Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

High Efficiency Gas Turbines Overcome Cogeneration Project Feasibility Hurdles  

E-Print Network [OSTI]

steam injection, NOx control without selective catalytic reduction, (SCRl, reduced down time during maintenance and dispatchability. other factors influencing enhanced aeroderivative economics are complete generator set packaging at the factory... generation packages. EXTENDED ABSTRACT Competition, PURPA, Cogeneration, Independent Power Producers. Topics of mere conversation ten years ago are becoming our laws of today and for electrical generation. Before the next generation of power plants...

King, J.

2

Natural Gas Procurement Challenges for a Project Financed Cogeneration Facility  

E-Print Network [OSTI]

these criteria as inconsistent with UCC project economics and normal procurement practice. A. TERM OF CONTRACT The trend in the industry was strongly moving away from long term fixed price contracts. Natural Gas prices had moved steadily upward through..., by 1986? the problem of long term take or pay contracts in the Industry was overwhelming. Most producers had written some contracts at very low prices that had not expired while consumers were replacing contract written at high prices. However...

Good, R. L.; Calvert, T. B.; Pavlish, B. A.

3

BP Cherry Point Cogeneration Project  

Broader source: Energy.gov (indexed) [DOE]

Final Environmental Impact Statement Final Environmental Impact Statement DOE/EIS-0349 Lead Agencies: Energy Facility Site Evaluation Council Bonneville Power Administration Cooperating Agency: U.S. Army Corps of Engineers August 2004 EFSEC Washington State Energy Facility Site Evaluation Council July 12, 2004 Dear Reader: Enclosed for your reference is the abbreviated Final Environmental Impact Statement (FEIS) for the proposed BP Cherry Point Cogeneration Project. This document is designed to correct information and further explain what was provided in the Draft Environmental Impact Statement (DEIS). The proponent, BP West Coast Products, LLC, has requested to build a 720-megawatt gas-fired combined cycle cogeneration facility in Whatcom County, Washington, and interconnect this facility into the regional

4

High-Temperature Gas-Cooled Reactor Steam Cycle/Cogeneration Lead Project strategy plan  

SciTech Connect (OSTI)

The strategy for developing the HTGR system and introducing it into the energy marketplace is based on using the most developed technology path to establish a HTGR-Steam Cycle/Cogeneration (SC/C) Lead Project. Given the status of the HTGR-SC/C technology, a Lead Plant could be completed and operational by the mid 1990s. While there is remaining design and technology development that must be accomplished to fulfill technical and licensing requirements for a Lead Project commitment, the major barriers to the realization a HTGR-SC/C Lead Project are institutional in nature, e.g. Project organization and management, vendor/supplier development, cost/risk sharing between the public and private sector, and Project financing. These problems are further exacerbated by the overall pervading issues of economic and regulatory instability that presently confront the utility and nuclear industries. This document addresses the major institutional issues associated with the HTGR-SC/C Lead Project and provides a starting point for discussions between prospective Lead Project participants toward the realization of such a Project.

None

1982-03-01T23:59:59.000Z

5

EIS-0201: Coyote Springs Cogeneration Project Morrow Count, Oregon  

Broader source: Energy.gov [DOE]

This environmental impact statement analyzes the protential impacts of the Coyote Springs Cogeneration Project, a proposed natural gas-fired cogeneration power plant near Boardman, Oregon. The proposed power plant would be built on a 22-acre site in the Port of Morrow Industrial Park. The plant would have two combustion turbines that would generate 440 average megawatts of energy when completed.

6

Financing Co-generation Projects  

E-Print Network [OSTI]

profit generated by energy intensive industries will not be sufficient to provide the capital required for both normal business expansion and energy conservation projects. Debt financing for energy saving equipment will adversely impact balance sheet...

Young, R.

1982-01-01T23:59:59.000Z

7

Evaluation of Technology Risk in Project Cogeneration Project Returns  

E-Print Network [OSTI]

requirements neces sary to operate a cogeneration plant are strong functions of the type of system that is being con sidered. For example, for a small hydro plant or for individual small gas turbine plants oper ting in base load (a flat output over... requirements neces sary to operate a cogeneration plant are strong functions of the type of system that is being con sidered. For example, for a small hydro plant or for individual small gas turbine plants oper ting in base load (a flat output over...

Thoennes, C. M.

8

BP Cherry Point Cogeneration Project Draft Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

Draft Environmental Impact Statement Draft Environmental Impact Statement DOE/EIS-0349 Lead Agencies: Energy Facility Site Evaluation Council Bonneville Power Administration Cooperating Agency: U.S. Army Corps of Engineers September 5, 2003 EFSEC Washington State Energy Facility Site Evaluation Council September 5, 2003 Dear Reader: Enclosed for your review is the Draft Environmental Impact Statement (DEIS) for the proposed BP Cherry Point Cogeneration Project. The proponent, BP West Coast Products, LLC, has requested to build a 720-Megawatt Gas-Fired Combined Cycle Cogeneration Facility in Whatcom County, Washington, and interconnect this facility into the regional power transmission grid. To integrate the new power generation into the transmission grid, Bonneville Power Administration (Bonneville) may need to re-build 4.7 miles of an existing 230-kV

9

Why Cogeneration Development Projects Fail  

E-Print Network [OSTI]

of the particip8llts. Keep in mind the developllent problems listed below are all based on actual experiences. Sane were encountered by my company, Ebasco, some by others. The names of the developers and the projects have been concealed to protect...

Greenwood, R. W.

10

Klickitat Cogeneration Project : Final Environmental Assessment.  

SciTech Connect (OSTI)

To meet BPA`s contractual obligation to supply electrical power to its customers, BPA proposes to acquire power generated by Klickitat Cogeneration Project. BPA has prepared an environmental assessment evaluating the proposed project. Based on the EA analysis, BPA`s proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 for the following reasons: (1)it will not have a significant impact land use, upland vegetation, wetlands, water quality, geology, soils, public health and safety, visual quality, historical and cultural resources, recreation and socioeconomics, and (2) impacts to fisheries, wildlife resources, air quality, and noise will be temporary, minor, or sufficiently offset by mitigation. Therefore, the preparation of an environmental impact statement is not required and BPA is issuing this FONSI (Finding of No Significant Impact).

United States. Bonneville Power Administration; Klickitat Energy Partners

1994-09-01T23:59:59.000Z

11

Waste-to-Energy Cogeneration Project, Centennial Park  

SciTech Connect (OSTI)

The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utility bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.

Johnson, Clay; Mandon, Jim; DeGiulio, Thomas; Baker, Ryan

2014-04-29T23:59:59.000Z

12

EIS-0349: Cherry Point Co-generation Project  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to support BP West Coast Products, LLC proposal to construct and operate a 720-megawatt, natural-gas-fired, combined-cycle cogeneration facility on land adjacent to its BP Cherry Point Refinery.

13

Cogeneration  

E-Print Network [OSTI]

environment, that of the state of California. The panel for this tutorial session includes representative from a broad cross-section of the cogeneration industry including industrial users, engineering firms, developers and equipment manufacturers. 129...

Jenkins, S. C.

14

SECO - Dow Corning's Wood Fueled Industrial Cogeneration Project  

E-Print Network [OSTI]

In 1979, Dow Corning Corporation decided to build a wood fueled steam and electric cogeneration (SECO) power plant at Midland, Michigan. This decision was prompted by the high cost of oil and natural gas, an abundant supply of wood in mid Michigan...

Betts, W. D.

1982-01-01T23:59:59.000Z

15

$18.7 Million Paid From Savings Variable Load Mechanical Cogeneration Project at Louisiana State University  

E-Print Network [OSTI]

traditional gas turbine applications in that most available have been channeled into new buildings. In electrical cogeneration jobs run "flat out" all the time. the mid-1980's it became apparent !.hat unless some A distinctive feature of this project.... The overall objective of this project was to generate chilled water To help remedy this situation, a state law was and steam as efficiently as possible within the demand passed in Louisiana in 1987 allowing for energy parameters of the campus, and provide...

Leach, M. D.; Colburn, B. K.

16

Second law analysis of a natural gas-fired steam boiler and cogeneration plant.  

E-Print Network [OSTI]

??A second law thermodynamic analysis of a natural gas-fired steam boiler and cogeneration plant at Rice University was conducted. The analysis included many components of… (more)

Conklin, Eric D

2010-01-01T23:59:59.000Z

17

Computer-based gas accounting system at the TETs-26 Mosenergo cogeneration station  

Science Journals Connector (OSTI)

Experience gained from the introduction and operation of microprocessor systems for metering gas consumption and its heating value at Mosenergo’s cogeneration stations is considered.

A. V. Zakharenkov; V. N. Degterev; V. V. Usanov; A. A. Shkurin…

2006-10-01T23:59:59.000Z

18

Coyote Springs Cogeneration Project - Final Environmental Impact Statement and Record of Decision (DOE/EIS-0201)  

Broader source: Energy.gov (indexed) [DOE]

Coyote Springs Cogeneration Project - Final Environmental Impact Statement Coyote Springs Cogeneration Project - Final Environmental Impact Statement Summary-1 Summary Bonneville Power Administration (BPA) is a Federal power marketing agency in the U.S. Department of Energy. BPA is considering whether to transmit (wheel) electrical power from a proposed privately-owned, gas-fired combustion turbine power generation plant in Morrow County, Oregon. The proposed power plant would have two combustion turbines that would generate 440 average megawatts (aMW) of energy when completed. The proposed plant would be built in phases. The first combustion turbine would be built as quickly as possible. Timing for the second combustion turbine is uncertain. As a Federal agency subject to the Nation Environ- mental Policy Act, BPA must complete a review of environmental impacts before it makes a

19

Gas Turbine Cogeneration Plant for the Dade County Government Center  

E-Print Network [OSTI]

expansion plans, the system will efficiently produce additional electricity when chilled water demands are low. Houston, Texas The cogeneration plant consists of a Rolls-Royce gas turbine-generator set and a waste-heat recovery system which recovers... waste heat from the gas I tur bine exhaust. The waste-heat recovery syste~ con sists of a Zurn dual-pressure, heat recovery bpiler, a Thermo Electron dual-pressure, extraction /conden sing steam turbine generator set, and four Tra~e ab sorption...

Michalowski, R. W.; Malloy, M. K.

20

HL&P/Du Pont Cogeneration Project  

E-Print Network [OSTI]

. Supplementary fireable HRSG's provide additional supply reliability for the steam host. Electricity from the project is delivered into HL&P's System through a new 138 KY substation. Such an arrangement offers Du Pont a significant cost saving opportunity as less...

Vadie, H. H.

2013-06-06T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Analysis of the fuel efficiency of gas-turbine cogeneration stations  

Science Journals Connector (OSTI)

A technique for evaluating the fuel efficiency of the combined generation of electricity and heat at a gas-turbine cogeneration station is presented. The effects the regeneration degree of the gas-turbine cycle a...

V. I. Evenko; A. S. Strebkov

2006-10-01T23:59:59.000Z

22

BP Cherry Point Cogeneration Project Draft Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

Appendices Appendices DOE/EIS-0349 Lead Agencies: Energy Facility Site Evaluation Council Bonneville Power Administration Cooperating Agency: U.S. Army Corps of Engineers September 5, 2003 SITING AND WETLAND 404(b)1 ALTERNATIVES ANALYSIS BP CHERRY POINT COGENERATION PROJECT [REVISED] Prepared for: BP West Coast Products, LLC Submitted by: Golder Associates Inc. March 2003 013-1421.541 March 2003 i 013-1421.541 TABLE OF CONTENTS Page No. 1. INTRODUCTION 1 2. PURPOSE AND NEED 5 3. ALTERNATIVES 6 3.1 No Action Alternative 6 3.1.1 Self-Reliance 6 3.1.2 Efficiency 6 3.1.3 Reliability 6 3.1.4 Other Impacts of the No Action Alternative 7 3.2 Project Site Location Alternative Selection Process 7 3.2.1 Sufficient Acreage Available

23

Novel integrated gas turbine solar cogeneration power plant  

Science Journals Connector (OSTI)

Concentrating solar cogeneration power plants (CSCPP) may provide a key solution for the pressing freshwater deficits in the Middle East and North Africa (MENA) region and could be used in the future for export electricity to Europe. From this standpoint the current study was undertaken to include proposed schemes of CSCPP, that would fully exploit the potential of hybrid reverse osmosis (RO)/multi effect distillation (MED) seawater desalination. Thereby, the primary objective of the present study was to identify and investigate the effectiveness and thermodynamic performance of CSCPP schemes. To satisfy this objective, detailed computational model for key components in the plant has been developed and implemented on simulation computer code. The thermal effectiveness in the computational model was characterized by the condition of attaining a maximum fuel saving in the electrical power grid (EPG). The study result shows the effectiveness of proposed CSCPP schemes. Especially the integrated gas turbine solar cogeneration power plant (IGSCP) scheme seems to be an alternative of the most effective technologies in terms of technical, economic and environmental sustainability. For the case study (IGSCP and the design number of effects 10 for low-temperature MED unit) the economical effect amount 172.3 ton fuel/year for each MW design thermal energy of parabolic solar collector array (PSCA). The corresponding decrease in exhaust gases emission (nitrogen oxides (NOx) 0.681 ton/year MW, carbon dioxides (CO2) 539.5 ton/year MW). Moreover, the increase in the output of PSCA and, subsequently, in solar power generation, will also be useful to offset the normal reduction in performance experienced by gas turbine unit during the summer season. Hence, the influence of the most important design parameters on the effectiveness of ISGPP has been discussed in this paper.

Hussain Alrobaei

2008-01-01T23:59:59.000Z

24

ADVANCED EXERGY ANALYSIS APPLIED TO THE GAS-TURBINE BASED CO-GENERATION SYSTEM.  

E-Print Network [OSTI]

??The thesis focuses on the evaluation and improvement of a gas-turbine based co-generation system, from an exergetic point of view. A conventional exergy analysis has… (more)

AZZARELLI, GIUSEPPE

2008-01-01T23:59:59.000Z

25

Record of Decision for the Electrical Interconnection of the BP Cherry Point Cogeneration Project (DOE/EIS-0349) (11/10/04)  

Broader source: Energy.gov (indexed) [DOE]

BP Cherry Poi BP Cherry Poi nt Cogeneration Project DECISION The Bonneville Power Administration (Bonneville) has decided to implement the proposed action identified in the BP Cherry Point Cogeneration Project Final Environmental Impact Statement (FEIS) (DOE/EIS-0349, August 2004). Under the proposed action, Bonneville will offer contract terms for interconnection of the BP Cherry Point Cogeneration Project (Project) with the Federal Columbia River Transmission System (FCRTS), as requested by BP West Coast Products, LLC (BP) and proposed in the FEIS. The proposed Project involves constructing and operating a new 720-megawatt (MW) natural gas-fired, combined-cycle power generation facility at a 265-acre site adjacent to BP's existing Cherry Point Refinery between Ferndale and

26

Development status of coal-fired gas heaters for Brayton-cycle cogeneration systems  

SciTech Connect (OSTI)

Under contract from the Department of Energy, Rocketdyne is developing the technology of coal-fired gas heaters for utilization in Brayton-cycle cogeneration systems. The program encompasses both atmospheric fluidized bed and pulverized coal combustion systems; and it is directed toward the development of gas heater systems capable of delivering high pressure air or helium at 1550 F, when employing metallic heat exchangers, and 1750 F, when employing ceramic heat exchangers. This paper reports on the development status of the program, with discussions of the completed ''screening'' corrosion/erosion tests of candidate heat exchanger materials, a description and summary of the operating experience with the 6- by 6-foot AFB test facility and a projection of the potential for relatively near term commercialization of such heater systems.

Gunn, S.V.; McCarthy, J.R.

1983-01-01T23:59:59.000Z

27

A proportional method for calculating the efficiency and specific consumption of fuel at gas-turbine cogeneration stations  

Science Journals Connector (OSTI)

A new proportional method for calculating the indicators characterizing the energy efficiency of gas-turbine cogeneration stations is presented. The data obtained are compared...

G. P. Chitashvili

2006-12-01T23:59:59.000Z

28

A Utility-Affiliated Cogeneration Developer Perspective  

E-Print Network [OSTI]

This paper will address cogeneration from a utility-affiliated cogeneration developer perspective on cogeneration as it relates to the development and consumption of power available from a cogeneration project. It will also go beyond...

Ferrar, T. A.

29

Cogeneration for supermarkets  

SciTech Connect (OSTI)

The Gas Research Institute's supermarket dehumidification project and assessments of commercial cogeneration found that retail supermarkets represent an opportunity for packaged gas-fueled cogeneration systems. Although not currently large thermal users, supermarkets have several electrical loads that can be replaced with heat-driven absorption and adsorption if the cogeneration package is designed specifically for their needs. Field testing should verify the preliminary estimates of attractive paybacks combined with reliability and ease of operation that are required by supermarket operators. The system under examination provides all of the low and medium temperature refrigeration, most of the space heating, all of the water heating, and some of the electricity for lighting. 4 figures, 2 tables.

Walker, D.; Hynek, S.

1985-08-01T23:59:59.000Z

30

Cogeneration Planning  

E-Print Network [OSTI]

cogeneration projects for its plants. Of concern to us are rapidly escalating electrical costs plus concern about the future of some utilities to maintain reserve capacity. Our review to date revolves around (1) obtaining low-cost reliable fuel supplies...

Mozzo, M. A. Jr.

31

Success Story: Naval Medical Center San Diego Co-Generation Project  

Broader source: Energy.gov (indexed) [DOE]

Success Story Success Story Success Story Naval Medical Center San Diego Naval Medical Center San Diego Co-Generation Project Co-Generation Project Karen Jackson, SDG&E Karen Jackson, SDG&E Project Manager Project Manager Edward Thibodo, NAVFAC SW Edward Thibodo, NAVFAC SW Energy Team Contract Energy Team Contract ' ' s Lead s Lead NAVFAC Contractor NAVFAC Contractor ' ' s Guide: s Guide:   Partnering Philosophy Partnering Philosophy - - " " We W are partners e are partners in every contract we award. Partnering is in every contract we award. Partnering is an attitude that we both work hard to an attitude that we both work hard to develop, an it requires both of us to take develop, an it requires both of us to take some extra risk and trust one another. some extra risk and trust one another.

32

New cogeneration plant provides steam for Oxnard papermaking facility  

SciTech Connect (OSTI)

In January 1990, the Proctor and Gamble Co.'s Oxnard, Calif., papermaking facility started up Cogen Two, the newest of the company's four gas-turbine-based cogeneration plants. In addition to reviewing Cogen Two project specifics, this article demonstrates the success of state-of-the-art cogeneration systems and the important role these systems play in the pulp and paper industry.

Price, K.R. (Thermal Energy Systems, Engineering Div., Procter and Gamble Co., Winston Hill Technical Center, Cincinnati, OH (US)); Anderson, W.A. (Utilities Dept., Oxnard Plant, Procter and Gamble Co., Oxnard, CA (US))

1991-07-01T23:59:59.000Z

33

Project financing for cogeneration and other large-scale energy efficient improvements  

SciTech Connect (OSTI)

Financing for the installation of cogeneration systems is outlined. A feasibility study must consider completion risks, operating risks, marketing risks, management risks, political/regulatory risks, and financing risks--all of which are specified. After the risks are allocated, the question becomes, ''Where will the capital come from.'' Limited or non-recourse ''project financing'' is considered. Transfer of tax benefits through leasing, third party ownership, and insurance are also discussed. As the cost for arranging project financing is high (it can amount to several hundred thousand dollars), a project should be several million dollars in size to justify the incurred expense.

Weinress, J.B.

1983-06-01T23:59:59.000Z

34

Design, Installation, and Field Verification of Integrated Active Desiccant Hybrid Rooftop Systems Combined with a Natural Gas Driven Cogeneration Package, 2008  

Broader source: Energy.gov [DOE]

Report summary of a research/demonstration project involving a custom 230 kW cogeneration package with four integrated active desiccant rooftop (IADR) systems

35

High Temperature Gas-Cooled Reactor Program. Modular HTGR systems design and cost summary. [Methane reforming; steam cycle-cogeneration  

SciTech Connect (OSTI)

This report provides a summary description of the preconceptual design and energy product costs of the modular High Temperature Gas-Cooled Reactor (HTGR). The reactor system was studied for two applications: (1) reforming of methane to produce synthesis gas and (2) steam cycle/cogeneration to produce process steam and electricity.

Not Available

1983-09-01T23:59:59.000Z

36

Fundamentals of a Third-Party Cogeneration Project  

E-Print Network [OSTI]

Base data from which the savings will be measured. This is usually a historical average of fuel and electrical costs adjusted, if necessary. to the present operating conditions. o Calculation of savings. The procedures for determining the revenues... and procedures formalized for the initial project. This can lead to honest misunderstandings and delays. Also, the utility is highly aware of precedent and sometimes treats any concession as being lost forever. Therefore. the utility can be hesitant on any...

Grantham, F.; Stovall, D.

37

Gas-fueled cogeneration for supermarkets. Phase 1 final report, March-December 1984  

SciTech Connect (OSTI)

Supermarkets offer a unique application for a packaged cogeneration system because of the large and continuous need for shaft power to drive refrigeration compressors. Waste heat from the engine can be used efficiently to drive an absorption chiller for additional refrigeration capacity, and to provide space and water heating. In Phase I of this project, such a system was designed and analyzed. The analysis first considered several alternate configurations. Based on these results, the optimized system was then considered for five different geographic locations. In general it was found that a payback of three years or less could be achieved.

Walker, D.H.; Krepchin, I.P.; Poulin, E.C.; Demler, R.L.; Hynek, S.J.

1985-04-01T23:59:59.000Z

38

Cogeneration of electricity and refrigeration by work-expanding pipeline gas  

SciTech Connect (OSTI)

The process for the cogeneration of electricity and commercially saleable refrigeration by expanding pressurized pipeline gas with the performance of work is described which comprises: injecting methanol into the pipeline gas; passing the pipeline gas containing the methanol through a turbo-expander coupled to an electrical generator to reduce the pressure of the pipeline gas at least 100 psi but not reducing the pressure enough to drop the temperature of the resulting cold expanded gas below about - 100/sup 0/F; separating aqueous methanol condensate from the cold expanded gas and introducing the condensate into a distillation column for separation into discard water and recycle methanol for injection into the pipeline gas; recovering the saleable refrigeration from the cold expanded gas; adding reboiler heat to the distillation column in an amount required to warm the expanded gas after the recovery of the saleable refrigeration therefrom to a predetermined temperature above 32/sup 0/F; and passing the expanded gas after the recovery of the saleable refrigeration therefrom in heat exchange with methanol vapor rising to the top of the distillation column to condense the methanol vapor so that liquid methanol is obtained partly for reflux in the distillation column and partly for the recycle methanol and simultaneously the expanded gas is warmed to the predetermined temperature above 32/sup 0/F.

Markbreiter, S.J.; Dessanti, D.J.

1987-12-08T23:59:59.000Z

39

cogeneration | OpenEI  

Open Energy Info (EERE)

cogeneration cogeneration Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are four electricity generation datasets: quarterly net electricity by fuel type from 1974 to 2010 (in both GWh and PJ); annual net electricity generation by fuel type- cogeneration separated (1975 - 2009); and estimated generation by fuel type for North Island, South Island and New Zealand (2009). The fuel types include: hydro, geothermal, biogas, wind, oil, coal, and gas. Source New Zealand Ministry of Economic Development Date Released July 03rd, 2009 (5 years ago) Date Updated Unknown Keywords biogas coal cogeneration Electricity Generation geothermal Hydro Natural Gas oil wind Data

40

Cogeneration system with low NO sub x combustion of fuel gas  

SciTech Connect (OSTI)

This patent describes a cogeneration system for the production of electricity and refrigeration with low NO{sub x} combustion of fuel gas supplied at a high pressure. It comprises a heat exchanger to heat the fuel gas at high pressure; a turbo-expander connected to receive and expand the heated fuel gas from the heat exchanger; a centrifugal compressor driven by the turbo-expander the compressor being the refrigerant compressor of a refrigeration system; a porous fiber burner connected to receive the expanded fuel gas from the turbo-expander together with the requisite combustion air; a high-pressure steam boiler heated by the combustion of the expanded fuel gas on the outer surface of the porous fiber burner, the boiler being connected to pass the resulting flue gas with low NO{sub x} content through the heat exchanger to heat the fuel gas at high pressure; a steam turbine connected to receive and expand highpressure steam from the boiler and to return expanded and condensed steam to the boiler; and an electric generator driven by the steam turbine.

Garbo, P.W.

1991-06-25T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

York County Energy Partners CFB Cogeneration Project. Annual report, [September 30, 1992--September 30, 1993  

SciTech Connect (OSTI)

The Department of Energy, under the Clean Coal Technology program, proposes to provide cost-shared financial assistance for the construction of a utility-scale circulating fluidized bed technology cogeneration facility by York County Energy Partners, L.P (YCEP). YCEP, a project company of ir Products and Chemicals, Inc., would design, construct and operate a 250 megawatt (gross) coal-fired cogeneration facility on a 38-acre parcel in North Codorus Township, York County, Pennsylvania. The facility would be located adjacent to the P. H. Glatfelter Company paper mill, the proposed steam host. Electricity would be delivered to Metropolitan Edison Company. The facility would demonstrate new technology designed to greatly increase energy efficiency and reduce air pollutant emissions over current generally available commercial technology which utilizes coal fuel. The facility would include a single train circulating fluidized bed boiler, a pollution control train consisting of limestone injection for reducing emissions of sulfur dioxide by greater than 92 percent, selective non-catalytic reduction for reducing emissions of nitrogen oxides, and a fabric filter (baghouse) for reducing emissions of particulates. Section II of this report provides a general description of the facility. Section III describes the site specifics associated with the facility when it was proposed to be located in West Manchester Township. After the Cooperative Agreement was signed, YCEP decided to move the proposed site to North Codorus Township. The reasons for the move and the site specifics of that site are detailed in Section IV. This section of the report also provides detailed descriptions of several key pieces of equipment. The circulating fluidized bed boiler (CFB), its design scale-up and testing is given particular emphasis.

Not Available

1994-03-01T23:59:59.000Z

42

Cogeneration of substitute natural gas and power from coal by moderate recycle of the chemical unconverted gas  

Science Journals Connector (OSTI)

Abstract The thermodynamic analysis and the coupling and optimization between chemical synthesis and power generation in a polygeneration system are presented. Unlike full conversion of syngas into chemicals in the traditional SNG (synthetic natural gas) production system, by moderate conversion the sharp increase in energy consumption for SNG synthesis can be avoided in the new system. Also, by recovering the chemical unconverted gas for combined cycle, electricity is cogenerated efficiently. Results show that the overall efficiency of the novel system can be as high as 59%–65%. And compared to single production systems, the (energy saving ratio) ESR of the new system is over 11.0% and the energy consumption for SNG production can be decreased by around 12%. Sensitivity analysis shows that an optimized conversion ratio of SNG, (chemicals to power output ratio) CPOR, recycle ratio of the unconverted gas Ru, and pressure ratio of gas turbine can lead to the maximum of ESR. Abolishing the syngas composition adjustment and improving the inlet temperature of gas turbine both can help to enhance the system efficiency. Under low Ru, improving the H2/CO mole ratio in the syngas helps to improve system efficiency, while under high Ru, an optimized H2/CO can lead to the maximum of ESR.

Sheng Li; Hongguang Jin; Lin Gao

2013-01-01T23:59:59.000Z

43

Development of a dry low-NOx gas turbine combustor for a natural-gas fueled 2MW co-generation system  

SciTech Connect (OSTI)

A dry low-NOx gas turbine combustor has been developed for natural-gas fueled co-generation systems in the power range of 1--4MW. The combustor. called the Double Swirler Combustor, uses the lean premixed combustion to reduce NOx emission. The combustor is characterized by two staged lean premixed combustion with two coaxial annular burners and a simple fuel control system without the complex variable geometry. Substantially low NOx level has been achieved to meet the strict NOx regulation to co-generation systems in Japan. High combustion efficiency has been obtained for a wide operating range. In 1994, Tokyo Gas and Ishikawajima-Harima Heavy Industries initiated a collaborative program to develop a natural-gas fueled low NOx gas turbine engine for new 2MW class co-generation system, named IM270. The Double Swirler Combustor, originally developed by Tokyo Gas, was introduced into the natural gas fueled version of the IM270. Engine test of the first production unit was successfully conducted to confirm substantially low NOx level of less than 15 ppm (O{sub 2} = 16%) with the output power of more than 2MW. Test for the durability and the reliability of the system is being conducted at Tokyo Gas Negishi LNG Terminal in Kanagawa, Japan and successful results have been so far obtained.

Mori, Masaaki; Sato, Hiroshi

1998-07-01T23:59:59.000Z

44

Integrating district cooling with cogeneration  

SciTech Connect (OSTI)

Chillers can be driven with cogenerated thermal energy, thereby offering the potential to increase utilization of cogeneration throughout the year. However, cogeneration decreases electric output compared to condensing power generation in power plants using a steam cycle (steam turbine or gas turbine combined cycle plants). The foregone electric production increases with increasing temperature of heat recovery. Given a range of conditions for key variables (such as cogeneration utilization, chiller utilization, cost of fuel, value of electricity, value of heat and temperature of heat recovered), how do technology alternatives for combining district cooling with cogeneration compare? This paper summarizes key findings from a report recently published by the International Energy Agency which examines the energy efficiency and economics of alternatives for combining cogeneration technology options (gas turbine simple cycle, diesel engine, steam turbine, gas turbine combined cycle) with chiller options (electric centrifugal, steam turbine centrifugal one-stage steam absorption, two-stage steam absorption, hot water absorption).

Spurr, M.

1996-11-01T23:59:59.000Z

45

Industrial Cogeneration Application  

E-Print Network [OSTI]

the Public Service Commission that the correct cost of service study methodology was a marginal cost study based on a gas turbine. The effects of using the marginal cost study versus the utility's proposed study would have resulted in a 25%i ncrease... with conern for future reserve margins, had led us to develop our cogeneration strategy. Specifically, this strategy is to identify key facilities, evaluate the feasibility of cogenera ion, and construct and operate cogeneration systems when the economics...

Mozzo, M. A.

46

Mini cogeneration stations: Foreign experience  

Science Journals Connector (OSTI)

The prospects of using autonomous power and heat supply systems are analyzed. The economic advantages of mini cogeneration power stations equipped with gas piston, diesel, or gas turbine units are shown. Examples...

V. R. Kotler

2006-08-01T23:59:59.000Z

47

Demonstration of an on-site PAFC cogeneration system with waste heat utilization by a new gas absorption chiller  

SciTech Connect (OSTI)

Analysis and cost reduction of fuel cells is being promoted to achieve commercial on-site phosphoric acid fuel cells (on-site FC). However, for such cells to be effectively utilized, a cogeneration system designed to use the heat generated must be developed at low cost. Room heating and hot-water supply are the most simple and efficient uses of the waste heat of fuel cells. However, due to the short room-heating period of about 4 months in most areas in Japan, the sites having demand for waste heat of fuel cells throughout the year will be limited to hotels and hospitals Tokyo Gas has therefore been developing an on-site FC and the technology to utilize tile waste heat of fuel cells for room cooling by means of an absorption refrigerator. The paper describes the results of fuel cell cogeneration tests conducted on a double effect gas absorption chiller heater with auxiliary waste heat recovery (WGAR) that Tokyo Gas developed in its Energy Technology Research Laboratory.

