

187

Dry purification of aspirational air in coke-sorting systems with wet slaking of coke  

SciTech Connect (OSTI)

Coke transportation after wet slaking is accompanied by the release of dust in the production building and in the surrounding atmosphere. Wet methods are traditionally used to purify very humid air. Giprokoks has developed designs for highly efficient dry dust-removal methods in such conditions.

T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

188

Adsorptive removal of nitrogen from coal-based needle coke feedstocks using activated carbon.  

E-Print Network [OSTI]

??A low percentage of nitrogen in needle coke feedstocks is desired for the reduction of puffing during the process of graphitization of needle coke. The… (more)

Madala, Sreeja.

2009-01-01T23:59:59.000Z

189

Prediction of Coke Quality in Ironmaking Process: A Data Mining Approach.  

E-Print Network [OSTI]

??Coke is an indispensable material in Ironmaking process by blast furnace. To provide good and constant quality coke for stable and efficient blast furance operation… (more)

Hsieh, Hsu-huang

2006-01-01T23:59:59.000Z

190

Supplement of Atmos. Chem. Phys., 14, 65716603, 2014 http://www.atmos-chem-phys.net/14/6571/2014/  

E-Print Network [OSTI]

for coal-charging process 0 0 0 0 10 10 0 FGD for coke oven gas 0 0 0 0 10 10 0 Combination[1] BAU[2]/PC[2] 2005 2010 2020 2030 2020 2030 2030 Sintering FGD 0 10 20 40 95 100 100 Coke oven FGD 100 Hot rolling ESP 0 0 0 0 70 95 100 Cold rolling HED 0 0 0 0 70 95 100 Coke oven WET 100 100 100 100

Pierce, Jeffrey

191

Physicochemical characterization of coke-plant soil for the assessment of polycyclic aromatic hydrocarbon availability and the feasibility of phytoremediation  

SciTech Connect (OSTI)

Coke oven site soil was characterized to assess the particle association and availability of polycyclic aromatic hydrocarbons (PAHs). We identified various carbonaceous materials including coal, coke, pitch, and tar decanter sludge. Most of the PAHs were associated with the polymeric matrix of tar sludge or hard pitch as discrete particles, coatings on soil mineral particles, or complex aggregates. The PAH availability from these particles was very low due to hindered diffusive release from solid tar or pitch with apparent diffusivities of 6 x 10{sup -15} for phenanthrene, 3 x 10{sup -15} for pyrene, and 1 x 10{sup -15} cm{sup 2}/s for benzo(a)pyrene. Significant concentrations of PAHs were observed in the interior of solid tar aggregates with up to 40,000 mg/kg total PAHs. The release of PAHs from the interior of such particles requires diffusion over a substantial distance, and semipermeable membrane device tests confirmed a very limited availability of PAHs. These findings explain the results from three years of phytoremediation of the site soil, for which no significant changes in the total PAH concentrations were observed in the test plot samples. The observed low bioavailability of PAHs probably inhibited PAH phytoremediation, as diffusion-limited mass transfer would limit the release of PAHs to the aqueous phase.

Ahn, S.; Werner, D.; Luthy, R.G. [Stanford University, Stanford, CA (United States). Dept. of Civil & Environmental Engineering

2005-09-01T23:59:59.000Z

192

A container for heat treating materials in microwave ovens  

DOE Patents [OSTI]

The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed to top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation for reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achievable in the oven without the container.

Holcombe, C.E.; Dykes, N.L.; Kimrey, H.D. Jr.; Mills, J.E.

1988-01-26T23:59:59.000Z

193

Container for heat treating materials in microwave ovens  

DOE Patents [OSTI]

The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed of top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achieveable in the oven without the container.

Holcombe, Cressie E. (Farragut, TN); Dykes, Norman L. (Oak Ridge, TN); Kimrey, Jr., Harold D. (Knoxville, TN); Mills, James E. (Knoxville, TN)

1989-01-01T23:59:59.000Z

194

Testing of the Burns-Milwaukee`s Sun Oven  

SciTech Connect (OSTI)

A Burns-Milwaukee Sun Oven was tested at Sandia`s Solar Thermal Test Facility. It was instrumented with five type K thermocouples to determine warm-up rates when empty and when a pot containing two liters of water was placed inside. It reached inside air temperatures above 160{degrees}C (320{degrees}F). It heated two liters of water from room temperatures to 80{degrees}C, (175{degrees}F), in 75 minutes. Observations were also made on the cooling and reheating rates during a cloud passage. The adverse effects of wind on operation of the solar oven was also noted.

Moss, T.A.

1997-03-01T23:59:59.000Z

195

Research on the evolvement of morphology of coking coal during the coking process  

Science Journals Connector (OSTI)

Abstract The evolvement of morphology and structure of the coal with different metamorphic degrees during coking process in the vertical furnace was investigated by infrared Image detector. Moreover, the temperature distribution in the radial direction and the crack formation were also studied in heating process. The results show that the amount of crack and the shrinkage level of char decrease with the coal rank rising. In addition, the initial temperature of crack formation for char increases with the coal rank rising.

Xiangyun Zhong; Shiyong Wu; Yang Liu; Zhenning Zhao; Yaru Zhang; Jinfeng Bai; Jun Xu; Bai Xi

2013-01-01T23:59:59.000Z

196

Coke mineral transformations in the experimental blast furnace  

SciTech Connect (OSTI)

Blast furnace efficiency may be improved by optimizing coke reactivity. Some but not all forms of mineral matter in the coke modify its reactivity, but changes in mineral matter that occur within coke while in the blast furnace have not been fully quantified. To determine changes in mineral matter forms in the blast furnace, coke samples from a dissection study in the LKAB experimental blast furnace (EBF) were characterized using SEM/EDS analysis, EPMA (microprobe), and low-temperature ashing/quantitative XRD analysis. Variations in alkali concentration, particularly potassium, dominated the compositional changes. At high concentrations of potassium, the mineral matter was largely potassium-bearing but even more potassium was diffused throughout the coke and not associated with mineral matter. There was little difference in potassium concentration between the core and surface of the coke pieces, suggesting that potassium diffused rapidly through the whole coke. Iron, calcium, silicon, and aluminum concentrations were relatively constant in comparison, although the mineralogy of all elements changed significantly with changing temperature. 23 refs., 20 figs., 9 tabs.

Kelli Kazuberns; Sushil Gupta; Mihaela Grigore; David French; Richard Sakurovs; Mats Hallin; Bo Lindblom; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). Cooperative Research Centre for Coal in Sustainable Development (CCSD)

2008-09-15T23:59:59.000Z

197

Surveyor: A System for Generating Coherent Survey Articles for Scientific Topics Rahul Jha and Reed Coke  

E-Print Network [OSTI]

Coke Department of EECS University of Michigan Ann Arbor, MI, 48109 Dragomir Radev Department of EECS

Radev, Dragomir R.

198

Variation in coke properties within the blast-furnace shop  

SciTech Connect (OSTI)

In active production at OAO Magnitogorskii Metallurgicheskii Kombinat (MMK), samples of melt materials were taken during shutdown and during planned repairs at furnaces 1 and 8. In particular, coke was taken from the tuyere zone at different distances from the tuyere tip. The mass of the point samples was 2-15 kg, depending on the sampling zone. The material extracted from each zone underwent magnetic separation and screening by size class. The resulting coke sample was averaged out and divided into parts: one for determining the granulometric composition and mechanical strength; and the other for technical analysis and determination of the physicochemical properties of the coke.

E.N. Stepanov; I.I. Mel'nikov; V.P. Gridasov; A.A. Stepanova [OAO Magnitogorskii Metallurgicheskii Kombinat (MMK), Magnitogorsk, (Russian Federation)

2009-04-15T23:59:59.000Z

199

Thermal analyses of LiCoO2 lithium-ion battery during oven tests  

Science Journals Connector (OSTI)

A three dimensional thermal abuse model for graphite/LiPF6/LiCoO2 batteries is established particularly for oven tests. To ... of heat release condition and oven temperature on battery thermal behaviors, we perfo...

Peng Peng; Yiqiong Sun; Fangming Jiang

2014-10-01T23:59:59.000Z

200

Graphitized needle cokes and natural graphites for lithium intercalation  

SciTech Connect (OSTI)

This paper examined effects of heat treatment and milling (before or after heat treatment) on the (electrochemical) intercalating ability of needle petroleum coke; natural graphite particles are included for comparison. 1 tab, 4 figs, 7 refs.

Tran, T.D.; Spellman, L.M.; Pekala, R.W. [Lawrence Livermore National Lab., CA (United States); Goldberger, W.M. [Superior Graphite Co., Chicago, IL (United States); Kinoshita, K. [Lawrence Berkeley National Lab., CA (United States)

1996-05-10T23:59:59.000Z

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Variation in mineral composition of coal during enrichment and coking  

Science Journals Connector (OSTI)

The parameters I b and B b used in developing an optimal coking-batch composition are determined from data on ... of the ash in Donetsk Basin and other coal. It is found that, when...

M. L. Ulanovskii; A. N. Likhenko

2009-06-01T23:59:59.000Z

202

Coking properties of coal pitch in coal batch  

Science Journals Connector (OSTI)

The coking properties of coal pitch depend significantly on its fractional composition, ... : 2: 2. This is typical of coal pitch with a softening temperature of 75– ... Such pitch is the best clinkering additive...

S. G. Gagarin; Yu. I. Neshin

2011-09-01T23:59:59.000Z

203

Coal preparation, coking, and slaking in China and Japan  

Science Journals Connector (OSTI)

In China and Japan, measures have been developed to maintain constant coke quality and hence permit economical and stable blast-furnace operation with the injection of coal-dust fuel; and to reduce the cost of th...

I. F. Kurunov; P. V. Lizogub; O. V. Golubev

2010-09-01T23:59:59.000Z

204

Coking theory: Internal stress in the coal batch  

Science Journals Connector (OSTI)

The development of local internal stress in the coal batch is analyzed on the basis of ... theoretical and experimental data. Its influence on coke quality is demonstrated. The influence of mineralized ... large ...

V. I. Sukhorukov

2011-09-01T23:59:59.000Z

205

Share a Coke - An Investigation of Social Media Marketing.  

E-Print Network [OSTI]

??This investigation examines the underlying factors behind audience participation in Coca-Cola’s ‘Share a Coke’ campaign, which became a trend on social media in Denmark in… (more)

Trougaard, Victor Frederic Wagn

2014-01-01T23:59:59.000Z

206

RESIDUA UPGRADING EFFICIENCY IMPROVEMENT MODELS: WRI COKING INDEXES  

SciTech Connect (OSTI)

Pyrolysis experiments were conducted with three residua at 400 C (752 F) at various residence times. The wt % coke and gaseous products were measured for the product oils. The Western Research Institute (WRI) Coking Indexes were determined for the product oils. Measurements were made using techniques that might correlate with the Coking Indexes. These included spin-echo proton nuclear magnetic resonance spectroscopy, heat capacity measurements at 280 C (536 F), and ultrasonic attenuation. The two immiscible liquid phases that form once coke formation begins were isolated and characterized for a Boscan residuum pyrolyzed at 400 C (752 F) for 55 minutes. These materials were analyzed for elemental composition (CHNS), porphyrins, and metals (Ni,V) content.

John F. Schabron; Joseph F. Rovani, Jr.; Francis P. Miknis; Thomas F. Turner

2003-06-01T23:59:59.000Z

207

Table 38. Coal Stocks at Coke Plants by Census Division  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Stocks at Coke Plants by Census Division Coal Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 38. Coal Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Census Division June 30, 2013 March 31, 2013 June 30, 2012 Percent Change (June 30) 2013 versus 2012 Middle Atlantic w w w w East North Central 1,313 1,177 1,326 -1.0 South Atlantic w w w w East South Central w w w w U.S. Total 2,500 2,207 2,295 8.9 w = Data withheld to avoid disclosure. Note: Total may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration (EIA), Form EIA-5, 'Quarterly Coal Consumption and Quality Report - Coke Plants.'

208

Co-gasification of Biomass with Coal and Oil Sand Coke in a Drop Tube Furnace  

Science Journals Connector (OSTI)

From this work, a synergistic effect was observed for blends of coal with petcoke and an increase in the production of H2 and CO was obtained. ... Finally, blending biomass with coal?petcoke blends did not produce any significant change in H2 production, although slight variations were observed in the production of CO and CO2. ... In addn., co-gasification tests of binary blends of a bituminous coal with different types of biomass (up to 10%) and petroleum coke (up to 60%), as well as ternary blends of coal-petcoke-biomass (45-45-10%) were conducted to study the effect of blending on gas prodn. ...

Chen Gao; Farshid Vejahati; Hasan Katalambula; Rajender Gupta

2009-10-13T23:59:59.000Z

209

Demonstration of a fuel-saving system for paint-curing ovens  

SciTech Connect (OSTI)

Two curing ovens at Roll Coater, Inc. (the Greenfield, Indiana plant) were retrofitted to save fuel and cost. Included in the fuel conserving retrofit was the design, fabrication, and installation of an afterburner for each of the two ovens, piping their combustion products to each of two commonly housed waste heat boilers before discharge from those units to the atmosphere at about 450 F. Depending on the product being run and the coating applied, natural gas requirements have been reduced by 45 to 65% with operation of the zone incinerators only and by as much as 65 to 85% including the effects of both the zone incineration and heat recovery by means of the afterburners and waste heat boilers. A demonstration program on conversion work at the No. 3 line at Greenfield and results are described in Section 2. Section 3 describes the retrofit design and the system construction. System performance (tests and measurements, qualitative performance, maintenance factors, and economic performance) is described in Section 4. Conclusions and recommendations are summarized.

Jensen, W P [comp.

1980-12-01T23:59:59.000Z

210

An example of alkalization of SiO{sub 2} in a blast furnace coke  

SciTech Connect (OSTI)

Scanning electron microscopy and an electron-microprobe analysis of a sample of blast furnace (BF) coke have revealed alkalization (5.64 wt % Na{sub 2}O + K{sub 2}O) and Al saturation (17.28 wt % Al{sub 2}O{sub 3}) of SiO{sub 2} by BF gases. The K/Na{sub at} value of 1.15 in the new phase (alteration zone) reflects close atomic proportions of the elements and suggests that the abilities to incorporate K and Na during the process are almost equal. This Al saturation and alkalization of SiO{sub 2} indicates an active role for Al along with alkali metals in BF gases. The average width of the altered area in the SiO{sub 2} grain is about 10 m, which suggests that SiO{sub 2} particles of that size can be transformed fully to the new phase, provided that at least one of their faces is open to an external pore (surface of the coke) or internal pore with circulating BF gases. The grains that exceed 10 {mu}m can only be partly altered, which means that smaller SiO{sub 2} grains can incorporate more alkali metals and Al (during their transformation to the Al and alkali-bearing phase) than a similar volume of SiO{sub 2} concentrated in larger grains. Thermodynamic calculations for 100 g{sub solid}/100 g{sub gas} and temperatures 800-1800{sup o}C have shown that the BF gases have very little or no effect on the alkalization of SiO{sub 2}. If the alteration process described in this paper proves to be a generalized phenomenon in blast furnace cokes, then the addition of fine-grained quartz to the surface of the coke before charging a BF can be useful for removing of some of the Al and alkali from the BF gases and reduce coke degradation by alkalis, or at least improve its properties until the temperature reaches approximately 2000{sup o}C. 22 refs., 5 figs., 1 tab.

S.S. Gornostayev; P.A. Tanskanen; E.-P. Heikkinen; O. Kerkkonen; J.J. Haerkki [University of Oulu, Oulu (Finland). Laboratory of Process Metallurgy

2007-09-15T23:59:59.000Z

211

REMEDIAT1NG AT MANUFACTURED GAS  

E-Print Network [OSTI]

, comhusti- hle gas manufactured Pfrom coke, coal, and oil 1 served as the major gas- eous fuel for urban for the three primary gas production meth- ods: coal carbonization, carbureted water gas production, and oil gas, and metals. Tar resid- uals were produced from the vola- tiIe component of bituminous coals in coal

Peters, Catherine A.

212

Heavy duty gas turbines in LCV applications: 25 years of experience and R and D  

SciTech Connect (OSTI)

For a number of reasons, Low Calorific Value (LCV) gases are expected to play an increasing part on the future power generation scene, especially within large gas turbine combined cycle (CCGT) schemes. The group of LCV gases is largely represented worldwide as it includes products as diverse as: Weak Natural Gases (WNG) containing inert (N2, CO{sub 2}) fraction as high as 70%; coal/steel industry by-products: coke oven gas (COG) and blast furnace gas (BFG); biogases obtained by controlled, anaerobic fermentation of organic wastes (household, farm) or biomass; gasification products of solid fuels (gas deriving from coal, lignite or residual oil); substitute natural gas (SNG) obtained by treatment/reforming of primary gasification products. Historically, process by-products (COG, BFG) were the first fuels to be successfully burnt in turbines and were used by the main gas turbine manufacturers to devise their LCV combustion technology. Therefore, such fuels are worthy of interest from both a technical and economic standpoint. However, for reasons tied to energy strategy considerations, gasification products nowadays represent the most promising members of the LCV gas family, likely to give rise to large, efficient and low-emission power plants. This paper offers a comprehensive review of the company R and D and experience relating to the combustion of LCV gas fuels in heavy duty gas turbines, starting from the first COG-combustion installation (HBL, France, 1972) to the latest R and D program results, devoted to the heavy duty machine segment and including the successful, coal-gasification plant at Vresova (SUV, Czech Republic, 1996) based on two Frame 9E machines which have accumulated over 25,000 operation hours. As for the current R and D programs, which demonstrate the active involvement of the company in the LCV activity, the paper places particular emphasis on the development of the Frame 6B combustor for the ABGC program.

Pourchot, T.; Moliere, M.

1998-07-01T23:59:59.000Z

213

Atmos. Chem. Phys., 7, 35873596, 2007 www.atmos-chem-phys.net/7/3587/2007/  

E-Print Network [OSTI]

on the emis- sion data in Seoul and Northeast Asia: Gasoline and diesel vehicles, residential coal use, coke daily and seasonal variations. High contributions of biomass burning and coal (residential and coke oven ovens, coal power plants, biomass burning, and natural gas (NG) combustion. The ma- jor sources

Meskhidze, Nicholas

214

Laboratory-Scale Coking of Coal?Petroleum Mixtures in Sealed Reactors  

Science Journals Connector (OSTI)

Further evidence for coal?petroleum interactions in this system is exhibited by the fact that (i) the product slates from the co-coking reactions are not linear combinations of the products from the feedstocks reacted individually and (ii) the fluidity profiles of the Powellton?resid mixtures are similar to those for two interacting coking coals. ... The boiling distribution of the oils from co-coking resembles that observed when the Powellton coal was coked in the absence of resid. ... In addition, the co-coking reactions show a “coke jump” that occurs at ?465 °C; this jump is not observed when the coal or petroleum feedstocks are reacted individually. ...

Anne E. Fickinger; Mark W. Badger; Gareth D. Mitchell; Harold H. Schobert

2004-05-19T23:59:59.000Z

215

Prediction of metallurgical coke strength from the petrographic composition of coal blends  

SciTech Connect (OSTI)

Turkey, especially Zonguldak on the West Coast of Black Sea region, has large reserves of bituminous coal that can be used either directly or in blends with other coals for metallurgical coke production. It is possible to predict the coking properties of these coals by petrographic analysis. In this study, semi- and non-coking coals were blended with coking bituminous coals in varying proportions and an estimation was made as to their stability factors through petrographic techniques. It was established that semi- and non-coking bituminous coals could be used in the production of metallurgical coke.

Sutcu, H.; Toroglu, I.; Piskin, S. [Zonguldak Karaelmas University, Zonguldak (Turkey)

2009-07-01T23:59:59.000Z

216

Methane steam reforming at low temperature: Effect of light alkanes’ presence on coke formation  

Science Journals Connector (OSTI)

Abstract Steam reforming of natural gas for the production of hydrogen at low operation temperature offers significant financial and environmental advantages. However, the presence of higher hydrocarbons as minor components of natural gas can significantly affect the formation of coke and thus the effectiveness of the catalyst. In this study, the effect of the presence of C2–C3 alkanes in the feedstock on the carbon accumulation during low temperature steam reforming of methane is investigated over Ni and Rh catalysts supported on lanthanum doped ceria–zirconia mixed oxide. Both catalysts showed high resistance to coke formation and especially in the case of Rh/La/CeO2–ZrO2, the carbon accumulation detected was low even after 10 h on stream in steam reforming of all mixtures of hydrocarbons tested. The presence of higher alkanes in methane increased the amount of carbon on Ni(10)CeZrLa compared to pure methane as well as the nature of the carbonaceous species. Increase in the C-number of the additive alkane had almost no influence on the total amount of carbon formed (C/H feed ratio = constant) but favored the formation of filamentous carbon.

Sofia D. Angeli; Fotis G. Pilitsis; Angeliki A. Lemonidou

2015-01-01T23:59:59.000Z

217

Hydrodesulfurization of Fluid Catalytic Cracking Decant Oils for the Production of Low-sulfur Needle Coke Feedstocks.  

E-Print Network [OSTI]

??Needle coke, produced by the delayed coking of fluid catalytic cracking decant oils, is the primary filler used in the production of graphite electrodes. The… (more)

Wincek, Ronald

2013-01-01T23:59:59.000Z

218

Preparation and coking properties of coal maceral concentrates  

Science Journals Connector (OSTI)

Abstract The concentrates with different maceral contents were obtained from Kailuan coking coals with different coal ranks ( R o,ran ? varying from 0.88% to 1.73%) by float–sink separation in lab. Then these concentrates were characterized by proximate analysis, ultimate analysis, petrography analysis and coking index determination. The results show that the vitrinite is characterized as nature of lower carbon content, higher hydrogen content, higher volatile matter and stronger caking property compared to inertinite. The relationships between variation rate of volatile matter and maximum volatile matter and coal ranks are identified, and a linear model is developed for fast determination of the maceral contents. Compared to inertinite-rich concentrate, the blending ratio of vitrinite-rich concentrate is increased by 13%, which is considered to be a potential technique based on maceral separation for expanding the coking coal resources.

Lei Zhang; Wenli Liu; Dongpo Men

2014-01-01T23:59:59.000Z

219

Determining the coking properties and technological value of coal and coal mixtures  

Science Journals Connector (OSTI)

A method is developed for determining the coking properties and technological value of coal from newly identified beds or new sections of existing mines. The coking properties are assessed on the basis of predict...