Urata, Tatsuo [Tokyo Gas Company, LTD, Tokyo (Japan)

1996-12-31T23:59:59.000Z

48

Cogeneration Leads to Major Aquaculture and Greenhouse Development in Canada  

E-Print Network [OSTI]

research and devefopment project which will see the supplemental heat re qui red by t he surface heat ed greenhouse cohvert ed from propane gas to cogeneraled ste m. Based on the pricing model outlined in Section 4.1, the cost of heating the greenhouse... with cogen erated steam from the nearby coal fired power sta tion is $1.62/MBTU. (Coa! @ $Z.18/MBTU.) This compares to $15.57 for self generated propane heat, or a difference of $13.95/MBTU. By splitting this difference, the s Ie price of cogenerated...

Mercer, J.

1984-01-01T23:59:59.000Z

49

Coalbed Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Environmental Science Division Argonne National Laboratory Observations on a Montana Water Quality Proposal argonne_comments.pdf 585 KB Comments from James A. Slutz Deputy Assistant Secretary Oil and Natural Gas To the Secretary, Board of Environmental Review Montana Department of Environmental Quality BER_Comments_letter.pdf 308 KB ALL Consulting Coalbed Methane Primer: New Source of Natural Gas–Environmental Implications Background and Development in the Rocky Mountain West CBMPrimerFinal.pdf 18,223 KB ALL Consulting Montana Board of Oil & Gas Conservation Handbook on Best Management Practices and Mitigation Strategies for Coal Bed Methane in the Montana Portion of the Powder River Basin April 2002 CBM.pdf 107,140 KB ALL Consulting Montana Board of Oil & Gas Conservation

50

Performance assessment of cogeneration plants  

Science Journals Connector (OSTI)

In this paper, performance assessment of various building cogeneration systems is conducted through energy and exergy efficiencies. The cogeneration plants considered include steam-turbine system, gas-turbine system, diesel-engine system, and geothermal system. Here, the cogeneration operation refers to the simultaneous generation of electrical power and heating for buildings (especially for space heating and hot water). Selected actual operating data are employed for analysis and performance assessment. The same amount of electrical and thermal product outputs is considered for all systems, except the diesel, to facilitate comparisons. Also, the effects of certain operating parameters (e.g., steam pressure, water temperature) on the energy and exergy efficiencies are investigated. The diesel-engine and geothermal systems appear to be thermodynamically more attractive, in that they have higher exergy efficiencies, than steam-turbine and gas-turbine systems. The results demonstrate that exergy analysis is a useful tool in performance assessments of cogeneration systems and permits meaningful comparisons of different cogeneration systems based on their merits. Such results can allow the efficiency of cogeneration systems to be increased, and the applications of cogeneration in larger energy systems to be configured more beneficially, leading to reductions in fuel use and environmental emissions.

Mehmet Kanoglu; Ibrahim Dincer

2009-01-01T23:59:59.000Z

51

Coyote Springs Cogeneration Project, Morrow County, Oregon: Draft Environmental Impact Statement.  

SciTech Connect (OSTI)

BPA is considering whether to transfer (wheel) electrical power from a proposed privately-owned, combustion-turbine electrical generation plant in Oregon. The plant would be fired by natural gas and would use combined-cycle technology to generate up to 440 average megawatts (aMW) of energy. The plant would be developed, owned, and operated by Portland General Electric Company (PGE). The project would be built in eastern Oregon, just east of the City of Boardman in Morrow County. The proposed plant would be built on a site within the Port of Morrow Industrial Park. The proposed use for the site is consistent with the County land use plan. Building the transmission line needed to interconnect the power plant to BPA`s transmission system would require a variance from Morrow County. BPA would transfer power from the plant to its McNary-Slatt 500-kV transmission line. PGE would pay BPA for wheeling services. Key environmental concerns identified in the scoping process and evaluated in the draft Environmental Impact Statement (DEIS) include these potential impacts: (1) air quality impacts, such as emissions and their contributions to the {open_quotes}greenhouse{close_quotes} effect; (2) health and safety impacts, such as effects of electric and magnetic fields, (3) noise impacts, (4) farmland impacts, (5) water vapor impacts to transportation, (6) economic development and employment impacts, (7) visual impacts, (8) consistency with local comprehensive plans, and (9) water quality and supply impacts, such as the amount of wastewater discharged, and the source and amount of water required to operate the plant. These and other issues are discussed in the DEIS. The proposed project includes features designed to reduce environmental impacts. Based on studies completed for the DEIS, adverse environmental impacts associated with the proposed project were identified, and no evidence emerged to suggest that the proposed action is controversial.

United States. Bonneville Power Administration.

1994-01-01T23:59:59.000Z

52

Promotion of Biomass Cogeneration With Power Export in the Indian Sugar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Promotion of Biomass Cogeneration With Power Export in the Indian Sugar Industry Promotion of Biomass Cogeneration With Power Export in the Indian Sugar Industry India Helping Reduce the Risk of Global Warming Greenhouse Gas Pollution Prevention (GEP) Project in India India is the worldÂ’s fifth largest, and second fastest growing, source of greenhouse gas emissions. The GEP Project, conducted under an agreement with USAID-India and NETL, has helped to reduce greenhouse gas emissions from coal- and biomass-fired power plants. The Project has directly contributed to reducing emissions of CO2 by 6 to 10 million tons per year. India is the largest producer of sugar and also contains vast reserves of coal. Under the ProjectÂ’s Advanced Bagasse Cogeneration Component, cogeneration (production of electricity and steam) using biomass fuels year-round in high efficiency boilers in sugar mills is promoted. Experts feel that, using the concept of sugar mill cogeneration, that as much as 5,000 megawatts of electricity can be generated through efficient combustion of bagasse in Indian sugar mills.

53

Cogeneration Can Add To Your Profits  

E-Print Network [OSTI]

The predicted rapid escalation of gas and electric costs, particularly in those utility systems predominantly fired by gas, make it important for both industry and utilities to evaluate the role of cogeneration in their future plans. Industries...

Gerlaugh, H. E.

1983-01-01T23:59:59.000Z

54

Sensitivity Analysis of Factors Effecting the Financial Viability of Cogeneration Projects  

E-Print Network [OSTI]

demand and an energy charge? Is the price based on PURPA? What is the projected rate of increase in the price of electricity? Does the term of the electric contract extend throughout the period of repayment of the financing? o Projected operating... costs reasonable? Is there a fixed price contract for the construction of the project? What party is responsible for paying construction over-runs? o Permits Have all required permits and licenses necessary to construct and operate the Project...

Clunie, J. F.

1984-01-01T23:59:59.000Z

55

The Utilities' Role in Conservation and Cogeneration  

E-Print Network [OSTI]

organization for the development of a cogeneration project. This is especially true if the company is considering a solid fuel such as coal, or a synthetic fuel. And, it is also a particularly important tactor for medium and smaller size firms. A third... of the environmental control requirements would be handled at the gasifier by removing practical y all sulfur and ash from the fuel. Combustion of the medium BTU gas at the dispersed cogenerat'on plants would then have minimal environmental impact. In fact...

Mitchell, R. C., III

1982-01-01T23:59:59.000Z

56

Development of a micro-cogeneration laboratory and testing of a natural gas CHP unit based on PEM fuel cells  

Science Journals Connector (OSTI)

Abstract This work discusses the design and the development of a Laboratory of Micro-Cogeneration (LMC) at Politecnico di Milano. The LMC laboratory is a unique structure devoted to small-scale power generation, with the main goals of testing and improving the performance of systems that produce or utilize electric and thermal (hot and/or cold) power in a very general sense, spanning from combined heat and power (CHP) units to heaters, from absorption chillers to heat pumps, but also able to perform tests on fuel processors and electrolyzers. The laboratory features a supply of natural gas as well as H2 and O2 from a high pressure electrolyzer and of CO, CO2 and N2 from bottles, permitting to carry out experiments with simulated synthesis fuels. The maximum allowable electrical power produced, exported to the grid or to an electronic loadbank, or consumed by the system under test is 100 kW; maximum allowable thermal power is roughly 200 kW with variable temperature water circuits (from chilled water up to a 150 °C at 8 bar superheated water loop). This work outlines also the instruments used for on-line recording of thermodynamic properties, emissions and power, aiming at monitoring and reconstructing mass and energy balances. One of the first experimental campaign has been carried out on a CHP system based on polymer electrolyte membrane fuel cells (PEM), a promising candidate for distributed CHP thanks to low pollutant emissions and good efficiency, rapid startup and flexibility, although affected by a rather complex fuel processing section to provide the appropriate fuel to the PEM. This work presents the experimental analysis of a 20 kW prototype PEM CHP system complete of natural gas processor. The prototype is operated at LMC to characterize the processing section and the thermodynamic performances of the overall system. Despite its non-optimized layout, the unit has shown encouraging total efficiency (76%) and primary energy saving index (6%).

S. Campanari; G. Valenti; E. Macchi; G. Lozza; N. Ravidŕ

2014-01-01T23:59:59.000Z

57

Development of efficiency-enhanced cogeneration system utilizing high-temperature exhaust-gas from a regenerative thermal oxidizer for waste volatile-organic-compound gases  

Science Journals Connector (OSTI)

We have developed a gas-turbine cogeneration system that makes effective use of the calorific value of the volatile organic compound (VOC) gases exhausted during production processes at a manufacturing plant. The system utilizes the high-temperature exhaust-gas from the regenerative thermal oxidizer (RTO) which is used for incinerating VOC gases. The high-temperature exhaust gas is employed to resuperheat the steam injected into the gasturbine. The steam-injection temperature raised in this way increases the heat input, resulting in the improved efficiency of the gas-turbine. Based on the actual operation of the system, we obtained the following results: • Operation with the steam-injection temperature at 300 °C (45 °C resuperheated from 255 °C) increased the efficiency of the gasturbine by 0.7%. • The system can enhance the efficiency by 1.3% when the steam-injection temperature is elevated to 340 °C (85 °C resuperheated). In this case, up to 6.6 million yen of the total energy cost and 400 tons of carbon dioxide (CO2) emissions can be reduced annually. • A gas-turbine cogeneration and RTO system can reduce energy consumption by 23% and CO2 emission by 30.1% at the plant.

Masaaki Bannai; Akira Houkabe; Masahiko Furukawa; Takao Kashiwagi; Atsushi Akisawa; Takuya Yoshida; Hiroyuki Yamada

2006-01-01T23:59:59.000Z

58

NETL: Shale Gas and Other Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Resources Natural Gas Resources Natural Gas Resources Shale Gas | Environmental | Other Natural Gas Related Resources | Completed NG Projects Project Number Project Name Primary Performer 10122-47 Predicting higher-than-average permeability zones in tight-gas sands, Piceance basin: An integrated structural and stratigraphic analysis Colorado School of Mines 10122-43 Diagnosis of Multi-Stage Fracturing in Horizontal Well by Downhole Temperature Measurement for Unconventional Oil and Gas Wells Texas A&M University 10122-42 A Geomechanical Analysis of Gas Shale Fracturing and Its Containment Texas A&M University 09122-02 Characterizing Stimulation Domains, for Improved Well Completions in Gas Shales Higgs-Palmer Technologies 09122-04 Marcellus Gas Shale Project Gas Technology Institute (GTI)

59

Thailand gas project now operational  

SciTech Connect (OSTI)

Now operational, Phase 1 of Thailand's first major natural gas system comprises one of the world's longest (264 miles) offshore gas lines. Built for the Petroleum Authority of Thailand (PTT), this system delivers gas from the Erawan field in the Gulf of Thailand to two electrical power plants near Bangkok, operated by the Electricity Generating Authority of Thailand (EGAT). The project required laying about 360 miles of pipeline, 34-in., 0.625 in.-thick API-5LX-60 pipe offshore and 28-in., 0.406 in.-thick API-5LX-60 onshore. The offshore pipe received a coal-tar coating, a 3.5-5.0 in. concrete coating, and zinc sacrificial-anode bracelets. The onshore line was coated with the same coal-tar enamel and, where necessary, with concrete up to 4.5 in. thick. Because EGAT's two power plants are the system's only customers, no more pipeline will be constructed until deliveries, currently averaging about 100 million CF/day, reach the 250 million CF/day level. The project's second phase will include additional pipelines as well as an onshore distribution network to industrial customers.

Horner, C.

1982-08-01T23:59:59.000Z

60

Cogeneration Economics for Process Plants  

E-Print Network [OSTI]

This paper presents the incentives for cogeneration, describing pertinent legislation and qualification requirements for cogeneration benefits, and indicates the performance and economic characteristics of combined cycle cogeneration applications...

Ahner, D. J.

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Cogeneration: A key technology for energy saving  

Science Journals Connector (OSTI)

As dispersed and small-scale energy supply system, cogeneration technologies are receiving much attention world-wide. Two optimal planning problems are discussed for the fundamental design of cogeneration systems; i.e. gas turbine and fuel cell systems. The capacities of gas turbine or fuel cell cogeneration units and other auxiliary machinery are determined together with maximum demands so as to minimize the annual total cost in consideration of each system's annual operational strategy. These optimization problems are solved efficiently by considering the hierarchical relationship between the sizing and the operational planning problems. The system's capacity design, economics, and energy savings are investigated in detail through numerical studies on these systems.

Koichi Ito

1993-01-01T23:59:59.000Z

62

Micro gas turbine cogeneration system with latent heat storage at the University: Part III: Temperature control schedule  

Science Journals Connector (OSTI)

Abstract The latent heat storage system is a novel heat storage system. At the University under service conditions, it was demonstrated with a micro gas turbine (MGT) cogeneration system (CGS). Expanding the latent heat storage system into new applications is expected to save energy economically with high density energy storage and reduce exhaust emissions and reduce operational costs. This is the first demonstration of using a latent heat storage system with CGS under service condition and its characteristics are very important. In Part I, a fixed operating schedule of the system was planned and demonstrated at the University. The charge/discharge cycles of the latent heat storage system were repeated for 407 times. The energy flow test of the system shows the importance of the heat release source and total system design. In Part II, an irregular charge case of the latent heat storage system was discussed when the prime mover of the system was operated at a part load and thermal priority mode. A highly sophisticated system design that solves these problems was necessary for extending the applications of the latent heat storage system. In Part III, a temperature control schedule of the system was demonstrated during winter mornings using a new programmable logic controller (PLC). Using a fixed schedule, the MGT-CGS with latent heat storage reduced the CO2 emission when the energy utilization factor was above 50%. The temperature control schedule was considered to be better than the fixed schedule, both in terms of the operational efficiency of the overall system and CO2 reduction. The temperature control schedule was executed using an empirical formula for the temperature rise in a classroom. The restriction on the operation time by the contract with the gas supplier and the low heating capacity of the CGS affected the heating time and temperature rise. The temperature rise in the classroom was almost proportional to the integrated temperature difference across the hot water header of the heating system. On cold days, the rate of temperature rise produced by the CGS was very slow, therefore, additional heat supplied by the original boiler was used to increase the temperature rise. If larger latent heat storage systems will be developed in future, it will be expected that the temperature of the classrooms are kept more comfortable with less energy consumptions and lower CO2 emission.

Osamu Kurata; Norihiko Iki; Takayuki Matsunuma; Tetsuhiko Maeda; Satoshi Hirano; Katsuhiko Kadoguchi; Hiromi Takeuchi; Hiro Yoshida

2014-01-01T23:59:59.000Z

63

List of CHP/Cogeneration Incentives | Open Energy Information  

Open Energy Info (EERE)

CHP/Cogeneration Incentives CHP/Cogeneration Incentives Jump to: navigation, search The following contains the list of 279 CHP/Cogeneration Incentives. CSV (rows 1 - 279) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes Advanced Energy Gross Receipts Tax Deduction (New Mexico) Sales Tax Incentive New Mexico Commercial Construction Installer/Contractor Retail Supplier CHP/Cogeneration Geothermal Electric Photovoltaics

64

The Design and Development of An Externally Fired Steam Injected Gas Turbine for Cogeneration  

E-Print Network [OSTI]

-04-86 Proceedings from the Third Industrial Energy Technology Conference Houston, TX, April 26-29, 1981 CONCEPT FEASIBILITY AND PROBLEM AREAS Based on the test runs, it is felt that the concept is technica11 y feasible. The turbine was made to self sustain though.... These calculations show the speed required for self sustaining conditions to be ob This paper is based on a research project cu tained. These calcu lations resul ted in the curves rently being conducted by Boyce Engineering Inte presented in Figure 18...

Boyce, M. P.; Meher-Homji, C.; Ford, D.

1981-01-01T23:59:59.000Z

65

Evaluating Sites for Industrial Cogeneration in Chicago  

E-Print Network [OSTI]

and hospital complexes; and new, densely populated residential developments that have large thermal and electric demands. Potential sites have been evaluated as part of a project to encourage industrial cogeneration applications in Chicago. Energy...

Fowler, G. L.; Baugher, A. H.

1982-01-01T23:59:59.000Z

66

NETL: Natural Gas and Petroleum Storage Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Storage Strategic Petroleum Reserve Click on project number for a more detailed description of the project Project Number Project Name Primary Performer DE-FE0014830 Strategic Petroleum Reserve Core Laboratories Natural Gas Storage There are currently no active storage projects Storage - Completed Projects Click on project number for a more detailed description of the project Project Number Project Name Primary Performer DE-DT0000358 Strategic Petroleum Reserve Northrop Grumman Missions System DE-FC26-03NT41813 Geomechanical Analysis and Design Criteria Terralog Technologies DE-FC26-03NT41779 Natural Gas Storage Technology Consortium Pennsylvania State University (PSU) DE-FC26-03NT41743 Improved Deliverability in Gas Storage Fields by Identifying the Timing and Sources of Damage Using Smart Storage Technology Schlumberger Technology Corporation

67

RCWMD Badlands Landfill Gas Project Biomass Facility | Open Energy...  

Open Energy Info (EERE)

RCWMD Badlands Landfill Gas Project Biomass Facility Jump to: navigation, search Name RCWMD Badlands Landfill Gas Project Biomass Facility Facility RCWMD Badlands Landfill Gas...

68

Heilongjiang Jiansanjiang Nongkensanjiang Cogeneration Co Ltd | Open Energy  

Open Energy Info (EERE)

Jiansanjiang Nongkensanjiang Cogeneration Co Ltd Jiansanjiang Nongkensanjiang Cogeneration Co Ltd Jump to: navigation, search Name Heilongjiang Jiansanjiang Nongkensanjiang Cogeneration Co Ltd. Place Heilongjiang Province, China Zip 156300 Sector Biomass Product China-based biomass project developer. References Heilongjiang Jiansanjiang Nongkensanjiang Cogeneration Co Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Heilongjiang Jiansanjiang Nongkensanjiang Cogeneration Co Ltd. is a company located in Heilongjiang Province, China . References ↑ "[ Heilongjiang Jiansanjiang Nongkensanjiang Cogeneration Co Ltd.]" Retrieved from "http://en.openei.org/w/index.php?title=Heilongjiang_Jiansanjiang_Nongkensanjiang_Cogeneration_Co_Ltd&oldid=346437"

69

Lianyungang Baoxin Biomass Cogeneration Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Lianyungang Baoxin Biomass Cogeneration Co Ltd Lianyungang Baoxin Biomass Cogeneration Co Ltd Jump to: navigation, search Name Lianyungang Baoxin Biomass Cogeneration Co Ltd Place Jiangsu Province, China Sector Biomass Product A biomass project developer in China. References Lianyungang Baoxin Biomass Cogeneration Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Lianyungang Baoxin Biomass Cogeneration Co Ltd is a company located in Jiangsu Province, China . References ↑ "[ Lianyungang Baoxin Biomass Cogeneration Co Ltd]" Retrieved from "http://en.openei.org/w/index.php?title=Lianyungang_Baoxin_Biomass_Cogeneration_Co_Ltd&oldid=348336" Categories: Clean Energy Organizations Companies

70

Cogeneration Operational Issues  

E-Print Network [OSTI]

important, however, are the operational Issues which impact the utility and the cogenerator. This paper addresses the utility perspective in regard to possible impact of cogeneration systems on utility service to other customer, safety and substation...

Williams, M.

71

Baytown Cogeneration Project  

E-Print Network [OSTI]

Complex. Small sales of electricity are possible in winter months. The new Cogen Unit allowed the complex to shutdown three inefficient, 1960’s vintage, steam and electricity generators to improve steam and power generation efficiency and to reduce...

Lorenz, M. G.

2007-01-01T23:59:59.000Z

72

Mt Poso Cogeneration | Open Energy Information  

Open Energy Info (EERE)

Poso Cogeneration Poso Cogeneration Jump to: navigation, search Name Mt Poso Cogeneration Place Bakersfield, California Zip 93308 Product California-based project developer for the Mt Poso Cogeneration project near Bakersfield, California. Coordinates 44.78267°, -72.801369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.78267,"lon":-72.801369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

73

Electrical Cost Reduction Via Steam Turbine Cogeneration  

E-Print Network [OSTI]

ELECTRICAL COST REDUCTION VIA STEAM TURBINE COGENERATION LYNN B. DI TULLIO, P.E. Project Engineer Ewing Power Systems, Inc. South Deerfield, Mass. ABSTRACT Steam turbine cogeneration is a well established technology which is widely used... mature technology. Steam turbines and engines have been used by industry to cogen erate power since before there were electric utilities. While the technology for turbines, generators and controls has continued to develop there is very little about...

Ewing, T. S.; Di Tullio, L. B.

74

An Assessment of Economic Analysis Methods for Cogeneration Systems  

E-Print Network [OSTI]

gas in this study) costs before and after cogeneration 3. Power plant operating and maintenance (O&M) cost before and after cogeneration 4. Initial investment 5. Discount rate 6. Differential escalation rates for the cost of electricity and fuel... electricity cost after cogener- ation ($) h = Differential escalation rate for the cost of electricity (escalation rate above inflation rate) (decimal) i = Discount rate (decimal) GB = Annual fuel cost before cogeneration ($1 GA = Annual fuel cost after...

Bolander, J. N.; Murphy, W. E.; Turner, W. D.

1985-01-01T23:59:59.000Z

75

Techno-economic performance and cost reduction potential for the substitute/synthetic natural gas and power cogeneration plant with CO2 capture  

Science Journals Connector (OSTI)

Abstract The cogeneration of substitute/synthetic natural gas (SNG) and power from coal based plants with CO2 capture is an effective way to improve energy efficiency and to reduce CO2 emissions. In this paper, we evaluate the techno-economic performance of a SNG and power cogeneration technology with CO2 capture. Current localization level (the cost difference of a technology in different nations and districts) of each subunit of this technology is analyzed. The cost reduction potential of this technology is also predicted, and the role of technology localization and efficiency upgrade in cost reduction is investigated based on a range of learning rates and different coal prices from 90$/t to 150$/t. Results show that the unit investment of this cogeneration technology presented in our previous paper is around 1700$/kW currently and the investment of SNG synthesis, coal gasification and combined cycle unit comprises over 60% of the total investment. The equivalent SNG production cost is quite sensitive to coal prices and ranges from 0.15 to 0.50$/Nm3. Through localization, the unit investment of this technology can be decreased by 30% currently. The key technologies including coal gasification, SNG synthesis and high performance gas turbine need further localization because of their relatively low current localization levels and big localization potential. Through cost learning, the future investment of the technology can be decreased to 700–1100$/kW, which may be competitive with the unit investment of IGCC technology with CO2 capture and even may be lower than that of the pulverized coal power plant with CO2 capture. Technology localization and efficiency upgrade will play important roles in cost reduction, which can contribute 300–500$/kW and 125–225$/kW to cost reduction, respectively. The results presented in this paper indicate that the coal to SNG and power technology with CO2 capture is a promising and competitive option for energy saving and CO2 abatement, and can be a support for policy making, technology options etc.

Sheng Li; Hongguang Jin; Lin Gao; Xiaosong Zhang; Xiaozhou Ji

2014-01-01T23:59:59.000Z

76

Flammable gas project topical report  

SciTech Connect (OSTI)

The flammable gas safety issue was recognized in 1990 with the declaration of an unreviewed safety question (USQ) by the U. S. Department of Energy as a result of the behavior of the Hanford Site high-level waste tank 241-SY-101. This tank exhibited episodic releases of flammable gas that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years there has been a considerable amount of knowledge gained about the chemical and physical processes that govern the behavior of tank 241-SY-1 01 and other tanks associated with the flammable gas safety issue. This report was prepared to provide an overview of that knowledge and to provide a description of the key information still needed to resolve the issue. Items covered by this report include summaries of the understanding of gas generation, retention and release mechanisms, the composition and flammability behavior of the gas mixture, the amounts of stored gas, and estimated gas release fractions for spontaneous releases. `Me report also discusses methods being developed for evaluating the 177 tanks at the Hanford Site and the problems associated with these methods. Means for measuring the gases emitted from the waste are described along with laboratory experiments designed to gain more information regarding rates of generation, species of gases emitted and modes of gas storage and release. Finally, the process for closing the USQ is outlined as are the information requirements to understand and resolve the flammable gas issue.

Johnson, G.D.

1997-01-29T23:59:59.000Z

77

Michigan utilities begin implementation of cogeneration programs  

SciTech Connect (OSTI)

Michigan's two major utilities, Consumers Power Corporation and Detroit Edison, are beginning to implement cogeneration and small power programs, although their approaches differ. Consumers Power is entering agreements to purchase cogenerated power at reasonable buyback rates to meet near-future capacity needs, while Detroit Edison is offering rate breaks to keep customers on the grid with an on-site cogeneration alternative rider because of excess capacity. Once its excess capacity is absorbed, Detroit Edison will encourage pursue the approach of Consumers Power. The latter recently filed to convert a Midland cancelled nuclear plant into a gas-fired cogeneration facility. The author reviews complications in this and other contracts and utility commission decisions. 2 tables.

Not Available

1987-02-01T23:59:59.000Z

78

Project to evaluate natural gas hydrates  

Science Journals Connector (OSTI)

More than 170 scf of natural gas, mostly methane, may be contained in 1 cu ft of hydrate, according to Malcolm A. Goodman, president of Enertech & Research Co., Houston, which is involved in the new hydrate project. ...

1980-07-28T23:59:59.000Z

79

EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida...  

Energy Savers [EERE]

1976: Emera CNG, LLC Compressed Natural Gas Project, Florida EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida SUMMARY This EA will evaluate the potential...

80

SANBAG Natural Gas Truck Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SANBAG Natural Gas Truck Project SANBAG Natural Gas Truck Project 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11,...

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EIS-0498: Magnolia Liquefied Natural Gas Project, Calcasieu Parish...  

Energy Savers [EERE]

Magnolia Liquefied Natural Gas Project, Calcasieu Parish, Louisiana EIS-0498: Magnolia Liquefied Natural Gas Project, Calcasieu Parish, Louisiana Summary The Federal Energy...

82

SANBAG - Ryder Natural Gas Vehicle Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SANBAG - Ryder Natural Gas Vehicle Project SANBAG - Ryder Natural Gas Vehicle Project 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review...

83

SANBAG - Ryder Natural Gas Vehicle Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SANBAG - Ryder Natural Gas Vehicle Project SANBAG - Ryder Natural Gas Vehicle Project 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review...

84

Unconventional Oil and Gas Projects Help Reduce Environmental...  

Office of Environmental Management (EM)

Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development April 17,...

85

GAS INJECTION/WELL STIMULATION PROJECT  

SciTech Connect (OSTI)

Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

John K. Godwin

2005-12-01T23:59:59.000Z

86

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Permeability Gas Low Permeability Gas Design and Implementation of Energized Fracture Treatment in Tight Gas Sands DE-FC26-06NT42955 Goal The goal of this project is to develop methods and tools that can enable operators to design, optimize, and implement energized fracture treatments in a systematic way. The simulator that will result from this work would significantly expand the use and cost-effectiveness of energized fracs and improve their design and implementation in tight gas sands. Performer University of Texas-Austin, Austin, TX Background A significant portion of U.S. natural gas production comes from unconventional gas resources such as tight gas sands. Tight gas sands account for 58 percent of the total proved natural gas reserves in the United States. As many of these tight gas sand basins mature, an increasing number of wells are being drilled or completed into nearly depleted reservoirs. This includes infill wells, recompletions, and field-extension wells. When these activities are carried out, the reservoir pressures encountered are not as high as the initial reservoir pressures. In these situations, where pressure drawdowns can be less than 2,000 psi, significant reductions in well productivity are observed, often due to water blocking and insufficient clean-up of fracture-fluid residues. In addition, many tight gas sand reservoirs display water sensitivity—owing to high clay content—and readily imbibe water due both to very high capillary pressures and low initial water saturations.

87

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Natural Gas Projects & Natural Gas Projects Exploration and Production Technologies Risk Based Data Management System (RBDMS) and Cost Effective Regulatory Approaches (CERA) Related to Hydraulic Fracturing and Geologic Sequestration of CO2 Last Reviewed 12/24/2013 DE-FE0000880 Goal The goal of this project is to enhance the Risk Based Data Management System (RBDMS) by adding new components relevant to environmental topics associated with hydraulic fracturing (HF), and by management of myriad data regarding oil and natural gas well histories, brine disposal, production, enhanced recovery, reporting, stripper wells, and other operations to enhance the protection of ground water resources. The FracFocus website will be maintained to ensure transparent reporting of HF additives. A

88

High Temperature Gas-Cooled Reactor Projected Markets and Preliminary Economics  

SciTech Connect (OSTI)

This paper summarizes the potential market for process heat produced by a high temperature gas-cooled reactor (HTGR), the environmental benefits reduced CO2 emissions will have on these markets, and the typical economics of projects using these applications. It gives examples of HTGR technological applications to industrial processes in the typical co-generation supply of process heat and electricity, the conversion of coal to transportation fuels and chemical process feedstock, and the production of ammonia as a feedstock for the production of ammonia derivatives, including fertilizer. It also demonstrates how uncertainties in capital costs and financial factors affect the economics of HTGR technology by analyzing the use of HTGR technology in the application of HTGR and high temperature steam electrolysis processes to produce hydrogen.

Larry Demick

2011-08-01T23:59:59.000Z

89

The efficiency of technical retrofitting of cogeneration stations using combined-cycle plants  

Science Journals Connector (OSTI)

We consider the problem of technical retrofitting of gas-and-oil fired steam-turbine cogeneration stations by converting them into combined-cycle plants...

L. S. Popyrin; M. D. Dil’man; G. M. Belyaeva

2006-02-01T23:59:59.000Z

90

Oilfield Flare Gas Electricity Systems (OFFGASES Project)  

SciTech Connect (OSTI)

The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

Rachel Henderson; Robert Fickes

2007-12-31T23:59:59.000Z

91

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Probabilistic, Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems Probabilistic, Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems DE-FC26-06NT42930 Goal The project goal is the development of modules for a web-based decision support tool that will be used by mid- and small-sized oil and gas exploration and production companies as well as environmental regulators and other stakeholders to proactively minimize adverse ecosystem impacts associated with the recovery of oil and gas reserves in sensitive areas in the Fayetteville Shale Play in central Arkansas. This decision support tool will rely on creation of a database of existing exploration and production (E&P) technologies that are known to have low ecosystem impact. Performers University of Arkansas, Fayetteville, Arkansas

92

Exergy analysis and the energy saving mechanism for coal to synthetic/substitute natural gas and power cogeneration system without and with CO2 capture  

Science Journals Connector (OSTI)

Abstract The energy saving mechanism and the potential of efficiency improvement for coal to synthetic/substitute natural gas and power plant with different schemes and CO2 capture is disclosed through exergy analysis, and the effects of key parameters on exergy losses and system performance are investigated. Scheme A represents the system without CO2 capture but with a full syngas component adjustment and partial recycle of the chemical unconverted gas, Scheme B represents the system without CO2 capture and syngas component adjustment but with partial recycle of the chemical unconverted gas, and Scheme C represents the SNG and power cogeneration with CO2 capture and partial recycle of the chemical unconverted gas but without syngas component adjustment. Results show that the exergy efficiencies of Scheme A, B and C range from 56% to 62%, 57% to 67%, 52% to 62%, respectively. Coal gasification, water–gas-shift process, SNG methanation, and fuel combustion in combined cycle are identified as the main sources of exergy losses. Compared with Scheme A, the exergy efficiency of Scheme B is higher due to the avoidance of exergy losses from syngas adjustment. Scheme C is less energy efficient than Scheme B because of the CO2 capture. Compared with single product systems, the total exergy input of Scheme A, B and C can be reduced by 7.0–11.0%, 14.0–19.0%, 15.0–21.0%, respectively assuming the same product output. The chemical to power output ratio (CPOR) will impact the exergy losses of the whole plant greatly. For all schemes, with the increasing CPOR, the exergy losses for chemical synthesis island will increase whereas the exergy losses for power island will decrease. Especially high CPOR will cause sharp exergy losses of chemical synthesis island. The coupling between exergy losses for chemical synthesis and power islands leads to an optimal CPOR making the total exergy losses of the plant minimal and the system efficiency maximized. The results presented in this paper can help to confirm the potential of system integration and can be a guide for system integration.

Sheng Li; Hongguang Jin; Lin Gao; Xiaosong Zhang

2014-01-01T23:59:59.000Z

93

Case Studies of Industrial Cogeneration in the U. S.  

E-Print Network [OSTI]

This paper describes the results of a survey and evaluation of plant-specific information on industrial cogeneration. The study was performed as part of a project sponsored by the Electric Power Research Institute to evaluate Dual Energy Use Systems...

Limaye, D. R.; Isser, S.; Hinkle, B.; Hough, T.

1980-01-01T23:59:59.000Z

94

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Compressed Natural Gas Compressed Natural Gas (CNG) Project Loans to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Project Loans

95

Steam Turbine Cogeneration  

E-Print Network [OSTI]

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

96

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma DE-FC26-00NT15125 Project Goal The Hunton formation in Oklahoma has some unique production characteristics, including large water production, initially decreasing gas-oil ratios, and excellent dynamic continuity—but poor geological continuity. The overall goal of the project is to understand the mechanism of gas and oil production from the Hunton Formation in Oklahoma so that similar reservoirs in other areas can be efficiently exploited. An additional goal is to develop methodologies to improve oil recovery using secondary recovery techniques. Performers University of Tulsa, Tulsa, OK Marjo Operating Company, Tulsa, OK University of Houston, Houston, TX Orca Exploration, Tulsa, OK

97

Natural Gas Wells Near Project Rulison  

Office of Legacy Management (LM)

for for Natural Gas Wells Near Project Rulison Second Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: April 3, 2013 Background: Project Rulison was the second underground nuclear test under the Plowshare Program to stimulate natural-gas recovery from deep, low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation, at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterward, the site was shut down and then remediated, and the emplacement well (R-E) and the reentry well (R-Ex) were plugged. Purpose: As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission

98

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Instrumented Pipeline Initiative The Instrumented Pipeline Initiative DE-NT-0004654 Goal The goal of the Instrumented Pipeline Initiative (IPI) is to address sensor system needs for low-cost monitoring and inspection as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap. This project intends to develop a new sensing and continuous monitoring system with alternative use as an inspection method. Performers Concurrent Technologies Corporation (CTC), Johnstown, PA 15213 Carnegie Melon University (CMU), Pittsburgh, PA 15904 Background Pie Chart showing Pipeline Installation Dates for U.S. Gas Transmission and Distribution Lines Figure 1. Pipeline Installation Dates for U.S. Gas Transmission and Distribution Lines

99

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Explorer II – Wireless Self-powered Visual and NDE Robotic Inspection System for Live Gas Pipelines Explorer II – Wireless Self-powered Visual and NDE Robotic Inspection System for Live Gas Pipelines DE-FC26-04NT42264 Goal The goal of this project is to enhance the reliability and integrity of the Nation’s natural gas infrastructure through the development, construction, integration and testing of a long-range non-destructive evaluation (NDE) inspection capability in a modular robotic locomotion platform (Explorer II). The Explorer II will have an integrated inspection sensor (developed under a separate project) to provide enhanced in-situ, live, and real-time assessments of the status of a gas pipeline infrastructure. The Explorer II system will be capable of operating in 6-inch- and 8-inch-diameter, high-pressure (piggable and non-piggable) distribution and transmission mains. The system will also be enhanced to form an “extended” platform with additional drive and battery modules allowing the system the potential to carry alternative sensors that are heavier or more drag intensive than the current technology.

100

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology’s Impact on Production: Developing Environmental Solutions at the State and National Level Technology’s Impact on Production: Developing Environmental Solutions at the State and National Level DE-FC26-06NT15567 Goal The goal of the project is to assist State governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil through specific project efforts to address current issues. The issues addressed are national in scope. However, significant regional differences among States make “one-size-fits-all” programs unacceptable. One of the strengths of IOGCC is its ability to address these national issues while maintaining more local flexibility. There are two basic thrusts of these efforts: 1) research and 2) transfer of findings to appropriate constituencies. IOGCC is carrying out three projects consistent with the overarching strategies:

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Cogeneration Opportunities in Texas State Agencies  

E-Print Network [OSTI]

million using escalation rates of 4% for electricity and 2% for gas. Since no one knows what prices will do, the no escalation case should be considered the more conservative figure. There are several arguments which could be made for cogeneration... to switch from steam turbines to electric motor drives. However with the stable and even decreasing gas prices of the past two years, combined with the steadily increasing electric rates, any further conversion may be delayed for some years...

Murphy, W. E.; Turner, W. D.; O'Neal, D. L.; Bolander, J. N.; Seshan, S.

102

Detailed Execution Planning for Large Oil and Gas Construction Projects  

E-Print Network [OSTI]

Detailed Execution Planning for Large Oil and Gas Construction Projects Presented by James Lozon, University of Calgary There is currently 55.8 billion dollars worth of large oil and gas construction projects scheduled or underway in the province of Alberta. Recently, large capital oil and gas projects

Calgary, University of

103

Co-generation at CERN Beneficial or not?  

E-Print Network [OSTI]

A co-generation plant for the combined production of electricity and heat has recently been installed on the CERN Meyrin site. This plant consists of: a gas turbine generator set (GT-set), a heat recovery boiler for the connection to the CERN primary heating network, as well as various components for the integration on site. A feasibility study was carried out and based on the argument that the combined use of natural gas -available anyhow for heating purposes- gives an attractively high total efficiency, which will, in a period of time, pay off the investment. This report will explain and update the calculation model, thereby confirming the benefits of the project. The results from the commissioning tests will be taken into account, as well as the benefits to be realized under the condition that the plant can operate undisturbed by technical setbacks which, incidentally, has not been entirely avoided during the first year of test-run and operation.

Wilhelmsson, M

1998-01-01T23:59:59.000Z

104

EIS-0164: Pacific Gas Transmission/Pacific Gas and Electric and Altamont Natural Gas Pipeline Project  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission (FERC) has prepared the PGT/PG&E and Altamont Natural Gas Pipeline Projects Environmental Impact Statement to satisfy the requirements of the National Environmental Policy Act. This project addresses the need to expand the capacity of the pipeline transmission system to better transfer Canadian natural gas to Southern California and the Pacific Northwest. The U.S. Department of Energy cooperated in the preparation of this statement because Section 19(c) of the Natural Gas Act applies to the Department’s action of authorizing import/export of natural gas, and adopted this statement by the spring of 1992. "

105

NETL: Oil & Natural Gas Projects - Environmental  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water-Related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil Shale Development in the Uinta Basin, Utah Last Reviewed 5/15/2012 Water-Related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil Shale Development in the Uinta Basin, Utah Last Reviewed 5/15/2012 DE-NT0005671 Goal The goal of this project is to overcome existing water-related environmental barriers to possible oil shale development in the Uinta Basin, Utah. Data collected from this study will help alleviate problems associated with disposal of produced saline water, which is a by-product of methods used to facilitate conventional hydrocarbon production. Performers Utah Geological Survey, Salt Lake City, Utah, 84114 Collaborators Uinta Basin Petroleum Companies: Questar, Anadarko, Newfield, Enduring Resources, Bill Barrett, Berry Petroleum, EOG Resources, FIML, Wind River Resources, Devon, Rosewood, Flying J, Gasco, Mustang Fuel,

106

Oil & Natural Gas Projects Exploration and Production Technologies | Open  

Open Energy Info (EERE)

Oil & Natural Gas Projects Exploration and Production Technologies Oil & Natural Gas Projects Exploration and Production Technologies Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oil & Natural Gas Projects Exploration and Production Technologies Author U.S. Department of Energy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Oil & Natural Gas Projects Exploration and Production Technologies Citation U.S. Department of Energy. Oil & Natural Gas Projects Exploration and Production Technologies [Internet]. [cited 2013/10/15]. Available from: http://www.netl.doe.gov/technologies/oil-gas/Petroleum/projects/EP/Explor_Tech/P225.htm Retrieved from "http://en.openei.org/w/index.php?title=Oil_%26_Natural_Gas_Projects_Exploration_and_Production_Technologies&oldid=688583

107

BNL Gas Storage Achievements, Research Capabilities, Interests, and Project Team  

E-Print Network [OSTI]

BNL Gas Storage Achievements, Research Capabilities, Interests, and Project Team Metal hydride gas storage Cryogenic gas storage Compressed gas storage Adsorbed gas storage #12;Selected BNL Research · Energy Science and Technology Department Six fully-instrumented hydride stations and complete processing

108

Small-Scale Industrial Cogeneration: Design Using Reciprocating Engines and Absorption Chillers  

E-Print Network [OSTI]

SMALL-SCALE INDUSTRIAL COGENERATION: DESIGN USING RECIPROCATING ENGINES AND ABSORPTION CHILLER Joseph R. Wagner Mechanical Technology Incorporated Latham, ABSTRACT This paper describes a packaged cogeneration system designed for light... industrial applications (i.e., situations where a user wants a maximum of 1 MW of cogenerated electricity). The design employs reci procating engines fueled with natural gas or liquid fuels. Waste heat from the engine exhaust and jacket water is used...

Wagner, J. R.

109

Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware) |  

Broader source: Energy.gov (indexed) [DOE]

Greenhouse Gas Reduction Projects Grant Program (Delaware) Greenhouse Gas Reduction Projects Grant Program (Delaware) Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware) < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info Funding Source Greenhouse Gas Reduction Projects Fund State Delaware Program Type Grant Program Provider Delaware Department of Natural Resources and Environmental Control The Delaware Greenhouse Gas Reduction Projects Grant Program is funded by the Greenhouse Gas Reduction Projects Fund, established by the Act to Amend Title 7 of the Delaware Code Relating to a Regional Greenhouse Gas

110

Project Information Form Project Title Potential to Build Current Natural Gas Infrastructure to Accommodate  

E-Print Network [OSTI]

Project Information Form Project Title Potential to Build Current Natural Gas Infrastructure Project Natural gas is often touted as a `bridge' to low carbon fuels in the heavy duty transportation sector, and the number of natural gas-fueled medium and heavy-duty fleets is growing rapidly. Research

California at Davis, University of

111

Blackburn Landfill Co-Generation Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Blackburn Landfill Co-Generation Biomass Facility Blackburn Landfill Co-Generation Biomass Facility Jump to: navigation, search Name Blackburn Landfill Co-Generation Biomass Facility Facility Blackburn Landfill Co-Generation Sector Biomass Facility Type Landfill Gas Location Catawba County, North Carolina Coordinates 35.6840748°, -81.2518833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6840748,"lon":-81.2518833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

Table 9. Natural Gas Production, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Production, Projected vs. Actual Natural Gas Production, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 17.71 17.68 17.84 18.12 18.25 18.43 18.58 18.93 19.28 19.51 19.80 19.92 20.13 20.18 20.38 20.35 20.16 20.19 AEO 1995 18.28 17.98 17.92 18.21 18.63 18.92 19.08 19.20 19.36 19.52 19.75 19.94 20.17 20.28 20.60 20.59 20.88 AEO 1996 18.90 19.15 19.52 19.59 19.59 19.65 19.73 19.97 20.36 20.82 21.25 21.37 21.68 22.11 22.47 22.83 23.36 AEO 1997 19.10 19.70 20.17 20.32 20.54 20.77 21.26 21.90 22.31 22.66 22.93 23.38 23.68 23.99 24.25 24.65 AEO 1998 18.85 19.06 20.35 20.27 20.60 20.94 21.44 21.81 22.25 22.65 23.18 23.75 24.23 24.70 24.97 AEO 1999 18.80 19.13 19.28 19.82 20.23 20.77 21.05 21.57 21.98 22.47 22.85 23.26 23.77 24.15

113

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

North Slope Decision Support for Water Resource Planning and Management Last Reviewed 6/26/2013 North Slope Decision Support for Water Resource Planning and Management Last Reviewed 6/26/2013 DE-NT0005683 Goal The goal of this project is to develop a general scientific, engineering, and technological support system for water resources planning and management related to oil and gas development on the North Slope of Alaska. Such a system will aid in developing solutions to economic, environmental, and cultural concerns. Performers University of Alaska Fairbanks Systems, Fairbanks, AK 99775-7880 Texas A&M University, College Station, TX 77843-3136 PBS&J, Inc., Marietta, GA 30067 Background AlaskaÂ’s North Slope hosts a phenomenal wealth of natural, cultural, and economic resources. It represents a complex system, not only in terms of its biophysical system and global importance, but also from the standpoint

114

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stripper Well Consortium Stripper Well Consortium DE-FC26-00NT41025 Goal: The goal is to enhance the ability of the domestic production industry to keep stripper wells producing at economic production rates in an environmentally safe manner, maximizing the recovery of domestic hydrocarbon resources. Objective: The objective is to develop and manage an industry-driven consortium that provides a cost-efficient vehicle for developing, transferring, and deploying new technologies into the private sector that focus on improving the production performance of domestic natural gas and oil stripper wells. Performer: The Pennsylvania State University (Energy Institute) - Project management Accomplishments: Established a consortium governing structure, constitution and bylaws, Established areas of research focus (reservoir remediation and characterization, well bore cleanup, and surface systems optimization) and rules for proposal submission and selection, and

115

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using Artificial Barriers to Augment Fresh Water Supplies in Shallow Arctic Lakes Last Reviewed 6/26/2013 Using Artificial Barriers to Augment Fresh Water Supplies in Shallow Arctic Lakes Last Reviewed 6/26/2013 DE-NT0005684 Goal The goal of this project is to implement a snow control practice to enhance snow drift formation as a local water source to recharge a depleted lake despite possible unfavorable climate and hydrology preconditions (i.e., surface storage deficit and/or low precipitation). Performer University of Alaska Fairbanks, Fairbanks, AK Background Snow is central to activities in polar latitudes of Alaska over a very significant part of each year. With the arrival of snow, modes of travel, working, and living are transformed. Oil and gas exploration operations restricted to winter months use ice roads and ice pads in arctic and subarctic regions. The general reasoning behind ice road construction is

116

BioGas Project Applications for Federal Agencies and Utilities  

Broader source: Energy.gov (indexed) [DOE]

Alternate Energy Systems, Inc. Alternate Energy Systems, Inc. Natural Gas / Air Blenders for BioGas Installations BioGas Project Applications for Federal Agencies and Utilities Federal Utility Partnership Working Group Meeting - October 20-21, 2010 Rapid City, SD 1 BioGas Project Applications for Federal Agencies and Utilities Wolfgang H. Driftmeier Alternate Energy Systems, Inc. 210 Prospect Park - Peachtree City, GA 30269 wdriftmeier@altenergy.com www.altenergy.com 770 - 487 - 8596 Alternate Energy Systems, Inc. Natural Gas / Air Blenders for BioGas Installations BioGas Project Applications for Federal Agencies and Utilities Federal Utility Partnership Working Group Meeting - October 20-21, 2010 Rapid City, SD 2 BioGas Project Applications for Federal Agencies and Utilities Objective

117

Cogeneration using a thermionic combustor  

SciTech Connect (OSTI)

Thermionic energy conversion is well adapted to cogeneration with high temperature processes which require direct heating. Such processes are found in the metals, glass and petroleum industries. A case study has been made for applying thermionic energy converters to a walking beam steel slab reheat furnace. The objective is to replace the present burners with thermionic combustors which provide electricity while supplying direct heat at the same temperature and heat release conditions as the original burners. The combustor utilizes a thermionic converter design which has demonstrated stable output for long periods using a natural gas burner. Combustion air is used to cool the collectors. A computer program was formulated to facilitate the analysis of the thermionic combustor. The design of the thermionic combustor is described. The performance of the thermionic modules is calculated based on varying furnace production rates.

Miskolczy, G.; Lieb, D.

1982-08-01T23:59:59.000Z

118

Energy Department Projects Focus on Sustainable Natural Gas Development |  

Broader source: Energy.gov (indexed) [DOE]

Projects Focus on Sustainable Natural Gas Projects Focus on Sustainable Natural Gas Development Energy Department Projects Focus on Sustainable Natural Gas Development January 10, 2013 - 1:00pm Addthis Today shale gas accounts for about 25 percent of our natural gas production. And experts believe this abundant supply will mean lower energy costs for millions of families; fewer greenhouse gas emissions; and more American jobs. | Photo courtesy of the EIA. Today shale gas accounts for about 25 percent of our natural gas production. And experts believe this abundant supply will mean lower energy costs for millions of families; fewer greenhouse gas emissions; and more American jobs. | Photo courtesy of the EIA. Gayland Barksdale Technical Writer, Office of Fossil Energy What is RPSEA? The Research Partnership to Secure Energy for America - or RPSEA -

119

Definition: Cogeneration | Open Energy Information  

Open Energy Info (EERE)

Cogeneration Cogeneration Jump to: navigation, search Dictionary.png Cogeneration The production of electric energy and another form of useful thermal energy through the sequential use of energy [as defined under the Public Utility Regulatory Policies Act (PURPA)].[1][2] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition Cogeneration power plants produce electricity but do not waste the heat this process creates. The heat is used for district heating or other purposes, and thus the overall efficiency is improved. For example could the efficiency to produce electricity be just 20%, and the overall efficiency after heat extraction could reach be 85% for a cogeneration plant. It has to be considered that there is not always use for heat., Bioenergy cogeneration describes all technologies where heat as well as

120

Development of a knowledge-based system for cogeneration plant design: Verification, validation and lessons learned  

Science Journals Connector (OSTI)

This paper presents the development of a knowledge-based system (KBS) prototype able to design natural gas cogeneration plants, demonstrating new features for this field. The design of such power plants represents a synthesis problem, subject to thermodynamic ... Keywords: Cogeneration, Design, Knowledge-based system, Validation, Verification

Jonny Carlos Da Silva, José Alexandre Matelli, Edson Bazzo

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Sauget Plant Flare Gas Reduction Project  

E-Print Network [OSTI]

Empirical analysis of stack gas heating value allowed the Afton Chemical Corporation Sauget Plant to reduce natural gas flow to its process flares by about 50% while maintaining the EPA-required minimum heating value of the gas streams....

Ratkowski, D. P.

2007-01-01T23:59:59.000Z

122

1986 Cogeneration Market Assessment  

E-Print Network [OSTI]

implementation path such as changing energy general direction. prices, tax laws, FERC decisions, avoided costs, permitting etc., the cogeneration industry is What's missing is usually the meaning of th still strong. market assessment to the end user... increases and paper production which is basically a solid fuel fired steam turbine market will increase, thus increasing the application of steam turbines. Lastly, in the refuse market probably the least effect of lower oil prices will occur. Energy...

Wallace, D. G.

123

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deep Trek Re-configurable Processor for Data Acquisition Deep Trek Re-configurable Processor for Data Acquisition DE-FC26-06NT42947 Goal The goal of this project is to develop and qualify a Re-configurable Processor for Data Acquisition (RPDA) by packaging previously developed components in an advanced high-temperature Multi-Chip Module (MCM), and by developing configuration software that may be embedded within the RPDA to link data-acquisition system Analog Front-Ends to digital system busses. Performer Honeywell International Inc., Plymouth, MN 55441 Background Electronic data acquisition systems are necessary to make deep oil and gas drilling and production cost effective, yet the basic electronic components from which such systems are built will not operate reliably at the high temperatures encountered in deep wells. As well depths increase beyond 15,000 feet, temperatures above 200°C are relatively common. In some cases the target reservoir temperature may be as high as 300°C.

124

DISTRIBUTED GENERATION AND COGENERATION POLICY  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION DISTRIBUTED GENERATION AND COGENERATION POLICY ROADMAP FOR CALIFORNIA to the development of this report by the Energy Commission's Distributed Generation Policy Advisory Team; Melissa;ABSTRACT This report defines a year 2020 policy vision for distributed generation and cogeneration

125

Natural Gas - Analysis & Projections - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Most Requested Most Requested Change category... Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports Filter by: All Data Analysis Projections Weekly Reports Natural Gas Storage Report Working Gas in Underground Storage for current week and week ago comparison. (archived versions) Archived Versions Natural Gas Storage Report - Archive Natural Gas Weekly Update Weekly average spot and futures prices of natural gas. (archived versions) Archived Versions Natural Gas Weekly Update - Archive Today in Energy - Natural Gas Short, timely articles with graphs about recent natural gas issues and trends Monthly Reports Drilling Productivity Report Released: January 13, 2014 EIA's new Drilling Productivity Report (DPR) takes a fresh look at oil

126

Decentralised optimisation of cogeneration in virtual power plants  

SciTech Connect (OSTI)

Within several projects we investigated grid structures and management strategies for active grids with high penetration of renewable energy resources and distributed generation (RES and DG). Those ''smart grids'' should be designed and managed by model based methods, which are elaborated within these projects. Cogeneration plants (CHP) can reduce the greenhouse gas emissions by locally producing heat and electricity. The integration of thermal storage devices is suitable to get more flexibility for the cogeneration operation. If several power plants are bound to centrally managed clusters, it is called ''virtual power plant''. To operate smart grids optimally, new optimisation and model reduction techniques are necessary to get rid with the complexity. There is a great potential for the optimised management of CHPs, which is not yet used. Due to the fact that electrical and thermal demands do not occur simultaneously, a thermally driven CHP cannot supply electrical peak loads when needed. With the usage of thermal storage systems it is possible to decouple electric and thermal production. We developed an optimisation method based on mixed integer linear programming (MILP) for the management of local heat supply systems with CHPs, heating boilers and thermal storages. The algorithm allows the production of thermal and electric energy with a maximal benefit. In addition to fuel and maintenance costs it is assumed that the produced electricity of the CHP is sold at dynamic prices. This developed optimisation algorithm was used for an existing local heat system with 5 CHP units of the same type. An analysis of the potential showed that about 10% increase in benefit is possible compared to a typical thermally driven CHP system under current German boundary conditions. The quality of the optimisation result depends on an accurate prognosis of the thermal load which is realised with an empiric formula fitted with measured data by a multiple regression method. The key functionality of a virtual power plant is to increase the value of the produced power by clustering different plants. The first step of the optimisation concerns the local operation of the individual power generator, the second step is to calculate the contribution to the virtual power plant. With small extensions the suggested MILP algorithm can be used for an overall EEX (European Energy Exchange) optimised management of clustered CHP systems in form of the virtual power plant. This algorithm has been used to control cogeneration plants within a distribution grid. (author)

Wille-Haussmann, Bernhard; Erge, Thomas; Wittwer, Christof [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstrasse 2, 79110 Freiburg (Germany)

2010-04-15T23:59:59.000Z

127

Lopez Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Lopez Landfill Gas Utilization Project Biomass Facility Lopez Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Lopez Landfill Gas Utilization Project Biomass Facility Facility Lopez Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

Project Information Form Project Title Reduction of Lifecycle Green House Gas Emissions From Road  

E-Print Network [OSTI]

Project Information Form Project Title Reduction of Lifecycle Green House Gas Emissions From Road@ucdavis.edu Funding Source(s) and Amounts Provided (by each agency or organization) US DOT $30,000 Total Project Cost Brief Description of Research Project This white paper will summarize the state of knowledge and state

California at Davis, University of

129

Investigation of coal fired combined-cycle cogeneration plants for power, heat, syngas, and hydrogen  

Science Journals Connector (OSTI)

The methodology for determination of technical and economic efficiency of coal fired combined-cycle cogeneration plant (CCCP) with low-pressure ... steam-gas generator and continuous flow gasifier at combined pro...

V. E. Nakoryakov; G. V. Nozdrenko; A. G. Kuzmin

2009-12-01T23:59:59.000Z

130

BioGas Project Applications for Federal Agencies and Utilities  

Broader source: Energy.gov [DOE]

Presentation covers BioGas Project Applications for Federal Agencies and Utilities and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

131

Philadelphia Navy Yard: UESC Project with Philadelphia Gas Works  

Broader source: Energy.gov [DOE]

Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—provides information on the Philadelphia Navy Yard's utility energy services contract (UESC) project with Philadelphia Gas Works (PGW).

132

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects  

Office of Energy Efficiency and Renewable Energy (EERE)

This webinar, held July 17, 2012, provided information on the challenges and benefits of developing successful community landfill gas-to-energy projects in Will County, Illinois, and Escambia...

133

The Role of Feasibility Analysis in Successful Cogeneration  

E-Print Network [OSTI]

of cogeneration in the industrial sector. The cogeneration feasibility analysis methodology developed by the author is described. BACKGROUND Cogeneration has a long history, almost as long as the history of engines. In the industrial sector, cogeneration...

Wulfinghoff, D. R.

134

Projects Selected to Boost Unconventional Oil and Gas Resources |  

Broader source: Energy.gov (indexed) [DOE]

Projects Selected to Boost Unconventional Oil and Gas Resources Projects Selected to Boost Unconventional Oil and Gas Resources Projects Selected to Boost Unconventional Oil and Gas Resources September 27, 2010 - 1:00pm Addthis Washington, DC - Ten projects focused on two technical areas aimed at increasing the nation's supply of "unconventional" fossil energy, reducing potential environmental impacts, and expanding carbon dioxide (CO2) storage options have been selected for further development by the U.S. Department of Energy (DOE). The projects include four that would develop advanced computer simulation and visualization capabilities to enhance understanding of ways to improve production and minimize environmental impacts associated with unconventional energy development; and six seeking to further next

135

2013 Unconventional Oil and Gas Project Selections  

Broader source: Energy.gov [DOE]

The Office of Fossil Energy’s National Energy Technology Laboratory has an unconventional oil and gas program devoted to research in this important area of energy development. The laboratory...

136

Business and Project Management of Natural Gas  

Science Journals Connector (OSTI)

The process and associated technology of natural gas can be found elsewhere in the preceding ... end of this phase, large amount of capital has been used and there is no ... or companies, from within their own fu...

G. G. Nasr; N. E. Connor

2014-01-01T23:59:59.000Z

137

Commissioning and Start Up of a 110 MegaWatt Cogeneration Facility  

E-Print Network [OSTI]

operations. As a result of the Project Team's efforts, the cogeneration facility achieved 100% of design output on December 22, 1987 without any significant impact on the manufacturing facility."...

Good, R.

138

Short Mountain Landfill gas recovery project  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA), a Federal power marketing agency, has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. BPA's latest load/resource balance forecast, projects the capability of existing resources to satisfy projected Federal system loads. The forecast indicates a potential resource deficit. The underlying need for action is to satisfy BPA customers' demand for electrical power.

Not Available

1992-05-01T23:59:59.000Z

139

Cogeneration Assessment Methodology for Utilities  

E-Print Network [OSTI]

A methodology is presented that enables electric utilities to assess the cogeneration potential among industrial, commercial, and institutional customers within the utility's service area. The methodology includes a survey design, analytic...

Sedlik, B.

1983-01-01T23:59:59.000Z

140

Does Cogeneration Make Sense for Me? | Open Energy Information  

Open Energy Info (EERE)

Does Cogeneration Make Sense for Me? Does Cogeneration Make Sense for Me? Jump to: navigation, search Tool Summary Name: Does Cogeneration Make Sense for Me? Agency/Company /Organization: University of Illinois at Chicago Phase: "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property. User Interface: Website Website: www.chpcentermw.org/pdfs/Toolbox__TechBrief.pdf This guide provides a few simple questions and calculations, including an example calculation, for facility owners who want to begin to understand

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Electric Rate Alternatives to Cogeneration  

E-Print Network [OSTI]

"ELECTRIC RATE ALTERNATIVES TO COGENERATION" K. R. SANDBERG, JR. INDUSTRIAL ACCOUNTS MANAGER - TEXAS GULF STATES UTILITIES COMPANY BEAUMONT, TEXAS ABSTRACT This paper discusses electric rate slternatives to cogeneration for the industrisl... PERSPECTIVE Gulf States Utilities was incorporated in 1925 and is primarily in the business of generating. transmitting and distributing electricity to 555.000 customers in southeast Texas and south Louisiana. The service area extends 350 miles westward...

Sandberg, K. R. Jr.

142

PROJECT RULISON A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O  

Office of Legacy Management (LM)

A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O N S T I M U L A T I O N EXPERIMENT U S I N G A NUCLEAR EXPLOSIVE Issued By PROJECT RULISON JOINT OFFICE OF INFORMATION U. S. ATOMIC ENERGY COMMISSION - AUSTRAL OIL COMPANY, INCORPORATED THE DEPARTMENT OF THE INTERIOR - CER GEONUCLEAR CORPORATION May 1, 1969 OBSERVATION AREA J SURFACE GROUND ZERO AREA S C A L E - I inch e q u a l s approximatly I 2 m i l e s Project Rulison Area Map PROJECT RULISON A N INDUSTRY-GOVERNMENT NATURAL GAS PRODUCT1 ON STIMULATION EXPERIMENT USING A NUCLEAR EXPLOSIVE I. INTRODUCTION Project Rulison is o joint experiment sponsored by Austral O i l Company, Incorporated, of Houston, Texas, the U. S. Atomic Energy Commission and the Department o f the Interior, w i t h the Program Management provided b y CER Geonuclear Corporotion of L

143

Albany Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Utilization Project Biomass Facility Utilization Project Biomass Facility Jump to: navigation, search Name Albany Landfill Gas Utilization Project Biomass Facility Facility Albany Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Albany County, New York Coordinates 42.5756797°, -73.9359821° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5756797,"lon":-73.9359821,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations DE-FC26-04NT15425 Project Goal This project is being conducted in two phases. The objective of the first phase is to characterize the reservoir using advanced evaluation methods in order to assess the potential of a CO2 flood of the target reservoir. This reservoir characterization includes advanced petrophysical, geophysical, geological, reservoir engineering, and reservoir simulation technologies. The objective of the second project phase is to demonstrate the benefits of using advanced seismic methods for the monitoring of the CO2 flood fronts. Performers Schlumberger Data & Consulting Services - Pittsburgh, PA New Horizon Energy - Traverse City, MI

145

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ultra-High-Speed Motor for Drilling Ultra-High-Speed Motor for Drilling DE-FC26-04NT15502 Project Goal The project goal is to design two sizes of an ultra-high-speed (10,000 rpm), inverted, configured electric motor specifically for drilling. Performers Impact Technologies LLC, Tulsa, OK University of Texas, Arlington, TX Results Researchers have developed PMSM (permanent magnet synchronous machine) electromagnetic designs of both radial and axial motors for rotational speeds up to 10,000 rpm in two outer diameters (OD). Finite element analyses (FEA) of the magnetic saturation and power/torque output have been made at various speed and loading conditions. Mechanical 3-D models have been prepared based on those designs. Bearing and seal materials have been studied, and manufacturers have been contacted to provide them. The project milestones completed to date are the:

146

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mud System for Microhole Coiled Tubing Drilling Mud System for Microhole Coiled Tubing Drilling DE-FC26-03NT15476 Project Goal The goal of the project is to develop an innovative mud system for coiled tubing drilling (CTD) and small-diameter holes (microholes) for vertical, horizontal and multilateral drilling and completion applications. The system will be able to mix the required fluids (water, oil, chemicals, muds, slurries), circulate that mixture downhole (modified 350 gpm @1,000 psi and 15 gpm@ 5,000 psi), clean and store (200 bbls) the base fluids, and be able to perform these functions in an underbalanced condition with zero discharge and low environmental impact. Another primary and most important goal of this project is to develop key components for a new abrasive slurry drilling system.