A. S. Stankevich; V. S. Stankevich

2012-01-01T23:59:59.000Z

220

Influence of frothing-agent oxidation on coking-coal flotation  

Science Journals Connector (OSTI)

The oxidation of frothing agents (KOBS, OPPG-3, and the tar fraction of peat bitumen) affects coking-coal flotation. The tar fraction of Krapivinsk-peat ... provides the basis for a frothing agent in coking-coal ...

M. Yu. Klimovich; S. I. Zherebtsov; Yu. V. Musin; A. I. Moiseev…

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Calculating the relative value of coal in Russian coking-coal markets  

Science Journals Connector (OSTI)

In order to improve the pricing of Russian coking coal, a method is proposed for calculating the relative technological value of purchased coking-coal batches. The basic idea is to compare the parameters of optim...

V. A. Brodskii; E. V. Brodskaya

2009-03-01T23:59:59.000Z

222

Coal resources at OOO Metinvest Holding and their optimal coking at PAO AKKhZ  

Science Journals Connector (OSTI)

The coal resources at OOO Metinvest Holding are considered, in a climate of increase requirements on coke quality and self-reliance. The parameters of high-quality coke are outlined, and the corresponding require...

V. G. Gusak; V. I. Gavrilyuk; M. S. Magomedov; A. A. Pasternak…

2013-11-01T23:59:59.000Z

223

Role of coke characteristics in the regeneration of a catalyst for the MTG process  

SciTech Connect (OSTI)

The effect on combustion in air of the nature of the coke deposited in HZSM5 zeolites used in the MTG process has been studied. This coke is highly hydrogenated and unstable, and its H/C ratio decreases during combustion or when a previous thermal treatment is carried out. Coke H/C ratio greatly affects its reactivity during combustion; consequently, a severe thermal equilibration treatment is recommended for reproducibility of results. Combustion kinetics of equilibrated coke, when it is released from the catalyst, has been proven to be similar to that of the coke deposited on other catalysts for several processes. Lower coke reactivity for aging and combustion, on being deposited within the HZSM5 zeolite, must be attributed to air-coke contact restrictions due to the location of the coke, which partially impedes the flow of air into the crystals.

Ortega, J.M.; Gayubo, A.G.; Aguayo, A.T.; Benito, P.L.; Bilbao, J. [Univ. del Pais Vasco, Bilbao (Spain). Dept. de Ingenieria Quimica] [Univ. del Pais Vasco, Bilbao (Spain). Dept. de Ingenieria Quimica

1997-01-01T23:59:59.000Z

224

Coke in the Cross Hairs: Water, India, and the University of Michigan  

E-Print Network [OSTI]

Coke in the Cross Hairs: Water, India, and the University of Michigan case 1-429-098 July 25, 2010, where "Killer Coke" banners had hung days before. Students were holed away studying for finals, the demonstrations were over and Coke was once again flowing from machines at the Michigan Union. That morning

Edwards, Paul N.

225

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

12.97% electricity, 8.91% coke, 1.91% heat, 1.48% naturalgas from blast furnace, and coke oven gas. Pe t Co N on -fe12.97% electricity, 8.91% coke, 1.91% heat, 1.48% natural

Price, Lynn

2008-01-01T23:59:59.000Z

226

Testing of the Sunstove Organization`s Sunstove Solar Oven  

SciTech Connect (OSTI)

A Sunstove Organization`s Sunstove was tested at Sandia`s Solar Thermal Test Facility. It was instrumented with five type K thermocouples to determine warm-up rates when empty and when a pot containing two liters of water was placed inside. It reached inside air temperatures above 115{degrees}C (240{degrees}F). It heated two liters of water from room temperature to 80{degrees}C (175{degrees}F) in about two hours. Observations were made on the cooling and reheating rates during a cloud passage. The adverse effects of wind on the operation of the solar oven were also noted.

Moss, T.A.

1997-03-01T23:59:59.000Z

227

Table 33. Coal Carbonized at Coke Plants by Census Division  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Carbonized at Coke Plants by Census Division Coal Carbonized at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 33. Coal Carbonized at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Census Division April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change Middle Atlantic w w w w w w East North Central 3,051 2,997 3,092 6,048 6,156 -1.8 South Atlantic w w w w w w East South Central w w w w w w U.S. Total 5,471 5,280 5,296 10,751 10,579 1.6 w = Data withheld to avoid disclosure. Note: Total may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration (EIA), Form EIA-5, 'Quarterly Coal Consumption and Quality Report - Coke Plants

228

Estimating Coke and Pepsi's Price and Advertising Strategies Amos Golan*  

E-Print Network [OSTI]

Estimating Coke and Pepsi's Price and Advertising Strategies Amos Golan* Larry S. Karp** Jeffrey M strategies in prices and advertising for Coca-Cola and Pepsi-Cola. Separate strategies for each firm variables are prices and advertising. We divide each firm's continuous price-advertising action space

Lansky, Joshua

229

Lummus process turns coal tar pitch to coke  

Science Journals Connector (OSTI)

Lummus Co. has developed a process for converting coal tar pitch to coke and now has a full-scale commercial plant in operation in Japan. The plant, which is owned by Nittetsu Chemical Industrial Co., a subsidiary of Yawata Iron and Steel, is producing ...

1968-12-09T23:59:59.000Z

230

The development of coke smelting and the industrial revolution  

E-Print Network [OSTI]

Abraham Darby and the origins of the industrial revolution in Britain. Alan Macfarlane talks to John about the reasons for the area near Birmingham becoming the epi-centre of the industrial development, and the development of coke furnaces and iron...

Macfarlane, Alan

2004-08-05T23:59:59.000Z

231

Table 23. Coal Receipts at Coke Plants by Census Division  

U.S. Energy Information Administration (EIA) Indexed Site

Receipts at Coke Plants by Census Division Receipts at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 23. Coal Receipts at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Census Division April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change Middle Atlantic w w w w w w East North Central 3,189 2,679 3,225 5,867 5,993 -2.1 South Atlantic w w w w w w East South Central w w w w w w U.S. Total 5,770 4,962 5,370 10,732 10,440 2.8 w = Data withheld to avoid disclosure. Note: Total may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration (EIA), Form EIA-5, 'Quarterly Coal Consumption and Quality Report - Coke Plants

232

Chemicals from coal  

SciTech Connect (OSTI)

This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

2004-12-01T23:59:59.000Z

233

The effect of varying oven temperatures and residence times on thermal desorption of n-hexane and 1-hexene from diffusive organic vapor dosimeters  

E-Print Network [OSTI]

of suitable adsorbent medium, such as activated charcoal or silica gel. This method proved highly reliable, in that a relatively constant sampling flowrate could be held for as long as eight hours. However, the method also presented The citations used... referred to as thermal desorption has gained in- creased attention. This method consists of heating the ad- sorbent medium in an oven to release the adsorbed com- pounds from the collection medium. A carrier gas is passed through the heated tube...

Steele, Kenneth Garnett

2012-06-07T23:59:59.000Z

234

The Role of Semifusinite in Plasticity Development for a Coking Coal  

Science Journals Connector (OSTI)

Coal rank is a factor of great importance in plasticity development during carbonization, since only some bituminous coals swell in a satisfactory manner and then resolidify to produce good commercial cokes. ... Diessel studied the carbonization behavior of the inertinite macerals in Australian coals by carrying out tests up to 1000 °C where the optical characteristics of the coked entities were correlated with their noncoked counterparts. ... For instance, large-scale coking experiments of some Australian coals containing more than 45% inertinite produced good quality coke, while a Carboniferous coal with that high of an inertinite content gave only a very poor coke. ...

M. Mercedes Maroto-Valer; Darrell N. Taulbee; John M. Andrésen; James C. Hower; Colin E. Snape

1998-08-27T23:59:59.000Z

235

Theoretical and experimental foundations for preparing coke for blast-furnace smelting  

SciTech Connect (OSTI)

This article examines the preparation of coke for blast-furnace smelting by a method that most fully meets the requirements of blast-furnace technology: screening of the -36 mm fraction, the separation of nut coke of the 15-36 mm fraction, and its charging into the furnace in a mixture with the iron-ore-bearing charge components. An analysis is made of trial use of coke of the Premium class on blast furnace No. 5 at the Enakievo Metallurgical Plant. Use of this coke makes it possible to reduce the consumption of skip coke by 3.2-4.1%.

A.L. Podkorytov; A.M. Kuznetsov; E.N. Dymchenko; V.P. Padalka; S.L. Yaroshevskii; A.V. Kuzin [Enakievo Metallurgical Plant, Enakievo (Ukraine)

2009-05-15T23:59:59.000Z

236

Utilization of Process Off-Gas as a Fuel for Improved Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination ADVANCED MANUFACTURING OFFICE Utilization of Process Off-Gas as a Fuel for Improved...

237

EA-0404: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

4: Final Environmental Assessment 4: Final Environmental Assessment EA-0404: Final Environmental Assessment Innovative Clean Coal Technology Program Coke Oven Gas Cleaning Demonstration Project This environmental assessment (EA) evaluates environmental issues associated with a project that will be cost-shared by DOE and private industry under the Innovative Clean Coal Technology Program. The proposed action is a coke oven gas cleaning technology demonstration project proposed to be installed and operated at the Bethlehem Steel Corporation, Sparrows Point Plant, in Baltimore County, Maryland. Environmental Assessment Innovative Clean Coal Technology Program Coke Oven Gas Cleaning Demonstration Project, DOE/EA-0404, December 1989 More Documents & Publications EA-0404: Finding of No Significant Impact

238

A compact and efficient strontium oven for laser-cooling experiments  

E-Print Network [OSTI]

Here we describe a compact and efficient strontium oven well suited for laser-cooling experiments. Novel design solutions allowed us to produce a collimated strontium atomic beam with a flux of 1.0\\times10^13 s^-1 cm^-2 at the oven temperature of 450 {\\deg}C, reached with an electrical power consumption of 36 W. The oven is based on a stainless-steel reservoir, filled with 6 g of metallic strontium, electrically heated in a vacuum environment by a tantalum wire threaded through an alumina multi-bore tube. The oven can be hosted in a standard DN40CF cube and has an estimated continuous operation lifetime of 10 years. This oven can be used for other alkali and alkaline earth metals with essentially no modifications.

Marco Schioppo; Nicola Poli; Marco Prevedelli; Stephan Falke; Christian Lisdat; Uwe Sterr; Guglielmo Maria Tino

2012-09-25T23:59:59.000Z

239

A compact and efficient strontium oven for laser-cooling experiments  

E-Print Network [OSTI]

Here we describe a compact and efficient strontium oven well suited for laser-cooling experiments. Novel design solutions allowed us to produce a collimated strontium atomic beam with a flux of 1.0\\times10^13 s^-1 cm^-2 at the oven temperature of 450 {\\deg}C, reached with an electrical power consumption of 36 W. The oven is based on a stainless-steel reservoir, filled with 6 g of metallic strontium, electrically heated in a vacuum environment by a tantalum wire threaded through an alumina multi-bore tube. The oven can be hosted in a standard DN40CF cube and has an estimated continuous operation lifetime of 10 years. This oven can be used for other alkali and alkaline earth metals with essentially no modifications.

Schioppo, Marco; Prevedelli, Marco; Falke, Stephan; Lisdat, Christian; Sterr, Uwe; Tino, Guglielmo Maria

2012-01-01T23:59:59.000Z

240

Impact of Natural Gas Appliances on Pollutant Levels in California Homes  

E-Print Network [OSTI]

with Use of LPG-Powered (Propane) Forklifts in Industrialcooktop? a. Natural gas b. Propane c. Electricity d. Don’tyour oven? a. Natural gas b. Propane c. Electricity d. Don’t

Mullen, Nasim A.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Cyanide leaching from soil developed from coking plant purifier waste as influenced by citrate  

SciTech Connect (OSTI)

Soils in the vicinity of manufactured gas plants and coal coking plants are often highly contaminated with cyanides in the form of the compound Prussian blue. The objective of this study was to investigate the influence of citrate on the leaching of iron-cyanide complexes from an extremely acidic soil (pH 2.3) developed from gas purifier waste near a former coking plant. The soil contained 63 g kg{sup -1} CN, 148 g kg{sup -1} Fe, 123 g kg{sup -1} S, and 222 g kg{sup -1} total C. Analysis of the soil by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy revealed the presence of Prussian blue, gypsum, elemental sulfur, jarosite, and hematite. For column leaching experiments, air-dried soil was mixed with purified cristabolite sand at a ratio of 1:3 and packed into chromatography columns. The soil was leached with dilute (0.1 or 1 mM) CaCl{sub 2} solutions and the effluent was collected and analyzed for total and dissolved CN, Ca, Fe, SO{sub 4}, pH, and pe. In the absence of citrate, the total dissolved CN concentration in the effluent was always below current drinking water limits (< 1.92 {mu}M), indicating low leaching potential. Adding citrate at a concentration of 1 mM had little effect on the CN concentrations in the column effluent. Addition of 10 or 100 mM citrate to the influent solution resulted in strong increases in dissolved and colloidal CN concentrations in the effluent.

Tim Mansfeldt; Heike Leyer; Kurt Barmettler; Ruben Kretzschmar [Ruhr-University Bochum, Bochum (Germany). Soil Science and Soil Ecology Group, Faculty of Geosciences

2004-07-01T23:59:59.000Z

242

Coke County, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Coke County, Texas: Energy Resources Coke County, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.8277663°, -100.5296115° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.8277663,"lon":-100.5296115,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

Integrated coke, asphalt and jet fuel production process and apparatus  

DOE Patents [OSTI]

A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

Shang, Jer Y. (McLean, VA)

1991-01-01T23:59:59.000Z

244

Pricing of Australia's coking coal exports: A regional hedonic analysis  

Science Journals Connector (OSTI)

Black coal is Australia's most important export commodity, but the profitability of the domestic coal industry has been low relative to the mining sector average. As a consequence, a key policy issue in Australia has been the extent to which Japan's coal pricing and investment policies have influenced coal market outcomes. In this paper, a regional hedonic pricing model of Australia's coking coal exports is estimated for the period JFY1989 to 1996. Non-Japan regional intercept dummy variables were found to be significantly different from zero, although these varied across coal categories and years. However, the empirical evidence indicates that Japan does not pay significantly lower prices relative to other major export markets for coking coal of a given quality.

Lindsay Hogan; Sally Thorpe; Anthony Swan; Simon Middleton

1999-01-01T23:59:59.000Z

245

Coke profile and effect on methane/ethylene conversion process  

E-Print Network [OSTI]

balance in catalytic cracking. It is also extremely important in the dehydrogenation of butane to butadiene, because coke formation limits the cycle time before regeneration of the catalyst is needed. There are many add that equally important examples..., methane, ethane, ethylene, propane, iso-butane, butane, iso-pentane, pentane and hexanes. Also, the flow rate of the effluent stream is measured using the bubble meter. The mole percentages of methane and ethylene are subtracted of the effluent stream...

Al-Solami, Bandar

2002-01-01T23:59:59.000Z

246

New environmental concepts in the chemical and coke industries  

SciTech Connect (OSTI)

We know that environmentally pure technologies do not exist. Coke production is no exception to the rule. The article considers the logic of environmental decision making. Attention focuses on a new bank of ecologically appropriate materials whose release to the biosphere must be considered solely in quantititative terms. Qualitativily all these materials are familiar; they are assimilated by populations of microorganisms and tar thus compatible with the biosphere.

A.Yu. Naletov; V.A. Naletov [Mendeleev Russian Chemical-Engineering University (Russian Federation)

2007-05-15T23:59:59.000Z

247

Table 17. Average Price of U.S. Coke Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of U.S. Coke Exports Average Price of U.S. Coke Exports (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 17. Average Price of U.S. Coke Exports (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Destination April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 240.59 241.38 218.40 240.85 225.80 6.7 Canada* 147.49 330.47 243.04 183.08 286.56 -36.1 Mexico 316.57 211.63 189.12 273.97 171.71 59.6 Other** 612.42 485.63 134.48 525.92 135.04 289.5 South America Total 140.65 156.15 322.70 148.29 250.36 -40.8 Other** 140.65 156.15 322.70 148.29 250.36 -40.8 Europe Total 259.26 255.24 - 257.06 427.83 -39.9 Other**

248

Table 22. Average Price of U.S. Coke Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of U.S. Coke Imports Average Price of U.S. Coke Imports (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 22. Average Price of U.S. Coke Imports (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Origin April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 263.21 252.66 353.05 261.29 356.01 -26.6 Canada 263.51 252.66 353.05 258.82 356.01 -27.3 Panama 263.09 - - 263.09 - - South America Total 196.86 194.14 175.88 195.94 181.01 8.2 Brazil - - 157.60 - 157.60 - Colombia 196.86 194.14 322.06 195.94 246.68 -20.6 Europe Total 181.55 232.13 385.65 225.53 384.96 -41.4 Czech Republic - 475.91 - 475.91 - - Spain 360.51

249

Study on the effect of heat treatment and gasification on the carbon structure of coal chars and metallurgical cokes using fourier transform Raman spectroscopy  

SciTech Connect (OSTI)

Differences in the development of carbon structures between coal chars and metallurgical cokes during high-temperature reactions have been investigated using Raman spectroscopy. These are important to differentiate between different types of carbons in dust recovered from the top gas of the blast furnace. Coal chars have been prepared from a typical injectant coal under different heat-treatment conditions. These chars reflected the effect of peak temperature, residence time at peak temperature, heating rate and pressure on the evolution of their carbon structures. The independent effect of gasification on the development of the carbon structure of a representative coal char has also been studied. A similar investigation has also been carried out to study the effect of heat-treatment temperature (from 1300 to 2000{sup o}C) and gasification on the carbon structure of a typical metallurgical coke. Two Raman spectral parameters, the intensity ratio of the D band to the G band (I{sub D}/I{sub G}) and the intensity ratio of the valley between D and G bands to the G band (I{sub V}/I{sub G}), have been found useful in assessing changes in carbon structure. An increase in I{sub D}/I{sub G} indicates the growth of basic graphene structural units across the temperature range studied. A decrease in I{sub V}/I{sub G} appears to suggest the elimination of amorphous carbonaceous materials and ordering of the overall carbon structure. The Raman spectral differences observed between coal chars and metallurgical cokes are considered to result from the difference in the time-temperature history between the raw injectant coal and the metallurgical coke and may lay the basis for differentiation between metallurgical coke fines and coal char residues present in the dust carried over the top of the blast furnace. 41 refs., 17 figs., 3 tabs.

S. Dong; P. Alvarez; N. Paterson; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2009-03-15T23:59:59.000Z

250

Assessing the utility of coal’s elementary composition in predicting the yield of coking products  

Science Journals Connector (OSTI)

Elementary analysis of the organic mass of coal does not provide sufficient information to predict the yield of coking products, since it does not reflect the...

M. L. Ulanovskii

2012-03-01T23:59:59.000Z

251

Lignin as Both Fuel and Fusing Binder in Briquetted Anthracite Fines for Foundry Coke Substitute.  

E-Print Network [OSTI]

??Lignin that had been extracted from Kraft black liquor was investigated as a fusing binder in briquetted anthracite fines for a foundry coke substitute. Cupola… (more)

Lumadue, Matthew

2012-01-01T23:59:59.000Z

252

Prediction of demand trends of coking coal in China based on grey linear regression composition model  

Science Journals Connector (OSTI)

The scarce of coking coal resources in China results in its short supply. By establishing a grey linear regression composition model, this paper has greatly improved the inadequacy of grey system prediction model and regression analysis method in trend prediction and finished the prediction of demand trends of coking coal in China with this model. As result of the prediction, it is estimated that in the next decade, the demand for coking coal in China will experience a growth trend; China's demand for coking coal will reach more than 1.535 billion tons by 2015, reach the maximum of 1.639 billion tons by 2020 and drop in 2025.

Hai-Dong Zhou; Qiang Wu; Min Fang; Zhong-Bao Ren; Li-Fei Jin

2013-01-01T23:59:59.000Z

253

Balance of supply and demand in the Russian market for coking-coal concentrates  

Science Journals Connector (OSTI)

Various methods are considered for calculating the balance of supply and demand in the Russian market for coking-coal concentrates within the planning (prediction) period....

V. A. Brodskii

2010-11-01T23:59:59.000Z

254

Co-gasification of biomass with coal and oil sands coke in a drop tube furnace.  

E-Print Network [OSTI]

??Chars were obtained from individual fuels and blends with different blend ratios of coal, coke and biomass in Drop Tube Furnace at different temperatures. Based… (more)

Gao, Chen

2010-01-01T23:59:59.000Z

255

MOLECULAR COMPOSITION OF NEEDLE COKE FEEDSTOCKS AND MESOPHASE DEVELOPMENT DURING CARBONIZATION.  

E-Print Network [OSTI]

??This study investigates the molecular composition of fluid catalytic cracking (FCC) decant oil and its derivatives that are used as feedstocks for delayed coking to… (more)

Wang, Guohua

2005-01-01T23:59:59.000Z

256

Pyrolysis behavior of coal and petroleum coke at high temperature and high pressure.  

E-Print Network [OSTI]

??While pyrolysis of coal is a well-studied thermal process, little is known about pressurized pyrolysis of coal and petroleum coke. This study aims to interpret… (more)

Wagner, David Ray

2011-01-01T23:59:59.000Z

257

Development Of Reclamation Substrates For Alberta Oil Sands Using Mature Fine Tailings And Coke.  

E-Print Network [OSTI]

??Mature fine tailings and coke are waste products of the oil sands industry with potential for reclamation. A greenhouse study assessed whether substrates of various… (more)

Luna-Wolter, Gabriela L.

2012-01-01T23:59:59.000Z

258

Simulation of Combustion and Thermal-flow Inside a Petroleum Coke Rotary Calcining Kiln.  

E-Print Network [OSTI]

??Calcined coke is the best material for making carbon anodes for smelting of alumina to aluminum. Calcining is an energy intensive industry and a significant… (more)

Zhang, Zexuan

2007-01-01T23:59:59.000Z

259

Coke yield and transport processes in agglomerates of bitumen and solids.  

E-Print Network [OSTI]

??Agglomerate formation is a common phenomenon that can cause operating problems in the fluid coking reactor. When agglomerates form they provide longer diffusion paths of… (more)

Ali, Mohamed Ali Hassan

2010-01-01T23:59:59.000Z

260

Characterization of Coke Properties at Tuyere Level of an Operating Blast Furnace.  

E-Print Network [OSTI]

??Coke performance in an operating blast furnace is often empirically related to popular bench-scale tests, which are performed at relative much lower temperatures. Due to… (more)

Ye, Zhuozhu

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Preparation of Activated Carbon from Oil Sands Coke by Chemical and Physical Activation Techniques.  