147

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multicomponent seismic analysis and calibration to improve recovery from algal mounds: application to the Roadrunner/Towaoc area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado Multicomponent seismic analysis and calibration to improve recovery from algal mounds: application to the Roadrunner/Towaoc area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado DE-FG26-02NT15451 Project Goal The project is designed to: Promote development of both discovered and undiscovered oil reserves contained within algal mounds on the Ute Mountain Ute, Southern Ute, and Navaho native-controlled lands. Promote the use of advanced technology and expand the technical capability of the Native American oil exploration corporations by direct assistance in the current project and dissemination of technology to other tribes. Develop the most cost-effective approach to using non-invasive seismic imaging to reduce the risk in exploration and development of algal mound reservoirs on surrounding Native American lands.

148

Reliable steam: To cogenerate or not to cogenerate?  

SciTech Connect (OSTI)

Leading industrial companies and institutions are forever seeking new and better ways to reduce their expenses, reduce waste, meet environmental standards, and, in general, improve their bottom-line. One approach to achieving all of these goals is a 100 year-old concept, cogeneration. Many industrial and institutional plants need thermal energy, generally as steam, for manufacturing processes and heating. They also need electric power for motors, lighting, compressed air and air conditioning. Traditionally, these fundamental needs are met separately. Steam is produced with industrial boilers and electricity is purchased from a local utility company. However, these needs can be met at the same time with cogeneration, using the same heat source. Cogeneration is the concurrent production of electrical power and thermal energy from the same heat source. Large steam users commonly take advantage of cogeneration by using high pressure steam with a back pressure turbine to generate electricity, and extract lower pressure steam from the turbine exhaust for their process needs. This approach reduces their electric utility bills while still providing thermal energy for industrial processes. The result is also a more efficient process that uses less total heat and discharges less smoke up the stack. Newer technologies are making cogeneration opportunities available to smaller-sized thermal plants, and electric utility deregulation opportunities are causing many CEOs to seriously consider cogeneration in their manufacturing plants. Whether steam is created through cogeneration or separate generation, many opportunities exist to improve productivity in the distribution system, operation, and maintenance. These opportunities are captured by taking a systems approach, which is promoted by programs such as the Department of Energy's Steam Challenge.

Jaber, D.; Jones, T.; D'Anna, L.; Vetterick, R.

1999-07-01T23:59:59.000Z

149

Oklahoma Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

and Electric Company Smart Grid Project and Electric Company Smart Grid Project Jump to: navigation, search Project Lead Oklahoma Gas and Electric Company Country United States Headquarters Location Oklahoma City, Oklahoma Additional Benefit Places Arkansas Recovery Act Funding $130,000,000.00 Total Project Value $357376037 Coverage Area Coverage Map: Oklahoma Gas and Electric Company Smart Grid Project Coordinates 35.4675602°, -97.5164276° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

150

NETL: Natural Gas and Petroleum T&D Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission and Distribution Transmission and Distribution COMPLETED T&D PROJECTS Click on project number for a more detailed description of the project Project Number Project Name Primary Performer DE-AM26-05NT42653 Conceptual Engineering/Socioeconomic Impact Study—Alaska Spur Pipeline ASRC Constructors, Inc. Inspection Technologies DE-NT-0004654 The Instrumented Pipeline Initiative Concurrent Technologies Corporation DE-FC26-03NT41881 Innovative Sensors for Pipeline Crawlers to Assess Pipeline Defects and Conditions Batelle Columbus Laboratories FWP05FE03 Multi-purpose Sensor for Detecting Pipeline Defects Los Alamos National Laboratory DE-FC26-04NT42267 Remote Detection of Internal Pipeline Corrosion Using Fluidized Sensors SouthWest Research Institute DE-FC26-04NT42266 Delivery Reliability for Natural Gas - Inspection Technologies Gas Technology Institute

151

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Mississippi Leadville Limestone Exploration Play of Utah and Colorado-Exploration Techniques and Studies for Independents The Mississippi Leadville Limestone Exploration Play of Utah and Colorado-Exploration Techniques and Studies for Independents DE-FC26-03NT15424 Project Goal The overall goals of this study are to 1) develop and demonstrate techniques and exploration methods never tried on the Leadville Limestone; 2) target areas for exploration; 3) increase deliverability from new and old Leadville fields through detailed reservoir characterization; 4) reduce exploration costs and risk, especially in environmentally sensitive areas; and 5) add new oil discoveries and reserves. The project is being conducted in two phases, each with specific objectives. The objective of Phase 1 (Budget Period I) is to conduct a case study of the Leadville reservoir at Lisbon field (the largest Leadville producer) in San Juan County, UT, in order understand the reservoir characteristics and facies that can be applied regionally.

152

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mineral-Surfactant Interactions for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery Mineral-Surfactant Interactions for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery DE-FC26-03NT15413 Project Goal The overall objective of this project is to understand the role of mineralogy of reservoir rocks in determining interactions of reservoir minerals and their dissolved species with externally added reagants (surfactants/polymers) and their effects on solid-liquid and liquid-liquid interfacial properties, such as adsorption, wettability, and interfacial tension. A further goal is to devise schemes to control these interactions in systems relevant to reservoir conditions. Particular emphasis will be placed on the type and nature of different minerals in oil reservoirs. Performer Columbia University, New York, NY Background

153

Economic analysis of coal-fired cogeneration plants for Air Force bases  

SciTech Connect (OSTI)

The Defense Appropriations Act of 1986 requires the Department of Defense to use an additional 1,600,000 tons/year of coal at their US facilities by 1995 and also states that the most economical fuel should be used at each facility. In a previous study of Air Force heating plants burning gas or oil, Oak Ridge National Laboratory found that only a small fraction of this target 1,600,000 tons/year could be achieved by converting the plants where coal is economically viable. To identify projects that would use greater amounts of coal, the economic benefits of installing coal-fired cogeneration plants at 7 candidate Air Force bases were examined in this study. A life-cycle cost analysis was performed that included two types of financing (Air Force and private) and three levels of energy escalation for a total of six economic scenarios. Hill, McGuire, and Plattsburgh Air Force Bases were identified as the facilities with the best potential for coal-fired cogeneration, but the actual cost savings will depend strongly on how the projects are financed and to a lesser extent on future energy escalation rates. 10 refs., 11 figs., 27 tabs.

Holcomb, R.S.; Griffin, F.P.

1990-10-01T23:59:59.000Z

154

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of Silicon-On-Insulator (SOI) High Temperature Electronics Development of Silicon-On-Insulator (SOI) High Temperature Electronics DE-FC26-03NT41834 Goal The goal is to improve the reliability of high-temperature electronic components found in the downhole “smart drilling” tools needed to improve drilling efficiency and success rate at depths of 20,000 feet and below and temperatures greater than 225°C. This will be done by utilizing Silicon-on-Insulator (SOI) based technology to develop various high priority electronic components. Performer Honeywell, Inc., Plymouth, Minnesota 55441 Joint Industry Partners: BP, Baker Hughes, Goodrich Aerospace, Honeywell, Schlumberger, Intelliserv, Quartzdyne. Results The project has resulted in the successful design and testing of four key components needed for high temperature drilling equipment. These include: an Electrically-Erasable Programmable Read-Only Memory (EEPROM); a Field Programmable Gate Array; a Precision Amplifier (OpAmp) and a Sigma-Delta Analog-to-Digital Converter (ADC). The establishment of a Joint Industry Project (JIP) and participating companies’ commitment was a major reason for the project success. Major results include:

155

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Harsh Environment Electronics Packaging for Downhole Oil & Gas Exploration Harsh Environment Electronics Packaging for Downhole Oil & Gas Exploration DE-FC26-06NT42950 Goal The goal is to develop new packaging techniques for downhole electronics that will be capable of withstanding at least 200oC (~400oF) while maintaining a small form factor and high vibration tolerance necessary for use in a downhole environment. These packaging techniques will also be capable of integrating a sensor and other electronics to form an integrated electronics/sensor module. Performers General Electric Global Research Center, Niskayuna, NY 12309 Binghamton University (SUNY), Binghamton, NY 13902 Background Sensors and electronics systems are key components in measurement-while-drilling (MWD) equipment. Examples of sensors and electronics that can directly impact the efficiency of drilling guidance systems can include gamma ray and neutron sensors, orientation modules, pressure sensors and the all of the associated signal conditioning and computational electronics. As drilling depths increase, more rigorous temperature demands are made on the electronic components in the drillstring. Current sensor systems for MWD applications are limited by the temperature rating of their electronics, with a typical upper end temperature rating of 175oC (~350oF). The lifetime of an electronics system at such temperatures is extremely short (600-1500 hrs). These limitations are driven by the temperature performance and reliability of the materials in the electronic components (active and passive devices) and their associated packages and interconnect methods.

156

Franklin County Sanitary Landfill - Landfill Gas (LFG) to Liquefied Natural Gas (LNG) - Project  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

FRANKLIN COUNTY SANITARY FRANKLIN COUNTY SANITARY LANDFILL - LANDFILL GAS (LFG) TO LIQUEFIED NATURAL GAS (LNG) - PROJECT January/February 2005 Prepared for: National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 Table of Contents Page BACKGROUND AND INTRODUCTION .......................................................................................1 SUMMARY OF EFFORT PERFORMED ......................................................................................2 Task 2B.1 - Literature Search and Contacts Made...................................................................2 Task 2B.2 - LFG Resource/Resource Collection System - Project Phase One.......................3 Conclusion.................................................................................................................................5

157

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution Within Carbonate Oil Reservoirs Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution Within Carbonate Oil Reservoirs DE-FC26-04NT15508 Project Goal The project goal is to provide a methodology that will allow operators of oil reservoirs in carbonate reefs to better image the interior structure of those reservoirs and to identify those areas that contain the most oil remaining after initial production. Performers Michigan Technological University, Houghton, MI Z-Seis Inc., Houston, TX Results This study provides a significant step forward in reservoir characterization by demonstrating that crosswell seismic imaging can be used over considerable distances to better define features within a reservoir and by showing that pre-stack characteristics of reflection events can be used to reduce ambiguity in determination of lithology and fluid content. Crosswell seismic imaging of the two reefs has provided data that is well beyond any that a reservoir engineer or development geologist has previously had for improved characterization and production.

158

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Methods for Ugnu Viscous Oils Last Reviewed 6/27/2012 Chemical Methods for Ugnu Viscous Oils Last Reviewed 6/27/2012 DE-NT0006556 Goal The objective of this project is to develop improved chemical oil recovery options for the Ugnu reservoir overlying the Milne Point unit in North Slope, Alaska. Performers University of Texas, Austin, TX 78712-1160 Background The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in the Ugnu, West Sak, and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir overlying Milne Point varies from 200 cP to 10,000 cP and the depth is about 3500 ft. The same reservoir extends to the west overlying the Kuparuk River Unit and on to the Beaufort Sea. The depth of the reservoir decreases and the viscosity

159

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Drilling Vibration Monitoring and Control System Drilling Vibration Monitoring and Control System DE-FC26-02NT41664 Goal Improve the rate of penetration and reduce the incidence of premature equipment failures in deep hard rock drilling environments by reducing harmful drillstring vibration. Performer APS Technology, Inc., Cromwell, CT 06492 Results To date, this project has produced the following results: Carried out a review of the major sources of vibration likely to influence the bottom hole assembly (BHA) and in particular the bit, and characterized them by their anticipated frequency and amplitude; Developed a software model to analyze drillstring axial vibration and determine optimal damping action; Developed a method to directly quantify the various vibration modes using a system of four accelerometers and a magnetometer mounted in a sensor sub of the damper component;

160

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geomechanical Study of Bakken Formation for Improved Oil Recovery Last Reviewed 12/12/2013 Geomechanical Study of Bakken Formation for Improved Oil Recovery Last Reviewed 12/12/2013 DE-08NT0005643 Goal The goal of this project is to determine the geomechanical properties of the Bakken Formation in North Dakota, and use these results to increase the success rate of horizontal drilling and hydraulic fracturing in order to improve the ultimate recovery of this vast oil resource. Performer University of North Dakota, Grand Forks, ND 58202-7134 Background Compared to the success of producing crude oil from the Bakken Formation in eastern Montana, the horizontal drilling and hydraulic fracture stimulation technology applied in western North Dakota has been less successful, thus requiring the development of new completion and fracturing technologies.

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Synthesis and Evaluation of Inexpensive CO2 Thickeners Designed by Molecular Modeling The Synthesis and Evaluation of Inexpensive CO2 Thickeners Designed by Molecular Modeling DE-FC26-04NT15533 Project Goal The goal of this project is to use molecular modeling and experimental results to design inexpensive, environmentally benign, CO2-soluble compounds that can decrease the mobility of CO2 at typical enhanced oil recovery (EOR) reservoir conditions. Performers University of Pittsburgh, Pittsburgh, PA Yale University, New Haven, CT Background The research group previously formulated the only known CO2 thickener, a (fluoroacrylate-styrene) random copolymer, but this proof-of-concept compound was expensive and environmentally unacceptable because it was fluorous. They then identified the most CO2-soluble, high-molecular-weight, conventional polymer composed solely of carbon, hydrogen, and oxygen: poly(vinyl acetate), or PVAc. PVAc could not dissolve at pressures below the minimum miscibility pressure (MMP), however. The current research effort, therefore, was directed at using molecular modeling and experimental tools to design polymers that are far more CO2-soluble than PVAc. The subsequent goal was to incorporate this polymer into a thickening agent that will dissolve in CO2 below the MMP and generate a two- to ten-fold decrease in CO2 mobility at concentrations of 0.01–1.0 percent by weight. Although most of the thickeners envisioned are copolymers, researchers will also evaluated several small hydrogen-bonding agents and surfactants with oligomeric (very short polymer) tails that form viscosity-enhancing structures in solution , and novel CO2 soluble surfactants that may be able to generate foams in situ as they mix with reservoir brine (without the need for the injection of alternating slugs of water).

162

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Subtask 1.2 – Evaluation of Key Factors Affecting Successful Oil Production in the Bakken Formation, North Dakota Subtask 1.2 – Evaluation of Key Factors Affecting Successful Oil Production in the Bakken Formation, North Dakota DE-FC26-08NT43291 – 01.2 Goal The goal of this project is to quantitatively describe and understand the Bakken Formation in the Williston Basin by collecting and analyzing a wide range of parameters, including seismic and geochemical data, that impact well productivity/oil recovery. Performer Energy & Environmental Research Center, Grand Forks, ND 58202-9018 Background The Bakken Formation is rapidly emerging as an important source of oil in the Williston Basin. The formation typically consists of three members, with the upper and lower members being shales and the middle member being dolomitic siltstone and sandstone. Total organic carbon (TOC) within the shales may be as high as 40%, with estimates of total hydrocarbon generation across the entire Bakken Formation ranging from 200 to 400 billion barrels. While the formation is productive in numerous reservoirs throughout Montana and North Dakota, with the Elm Coulee Field in Montana and the Parshall area in North Dakota being the most prolific examples of Bakken success, many Bakken wells have yielded disappointing results. While variable productivity within a play is nothing unusual to the petroleum industry, the Bakken play is noteworthy because of the wide variety of approaches and technologies that have been applied with apparently inconsistent and all too often underachieving results. This project will implement a robust, systematic, scientific, and engineering research effort to overcome these challenges and unlock the vast resource potential of the Bakken Formation in the Williston Basin.

163

Methane Gas Utilization Project from Landfill at Ellery (NY)  

SciTech Connect (OSTI)

Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

Pantelis K. Panteli

2012-01-10T23:59:59.000Z

164

NETL: News Release - DOE Selects Projects Targeting Deep Natural Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

22, 2006 22, 2006 DOE Selects Projects Targeting Deep Natural Gas Resources Research Focuses on High-Tech Solutions to High Temperature, Pressure Challenges WASHINGTON, DC - The Department of Energy today announced the selection of seven cost-shared research and development projects targeting America's vast, but technologically daunting, deep natural gas resources. These projects focus on developing the advanced technologies needed to tackle drilling and production challenges posed by natural gas deposits lying more than 20,000 feet below the earth's surface. There, drillers and producers encounter extraordinarily high temperatures (greater than 400 °F) and pressures (greater than 15,000 psi), as well as extremely hard rock and corrosive environments. The projects come under the oversight of the Office of Fossil Energy's National Energy Technology Laboratory, which has managed the Deep Trek research program since its inception in 2002. To date, DOE has awarded 12 Deep Trek projects totaling over $31 million, (with $10 million contributed by research partners) and is currently managing another seven projects focused on resource assessment and improved imaging technology for deep reservoirs.

165

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electromagnetic (EM) Telemetry Tool for Deep Well Drilling Applications Electromagnetic (EM) Telemetry Tool for Deep Well Drilling Applications DE-FC26-02NT41656 Goal: To develop a wireless, electromagnetic (EM) based telemetry system to facilitate efficient deep natural gas drilling at depths beyond 20,000 feet and up to 392ËšF (200ËšC) Background: The wireless, EM telemetry system will be designed to facilitate measurement-while-drilling (MWD) operations within a high temperature, deep drilling environment. The key components that will be developed and tested include a new high efficiency power amplifier (PA) and advanced signal processing algorithms. The novel PA architecture will provide greater and more efficient power delivery from the subterranean transmitter through the transmission media. Maximum energy transfer is especially critical downhole, where the transmitterÂ’s principal power source is typically a battery. Increased energy at the receiver antenna equates to increased recoverable signal amplitude; thus, the overall receiver signal-to-noise ratio is improved resulting in deeper operational depth capability.

166

NETL: Methane Hydrates - DOE/NETL Projects - Advanced Gas Hydrate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparative Assessment of Advanced Gas Hydrate Production Methods Last Reviewed 09/23/2009 Comparative Assessment of Advanced Gas Hydrate Production Methods Last Reviewed 09/23/2009 DE-FC26-06NT42666 Goal The goal of this project is to compare and contrast, through numerical simulation, conventional and innovative approaches for producing methane from gas hydrate-bearing geologic reservoirs. Numerical simulation is being used to assess the production of natural gas hydrates from geologic deposits using three production technologies: 1) depressurization, 2) direct CO2 exchange, and 3) dissociation-reformation CO2 exchange. Performers Battelle Pacific Northwest Division, Richland, Washington 99352 Background There are relatively few published studies of commercial production methods for gas hydrates, and all of these studies have examined essentially

167

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supercement for Annular Seal and Long-term Integrity in Deep, Hot Wells Supercement for Annular Seal and Long-term Integrity in Deep, Hot Wells DE-FC26-03NT41836 Goal: The goal of the project is to develop a supercement capable of sealing the annuli of and providing long-term integrity in deep, hot wells. Performers CSI Technologies, LLC , Houston, TX Argonne National Laboratory, Argonne, IL Results Phase I work involved a literature search on cements and evaluation of Portland and non-Portland cement systems and various formulations within these systems. Laboratory work involved more than 1,100 tests on 169 different formulations. Baseline testing established a foundation for comparison. Conventional and unconventional mechanical tests were conducted, and many systems were tested at high temperatures. From this work six candidate systems comprising some 10 formulas were recommended for further analysis in Phase II: reduced water systems, magnesium oxide, molybdenum trioxide, fibers, epoxy (resins), and graded particle systems.

168

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of A 275° C Downhole Microcomputer System Development of A 275° C Downhole Microcomputer System DE-FC26-05NT42656 Goal The goal of this project is to produce a downhole microcomputer system (DMS) capable of operating at 275 °C for 1000 hours. The base DMS will consist of a 68HC11 single chip microcomputer with boot ROM, static RAM, counter/timer unit, parallel input/output (PIO) unit, and serial peripheral interface (SPI) and will also have two peripheral chips, a Data RAM and Mask ROM. Performer Oklahoma State University, Electrical and Computer Engineering Department, Stillwater, OK 74078 Background The down-scaling of bulk complementary metal-oxide-semiconductor (CMOS), the dominant integrated circuit (IC) process over the last 4 decades, has increased circuit densities to very high levels and has been the basis for considerable growth in digital signal processing, data acquisition, and intelligent control systems. With down-scaling, however, the CMOS has become increasingly susceptible to failure in high temperature environments. This failure is primarily related to current leakage in transistors in bulk ICs, which becomes catastrophically large at high temperatures.

169

Table 7b. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Natural Gas Wellhead Prices, Projected vs. Actual" b. Natural Gas Wellhead Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per thousand cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1.983258692,2.124739238,2.26534793,2.409252566,2.585728477,2.727400662,2.854942053,2.980927152,3.13861755,3.345819536,3.591100993,3.849544702,4.184279801,4.510016556,4.915074503,5.29147351,5.56022351,5.960471854 "AEO 1995",,1.891706924,1.998384058,1.952818035,2.064227053,2.152302174,2.400016103,2.569033816,2.897681159,3.160088567,3.556344605,3.869033816,4.267391304,4.561932367,4.848599034,5.157246377,5.413405797,5.660917874 "AEO 1996",,,1.630674532,1.740334763,1.862956911,1.9915856,2.10351261,2.194934146,2.287655669,2.378991658,2.476043002,2.589847464,2.717610782,2.836870306,2.967124845,3.117719429,3.294003735,3.485657428,3.728419409

170

Technical assessment of an oil-fired residential cogeneration system  

SciTech Connect (OSTI)

The definition of cogeneration, within the context of this project, is the simultaneous production of electricity and heat energy from a single machine. This report will present the results of an engineering analysis of the efficiency and energy-conservation potential associated with a unique residential oil-fired cogeneration system that provides both heat and electric power. The system operates whenever a thermostat signals a call for heat in the home, just as a conventional heating system. However, this system has the added benefit of cogenerating electricity whenever it is running to provide space heating comfort. The system is designed to burn No. 2 heating oil, which is consumed in an 11-horsepower, two cylinder, 56.75-cubic-inch, 1850-RPM diesel engine. This unit is the only pre-production prototype residential No. 2 oil-fired cogeneration system known to exist in the world. As such, it is considered a landmark development in the field of oil-heat technology.

McDonald, R.J.

1993-01-01T23:59:59.000Z

171

Efficiently generate steam from cogeneration plants  

SciTech Connect (OSTI)

As cogeneration gets more popular, some plants have two choices of equipment for generating steam. Plant engineers need to have a decision chart to split the duty efficiently between (oil-fired or gas-fired) steam generators (SGs) and heat recovery steam generators (HRSGs) using the exhaust from gas turbines. Underlying the dilemma is that the load-versus-efficiency characteristics of both types of equipment are different. When the limitations of each type of equipment and its capability are considered, analysis can come up with several selection possibilities. It is almost always more efficient to generate steam in an HRSG (designed for firing) as compared with conventional steam generators. However, other aspects, such as maintenance, availability of personnel, equipment limitations and operating costs, should also be considered before making a final decision. Loading each type of equipment differently also affects the overall efficiency or the fuel consumption. This article describes the performance aspects of representative steam generators and gas turbine HRSGs and suggests how plant engineers can generate steam efficiently. It also illustrates how to construct a decision chart for a typical installation. The equipment was picked arbitrarily to show the method. The natural gas fired steam generator has a maximum capacity of 100,000 lb/h, 400-psig saturated steam, and the gas-turbine-exhaust HRSG has the same capacity. It is designed for supplementary firing with natural gas.

Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

1997-05-01T23:59:59.000Z

172

NETL: Oil & Natural Gas Projects: Alaska North Slope Oil and Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alaska North Slope Oil and Gas Transportation Support System Last Reviewed 12/23/2013 Alaska North Slope Oil and Gas Transportation Support System Last Reviewed 12/23/2013 DE-FE0001240 Goal The primary objectives of this project are to develop analysis and management tools related to Arctic transportation networks (e.g., ice and snow road networks) that are critical to North Slope, Alaska oil and gas development. Performers Geo-Watersheds Scientific, Fairbanks, AK 99708 University of Alaska Fairbanks, Fairbanks, AK 99775 Idaho National Laboratory, Idaho Falls, ID 83415 Background Oil and gas development on the North Slope is critical for maintaining U.S. energy supplies and is facing a period of new growth to meet the increasing energy needs of the nation. A majority of all exploration and development activities, pipeline maintenance, and other field support projects take

173

Managing Abnormal Operation through Process Integration and Cogeneration Systems  

E-Print Network [OSTI]

area. Since it is found in deep reservoirs it may contain components such as hydrogen sulfide and carbon dioxide. These components due to their properties cause corrosion and are toxic therefore they should be separated from natural gas before... organizations (UNEP 2006). 19 De-aerator is also one of the units in cogeneration system. Since dissolved gases such as oxygen and carbon dioxide can cause corrosion, deaerator unit is responsible for separating them from condensate stream to steam...

Kamrava, Serveh

2014-08-05T23:59:59.000Z

174

A Simplified Self-Help Approach to Sizing of Small-Scale Cogeneration Systems  

E-Print Network [OSTI]

applications for buildings are best served by small-scale systems such as a combustion turbine or engine coupled with a generator and a waste heat boiler. Natural gas and light fuel oils are the fuels best suited to these systems. Gas-fired Cogeneration systems... Cogeneration systems, which use a wide range of conventional fuels (natural gas, diesel fuel, gasoline or propane) and well-developed engines and generator sets. The packaged units are skid-mounted with appropriate controls and electrical switchgear included...

Somasundaram, S.; Turner, W. D.

1987-01-01T23:59:59.000Z

175

Cogeneration from glass furnace waste heat recovery  

SciTech Connect (OSTI)

In glass manufacturing 70% of the total energy utilized is consumed in the melting process. Three basic furnaces are in use: regenerative, recuperative, and direct fired design. The present paper focuses on secondary heat recovery from regenerative furnaces. A diagram of a typical regenerative furnace is given. Three recovery bottoming cycles were evaluated as part of a comparative systems analysis: steam Rankine Cycle (SRC), Organic Rankine Cycle (ORC), and pressurized Brayton cycle. Each cycle is defined and schematicized. The net power capabilities of the three different systems are summarized. Cost comparisons and payback period comparisons are made. Organic Rankine cycle provides the best opportunity for cogeneration for all the flue gas mass flow rates considered. With high temperatures, the Brayton cycle has the shortest payback period potential, but site-specific economics need to be considered.

Hnat, J.G.; Cutting, J.C.; Patten, J.S.

1982-06-01T23:59:59.000Z

176

Negotiating a Favorable Cogeneration Contract with your Utility Company  

E-Print Network [OSTI]

A relatively small cogenerator may find it difficult to negotiate a favorable cogeneration contract with a relatively large utility. This paper will tell prospective cogenerators some things they can do to make sure the contract they negotiate meets...

Lark, D. H.; Flynn, J.

177

Monitoring Results Natural Gas Wells Near Project Rulison  

Office of Legacy Management (LM)

Natural Gas Wells Near Project Rulison Third Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: June 12, 2013 Background: Project Rulison was the second Plowshare Program test to stimulate natural-gas recovery from deep and low permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterwards, the site was shut down, then remediated and the emplacement well (R-E) and reentry well (R-Ex) plugged. Purpose: As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission

178

Anqiu Shengyuan Biomass Cogeneration Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Anqiu Shengyuan Biomass Cogeneration Co Ltd Jump to: navigation, search Name: Anqiu Shengyuan Biomass Cogeneration Co Ltd Place: Anqiu, Shandong Province, China Zip: 262100 Sector:...

179

SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity...  

Office of Environmental Management (EM)

SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste...

180

Cogeneration Rules (Arkansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cogeneration Rules (Arkansas) Cogeneration Rules (Arkansas) Cogeneration Rules (Arkansas) < Back Eligibility Commercial Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Arkansas Program Type Generating Facility Rate-Making Interconnection Provider Arkansas Public Service Commission The Cogeneration Rules are enforced by the Arkansas Public Service Commission. These rules are designed to ensure that all power producers looking to sell their power to residents of Arkansas are necessary, benefit the public and are environmentally friendly. Under these rules new

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cogeneration - A Utility Perspective  

E-Print Network [OSTI]

are discussed from a utility perspective as how they influence utility participation in future projects. The avoided cost methodology is examined, and these payments for sale of energy to the utility are compared with utility industrial rates. In addition...

Williams, M.