E-Print Network [OSTI]

??Oil sands coke is a by-product resulting from the upgrading of heavy crude bitumen to light synthetic oil. This research investigates the preparation of activated… (more)

Morshed, Golam

2012-01-01T23:59:59.000Z

262

The effect of diabietic acid on the coking of oxidised solvent-extracted coal.  

E-Print Network [OSTI]

??Refcoal is a refined carbon source obtained by extraction of coal with dimethylformamide (DMF). During the coking process, Refcoal goes through a mesophase (fluid) stage… (more)

Ludere, Margaret Tshimangadzo

2008-01-01T23:59:59.000Z

263

The effects of ash and maceral composition of Azdavay and Kurucasile (Turkey) coals on coking properties  

SciTech Connect (OSTI)

In this study, investigations were made as to the effect of the maceral compositions and mineral matter content of Azdavay and Kurucasile coals on the coking property. Chemical and maceral analyses and coking properties were determined for the products of the float-sink procedure. The coking properties were established on the basis of free swelling index and Ruhr dilatometer tests. Maceral analyses showed that as the ash content of a coal containing both high and medium volatile matter increases, its effective maceral proportion decreases, and the coking property is affected in an unfavorable way.

Toroglu, I. [Zonguldak Karaelmas University, Zonguldak (Turkey). Faculty of Engineering

2006-07-01T23:59:59.000Z

264

Adsorption of Hydrogen Sulfide onto Activated Carbon Fibers: Effect of  

E-Print Network [OSTI]

. These processes include natural gas processing, petroleum refining, petrochemical plants, Kraft mills, coke ovens, and coal gasifiers. H2S concentrations in these processes vary from 0 to 60 vol % (6). The Claus process

Borguet, Eric

265

New Energy Efficiency Standards for Microwave Ovens to Save Consumers on  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Standards for Microwave Ovens to Save Energy Efficiency Standards for Microwave Ovens to Save Consumers on Energy Bills New Energy Efficiency Standards for Microwave Ovens to Save Consumers on Energy Bills May 31, 2013 - 3:26pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - U.S. Energy Secretary Ernest Moniz announced today that the Energy Department has finalized new energy efficiency standards for microwave ovens that will save consumers nearly $3 billion on their energy bills through 2030. Over the next 30 years, it will dramatically reduce harmful carbon pollution, equivalent to taking over 12 million new cars off the road for one year. "Appliance efficiency standards represent a huge opportunity to help families save money by saving energy, while still delivering high quality

266

CHARACTERIZATION OF COAL- AND PETROLEUM-DERIVED BINDER PITCHES AND THE INTERACTION OF PITCH/COKE MIXTURES IN PRE-BAKED CARBON ANODES.  

E-Print Network [OSTI]

??Carbon anodes are manufactured from calcined petroleum coke (i.e. sponge coke) and recycled anode butts as fillers, and coal tar pitch (SCTP) as the binder.… (more)

Suriyapraphadilok, Uthaiporn

2008-01-01T23:59:59.000Z

267

The effects of petroleum coke amendments on macrophytes and aquatic invertebrates in northern Alberta, Canada constructed wetlands.  

E-Print Network [OSTI]

??Oil-sands operators of Fort McMurray, Alberta produce six million t/y of petroleum coke. The use of coke to stabilize clay-dominated mine tailings in constructed wetlands… (more)

Baker, Leanne F.

2007-01-01T23:59:59.000Z

268

Energy conservation and efficiency in Giprokoks designs at Ukrainian ferrous-metallurgical enterprises  

SciTech Connect (OSTI)

Energy conditions at Ukrainian ferrous-metallurgical enterprises are analyzed. Measures to boost energy conservation and energy efficiency are proposed: specifically, the introduction of systems for dry slaking of coke; and steam-gas turbines that employ coke-oven gas or a mixture of gases produced at metallurgical enterprises. Such turbines may be built from Ukrainian components.

M.I. Fal'kov [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

269

Predicting CSR and CRI of coke on the basis of the chemical and petrographic parameters of the coal batch and the coking conditions  

Science Journals Connector (OSTI)

A model is developed for predicting the postreactive strength CSR and reactivity CRI of coke. The model adequately reflects the dependence of ... on the chemical and petrographic parameters of the coal batch, tak...

A. S. Stankevich; R. R. Gilyazetdinov; N. K. Popova; D. A. Koshkarov

2008-09-01T23:59:59.000Z

270

Study on Further Treatment of Coal Coking Wastewater by Ultrasound Wave, Fenton's Reagent and Coagulation  

Science Journals Connector (OSTI)

The study on further treatment of coal coking wastewater by ultrasound wave, Fenton's reagent and coagulation was carried out in this paper at the first time, Furthermore, this paper discussed the optimum cooperative reaction condition of their combined ... Keywords: ultrasound wave, coke plant wastewater, Fenton reagent, coagulation

Jun Shi; Liangbo Zhang

2009-10-01T23:59:59.000Z

271

Analytical input-output and supply chain study of China's coke and steel sectors  

E-Print Network [OSTI]

I design an input-output model to investigate the energy supply chain of coal-coke-steel in China. To study the demand, supply, and energy-intensity issues for coal and coke from a macroeconomic perspective, I apply the ...

Li, Yu, 1976-

2004-01-01T23:59:59.000Z

272

Influence of coal on coke properties and blast-furnace operation  

SciTech Connect (OSTI)

With unstable coal supplies and properties and a fluctuating content of coking coal in the batch at OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (ZSMK) and of bituminous coal at Kuznetskaya enrichment facility, it is important to optimize the rank composition of the batch for coke production.

G.R. Gainieva; L.D. Nikitin [OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (Russian Federation)

2007-07-01T23:59:59.000Z

273

Carbonization of Coal Effects of Variation of Rate of Heating during the Carbonization of a Typical Coking Coal  

Science Journals Connector (OSTI)

Carbonization of Coal Effects of Variation of Rate of Heating during the Carbonization of a Typical Coking Coal ...

William B. Warren

1935-01-01T23:59:59.000Z

274

Carbonization of Coal Evaluation of Effects of Rate of Heating and of Maximum Temperature on Pyrolysis of a Coking Coal  

Science Journals Connector (OSTI)

Carbonization of Coal Evaluation of Effects of Rate of Heating and of Maximum Temperature on Pyrolysis of a Coking Coal ...

William B. Warren

1935-01-01T23:59:59.000Z

275

Atmospheric Oxidation of Coal at Moderate Temperatures. Effect of Oxidation on the Carbonizing Properties of Representative Coking Coals.  

Science Journals Connector (OSTI)

Atmospheric Oxidation of Coal at Moderate Temperatures. ... Effect of Oxidation on the Carbonizing Properties of Representative Coking Coals. ...

L Schmidt; J Elder; J Davis

1940-01-01T23:59:59.000Z

276

Acidity deterioration and coke deposition in a HZSM5 zeolite in the MTG process  

Science Journals Connector (OSTI)

Summary The total acidity deterioration and the acidity strength distribution of a catalyst prepared from a H-ZSM-5 zeolite has been studied in the MTG process carried out in catalytic chamber and in an isothermal fixed bed integral reactor. The acidity deterioration has been related to coke deposition. The evolution of the acidic structure and of coke deposition has been analysed in situ by diffuse reflectance FTIR in a catalytic chamber. The effect of operating conditions (time on stream and temperature) on acidity deterioration, coke deposition and coke nature has been studied from experiments in a fixed integral reactor. The technique for studying acidity yields a reproducible measurement of total acidity and acidity strength distribution of the catalyst deactivated by coke. The NH3 adsorption-desorption is measured by combination of scanning differential calorimetry and the FTIR analysis of the products desorbed.

A.T. Aguayo; P.L. Benito; A.G. Gayubo; M. Olazar; J. Bilbao

1994-01-01T23:59:59.000Z

277

Numerical modeling of the aerodynamics, heat exchange, and combustion of a polydisperse ensemble of coke-ash particles in ascending axisymmetric two-phase flow  

SciTech Connect (OSTI)

A two-dimensional stationary model of motion, heat and mass exchange, and chemical reaction of polydisperse coke and ash particles in ascending gas-suspension flow has been constructed with allowance for the turbulent and pseudo turbulent mechanisms of transfer in the dispersed phase. The system of equations that describes motion and heat transfer in the solid phase has been closed at the level of the equations for the second moments of velocity and temperature pulsations, whereas the momentum equations of the carrying medium have been closed using the equation for turbulent gas energy, which allows for the influence of the particles and heterogeneous reactions.

B.B. Rokhman [National Academy of Sciences of Ukraine, Kiev (Ukraine). Institute of Coal Power Technologies

2009-07-15T23:59:59.000Z

278

Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China  

SciTech Connect (OSTI)

A USEPA procedure, ISCLT3 (Industrial Source Complex Long-Term), was applied to model the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) emitted from various sources including coal, petroleum, natural gas, and biomass into the atmosphere of Tianjin, China. Benzo(a)pyrene equivalent concentrations (BaPeq) were calculated for risk assessment. Model results were provisionally validated for concentrations and profiles based on the observed data at two monitoring stations. The dominant emission sources in the area were domestic coal combustion, coke production, and biomass burning. Mainly because of the difference in the emission heights, the contributions of various sources to the average concentrations at receptors differ from proportions emitted. The shares of domestic coal increased from {approximately} 43% at the sources to 56% at the receptors, while the contributions of coking industry decreased from {approximately} 23% at the sources to 7% at the receptors. The spatial distributions of gaseous and particulate PAHs were similar, with higher concentrations occurring within urban districts because of domestic coal combustion. With relatively smaller contributions, the other minor sources had limited influences on the overall spatial distribution. The calculated average BaPeq value in air was 2.54 {+-} 2.87 ng/m{sup 3} on an annual basis. Although only 2.3% of the area in Tianjin exceeded the national standard of 10 ng/m{sup 3}, 41% of the entire population lives within this area. 37 refs., 9 figs.

Shu Tao; Xinrong Li; Yu Yang; Raymond M. Coveney, Jr.; Xiaoxia Lu; Haitao Chen; Weiran Shen [Peking University, Beijing (China). Laboratory for Earth Surface Processes, College of Environmental Sciences

2006-08-01T23:59:59.000Z

279

Laser ultrasonic furnace tube coke monitor. Quarterly technical progress report No. 1, May 1--August 1, 1998  

SciTech Connect (OSTI)

The overall aim of the project is to demonstrate the performance and practical use of a laser ultrasonic probe for measuring the thickness of coke deposits located within the high temperature tubes of a thermal cracking furnace. This aim will be met by constructing an optical probe that will be tested using simulated coke deposits that are positioned inside of a bench-scale furnace. Successful development of the optical coke detector will provide industry with the only available method for on-line measurement of coke deposits. The optical coke detector will have numerous uses in the refining and petrochemical sectors including monitoring of visbreakers, hydrotreaters, delayed coking units, vacuum tower heaters, and various other heavy oil heating applications where coke formation is a problem. The coke detector will particularly benefit the olefins industry where high temperature thermal crackers are used to produce ethylene, propylene, butylene and other important olefin intermediates. The ethylene industry requires development of an on-line method for gauging the thickness of coke deposits in cracking furnaces because the current lack of detailed knowledge of coke deposition profiles introduces the single greatest uncertainty in the simulation and control of modern cracking furnaces. The laser ultrasonic coke detector will provide operators with valuable new information allowing them to better optimize the decoking turnaround schedule and therefore maximize production capacity.

NONE

1998-08-15T23:59:59.000Z

280

Nuclear Magnetic Resonance and Ruthenium Ion Catalyzed Oxidation Reaction Analysis for Further Development of Aromatic Ring Size through the Heat Treatment of Coking Coals at >500 °C  

Science Journals Connector (OSTI)

The strategy for coal blending is based on many empirical viewpoints, while scientific findings are believed to develop new criteria for obtaining high-quality coke from not only coking coals but also coking coals coupled with noncoking coals. ... by TEM and by comparing the microtextures of their cokes. ...

Koh Kidena; Koji Matsumoto; Satoru Murata; Masakatsu Nomura

2004-10-23T23:59:59.000Z

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Annual book of ASTM Standards 2008. Section Five. Petroleum products, lubricants, and fossil fuels. Volume 05.06. Gaseous fuels; coal and coke  

SciTech Connect (OSTI)

The first part covers standards for gaseous fuels. The second part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrogrpahic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.

NONE

2008-09-15T23:59:59.000Z

282

Annual book of ASTM Standards 2005. Section Five. Petroleum products, lubricants, and fossil fuels. Volume 05.06. Gaseous fuels; coal and coke  

SciTech Connect (OSTI)

The first part covers standards for gaseous fuels. The standard part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrographic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.

NONE

2005-09-15T23:59:59.000Z

283

Investigation of the effects of heating rate on coking of shale during retorting  

SciTech Connect (OSTI)

The retorting of oil shale distributes organic carbon among three possible products: the liquid product, the noncondensible product, and the residual carbon (coke). The production of coke is detrimental because of the economic effects caused by the loss of organic carbon to this relatively intractable carbon form. Two reference oil shales, a Mahogany zone, Parachute Creek Member, Green River Formation oil shale from Colorado and a Clegg Creek Member, New Albany oil shale from Kentucky, were studied to evaluate the conditions that affect coke production during retorting. The variable that was studied in these experiments was the heating rate during retorting because heating rate has been indicated to have a direct effect on coke production (Burnham and Clarkson 1980). The six heating rates investigated covered the range from 1 to 650/degree/C/h (1.8 to 1169/degree/F/h). The data collected during these experiments were evaluated statistically in order to identify trends. The data for the eastern reference oil shale indicated a decrease in coke formation with increases in the heating rate. The liquid and noncondensible product yields both increased with increasing heating rate. The distribution of products in relation to retort heating rate follows the model suggested by Burnham and Clarkson (1980). Coke production during the retorting of western reference oil shale was found to be constant in relation to heating rate. The liquid product yield increased with increasing heating rate but the trend could not be verified at the 95% confidence level. The coke production observed in these experiments does not follow the prediction of the model. This may indicate that coke formation occurs early in the retorting process and may be limited by the availability of organic materials that form coke. 6 refs., 10 tabs.

Guffey, F.D.; Hunter, D.E.

1988-02-01T23:59:59.000Z

284

Characterization of the origin and distribution of the minerals and phases in metallurgical cokes  

SciTech Connect (OSTI)

Three industrial metallurgical cokes were examined using X-ray diffraction (XRD) and scanning electron microscopy combined with energy dispersive X-ray analysis (SEM/EDS). The study highlighted the difficulties and implications of identifying the inherent crystalline mineral phases in cokes using XRD such that increasing the ashing temperature led to the formation of anhydrite and destruction of metallic iron: microwave plasma ashing resulted in minimal alteration of the original coke mineralogy apart from the formation of bassanite and possibly jarosite. A preliminary scheme to characterize coke minerals is presented such that, physically, minerals can be classified as fine ({lt}50 {mu}m), coarse (50-100 {mu}m), and agglomerate ({gt}1000 {mu}m); chemically, minerals can be grouped as refractory, semirefractory, and reactive, while on the basis of distribution they can be described as discrete, disseminated, or pore inclusions. Quartz, cristobalite, mullite, and high melting point Al-silicates were found to be the predominant refractory phases while low melting point Al-silicates, e.g., containing high fluxing elements such as K, and Fe were the main semirefractory phases present in all cokes. A variety of iron containing phases including pyrrhotite, troilite, iron oxides, metallic iron, and iron silicates were also invariably present in all cokes while calcium phases were found to occur as sulfide, silicates, and phosphates. In general, iron and calcium phases can be categorized as reactive phases with few exceptions such as oldhamite (CaS). The study highlighted that most of the cokes possess a similar mineralogy, with the main distinction being in their relative abundance, particle size, and nature of distribution in the coke matrix. The study provides a basis to develop a mechanistic understanding of the influence of minerals on coke reactivity and strength at high temperatures. 41 refs., 13 figs., 4 tabs.

Sushil Gupta; Maria Dubikova; David French; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). School of Materials Science and Engineering

2007-01-15T23:59:59.000Z

285

Energy efficiency of alternative coke-free metallurgical technologies  

SciTech Connect (OSTI)

Energy analysis is undertaken for the blast-furnace process, for liquid-phase processes (Corex, Hismelt, Romelt), for solid-phase pellet reduction (Midrex, HYL III, LP-V in a shaft furnace), for steel production in systems consisting of a blast furnace and a converter, a Midrex unit and an arc furnace, or a Romelt unit and an arc furnace, and for scrap processing in an arc furnace or in an LP-V shaft furnace. Three blast-furnace processes with sinter and coke are adopted as the basis of comparison, as in: the standard blast-furnace process used in Russia; the improved blast-furnace process with coal-dust injection; and the production of vanadium hot metal from vanadium-bearing titanomagnetite ore (with a subsequent duplex process, ferrovanadium production, and its use in the arc furnace).

V.G. Lisienko; A.V. Lapteva; A.E. Paren'kov [Ural State Technical University - Ural Polytechnic Institute, Yekaterinburg (Russian Federation)

2009-02-15T23:59:59.000Z

286

Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector  

E-Print Network [OSTI]

2011. The World Coke & Coking Coal Markets, Global Steel2010. India's Domestic Coking Coal Scenario. New WorldSTEELEASE, 2011. China Coking Coal and Coke Weekly Monitor,

Karali, Nihan

2014-01-01T23:59:59.000Z

287

Northern Illinois Gas Co IL  

Gasoline and Diesel Fuel Update (EIA)

Northern Northern Illinois Gas Co ............................ IL 254,574,988 4.60 Southern California Gas Co ...................... CA 233,632,354 6.89 Columbia Gas Dist Co............................... OH,KY,PA,MD 196,322,935 6.64 Pacific Gas and Elec Co............................ CA 190,864,262 5.83 Consumers Pwr Co ................................... MI 188,587,672 4.81 Michigan Consol Gas Co........................... MI 160,809,168 5.16 East Ohio Gas Co ..................................... OH 146,802,045 5.44 Pub Svc Elec and Gas Co......................... NJ 140,712,209 6.62 Peoples Gas Lt and Coke Co.................... IL 126,356,925 6.40 Brooklyn Union Gas Co............................. NY 106,349,594 9.43 Atlanta Gas Lt Co ...................................... GA 106,075,815 6.66 Lone Star Gas Co......................................

288

A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.  

E-Print Network [OSTI]

other bituminous coal and coking coal. Small differences incoal (used as fuel) Coking coal Coke oven coke Natural gasrange for typical NCVs of coking coal of 26.6 to 29.8Mj/kg.

Hasanbeigi, Ali

2012-01-01T23:59:59.000Z

289

Researches on the Chemistry of Coal. Part II. The Resinic Constituents and Coking Propensitie of Coals  

Science Journals Connector (OSTI)

1 March 1922 research-article Researches on the Chemistry of Coal. Part II. The Resinic Constituents and Coking Propensitie of Coals William A. Bone A. R. Pearson E. Sinkinson W. E. Stockings The Royal Society is...

1922-01-01T23:59:59.000Z

290

A relationship for the evaluation o coking values of coal tar pitches from their physical characteristics  

Science Journals Connector (OSTI)

A relationship has been proposed to evaluate the coking values of coal tar pitches from the knowledge of their ... It has been tried on 44 self-prepared coal tar pitches and 18 others obtained from ... -ranging c...

G. Bhatia; R. K. Aggarwal; O. P. Bahl

1987-11-01T23:59:59.000Z

291

THE PREDICTED COKE STRENGTH AFTER REACTION VALl JES OF BRITISH COLUMBIA COALS, WITH COMPARISONS TCOALS  

E-Print Network [OSTI]

This paper provides background to the coke strength after reaction (CSR) test and gives perspective regarding changes in the cokinp coal market. It provides it sumtnary of some of the predicted relationships hctween the ash chemistry of

D. Ryan; B. C. Geological; Survey Branch; John T. Price; Canada Centre For Mineral; Energy Technology

292

Kinetics of catalyst regeneration by coke combustion. II. Influence of temperature rise in the catalyst particles  

Science Journals Connector (OSTI)

A grain-pellet model has been used to study the effect of high reaction rates upon the temperature profiles developed during regeneration of coked catalyst particles. The possibility of falsification of kinetic.....

D. Lafarga; C. Royo; A. Monzón; M. Menéndez…

1991-08-01T23:59:59.000Z

293

Experimental Study on Co-gasification of Coal Liquefaction Residue and Petroleum Coke  

Science Journals Connector (OSTI)

An experimental study on co-gasification of coal liquefaction residue and petroleum coke in carbon dioxide was investigated by thermogravimetric analysis. The temperature of the experiment was 1173–1323 K, and the isothermal (1273 K) kinetics were ...

Xin Liu; Zhi-jie Zhou; Qi-jing Hu; Zheng-hua Dai; Fu-chen Wang

2011-06-20T23:59:59.000Z

294

Industrial experience with the thermal preparation of coal batch before coking  

Science Journals Connector (OSTI)

The basic industrial results obtained with thermal preparation of batch, followed by bed coking in horizontal furnaces, are briefly reviewed. Precarbon technology, which, in various forms, has been successfull...

Yu. S. Vasil’ev; A. I. Gordienko; G. V. Dolgarev

2008-07-01T23:59:59.000Z

295

Pyrolysis kinetics of coking coal mixed with biomass under non-isothermal and isothermal conditions  

Science Journals Connector (OSTI)

Abstract To investigate the kinetic characteristics of coking coal mixed with biomass during pyrolysis, thermogravimetric (TG) and thermo-balance reactor (TBR) analyses were conducted under non-isothermal and isothermal condition. Yellow poplar as a biomass (B) was mixed with weak coking coal (WC) and hard coking coal (HC), respectively. The calculated activation energies of WC/B blends were higher than those of HC/B blends under non-isothermal and isothermal conditions. The coal/biomass blends show increased reactivity and decreased activation energy with increasing biomass blend ratio, regardless of the coking properties of the coal. The different char structures of the WC/B and HC/B blends were analyzed by BET and SEM.

Ha Myung Jeong; Myung Won Seo; Sang Mun Jeong; Byung Ki Na; Sang Jun Yoon; Jae Goo Lee; Woon Jae Lee

2014-01-01T23:59:59.000Z

296

Synthesis of super plasticizer NF-30 from coal coking by product washing oil and performance analysis  

Science Journals Connector (OSTI)

Super plasticizer was synthesized by using coal coking by product washing oil and industrial naphthalene....2 in exhaust (20%). Compared with NF, NF-30 have some advantages in lower cost, high water reducing rate...

Zifang Xu ???; Mingxu Zhang; Wenpei Hu

2013-10-01T23:59:59.000Z

297

High-Temperature Stress Relaxation Cracking and Stress Rupture Observed in a Coke Gasifier Failure  

Science Journals Connector (OSTI)

This article discusses the high-temperature metal degradation mechanisms that occurred in the failure of a nine-story tall coke gasifier, located in a refinery power plant. Cracking of gasifier internals, bulging...

Daniel J. Benac; Douglas B. Olson…

2011-06-01T23:59:59.000Z

298

Guide to ASTM test methods for the analysis of coal and coke  

SciTech Connect (OSTI)

The guide includes brief descriptions of all 56 ASTM test methods that cover the physical, chemical, and spectroscopic analytical techniques to qualitatively and quantitatively identify over 40 chemical and physical properties of coal, coke, their products, and by-products.

R.A. Kishore Nadkarni (ed.)

2008-07-01T23:59:59.000Z

299

The development of Coke Carried-Heat Gasification Coal-Fired Combined Cycle  

Science Journals Connector (OSTI)

Carried-Heat Partial Gasification Combined cycle is a novel combined cycle which was proposed by Thermal Engineering Department ... technology, Coke Carried-Heat Gasification Coal-Fired Combined Cycle, as the imp...

Li Zhao; Xiangdong Xu

1999-12-01T23:59:59.000Z

300

Current developments at Giprokoks for coke-battery construction and reconstruction  

SciTech Connect (OSTI)

Approaches developed at Giprokoks for coke-battery construction and reconstruction are considered. Recommendations regarding furnace construction and reconstruction are made on the basis of Ukrainian and world experience.

V.I. Rudyka; Y.E. Zingerman; V.B. Kamenyuka; O.N. Surenskii; G.E. Kos'kova; V.V. Derevich; V.A. Gushchin [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Producing and controlling of the pollutant in the coal`s coking process  

SciTech Connect (OSTI)

In the process of heating and coke shaping, different pollutants and polluting factors will be produced and lost to the environment due to the different coking methods. The paper analyzes the production mechanism, type, emission, average quantity, and damage to the environment of the major pollutants and polluting factors produced in several kinds of coking processes in China at the present. Then, the paper concludes that an assessment for any coking method should include a comprehensive beneficial assessment of economical benefit, environmental benefit and social benefit. The items in the evaluation should consist of infrastructure investment, which includes production equipment and pollution control equipment, production cost, benefit and profit produced by one ton coal, whether the pollution complies with the environmental requirement, extent of the damage, influence to the social development, and etc.

Li, S. [Shanxi Environmental Protection Bureau (China); Fan, Z. [Shanxi Central Environmental Monitoring Station (China)

1997-12-31T23:59:59.000Z

302

Three-dimensional simulation of combustion processes in coke-battery furnace chambers  

Science Journals Connector (OSTI)

A three-dimensional model of the heating wall in a coke battery is developed by means of the Fluent CFD program. The results of simulation are in satisfactory agreement with experimental data. The mathematical...

M. V. Isaev; I. A. Sultanguzin

2010-08-01T23:59:59.000Z

303

"RSE Table N5.1. Relative Standard Errors for Table N5.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Relative Standard Errors for Table N5.1;" 1. Relative Standard Errors for Table N5.1;" " Unit: Percents." " "," "," "," "," "," "," "," ","Waste",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars" "NAICS"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste" "Code(a)","Subsector and Industry","Total","Oven Gases","Waste Gas","Coke","Black Liquor","Bark","Materials"

304

RSE Table 3.5 Relative Standard Errors for Table 3.5  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 3.5;" 5 Relative Standard Errors for Table 3.5;" " Unit: Percents." " "," "," "," "," "," "," "," ","Waste",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars" "NAICS"," "," ","Furnace/Coke","Waste","Petroleum","or","Wood Chips,","and Waste" "Code(a)","Subsector and Industry","Total","Oven Gases","Gas","Coke","Black Liquor","Bark","Materials"

305

Experimental study on the effects of blast-cap configurations and charge patterns on coke descending in CDQ cooling shaft  

SciTech Connect (OSTI)

The coke descending behavior in a CDQ cooling shaft is studied experimentally by means of a tracing method with a digital camera. For three different blast-caps, the law of coke flow is studied under five conditions of coke charge. The experimental results show that, for the sake of the uniformity of the coke burden descending, a blast-cap with elliptical cross-section is a better choice than that with circular cross-section regardless of high or low placement. A coke charge pattern with a flat top burden surface is preferable to that with peak-valley surface, a double-peak superior to a one-peak. Trajectory and average velocity distribution of coke behavior depend weakly on whether the coke is continuously fed or not as the discharging began. The blast-caps have local effects on the descending coke and hardly affect whether the cokes flow smoothly or not in the case of coke burden with enough depth.

Y.H. Feng; X.X. Zhang; M.L. Wu [University of Science & Technology, Beijing (China). School of Mechanical Engineering

2008-08-15T23:59:59.000Z

306

Effect of thermal treatment on coke reactivity and catalytic iron mineralogy  

SciTech Connect (OSTI)

Iron minerals in coke can catalyze its gasification and may affect coke behavior in the blast furnace. The catalytic behavior of iron depends largely upon the nature of the iron-bearing minerals. To determine the mineralogical changes that iron could undergo in the blast furnace, cokes made from three coals containing iron present in different mineral forms (clays, carbonates, and pyrite) were examined. All coke samples were heat-treated in a horizontal furnace at 1373, 1573, and 1773 K and then gasified with CO{sub 2} at 1173 K in a fixed bed reactor (FBR). Coke mineralogy was characterized using quantitative X-ray diffraction (XRD) analysis of coke mineral matter prepared by low-temperature ashing (LTA) and field emission scanning electron microscopy combined with energy dispersive X-ray analysis (FESEM/EDS). The mineralogy of the three cokes was most notably distinguished by differing proportions of iron-bearing phases. During heat treatment and subsequent gasification, iron-containing minerals transformed to a range of minerals but predominantly iron-silicides and iron oxides, the relative amounts of which varied with heat treatment temperature and gasification conditions. The relationship between initial apparent reaction rate and the amount of catalytic iron minerals - pyrrhotite, metallic iron, and iron oxides - was linear and independent of heat treatment temperature at total catalyst levels below 1 wt %. The study showed that the coke reactivity decreased with increasing temperature of heat treatment due to decreased levels of catalytic iron minerals (largely due to formation of iron silicides) as well as increased ordering of the carbon structure. The study also showed that the importance of catalytic mineral matter in determining reactivity declines as gasification proceeds. 37 refs., 13 figs., 7 tabs.

Byong-chul Kim; Sushil Gupta; David French; Richard Sakurovs; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). Centre for Sustainable Materials Research and Technology

2009-07-15T23:59:59.000Z

307

Coke gasification: the influence and behavior of inherent catalytic mineral matter  

SciTech Connect (OSTI)

Gasification of coke contributes to its degradation in the blast furnace. In this study, the effect of gasification on the inherent catalytic minerals in cokes and their reciprocal influence on gasification are investigated. The catalytic mineral phases identified in the cokes used in this study were metallic iron, iron sulfides, and iron oxides. Metallic iron and pyrrhotite were rapidly oxidized during gasification to iron oxide. The catalysts had a strong influence on the apparent rates at the initial stages of reaction. As gasification proceeds, their effect on the reaction rate diminishes as a result of reducing the surface contact between catalyst and carbon matrix because of carbon consumption around the catalyst particles; with extended burnout the reactivity of the coke becomes increasingly dependent on surface area. The reaction rate in the initial stages was also influenced by the particle size of the catalytic minerals; for a given catalytic iron level, the cokes whose catalytic minerals were more finely dispersed had a higher apparent reaction rate than cokes containing larger catalytic particles. Iron, sodium, and potassium in the amorphous phase did not appear to affect the reaction rate. 40 refs., 16 figs., 6 tabs.

Mihaela Grigore; Richard Sakurovs; David French; Veena Sahajwalla [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Bangor, NSW (Australia)

2009-04-15T23:59:59.000Z

308

Texas Gas Service - Commercial Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Texas Gas Service - Commercial Energy Efficiency Rebate Program Texas Gas Service - Commercial Energy Efficiency Rebate Program Texas Gas Service - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Appliances & Electronics Water Heating Program Info State Texas Program Type Utility Rebate Program Rebate Amount Front-loading Clothes Washers: up to $100 Commercial Water Heating System: up to 20% of cost Hydronic Heater: $125 per unit Infra-red Fryers: $400 Convection Ovens: $400 Conveyor Ovens: $400 Infra-red Griddles $200 Booster Heater: $500/unit Texas Gas Service (TGS) offers a range of financial incentives to commercal customers who purchase and install energy efficient commercial equipment. Eligible equipment includes commercial clothes washers, water heaters, hydronic heating systems, ovens, fryers, griddles and booster heaters.

309

Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and  

Broader source: Energy.gov (indexed) [DOE]

Memphis Light, Gas and Water (Electric) - Commercial Efficiency Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and Incentives Program Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and Incentives Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Appliances & Electronics Heat Pumps Commercial Lighting Lighting Commercial Weatherization Maximum Rebate 70% of project cost Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Commercial Dishwashers: $400 - $1500 Commercial Refrigerator: $60 - $100 Ice Machines: $100 - $400 Insulated Holding Cabinets: $250 - $600 Electric Steam Cookers: $400 Electric Convection Ovens: $200 Electric Griddles: $200 Electric Combination Ovens: $2,000

310

Evaluation of fly ash from co-combustion of coal and petroleum coke for use in concrete  

SciTech Connect (OSTI)

An investigation of fly ash (FA) produced from various blends of coal and petroleum coke (pet coke) fired at Belledune Generating Station, New Brunswick, Canada, was conducted to establish its performance relative to FA derived from coal-only combustion and its compliance with CSA A3000. The FA samples were beneficiated by an electrostatic separation process to produce samples for testing with a range of loss-on-ignition (LOI) values. The results of these studies indicate that the combustion of pet coke results in very little inorganic residue (for example, typically less than 0.5% ash) and the main impact on FA resulting from the co-combustion of coal and up to 25% pet coke is an increase in the unburned carbon content and LOI values. The testing of FA after beneficiation indicates that FA produced from fuels with up to 25% pet coke performs as good as FA produced from the same coal without pet coke.

Scott, A.N.; Thomas, M.D.A.

2007-01-15T23:59:59.000Z

311

Characterization of tuyere-level core-drill coke samples from blast furnace operation  

SciTech Connect (OSTI)

A suite of tuyere-level coke samples have been withdrawn from a working blast furnace during coal injection, using the core-drilling technique. The samples have been characterized by size exclusion chromatography (SEC), Fourier transform Raman spectroscopy (FT-RS), and X-ray powder diffraction (XRD) spectroscopy. The 1-methyl-2-pyrrolidinone (NMP) extracts of the cokes sampled from the 'bosh', the rear of the 'bird's nest', and the 'dead man' zones were found by SEC to contain heavy soot-like materials (ca. 10{sup 7}-10{sup 8} apparent mass units). In contrast, NMP extracts of cokes taken from the raceway and the front of the 'bird's nest' only contained a small amount of material of relatively lower apparent molecular mass (up to ca. 10{sup 5} u). Since the feed coke contained no materials extractable by the present method, the soot-like materials are thought to have formed during the reactions of volatile matter released from the injectant coal, probably via dehydrogenation and repolymerization of the tars. The Raman spectra of the NMP-extracted core-drilled coke samples showed variations reflecting their temperature histories. Area ratios of D-band to G-band decreased as the exposure temperature increased, while intensity ratios of D to G band and those of 2D to G bands increased with temperature. The graphitic (G), defect (D), and random (R) fractions of the carbon structure of the cokes were also derived from the Raman spectra. The R fractions decreased with increasing temperature, whereas G fractions increased, while the D fractions showed a more complex variation with temperature. These data appear to give clues regarding the graphitization mechanism of tuyere-level cokes in the blast furnace. 41 refs., 9 figs., 6 tabs.

S. Dong; N. Paterson; S.G. Kazarian; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2007-12-15T23:59:59.000Z

312

Predicting the yield of coking byproducts on the basis of elementary and petrographic analysis of the coal batch  

Science Journals Connector (OSTI)

Mathematical models are developed for predicting the yield of coking byproducts on the basis of elementary and petrographic analysis of the coal batch.

M. B. Golovko; I. D. Drozdnik; D. V. Miroshnichenko; Yu. S. Kaftan

2012-06-01T23:59:59.000Z

313

Study of the sulphur in coal and its distribution between the gases and the residue in coking.  

E-Print Network [OSTI]

??Sulphur exists in metallurgical coke as a source of annoyance and difficulties in the economic progress of the metal industries. It ie present in coal… (more)

Wenger, Arthur W.

1923-01-01T23:59:59.000Z

314

CeO2 Promoted Ni/Al2O3 Catalyst in Combined Steam and Carbon Dioxide Reforming of Methane for Gas to Liquid (GTL) Process  

Science Journals Connector (OSTI)

The effect of ceria promotion over Ni/Al2O3...catalysts on the catalytic activity and coke formation was investigated in combined steam and carbon dioxide reforming of methane (CSCRM) to produce synthesis gas (H2

Kee Young Koo; Hyun-Seog Roh; Un Ho Jung; Wang Lai Yoon

2009-06-01T23:59:59.000Z

315

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate Custom: 50% of project cost Program Info Start Date 06/09/2011 State Wyoming Program Type Utility Rebate Program Rebate Amount Water Heater: $75 - $300 Furnaces: $250 - $400 Boilers: $150 - $400 Setback Thermostat: $25 - $50 Convection Oven: $100 High Efficiency Range/Oven: $500 Conveyor Oven: $500 Fryer: $500 Broiler: $100 Steam Cooker: $500 Vent Dampers for Boilers: $125 Custom: Two year buy down or 50% of project cost, whichever is less

316

Australia–Japan coking coal trade: A hedonic analysis under benchmark and fair treatment pricing  

Science Journals Connector (OSTI)

Given Japan's dominant position in the Asia–Pacific regional coal market and the continuing relatively low profitability of Australia's coal industry, the influence of the Japanese steel mills on coal pricing arrangements between Australia and Japan remains an issue in Australia. In Japanese fiscal year (JFY) 1996, the Japanese steel mills replaced benchmark pricing with the “fair treatment” pricing system whereby coal contract information is kept confidential. In this paper, Quandt's switching regime model is used to test for structural change in hedonic pricing relationships in the important Australia–Japan coking coal trade between JFY 1992 and 1997. There is statistical evidence of significant structural change in JFY 1996 for hard coking coal and in JFY 1995 for semisoft coking coal (when soft coking coal was merged with the semisoft category). The goodness of fit of the regressions is lower in each recent period. It is concluded that price discovery in the annual coal negotiations, particularly for hard coking coal, is relatively more difficult under fair treatment pricing.

Anthony Swan; Sally Thorpe; Lindsay Hogan

1999-01-01T23:59:59.000Z

317

Detection of natural oxidation of coking coal by TG-FTIR—mechanistic implications  

Science Journals Connector (OSTI)

The natural oxidation/weathering of coal continues to be a subject of interest both scientifically and industrially, in part due to the complexity of the molecular processes at hand as well as to the commercial implications involved. It is widely recognized that coking can be adversely affected by weathering whereas, combustion processes appear to be enhanced as result of oxidation. Combustion techniques are commonly used in the analysis of coal, and organic compounds in general, for the determination of elemental hydrogen, carbon and nitrogen. For oxygen, the method in common practice involves the determination by difference from directly determined values for moisture, ash, sulphur, hydrogen, carbon and nitrogen. This has led us to consider the use of thermogravimetry coupled to gas analysis by infrared spectroscopy (TG-FTIR) to measure organic oxygen in coal directly. Although this technique, developed by Solomon and coworkers, has been extensively used by our group and others, it appears not to have been considered for this particular purpose. Recently, we have shown that TG-FTIR is capable of measuring all the organic oxygen in both fresh and oxidized coal by simultaneous measurement of the three main oxygen-containing gases H2O, CO and CO2 evolved during rapid pyrolysis. This gives us a way of measuring quantitatively the oxygen introduced into the coal matrix during oxidation and at least a partial capability of establishing oxygen speciation. We have found, using TG-FTIR, that the early stages of coal oxidation results in the appearance of O-containing functional groups not present in the original coal. The nature of these functional groups is directly related to the oxidation reaction mechanism. These results will be presented and discussed in detail.

J.A. MacPhee; L. Giroux; J.-P. Charland; J.F. Gransden; J.T. Price

2004-01-01T23:59:59.000Z

318

Relationship between coking coal quality and its micro-Raman spectral characteristics  

Science Journals Connector (OSTI)

Abstract Micro-Raman spectroscopy examination of 20 samples of coking coals (Rr = 0.84–1.43%) was performed. Spectral parameters were correlated with the basic rank and technological properties of coals. The G band FWHM and the AG/AALL ratio decrease with the volatile matter content (Vdaf) decrease and the all maceral reflectance scan (Rscan) value increase. The correlations between these parameters are stronger than those, between the G band FWHM and the AG/AALL ratio, and the mean random vitrinite reflectance (Rr). Coking properties are weakly related to the Raman spectral characteristics of coal. Based on the Raman parameters G band FWHM and the AG/AALL ratio, it may be possible to evaluate the volatile matter content (Vdaf) and the all maceral reflectance scan (Rscan) value for coking coals.

Rafa? Morga; Iwona Jelonek; Krystyna Kruszewska

2014-01-01T23:59:59.000Z

319

Coking phenomena in the pyrolysis of ethylene dichloride into vinyl chloride  

SciTech Connect (OSTI)

Pyrolysis of ethylene dichloride (EDC) into vinyl chloride (VCM) which is the monomer for polyvinyl chloride, one of the most popular polymers, has been established commercially for quite a time. The process around 500{degrees}C has been proved to give VCM of high purity at very high selectivity about 99% and a reasonable conversion about 50%. However, the coking is a major problem in the long run, requiring decoking treatment every two months. The present paper describes features of carbons produced in the pyrolysis process. Coke of respective features was found in the reactor, the transfer line, the heat exchanger and the rapid quencher. Typical pyrolytic carbon, anisotropic coke produced in the liquid phase, isotropic carbon was produced on the reactor wall as low as 500{degrees}C. The mechanisms for their formation are discussed.

Sotowa, Chiaki; Korai, Yozo; Mochida, Isao [Kyushu Univ., Kasuga, Fukuoka (Japan)] [and others

1995-12-31T23:59:59.000Z

320

Catalyst deactivation by coking in the MTG process in fixed and fluidized bed reactors  

Science Journals Connector (OSTI)

The validity of a kinetic model for describing the deactivation of a catalyst based on a HZSM5 zeolite has been studied by carrying out reaction in fixed and fluidized bed reactors. The kinetic model takes into account that activity is dependent on the concentration of the lumps of oxygenates, of light olefins and of the remaining products and shows that coke formation capability follows this order. The difference between the deactivation kinetic constants calculated for the fixed and fluidized bed reactors is explained by the effect of the steam produced in the reaction, where coke stripping attenuates deactivation. Future improvements in the deactivation kinetic model must take into account coke stripping by the steam produced in the reaction.

Andrés T. Aguayo; Ana G. Gayubo; JoséM. Ortega; Martin Olazar; Javier Bilbao

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Study on the Respirable Particulate Matter Generated from the Petroleum Coke and Coal Mixed-Fired CFB Boiler  

Science Journals Connector (OSTI)

The dust generated from the fuel combustion is one of the important sources for air pollution. This paper has made a comprehensive research on the particulate matter generated from the petroleum coke and coal mixed-fired circulating fluidized bed (CFB) ... Keywords: petroleum coke, respirable particulate matter, air pollution, circulating fluidized bed boiler

Yan Ma; Hao Bai; Lihua Zhao; Yang Ma; Daqiang Cang

2010-12-01T23:59:59.000Z

322

An active carbon catalyst prevents coke formation from asphaltenes during the hydrocracking of vacuum residue  

SciTech Connect (OSTI)

Active carbons were prepared by the steam activation of a brown coal char. The active carbon with mesopores showed greater adsorption selectivity for asphaltenes. The active carbon was effective at suppressing coke formation, even with the high hydrocracking conversion of vacuum residue. The analysis of the change in the composition of saturates, aromatics, resins, and asphaltenes in the cracked residue with conversion demonstrated the ability of active carbon to restrict the transformation of asphaltenes to coke. The active carbon that was richer in mesopores was presumably more effective at providing adsorption sites for the hydrocarbon free-radicals generated initially during thermal cracking to prevent them from coupling and polycondensing.

Fukuyama, H.; Terai, S. [Toyo Engineering Corp., Chiba (Japan). Technological Research Center

2007-07-01T23:59:59.000Z

323

Contribution to kinetic modeling of catalyst deactivation by coke in the MTG process  

SciTech Connect (OSTI)

The adequacy of a kinetic model for deactivation of a catalyst based on a H-ZSM5 used in the transformation of methanol into hydrocarbons has been proven. The model takes into account the pronounced effect on coke deposition of the concentration of reaction lumps and coke preferable deposition at the reactor inlet by degradation of oxygenates (methanol and dimethylether) on the catalyst acid sites. The kinetic model is in agreement with the experimental results of fixed and fluidized bed reactors within the 300-400 {degrees}C range. The deactivation is slightly smaller in fluidized bed but contribution of catalyst attrition to deactivation must be considered. 14 refs., 3 figs.

Gayubo, A.G.; Ortega, J.M.; Benito, P.L.; Aguayo, A.T.; Bilbao, J. [Universidad del Pais Vasco, Bilbao (Spain)

1996-12-31T23:59:59.000Z

324

Rates of Microbial Transformation of Polycyclic Aromatic Hydrocarbons in Water and Sediments in the Vicinity of a Coal-Coking Wastewater Discharge  

Science Journals Connector (OSTI)

...Sediments in the Vicinity of a Coal-Coking Wastewater Discharge Stephen E...collected in the vicinity of a coal-coking treated wastewater discharge from...sediments in the vicinity of a coal-coking wastewater discharge. | To facilitate...

Stephen E. Herbes

1981-01-01T23:59:59.000Z

325

Effect of petroleum coke addition on coal gasification  

Science Journals Connector (OSTI)

The main fuel for power generation is combustion of coal and/or natural gas. Natural gas is expensive but clean and less problematic whereas coal is the reverse of natural gas. Natural gas resources are expected to last until 2020 where else coal has another 200 years expectancy. To replace the natural gas synthetic gas (syngas) can be used as a substitute fuel. Syngas can be produced using coal as fuel. In this study we blend petcoke a cheap solid carboneous fuel as an alternative to coal for the production of syngas using a 30 Kwattheat bubbling fluidized bed gasifier. The equivalent ratio (ER) was set at 2.8 and a gasification temperature was maintained between 680 to 710°C by manipulating between the feed flow rates and fluidizing medium. This condition was chosen as it proved to be the optimum based on the work by the same group. Various blend of coal:petcoke between 0 to 100% was analyzed. It was found that a 20:80 petcoke to coal gives a good correlation with 100% coal gasification.