1983-01-01T23:59:59.000Z

182

Cogeneration Rangan Banerjee  

E-Print Network [OSTI]

with extraction 10 Back Pressure Turbine Condensing Turbine 3 Condensing Power Plant 0 DecreasingX #12;Steam. The boiler efficiency is 90%. The power requirement of the industry is 2.5 MW. Evaluate the viability of using a high pressure boiler generating steam at 50 bar 400° C and a back pressure turbine #12;C GT GAS

Banerjee, Rangan

183

Table 10. Natural Gas Net Imports, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Net Imports, Projected vs. Actual" Natural Gas Net Imports, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",2.02,2.4,2.66,2.74,2.81,2.85,2.89,2.93,2.95,2.97,3,3.16,3.31,3.5,3.57,3.63,3.74,3.85 "AEO 1995",,2.46,2.54,2.8,2.87,2.87,2.89,2.9,2.9,2.92,2.95,2.97,3,3.03,3.19,3.35,3.51,3.6 "AEO 1996",,,2.56,2.75,2.85,2.88,2.93,2.98,3.02,3.06,3.07,3.09,3.12,3.17,3.23,3.29,3.37,3.46,3.56 "AEO 1997",,,,2.82,2.96,3.16,3.43,3.46,3.5,3.53,3.58,3.64,3.69,3.74,3.78,3.83,3.87,3.92,3.97 "AEO 1998",,,,,2.95,3.19,3.531808376,3.842532873,3.869043112,3.894513845,3.935930967,3.976293564,4.021911621,4.062207222,4.107616425,4.164502144,4.221304417,4.277039051,4.339964867

184

Table 7a. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Natural Gas Wellhead Prices, Projected vs. Actual" a. Natural Gas Wellhead Prices, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per thousand cubic feet in ""dollar year"" specific to each AEO)" ,"AEO Dollar Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1992,1.9399,2.029,2.1099,2.1899,2.29,2.35,2.39,2.42,2.47,2.55,2.65,2.75,2.89,3.01,3.17,3.3,3.35,3.47 "AEO 1995",1993,,1.85,1.899,1.81,1.87,1.8999,2.06,2.14,2.34,2.47,2.69,2.83,3.02,3.12,3.21,3.3,3.35,3.39 "AEO 1996",1994,,,1.597672343,1.665446997,1.74129355,1.815978527,1.866241336,1.892736554,1.913619637,1.928664207,1.943216205,1.964540124,1.988652706,2.003382921,2.024799585,2.056392431,2.099974155,2.14731431,2.218094587

185

Table 9. Natural Gas Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Production, Projected vs. Actual" Natural Gas Production, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",17.71,17.68,17.84,18.12,18.25,18.43,18.58,18.93,19.28,19.51,19.8,19.92,20.13,20.18,20.38,20.35,20.16,20.19 "AEO 1995",,18.28,17.98,17.92,18.21,18.63,18.92,19.08,19.2,19.36,19.52,19.75,19.94,20.17,20.28,20.6,20.59,20.88 "AEO 1996",,,18.9,19.15,19.52,19.59,19.59,19.65,19.73,19.97,20.36,20.82,21.25,21.37,21.68,22.11,22.47,22.83,23.36 "AEO 1997",,,,19.1,19.7,20.17,20.32,20.54,20.77,21.26,21.9,22.31,22.66,22.93,23.38,23.68,23.99,24.25,24.65 "AEO 1998",,,,,18.85,19.06,20.34936142,20.27427673,20.60257721,20.94442177,21.44076347,21.80969238,22.25416183,22.65365219,23.176651,23.74545097,24.22989273,24.70069313,24.96691322

186

Table 7a. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Natural Gas Wellhead Prices, Projected vs. Actual a. Natural Gas Wellhead Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per thousand cubic feet in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1992 1.94 2.03 2.11 2.19 2.29 2.35 2.39 2.42 2.47 2.55 2.65 2.75 2.89 3.01 3.17 3.30 3.35 3.47 AEO 1995 1993 1.85 1.90 1.81 1.87 1.90 2.06 2.14 2.34 2.47 2.69 2.83 3.02 3.12 3.21 3.30 3.35 3.39 AEO 1996 1994 1.60 1.67 1.74 1.82 1.87 1.89 1.91 1.93 1.94 1.96 1.99 2.00 2.02 2.06 2.10 2.15 2.22

187

NSTAR Electric & Gas Corporation Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

NSTAR Electric & Gas Corporation NSTAR Electric & Gas Corporation Country United States Headquarters Location Westwood, Massachusetts Recovery Act Funding $2,362,000.00 Total Project Value $4,724,000.00 Coordinates 42.2139873°, -71.2244987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

188

Pacific Gas & Electric Company Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

Pacific Gas & Electric Company Pacific Gas & Electric Company Country United States Headquarters Location San Francisco, California Recovery Act Funding $25,000,000.00 Total Project Value $355,938,600.00 Coordinates 37.7749295°, -122.4194155° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

189

NSTAR Electric & Gas Corporation Smart Grid Demonstration Project (2) |  

Open Energy Info (EERE)

Lead NSTAR Electric & Gas Corporation Lead NSTAR Electric & Gas Corporation Country United States Headquarters Location Westwood, Massachusetts Recovery Act Funding $5,267,592.00 Total Project Value $10,535,184.00 Coordinates 42.2139873°, -71.2244987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

190

Baltimore Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Company Company Country United States Headquarters Location Baltimore, Maryland Recovery Act Funding $200,000,000.00 Total Project Value $451,814,234.00 Coverage Area Coverage Map: Baltimore Gas and Electric Company Smart Grid Project Coordinates 39.2903848°, -76.6121893° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

191

Madison Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

and Electric Company and Electric Company Country United States Headquarters Location Madison, Wisconsin Recovery Act Funding $5,550,941.00 Total Project Value $11,101,881.00 Coverage Area Coverage Map: Madison Gas and Electric Company Smart Grid Project Coordinates 43.0730517°, -89.4012302° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

192

EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida  

Broader source: Energy.gov [DOE]

This EA will evaluate the potential environmental impacts associated with a proposal by Emera CNG, LLC that would include Emera's CNG plant Emera’s CNG plant would include facilities to receive, dehydrate, and compress gas to fill pressure vessels with an open International Organization for Standardization (ISO) container frame mounted on trailers. Emera plans to truck the trailers a distance of a quarter mile from its proposed CNG facility to a berth at the Port of Palm Beach, where the trailers will be loaded onto a roll-on/roll-off ocean going carrier. Emera plans to receive natural gas at its planned compression facility from the Riviera Lateral, a pipeline owned and operated by Peninsula Pipeline Company. Although this would be the principal source of natural gas to Emera’s CNG facility for export, during periods of maintenance at Emera’s facility, or at the Port of Palm Beach, Emera may obtain CNG from other sources and/or export CNG from other general-use Florida port facilities. The proposed Emera facility will initially be capable of loading 8 million cubic feet per day (MMcf/day) of CNG into ISO containers and, after full build-out, would be capable to load up to 25 MMcf/day. For the initial phase of the project, Emera intends to send these CNG ISO containers from Florida to Freeport, Grand Bahama Island, where the trailers will be unloaded, the CNG decompressed, and injected into a pipeline for transport to electric generation plants owned and operated by Grand Bahama Power Company (GBPC). DOE authorizing the exportation of CNG and is not providing funding or financial assistance for the Emera Project.

193

NETL: News Release - DOE Selects Projects Targeting America's "Tight" Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7, 2006 7, 2006 DOE Selects Projects Targeting America's "Tight" Gas Resources Research to Help Unlock Nation's Largest Growing Source of Natural Gas WASHINGTON, DC - The Department of Energy today announced the selection of two cost-shared research and development projects targeting America's major source of natural gas: low-permeability or "tight" gas formations. Tight gas is the largest of three so-called unconventional gas resources?the other two being coalbed methane (natural gas) and gas shales. Production of unconventional gas in the United States represents about 40 percent of the Nation's total gas output in 2004, but could grow to 50 percent by 2030 if advanced technologies are developed and implemented. The constraints on producing tight gas are due to the impermeable nature of the reservoir rocks, small reservoir compartments, abnormal (high or low) pressures, difficulty in predicting natural fractures that aid gas flow rates, and need to predict and avoid reservoirs that produce large volumes of water.

194

Gas-Fired Absorption Heat Pump Water Heater Research Project | Department  

Broader source: Energy.gov (indexed) [DOE]

Emerging Technologies » Gas-Fired Absorption Heat Pump Water Emerging Technologies » Gas-Fired Absorption Heat Pump Water Heater Research Project Gas-Fired Absorption Heat Pump Water Heater Research Project The U.S. Department of Energy (DOE) is currently conducting research into carbon gas-fired absorption heat pump water heaters. This project will employ innovative techniques to increase water heating energy efficiency over conventional gas storage water heaters by 40%. Project Description This project seeks to develop a natural gas-fired water heater using an absorption heat. The development effort is targeting lithium bromide aqueous solutions as a working fluid in order to avoid the negative implications of using more toxic ammonia. Project Partners Research is being undertaken through a Cooperative Research and Development

195

Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, A DOE Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 Advanced Flue Gas Desulfurization (AFGD) Demonstration Project A DOE Assessment August 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

196

The Practice of Natural Gas Fuel Booster for Gas Turbine  

Science Journals Connector (OSTI)

This paper analysis the effects to the gas turbine cogeneration running cost and management caused by ... forward that people need to build additional natural gas booster station in the view of consummating...

Qifeng Xin

2007-01-01T23:59:59.000Z

197

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version)  

Office of Energy Efficiency and Renewable Energy (EERE)

Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012.

198

Assessing water and environmental impacts of oil and gas projects in Nigeria.  

E-Print Network [OSTI]

??Oil and gas development projects are major sources of social and environmental problems particularly in oil-rich developing countries like Nigeria. Yet, data paucity hinders our… (more)

Anifowose, Babatunde A.

2011-01-01T23:59:59.000Z

199

Table 7b. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Natural Gas Wellhead Prices, Projected vs. Actual b. Natural Gas Wellhead Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per thousand cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1.98 2.12 2.27 2.41 2.59 2.73 2.85 2.98 3.14 3.35 3.59 3.85 4.18 4.51 4.92 5.29 5.56 5.96 AEO 1995 1.89 2.00 1.95 2.06 2.15 2.40 2.57 2.90 3.16 3.56 3.87 4.27 4.56 4.85 5.16 5.41 5.66 AEO 1996 1.63 1.74 1.86 1.99 2.10 2.19 2.29 2.38 2.48 2.59 2.72 2.84 2.97 3.12 3.29 3.49 3.73 AEO 1997 2.03 1.82 1.90 1.99 2.06 2.13 2.21 2.32 2.43 2.54 2.65 2.77 2.88 3.00 3.11 3.24 AEO 1998 2.30 2.20 2.26 2.31 2.38 2.44 2.52 2.60 2.69 2.79 2.93 3.06 3.20 3.35 3.48 AEO 1999 1.98 2.15 2.20 2.32 2.43 2.53 2.63 2.76 2.90 3.02 3.12 3.23 3.35 3.47

200

Table 8. Total Natural Gas Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Natural Gas Consumption, Projected vs. Actual Total Natural Gas Consumption, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 19.87 20.21 20.64 20.99 21.20 21.42 21.60 21.99 22.37 22.63 22.95 23.22 23.58 23.82 24.09 24.13 24.02 24.14 AEO 1995 20.82 20.66 20.85 21.21 21.65 21.95 22.12 22.25 22.43 22.62 22.87 23.08 23.36 23.61 24.08 24.23 24.59 AEO 1996 21.32 21.64 22.11 22.21 22.26 22.34 22.46 22.74 23.14 23.63 24.08 24.25 24.63 25.11 25.56 26.00 26.63 AEO 1997 22.15 22.75 23.24 23.64 23.86 24.13 24.65 25.34 25.82 26.22 26.52 27.00 27.35 27.70 28.01 28.47 AEO 1998 21.84 23.03 23.84 24.08 24.44 24.81 25.33 25.72 26.22 26.65 27.22 27.84 28.35 28.84 29.17 AEO 1999 21.35 22.36 22.54 23.18 23.65 24.17 24.57 25.19 25.77 26.41 26.92 27.42 28.02 28.50

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Operating experience with a daily-dispatched LM-5000 STIG cogeneration plant  

SciTech Connect (OSTI)

The Yuba City Cogeneration Plant is a unique facility as it is a daily-dispatched LM-5000 steam injected gas turbine (STIG) that operates only during the peak summer months. This paper discusses the unique design, operation and maintenance requirements of the LM-5000 STIG. Engine operating history and maintenance problems are discussed. Reliability and availability data for the first three summer peak seasons are presented and compared with other cogeneration plant performance data. Calculations are based on North American Reliability Council/Generating Availability Data System (NERC/GADS) as a basis for operating statistic comparisons (1990). The LM-5000 STIG has demonstrated operating reliability and availability under daily cycling operation that is comparable to other base loaded aero-derivative cogeneration plants.

Peltier, R.V. [Stewart and Stevenson Services, Inc., Houston, TX (United States). Gas Turbine Productions Division; Swanekamp, R.C. [Power Magazine, New York, NY (United States)

1994-12-31T23:59:59.000Z

202

Microgy Cogeneration Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Cogeneration Systems Inc Cogeneration Systems Inc Jump to: navigation, search Name Microgy Cogeneration Systems Inc Place Tarrytown, New York Zip 10591 Product New York-based Microgy Cogeneration Systems develops, owns and operates anaerobic digester systems. Coordinates 41.080075°, -73.858649° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.080075,"lon":-73.858649,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

203

Okeelanta Cogeneration Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Okeelanta Cogeneration Biomass Facility Okeelanta Cogeneration Biomass Facility Jump to: navigation, search Name Okeelanta Cogeneration Biomass Facility Facility Okeelanta Cogeneration Sector Biomass Location Palm Beach County, Florida Coordinates 26.6514503°, -80.2767327° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.6514503,"lon":-80.2767327,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

Monetizing stranded gas : economic valuation of GTL and LNG projects.  

E-Print Network [OSTI]

??Globally, there are significant quantities of natural gas reserves that lie economically or physically stranded from markets. Options to monetize such reserves include Gas to… (more)

Black, Brodie Gene, 1986-

2010-01-01T23:59:59.000Z

205

EIA responds to Nature article on shale gas projections  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and...

206

Graphene as the Ultimate Membrane for Gas Separation Project...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Graphene as the Ultimate Membrane for Gas Separation Graphene as the Ultimate Membrane for Gas Separation GraphenePore.jpg Key Challenges: Investigate the permeability and...

207

Cogeneration - prepackaged systems: Tecogen used to fix aborted Firestone job  

SciTech Connect (OSTI)

A new 60-kW Thermo Electron Tecogen cogenerating system that will allow Vallejo, CA residents to use an outdoor pool in winter will also cut the city's heating and electricity costs by about $26,000 a year and have a less than four-year payback. After the project was abandoned by the now defunct Firestone Energy Systems Inc., the contract was awarded to a local firm. Thermo Electron bid its pre-packaged unit for $102,750 installed, with a maintenance offer of two cents per kilowatt hour of generator run-time. The city is contemplating legal action against Firestone.

Maggs, J.

1986-03-03T23:59:59.000Z

208

Cogeneration Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Name Cogeneration Technologies Place Houston, Texas Zip 77070 Sector Biomass, Solar Product Provides efficient systems in the fields of demand management, biofuel, biomass and solar CHP systems. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

209

Table 8. Natural Gas Wellhead Prices, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Wellhead Prices, Projected vs. Actual Natural Gas Wellhead Prices, Projected vs. Actual (current dollars per thousand cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 4.32 5.47 6.67 7.51 8.04 8.57 AEO 1983 2.93 3.11 3.46 3.93 4.56 5.26 12.74 AEO 1984 2.77 2.90 3.21 3.63 4.13 4.79 9.33 AEO 1985 2.60 2.61 2.66 2.71 2.94 3.35 3.85 4.46 5.10 5.83 6.67 AEO 1986 1.73 1.96 2.29 2.54 2.81 3.15 3.73 4.34 5.06 5.90 6.79 7.70 8.62 9.68 10.80 AEO 1987 1.83 1.95 2.11 2.28 2.49 2.72 3.08 3.51 4.07 7.54 AEO 1989* 1.62 1.70 1.91 2.13 2.58 3.04 3.48 3.93 4.76 5.23 5.80 6.43 6.98 AEO 1990 1.78 1.88 2.93 5.36 9.2 AEO 1991 1.77 1.90 2.11 2.30 2.42 2.51 2.60 2.74 2.91 3.29 3.75 4.31 5.07 5.77 6.45 7.29 8.09 8.94 9.62 10.27 AEO 1992 1.69 1.85 2.03 2.15 2.35 2.51 2.74 3.01 3.40 3.81 4.24 4.74 5.25 5.78 6.37 6.89 7.50 8.15 9.05 AEO 1993 1.85 1.94 2.09 2.30

210

Table 11. Natural Gas Net Imports, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Net Imports, Projected vs. Actual Natural Gas Net Imports, Projected vs. Actual (trillion cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 1.19 1.19 1.19 1.19 1.19 1.19 AEO 1983 1.08 1.16 1.23 1.23 1.23 1.23 1.23 AEO 1984 0.99 1.05 1.16 1.27 1.43 1.57 2.11 AEO 1985 0.94 1.00 1.19 1.45 1.58 1.86 1.94 2.06 2.17 2.32 2.44 AEO 1986 0.74 0.88 0.62 1.03 1.05 1.27 1.39 1.47 1.66 1.79 1.96 2.17 2.38 2.42 2.43 AEO 1987 0.84 0.89 1.07 1.16 1.26 1.36 1.46 1.65 1.75 2.50 AEO 1989* 1.15 1.32 1.44 1.52 1.61 1.70 1.79 1.87 1.98 2.06 2.15 2.23 2.31 AEO 1990 1.26 1.43 2.07 2.68 2.95 AEO 1991 1.36 1.53 1.70 1.82 2.11 2.30 2.33 2.36 2.42 2.49 2.56 2.70 2.75 2.83 2.90 2.95 3.02 3.09 3.17 3.19 AEO 1992 1.48 1.62 1.88 2.08 2.25 2.41 2.56 2.68 2.70 2.72 2.76 2.84 2.92 3.05 3.10 3.20 3.25 3.30 3.30 AEO 1993 1.79 2.08 2.35 2.49 2.61 2.74 2.89 2.95 3.00 3.05 3.10

211

Sycamore Cogeneration Company Box 80598, Bakersfield, CA 93380 (661) 615-4630 Neil E. Burgess, Executive Director  

E-Print Network [OSTI]

in Kern County, California. The facility consists of four (4) 75 MW (nominal) natural-gas fired General of the combustion gas turbine units at Sycamore Cogeneration Company in an extended startup mode. The petition Electric Frame 7EA combustion turbines equipped with enhanced Dry Low NOx (DLN1 +) combustors, four (4

212

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects | Department of  

Broader source: Energy.gov (indexed) [DOE]

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects July 17, 2012, Webinar: Landfill Gas-to-Energy Projects July 17, 2012, Webinar: Landfill Gas-to-Energy Projects This webinar, held July 17, 2012, provided information on the challenges and benefits of developing successful community landfill gas-to-energy projects in Will County, Illinois, and Escambia County, Florida. Download the presentations below, watch the webinar (WMV 112 MB) or view the text version. Find more CommRE webinars. Prairie View RDF Gas to Energy Facility: A Public/Private Partnership Will County partnered with Waste Management, using a portion of the county's DOE Energy Efficiency and Conservation Block Grant (EECBG) funding, to develop the Prairie View Recycling and Disposal Facility. A gas purchase agreement was executed in 2010 and the facility became operational

213

SAFETY OF HYDROGEN/NATURAL GAS MIXTURES BY PIPELINES: ANR FRENCH PROJECT HYDROMEL  

E-Print Network [OSTI]

1 SAFETY OF HYDROGEN/NATURAL GAS MIXTURES BY PIPELINES: ANR FRENCH PROJECT HYDROMEL HĂ©brard, J.1 linked with Hydrogen/Natural gas mixtures transport by pipeline, the National Institute of Industrial scenario, i.e. how the addition of a quantity of hydrogen in natural gas can increase the potential

Boyer, Edmond

214

NETL: News Release - DOE Selects New Projects to Enhance Oil and Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

December 8, 2004 December 8, 2004 DOE Selects New Projects to Enhance Oil and Gas Production 35 Projects Contribute to Energy Security, Reduce Greenhouse Gas Emissions WASHINGTON, DC - Secretary of Energy Spencer Abraham today announced the selection of 35 new cost-shared projects that promise to strengthen our nation's energy security and reduce greenhouse emissions. In announcing the awards, Secretary Abraham lauded the wide-ranging projects as "an investment in our future that will benefit the Nation for years to come." The total award value of the new projects is more than $39 million. "President Bush's National Energy Policy calls attention to the continuing need to strengthen our energy security, modernize energy infrastructure, and accelerate the protection and improvement of the environment," Secretary Abraham said. "It also calls for promoting enhanced oil and gas recovery, and improving oil- and gas-exploration technology to increase domestic energy supplies. The new projects meet all of these important national goals."

215

Assessment of the Technical Potential for Micro-Cogeneration...  

Open Energy Info (EERE)

for micro-cogeneration for the commerical sector. Cogeneration is an efficient way to capture waste heat and redirect it. This aides in both energy efficiency measures as well as...

216

Optimal Operation for Cogenerating System of Micro-grid Network  

Science Journals Connector (OSTI)

This paper presents a mathematical model for optimal operating cogeneration of Micro-Grid Network. The electrical and thermal energy production ... solution of Optimal operation for cogenerating system of micro-grid

Phil-Hun Cho; Hak-Man Kim; Myong-Chul Shin…

2005-01-01T23:59:59.000Z

217

Using landfill gas for energy: Projects that pay  

SciTech Connect (OSTI)

Pending Environmental Protection Agency regulations will require 500 to 700 landfills to control gas emissions resulting from decomposing garbage. Conversion of landfill gas to energy not only meets regulations, but also creates energy and revenue for local governments.

NONE

1995-02-01T23:59:59.000Z

218

Assessment of Replicable Innovative Industrial Cogeneration Applications, June 2001  

Broader source: Energy.gov [DOE]

This report provides a market assessment of innovative industrial DG cogeneration systems that are less than 1 MWe.

219

Use of combined-cycle power units at cogeneration plants  

Science Journals Connector (OSTI)

Indices of reconstructed and new cogeneration plants (CPs) using combined cycle units (CCPUs) are considered. The conclusions...

V. M. Batenin; Yu. A. Zeigarnik; V. M. Maslennikov; Yu. L. Shekhter…

2008-12-01T23:59:59.000Z

220

Resurgent Forests Can Be Greenhouse Gas Sponges  

Science Journals Connector (OSTI)

...For example, a group of utilities...Foundation, a group started by the...example, the Klamath Cogeneration Project...plant in Klamath Falls, Oregon...Foundation, a group started by the...example, the Klamath Cogeneration Project...plant in Klamath Falls, Oregon, plans...

Anne Simon Moffat

1997-07-18T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

OpenEI:Projects/Improvements Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Improvements Oil and Gas Improvements Oil and Gas Jump to: navigation, search This page is used to coordinate plans for creating content for the Oil and Gas Gateway. Contents 1 Oil | Energy Basics 2 Oil | General Classification 3 Oil | Uses 3.1 Fuels 3.2 Derivatives 3.3 Agriculture 4 Natural Gas | Energy Basics 5 Natural Gas | General Classification 5.1 Biogas 6 Natural Gas | Uses 6.1 Power Generation 6.2 Domestic Use 6.3 Transportation 6.4 Fertilizers 6.5 Aviation 6.6 Creation of Hydrogen 6.7 Additional Uses 7 State Oil and Gas Boards, Commissions, etc. 8 Federal Statutes, Laws, Regulations related to Oil and Gas 9 International Oil and Gas Boards, Commissions, etc. 10 Private Datasets 11 Oil and Gas Companies 12 Other Notes 12.1 Definitely Helpful 12.2 Possibly Helpful 13 Project Participants Oil | Energy Basics

222

Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission Fourth Quarter 1983  

SciTech Connect (OSTI)

At the end of 1983, the number of signed contracts and letter agreements for cogeneration and small power production projects was 305, with a total estimated nominal capacity of 2,389 MW. Of these totals, 202 projects, capable of producing 566 MW, are operational (Table A). A map indicating the location of operational facilities under contract with PG and E is provided as Figure A. Developers of cogeneration, solid waste, or biomass projects had signed 101 contracts with a potential of 1,408 MW. In total, 106 contracts and letter agreements had been signed with projects capable of producing 1,479 MW. PG and E also had under active discussion 29 cogeneration projects that could generate a total of 402 MW to 444 MW, and 13 solid waste or biomass projects with a potential of 84 MW to 89 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. There were 7 solar projects with signed contracts and a potential of 37 MW, as well as 3 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 28, with a generating capability of 618 MW. Also, discussions were being conducted with 14 wind farm projects, totaling 365 MW. There were 100 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 8 other small wind projects under active discussion. There were 59 hydroelectric projects with signed contracts and a potential of 146 MW, as well as 72 projects under active discussion for 169 MW. In addition, there were 31 hydroelectric projects, with a nominal capacity of 185 MW, that PG and E was planning to construct. Table B displays the above information. In tabular form, in Appendix A, are status reports of the projects as of December 31, 1983.

None

1983-01-01T23:59:59.000Z

223

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project  

Broader source: Energy.gov (indexed) [DOE]

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project October 31, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced a new concentrating solar power (CSP) project led by the Sacramento Municipal Utility District (SMUD). The project will integrate utility-scale CSP technology with SMUD's 500-megawatt (MW) natural gas-fired Cosumnes Power Plant. Supported by a $10 million Energy Department investment, this project will help design, build and test cost-competitive CSP-fossil fuel power generating systems in the United

224

Memphis Light, Gas and Water Division Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Light, Gas and Water Division Smart Grid Project Light, Gas and Water Division Smart Grid Project Jump to: navigation, search Project Lead Memphis Light, Gas and Water Division Country United States Headquarters Location Memphis, Tennessee Recovery Act Funding $5,063,469.00 Total Project Value $13112363 Coverage Area Coverage Map: Memphis Light, Gas and Water Division Smart Grid Project Coordinates 35.1495343°, -90.0489801° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

225

Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission First Quarter 1984  

SciTech Connect (OSTI)

At the end of the First Quarter of 1984, the number of signed contracts and letter agreements for cogeneration and small power production projects was 322, with a total estimated nominal capacity of 2,643 MW. Of these totals, 215 projects, capable of producing 640 MW, are operational. A map indicating the location of operational facilities under contract with PG and E is provided. Developers of cogeneration, solid waste, or biomass projects had signed 110 contracts with a potential of 1,467 MW. In total, 114 contracts and letter agreements had been signed with projects capable of producing 1,508 MW. PG and E also had under active discussion 35 cogeneration projects that could generate a total of 425 MW to 467 MW, and 11 solid waste or biomass projects with a potential of 94 MW to 114 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. There were 7 solar projects with signed contracts and a potential of 37 MW, as well as 5 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 32, with a generating capability of 848 MW. Also, discussions were being conducted with 18 wind farm projects, totaling 490 MW. There were 101 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 6 other small wind projects under active discussion. There were 64 hydroelectric projects with signed contracts and a potential of 148 MW, as well as 75 projects under active discussion for 316 MW. In addition, there were 31 hydroelectric projects, with a nominal capacity of 187 MW, that Pg and E was planning to construct.

None

1984-01-01T23:59:59.000Z

226

Methodological and Practical Considerations for Developing Multiproject Baselines for Electric Power and Cement Industry Projects in Central America  

E-Print Network [OSTI]

energy projects (small hydro and bagasse co-generators) andPCF) in Guatemala for a small hydro project assumes that the

Murtishaw, Scott; Sathaye, Jayant; Galitsky, Christina; Dorion, Kristel

2008-01-01T23:59:59.000Z

227

NETL: News Release - DOE Selects 2 Projects to Expand Natural Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 2, 2000 October 2, 2000 DOE Selects 2 Projects to Expand Natural Gas Development and Use A technology that converts natural gas into liquids and a process that upgrades raw, low-quality natural gas to pipeline quality are the focus of two projects selected by the Department of Energy in a nationwide competition. The projects are valued at approximately $3.2 million, with DOE contributing a little more than $2 million. The Energy Department's National Energy Technology Laboratory, the lead laboratory for fossil energy research and development, will manage the two projects: Praxair of Tarrytown, NY and subcontractor Foster Wheeler Development Corporation, will develop a novel system that processes natural gas into "synthesis gas" - gas that can be chemically recombined into a variety of liquid fuels -- in less time than conventional methods. Featuring a short reaction-time catalyst used with the company's gas-mixing technology, the system requires significantly less energy then conventional synthesis gas manufacturing plants. It also is less costly to build and does not use steam, another cost-saving feature. It could be a major contributor in future technologies to convert remote or otherwise stranded gas supplies into liquid fuels that could be more easily transported to market. Significant quantities of stranded gas are found in Alaska, for example.

228

Finding Hidden Oil and Gas Reserves Project at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Finding Hidden Oil and Gas Finding Hidden Oil and Gas Reserves Finding Hidden Oil and Gas Reserves Key Challenges: Seismic imaging methods, vital in our continuing search for deep offshore oil and gas fields, have a long and established history in hydrocarbon reservoir exploration but the technology has encountered difficulty in discriminating different types of reservoir fluids, such as brines, oil, and gas. Why it Matters: Imaging methods that improve locating and extracting petroleum and gas from the earth by even a few percent can yield enormous payoffs. Geophysical realizations of hydrocarbon reservoirs at unprecedented levels of detail will afford new detection abilities, new efficiencies and new exploration savings by revealing where hydrocarbon deposits reside. Can also be used for improved understanding of potential

229

EIS-0498: Magnolia Liquefied Natural Gas Project, Calcasieu Parish, Louisiana  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission (FERC) is preparing an EIS for a proposal to build and operate a liquefied natural gas (LNG) facility on land at the Port of Lake Charles. DOE is a cooperating agency in preparing the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

230

The Integration of Cogeneration and Space Cooling  

E-Print Network [OSTI]

associated space cool- ing is essentially cost free. FIGURE B In hot and humid climates, both air conditioning and humidity control are required. The thermal out- put of a cogeneration unit provides the heat neces- sary to power an absorption chiller... absorption chiller/heaters are in operation within the U.S.; 10,000 tons are oper- ating in the Gulf Coast, a hot and humid climate area. Cogeneration saw a resurgence in the early 1980s, but its growth was limited mostly to in- dustrial plants...

Phillips, J.

1987-01-01T23:59:59.000Z

231

Abatement of Air Pollution: Greenhouse Gas Emissions Offset Projects (Connecticut)  

Broader source: Energy.gov [DOE]

Projects that either capture and destroy landfill methane, avoid sulfur hexafluoride emissions, sequester carbon through afforestation, provide end-use energy efficiency, or avoid methane emissions...

232

Delivery and viability of landfill gas CDM projects in Africa—A South African experience  

Science Journals Connector (OSTI)

The eThekwini Municipality (Durban, South Africa) landfill gas Clean Development Mechanism (CDM) project was the first to be registered and verified in Africa. The idea for the project was developed in 2002, yet it was not until the end of 2006 that the smaller Component One (1 MW) was registered, while the larger Component Two (9 MW) followed only in March 2009. Valuable lessons were learnt from Component One, and these were applied to Component Two. The paper describes the Durban CDM process, the lessons learnt, and assesses the viability of landfill gas to electricity CDM projects in Africa. It concludes that small to medium sized landfill gas to electricity CDM projects are not viable in Africa unless there is a renewable energy feed-in-tariff, or unless the gas is simply flared rather than being utilised for power generation.

R. Couth; C. Trois; J. Parkin; L.J. Strachan; A. Gilder; M. Wright

2011-01-01T23:59:59.000Z

233

Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission. Second Quarter 1984  

SciTech Connect (OSTI)

At the end of the Second Quarter of 1984, the number of signed contracts and letter agreements for cogeneration and small power production projects was 334, with total estimated nominal capacity of 2,876 MW. Of these totals, 232 projects, capable of producing 678 MW, are operational (Table A). A map indicating the location of operational facilities under contract with PG and E is provided as Figure A. Developers of cogeneration projects had signed 80 contracts with a potential of 1,161 MW. Thirty-three contracts had been signed for solid waste/biomass projects for a total of 298 MW. In total, 118 contracts and letter agreements had been signed with cogeneration, solid waste, and biomass projects capable of producing 1,545 MW. PG and E also had under active discussion 46 cogeneration projects that could generate a total of 688 MW to 770 MW, and 13 solid waste or biomass projects with a potential of 119 MW to 139 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. Two geothermal projects were under active discussion for a total of 2 MW. There were 8 solar projects with signed contracts and a potential of 37 MW, as well as 4 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 34, with a generating capability of 1,042 MW, Also, discussions were being conducted with 23 wind farm projects, totaling 597 MW. There were 100 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 7 other small wind projects under active discussion. There were 71 hydroelectric projects with signed contracts and a potential of 151 MW, as well as 76 projects under active discussion for 505 MW. In addition, there were 18 hydroelectric projects, with a nominal capacity of 193 MW, that PG and E was planning to construct. Table B displays the above information. Appendix A displays in tabular form the status reports of the projects as of June 30, 1984.

None

1984-01-01T23:59:59.000Z

234

Annual Energy Outlook with Projections to 2025 - Market Trends- Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Demand and Supply Natural Gas Demand and Supply Annual Energy Outlook 2005 Market Trends - Natural Gas Demand and Supply Figure 82. Natural gas consumption by sector, 1990-2025 (trillion cubic feet). Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure data Figure 83. Natural gas production by source, 1990-2025 (trillion cubic feet). Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure data Projected Increases in Natural Gas Use Are Led by Electricity Generators In the AEO2005 reference case, total natural gas consumption increases from 22.0 trillion cubic feet in 2003 to 30.7 trillion cubic feet in 2025. In the electric power sector, natural gas consumption increases from 5.0 trillion cubic feet in 2003 to 9.4 trillion cubic feet in 2025 (Figure 82),

235

Project Information Form Project Title Working toward a policy framework for reducing greenhouse gas  

E-Print Network [OSTI]

Provided (by each agency or organization) US DOT $37,874 Total Project Cost $37,874 Agency ID or ContractProject Information Form Project Title Working toward a policy framework for reducing greenhouse of Research Project This white paper is concerned with a preliminary investigation of the extent to which

California at Davis, University of

236

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

renewables, including hydroelectric. For this analysis, itin 2010 and 33% in 2020. Hydroelectric generation follows aGas Cogeneration Hydroelectric New Renewables Existing

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

237

Short Mountain Landfill Gas Recovery Project : Stage 1 Environmental Assessment.  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA), a Federal power marketing agency, has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. BPA`s latest load/resource balance forecast, projects the capability of existing resources to satisfy projected Federal system loads. The forecast indicates a potential resource deficit. The underlying need for action is to satisfy BPA customers` demand for electrical power.