2014-01-01T23:59:59.000Z

326

Dissolution of refractories for gasification process of petroleum coke for the steel industry  

Science Journals Connector (OSTI)

The production of energizing gases such as H2 and CO by gasification process of solid fuels is a technology that has increased in recent years since it is an efficient and clean process. To enable the production of gases, it is necessary to use refractory materials capable of withstanding high temperatures, thermal shock and contact with aggressive media. Nowadays, there is not published literature on refractory materials used for furnaces lining for petroleum coke gasification at high temperatures (?1900 °C). Therefore, this paper deals with the study of alumina and magnesium aluminate/alumina-based refractories as candidates for the furnace lining used in the petroleum coke gasification for steel production. Refractory samples were made with some designed formulations which were subjected to chemical interactions with pellets made of petroleum coke and petroleum coke ash at 1650 °C for 4 h. After completing the tests, the formulations were cut transversely and were characterized by SEM-EDS and XRD to evaluate the resistance to slag penetration and formation of low melting point phases. The results show that slag penetration and corrosion in the refractory formulations occur due to the formation of hibonite, spinels (Ni2+, Fe2+, Mg2+)(Al, Fe)2O4 and gehlenite phases. However, these phases together stop the molten slag penetration.

R. Puente-Ornelas; C.J. Lizcano-Zulaica; A.M. Guzmán; P.C. Zambrano; T.K. Das-Roy

2012-01-01T23:59:59.000Z

327

Effect of Iron Species and Calcium Hydroxide on High-Sulfur Petroleum Coke CO2 Gasification  

Science Journals Connector (OSTI)

The effect of iron species on petroleum coke CO2 gasification was studied in the present work. The effects of the temperature (1173–1673 K), the catalyst types, catalyst loading (ranging from 0 to 5 wt %), and composition during the gasification of ...

Zhi-jie Zhou; Qi-jing Hu; Xin Liu; Guang-suo Yu; Fu-chen Wang

2012-01-24T23:59:59.000Z

328

Coke deposits formation and products selectivities for the MTG process in a fluidized bed reactor  

Science Journals Connector (OSTI)

Experiments were carried out in a demonstrative scale fluidized bed reactor for methanol conversion to gasoline (MTG). We investigated the kinetics of the coke deposits formation and their influence on the products selectivities. New reaction indexes were advanced for on line monitoring of the catalyst activity.

Grigore Pop; Gavril Musca; Eleonora Chirila; Rodica Boeru; Gheorghe Niculae; Natalia Natu; Gheorghe Ignatescu; Sorin Straja

1989-01-01T23:59:59.000Z

329

Investigation of Vanadium Compounds in Ashes from a CFBC Firing 100 Petroleum Coke  

Science Journals Connector (OSTI)

Investigation of Vanadium Compounds in Ashes from a CFBC Firing 100 Petroleum Coke ... The ash pits have since gone through an extensive remedial process. ... The other metals investigated (i.e., Fe, Cu, Zn, and Pb) also were present predominantly as sulfates. ...

L. Jia; E. J. Anthony; J. P. Charland

2002-02-27T23:59:59.000Z

330

Coal flow aids reduce coke plant operating costs and improve production rates  

SciTech Connect (OSTI)

Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

2005-06-01T23:59:59.000Z

331

Optimization of experimental conditions for recovery of coking coal fines by oil agglomeration technique  

Science Journals Connector (OSTI)

The significance of coking coal in the metallurgical sector as well as the meager coking coal reserves across the globe increase the necessity to recover coking coal fines from the fine coking coal slurries generated from coal preparation and utilization activities. Oil agglomeration studies were carried out by varying the experimental conditions for maximum recovery of coking coal fines i.e., yield of the agglomerates. The various operational parameters studied were oil dosage, agitation speed, agglomeration time and pulp density. By using Taguchi experimental design, oil dosage (20%), agitation speed (1100 rpm), agglomeration time (3 min) and pulp density (4.5%) were identified as the optimized conditions. A confirmation experiment has also been carried out at the optimized conditions. The percentage contribution of each parameter on agglomerate yield was analyzed by adopting analysis of variance (ANOVA) statistical method as well as multiple linear regression analysis. The order of influence of the parameters on the agglomerate yield is of the following order: pulp density > oil dosage > agitation speed > agglomeration time. A mathematical model was developed to fit the set of experimental conditions with the yield obtained at each test run and also at the optimized conditions. The experimentally obtained yield was compared with the predicted yield of the model and the results indicate a maximum error of 5% between the two. A maximum yield of 90.42% predicted at the optimized conditions appeared to be in close agreement with the experimental yield thus indicating the accuracy of the model in predicting the results.

G.H.V.C. Chary; M.G. Dastidar

2010-01-01T23:59:59.000Z

332

Method for producing low and medium BTU gas from coal  

SciTech Connect (OSTI)

A process for producing low and medium BTU gas from carbonizable material is described which comprises: partly devolatizing the material and forming hot incandescent coke therefrom by passing a bed of the same part way through a hot furnace chamber on a first horizontally moving grate while supplying a sub-stoichiometric quantity of air to the same and driving the reactions: C + O/sub 2/ = CO/sub 2/; 2C + O/sub 2/ = 2CO discharging the hot incandescent coke from the end of the first grate run onto a second horizontally moving grate run below the first grate run in the same furnace chamber so as to form a bed thereon, the bed formed on the second grate run being considerably thicker than the bed formed on the first grate run, passing the hot incandescent coke bed on the second grate run further through the furnace chamber in a substantially horizontal direction while feeding air and stream thereto so as to fully burn the coke and in ratio of steam to air driving the following reactions: 2C + O/sub 2/ = 2CO; C + H/sub 2/O = H/sub 2/ + CO; C + 2H/sub 2/O = 2H/sub 2/ + CO/sub 2/; CO + H/sub 2/O = H/sub 2/ + CO/sub 2/ taking off the ash residue of the burned coke and taking off the gaseous products of the reactions.

Mansfield, V.; Francoeur, C.M.

1988-06-07T23:59:59.000Z

333

Master Thesis: Collaboration between Utility Systems and Production  

E-Print Network [OSTI]

) Electricity Natural GasElectricity Generation (Power Plant) 1. Abbreviations: CO (coke oven), SP (sinter plant and LF) Casting (CC) Storage (SY) Reheating (RF) Rolling (HSM) Meltshop Hot Rolling Mill Coal Iron Ore) Meltshop Hot Rolling Mill Coal Iron Ore Slabs CO and BF Gas BOF Gas Given: Hot rolling mill produces set

Grossmann, Ignacio E.

334

Spectroscopic studies on the formation of coke on individual Fluid Catalytic Cracking particles: the effect of poisoning metal compounds.  

E-Print Network [OSTI]

??The formation of coke on individual Fluid Catalytic Cracking (FCC) catalyst particles was studied using UV/Vis microspectroscopy and confocal fluorescence microscopy, with n-hexane cracking as… (more)

Goetze, J.G.

2013-01-01T23:59:59.000Z

335

Deposition and characteristics of coke over a H-ZSM5 zeolite-based catalyst in the MTG process  

SciTech Connect (OSTI)

The influence of reaction conditions in the transformation of methanol into gasoline (temperature, time on stream, and contact time) on the deposition and nature of coke (composition, H/C ratio) and on its location in the porous structure of a H-ZSM5 zeolite-based catalyst has been studied in an isothermal fixed-bed integral reactor. The distribution of the coke within the porous structure of the catalyst is similar to that proposed for other reactions on H-ZSM5 zeolites, and the highly hydrogenated character of coke and its instability is noteworthy. Coke deposition has been related to catalyst acidic site deterioration and to a kinetic model for catalyst deactivation in an integral reactor.

Benito, P.L.; Gayubo, A.G.; Aguayo, A.T.; Olazar, M.; Bilbao, J. [Univ. del Pais Vasco, Bilbao (Spain). Dept. de Ingenieria Quimica] [Univ. del Pais Vasco, Bilbao (Spain). Dept. de Ingenieria Quimica

1996-11-01T23:59:59.000Z

336

Reducing the sulfur content of coke by increasing the content of thermally conditioned g coal in the batch  

Science Journals Connector (OSTI)

In periods of economic growth, Ukrainian coke plants face a shortage of Zh and K coal, because of the high demand. In periods of economic stagnation, conversely, there is an excess of Zh coal, on account of the d...

E. I. Malyi

2014-05-01T23:59:59.000Z

337

EA-0404: Finding of No Significant Impact | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

4: Finding of No Significant Impact 4: Finding of No Significant Impact EA-0404: Finding of No Significant Impact Innovative Clean Coal Technology Program - Coke Oven Gas Cleaning Demonstration Project at the Bethlehem Steel Corp. Sparrows Point Plant, Baltimore County, Maryland The Department of Energy prepared EA-0404 for the Coke Oven Gas Cleaning Demonstration Project at the Bethlehem Steel Corporation Sparrows Point Plant and determined it does not significantly affect the quality of the environment, so a Finding of No Significant Impact (FONSI) was issued. Finding of No Significant Impact for the Coke Oven Gas Cleaning Demonstration Project at the Bethlehem Steel Corporation Sparrows Point Plant More Documents & Publications EA-0404: Final Environmental Assessment EA-1091: Final Environmental Assessment

338

Supplementary Information for Refined Estimate of China's CO2 Emissions in  

E-Print Network [OSTI]

.95-0.98); Weibull Other washed coal 0.96 (0.92-1); Triangular Briquettes 0.90 (0.89-0.98); Weibull IPCC( 2006); Coke coal 0.93 (0.89-0.98); Gamma IPCC( 2006); Cai et al. (2009); Zhao et al (2012) Cleaned coal 0.96 (0 0.93 (0.89-1); Triangular Coke Oven Gas 0.99 (0.98-1); Triangular Other Gas 0.99 (0

Meskhidze, Nicholas

339

3D Computational Fluid Dynamics Simulation of Natural Coke Steam Gasification in General and Improved Fluidized Beds  

Science Journals Connector (OSTI)

The thermal characteristics of natural coke steam gasification in a fluidized bed were three-dimensionally (3D) simulated based on the computational fluid dynamics (CFD) method using Fluent code. ... However, this technology seems difficult to carry out due to its abradability, hard ignition, hot burst, and so on. ... In short, all the results in this work have a significance to provide the theoretical basis for the design, operational optimization, and scale-up of the natural coke steam gasification process. ...

Ya-li Tang; Dai-jun Liu; Yu-hong Liu; Qian Luo

2010-09-30T23:59:59.000Z

340

Linings with optimum heat-emission surfaces for cars receiving and transporting incandescent coke  

SciTech Connect (OSTI)

The least reliable components of the cars which receive and transport incandescent coke are the lining plates. This applies to both the quenching cars used for wet quenching and the hot-coke cars used in the dry cooling process. Technical advances have been described whereby the life of car linings is prolonged by increasing heat emission from the lining plate surfaces. As the heat emission level is enhanced the mean plate temperature is lowered and the lining life thereby prolonged; moreover, the between-servicings period is prolonged. This involves providing fins on the non-working (outer) plate surfaces. The problem of optimizing the size and shape of the fins with reference to heat emission remains unsolved: the requirement is maximum heat emission from plates of a given weight, or conversely minimum plate weight for a given heat emission level. 6 refs., 3 figs.

Kotlyar, B.D.; Pleshkov, P.I.; Gadyatskii, V.G. [and others

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Kinetic Modeling for the Combined Pyrolysis and Steam Gasification of Petroleum Coke and Experimental Determination of the Rate Constants by Dynamic Thermogravimetry in the 500?1520 K Range  

Science Journals Connector (OSTI)

1 An important example of such hybridization is the endothermic steam gasification of petroleum coke (petcoke) to synthesis gas (syngas). ... A 2nd-Law analysis for generating electricity using the solar gasification products indicates the potential of doubling the specific electrical output and, consequently, halving the specific CO2 emissions, vis-à-vis conventional petcoke-fired power plants. ... 2 The overall chemical process can be represented by the simplified net reaction: where x and y are the elemental molar ratios of H/C and O/C in petcoke, respectively. ...

D. Trommer; A. Steinfeld

2006-03-28T23:59:59.000Z

342

Unsteady-state kinetic simulation of naphtha reforming and coke combustion processes in the fixed and moving catalyst beds  

Science Journals Connector (OSTI)

Abstract The work is dedicated to the construction of kinetics models for the naphtha reforming process and the adjacent process of catalyst regeneration by coke combustion. The proposed kinetic model for the reforming process is based on the use of common rate equations for the groups of similar reactions with account of difference in reaction rates for individual homologs within these groups by simple correlations with thermodynamic properties (first of all – with the values of Gibbs free energy) of individual reactions and by other simplification methods. Such approach gives the way to construct the kinetics models optimal from the point of view of compromise between accuracy and simplicity. The proposed naphtha reforming model is characterized with the high level of kinetic scheme detailization (62 individual and group reactants and 146 individual reactions), at the same it is rather simple and provides the accurate description of the experimental data using only 22 kinetic parameters. This model is thermodynamically consistent and provides accurate description of experimental data in a wide range of process parameters. Account of catalyst deactivation by coke deposition in the model gives the way to simulate transient reforming process performance both in fixed and moving catalyst beds. Kinetics of coke combustion for catalysts with moderate coke content (up to 3% mass) may described by simple kinetic equation with apparent reaction rate orders closed to unit for relative coke content and to 1/2 for oxygen. Demonstration simulations of naphtha reforming and coke combustion processes are presented.

Andrey N. Zagoruiko; Alexander S. Belyi; Mikhail D. Smolikov; Alexander S. Noskov

2014-01-01T23:59:59.000Z

343

Operating temperature effects on nozzle coking in a cottonseed oil fueled diesel engine  

E-Print Network [OSTI]

OPERATING TEMPERATURE EFFECTS ON NOZZLE COKING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis CHARLES MICHAEL YARBROUGH Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree cf... MASTER OF SCIENCE December 1984 Major Subject: Agricultural Engineering OPERATING TEMPERATURE EFFECTS ON NOZZLE CORING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis by CHARLES MICHAEL YARBROUGH Approved as to style and content by: ayne A. Le...

Yarbrough, Charles Michael

2012-06-07T23:59:59.000Z

344

Profitability analysis of non-coking coal preparation for power plants in India  

SciTech Connect (OSTI)

Currently coal-based power plants produce about 70% of the total electricity generated in India, where non-coking (steam) coals are utilized mostly without any preparation. A massive capacity addition of at least 140,000 MWe is required (over the 81,000 MWe of current installed capacity) during the next 15 years to meet growing energy demand. Such a rapid expansion of power generation capacity poses a serious challenge to the environment (at emission controls) and transportation infrastructure in India. Furthermore, the high ash content of indigenous coals and concentration of coal mines in central and northeastern India away from urban centers exacerbate the problem. Thus, coal preparation is envisioned to play a major role in shaping the energy future of India. Under the Indo-US Coal Preparation Program, the US Department of Energy`s Pittsburgh Energy Technology Center (PETC) is coordinating coal preparation activities for the US Agency for International Development. In this context, a detailed analysis of the washability characteristics of non-coking coals was performed using the PETC Coal Preparation Plant Simulator (CPPS) to identify coal preparation strategies for India. Based on these strategies, a profitability analysis of non-coking coal preparation has been conducted considering coal preparation and transportation costs, and coal quality impacts on power plant operations. This paper summarizes the results of this analysis and quantifies the significance of coal preparation for the Indian power sector.

Gollakota, S.V.; Rao, S.N. [Burns and Roe Services Corp., Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Staats, G.E. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center

1996-12-31T23:59:59.000Z

345

High-purity hydrogen gas from the reaction between BOF steel slag and water in the 473e673 K  

E-Print Network [OSTI]

. Iron reduction is achieved witha reducing gas (generally,a gas mixture ofH2 and CO produced by coal reserved. http://dx.doi.org/10.1016/j.ijhydene.2013.03.163 #12;agent such as coke, in a blast furnace

Montes-Hernandez, German

346

Co-coking of Hydrotreated Decant Oil/Coal Blends: Effect of Hydrotreatment Severity on the Yield Distribution and Quality of Distillate Fuels  

Science Journals Connector (OSTI)

The coke yield from delayed co-coking of hydrotreated DOs and coal blends was observed to be in the range of 15.9–24.4%. ... The coal used in this study (EI-106) was a 50:50 blend of the Powellton and Eagle seams, both very similar coals of high-volatile A bituminous rank from West Virginia. ... One of the hydrotreated DOs (EI-133) was coked alone. ...

Ömer Gül; Leslie R. Rudnick; Harold H. Schobert

2013-05-19T23:59:59.000Z

347

National Fuel (Gas) - Small Commercial Conservation Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

(Gas) - Small Commercial Conservation Program (Gas) - Small Commercial Conservation Program National Fuel (Gas) - Small Commercial Conservation Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Custom Rebates: $25,000 Program Info State New York Program Type Utility Rebate Program Rebate Amount Custom Rebates: $15/Mcf x the gas savings Unit Heater: $1000 Hot Air Furnace: $500 Low Intensity Infrared Heating: $500 Programmable Thermostat: $25 Hot Water Boiler: $600-$3500 Steam Boiler: $600-$2000 + $2/kBtuh Tankless Water Heaters: $350 Storage Tank Water Heater: $150 Fryer: $750 Convection Oven: $500 Combination Oven: $750 Broiler: $500 Steamer: $750 Griddle: $500 Provider New York State Energy Research and Development Authority

348

Usiing NovoCOS cleaning equipment in repairing the furnace-chamber lining in coke batteries 4 & 5 at OAO Koks  

SciTech Connect (OSTI)

Experience with a new surface-preparation technology for the ceramic resurfacing of the refractory furnace-chamber lining in coke batteries is described.

S.G. Protasov; R. Linden; A. Gross [OAO Koks, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

349

Application of artificial neural network to study the performance of jig for beneficiation of non-coking coal  

Science Journals Connector (OSTI)

Non-coking coal is the major resource of energy in India. Apart from its utilization in energy sector, the other major application of this coal is in metallurgical sector. The resource of high quality of non-coking coal is not available as per demand; as a result beneficiation of non-coking coal is now becoming essential. Jigging is one of the economical physical beneficiation processes for Indian high ash non-coking coal. At present scenario in coal washery in India, below 3 mm size is not being processed. Attempt has been taken to beneficiate the fine size non-coking coal fractions generated at different sizes of bed materials, feed rates and water rates using laboratory Denver mineral jig. The performance of jig was evaluated in term of Ep and imperfection value. Furthermore artificial neural network (ANN) model has been developed for determining combustible recovery and ash percent of the concentrate. The ANN architecture is made up of three layers (input – hidden – output). A back propagation algorithm was used for training of the ANN model. It has been observed that the predicted values by ANN model are in good agreement with the experimental results.

Lopamudra Panda; A.K. Sahoo; A. Tripathy; S.K. Biswal; A.K. Sahu

2012-01-01T23:59:59.000Z

350

Split and collectorless flotation to medium coking coal fines for multi-product zero waste concept  

Science Journals Connector (OSTI)

The medium coking coal fines of ? 0.5 mm from Jharia coal field were taken for this investigation. The release analysis of the composite coal reveals that yield is very low at 10.0% ash, about 25% at 14% ash and 50% at 17% ash level. The low yield is caused by the presence of high ash finer fraction. The size-wise ash analysis of ? 0.5 mm coal indicated that ? 0.5 + 0.15 mm fraction contains less ash than ? 0.15 mm fraction. Thus, the composite feed was split into ? 0.5 + 0.15 mm and ? 0.15 mm fractions and subjected to flotation separately. The low ash bearing fraction (? 0.5 + 0.15 mm) was subjected to two stages collectorless flotation to achieve the concentrate with 10% ash. The cleaner concentrate (18.9%) with 10% ash was recovered which has an application in metallurgical industries. The concentrate of 30.2% yield with 12.5% ash could be achieved in one stage collectorless flotation which is suitable for use in coke making as sweetener. As the ? 0.15 mm fraction contains relatively high ash, collector aided flotation using sodium silicate was performed to get a concentrate of 23.6% yield with about 17% ash. The blending of this product with cleaner tail obtained from ? 0.5 + 0.15 mm produces about 35.0% yield with 17% ash and that can be utilized for coke making. The reject from the two fractions can be used for conventional thermal power plant or cement industries using a 23.5% ash after one stage collector aided flotation and the final tailings produced content ash of 61.6% can be used for fluidization combustion bed (FBC). This eventually leads to complete utilization of coal.

Shobhana Dey; K.K. Bhattacharyya

2007-01-01T23:59:59.000Z

351

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Rebate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas Vehicle Natural Gas Vehicle (NGV) Rebate to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Rebate on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Rebate on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Rebate on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Rebate on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Rebate on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Rebate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Vehicle (NGV) Rebate Citizens Gas & Coke Utility (Citizens) offers rebates for qualified

352

Matrix endor studies of the carbonization of West Canadian coking coals  

Science Journals Connector (OSTI)

Cretaceous bituminous coals of known rank R?0 max vitrinite reflectance) have been examined by ESR (electron spin resonance) and ENDOR (electron nuclear double resonance) techniques. Both highly oxidised (outcrop) and unoxidised mine?run Balmer coal from the Crowsnest field have been subjected to heat treatment (200?900°C) and the matrix proton ENDOR signal studied as a function of applied microwave and rf power. Changes in ENDOR line shape and intensity are described with particular emphasis on the presoftening region of the unoxidised coal. A comparative study of the carbonization of hvb and 1vb coking coal from the Crowsnest is reported.

P. R. West; S. E. Cannon

1981-01-01T23:59:59.000Z

353

Form EIA-5 Users Manual Quarterly Coal Consumption and Quality - Coke Plants  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Users Manual Quarterly Coal Consumption and Quality - Coke Plants Document Number: 001 Version: 2.0 June 2011 i June 2011 Document History Number Date Section Description 1 2 June 2011 June 2011 Document initiation Revised screen shots and remove external user references. Primary POC: Tejasvi Raghuveer Phone: (202) 586-8926 Email: Tejasvi.Raghuveer@eia.gov Document Changes/Maintenance POC: Primary POC: Tejasvi Raghuveer Phone: (202) 586-8926 Email: Tejasvi.Raghuveer@eia.gov Project References: Coal Internet Data Collection (CIDC) User's Manual, September 2007 ii June 2011 Content 1. General System Overview ................................................................................. 1

354

Originally Released: August 2009  

U.S. Energy Information Administration (EIA) Indexed Site

August 2009" August 2009" "Revised: October 2009" "Next MECS will be conducted in 2010" "Table 3.5 Selected Byproducts in Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,,,,,,,,,"Waste" ,,,,"Blast",,,,"Pulping Liquor",,"Oils/Tars" "NAICS",,,,"Furnace/Coke",,,"Petroleum","or","Wood Chips,","and Waste" "Code(a)","Subsector and Industry","Total",,"Oven Gases","Waste Gas",,"Coke","Black Liquor","Bark","Materials"

355

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

5 Selected Byproducts in Fuel Consumption, 2010;" 5 Selected Byproducts in Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste" " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars" "NAICS"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste" "Code(a)","Subsector and Industry","Total","Oven Gases","Waste Gas","Coke","Black Liquor","Bark","Materials"

356

Supplement of Atmos. Chem. Phys., 14, 56175638, 2014 http://www.atmos-chem-phys.net/acp-14-5617-2014/  

E-Print Network [OSTI]

.2 Industry Combustion Coal/Boiler, Kilns Liu et al. (2008), 1185 1185 1701.2 Coke Oven Blast Furnace Gas in the original INTEX-B NMVOC Emissions /Gg Power Coal 1178 1178 1130.7 Biofuel Tsai et al. (2003), Liu et al, 4421, 5561 (Andreae and Merlet, 2001) Tsai et al.(2003) 16.8 Industry Non-combustion Coke 11, 217 11

Meskhidze, Nicholas

357

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Supplemental Supplies Supplemental Supplies Definitions Key Terms Definition Biomass Gas A medium Btu gas containing methane and carbon dioxide, resulting from the action of microorganisms on organic materials such as a landfill. Blast-furnace Gas The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to metallic iron. It is commonly used as a fuel within steel works. British Thermal Unit (Btu) The quantity of heat required to raise the temperature of 1 pound of liquid water by 1 degree Fahrenheit at the temperature at which water has its greatest density (approximately 39 degrees Fahrenheit). Coke-oven Gas The mixture of permanent gases produced by the carbonization of coal in a coke oven at temperatures in excess of 1,000 degrees Celsius.

358

Paired Straight Hearth Furnace  

Broader source: Energy.gov [DOE]

A coal based dri and molten metal process for long range replacement of blast furnaces and coke ovens

359

Petroleum Coke  

U.S. Energy Information Administration (EIA) Indexed Site

81,811 82,516 82,971 84,053 85,190 84,889 1986-2013 East Coast (PADD 1) 12,198 10,887 9,316 9,766 9,003 7,430 1986-2013 Midwest (PADD 2) 15,005 15,507 16,480 16,834 17,611 17,597...

360

Co-Gasification of Biomass Wastes and Coal?Coke Blends in an Entrained Flow Gasifier: An Experimental Study  

Science Journals Connector (OSTI)

An experimental study of entrained flow, air-blown cogasification of biomass and a coal?coke mixture has been performed in order to evaluate the effect of the relative fuel/air ratio (ranging between 2.5 and 7.5), the reaction temperature (ranging between ...

Juan J. Hernández; Guadalupe Aranda-Almansa; Clara Serrano

2010-03-29T23:59:59.000Z

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Industry  

E-Print Network [OSTI]

combined heat and power and coke ovens, and waste managementto ban the use of small-scale coke-producing facilities forcasting, Scrap preheating, Dry coke quenching Inert anodes,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

362

Sources of Cheap Electric Power  

Science Journals Connector (OSTI)

... power from factories using industrial steam, power from coke-oven and blast-furnace gas and hydroelectric stations. (5) The cost of transmission of electric power as compared with the ... for the condensation of exhaust steam, in order to produce the high vacuum that the turbine can make use of. But the gain in efficiency due to the high vacuum ...

FRANCIS G. BAILY

1934-09-22T23:59:59.000Z

363

Evaluation of pitches and cokes from solvent-extracted coal materials  

SciTech Connect (OSTI)

Three initial coal-extracted (C-E) samples were received from the West Virginia University (WVU) Chemical Engineering Department. Two samples had been hydrogenated to obtain pitches that satisfy Theological requirements. One of the hydrogenated (HC-E) samples had been extracted by toluene to remove ash and higher molecular weight aromatic compounds. We were unable to measure the softening point and viscosity of the non-hydro treated solid extract sample, Positive characteristics in the HC-E materials were softening points of 113-119{degrees}C, low sulfur and ash. The oxygen and nitrogen content of the HC-E samples may limit future usage in premium carbon and graphite products. Coking values were similar to petroleum pitches. Laboratory anode testing indicates that in combination with standard coal-tar pitch, the HC-E material can be used as a binder pitch.

McHenry, E.R.

1996-12-01T23:59:59.000Z

364

Comparative study of the performance of conventional and column flotation when treating coking coal fines  

Science Journals Connector (OSTI)

Investigations were carried out on coking coal fines by conventional cell and column flotation techniques. The effects of different operating parameters were evaluated for both conventional and column flotation. The coal fines were collected from Bhojudih washery, India. These coal fines averaged 24.4% ash, 19.8% volatile matter and 53.8% fixed carbon on a dry basis. A commercial grade sodium silicate, light diesel oil and pine oil were used as depressant, collector and frother respectively. The flotation performance was compared with release analysis. The conventional flotation results indicated that a clean coal with 14.4% ash could be obtained at 78.0% yield with 88.4% combustible recovery. The ash of the clean coal could be further reduced to 10.1% at 72.0% yield with 85.6% combustible recovery by using column flotation. The column flotation results were close to those obtained by release analysis.

M.S. Jena; S.K. Biswal; S.P. Das; P.S.R. Reddy

2008-01-01T23:59:59.000Z

365

Fouling in a 160 MWe FBC boiler firing coal and petroleum coke  

Science Journals Connector (OSTI)

The 160 MWe fluidized bed combustor (FBC) boiler owned and operated by the Tennessee Valley Authority (TVA) has recently been co-fired with coal and petroleum coke (up to 50%). However, it has suffered some fouling problems. On examination of the deposits it became clear that, in only a few cases could the fouling be partially attributed to alkali metals, and even in those cases the primarily limestone-derived materials were almost quantitatively sulphated to a level which was sufficient to cause strength development by itself. In other cases, it appeared that the fouling mechanism was carbonation of the free lime component of the deposit followed by sulphation. Finally, in a few deposits which were less sulphated than bed materials and fly ash, strength development appeared to have occurred by conversion of the free lime in the deposits to Ca(OH)2, followed by carbonation. This type of agglomeration has not been reported previously in a FBC.

E.J. Anthony; A.P. Iribarne; J.V. Iribarne; R. Talbot; L. Jia; D.L. Granatstein

2001-01-01T23:59:59.000Z

366

Influence of coal thermoplastic properties on coking pressure generation: Part 2 – A study of binary coal blends and specific additives  

Science Journals Connector (OSTI)

A number of coal blends and pitch/coal blends were evaluated using rheometry, thermogravimetric analysis and microscopy to confirm and further elucidate the coking pressure mechanism previously proposed by Duffy et al. (2007) [1]. We confirm that blending a low rank, high fluidity, low coking pressure coal, with a high rank, low fluidity, high coking pressure coal can significantly reduce the coking pressure associated with the latter. Interestingly, blending does not necessarily result in a fluidity that is midway between that of the two coals; sometimes the fluidity of the blend is less than that of the low fluidity coal, especially when the coals are significantly different in rank. This occurs because the increase in complex viscosity (?*) through resolidification of the low rank, high fluidity coal counteracts the reduction in ?* resulting from softening of the high rank, low fluidity coal. It has also been confirmed that the ?* of the resultant blend can be estimated from the ?* of each component coal using a logarithmic additivity rule commonly employed for polymer blends. Polarised light microscopy has indicated that the degree of mixing between coals of different rank is minimal, with fusion restricted to the particle surface. It is therefore inappropriate to think of such a coal blend in the same way as a single coal, since each component coal behaves relatively independently. This limited fusion is important for understanding the coking pressure mechanism for blends. It is proposed here that the lower rank coal, which softens at lower temperature, is able to expand into the interparticle voids between the high rank coal that is yet to soften, and these voids can create channels for volatiles to traverse. Then, and importantly, when the high rank coal begins to expand, the pore structure developed in the resolidified structures of the low rank coal can facilitate removal of volatiles, while the resolidified material may also act as a suitable sorbent for volatile matter. This is considered to be the primary mechanism by which coal blending is able to alleviate coking pressure, and applies to addition of inert material also. Addition of a coal tar pitch was found to increase fluidity but also to extend the thermoplastic range to lower temperatures. This caused an increase in the swelling range, which was accompanied by a long plateau in ?*, a feature which has previously been observed for certain high fluidity, high pressure coals. Elasticity and ?* at the onset of expansion were also higher for both the pitch impregnated coals and the high pressure blends, which supports previous findings for singly charged high pressure coals, and confirms the potential use of such criteria for identifying potentially dangerous coals/blends.

John J. Duffy; Merrick R. Mahoney; Karen M. Steel

2010-01-01T23:59:59.000Z

367

China Energy Databook - Rev. 4  

E-Print Network [OSTI]

generation, heating, coking and coal gas production, andgeneration, heating, coking and coal gas production, andgeneration, heating, coking and coal gas production, and

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

368

Evaluating coking resources. 2. State standard GOST 25543-88 as a coding system for coal and coal mixtures in evaluating their technological properties  

Science Journals Connector (OSTI)

The codification of coal in State Standard 25543-88 is compared with the international codification of coal of medium and high rank. The ranking of coking coal on the basis of State Standard GOST...

Yu. A. Zolotukhin

2008-08-01T23:59:59.000Z

369

Table 7.2 Average Prices of Purchased Energy Sources, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 7.2 Average Prices of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and NAICS Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Coke Oven (excluding or LPG and Natural Gas from Local

370

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 7.1 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace Coke Oven (excluding or LPG and Natural Gas

371

Comparative Study of Gasification Performance between Bituminous Coal and Petroleum Coke in the Industrial Opposed Multiburner Entrained Flow Gasifier  

Science Journals Connector (OSTI)

SUMMARY : Co-gasification performance of coal and petroleum coke (petcoke) blends in a pilot-scale pressurized entrained-flow gasifier was studied exptl. ... Two different coals, including a subbituminous coal (Coal A) and a bituminous coal (Coal B), individually blended with a petcoke in the gasifier were considered. ... results suggested that, when the petcoke was mixed with Coal A over 70%, the slagging problem, which could shorten the operational period due to high ash content in the coal, was improved. ...

Zhonghua Sun; Zhenghua Dai; Zhijie Zhou; Jianliang Xu; Guangsuo Yu

2012-09-27T23:59:59.000Z

372

1.1 Production process  

E-Print Network [OSTI]

Coke was first produced commercially in England in the early eighteenth century. By the early to mid-1800s, coke was being widely produced in Europe and the United States of America as the major fuel for blast furnaces. Coal carbonization is a process that yields metallurgical coke for use in iron-making blast furnaces and other metal-smelting processes. Carbonization entails heating the coal to temperatures as high as 1300 °C in the absence of oxygen to distill out tars and light oils. A gaseous by-product, referred to as coke-oven gas, together with ammonia, water and sulfur compounds are also removed thermally from the coal. The coke that remains after this distillation largely consists

unknown authors

373

Characterization of fly ashes from circulating fluidized bed combustion (CFBC) boilers cofiring coal and petroleum coke  

SciTech Connect (OSTI)

The chemistry, mineralogy, morphology, and particle size distribution were investigated in fly ashes from the burning of Datong (ShanXi, China) bituminous coal and the cofiring of Mideast high-sulfur petroleum coke (PC) with 30:70 (cal %) and 50:50 (cal %) blends of Datong bituminous coal in two commercial CFBC boilers. With the exception of CaO, the amounts of major oxides in the fly ashes from cofiring PC and coal were close to those of the common coal fly ashes. The PC-coal fly ashes were enriched in Ni, V, and Mo, implying these trace elements were mainly derived from PC. Ni and V, along with several other elements, such as Cr, Cu, Se, Pb, U, Th, and possibly As and Cd, increased in content with a decrease in temperature of the electrostatic precipitator (ESP). The results of chemistry, mineralogy, and morphology studies suggested that the desulfurization rate of the CFBC boilers at current conditions was low, and the PC tends to coarsen the fly ash particles and increase the loss on ignition (LOI) values, making these fly ashes unsuitable for use as a cement additive or a mineral admixture in concrete. Further studies on the combustion status of the CFBC boilers are needed if we want to be able to increase the desulfurization rate and produce high-quality fly ashes for broader and full utilization. 22 refs., 4 figs., 4 tabs.

Feihu Li; Jianping Zhai; Xiaoru Fu; Guanghong Sheng [Nanjing University, Nanjing (China). State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment

2006-08-15T23:59:59.000Z

374

Coking” of zeolites during methanol conversion: Basic reactions of the MTO-, MTP- and MTG processes  

Science Journals Connector (OSTI)

Deactivation of acidic zeolite catalysts during methanol conversion is investigated for elucidating how spatial constraints interfere mechanistically. Detailed product composition – including retained organic matter – is determined in a time resolved mode. At 270–300 °C with H-ZSM-5, first unsaturated hydrocarbons are formed—methane being the indicative co-product. Then the reaction rate increases auto-catalytically, but soon declines because of exhaustive pore filling. The retained organic matter consists mainly of ethyl-trimethyl-benzene- and isopropyl-dimethyl-benzene molecules. Alkylation of benzene rings with ethene and propene produces the deactivating molecules. At 475 °C, alkylation of benzene rings with olefins has shifted to the reverse, reactivating the H-ZSM-5 catalyst. Coke forms slowly on the surface of H-ZSM-5 crystallites. Spatial constraints suppress the formation of 2-ring aromatics. With the wide pore zeolite H-Y, fast deactivation is noticed—bigger aromatic molecules can be formed and are retained. Methanol reactions on the protonic catalyst sites are visualized as CH3+ attack for methylation and dehydrogenation, methane being the hydrogen-rich co-product. Methanol conversion on zeolites H-ZSM-58, H-EU-1 and H-Beta is comparatively investigated. Zone ageing is discussed for favorable reactor design. It is shown, how a multi-compound product composition is the source of information for elucidating complex reaction mechanisms.

Hans Schulz

2010-01-01T23:59:59.000Z

375

Effects of HyperCoal addition on coke strength and thermoplasticity of coal blends  

SciTech Connect (OSTI)

Ashless coal, also known as HyperCoal (HPC), was produced by thermal extraction of three coals of different ranks (Gregory caking coal, Warkworth steam coal, and Pasir subbituminous coal) with 1-methylnaphthalene (1-MN) at 360, 380, and 400{sup o}C. The effects of blending these HPCs into standard coal blends were investigated. Blending HPCs as 5-10% of a standard blend (Kouryusho:Goonyella:K9) enhanced the thermoplasticity over a wide temperature range. For blends made with the Pasir-HPC, produced from a noncaking coal, increasing the extraction temperature from 360 to 400{sup o}C increased the thermoplasticity significantly. Blends containing Warkworth-HPC, produced from a slightly caking coal, had a higher tensile strength than the standard blend in semicoke strength tests. The addition of 10% Pasir-HPC, extracted at 400{sup o}C, increased the tensile strength of the semicokes to the same degree as those made with Gregory-HPC. Furthermore, all HPC blends had a higher tensile strength and smaller weight loss during carbonization. These results suggest that the HPC became integrated into the coke matrix, interacting strongly with the other raw coals. 14 refs., 11 figs., 1 tab.

Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Energy Technology Research Institute

2008-05-15T23:59:59.000Z

376

Removal of ash from Indian Assam coking coal using sodium hydroxide and acid solutions  

SciTech Connect (OSTI)

Mineral matter (ash) removal from Assam coking coal by leaching with different concentrations of sodium hydroxide and acid (HCl, H{sub 2}SO{sub 4}, HNO{sub 3}, and HF) solutions has been investigated at a temperature of 75 C. The parameters tested were concentration of NaOH, type of acid, concentration of acids, and number of acid leaching steps. Total ash removed increased with increase of NaOH and acid concentrations up to the range studied. For the same experimental conditions, treatment of caustic leached coal in HCl acid resulted in better demineralization than in H{sub 2}SO{sub 4} or HNO{sub 3} acid. In the NaOH-HNO{sub 3} leaching method, a higher concentration (>20%) of HNO{sub 3} acid had an adverse effect on the de-ashing of coal. The NaOH-HF leaching process has been found to be the most effective method of coal de-ashing. The two acid treatment steps (HCl-H{sub 2}SO{sub 4}/HCl-HNO{sub 3}) after caustic leaching are the next most effective methods of coal de-ashing. The removal of mineral matter (including S) from coal is expected to decrease the graphite reactivity and thus the atmospheric pollution (due to the generation of smaller quantities of CO and SO{sub 2} gases).

Kumar, M.; Shankar, R.H.

2000-03-01T23:59:59.000Z

377

"Diffusion of Innovation: Solar Oven Use in Lesotho (Africa)." Grundy, William and Roy Grundy. Advances in Solar Cooking: Proceedings of the 2nd International Conference on Solar Cooker Use and Technology. Shyam S. Nandwani, ed. July 12-15, 1994.  

E-Print Network [OSTI]

"Diffusion of Innovation: Solar Oven Use in Lesotho (Africa)." Grundy, William and Roy Grundy. Advances in Solar Cooking: Proceedings of the 2nd International Conference on Solar Cooker Use and Technology. Shyam S. Nandwani, ed. July 12-15, 1994. pp. 240-247. 1 DIFFUSION OF INNOVATION: SOLAR OVEN USE

Noble, William Stafford

378

Southwest Gas Corporation - Commercial Energy Efficient Equipment Rebate  

Broader source: Energy.gov (indexed) [DOE]

Commercial Energy Efficient Equipment Commercial Energy Efficient Equipment Rebate Program Southwest Gas Corporation - Commercial Energy Efficient Equipment Rebate Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate General: 50% of purchase price Custom: $20,000 Program Info Expiration Date 12/15/2013 State Nevada Program Type Utility Rebate Program Rebate Amount Air Curtain: $1,950 Modulating Burner Control: $10,000 Boiler Steam Trap: $250 Non-condensing Boiler: $1/MBtuh Condensing Boiler: $1.25/MBtuh Clothes Dryer: $30 Custom: $1/therm up to $20,000 Convection Oven: $550 Conveyor Oven: $300-$750 Dishwasher: $1,050-$2,000 Energy Audit: $5,000/facility; $50,000/customer Furnace (Northern Nevada Only): $300-$500

379

New Mexico Gas Company - Commercial Efficiency Programs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Commercial Efficiency Programs Commercial Efficiency Programs New Mexico Gas Company - Commercial Efficiency Programs < Back Eligibility Commercial Institutional Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Program Info Expiration Date 3/31/2013 State New Mexico Program Type Utility Rebate Program Rebate Amount Storage Water Heater: $550 - 700 Tankless Water Heater: $250 - $300 Commercial Clothes Washer: $100 Furnace: $400 - $500 Boiler: $50 Condensing Boiler: $600 Gas Griddle: $50 Steam Cooker: $50 Gas Convection Oven: $1,000 Fryer: $700 Dish Washer: $150 Custom: $0.75/therm SCORE Pilot Program: Varies, contact New Mexico Gas Company The New Mexico Gas Company Commercial Energy Efficiency programs provide energy savings for businesses using natural gas for cooking and water

380

Questar Gas - Commercial Energy Efficiency Rebate Program (Idaho) |  

Broader source: Energy.gov (indexed) [DOE]

Questar Gas - Commercial Energy Efficiency Rebate Program (Idaho) Questar Gas - Commercial Energy Efficiency Rebate Program (Idaho) Questar Gas - Commercial Energy Efficiency Rebate Program (Idaho) < Back Eligibility Commercial Fed. Government Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Other Water Heating Windows, Doors, & Skylights Maximum Rebate Custom: 50% of the eligible incurred project cost Program Info State Idaho Program Type Utility Rebate Program Rebate Amount Custom: $1/therm saved Commercial Fryer: $500 Steam Cooker: $1,000 Gas Convection/Combination Oven: $500 - 1,000 Griddle: $300 Clothes Washer: $50-$75 Gas Water Heater: $50-$100 or $2/kBtu/hour input Condensing Gas Water Heater: $350

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sensitive Analysis of Alkyl Alcohols as Decomposition Products of Alkyl Nitrites in Human Whole Blood and Urine by Headspace Capillary GC with Cryogenic Oven Trapping  

Science Journals Connector (OSTI)

......470-1192, Japan The abuse of alkyl nitrites is...oven trapping. | The abuse of alkyl nitrites is...Sensitivity and Specificity The abuse of alkyl nitrites is...abused by inhalation among young people for their aphrodisiac...common markets or by internet sales. The most popular......

Kanako Watanabe-Suzuki; Robert R. Lemmer; Hideki Nozawa; Osamu Suzuki; Akira Ishii

2003-02-01T23:59:59.000Z

382

Sensitive Analysis of Alkyl Alcohols as Decomposition Products of Alkyl Nitrites in Human Whole Blood and Urine by Headspace Capillary GC with Cryogenic Oven Trapping  

Science Journals Connector (OSTI)

......cryogenic oven trapping. | The abuse of alkyl nitrites is becoming...Sensitivity and Specificity The abuse of alkyl nitrites is becoming...them at common markets or by internet sales. The most popular alkyl...the detection of alkyl nitrite abuse in forensic science practice......