United States. Bonneville Power Administration.

1992-05-01T23:59:59.000Z

238

EIS-0140: Ocean State Power Project, Tennessee Gas Pipeline Company  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission prepared this statement to evaluate potential impacts of construction and operation of a new natural gas-fired, combined-cycle power plant which would be located on a 40.6-acre parcel in the town of Burrillville, Rhode Island, as well as construction of a 10-mile pipeline to transport process and cooling water to the plant from the Blackstone River and a 7.5-mile pipeline to deliver No. 2 fuel oil to the site for emergency use when natural gas may not be available. The Economic Regulatory Administration adopted the EIS on 7/15/1988.

239

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects  

Broader source: Energy.gov (indexed) [DOE]

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012. Recorded Voice: The broadcast is now starting. All attendees are in listen-only mode. Sarah Busche: Hello, everyone. Good afternoon and welcome to today's webinar. This is sponsored by the U.S. Department of Energy. My name is Sarah Busche, and I'm here with Devin Egan, and we're broadcasting live from the National Renewable Energy Laboratory in Golden, Colorado. We're going to give folks

240

NETL: News Release - DOE Selects 2 Projects to Help Boost Gas Flow from  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 15, 2001 August 15, 2001 DOE Selects 2 Projects to Help Boost Gas Flow from Low-Permeability Formations New Technologies Targeted at Future Gas Production From "Tight" Formations in Western U.S. MORGANTOWN, WV - America has vast resources of natural gas, but President Bush's National Energy Policy cautions that domestic production of the easier "conventional" gas could peak as early as 2015. To help prepare for the day when the Nation's increasing demand for clean-burning natural gas will have to be met by gas trapped in denser, more difficult-to-produce "unconventional" formations, the U.S. Department of Energy has selected two firms to develop advanced methods for locating and producing these low permeability gas reservoirs.

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

New York State Electric & Gas Corporation Smart Grid Demonstration Project  

Open Energy Info (EERE)

New York State Electric & Gas Corporation Smart Grid Demonstration Project New York State Electric & Gas Corporation Smart Grid Demonstration Project Jump to: navigation, search Project Lead New York State Electric & Gas Corporation Country United States Headquarters Location Binghamton, New York Recovery Act Funding $29,561,142.00 Total Project Value $125,006,103.00 Coordinates 42.0986867°, -75.9179738° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

242

Greenhouse Gas Emission Trends and Projections in Europe 2009 | Open Energy  

Open Energy Info (EERE)

Greenhouse Gas Emission Trends and Projections in Europe 2009 Greenhouse Gas Emission Trends and Projections in Europe 2009 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Emission Trends and Projections in Europe 2009 Agency/Company /Organization: European Environment Agency Topics: Baseline projection, GHG inventory, Background analysis Resource Type: Maps Website: www.eea.europa.eu/publications/eea_report_2009_9 Country: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Ireland, Romania, Slovakia, Slovenia, Spain, Sweden, United Kingdom UN Region: "Western & Eastern Europe" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

243

High-Efficiency Solar Cogeneration with TPV & Fiber-Optic Daylighting...  

Broader source: Energy.gov (indexed) [DOE]

High-Efficiency Solar Cogeneration with TPV & Fiber-Optic Daylighting High-Efficiency Solar Cogeneration with TPV & Fiber-Optic Daylighting Lead Performer: Creative Light Source,...

244

The Influence of Regulation on the Decision to Cogenerate  

E-Print Network [OSTI]

harming existing and future ratepayers. Discussion will focus on how the existing rules can directly influence the decision to cogenerate. Part One provides a brief history of the Section 23.66 rules. Part Two discusses the pricing methodology... on the decision to cogenerate. A discussion of the problems that may arise from traditional cost allocation methodologies for the design of standby rates is also provided. INTRODUCTION A large amount of industrial cogeneration capacity is availabl e...

King, J. L. II

245

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

significant challenge for solar thermal energy generation issolar thermal, cogeneration of electrical and thermal energy,for efficient energy production. Solar thermal plants, such

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

246

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration.  

E-Print Network [OSTI]

??A solar tracker and concentrator was designed and assembled for the purpose of cogeneration of thermal power and electrical power using thermoelectric technology. A BiTe… (more)

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

247

Alternate Energy Production, Cogeneration, and Small Hydro Facilities (Indiana)  

Broader source: Energy.gov [DOE]

This legislation aims to encourage the development of alternative energy, cogeneration, and small hydropower facilities. The statute requires utilities to enter into long-term contracts with these...

248

Identifying Energy Systems that Maximize Cogeneration Savings  

E-Print Network [OSTI]

the method of Lagrange mult1pl1ers: 120 ESL-IE-88-09-24 Proceedings from the Tenth Annual Industrial Energy Technology Conference, Houston, TX, September 13-15, 1988 aV/akW, + ~at1/akW1 ~ 0 (4) aO p/HR p1 a01 /HR c1 (11 ) aV/ aO p 1 + ~1 at2/aOp1 o (5...Igure 5 Indicates t e incremental cogeneratIon power cost trends for dependent cogeneratIon systems. for these systems the maxlmum benef1ts are achleved at condlt1on (11). The process heat to power ratio 1s constant, and thus, sIte cogenerat1on...

Ahner, D. J.

249

Experience gained in a number of countries from using thermal power stations equipped with diesel and gas engines  

Science Journals Connector (OSTI)

Large-capacity thermal power stations and customer’s cogeneration stations equipped with diesel and gas engines, and their technical-economic and cost...

A. A. Salamov

2007-02-01T23:59:59.000Z

250

DOE - Office of Legacy Management -- Project Gas Buggy Site - NM 14  

Office of Legacy Management (LM)

Gas Buggy Site - NM 14 Gas Buggy Site - NM 14 FUSRAP Considered Sites Site: Project Gas Buggy Site (NM.14 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Gasbuggy, New Mexico, Site Nevada Test Site History Documents Related to Project Gas Buggy Site Fact Sheet Gasbuggy, New Mexico The Gasbuggy Site is located in northwestern New Mexico in Rio Arriba County approximately 55 miles east of the city of Farmington and approximately 12 miles southwest of Dulce, New Mexico, in the Carson National Forest. Floodplains and Wetlands Survey Results for the Gasbuggy and Gnome-Coach Sites, New Mexico, December 1993.

251

EPRI Cogeneration Models -- DEUS and COPE  

E-Print Network [OSTI]

process thermal requirement; under the user-specified-megawatt size, capacity matches both the specified electrical output and the maximum process needs. The third phase matches the steam and energy load profiles by dispatching the required... cogeneration units for both a thermal matched dispatch and an economic dispatch. A thermal dispatch is performed for therrnal-match size plants and an economic dispatch is performed for user-specified-MW-size plants. Under a thermal dispatch, the plant...

Mauro, R.; Hu, S. D.

1983-01-01T23:59:59.000Z

252

Cogeneration Systems for Powering and Cooling Data Centers: The Green Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cogeneration Systems for Powering and Cooling Data Centers: The Green Data Cogeneration Systems for Powering and Cooling Data Centers: The Green Data Center at Syracuse University Speaker(s): Dustin W. Demetriou Date: October 28, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: William Tschudi In the near future, nearly 30 percent of data centers will run out of space, power or cooling capacity. The demand for these resources has brought energy efficiency to the forefront and driven creative thinking when considering data center construction. Syracuse University, IBM and GEM Energy opened a state-of-the-art data center composed of several innovative features that promised to reduce primary energy consumption by as much as 50 percent compared to a conventional utility-powered data center. Much of the advantage stems from the use of an on-site natural gas

253

NETL: Oil & Natural Gas Projects: Alaska Heavy Oils  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fluid and Rock Property Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12/20/2012 Fluid and Rock Property Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12/20/2012 DE-NT0005663 Goal The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formationÂ’s vertical and lateral heterogeneities via core evaluation, evaluating possible recovery processes, and employing geophysical monitoring to assess production and modify production operations. Performers Colorado School of Mines, Golden, CO 80401 University of Houston, Houston, TX 77204 Earthworks, Newtown, CT 06470 BP, Anchorage, AK 99519 Background Although the reserves of heavy oil on the North Slope of Alaska are enormous (estimates are up to 10 billion barrels in place), difficult

254

Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission Second Quarter 1983  

SciTech Connect (OSTI)

In the Second Quarter of 1983, the number of signed contracts and committed projects rose from 223 to 240, with a total estimated nominal capacity of these projects of 1,449 MW. Of this nominal capacity, about 361 MW is operational, and the balance is under contract for development. A map indicating the location of currently operating facilities is provided as Figure A. Of the 240 signed contracts and committed projects, 75 were cogeneration, solid waste, or biomass projects with a potential of 740 MW. PG and E also had under active discussion 32 cogeneration projects that could generate a total of 858 MW to 921 MW, and 10 solid waste/biomass projects with a potential of 113 MW to 121 MW. Two contracts have been signed with geothermal projects, capable of producing 83 MW. There are 6 solar projects with signed contracts and a potential of 36 MW, as well as another solar project under active discussion for 30 MW. Wind farm projects under contract number 19, with a generating capability of 471 MW. Also, discussions are being conducted with 12 wind farm projects, totaling 273 to 278 MW. There are 89 wind projects of 100 kW or less with signed contracts and a potential of almost 1 MW, as well as 10 other projects under active discussion. There are 47 hydroelectric projects with signed contracts and a potential of 110 MW, as well as 65 projects under active discussion for 175 MW. In addition, there are 30 hydroelectric projects, with a nominal capacity of 291 MW, that PG and E is constructing or planning to construct. Table A displays the above information. In tabular form, in Appendix A, are status reports of the projects as of June 30, 1983.

None

1983-01-01T23:59:59.000Z

255

Electric co-generation units equipped with wood gasifier and Stirling engine  

SciTech Connect (OSTI)

The disposal of industrial waste such as oil sludges, waste plastic, lubricant oils, paper and wood poses serious problems due to the ever increasing amount of material to be disposed of and to the difficulty in finding new dumping sites. The interest in energy recovery technologies is accordingly on the increase. In particular, large amounts of waste wood are simply burned or thrown away causing considerable environmental damage. In this context the co-generation technique represents one of the possible solutions for efficient energy conversion. The present paper proposes the employment of a Stirling engine as prime mover in a co-generation set equipped with a wood gasifier. A Stirling engine prototype previously developed in a joint project with Mase Generators, an Italian manufacturer of fixed and portable electrogenerators, is illustrated and its design is described.

Bartolini, C.M.; Caresana, F.; Pelagalli, L.

1998-07-01T23:59:59.000Z

256

Optimal Gas Turbine Integration to the Process Industries  

Science Journals Connector (OSTI)

Gas turbine integration can also help cut down flue gas emissions as a result of the improved efficiency of a cogeneration system. ... The aeroderivative turbines have higher efficiency than the industrial type, but they are more expensive. ...

Jussi Manninen; X. X. Zhu

1999-09-28T23:59:59.000Z

257

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas activity: a west of Shetland case study industry and government identified sponge grounds in areas of interest to the oil and gas sector

Henderson, Gideon

258

Table 10. Natural Gas Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Production, Projected vs. Actual Production, Projected vs. Actual (trillion cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 14.74 14.26 14.33 14.89 15.39 15.88 AEO 1983 16.48 16.27 16.20 16.31 16.27 16.29 14.89 AEO 1984 17.48 17.10 17.44 17.58 17.52 17.32 16.39 AEO 1985 16.95 17.08 17.11 17.29 17.40 17.33 17.32 17.27 17.05 16.80 16.50 AEO 1986 16.30 16.27 17.15 16.68 16.90 16.97 16.87 16.93 16.86 16.62 16.40 16.33 16.57 16.23 16.12 AEO 1987 16.21 16.09 16.38 16.32 16.30 16.30 16.44 16.62 16.81 17.39 AEO 1989* 16.71 16.71 16.94 17.01 16.83 17.09 17.35 17.54 17.67 17.98 18.20 18.25 18.49 AEO 1990 16.91 17.25 18.84 20.58 20.24 AEO 1991 17.40 17.48 18.11 18.22 18.15 18.22 18.39 18.82 19.03 19.28 19.62 19.89 20.13 20.07 19.95 19.82 19.64 19.50 19.30 19.08 AEO 1992 17.43 17.69 17.95 18.00 18.29 18.27 18.51 18.75 18.97

259

Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission Third Quarter 1983  

SciTech Connect (OSTI)

In the Third Quarter of 1983, the number of signed contracts and committed projects rose from 240 to 258, with a total estimated nominal capacity of these projects of 1,547 MW. Of this nominal capacity, about 416 MW is operational, and the balance is under contract for development. A map indicating the location of operational facilities under contract with PG and E is provided. Of the 258 signed contracts and committed projects, 83 were cogeneration, solid waste, or biomass projects with a potential of 779 MW. PG and E also had under active discussion 38 cogeneration projects that could generate a total of 797 MW to 848 MW, and 19 solid waste/biomass projects with a potential of 152 MW to 159 MW. Two contracts have been signed with geothermal projects, capable of producing 83 MW. There are 6 solar projects with signed contracts and a potential of 36 MW, as well as 3 solar projects under active discussion for 31 MW. Wind farm projects under contract number 21, with a generating capability of 528 MW. Also, discussions are being conducted with 17 wind farm projects, totaling 257 to 262 MW. There are 94 wind projects of 100 kW or less with signed contracts and a potential of almost 1 MW, as well as 8 other small wind projects under active discussion. There are 50 hydroelectric projects with signed contracts and a potential of 112 MW, as well as 67 projects under active discussion for 175 MW. In addition, there are 31 hydroelectric projects, with a nominal capacity of 185 MW, that PG and E is planning to construct.

None

1983-01-01T23:59:59.000Z

260

Research Projects Addressing Technical Challenges to Environmentally Acceptable Shale Gas Development Selected by DOE  

Broader source: Energy.gov [DOE]

Fifteen research projects aimed at addressing the technical challenges of producing natural gas from shales and tight sands, while simultaneously reducing environmental footprints and risks, have been selected to receive a total of $28 million in funding from the U.S. Department of Energy’s Office of Fossil Energy.

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Project 35013 Species-and Site-specific Impacts of Gas Supersaturation on Aquatic Animals  

E-Print Network [OSTI]

three species tend to be bottom oriented and deep water species, and most TDG effects are in the upperProject 35013 Species- and Site-specific Impacts of Gas Supersaturation on Aquatic Animals Sponsor in the river?" The proposal was submitted primarily at the request of the state water quality agencies

262

NETL: News Release - DOE Selects Projects to Improve 'Stripper' Gas Well  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June 13, 2000 June 13, 2000 DOE Selects Project to Improve 'Stripper' Gas Well Economics By Using Low-Cost Clean Coal Product to Filter Waste Water In its third and final round of competition for projects that can help sustain natural gas production from "stripper" wells, the U.S. Department of Energy has selected a proposal to test a coal-based filtering material that could sharply reduce the costs of disposing of waste water from these low-volume wells. The Western SynCoal Clean Coal Plant The Rosebud SynCoal® demonstration plant near Colstrip, Montana, was built in DOE's Clean Coal Technology Program. Its upgraded coal product, originally intended as a high quality fuel for power plants, may also be a low cost filter material for oil and gas well waste water.

263

Alternative fuels for industrial gas turbines (AFTUR)  

Science Journals Connector (OSTI)

Environmentally friendly, gas turbine driven co-generation plants can be located close to energy consumption sites, which can produce their own fuel such as waste process gas or biomass derived fuels. Since gas turbines are available in a large power range, they are well suited for this application. Current gas turbine systems that are capable of burning such fuels are normally developed for a single specific fuel (such as natural gas or domestic fuel oil) and use conventional diffusion flame technology with relatively high levels of \\{NOx\\} and partially unburned species emissions. Recently, great progress has been made in the clean combustion of natural gas and other fossil fuels through the use of dry low emission technologies based on lean premixed combustion, particularly with respect of \\{NOx\\} emissions. The objective of the AFTUR project is to extend this capability to a wider range of potentially commercial fuel types, including those of lower calorific value produced by gasification of biomass (LHV gas in line with the European Union targets) and hydrogen enriched fuels. The paper reports preliminary progress in the selection and characterisation of potential, liquid and gas, alternative fuels for industrial gas turbines. The combustion and emission characteristics of the selected fuels will be assessed, in the later phases of the project, both in laboratory and industrial combustion chambers.

Iskender Gökalp; Etienne Lebas

2004-01-01T23:59:59.000Z

264

An experimental investigation of CI engine operated micro-cogeneration system for power and space cooling  

Science Journals Connector (OSTI)

Abstract This paper describes the performance and emission characteristics of a micro cogeneration system based on a single cylinder diesel engine. In this cogeneration system, in addition to the electricity generated from the genset, waste heat from hot exhaust gas of diesel engine was used to drive a combination of four units of Electrolux vapor absorption (VA) system for space cooling. The capacity and heat input of each unit of VA system was 51 l and 95 W respectively. A cabin of 900 mm width, 1500 mm length and 1800 mm height made of ply wood was fabricated as a space for air conditioning. A temperature drop of 5 °C was obtained in cabin at full engine load about 6 h after system start up. The reduction of CO2 emission in kg per kWh of useful energy output was 19.49% compared to that of single generation (power generation only) at full load. The decrease in specific fuel consumption in case of cogeneration compared to that in single generation was 2.95% at full load. The test results show that micro capacity (3.7 kW) stationary single cylinder diesel engine can be successfully modified to simultaneously produce power and space cooling.

Rahul Goyal; Dilip Sharma; S.L. Soni; Pradeep Kumar Gupta; Dheeraj Johar

2015-01-01T23:59:59.000Z

265

250 MW single train CFB cogeneration facility. Annual report, October 1993--September 1994  

SciTech Connect (OSTI)

This Technical Progress Report (Draft) is submitted pursuant to the Terms and Conditions of Cooperative Agreement No. DE-FC21-90MC27403 between the Department of Energy (Morgantown Energy Technology Center) and York County Energy Partners, L.P. a wholly owned project company of Air Products and Chemicals, Inc. covering the period from January 1994 to the present for the York County Energy Partners CFB Cogeneration Project. The Technical Progress Report summarizes the work performed during the most recent year of the Cooperative Agreement including technical and scientific results.

NONE

1995-02-01T23:59:59.000Z

266

Cogeneration- The Rest of the Story  

E-Print Network [OSTI]

. Consequently, use of avera~e steam demand can be extremely misleading, yet IS often used in economic justification. An hour-by-hour steam simulation will provide a proper and conservative assessment. - Fuel Price Switch: Some proposals roll in a fuel... price switch and imply that this lower fuel price could not be obtained any other y. Be sure to ask the fuel supplier (or other fuel suppliers) if this is true. Otherwise, a lower price fuel could hide poor cogeneration economies in with fuel price...

Gilbert, J. S.

267

JV 38-APPLICATION OF COFIRING AND COGENERATION FOR SOUTH DAKOTA SOYBEAN PROCESSORS  

SciTech Connect (OSTI)

Cogeneration of heat and electricity is being considered by the South Dakota Soybean Processors for its facility in Volga, South Dakota, and a new facility to be located in Brewster, Minnesota. The Energy & Environmental Research Center has completed a feasibility study, with 40% funding provided from the U.S. Department of Energy's Jointly Sponsored Research Program to determine the potential application of firing biomass fuels combined with coal and comparative economics of natural gas-fired turbines. Various biomass fuels are available at each location. The most promising options based on availability are as follows. The economic impact of firing 25% biomass with coal can increase return on investment by 0.5 to 1.5 years when compared to firing natural gas. The results of the comparative economics suggest that a fluidized-bed cogeneration system will have the best economic performance. Installation for the Brewster site is recommended based on natural gas prices not dropping below a $4.00/MMBtu annual average delivered cost. Installation at the Volga site is only recommended if natural gas prices substantially increase to $5.00/MMBtu on average. A 1- to 2-year time frame will be needed for permitting and equipment procurement.

Darren D. Schmidt

2002-11-01T23:59:59.000Z

268

NETL: Methane Hydrates - DOE/NETL Projects - Natural Gas Hydrates in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The National Methane Hydrates R&D Program The National Methane Hydrates R&D Program DOE/NETL Methane Hydrate Projects Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 DE-FE0002911 Goal The objective of this DOE-USGS Interagency Agreement is to provide world-class expertise and research in support of the goals of the 2005 Energy Act for National Methane Hydrates R&D, the DOE-led U.S. interagency roadmap for gas hydrates research, and elements of the USGS mission related to energy resources, global climate, and geohazards. This project extends USGS support to the DOE Methane Hydrate R&D Program previously conducted under DE-AI26-05NT42496. Performer U.S. Geological Survey at Woods Hole, MA, Denver, CO, and Menlo Park, CA

269

Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission Third Quarter - September 1982  

SciTech Connect (OSTI)

In the Third Quarter of 1982, the number of signed contracts and committed projects rose from 148 to 173, with a total estimated nominal capacity of these projects of 922 MW. Of this nominal capacity, about 168 MW is operational, and the balance is under contract for development. Of the 173 signed contracts and committed projects, 61 were cogeneration and solid waste projects with a potential of 643 MW. PG and E also had under active discussion 28 cogeneration projects that could generate a total of 968 MW to 1,049 MW, and 10 solid waste projects with a potential of 90 MW to 95 MW. Wind projects under contract number 84, with a generating capability of 85 MW. Also, discussions are being conducted with 17 wind projects, totaling 83 MW. There are 23 hydroelectric projects with signed contracts and a potential of 95 MW, as well as 63 projects under active discussion for 169 MW. In addition, there are 25 hydroelectric projects, with a nominal capacity of 278 MW, that PG and E is constructing or planning to construct. Five contracts have been signed with projects, using other types of electric power generation, capable of producing 100 MW.

None

1982-09-01T23:59:59.000Z

270

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Quantifying the role of groundwater in hydrocarbon systems using noble gas  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Quantifying the role of groundwater in hydrocarbon systems using noble gas isotopes (EARTH-15-CB1) Host institution biodegradation of oil can remove its value ­ but what controls the biodegradation? The deep biosphere plays a key

Henderson, Gideon

271

NETL: Methane Hydrates - DOE/NETL Projects - Natural Gas Hydrates in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 DE-FE0002911 Goal The objective of this DOE-USGS Interagency Agreement is to provide world-class expertise and research in support of the goals of the 2005 Energy Act for National Methane Hydrates R&D, the DOE-led U.S. interagency roadmap for gas hydrates research, and elements of the USGS mission related to energy resources, global climate, and geohazards. This project extends USGS support to the DOE Methane Hydrate R&D Program previously conducted under DE-AI26-05NT42496. Performer U.S. Geological Survey at Woods Hole, MA, Denver, CO, and Menlo Park, CA Background The USGS Interagency Agreement (IA) involves laboratory research and

272

NETL: Methane Hydrates - DOE/NETL Projects - Estimate Gas-Hydrate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 DE-FC26-06NT42959 Goal The goal of this project is to evaluate the direct-current electrical resistivity (DCR) method for remotely detecting and characterizing the concentration of gas hydrates in the deep marine environment. This will be accomplished by adapting existing DCR instrumentation for use on the sea floor in the deep marine environment and testing the new instrumentation at Mississippi Canyon Block 118. Performer Baylor University, Waco, TX 76798 Collaborators Advanced Geosciences Inc., Austin, TX 78726 Specialty Devices Inc., Wylie, TX 75098 Background Marine occurrences of methane hydrates are known to form in two distinct

273

NETL: Methane Hydrates - DOE/NETL Projects - Mapping Permafrost and Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mapping Permafrost and Gas Hydrate using Marine Controlled Source Electromagnetic Methods (CSEM) Last Reviewed 12/18/2013 Mapping Permafrost and Gas Hydrate using Marine Controlled Source Electromagnetic Methods (CSEM) Last Reviewed 12/18/2013 DE-FE0010144 Goal The objective of this project is to develop and test a towed electromagnetic source and receiver system suitable for deployment from small coastal vessels to map near-surface electrical structure in shallow water. The system will be used to collect permafrost data in the shallow water of the U.S. Beaufort Inner Shelf at locations coincident with seismic lines collected by the U.S. Geological Survey (USGS). The electromagnetic data will be used to identify the geometry, extent, and physical properties of permafrost and any associated gas hydrate in order to provide a baseline for future studies of the effects of any climate-driven dissociation of

274

Western Gas Sands Project. Status report, 1 March-31 March 1980  

SciTech Connect (OSTI)

The March, 1980 progress of the government-sponsored projects directed towards increasing gas production from the low permeability gas sands of the western United States is summarized in this report. A site for the multi-well experiment was approved by the industry review committee; drilling is expected by mid-summer. Bartlesville Energy Technology Center continued work on fracture conductivity, rock/fluid interaction, and log evaluation and interpretation techniques. Lawrence Livermore Laboratory continued experimental and theoretical work on hydraulic fracturing mechanics and analysis of well test data. Analysis of data obtained from a test of the borehole seismic unit by Sandia Laboratories continued. The DOE Well Test Facility continued bottom-hole pressure buildup measurements at the Colorado Interstate Gas Company Miller No. 1 well.

Not Available

1980-01-01T23:59:59.000Z

275

NETL: News Release - Projects Selected to Boost Unconventional Oil and Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7, 2010 7, 2010 Projects Selected to Boost Unconventional Oil and Gas Resources Simulation and Visualization Tools, CO2 Enhanced Oil Recovery Targeted for Advancement Washington, D.C. - Ten projects focused on two technical areas aimed at increasing the nation's supply of "unconventional" fossil energy, reducing potential environmental impacts, and expanding carbon dioxide (CO2) storage options have been selected for further development by the U.S. Department of Energy (DOE). The projects include four that would develop advanced computer simulation and visualization capabilities to enhance understanding of ways to improve production and minimize environmental impacts associated with unconventional energy development; and six seeking to further next generation CO2 enhanced oil recovery (EOR) to the point where it is ready for pilot (small) scale testing.

276

Small Power Production and Cogeneration (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Small Power Production and Cogeneration (Maine) Small Power Production and Cogeneration (Maine) Small Power Production and Cogeneration (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Generating Facility Rate-Making Provider Maine Public Utilities Commission Maine's Small Power Production and Cogeneration statute says that any small

277

Cogeneration Personal Property Tax Credit (District of Columbia) |  

Broader source: Energy.gov (indexed) [DOE]

Cogeneration Personal Property Tax Credit (District of Columbia) Cogeneration Personal Property Tax Credit (District of Columbia) Cogeneration Personal Property Tax Credit (District of Columbia) < Back Eligibility Commercial Industrial Residential Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Solar Heating & Cooling Heating Program Info Start Date 07/25/2012 State District of Columbia Program Type Property Tax Incentive Rebate Amount 100% exemption Provider Energy Division The District of Columbia Council created a personal property tax exemption for solar energy systems and cogeneration systems within the District by enacting B19-0749 in December of 2012. Eligible solar systems Solar energy is defined by D.C. Code § 34-1431 to mean "radiant energy, direct, diffuse, or reflected, received from the sun

278

Cogeneration (Chp) as Alternative Energy Production To Ecological Neighborhoods  

Science Journals Connector (OSTI)

In addition to this, CHP is the key to reducing emissions. According...Boston Consulting Group (BCG) [2], cogeneration saved over 13 million t of CO2 in Spain in 2008, which represents 3.2?% of nati...

I. Calama

2014-01-01T23:59:59.000Z

279

An Assessment of Industrial Cogeneration Potential in Pennsylvania  

E-Print Network [OSTI]

such as atmospheric fluidized bed combustion, coal-gasification combined cycles, fuel cells and bottoming cycles were analyzed in addition to the economic assessment of conventional cogeneration systems; Industry-specific rates of market penetration were developed...

Hinkle, B. K.; Qasim, S.; Ludwig, E. V., Jr.

1983-01-01T23:59:59.000Z

280

Co-Generation at a Practical Plant Level  

E-Print Network [OSTI]

The Steam Turbine: A basic description of how a steam turbine converts available heat into mechanical energy to define the formulae used for the cost comparisons in the subsequent examples. Co-Generation: Comparison between condensing cycle...

Feuell, J.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Urban Integrated Industrial Cogeneration Systems Analysis. Phase II final report  

SciTech Connect (OSTI)

Through the Urban Integrated Industrial Cogeneration Systems Analysis (UIICSA), the City of Chicago embarked upon an ambitious effort to identify the measure the overall industrial cogeneration market in the city and to evaluate in detail the most promising market opportunities. This report discusses the background of the work completed during Phase II of the UIICSA and presents the results of economic feasibility studies conducted for three potential cogeneration sites in Chicago. Phase II focused on the feasibility of cogeneration at the three most promising sites: the Stockyards and Calumet industrial areas, and the Ford City commercial/industrial complex. Each feasibility case study considered the energy load requirements of the existing facilities at the site and the potential for attracting and serving new growth in the area. Alternative fuels and technologies, and ownership and financing options were also incorporated into the case studies. Finally, site specific considerations such as development incentives, zoning and building code restrictions and environmental requirements were investigated.

Not Available

1984-01-01T23:59:59.000Z

282

Evaluating Benefits with Independent and Cogenerated Power Production  

E-Print Network [OSTI]

of "stakeholders", (e.g. IPP's, ?cogenerators, industrial hosts, utility shareholders and rate payers), and additional technical issues (e.g. generation dispatch, transmission, wheeling, etc.) associated with independent power generation. This paper...

Ahner, D. J.

283

Economic Efficiency of a Power Unit Adapted to Cogeneration  

Science Journals Connector (OSTI)

This chapter presents a number of alternatives concerning economic analysis of power unit with the rated capacity of 370 MW operating in cogeneration for case of feeding heaters from A2 and A3 extractions of t...

Ryszard Bartnik; Zbigniew Buryn

2011-01-01T23:59:59.000Z

284

Simulation of an Industrial Rankine Cycle Cogeneration Plant  

E-Print Network [OSTI]

and transient loads and the resulting interactions between system components may be assessed. A thermal energy system simulation code is utilized and expanded to predict the performance of an industrial Rankine cycle (steam turbine) cogeneration plant having...

Carattie, G.; Wepfer, W. J.

1984-01-01T23:59:59.000Z

285

Cogeneration systems and processes for treating hydrocarbon containing formations  

DOE Patents [OSTI]

A system for treating a hydrocarbon containing formation includes a steam and electricity cogeneration facility. At least one injection well is located in a first portion of the formation. The injection well provides steam from the steam and electricity cogeneration facility to the first portion of the formation. At least one production well is located in the first portion of the formation. The production well in the first portion produces first hydrocarbons. At least one electrical heater is located in a second portion of the formation. At least one of the electrical heaters is powered by electricity from the steam and electricity cogeneration facility. At least one production well is located in the second portion of the formation. The production well in the second portion produces second hydrocarbons. The steam and electricity cogeneration facility uses the first hydrocarbons and/or the second hydrocarbons to generate electricity.

Vinegar, Harold J. (Bellaire, TX); Fowler, Thomas David (Houston, TX); Karanikas, John Michael (Houston, TX)

2009-12-29T23:59:59.000Z

286

Utility & Regulatory Factors Affecting Cogeneration & Independent Power Plant Design & Operation  

E-Print Network [OSTI]

UTILITY & REGULATORY FACTORS AFFECTiNG COGENERATION & INDEPENDENT POWER PLANT DESIGN & OPERATION Richard P. Felak General Electric Company Schenectady, New York ABSTRACT In specifying a cogeneration or independent power plant, the owner... should be especially aware of the influences which electric utilities and regulatory bodies will have on key parameters such as size, efficiency, design. reliability/ availabilitY, operating capabilities and modes, etc. This paper will note examples...