Kanako Watanabe-Suzuki; Robert R. Lemmer; Hideki Nozawa; Osamu Suzuki; Akira Ishii

2003-02-01T23:59:59.000Z

383

Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector  

E-Print Network [OSTI]

A. , 2011. The World Coke & Coking Coal Markets, Globalnishant.blogspot.com/2010/03/met-coke-prices-rise-sharply-Ojha, V. , 2010. Global Coke, ICC Conference, New Delhi,

Karali, Nihan

2014-01-01T23:59:59.000Z

384

Comparison of 3 MeV C{sup +} Ion-Irradiation Effects between The Nuclear Graphites made of Pitch and Petroleum Cokes  

SciTech Connect (OSTI)

Currently, all the commercially available nuclear graphite grades are being made from two different cokes, i.e., petroleum coke or coal-tar pitch coke, and a coal-tar pitch binder. Of these, since the coke composes most of the graphite volume, i.e., > 70 %, it is understood that a physical, chemical, thermal, and mechanical property as well as an irradiation-induced property change will be strongly dependent on the type of coke. To obtain first-hand information on the effects of the coke type, i.e., petroleum or pitch, on the irradiation sensitivity of graphite, specimens made of IG-110 of petroleum coke and IG-430 of pitch coke were irradiated up to {approx} 19 dpa by 3 MeV C{sup +} at room temperature, and the irradiation-induced changes in the hardness, Young's modulus, Raman spectrum, and oxidation properties were characterized. Results of the TEM show that the size and density of the Mrozowski cracks appeared to be far larger and higher in the IG-110 than the IG-430. Results of the hardness test revealed a slightly higher increase in the IG-430 than the IG-110 by around 10 dpa, and the Raman spectrum measurement showed a higher (FWHM){sub D}/(FWHM){sub G} value for IG-430 for 0.02 {approx} 0.25 dpa. Both the hardness and Raman measurement may imply a higher irradiation sensitivity of the IG-430 than the IG-110. Results of the Young's modulus measurements showed a large data scattering, which prevented us from estimating the differences between the grades. Oxidation experiments using a TG-DTA under a flow of dry air/He = 2.5 % (flow rate: 40 CC/min) at 750 and 1000 deg C show that the IG-110 of the petroleum coke exhibits a far higher oxidation rate than the IG-430. The discrepancy between the oxidation rate of the two grades increased with an increase in the oxidation temperature and the dose. Oxidized surface pore area was larger for IG-110. Judging from the results obtained from the present experimental conditions, the irradiation sensitivity appeared to be dependent on the degree of graphitization (thus, the perfection of graphite structure), and the differences in the oxidation property of the grades appeared to be largely affected by the structure of the Mrozowski cracks. Differences in the size and density of the Mrozowski cracks between the grades were attributed to the differences in the thermal conductivity of the grades. (authors)

Se-Hwan, Chi; Gen-Chan, Kim; Jong-Hwa, Chang [Nuclear Hydrogen Development and Demonstration Project, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon (Korea, Republic of)

2006-07-01T23:59:59.000Z

385

A scanning electron microscope study on agglomeration in petroleum coke-fired FBC boilers  

Science Journals Connector (OSTI)

Ten samples originating from different boiler FBC systems burning petroleum coke and one laboratory sample were chosen to perform a study on the development, structure, and composition of deposits formed by agglomeration in various locations. The work focused on examination by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. The possibility of a contribution of liquid phases in the adherence to solid surfaces and in agglomeration was discussed and checks by SEM, EDX, and analysis by neutron activation were performed; no evidence could be found either for liquid phases or for any role of vanadium or alkaline element compounds. The agglomerations result from the continued sintering of CaSO4 particles until they build up a strong framework that is indefinitely extended, into which particles of different and complex compositions are bound, without contributing to the cohesion. Chemical sintering occurring by the sulphation of CaO into CaSO4 appears to be an important contribution while CaO is still available, but sintering also occurs by mass transfer mechanisms and continues after the depletion of CaO. Deposits formed in regions only reached by fly ash (convection section), and also in in-bed deposits, grow from particles <50 ?m, mostly in the range of 10 ?m or less. In regions collecting bed ash (e.g., J-valves), the deposit grows from the sintering together of particles on the order of 100–300 ?m (originally bed ash particles), which themselves appear as conglomerates of extensively sintered smaller particles.

J.V Iribarne; E.J Anthony; A Iribarne

2003-01-01T23:59:59.000Z

386

A new mechanism for FBC agglomeration and fouling when firing 100% petroleum coke  

SciTech Connect (OSTI)

In a preliminary study of the problem of agglomeration development in the petroleum coke combustion ashes, samples from different locations in a combustor from an industrial CFBC boiler were analyzed. Various oxides and calcium compounds of vanadium were found, in all cases, amounting to a total of 0.1--0.2% of V. These compounds do not accumulate (i.e. their concentration in the deposit does not increase) in the course of the FBC operation. The deposits show abnormally high conversion to CaSO{sub 4}, in some cases with very little content of free CaO, and a new mechanism of agglomeration similar to chemical reaction sintering is proposed. Different possible mechanisms leading to the formation of agglomerates were examined and the hypothesis that currently seems to best fit with the data is that the agglomeration phenomenon is due to a ``molecular cramming`` effect caused by the nearly quantitative conversion of the CaO to CaSO{sub 4}. While the absence of fuel derived ash, which would normally provide discontinuities in the deposits allowing them to break up, instead permits the buildup of massive monolithic deposits in various parts of the CFBC primary reactor loop. This explanation is also consistent with the ability of Mg compounds to mitigate the problem, but it suggests that the effect of these compounds is to prevent the buildup of the deposits by providing ``inert material`` rather than by capturing vanadium oxides as has heretofore been supposed. Further systematic investigations are planned to definitively rule out a vanadate capture mechanisms and to explore whether sulfidization as opposed to sulfation plays any part in the buildup of these deposits.

Anthony, E.J. [CANMET, Ottawa, Ontario (Canada). Natural Resources Canada; Iribarne, A.P.; Iribarne, J.V. [Univ. of Toronto, Ontario (Canada)

1995-12-31T23:59:59.000Z

387

Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry  

E-Print Network [OSTI]

fuel gas and catalyst coke, which are consumed within thefuel gas and catalyst coke requiring additional investmentsof a reaction section (coke drums) and a fractionation

Morrow III, William R.

2014-01-01T23:59:59.000Z

388

Key China Energy Statistics 2011  

E-Print Network [OSTI]

Heating Supply Coal Washing Coking Petroleum Refineries GasPower Heating Supply Coal Washing Coking Total ConsumptionHeating Supply Coal Washing Coking Petroleum Refineries Gas

Levine, Mark

2013-01-01T23:59:59.000Z

389

Key China Energy Statistics 2012  

E-Print Network [OSTI]

Heating Supply Coal Washing Coking Petroleum Refineries GasHeating Supply Coal Washing Coking Petroleum Refineries GasRefueling in China Coal Washing Coking Petroleum Refineries

Levine, Mark

2013-01-01T23:59:59.000Z

390

Inventory of China's Energy-Related CO2 Emissions in 2008  

E-Print Network [OSTI]

gas petroleum waxes coking coal t C/TJ other bituminous coalprocesses of coal washing, coking, petroleum refineries, gaslosses include coal washing, coking, petroleum refining, gas

Fridley, David

2011-01-01T23:59:59.000Z

391

Effect of Pyrolysis and CO2 Gasification Pressure on the Surface Area and Pore Size Distribution of Petroleum Coke  

Science Journals Connector (OSTI)

Normalization of the reaction rate by the surface area indicated that the effect of the pressure on the physical characteristics of the petcoke was the main but not sole factor in the change of the reaction rate with the gasification pressure. ... As refiners are pushed toward producing cleaner transportation fuels from poorer quality crudes, the production of petroleum coke (petcoke) is increasing as a byproduct of heavy oil upgrading units. ... (1, 2) The majority of petcoke produced in Canada is currently stockpiled on the site of the plant. ...

Maryam Malekshahian; Josephine M. Hill

2011-10-03T23:59:59.000Z

392

Characteristics of a commercially aged Ni-Mo/Al2O3 hydrotreating catalyst: component distribution, nature of coke and effects of regeneration  

SciTech Connect (OSTI)

Information concerning the morphology and behavior of active components on commercially aged catalyst, the effects of regeneration conditions on activity, and insights into the nature of coke and contaminant metal deposits could lead to improved catalysts and operating conditions , yielding significant economic returns. Spent Ni-Mo/Al2O3 hydrotreating catalyst from a commercial hydrotreater was examined using TGA, SEM, STEM, XPS, and a microreactor. Information concerning intraparticle distributions of active components, characteristics of the coke and metal deposits, and catalytic activity for fresh, spent and regenerated catalyst was used to draw general conclusions concerning hydrotreating catalyst deactivation. It was found that catalytic activity was reduced and the nature of the hydrogenation function was altered due to bulk migration and agglomeration of molybdenum. This process was found to be accelerated by high-temperature regeneration. Results also indicated that iron deposits might catalyze formation of coke. Tentative generalizations and suggestions on improved reactor operation are presented.

Bogdanor, J.M.

1984-01-01T23:59:59.000Z

393

Experimental Investigation of Natural Coke Steam Gasification in a Bench-Scale Fluidized Bed: Influences of Temperature and Oxygen Flow Rate  

Science Journals Connector (OSTI)

However, natural coke was restricted in application and research due to its hot burst, difficult ignition, and abradability. ... disordering as a cause is now a real possibility on the basis of correlated optical and x-ray diffraction data from samples analyzed from within a thermal aureole of a Tertiary dyke emplaced in Permian coal-bearing strata. ... The thermal characteristics of natural coke steam gasification in a fluidized bed were three-dimensionally (3D) simulated based on the computational fluid dynamics (CFD) method using Fluent code. ...

Wen-guo Xiang; Chang-sui Zhao; Ke-liang Pang

2009-01-05T23:59:59.000Z

394

In{sub 2}O{sub 3} microcrystals obtained from rapid calcination in domestic microwave oven  

SciTech Connect (OSTI)

The simple way to prepare In{sub 2}O{sub 3} microcrystals is reported in this paper. The precursor, In(OH){sub 3} microstructures, were obtained using the Microwave-Assisted Hydrothermal (MAH) Method. By annealing as-prepared In(OH){sub 3} precursor at 500 {sup o}C for 5 min in a domestic microwave oven (MO), In{sub 2}O{sub 3} microcrystals were prepared, inheriting the morphology of their precursor while still slightly distorted and collapsed due to the In(OH){sub 3} dehydration process which was studied by thermal analysis. The In(OH){sub 3} and In{sub 2}O{sub 3} were characterized using powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Raman spectroscopy. These techniques confirm the chemical dehydration of In(OH){sub 3} and the formation of In{sub 2}O{sub 3} powders. The domestic MO promotes a rapid structural organization as compared with a CF (conventional furnace). The MAH method and the subsequent annealing in a domestic MO were shown to be a low cost route for the production of In{sub 2}O{sub 3}, with the advantages of lower temperature and smaller time.

Motta, F.V., E-mail: fabiana@liec.ufscar.br [LIEC, IQ, UNESP, Rua Francisco Degni s/n, CEP 14801-907 Araraquara, SP (Brazil); Lima, R.C. [IQ, UFU, Av. Joao Naves de Avila, 2121, CEP 38400-902 Uberlandia, MG (Brazil)] [IQ, UFU, Av. Joao Naves de Avila, 2121, CEP 38400-902 Uberlandia, MG (Brazil); Marques, A.P.A.; Leite, E.R. [LIEC, DQ, UFSCar, Via Washington Luiz, km 235, CEP 13565-905 Sao Carlos, SP (Brazil)] [LIEC, DQ, UFSCar, Via Washington Luiz, km 235, CEP 13565-905 Sao Carlos, SP (Brazil); Varela, J.A.; Longo, E. [LIEC, IQ, UNESP, Rua Francisco Degni s/n, CEP 14801-907 Araraquara, SP (Brazil)] [LIEC, IQ, UNESP, Rua Francisco Degni s/n, CEP 14801-907 Araraquara, SP (Brazil)

2010-11-15T23:59:59.000Z

395

Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Incentives  

Broader source: Energy.gov (indexed) [DOE]

Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Incentives Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Incentives < Back Eligibility Commercial Industrial Multi-Family Residential Nonprofit Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Appliances & Electronics Water Heating Maximum Rebate General: $600,000 Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Custom: $1.20/therm saved/yr Steamers: $300-$1200 Fryer: $400 Griddle: $50/ln. ft. Ovens: custom Storage Water Heaters: $150/unit Tankless Water Heater: $300/unit Gas Boiler/Furnace Replacement: $400 - $6,000

396

NDP-030/R6 (Table 3)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3. Listing of the primary and secondary fuels from the United Nations 3. Listing of the primary and secondary fuels from the United Nations Energy Statistics Database used in calculating CO2-emission estimates. The two-letter commodity code used by he United Nations for each fuel type is shown in parentheses. Gas Fuels Primary gas fuels Secondary gas fuels Natural gas (NG) Gasworks gas (GG) Coke-oven gas (OG) Refinery gas (RG) Liquid Fuels Primary liquid fuels Secondary liquid fuels Crude petroleum (CR) Aviation gasoline (AV) Natural gas liquids (GL) Plant condensate (CD) Gas-diesel oils (DL) Feedstocks (FS) Jet fuel (JF) Kerosene (KR) Liquefied petroleum gas (LP) Motor gasoline (MO) Natural gasoline (NT) Residual fuel oils (RF) Secondary nonenergy liquid fuels Bitumen/asphalt (BT) Lubricants (LU) Naphthas (NP) Petroleum coke (PK)

397

Kinetic Analysis of CO2 Gasification of Petroleum Coke at High Pressures  

Science Journals Connector (OSTI)

Two petcoke samples were gasified by CO2 at total pressures of 10 and 15 atm in a high-pressure flat-flame burner reactor at conditions where the bulk phase consisted of either 40 or 90 mol % CO2 with gas temperatures up to 1909 K. Particle diameters of ... ...

Maryam Malekshahian; Josephine M. Hill

2011-08-10T23:59:59.000Z

398

Zevenhoven & Kilpinen CROSS EFFECTS, TOTAL SYSTEM LAY-OUT 13.6.2001 10-1 Figure 10.1 Typical pulverised coal combustion and gas clean-up system: dry scrubber +  

E-Print Network [OSTI]

pulverised coal combustion and gas clean-up system: dry scrubber + baghouse filter for SO2 and particulate For a conventional pulverised coal-fired power plant a set-up is shown in Figure 10.1, with a gas clean-up system scrubber (pH ~ 6) 60 - 70 7 Re-heater 350 - 400 8 SCR DeNOx 300 - 400 9 Active coke bed 100 - 150 Figure 10

Zevenhoven, Ron

399

Released: August 2009  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 3.5;" 5 Relative Standard Errors for Table 3.5;" " Unit: Percents." ,,,,,,,,"Waste",," " ,,,"Blast",,,"Pulping Liquor",,"Oils/Tars" "NAICS",,,"Furnace/Coke",,"Petroleum","or","Wood Chips,","and Waste" "Code(a)","Subsector and Industry","Total","Oven Gases","Waste Gas","Coke","Black Liquor","Bark","Materials" ,,"Total United States" , 311,"Food",9.1,"X",25,"X","X",6,55.6 3112," Grain and Oilseed Milling",8.9,"X",47.4,"X","X",0,0 311221," Wet Corn Milling",0,"X",0,"X","X",0,"X"

400

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Iron and Steel Industry  

E-Print Network [OSTI]

Capacity (Mt) Sintering Coke Making  Iron Making – Blast 12%), miscellaneous oil (9%), and coke gas (3%). A weightedof $1.66 (coal), $2.82 (coke, and coke gas), $4.43 (natural

Morrow III, William R.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Lesson 9 - Solar Ovens  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3: Earth Systems Science Kindergarten: Concepts and skills students master: 1. The Sun provides heat and light to Earth 1 st grade: Concepts and skills students master: 1....

402

Co-gasification of Biomass and Non-biomass Feedstocks: Synergistic and Inhibition Effects of Switchgrass Mixed with Sub-bituminous Coal and Fluid Coke During CO2 Gasification  

Science Journals Connector (OSTI)

Co-gasification of biomass, namely, switchgrass, with coal and fluid coke was performed to investigate the availability of the gasification catalysts to the mixed feedstock, especially alkali and alkaline earth elements, naturally present on switchgrass. ...

Rozita Habibi; Jan Kopyscinski; Mohammad S. Masnadi; Jill Lam; John R. Grace; Charles A. Mims; Josephine M. Hill

2012-11-21T23:59:59.000Z

403

brwtp-icoke | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Industrial Carbon Capture and Storage Clean Coal Power Initiative Power Plant Improvement Initiative Clean Coal Technology Demonstration Program FutureGen Innovative Coke Oven...

404

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network [OSTI]

Consumption of coking coal mainly for steelmaking will dropelectricity and town gas. Coking coal consumption mainly for

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

405

Further investigation of the impact of the co-combustion of tire-derived fuel and petroleum coke on the petrology and chemistry of coal combustion products  

SciTech Connect (OSTI)

A Kentucky cyclone-fired unit burns coal and tire-derived fuel, sometimes in combination with petroleum coke. A parallel pulverized combustion (pc) unit at the same plant burns the same coal, without the added fuels. The petrology, chemistry, and sulfur isotope distribution in the fuel and resulting combustion products was investigated for several configurations of the fuel blend. Zinc and Cd in the combustion products are primarily contributed from the tire-derived fuel, the V and Ni are primarily from the petroleum coke, and the As and Hg are probably largely from the coal. The sulfur isotope distribution in the cyclone unit is complicated due to the varying fuel sources. The electrostatic precipitator (ESP) array in the pc unit shows a subtle trend towards heavier S isotopic ratios in the cooler end of the ESP.

Hower, J.C.; Robertson, J.D.; Elswick, E.R.; Roberts, J.M.; Brandsteder, K.; Trimble, A.S.; Mardon, S.M. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

2007-07-01T23:59:59.000Z

406

Lack of correlation between the properties of a petroleum coke and its behaviour during combustion  

Science Journals Connector (OSTI)

This work is an attempt to establish links between the properties of the petcoke that can be measured through standard analysis in the laboratory and the behaviour of the petcoke both in terms of its combustion velocity and the emission of gas pollutants. A large number of petcokes, 22, taken from different sources, were burnt in an Entrained Flow Reactor (EFR) in conditions close to those of a fluidised bed of a cement plant precalciner. The burnout for the 22 petcokes ranged from 68% to 81%. The gas emissions resulting from their combustion were analysed. Prior to this, each type of petcoke was characterised in terms of its chemical composition, volatile matter and ash content, structural properties and LCV. The correlation between all these characteristics and the combustion velocity, SO2 emissions and NO emissions in the EFR were systematically investigated. The combustion velocity does not appear to be correlated to any of the properties. The emissions of SO2 can be accurately predicted from the content in S of the petcoke. The emissions in NO are not directly linked to the N content of the petcoke. No simple correlation could be established to predict NO emissions.

J.-M. Commandré; S. Salvador

2005-01-01T23:59:59.000Z

407

Determination of the effect of different additives in coking blends using a combination of in situ high-temperature {sup 1}H NMR and rheometry  

SciTech Connect (OSTI)

High-temperature {sup 1}H NMR and rheometry measurements were carried out on 4:1 wt/wt blends of a medium volatile bituminous coal with two anthracites, two petroleum cokes, charcoal, wood, a low-temperature coke breeze, tyre crumb, and active carbon to determine the effects on fluidity development to identify the parameters responsible for these effects during pyrolysis and to study possible relationships among the parameters derived from these techniques. Positive, negative, and neutral effects were identified on the concentration of fluid material. Small positive effects (ca. 5-6%) were caused by blending the coal with petroleum cokes. Charcoal, wood, and active carbon all exerted negative effects on concentration (18-27% reduction) and mobility (12-25% reduction in T2) of the fluid phase, which have been associated with the inert character and high surface areas of these additives that adsorb the fluid phase of the coal. One of the anthracites and the low-temperature coke breeze caused deleterious effects to a lesser extent on the concentration (7-12%) and mobility (13-17%) of the fluid material, possibly due to the high concentration of metals in these additives (ca. 11% ash). Despite the high fluid character of tyre crumb at the temperature of maximum fluidity of the coal (73%), the mobility of the fluid phase of the blend was lower than expected. The comparison of {sup 1}H NMR and rheometry results indicated that to account for the variations in minimum complex viscosity for all the blends, both the maximum concentration of fluid phase and the maximum mobility of the fluid material had to be considered. For individual blends, two exponential relationships have been found between the complex viscosity and the concentration of solid phase in both the softening and resolidification stages but the parameters are different for each blend. 30 refs., 8 figs., 5 tabs.

Miguel C. Diaz; Karen M. Steel; Trevor C. Drage; John W. Patrick; Colin E. Snape [Nottingham University, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

2005-12-01T23:59:59.000Z

408

Effects of polymerization and briquetting parameters on the tensile strength of briquettes formed from coal coke and aniline-formaldehyde resin  

SciTech Connect (OSTI)

In this work, the utilization of aniline (C{sub 6}H{sub 7}N) formaldehyde (HCHO) resins as a binding agent of coke briquetting was investigated. Aniline (AN) formaldehyde (F) resins are a family of thermoplastics synthesized by condensing AN and F in an acid solution exhibiting high dielectric strength. The tensile strength sharply increases as the ratio of F to AN from 0.5 to 1.6, and it reaches the highest values between 1.6 and 2.2 F/AN ratio; it then slightly decreases. The highest tensile strength of F-AN resin-coke briquette (23.66 MN/m{sup 2}) was obtained from the run with 1.5 of F/AN ratio by using (NH4){sub 2}S{sub 2}O{sub 8} catalyst at 310 K briquetting temperature. The tensile strength of F-AN resin-coke briquette slightly decreased with increasing the catalyst percent to 0.10%, and then it sharply decreased to zero with increasing the catalyst percent to 0.2%. The effect of pH on the tensile strength is irregular. As the pH of the mixture increases from 9.0 to 9.2, the tensile strength shows a sharp increase, and the curve reaches a plateau value between pH 9.3 and 9.9; then the tensile strength shows a slight increase after pH = 9.9.

Demirbas, A.; Simsek, T. [Selcuk University, Konya (Turkey)

2006-10-15T23:59:59.000Z

409

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

410

Study on one-dimensional steady combustion of highly densified biomass briquette (bio-coke) in air flow  

Science Journals Connector (OSTI)

Abstract Combustion experiments on cylindrical bio-coke (BIC), a highly densified biomass briquette, have been conducted to observe whether quasi-one-dimensional steady combustion can be attained in room temperature air flow. In the experiments, the air flow velocity was the main test condition and the fuel consumption rate when the bottom surface of the BIC sample burned was evaluated as the regression rate of the combustion zone at the bottom surface. In addition, one-dimensional calculations based on an energy equation at the combustion zone were conducted to understand the mechanism that results in steady combustion and predict the effect of water and volatile matter content in BIC on the extinction limit. The results showed that steady combustion of the BIC sample could be attained in 4.67 m/s or more, and, in contrast, extinction was observed in 3.82 m/s or less. The critical regression rate explained by the combustion zone temperature was shown, and the reason combustion becomes unsteady could be explained by the energy balance at the combustion zone. Though the main reason for extinction was radiation heat loss, the heat loss by water and volatile matter was not negligible. Therefore, the effect of water and volatile matter content on steady combustion must be considered.

Takero Nakahara; Hui Yan; Hiroyuki Ito; Osamu Fujita

2014-01-01T23:59:59.000Z

411

file://C:\Documents and Settings\bh5\My Documents\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

b b Table 7b. Offsite-Produced Fuel Consumption per Ton of Steel, 1998, 2002, and 2006 (1000 Btu per ton) MECS Survey Years Iron and Steel Mills (NAICS 1 331111) 1998 2 2002 3 2006 3 Total NA 11,886 9,210 Electricity NA 2,315 2,152 Natural Gas NA 4,855 4,009 Coal NA 450 172 Residual Fuel NA 13 234 Coke and Breeze NA 3,916 2,287 Notes:1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2. 1998 data unavailable due to disclosure avoidance procedures in place at the time. 3. Denominators represent the entire steel industry, not those based mainly on electric, natural gas, residual fuel oil, coal or coke.

412

Determination of Polycyclic Aromatic Hydrocarbons in the Urine, Benzo(a)pyrene Diol Epoxide-DNA Adducts in Lymphocyte DNA, and Antibodies to the Adducts in Sera from Coke Oven Workers Exposed to Measured Amounts of Polycyclic Aromatic Hydrocarbons in the Work Atmosphere  

Science Journals Connector (OSTI)

...Environmental urine Coal DNA analysis immunology...products from incomplete combustion and destructive distillation products of coal are carcinogenic to humans...formaldehyde or an aerosol of coal tar by C3H mice. J...Weinstein, I. B. The chemistry of polycyclic aromatic...

Aage Haugen; Georg Becher; Christel Benestad; Kirsi Vahakangas; Glennwood E. Trivers; Mark J. Newman; and Curtis C. Harris

1986-08-01T23:59:59.000Z

413

Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector  

E-Print Network [OSTI]

Moreover, the coking coal prices peak in 2009 to above $between China Coking Coal Price and China Steel ProductionVolume China Coking Coal Prices (24) (2005 $/ton) (Mtonnes)

Karali, Nihan

2014-01-01T23:59:59.000Z

414

,,,"Natural Gas(b)",,,," Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

10.3 Relative Standard Errors for Table 10.3;" 10.3 Relative Standard Errors for Table 10.3;" " Unit: Percents." ,,,"Natural Gas(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(f)" ,,"Total United States" 311,"Food",2,8.6,4,21.7,13.8,22.3,59.7,15.9,"X",24.9

415

Proper design hikes gas-lift system efficiency  

SciTech Connect (OSTI)

Proper design of gas-lift pumping systems, used for pumping corrosive or erosive fluids, involves the correct selection of submergence ratio, flow regime, pipe diameter, and physical properties of the fluid. Correlations for maximum lifting efficiency on a friction-free basis vs. submergence ratio have been developed based on experimental data. The Oshinowo and Charles flow map for vertical upward flow has been chosen for determining the two-phase flow regimes. For large-diameter gas-lifting systems, the effects of fluid physical properties on the maximum lifting efficiency become diminished. Gas-lift pumping systems are widely used in the process industry as well as in oil and gas production. In an ethylene dichloride/vinyl chloride monomer (EDC/VCM) plant, quench column bottoms are recirculated back to the column by gas lift of the EDC/VCM stream from the EDC pyrolysis furnace. Gas lift is utilized instead of pumps to alleviate the plugging and erosion problems caused by the presence of coke/tar particulates. Other process applications include those where pumps suffer severe corrosion from the fluids pumped.

Tsai, T.C.

1986-06-30T23:59:59.000Z

416

New Markets, Outmoded Manufacturing: The Transition from Manufactured Gas to Natural Gas by Northeastern Utilities after World War II  

E-Print Network [OSTI]

For more than a century, large manufactured gas plants dotted the industrial landscape of the urban Northeast. Using a variety of technologies, these factories applied heat and pressure to coke, coal, and oil to produce a gas suitable for use in space heating and cooking. Yet this well-established, vital industry literally ceased to exist in the two decades after World War II, as natural gas transported from the southwestern United States replaced manufactured gas in all of the major markets in the Northeast. This abrupt victory of a new product was a modem variant of "creative destruction " as described by Joseph Schumpeter in his classic study Capitalism, Socialism and Democracy [10]. While creating a more efficient fuel supply, the coming of natural gas also destroyed the existing system for the production and distribution of manufactured gas. Yet this mid-20th century case of creative destruction differed sharply from Schumpeter's descriptions of the same process during the era of high capitalism in the late 19th century. In that dynamic period, innovations took place in a largely unfettered

Chris Castaneda; Joseph Pratt

417

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

418

Gas Turbines  

Science Journals Connector (OSTI)

... the time to separate out the essentials and the irrelevancies in a text-book. The gas ...gasturbine ...

H. CONSTANT

1950-10-21T23:59:59.000Z

419

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

420

California Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

422

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

423

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

424

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

425

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

426

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

427

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

428

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

429

Illinois Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

430

Missouri Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

431

Mississippi Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

432

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

433

Health and environmental effects document for direct coal liquefaction - 1981.  

SciTech Connect (OSTI)

This document presents initial estimates of potential human health effects from inhalation of nonmethane hydrocarbons (NMHC) that may be released from a future hypothetical industry producing about 600,000 bb1/day of synthetic fuel by direct liquefaction of coal. The assessment approach starts wth general assumptions that are then refined in a tiered sequence that considers available epidemiological, environmental and chemical data. The uncertainties involved in such an evaluation have been quantified where possible at this early stage of health risk analysis. Many surrogate data bases were considered for application to coal liquefaction including coke oven, British gas retort, roofing tar and asphalts, and cigarette smoke. The coke oven data base was selected for this assessment because the chemical and physical nature of coke oven emissions are judged to more closely approximate potential coal liquefaction emissions. Utilizing the extensive epidemiological data base for coke oven workers as a surrogate model, health effects from release of coal liquefaction NMHC may be quantified. This method results in estimates of about 1 x 10/sup -3/ excess cancer deaths/yr to an industrial work force of 7800 persons and 5 x 10/sup -2/ excess cancer deaths/yr in the U.S. population as a whole from NMHC that boil above 600/sup 0/F. Sources of uncertainty in the estimates are listed. Using these uncertainties, it is estimated that from 2 x 10/sup -4/ to 5 x 10/sup -3/ lung cancer deaths/yr may occur in the industrial work force and from 1 x 10/sup -2/ to 2.5 x 10/sup -1/ lung cancer deaths/yr in the U.S. population as a whole. On an individual basis, the excess lifetime risk to occupationally exposed workers is estimated to be 500 times greater than to members of the U.S. public.

Mellinger, P.J.; Wilson, B.W.; Mahlum, D.D.; Sever, L.E.; Olsen, A.R.

1982-09-01T23:59:59.000Z

434

“From Coal to Coke  

Science Journals Connector (OSTI)

... IN the Sixth Coal Science Lecture, organized by the British ... Science Lecture, organized by the British Coal Utilization Research Association, and given at the Institution of Civil Engineers on October 16, ...

1957-11-02T23:59:59.000Z

435

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

436

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

437

National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China  

E-Print Network [OSTI]

coal Gas coal Fat coal Coking coal Lean coal Meagre coalCoal used for coking Natural Gas Coal used as fuel Source:

Zhou, Nan

2013-01-01T23:59:59.000Z

438

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Relative Standard Errors for Table 3.4;" 3.4 Relative Standard Errors for Table 3.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States"

439

"Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Relative Standard Errors for Table 2.4;" 2.4 Relative Standard Errors for Table 2.4;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",27.5,"X",42,39.5,62,"X",0,9.8

440

"Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.3 Relative Standard Errors for Table 1.3;" 1.3 Relative Standard Errors for Table 1.3;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Oil Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)","Missouri Natural...

442

Laser ultrasonic furnace tube coke monitor. Quarterly technical progress report. Report No. 5 for reporting period May 1, 1999 through August 1, 1999  

SciTech Connect (OSTI)

The overall aim of the project is to demonstrate the performance and practical use of a probe for measuring the thickness of coke deposits located within the high-temperature tubes of a thermal cracking furnace. The objective of work during this period was to enhance the sensitivity and signal-to-noise ratio of the probe measurement. Testing identified that the primary source of signal noise was traced to imperfections in the sacrificial stand-off, which was formed using a casting procedure. Laminations, voids, and impurities contained in the casting result in attenuation and dispersion of the ultrasonic signal. This report describes the work performed to optimize the signal conductance of the sacrificial stand-off.

NONE

1999-08-15T23:59:59.000Z

443

Removal of organic compounds and trace metals from oil sands process-affected water using zero valent iron enhanced by petroleum coke  

Science Journals Connector (OSTI)

Abstract The oil production generates large volumes of oil sands process-affected water (OSPW), referring to the water that has been in contact with oil sands or released from tailings deposits. There are concerns about the environmental impacts of the release of OSPW because of its toxicity. Zero valent iron alone (ZVI) and in combination with petroleum coke (CZVI) were investigated as environmentally friendly treatment processes for the removal of naphthenic acids (NAs), acid-extractable fraction (AEF), fluorophore organic compounds, and trace metals from OSPW. While the application of 25 g/L ZVI to OSPW resulted in 58.4% removal of \\{NAs\\} in the presence of oxygen, the addition of 25 g petroleum coke (PC) as an electron conductor enhanced the \\{NAs\\} removal up to 90.9%. The increase in ZVI concentration enhanced the removals of NAs, AEF, and fluorophore compounds from OSPW. It was suggested that the electrons generated from the oxidation of ZVI were transferred to oxygen, resulting in the production of hydroxyl radicals and oxidation of NAs. When OSPW was de-oxygenated, the \\{NAs\\} removal decreased to 17.5% and 65.4% during treatment with ZVI and CZVI, respectively. The removal of metals in ZVI samples was similar to that obtained during CZVI treatment. Although an increase in ZVI concentration did not enhance the removal of metals, their concentrations effectively decreased at all ZVI loadings. The Microtox® bioassay with Vibrio fischeri showed a decrease in the toxicity of ZVI- and CZVI-treated OSPW. The results obtained in this study showed that the application of ZVI in combination with PC is a promising technology for OSPW treatment.

Parastoo Pourrezaei; Alla Alpatova; Kambiz Khosravi; Przemys?aw Drzewicz; Yuan Chen; Pamela Chelme-Ayala; Mohamed Gamal El-Din

2014-01-01T23:59:59.000Z

444

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

445

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

446

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

447

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

448

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

449

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

450

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

451

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

452

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

453

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

454

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

455

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

456

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

457

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

458

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

459

Gas vesicles.  

Science Journals Connector (OSTI)

...in the suspending water, of concentration...MPa and balances the atmospheric pressure. Note that...versely, liquid water could not form by condensation inside the gas vesicle...presumably surrounded by water on all sides. At...

A E Walsby

1994-03-01T23:59:59.000Z

460

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Information Administration - Energy Efficiency-Table 5b. Consumption  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: June 2010 Table 5b. Consumption of Energy for All Purposes (First Use) per Ton of Steel, 1998, 2002, and 2006 (Million Btu per ton) MECS Survey Years Iron and Steel Mills (NAICS1 331111) 19982 20022 20062 Total 3 17 16 13 Net Electricity 4 2 2 2 Natural Gas 5 5 4 Coal 7 6 4 Notes: 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2. Denominators represent the entire steel industry, not those based mainly on electric, natural gas, residual fuel oil or coal.

462

Ground Gas Handbook  

Science Journals Connector (OSTI)

...pathways of least resistance to gas transport, and applications are discussed, such as migrating landfill gas emissions, also from leaking landfill gas collection systems, as well as natural gas and oil-field gas leakage from abandoned production...

Allen W Hatheway

463

Gas Delivered  

Gasoline and Diesel Fuel Update (EIA)

. Average . Average Price of Natural Gas Delivered to Residential Consumers, 1980-1996 Figure 1980 1982 1984 1986 1988 1990 1992 1994 1996 0 2 4 6 8 10 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Feet Dollars per Thousand Cubic Meters Nominal Dollars Constant Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 1995 dollars using the chain-type price indexes for Gross Domestic Product (1992 = 1.0) as published by the U. S. Department of Commerce, Bureau of Economic Analysis. Residential: Prices in this publication for the residential sector cover nearly all of the volumes of gas delivered. Commercial and Industrial: Prices for the commercial and industrial sectors are often associated with

464

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

465

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

466

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

467

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

468

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

469

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

470

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

471

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

472

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

473

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

474

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

475

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

476

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

477

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

478

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

479

Gas vesicles.  

Science Journals Connector (OSTI)

...the gas vesicles simply reduce their sinking rates and...remaining suspended in the water column. A microorganism...phenomena as stratification, water- bloom formation, and...the many proteins that make up the phycobilisome (73...flagellate bacteria in natural waters. The natural selection...

A E Walsby

1994-03-01T23:59:59.000Z

480

Gas vesicles.  

Science Journals Connector (OSTI)

...these costs can be compared is in units of energy expenditure per time (joules per second...requires 7.24 x 10-18 kg of Gvp. The energy cost of making this protein, Eg, is...Eg = 2.84 x 101- o J. The rate of energy expenditure in gas vesicle synthesis then...

A E Walsby

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coke oven" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Gas sensor  

DOE Patents [OSTI]

A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

2014-09-09T23:59:59.000Z

482

Liquid Natural Gas  

Science Journals Connector (OSTI)

Liquid Natural Gas ... IN A new technique for storing natural gas at the East Ohio Gas Co. plant, Cleveland, Ohio, the gas is liquefied before passing to the gas holders. ... Natural gas contains moisture and carbon dioxide, both of which liquefy before the natural gas and are somewhat of a nuisance because upon solidification they clog the pipes. ...

W. F. SCHAPHORST

1941-04-25T23:59:59.000Z

483

NATURAL GAS MARKET ASSESSMENT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

484

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Price Sold to...

485

Natural Gas Weekly Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

natural gas production output. Rigs Natural Gas Transportation Update Tennessee Gas Pipeline Company yesterday (August 4) said it is mobilizing equipment and manpower for...

486

CO2 Gasification Rates of Petroleum Coke in a Pressurized Flat-Flame Burner Entrained-Flow Reactor  

Science Journals Connector (OSTI)

Two petcoke samples were gasified by CO2 at total pressures of 10 and 15 atm in a high-pressure flat-flame burner reactor at conditions where the bulk phase consisted of either 40 or 90 mol % CO2 with gas temperatures up to 1909 K. Particle diameters of 45–75 ?m were used in the experiments. ... The mass release data caused by CO2 gasification of the petcoke chars were fit to a global first-order model, and the optimal kinetic parameters are reported. ... The CO2 char gasification rates of both petcokes were shown to be higher than Illinois #6 coal when reacted at conditions of high temperature and pressure, even though most reactivity comparisons between petcoke and coal at lower temperature, pressure, and heating rates typically result in coal being more reactive. ...

Aaron D. Lewis; Emmett G. Fletcher; Thomas H. Fletcher

2014-06-05T23:59:59.000Z

487

Shale gas is natural gas trapped inside  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

488

Gas Chromatography  

Science Journals Connector (OSTI)

Researchers from the University of Missouri and ICx Nomadics have reported on the use of a optofluidic ring resonator (OFRR) sensor for on-column detection ?. ... Although substantial differences were noted between fresh and aged (or oxidized) oils, many of the compounds in the oxidized oil went unidentified due to lack of library mass spectral data. ... A high resolution MEMS based gas chromatography column for the analysis of benzene and toluene gaseous mixtures ...

Frank L. Dorman; Joshua J. Whiting; Jack W. Cochran; Jorge Gardea-Torresdey

2010-05-26T23:59:59.000Z

489

Gas Sampling Considerations  

Science Journals Connector (OSTI)

Gas sampling is carried out to measure the quality of a gas. Gas samples are sometimes acquired by in situ observation within the main gas body by using remote or visual observation for specific properties. A mor...

Alvin Lieberman

1992-01-01T23:59:59.000Z

490

Georgia Tech Dangerous Gas  

E-Print Network [OSTI]

1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

Sherrill, David

491

Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

Seaman, John

2013-01-14T23:59:59.000Z

492

Market Digest: Natural Gas  

Reports and Publications (EIA)

The Energy Information Administration's Natural Gas Market Digest provides information and analyses on all aspects of natural gas markets.

2014-01-01T23:59:59.000Z

493

Gas Chromatography  

Science Journals Connector (OSTI)

He received his B.S. degree in 1970 from Rhodes College in Memphis, TN, his M.S. degree in 1973 from the University of Missouri, Columbia, MO, and his Ph.D. degree in 1975 from Dalhousie University, Halifax, Nova Scotia, Canada. ... A review (with 145 references) on the role of carrier gases on the separation process (A4) demonstrates that carrier gas interactions are integral to the chromatographic process. ... In another report, activity coefficients for refrigerants were evaluated with a polyol ester oil stationary phase (C22). ...

Gary A. Eiceman; Herbert H. Hill, Jr.; Jorge Gardea-Torresdey

2000-04-25T23:59:59.000Z

494

Thermal-destruction products of coal in the blast-furnace gas-purification system  

SciTech Connect (OSTI)

The lean, poorly clinkering coal and anthracite used to replace coke in blast furnaces has a considerable content of volatile components (low-molecular thermaldestruction products), which enter the water and sludge of the blast-furnace gas-purification system as petroleum products. Therefore, it is important to study the influence of coal on the petroleum-product content in the water and sludge within this system. The liberation of primary thermal-destruction products is investigated for anthracite with around 4 wt % volatiles, using a STA 449C Jupiter thermoanalyzer equipped with a QMC 230 mass spectrometer. The thermoanalyzer determines small changes in mass and thermal effects with high accuracy (weighing accuracy 10{sup -8} g; error in measuring thermal effects 1 mV). This permits experiments with single layers of coal particles, eliminating secondary reactions of its thermal-destruction products.

A.M. Amdur; M.V. Shibanova; E.V. Ental'tsev [Russian Academy of Sciences, Yekaterinburg (Russian Federation). Russia Institute of Metallurgy

2008-10-15T23:59:59.000Z

495

China Energy and Emissions Paths to 2030  

E-Print Network [OSTI]

in solid fuels (coal), coke and electricity as a result ofHeat Natural Gas Oil Products Coke Solid Fuels Efficiencydemand for metallurgical coke. The energy intensity of the

Fridley, David

2012-01-01T23:59:59.000Z

496

Importance of the gas phase role to the prediction of energetic material behavior: An experimental study  

Science Journals Connector (OSTI)

Various thermal (radiative conductive and convective) initiation experiments are performed to demonstrate the importance of the gas phase role in combustionmodeling of energetic materials (EM). A previously published condensed phase model that includes a predicted critical irradiance above which ignition is not possible is compared to experimental laser ignition results for octahydro-1 3 5 7-tetranitro-1 3 5 7-tetrazocine (HMX) and 2 4 6-trinitrotoluene (TNT). Experimental results conflict with the predicted critical irradiance concept. The failure of the model is believed to result from a misconception about the role of the gas phase in the ignition process of energetic materials. The model assumes that ignition occurs at the surface and that evolution of gases inhibits ignition. High speed video of laser ignition oven cook-off and hot wire ignition experiments captures the ignition of HMX and TNT in the gas phase. A laser ignition gap test is performed to further evaluate the effect of gas phase laser absorption and gas phase disruption on the ignition process. Results indicate that gas phase absorption of the laser energy is probably not the primary factor governing the gas phase ignition observations. It is discovered that a critical gap between an HMX pellet and a salt window of 6 mm ± 0.4 mm exists below which ignition by C O 2 laser is not possible at the tested irradiances of 29 W ? cm 2 and 38 W ? cm 2 for HMX ignition. These observations demonstrate that a significant disruption of the gas phase in certain scenarios will inhibit ignition independent of any condensed phase processes. These results underscore the importance of gas phase processes and illustrate that conditions can exist where simple condensed phase models are inadequate to accurately predict the behavior of energetic materials.

A. N. Ali; S. F. Son; B. W. Asay; R. K. Sander

2005-01-01T23:59:59.000Z

497

Importance of the gas phase role to the prediction of energetic material behavior: An experimental study  

SciTech Connect (OSTI)

Various thermal (radiative, conductive, and convective) initiation experiments are performed to demonstrate the importance of the gas phase role in combustion modeling of energetic materials (EM). A previously published condensed phase model that includes a predicted critical irradiance above which ignition is not possible is compared to experimental laser ignition results for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT). Experimental results conflict with the predicted critical irradiance concept. The failure of the model is believed to result from a misconception about the role of the gas phase in the ignition process of energetic materials. The model assumes that ignition occurs at the surface and that evolution of gases inhibits ignition. High speed video of laser ignition, oven cook-off and hot wire ignition experiments captures the ignition of HMX and TNT in the gas phase. A laser ignition gap test is performed to further evaluate the effect of gas phase laser absorption and gas phase disruption on the ignition process. Results indicate that gas phase absorption of the laser energy is probably not the primary factor governing the gas phase ignition observations. It is discovered that a critical gap between an HMX pellet and a salt window of 6 mm{+-}0.4 mm exists below which ignition by CO{sub 2} laser is not possible at the tested irradiances of 29 W/cm{sup 2} and 38 W/cm{sup 2} for HMX ignition. These observations demonstrate that a significant disruption of the gas phase, in certain scenarios, will inhibit ignition, independent of any condensed phase processes. These results underscore the importance of gas phase processes and illustrate that conditions can exist where simple condensed phase models are inadequate to accurately predict the behavior of energetic materials.

Ali, A.N.; Son, S.F.; Asay, B.W.; Sander, R.K. [Los Alamos National Laboratory, MS C920, Los Alamos, New Mexico 87544 (United States)

2005-03-15T23:59:59.000Z

498

Fuel gas conditioning process  

DOE Patents [OSTI]

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

499

file://C:\Documents and Settings\bh5\My Documents\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 4. Expenditures for Purchased Energy 1998, 2002, and 2006 (million constant 2000 U.S. dollars 1 ) MECS Survey Years Iron and Steel Mills (NAICS 2 331111) 1998 2002 2006 Total 3 5,601 6,241 5,806 Electricity 1,580 1,971 1,537 Natural Gas 1,287 1,659 2,037 Coal 971 994 1,010 Residual Fuel 60 3 75 Coke and Breeze 1,584 1,462 999 Notes: 1. Deflated by the chain-type price indices for iron and steel mills shipments. 2. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 3. 'Total' is the sum of all of the listed energy sources, including wood waste, hydrogen, and waste oils and tars.

500

file://C:\Documents and Settings\bh5\My Documents\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

a a Table 7a. Offsite-Produced Fuel Consumption per Value Of Production 1998, 2002, and 2006 (Btu per constant 2000 dollar 1 ) MECS Survey Years Iron and Steel Mills (NAICS 2 331111) 1998 3 2002 4 2006 4 Total NA 19,716 12,179 Electricity NA 3,839 2,846 Natural Gas NA 8,052 5,301 Coal NA 747 228 Residual Fuel NA 21 309 Coke and Breeze NA 6,496 3,025 Notes: 1. Value of production is deflated by the chain-type price indices for iron and steel mills shipments. 2. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 3. 1998 data unavailable due to disclosure avoidance procedures in place at the time.