Felak, R. P.

287

A Texas project illustrates the benefits of integrated gasification  

SciTech Connect (OSTI)

Gasification can be an attractive option for converting a variety of petroleum feedstocks to chemicals. Natural gas is commonly sued to produce acetic acid, isocyanates, plastics, and fibers. But low-cost, bottom-of-the-barrel feeds, such as vacuum resid, petroleum coke, and asphaltenes, also can be used. In any case, gasification products include synthesis gas, carbon monoxide, hydrogen, steam, carbon dioxide, and power. The more a gasification facility is integrated with utilities and other non-core operations of a production complex, the more economical the products are for all consumers. The paper discusses gasification of natural gas, light hydrocarbons (ethane, propanes, and butanes), and heavy hydrocarbons (distillates, heavy residues, asphalts, coals, petroleum coke). The paper then describes a Texas City Gasification Project, which gasifies methane to produce carbon monoxide, hydrogen, and alcohol. The plant is integrated with a cogeneration plant. Economics are discussed.

Philcox, J. [Praxair Inc., Houston, TX (United States); Fenner, G.W. [Praxair Inc., Tonawanda, NY (United States)

1997-07-14T23:59:59.000Z

288

San Diego Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

and Electric Company and Electric Company Country United States Headquarters Location San Diego, California Recovery Act Funding $28115052 Total Project Value $59427645 Coverage Area Coverage Map: San Diego Gas and Electric Company Smart Grid Project Coordinates 32.7153292°, -117.1572551° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

289

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect (OSTI)

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

290

Absorption chiller optimization and integration for cogeneration and engine-chiller systems. Phase 1 - design. Topical report, April 1985-July 1986  

SciTech Connect (OSTI)

A market study indicates a significant market potential for small commercial cogeneration (50-500 kW) over the next 20 years. The potential exists for 1500 installations per year, 80% of those would be a system composed of Engine-Generator and Heat Recovery Unit with the remainder requiring the addition of an Absorption Chiller. A preliminary design for an advanced Heat Recovery Unit (HRU) was completed. The unit incorporates the capability of supplementary firing of the exhaust gas from the new generation of natural gas fired lean burn reciprocating engines being developed for cogeneration applications. This gives the Heat Recovery Unit greater flexibility in following the thermal load requirements of the building. An applications and design criteria analysis indicated that this was a significant feature for the HRU as it can replace a standard auxiliary boiler thus affording significant savings to the building owner. A design for an advanced absorption chiller was reached which is 15% lower in cost yet 9% more efficient than current off-the-shelf units. A packaged cogeneration system cost and design analysis indicates that a nominal 254 kW cogeneration system incorporating advanced components and packaging concepts can achieve a selling price of less than $880/kW and $700/kW with and without an absorption chiller.

Kubasco, A.J.

1986-07-01T23:59:59.000Z

291

High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests  

SciTech Connect (OSTI)

As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

Duffy, T.; Schneider, P.

1996-01-01T23:59:59.000Z

292

Western Gas Sands Project, status report, October-November-December 1981  

SciTech Connect (OSTI)

This WGSP Quarterly Report summarizes the progress of government-sponsored projects aimed at recovering gas from low permeability gas sands in the Western United States during October, November and December 1981. CK GeoEnergy released the final report for Development of Techniques for Optimizing Selection and Completion of Western Gas Sands. For CER's Reservoir Simulation Model Development, primary emphasis during the quarter was placed on extending the previous work to include effects of massive hydraulic fractures intersecting multiple lenses. During the quarter, the University of Oklahoma completed the two-dimensional reservoir simulator for BETC. A simplified two-dimensional hydraulic fracturing model is being developed by LLL. A major activity this quarter at Los Alamos was redesigning the NMR receiver system, making it capable of being repackaged for downhole use. Sandia summarizes the analysis of five saturated rock samples that were measured for dielectric constant. The drilling, coring, logging and casing of MWX-1 was accomplished this quarter; quality of output, mainly core, core data and logs, has been good.

Crawley, A.; Atkinson, C.H.

1982-07-01T23:59:59.000Z

293

Flexible approach to the Italian cogeneration market  

SciTech Connect (OSTI)

Demand for energy is growing in Italy under new regulations issued by the Italian government in 1991 and 1992. While the national electrical authority, ENEL, is in the process of being privatized, independent power producers (IPPs) and several companies using large amounts of energy in their production processes have been active in setting up cogeneration and combined-cycle plants based purely on economics. In order to minimize emissions and make best use of fuel energy, the law commonly known as CIP 6/92 states that ENEL will grant a premium rate for electric power handled to the national grid from plants having an annual `energetic index` above 0.6, i.e., an efficiency higher than 60% measured over a one-year period. In order to benefit from the high rates granted by the law, it is necessary to build very efficient plants. Very high reliability is also required so the plan can operate at full load the year around, with only short stops for planned maintenance. This paper describes the activities of the major manufacturers of turbines in Italy.

Chellini, R.

1996-01-01T23:59:59.000Z

294

Ecatepec Cogeneration Project, Mexico City. Final report. Export trade information  

SciTech Connect (OSTI)

;Table of Contents: Introduction; Task 1 - System Selection and Interconnection; Task 2 - Economic and Financial Analysis; Task 3 - Environmental Issues, Permits, and Compliance; Task 4 - Preliminary Engineering Scope Book; Task 5 - Criteria for and Selection of EPC Contractor; Task 6 - Implement Financing Plan/Prepare Offering Memorandum; Appendices (Invoice History; Capital Cost Estimates; SEMIP Application; Application Supplement List; Development Agreement; CFE/LyFC Pricing Methodology; EPC Bid Specifications and Drawings; Environmental Information for Permits).

NONE

1996-05-01T23:59:59.000Z

295

SRS Marks Successful Operational Startup of New Biomass Cogeneration  

Broader source: Energy.gov (indexed) [DOE]

SRS Marks Successful Operational Startup of New Biomass SRS Marks Successful Operational Startup of New Biomass Cogeneration Facility SRS Marks Successful Operational Startup of New Biomass Cogeneration Facility March 12, 2012 - 12:00pm Addthis Media Contacts Amy Caver (803) 952-7213 March 12, 2012 amy.caver@srs.gov CarolAnn Hibbard, (508) 661-2264 news@ameresco.com AIKEN, S.C. - Today, Under Secretary of Energy Thomas D'Agostino joined U.S. Representative Joe Wilson (R-SC) and other senior officials from the Department of Energy (DOE) and Ameresco, Inc.NYSE:AMRC), a leading energy efficiency and renewable energy company, to mark the successful operational startup of a new $795M renewable energy fueled facility at the Savannah River Site (SRS). The 34-acre SRS Biomass Cogeneration Facility is the culmination of

296

SRS Marks Successful Operational Startup of New Biomass Cogeneration  

Broader source: Energy.gov (indexed) [DOE]

SRS Marks Successful Operational Startup of New Biomass SRS Marks Successful Operational Startup of New Biomass Cogeneration Facility SRS Marks Successful Operational Startup of New Biomass Cogeneration Facility March 12, 2012 - 12:00pm Addthis Media Contacts Amy Caver (803) 952-7213 March 12, 2012 amy.caver@srs.gov CarolAnn Hibbard, (508) 661-2264 news@ameresco.com AIKEN, S.C. - Today, Under Secretary of Energy Thomas D'Agostino joined U.S. Representative Joe Wilson (R-SC) and other senior officials from the Department of Energy (DOE) and Ameresco, Inc.NYSE:AMRC), a leading energy efficiency and renewable energy company, to mark the successful operational startup of a new $795M renewable energy fueled facility at the Savannah River Site (SRS). The 34-acre SRS Biomass Cogeneration Facility is the culmination of

297

Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste |  

Broader source: Energy.gov (indexed) [DOE]

Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste December 6, 2011 - 3:57pm Addthis Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo courtesy of Washington DNR. Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo courtesy of

298

Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste |  

Broader source: Energy.gov (indexed) [DOE]

Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste December 6, 2011 - 3:57pm Addthis Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo courtesy of Washington DNR. Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo courtesy of

299

Efficiency Analysis of Natural Gas Residential Micro-cogeneration Systems  

Science Journals Connector (OSTI)

The systems feature different energy conversion technologies: Stirling engine (WhisperGen), spark-ignition internal combustion (IC) engine (FreeWatt), and polymer electrolyte fuel cell (PEFC) (EBARA Ballard). ... The Stirling engine is the least expensive that requires the least maintenance. ... Experimental Determination of the Efficiency and Emissions of a Residential Microcogeneration System Based on a Stirling Engine and Fueled by Diesel and Ethanol ...

Amir A. Aliabadi; Murray J. Thomson; James S. Wallace

2010-01-22T23:59:59.000Z

300

Advanced coal-fueled industrial cogeneration gas turbine system  

SciTech Connect (OSTI)

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Performance investigation of a cogeneration plant with the efficient and compact heat recovery system  

Science Journals Connector (OSTI)

This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity (ii) steam (iii) cooling and (iv) dehumidification. The proposed plant comprises a Capstone C30 micro-turbine which generates 24 kW of electricity a compact and efficient waste heat recovery system and a host of waste heat activated devices namely (i) a steam generator (ii) an absorption chiller (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The numerical analysis for the host of waste heat recovery system and thermally activated devices using FORTRAN power station linked to powerful IMSL library is performed to investigate the performance of the overall system. A set of experiments both part load and full load of micro-turbine is conducted to examine the electricity generation and the exhaust gas temperature. It is observed that energy utilization factor (EUF) could achieve as high as 70% while Fuel Energy Saving Ratio (FESR) is found to be 28%.

2012-01-01T23:59:59.000Z

302

Cogeneration handbook for the textile industry. [Contains glossary  

SciTech Connect (OSTI)

The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the textile industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

Garrett-Price, B.A.; Fassbender, L.L.; Moore, N.L.; Fassbender, A.G.; Eakin, D.E.; Gorges, H.A.

1984-03-01T23:59:59.000Z

303

Cogeneration handbook for the food processing industry. [Contains glossary  

SciTech Connect (OSTI)

The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the food processing industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

Eakin, D.E.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Fasbender, A.G.; Gorges, H.A.

1984-03-01T23:59:59.000Z

304

Cogeneration handbook for the chemical process industries. [Contains glossary  

SciTech Connect (OSTI)

The desision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the chemical industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

Fassbender, A.G.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Eakin, D.E.; Gorges, H.A.

1984-03-01T23:59:59.000Z

305

Cogeneration handbook for the pulp and paper industry. [Contains glossary  

SciTech Connect (OSTI)

The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the pulp and paper industry. Appendices B and O provide specific information that will be called out in subsequent chapters.

Griffin, E.A.; Moore, N.L.; Fassbender, L.L.; Garrett-Price, B.A.; Fassbender, A.G.; Eakin, D.E.; Gorges, H.A.

1984-03-01T23:59:59.000Z

306

Cogeneration handbook for the petroleum refining industry. [Contains glossary  

SciTech Connect (OSTI)

The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the petroleum refining industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Fassbender, A.G.; Eakin, D.E.; Gorges, H.A.

1984-03-01T23:59:59.000Z

307

Cliffs Minerals, Inc. Eastern Gas Shales Project, Ohio No. 5 well - Lorain County. Phase II report. Preliminary laboratory results  

SciTech Connect (OSTI)

The US Department of Energy is funding a research and development program entitled the Eastern Gas Shales Project designed to increase commercial production of natural gas in the eastern United States from Middle and Upper Devonian Shales. The program's objectives are as follows: (1) to evaluate recoverable reserves of gas contained in the shales; (2) to enhanced recovery technology for production from shale gas reservoirs; and (3) to stimulate interest among commercial gas suppliers in the concept of producing large quantities of gas from low-yield, shallow Devonian Shale wells. The EGSP-Ohio No. 5 well was cored under a cooperative cost-sharing agreement between the Department of Energy (METC) and Columbia Gas Transmission Corporation. Detailed characterization of the core was performed at the Eastern Gas Shale Project's Core Laboratory. At the well site, suites of wet and dry hole geophysical logs were run. Characterization work performed at the Laboratory included photographic logs, lithologic logs, fracture logs, measurements of core color variation, and stratigraphic interpretation of the cored intervals. In addition samples were tested for physical properties by Michigan Technological University. Physical properties data obtained were for: directional ultrasonic velocity; directional tensile strength; strength in point load; and trends of microfractures.

none,

1980-04-01T23:59:59.000Z

308

Guidelines for Assessing the Feasibility of Small Cogeneration Systems  

E-Print Network [OSTI]

escalation of energy prices in the last decade and the passage of PURPA. Where electric rates are sufficiently high, cogeneration can be feasible for entities having energy bills as low as $500,000 per year, including small industrial firms, office buildings...

Whiting, M., Jr.

1984-01-01T23:59:59.000Z

309

LANDFILL-GAS-TO-ENERGY PROJECTS: AN ANALYSIS OF NET PRIVATE AND SOCIAL BENEFITS  

E-Print Network [OSTI]

Materials Table A1: Model Results for West Lake Landfill WEST LAKE IC Engine Gas Turbine Steam Turbine Landfill WEST COUNTY IC Engine Gas Turbine Steam Turbine Average Landfill Gas Generation (mmcf/yr) 1,075 1,735 $1,250 Table A3: Model Results for Modern Landfill MODERN IC Engine Gas Turbine Steam Turbine Average

Jaramillo, Paulina

310

Comprehensive Financial Model For Oil and Gas Field Projects In Qatar.  

E-Print Network [OSTI]

??Project finance is essentially the raising of finance for a new project, secured against future revenues rather than an existing corporate balance sheet or other… (more)

Al-Thani, Faisal F.J.

2002-01-01T23:59:59.000Z

311

NETL: Oil & Natural Gas Projects - Integrated Synthesis of the Permian  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the United States Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the United States DE-FC26-04NT15509 Goal The overall objective was to collect and synthesize available data on the hydrocarbon-bearing geological systems in the Permian Basin and distribute data in readily usable formats to scientists, engineers, managers, and decision makers in the oil and gas industry. Performer Bureau of Economic Geology, University of Texas, Austin, TX Collaborators State of Texas Background The Permian Basin is the largest producing basin in the United States, still containing as much as 30 billion barrels of remaining mobile oil. A long-standing problem for companies seeking to recover this resource has been the difficulty of access to data and the knowledge of how to use the data. No modern, integrated syntheses of Permian Basin geologic data was previously available. This project has made possible the delivery of large volumes of Permian basin reservoir and basin data and interpretations to industry, academia, and the general public.

312

Institutional project summary University of Redlands direct fired gas absorption chiller system  

SciTech Connect (OSTI)

The University of Redlands, located in the California Inland Empire City of Redlands supplies six campus building with chilled and hot water for cooling and space heating from a centrally located Mechanical Center. The University was interested in lowering chilled water production costs and eliminating Ozone depleting chloroflourocarbon (CFC) refrigerants in addition to adding chiller capacity for future building to be added to the central plant piping {open_quotes}loop{close_quotes}. After initially providing a feasibility study of chiller addition alternatives and annual hourly load models, GRT & Associates, Inc. (GRT) provided design engineering for the installation of a 500 Ton direct gas fired absorption chiller addition to the University of Redland`s mechanical center. Based on the feasibility study and energy consumption tests done after the new absorption chiller was added, the university estimates annual energy cost saving versus the existing electric chiller is approximately $65,000 per year. Using actual construction costs, the simple before tax payback period for the project is six years.

Tanner, G.R.

1996-05-01T23:59:59.000Z

313

Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion Project. Quarterly report, April--June 1996  

SciTech Connect (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived as streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed Include the integration of the particulate control devices into coal utilization systems, on-line cleaning, techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing, Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: 1 . Carbonizer/Pressurized Circulating, Fluidized Bed Gas Source; 2. Hot Gas Cleanup Units to mate to all gas streams; 3. Combustion Gas Turbine; 4. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during, this reporting period was continuing, the detailed design of the FW portion of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel is complete and the construction of steel for the coal preparation structure is complete.

NONE

1996-12-31T23:59:59.000Z

314

UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) Project Title: Exploring the petroleum potential of a frontier province: Cretaceous stratigraphy and  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) Project Title: Exploring Myanmar. It has been shown that gas and oil exists in the basin and that a considerable unconventional biogenic gas system exists in the deep-waters offshore. The sediments of the Rakhine Basin were deposited

Henderson, Gideon

315

Final report for the ASC gas-powder two-phase flow modeling project AD2006-09.  

SciTech Connect (OSTI)

This report documents activities performed in FY2006 under the ''Gas-Powder Two-Phase Flow Modeling Project'', ASC project AD2006-09. Sandia has a need to understand phenomena related to the transport of powders in systems. This report documents a modeling strategy inspired by powder transport experiments conducted at Sandia in 2002. A baseline gas-powder two-phase flow model, developed under a companion PEM project and implemented into the Sierra code FUEGO, is presented and discussed here. This report also documents a number of computational tests that were conducted to evaluate the accuracy and robustness of the new model. Although considerable progress was made in implementing the complex two-phase flow model, this project has identified two important areas that need further attention. These include the need to compute robust compressible flow solutions for Mach numbers exceeding 0.35 and the need to improve conservation of mass for the powder phase. Recommendations for future work in the area of gas-powder two-phase flow are provided.

Evans, Gregory Herbert; Winters, William S.

2007-01-01T23:59:59.000Z

316

Sweet-Talking the Climate? Evaluating Sugar Mill Cogeneration and Climate Change Financing in India  

E-Print Network [OSTI]

cogeneration  and  wind  power  plants  because  they  are MW wind  farm instead of a 20 MW coal?fired power plant.  

Ranganathan, Malini; Haya, Barbara; Kirpekar, Sujit

2005-01-01T23:59:59.000Z

317

Understanding and managing leakage in forest–based greenhouse–gas–mitigation projects  

Science Journals Connector (OSTI)

...greenhouse-gas emissions in an area...only produce greenhouse-gas (GHG) bene...reduce GHG emissions. The leakage...mitigation (energy, transportation...emissions-reducing activities...be inversely related (notably in...

2002-01-01T23:59:59.000Z

318

Capacity and Energy Payments to Small Power Producers and Cogenerators  

Broader source: Energy.gov (indexed) [DOE]

Capacity and Energy Payments to Small Power Producers and Capacity and Energy Payments to Small Power Producers and Cogenerators Under PURPA Docket (Georgia) Capacity and Energy Payments to Small Power Producers and Cogenerators Under PURPA Docket (Georgia) < Back Eligibility Commercial Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Green Power Purchasing Renewables Portfolio Standards and Goals Docket No. 4822 was enacted by the Georgia Public Service Commission in accordance with The Public Utility Regulatory Policies Act of 1978 (PURPA)

319

Optimizing Process Loads in Industrial Cogeneration Energy Systems  

E-Print Network [OSTI]

applied to power generation and industrial cogeneration are extended to solving this trigeneration problem where the optimum dispatch of the final load devices (i.e. compressors, fans, pumps, etc.) are an integral part of the total energy system...-04-29 Proceedings from the Seventeenth Industrial Energy Technology Conference, Houston, TX, April 5-6, 1995 optimum dispatch solutions, and an iterative simultaneous solution of the integrated system is required. The solution dependency arises when the end use...

Ahner, D. J.; Babson, P. E.

320

Eco-operation of co-generation systems optimized by environmental load value  

SciTech Connect (OSTI)

In this paper the authors introduce a life cycle assessment scheme with the aid of the environmental load value (ELV) as a numerical measure to estimate the quantitative load of any industrial activity on the environment. The value is calculated from the total summation of the respective environmental load indexes through the life cycle activity from cradle to grave. An algorithm and a software using a combined simplex and branch-bound technique are accomplished to give the numerical ELV and its optimization. This ELV scheme is applied to co-generation energy systems consisting of gas turbines, waste-heat boilers, auxiliary boilers, steam turbines, electricity operated turbo refrigerators, steam absorption refrigerators and heat exchangers, which can be easily set up on the computer display in an ICON and Q and A style, including various kinds of parameters. The two kinds of environmental loads respecting the fossil fuel depletion and the CO{sub 2} global warming due to electricity generation from power stations in Japan are chosen as the ELV criterion. The ELV optimization is calculated corresponding to the hourly energy demands for electricity, air cooling, air heating, and hot water from a district consisting eight office buildings and four hotels. As a result, the ELV scheme constructed here is found to be an attractive and powerful tool to quantitatively estimate the LCA environmental loads of any industrial activity like co-generation energy systems and to propose the eco-operation of the industrial activity of interest. The cost estimation can be made as well.

Kato, Seizo; Nomura, Nobukazu; Maruyama, Naoki

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NETL: News Release - New Projects to Help Operators See Oil, Gas Formations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Help Operators "See" Oil, Gas Formations More Clearly Help Operators "See" Oil, Gas Formations More Clearly Six Research Teams to Develop Advanced Diagnostics And Imaging Technologies for Oil, Gas Fields TULSA, OK - If oil and gas producers could "see" hydrocarbon-bearing formations more accurately from the surface or from nearby wellbores, they can position new wells more precisely to produce more oil or gas with less risk and ultimately, at lower costs. For many producers in the United States, especially smaller producers operating on razor-thin margins, advanced diagnostics and imaging systems can help them in business. By visualizing the barriers and pathways for the flow of oil and gas through underground rock formations, producers can avoid dry holes and increase ultimate recovery.

322

The Onsite Fuel Cell Cogeneration System  

E-Print Network [OSTI]

specifications. The thermal energy is used to maintain the operating temperature of the power plant components and to supply usable heat to the customer. Steam is recovered for use in the fuel-processing section. PARTICIPANTS' ACTIVITIES The gas 37...-grade heat up to 250 0 F. During the operation of each unit, detailed data collection allowed the comparison of measured to predicted efficiency. Using hourly simulations, these analyses indicated that 75 percent of the power plants met or exceeded...

Woods, R. R.; Cuttica, J. J.; Trimble, K. A.

323

Unaccounted-for gas project. Measurement Task Force (orifice meter studies). Volume 2B. Final report  

SciTech Connect (OSTI)

The study was aimed at determining unaccounted-for (UAF) gas volumes resulting from operating Pacific Gas and Electric Co.'s transmission and distribution systems during 1987. Activities and methods are described and results are presented for research conducted on orifice meter accuracy. The Measurement Task Force determined that orifice metering inaccuracies were the largest single contributor to 1987 UAF.

Godkin, B.J.; Robertson, J.D.; Wlasenko, R.G.; Cowgill, R.M.; Grinstead, J.R.

1990-06-01T23:59:59.000Z

324

Demonstration projects for coalbed methane and Devonian shale gas: Final report. [None  

SciTech Connect (OSTI)

In 1979, the US Department of Energy provided the American Public Gas Association (APGA) with a grant to demonstrate the feasibility of bringing unconventional gas such as methane produced from coalbeds or Devonian Shale directly into publicly owned utility system distribution lines. In conjunction with this grant, a seven-year program was initiated where a total of sixteen wells were drilled for the purpose of providing this untapped resource to communities who distribute natural gas. While coalbed degasification ahead of coal mining was already a reality in several parts of the country, the APGA demonstration program was aimed at actual consumer use of the gas. Emphasis was therefore placed on degasification of coals with high methane gas content and on utilization of conventional oil field techniques. 13 figs.

Verrips, A.M.; Gustavson, J.B.

1987-04-01T23:59:59.000Z

325

Energy Conservation Through Industrial Cogeneration Systems  

E-Print Network [OSTI]

Typical Axial Turbine SATURN 800 kW CENTAUR 2700 kW MARS 7400 kW Figure 3. Solar Gas Turbine Generator Sets 23 ESL-IE-79-04-03 Proceedings from the First Industrial Energy Technology Conference Houston, TX, April 22-25, 1979 Exhaust Heat Utilization... temperatures below the dew point) 612,500 = $383/kW 1600 ? Net fuel rate (from Figure 4) = 6524 Btu/kWh ? Maintenance cost = $0.0018/kWh ? Cost of Electricity Generated 6 = (6524) (2.85 -;"-10 ) + 0.0018 0.20/kWh ? Saving/Kilowatt Hour: 0...

Solt, J. C.

1979-01-01T23:59:59.000Z

326

Cogeneration and community design: performance based model for optimization of the design of U.S. residential communities utilizing cogeneration systems in cold climates  

E-Print Network [OSTI]

utilized to assess the impact of each parameter on cogeneration system performance and to optimize the community design to improve that performance. Assessment procedures included: developing a base-line model representing typical design characteristics...

Rashed Ali Atta, Hazem Mohamed

2009-06-02T23:59:59.000Z

327

Integrated flue gas treatment for simulataneous emission control and heat rate improvement - demonstration project at Ravenswood  

SciTech Connect (OSTI)

Results are presented for electric-utility, residual-oil fired, field demonstration testing of advanced-design, heat-recovery type, flue gas sub-coolers that incorporate sulfite-alkali-based wet scrubbing for efficient removal of volatile and semi-volatile trace elements, sub-micron solid particulate matter, SO{sub 2} and SO{sub 3}. By innovative adaptation of wet collector system operation with methanol injection into the rear boiler cavity to convert flue-gas NO to No{sub 2}, simultaneous removal of NO{sub x} is also achieved. The focus of this integrated flue gas treatment (IFGT) technology development and demonstration-scale, continuous performance testing is an upward-gas-flow, indirectly water-cooled, condensing heat exchanger fitted with acid-proof, teflon-covered tubes and tubesheets and that provides a unique condensing (non-evaporative) wet-scrubbing mode to address air toxics control objectives of new Clean Air Act, Title III. Advantageous trace-metal condensation/nucleation/agglomeration along with substantially enhanced boiler efficiency is accomplished in the IFGT system by use of boiler makeup water as a heat sink in indirectly cooling boiler flue gas to a near-ambient-temperature, low-absolute-humidity, water-saturated state. Moreover, unique, innocuous, stack systems design encountered with conventional high-humidity, wet-scrubber operations. The mechanical design of this advanced flue-gas cooling/scrubbing equipment is based on more than ten years of commercial application of such units is downward-gas-flow design/operation for energy recovery, e.g. in preheating of makeup water, in residual-oil and natural-gas fired boiler operations.

Heaphy, J.; Carbonara, J.; Cressner, A. [Consolidated Edison Company, New York, NY (United States)] [and others

1995-06-01T23:59:59.000Z

328

Report on field experiment program lithium bromide absorption chiller: Field gas conditioning project, Grayson County, Texas. Topical report, May 1991-December 1994  

SciTech Connect (OSTI)

The primary objective of the project was to determine the applicability of using commercial absorption air conditioning technology in an oil and gas field environment to condition natural gas to meet contractual limitations. Operational and maintenance requirements were documented throughout the test period of 1992 through 1994.

Lane, M.J.; Kilbourn, R.A.; Huey, M.A.

1995-12-01T23:59:59.000Z

329

Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant  

SciTech Connect (OSTI)

Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok [Engineering Center of the Ural Power Industry (Russian Federation)

2007-01-15T23:59:59.000Z

330

Gulf of Mexico Gas Hydrate Joint Industry Project Leg II: Walker Ridge 313 LWD Operations and Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cook Cook 1 , Gilles Guerin 1 , Stefan Mrozewski 1 , Timothy Collett 2 , & Ray Boswell 3 Walker Ridge 313 LWD Operations and Results Gulf of Mexico Gas Hydrate Joint Industry Project Leg II: 1 Borehole Research Group Lamont-Doherty Earth Observatory of Columbia University Palisades, NY 10964 E-mail: Cook: acook@ldeo.columbia.edu Guerin: guerin@ldeo.columbia.edu Mrozewski: stefan@ldeo.columbia.edu 3 National Energy Technology Laboratory U.S. Department of Energy P.O. Box 880 Morgantown, WV 26507 E-mail: ray.boswell@netl.doe.gov 2 US Geological Survey Denver Federal Center, MS-939 Box 25046 Denver, CO 80225 E-mail:

331

Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes in Ecosystems of the  

E-Print Network [OSTI]

- covered foothills in the background. (Photograph by Benjamin M. Sleeter.) #12;Baseline and Projected LaPoint, Patrick Miles, Ronald Piva, Jeffery Turner, and Brad Smith of the USDA Forest Service

Fleskes, Joe

332

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Are non-marine organic-rich shales suitable exploration targets?  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Are non-marine organic-rich shales suitable exploration targets? (EARTH-15-SR2) Host institution: University of Oxford Supervisor 1: Stuart Robinson Supervisor 2: Steve Hesselbo (University of Exeter) Project description: Shales

Henderson, Gideon

333

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Evaluating the resilience of deepwater systems to recover from oil spills  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Evaluating the resilience of deepwater systems to recover from oil spills Host institution: Heriot-Watt University Gatliff (BGS), Jeffrey Polton (NOC), Alejandro Gallego and Eileen Bresnan (MSS). Project description: Oil

Henderson, Gideon

334

Coal combustion and cogeneration at New York Institute of Technology, Central Islip campus. Final report. [NYIT CI campus  

SciTech Connect (OSTI)

The purpose of this project is to study the technical and economic feasibility of conversion to coal with possible implementation of cogeneration at the central power plant of the New York Institute of Technology Central Islip (NYIT CI) campus. The existing facility contains five moderate pressure (155 psig) 60,000 pph boilers installed in 1953-1954 which were originally designed for coal firing. Among the several systems assessed, three potential projects were identified as having economic merit and conceptual designs for their implementation were developed. The final decision as to which should be pursued must await a final determination of environmental issues related to sulfur dioxide emissions and manufacturer recommendations on the ability to reconvert one of the existing boilers back to coal. The three projects, in order of economic merit, are as follows: (1) reconversion of one of the existing 60,000 pph stoker boilers back to firing coal; (2) installation of a new 60,000 pph stoker fired, high pressure coal boiler with a 2300 kW backpressure steam turbine, the turbine to provide some cogeneration capability. Compliance, low sulfur, coal is to be burned; (3) installation of a new 50,000 pph, low pressure, firetube, fluidized bed combustion (FBC), boiler burning high sulfur coal but including sulfur dioxide capture. The first two projects are predicated on the burning of a compliance, low sulfur, coal. This may be allowed under ''grandfather'' clauses in the regulations that permit such burning in boilers that once fired coal. If not permitted, the installation of the low pressure FBC boiler would be the only remaining viable coal conversion option. Though it has a smaller payback, it still provides significant savings to the college.

Not Available

1984-04-01T23:59:59.000Z

335

Engineering/design of a co-generation waste-to-energy facility  

SciTech Connect (OSTI)

Five hundred fifteen thousand tons of Municipal Solid Waste (MSW) is being generated every day in America. At present 68% of this trash is dumped into landfill operations. As the amount of garbage is increasing daily, the amount of land reserved for landfills is diminishing rapidly. With the sentiment of the public that you produce it, you keep it, the import-export of waste between the counties and states for the landfills, no longer appears to be feasible, especially when combined with expensive disposal costs. One method of reducing the quantity of waste sent to landfills is through the use of waste-to-energy facilities - the technology of resource recovery - the technology of today INCINERATION. All cogeneration projects are not alike. This paper examines several aspects of the electrical system of a particular municipal solid waste-to-energy project at Charleston, S.C. which includes plant auxiliary loads as well as a utility interconnection through a step-up transformer.

Bajaj, K.S.; Virgilio, R.J. (Foster Wheeler USA Corp., Clinton, NJ (United States))

1992-01-01T23:59:59.000Z

336

STATE OF CALIFORNIA -NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

the Crockett A CALIFORNIA LIMITED ) Cogeneration Project to Allow PARTNERSHIP ) Installation of Electric Motor to modify the Crockett Cogeneration Project by installing electric motor-driven natural gas compression

337

Economics of electric alternatives to cogeneration in commercial buildings: Final report  

SciTech Connect (OSTI)

The economics of packaged cogeneration systems are characterized for five typical commercial applications: office building with computer center, supermarket, fast food restaurant, hospital, and swimming pool/health club. The operation of these systems in each application is evaluated for three utility rate scenarios. Alternative high-efficiency electric technologies for the thermal energy application of each cogeneration package are identified, characterized, and evaluated. The economics of the packaged cogeneration systems are compared with the high-efficiency electric alternatives. 8 refs., 9 figs., 21 tabs.

Dobyns, J.; Estey, P.

1988-10-01T23:59:59.000Z

338

New Project To Improve Characterization of U.S. Gas Hydrate Resources  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy today announced the selection of a multi-year, field-based research project designed to gain further insight into the nature, formation, occurrence and physical properties of methane hydrate?bearing sediments for the purpose of methane hydrate resource appraisal.

339

Understanding and managing leakage in forest–based greenhouse–gas–mitigation projects  

Science Journals Connector (OSTI)

...Sectors: fossil fuel or biomass Leakage can occur in...emissions from some form of biomass (veg- etation, forests...g. vegetable oil, wood pulp, cacao, rice...discuss projects that use biomass to substitute for fossil-fuel-intensive...sector, while biomass plantations as a source of supply...

2002-01-01T23:59:59.000Z

340

Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development  

Broader source: Energy.gov [DOE]

The Office of Fossil Energy’s National Energy Technology Laboratory has an unconventional oil and gas program devoted to research in this important area of energy development. The laboratory partners with industry and academia through cost-sharing agreements to develop scientific knowledge and advance technologies that can improve the environmental performance of unconventional resource development. Once the resulting technologies are deployed for commercial use, our nation stands to reap huge benefits.

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Effect of short-term material balances on the projected uranium measurement uncertainties for the gas centrifuge enrichment plant  

SciTech Connect (OSTI)

A program is under way to design an effective International Atomic Energy Agency (IAEA) safeguards system that could be applied to the Portsmouth Gas Centrifuge Enrichment Plant (GCEP). This system would integrate nuclear material accountability with containment and surveillance. Uncertainties in material balances due to errors in the measurements of the declared uranium streams have been projected on a yearly basis for GCEP under such a system in a previous study. Because of the large uranium flows, the projected balance uncertainties were, in some cases, greater than the IAEA goal quantity of 75 kg of U-235 contained in low-enriched uranium. Therefore, it was decided to investigate the benefits of material balance periods of less than a year in order to improve the sensitivity and timeliness of the nuclear material accountability system. An analysis has been made of projected uranium measurement uncertainties for various short-term material balance periods. To simplify this analysis, only a material balance around the process area is considered and only the major UF/sub 6/ stream measurements are included. That is, storage areas are not considered and uranium waste streams are ignored. It is also assumed that variations in the cascade inventory are negligible compared to other terms in the balance so that the results obtained in this study are independent of the absolute cascade inventory. This study is intended to provide information that will serve as the basis for the future design of a dynamic materials accounting component of the IAEA safeguards system for GCEP.

Younkin, J.M.; Rushton, J.E.

1980-02-05T23:59:59.000Z

342

Targeted technology applications for infield reserve growth: A synopsis of the Secondary Natural Gas Recovery project, Gulf Coast Basin. Topical report, September 1988--April 1993  

SciTech Connect (OSTI)

The Secondary Natural Gas Recovery (SGR): Targeted Technology Applications for Infield Reserve Growth is a joint venture research project sponsored by the Gas Research Institute (GRI), the US Department of Energy (DOE), the State of Texas through the Bureau of Economic Geology at The University of Texas at Austin, with the cofunding and cooperation of the natural gas industry. The SGR project is a field-based program using an integrated multidisciplinary approach that integrates geology, geophysics, engineering, and petrophysics. A major objective of this research project is to develop, test, and verify those technologies and methodologies that have near- to mid-term potential for maximizing recovery of gas from conventional reservoirs in known fields. Natural gas reservoirs in the Gulf Coast Basin are targeted as data-rich, field-based models for evaluating infield development. The SGR research program focuses on sandstone-dominated reservoirs in fluvial-deltaic plays within the onshore Gulf Coast Basin of Texas. The primary project research objectives are: To establish how depositional and diagenetic heterogeneities cause, even in reservoirs of conventional permeability, reservoir compartmentalization and hence incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas Gulf Coast Basin as a natural laboratory for developing concepts and testing applications. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields.

Levey, R.A.; Finley, R.J.; Hardage, B.A.

1994-06-01T23:59:59.000Z

343

BP Cherry Point Congeneration Project  

Broader source: Energy.gov (indexed) [DOE]

REVISED 404 (B) (1) REVISED 404 (B) (1) ALTERNATIVES ANALYSIS BP Cherry Point Cogeneration Project Prepared for: BP West Coast Products, LLC Revised June 29, 2004 1501 Fourth Avenue, Suite 1400 Seattle, WA 98101-1616 (206) 438-2700 33749546.05070 i TABLE OF CONTENTS Page 1.0 I NT RODUCTI ON ................................................................................................................... 1 2.0 P URPOSE AND NEE D .......................................................................................................... 1 2.1 RELIABILITY .................................................................................................... 1 2.2 COST-EFFECTIVENESS ................................................................................... 3 2.3 SIZE OF FACILITY............................................................................................

344

BNL Gas Storage Achievements, Research Capabilities, Interests...  

Broader source: Energy.gov (indexed) [DOE]

BNL Gas Storage Achievements, Research Capabilities, Interests, and Project Team Metal hydride gas storage Cryogenic gas storage Compressed gas storage Adsorbed gas storage...

345

Energy recovery and cogeneration from an existing municipal incinerator: Phase IIA progress report on final design  

SciTech Connect (OSTI)

A feasibility study was prepared on energy recovery and cogeneration from and existing municipal incinerator in Wayne County, Michigan. The mechanical, electrical, structural, and instruments an controls equipment designs were established in sufficient depth to arrive at a construction cost estimate. The designs are described. All of the flue gas generated from each incinerator is directed into a waste heat boiler that will generate steam. A waste heat boiler will be provided for each of the three incinerators. Steam from these waste heat boilers will supply energy to two turbine-generators, which, in turn, will supply auxiliary power to the incinerator plant; the balance of the power will be sold to Detroit Edison Company (DEC). Exhaust steam from each turbine will be directed into a surface condenser operating under vacuum. The water to be supplied to each condenser will be recirculated water that has been cooled by means of a cooling tower. Other cooling water that could be subjected to oil contamination will be supplied from a separate recirculating water system. The water in this system will be cooled by an evaporative condenser. The main steam, boiler feedwater, and condensate systems will be similar to those used in central power stations. Flow diagrams for all systems, together with heat balances, electrical one-line diagrams, and plant layouts, are included in the Appendix. Also included in the Appendix are instruments and controls logic diagrams. (MCW)

Not Available

1982-02-01T23:59:59.000Z

346

Assessment of the Technical Potential for Micro-Cogeneration in Small  

Open Energy Info (EERE)

for Micro-Cogeneration in Small for Micro-Cogeneration in Small Commercial Buildings across the United States Jump to: navigation, search Name Assessment of the Technical Potential for Micro-Cogeneration in Small Commercial Buildings across the United States Agency/Company /Organization National Renewable Energy Laboratory Partner B. Griffith Focus Area Buildings, Commercial, Energy Efficiency - Central Plant, Energy Efficiency Phase Evaluate Options Resource Type Case studies/examples Availability Publicly available--Free Publication Date 1/5/2008 Website http://www.nrel.gov/docs/fy08o Locality Not Applicable References Assessment of the Technical Potential for Micro-Cogeneration in Small Commercial Buildings across the United States[1] Overview This paper presents an assessment of the technical potential for

347

Prospects for constructing cogeneration stations equipped with back-pressure steam turbines  

Science Journals Connector (OSTI)

The possibilities of using back-pressure cogeneration turbines developed on the basis of serially produced ... with the thermal process circuits in which such turbines are applied. Design versions and advantages ...

A. A. Ivanovskii; A. Yu. Kultyshev; M. Yu. Stepanov

2014-12-01T23:59:59.000Z

348

Electric utility forecasting of customer cogeneration and the influence of special rates  

E-Print Network [OSTI]

Cogeneration, or the simultaneous production of heat and electric or mechanical power, emerged as one of the main components of the energy conservation strategies in the past decade. Special tax treatment, exemptions from ...

Pickel, Frederick H.

1979-01-01T23:59:59.000Z

349

Development of Practical Stirling Engine for Co-Generation System Using Woody Biomass Fuels  

Science Journals Connector (OSTI)

With this background, in 2005, we manufactured a practical Stirling engine using biomass fuels. And we proposed a unique co-generation system using a practical Stirling engine that utilizes woody biomass fuel suc...

Akira Hoshi; Nobutoshi Tezuka; Seizi Sasaki…

2009-01-01T23:59:59.000Z

350

Maximum Profit of a Cogeneration System Based on Stirling Thermodynamic Cycle  

Science Journals Connector (OSTI)

Stirling engine technologies have been applied to cogeneration systems mainly for residential applications. The performance of Stirling engines has been evaluated considering different operational conditions, which include the electrical and thermal ... Keywords: Numerical Optimisation, Thermo-economic Analysis, Stirling Engine

Ana Cristina Ferreira, Manuel Nunes, Luís Martins, Senhorinha Teixeira

2014-06-01T23:59:59.000Z

351

A mini cogeneration station constructed on the basis of a inverted gasifier  

Science Journals Connector (OSTI)

The basic process circuit of a mini cogeneration station constructed on the basis of an internal combustion engine and a inverted gasifier operating on coal fuel is developed. The optimal mode of gasifier operati...

A. M. Dubinin; E. V. Cherepanova; V. G. Tuponogov; O. A. Obozhin

2010-06-01T23:59:59.000Z

352

Evaluation and Design of Utility Co-Owned Cogeneration Systems for Industrial Parks  

E-Print Network [OSTI]

The Electric Power Research Institute, EPRI, is currently evaluating the potential of utility co-owned cogeneration facilities in industrial parks. This paper describes part of the work performed by one of EPRI's contractors, Impell Corporation...

Hu, D. S.; Tamaro, R. F.; Schiller, S. R.

1984-01-01T23:59:59.000Z

353

Brazil-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

Brazil-World Bank Climate Projects Brazil-World Bank Climate Projects Agency/Company /Organization World Bank Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy, Transportation Topics Finance, Background analysis Website http://web.worldbank.org/exter Country Brazil UN Region Latin America and the Caribbean References World Bank Project Database-Brazil[1] Contents 1 World Bank Active Climate Projects in Brazil 1.1 Sao Paulo Metro Line 5 Project 1.2 BR-GEF Sustainable Transport and Air Quality Project (STAQ) 1.3 First Programmatic Development Policy Loan for Sustainable Environmental Management 1.4 BR Nova Gerar Carbon Finance and Solid Waste Management Project II 1.5 BR Lages Woodwaste Cogeneration 1.6 PCF Sugar Bagasse Cogeneration Project 1.7 Nova Gerar Landfill Rio de Janeiro

354

Landfill-Gas-to-Energy Projects:? Analysis of Net Private and Social Benefits  

Science Journals Connector (OSTI)

Under these standards, large landfills (that is, those with the potential to emit more than 50 Mg/year of nonmethane volatile organic compounds) have to collect and combust the landfill gas. ... Since the 1996 enact ment of the New Source Performance Standard and Emission Guidelines for Municipal Solid Waste Landfills, the Landfill Methane Outreach Program has become a tool to help landfills meet the new regulations. ... The costs of a collection system depend on different site factors, such as landfill depth, number of wells required, etc. Table 1 provides average collection system costs for landfills of three different sizes. ...

Paulina Jaramillo; H. Scott Matthews

2005-08-27T23:59:59.000Z

355

Simplified thermoeconomic approach to cost allocation in acombined cycle cogeneration and district energy system  

E-Print Network [OSTI]

of the requirements for the degree of MASTER OF SCIENCE May 1997 Major Subject: Mechanical Engineering SIMPLIFIED THERMOECONOMIC APPROACH TO COST ALLOCATION IN A COMBINED CYCLE COGENERATION AND DISTRICT ENERGY SYSTEM A Thesis By JASON GRAHAM FLEMING... (Member) Jerald Caton (Head of Department) May 1997 lviajor Sui&ject: lviechanical Engineering ABSTRACT Simplified Thermoeconomic Approach to Cost Allocation in a Combined Cycle Cogeneration and District Energy System. (May 1997) Jason Graham...

Fleming, Jason Graham

1997-01-01T23:59:59.000Z

356

Marginal Cost of Steam and Power from Cogeneration Systems Using a Rational Value-Allocation Procedure  

E-Print Network [OSTI]

-Gwaiz, BS EE Energy Conservation Engineer Saudi Aramco, Ras Tanura, Saudi Arabia majid.gwaiz@aramco.com ABSTRACT The problem of pricing steam and power from cogeneration systems has confounded engineers, economists, and accountants for a very... MARGINAL COST OF STEAM AND POWER FROM COGENERATION SYSTEMS USING A RATIONAL VALUE-ALLOCATION PROCEDURE Jimmy D Kumana, MS ChE Energy Conservation Specialist Saudi Aramco, Dhahran, Saudi Arabia jimmy.kumana@aramco.com Majid M Al...

Kumana, J. D.; Al-Gwaiz, M. M.

2004-01-01T23:59:59.000Z

357

Combustion converter development for topping and cogeneration applications  

SciTech Connect (OSTI)

This paper discusses the development of combustion-heated thermionic converters. Combustion applications pose a materials problem that does not exist for thermionic converters used in the vacuum of outer space. The high-temperature components of a thermionic converter must be protected from the oxidizing terrestrial environment. A layer of silicon carbide provides the most satisfactory protective coating, or ''hot shell,'' for the emitter and lead of a combustion-heated thermionic converter. Four areas of work aimed at developing combustion heated thermionic converters will be discussed: improving the performance of the two-inch torispherical converter, modifications to the converter so that it may be used in multi-converter modules, the construction of a thermionic cogeneration test furnace, and a converter life test in an oil-fired furnace.

Goodale, D.; Lieb, D.; Miskolczy, G.; Moffat, A.

1983-08-01T23:59:59.000Z

358

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect (OSTI)

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

Unknown

2003-01-01T23:59:59.000Z

359

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1)  

E-Print Network [OSTI]

of water and gas during hydraulic fracture in shale (EARTH-15-CM1) Host institution: University of Oxford in extracting gas from these low-permeability rocks is hydraulic fracture. This involves injecting large of water and gas during hydraulic fracturing and subsequent gas recovery. This is essential in order

Henderson, Gideon

360

Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers ProMIS/Project No.: DE-NT0005648  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Edward Levy Edward Levy Principal Investigator Director, Lehigh University Energy Research Center RecoveRy of WateR fRom BoileR flue Gas usinG condensinG Heat excHanGeRs PRomis/PRoject no.: de-nt0005648 Background As the United States' population grows and demand for electricity and water increases, power plants located in some parts of the country will find it increasingly difficult to obtain the large quantities of water needed to maintain operations. Most of the water used in a thermoelectric power plant is used for cooling, and the U.S. Department of Energy (DOE) has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. Many coal-fired power plants operate with stack temperatures in the 300 °F range to minimize fouling and corrosion problems due to sulfuric acid condensation and to

362

NETL: Oil & Natural Gas Projects: Next Generation Surfactants for Improved  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Surfactants for Improved Chemical Flooding Technology Last Reviewed 12/15/2012 Next Generation Surfactants for Improved Chemical Flooding Technology Last Reviewed 12/15/2012 DE-FE0003537 Goal The principle objective of the project is to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focusing on reservoirs in Pennsylvanian age (Penn) sands. Performer Oklahoma University Enhanced Oil Recovery Design Center, Norman, OK Background Primary and secondary methods have produced approximately one-third of the 401 billion barrels of original-oil-in-place in the United States. Enhanced oil recovery (EOR) methods have shown potential to recover a fraction of the remaining oil. Surfactant EOR has seen an increase in activity in recent years due to increased energy demand and higher oil prices. In

363

Technology Cooperation Agreement Pilot Project development-friendly greenhouse gas reduction, May 1999 update  

SciTech Connect (OSTI)

The Technology Cooperation Agreement Pilot Project (TCAPP) was launched by several U.S. Government agencies (USAID, EPA and DOE) in August 1997 to establish a model for climate change technology cooperation with developing and transition countries. TCAPP is currently facilitating voluntary partnerships between the governments of Brazil, China, Kazakhstan, Korea, Mexico, and the Philippines, the private sector, and the donor community on a common set of actions that will advance implementation of clean energy technologies. The six participating countries have been actively engaged in shaping this initiative along with international donors and the private sector. This program helps fulfill the US obligation to support technology transfer to developing countries under Article 4.5 of the United Nations Framework Convention on Climate Change. TCAPP also provides a mechanism to focus resources across international donor programs on the technology cooperation needs of developing and transition countries.

Benioff, R.

1999-05-11T23:59:59.000Z

364

Eastern Gas Shales Project (EGSP) data files: a final report. Open-file report 81-598  

SciTech Connect (OSTI)

The United States Geological Survey and Petroleum Information Corporation (PI) of Denver have created two large computerized files of data for the Eastern Gas Shales Project (EGSP) as part of a large responsibility to the Department of Energy (DOE), Morgantown Energy Technology Center (METC), in Morgantown, West Virginia. Computer-compatible well, outdrop, and sample data from EGSP contractors are being stored on digital tape and delivered to METC for subsequent data-base management. This report has been written to: (1) discuss data-file background and development, (2) address specific problems and solutions for future project use, and (3) present a general summary of well- and sample-data file content by state, county, well, contractor, and subject coverage. When looking at the EGSP data-gathering task in retrospect, modifications to project management would have made the data-gathering process more successful. Many problems resulted from having contractors perform their own data encoding. Some EGSP contractors had little knowledge of computer- and data-encoding techniques, and they often delegated encoding responsibilities to subordinates who were not properly informed about procedures. The overall lack of uniformity in analytical procedures and methods resulted in an apparent over-abundance of card classes. Nearly 40% of the available card classes were never used, and about 30% of those used contain fewer than 100 data records. The most serious problem encountered during data-file development has been the long delay in arranging for an efficient retrieval and mapping system. Sample-and well-data file management are now coordinated through METC, and Petroleum Information Corporation maintains an effective in-house data management system for data retrieval and analysis. The present system would have been very useful to retrieve data for contractor needs two years earlier, even though the files were incomplete.

Dyman, T.S.

1981-01-01T23:59:59.000Z

365

Thin film battery/fuel cell power generation system. Topical report covering Task 5: the design, cost and benefit of an industrial cogeneration system, using a high-temperature solid-oxide-electrolyte (HTSOE) fuel-cell generator  

SciTech Connect (OSTI)

A literature search and review of the studies analyzing the relationship between thermal and electrical energy demand for various industries and applications resulted in several applications affording reasonable correlation to the thermal and electrical output of the HTSOE fuel cell. One of the best matches was in the aluminum industry, specifically, the Reynolds Aluminum Production Complex near Corpus Christi, Texas. Therefore, a preliminary design of three variations of a cogeneration system for this plant was effected. The designs were not optimized, nor were alternate methods of providing energy compared with the HTSOE cogeneration systems. The designs were developed to the extent necessary to determine technical practicality and economic viability, when compared with alternate conventional fuel (gas and electric) prices in the year 1990.

Not Available

1981-02-25T23:59:59.000Z

366

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect (OSTI)

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2003 through September 30, 2003. The DOE/WMPI Cooperative Agreement was modified on May 2003 to expand the project team to include Shell Global Solutions, U.S. and Uhde GmbH as the engineering contractor. The addition of Shell and Uhde strengthen both the technical capability and financing ability of the project. Uhde, as the prime EPC contractor, has the responsibility to develop a LSTK (lump sum turnkey) engineering design package for the EECP leading to the eventual detailed engineering, construction and operation of the proposed concept. Major technical activities during the reporting period include: (1) finalizing contractual agreements between DOE, Uhde and other technology providers, focusing on intellectual-property-right issues, (2) Uhde's preparation of a LSTK project execution plan and other project engineering procedural documents, and (3) Uhde's preliminary project technical concept assessment and trade-off evaluations.

John W. Rich

2003-12-01T23:59:59.000Z

367

Ceramic stationary gas turbine development. Final report, Phase 1  

SciTech Connect (OSTI)

This report summarizes work performed by Solar Turbines Inc. and its subcontractors during the period September 25, 1992 through April 30, 1993. The objective of the work is to improve the performance of stationary gas turbines in cogeneration through implementation of selected ceramic components.

NONE

1994-09-01T23:59:59.000Z

368

Ceramic Stationary Gas Turbine Development. Technical progress report, April 1, 1993--October 31, 1994  

SciTech Connect (OSTI)

This report summarizes work performed by Solar Technologies Inc. and its subcontractors, during the period April 1, 1993 through October 31, 1994 under Phase II of the DOE Ceramic Stationary Gas Turbine Development program. The objective of the program is to improve the performance of stationary gas turbines in cogeneration through the implementation of selected ceramic components.

NONE

1994-12-01T23:59:59.000Z

369

NOTICE OF DECISION BY -rHE CALIFORNIA ENERGY COMMISSION To: California Resources Agency From: California Energy Commission  

E-Print Network [OSTI]

Gilroy Cogen project is a 115 MW natural gas powered cogeneration project that was certified Description: The Calpine Gilroy Cogen project is a 115 MW natural gas powered cogeneration project) combustor unit on the Project's S-100 Gas Turbine Generator and revised applicable air quality conditions

370

Optimal Operation Scheme for a Cogeneration System Promoted from an Emergency Standby System Combined with Absorption Chiller  

Science Journals Connector (OSTI)

A novel optimal operation scheme for a cogeneration system that is promoted from an emergency standby system combined with absorption chiller is introduced. The fuel cost, Time-of-use (TOU) tariff and various operational constrains are taken into account ... Keywords: cogeneration system, Time-of-use tariff, optimal operation scheme

Shyi-Wen Wang

2010-12-01T23:59:59.000Z

371

Development of a cogenerating thermophotovoltaic powered combination hot water heater/hydronic boiler  

Science Journals Connector (OSTI)

A cogenerating thermophotovoltaic (TPV) device for hot water hydronic space heating and electric power generation was developed designed fabricated and tested under a Department of Energy contracted program. The device utilizes a cylindrical ytterbia superemissive ceramic fiber burner (SCFB) and is designed for a nominal capacity of 80 kBtu/hr. The burner is fired with premixed natural gas and air. Narrow band emission from the SCFB is converted to electricity by single crystal silicon (Si) photovoltaic (PV) arrays arranged concentrically around the burner. A three-way mixing valve is used to direct heated water to either the portable water storage tank radiant baseboard heaters or both. As part of this program QGI developed a microprocessor-based control system to address the safety issues as well as photovoltaic power management. Flame sensing is accomplished via the photovoltaics a technology borrowed from QGI’s Quantum Control™ safety shut-off system. Device testing demonstrated a nominal photovoltaic power output of 200 W. Power consumed during steady state operation was 33 W with power drawn from the combustion air blower hydronic system pump three-way switching valve and the control system resulting in a net power surplus of 142 W. Power drawn during the ignition sequence was 55 W and a battery recharge time of 1 minute 30 seconds was recorded. System efficiency was measured and found to be more than 83%. Pollutant emissions at determined operating conditions were below the South Coast Air Quality Management District’s (California) limit of 40 ng/J for NOx and carbon monoxide emissions were measured at less than 50 dppm.

Aleksandr S. Kushch; Steven M. Skinner; Richard Brennan; Pedro A. Sarmiento

1997-01-01T23:59:59.000Z

372

VEE-0088 - In the Matter of CPKelco Cogeneration, et al. | Department of  

Broader source: Energy.gov (indexed) [DOE]

88 - In the Matter of CPKelco Cogeneration, et al. 88 - In the Matter of CPKelco Cogeneration, et al. VEE-0088 - In the Matter of CPKelco Cogeneration, et al. This Decision decides the merits of five Applications for Exception filed with the Office of Hearings and Appeals (OHA) of the U.S. Department of Energy (DOE) under the provisions of 10 C.F.R. § 1003.20. See infra Appendix. These Applications concern annual revenues and sales data pertaining to each firm's sale of electricity that the DOE Energy Information Administration (EIA) collects through Form EIA-861, "Annual Electric Power Industry Report." EIA publishes this data, by state, in firm-specific form. The present exception request seeks to have the Applicants' data withheld as confidential. In their Applications for Exception, the Applicants

373

European energy policy and the potential impact of HTR and nuclear cogeneration  

Science Journals Connector (OSTI)

Abstract This paper first provides an update on the current state of play and the potential future role of nuclear energy in Europe. It then describes the EU energy policy tools in the area of nuclear technology. It explains the three-tier strategy of the European nuclear technology platform and its demonstration initiatives, here specifically for nuclear cogeneration and HTR. The paper closes with an outlook on the boundary conditions at which HTR can become attractive for nuclear cogeneration, not only from an energy policy viewpoint but also economically.

Michael A. Fütterer; Johan Carlsson; Sander de Groot; Marc Deffrennes; Alexandre Bredimas

2014-01-01T23:59:59.000Z

374

Proposal of a novel multifunctional energy system for cogeneration of coke, hydrogen, and power - article no. 052001  

SciTech Connect (OSTI)

This paper proposes a novel multifunctional energy system (MES), which cogenerates coke, hydrogen, and power, through the use of coal and coke oven gas (COG). In this system, a new type of coke oven, firing coal instead of COG as heating resource for coking, is adopted. The COG rich in H{sub 2} is sent to a pressure swing adsorption (PSA) unit to separate about 80% of hydrogen first, and then the PSA purge gas is fed to a combined cycle as fuel. The new system combines the chemical processes and power generation system, along with the integration of chemical conversion and thermal energy utilization. In this manner, both the chemical energy of fuel and thermal energy can be used more effectively. With the same inputs of fuel and the same output of coking heat, the new system can produce about 65% more hydrogen than that of individual systems. As a result, the thermal efficiency of the new system is about 70%, and the exergy efficiency is about 66%. Compared with individual systems, the primary energy saving ratio can reach as high as 12.5%. Based on the graphical exergy analyses, we disclose that the integration of synthetic utilization of COG and coal plays a significant role in decreasing the exergy destruction of the MES system. The promising results obtained may lead to a clean coal technology that will utilize COG and coal more efficiently and economically.

Jin, H.G.; Sun, S.; Han, W.; Gao, L. [Chinese Academy of Sciences, Beijing (China)

2009-09-15T23:59:59.000Z

375

The ATLAS 3D project - XVI. Physical parameters and spectral line energy distributions of the molecular gas in gas-rich early-type galaxies  

E-Print Network [OSTI]

[Abridged] We present a detailed study of the physical properties of the molecular gas in a sample of 18 molecular gas-rich early-type galaxies (ETGs) from the ATLAS$ 3D sample. Our goal is to better understand the star formation processes occurring in those galaxies, starting here with the dense star-forming gas. We use existing integrated $^{12}$CO(1-0, 2-1), $^{13}$CO(1-0, 2-1), HCN(1-0) and HCO$^{+}$(1-0) observations and present new $^{12}$CO(3-2) single-dish data. From these, we derive for the first time the average kinetic temperature, H$_{2}$ volume density and column density of the emitting gas, this using a non-LTE theoretical model. Since the CO lines trace different physical conditions than of those the HCN and HCO$^{+}$ lines, the two sets of lines are treated separately. We also compare for the first time the predicted CO spectral line energy distributions (SLEDs) and gas properties of our molecular gas-rich ETGs with those of a sample of nearby well-studied disc galaxies. The gas excitation con...

Bayet, Estelle; Davis, Timothy A; Young, Lisa M; Crocker, Alison F; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Cappellari, Michele; Davies, Roger L; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovi?, Davor; Kuntschner, Harald; McDermid, Richard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie

2012-01-01T23:59:59.000Z

376

Thailand's downstream projects proliferate  

SciTech Connect (OSTI)

Thailand continues to press expansion and modernization of its downstream sector. Among recent developments: Construction of an olefins unit at Thailand's second major petrochemical complex and a worldscale aromatics unit in Thailand is threatened by rising costs. Thailand's National Petrochemical Corp (NPC) let a 9 billion yen contract to Mitsui Engineering and Shipbuilding Co. and C. Itoh and Co. for a dual fuel cogeneration power plant at its Mab Ta Phud, Rayong province, petrochemical complex. Financing is in place to flash a green light for a $530 million Belgian-Thai joint venture sponsoring a worldscale polyvinyl chloride/vinyl chloride monomer plant in Thailand. Work is more than 50% complete on the $345 million second phase expansion of Thai Oil's Sri Racha refinery in Chon Buri province. Petroleum Authority of Thailand (PTT) endorsed a plan to install two more natural gas processing plants in Thailand to meet rapidly growing domestic demand for petroleum gas.

Not Available

1991-06-03T23:59:59.000Z

377

Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2006; 3 Number of Establishments by Usage of Cogeneration Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies; Unit: Establishment Counts. Establishments with Any Cogeneration NAICS Technology Code(a) Subsector and Industry Establishments(b) in Use(c) In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know Total United States 311 Food 14,128 297 99 11,338 2,691 51 11,217 2,860 10 11,333 2,786 164 11,129 2,836 9 11,235 2,884 3112 Grain and Oilseed Milling 580 53 Q 499 38 5 532 42 W 533 W Q 533 44 5 530 45 311221 Wet Corn Milling 47 11 W 35 W W 43 W W 39 W 0 44 3 0 41 6 31131 Sugar Manufacturing

378

Biomass cogeneration, Port Townsend, Washington Study by Honors 220c, Energy & Environment,  

E-Print Network [OSTI]

Biomass cogeneration, Port Townsend, Washington Study by Honors 220c, Energy & Environment, Humans Townsend Biomass Power Plant When considering the slash sources that will be used to fuel the Port Townsend from the current 84,000 dry tons to 184,000 dry tons with the new biomass plant addition (Wise, 2012

379

Stability analysis of permanent magnet synchronous generator used in micro-cogeneration systems  

Science Journals Connector (OSTI)

This paper has a dual purpose: on the one hand the technical-economic analysis of cogeneration microplants (also emphasizing the producers' preferences for certain classes of electric generators in terms of using the same type of prime mover, respectively ... Keywords: electrical generators, m-CHP, renewable energies, stirling engine

Ion Voncil?; Nicolae Badea

2010-10-01T23:59:59.000Z

380

A design approach to a risk review for fuel cell-based distributed cogeneration systems  

E-Print Network [OSTI]

A risk review of a fuel cell-based distributed co-generation (FC-Based DCG) system was conducted to identify and quantify the major technological system risks in a worst-case scenario. A risk review entails both a risk assessment and a risk...

Luthringer, Kristin Lyn

2004-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Diagrams of regimes of cogeneration steam turbines for combined-cycle power plants  

Science Journals Connector (OSTI)

General considerations regarding the form of the steam-consumption diagram for a three-loop cogeneration-type combined-cycle plant are formulated on the basis of ... 12.4 steam turbine for the PGU-410 combined-cycle

A. Yu. Kultyshev; M. Yu. Stepanov; T. Yu. Linder

2012-12-01T23:59:59.000Z

382

Technical and economic evaluations of cogeneration systems using computer simulations  

E-Print Network [OSTI]

price increases over the next 25 years, which are more punitive than a constant escalation of 5'/o per year. For Texas ARM University, several sizes of gas turbines were modeled. However, none seemed feasible for meeting the current electric and steam.... system size without older gas turbine. . . . . . . NPV vs. gas price escalation with lines of constant electrical NPV vs 'lo change in O&M and Capital expenses. Page . . . . 2 13 . , 18 24 . ?60 . . 61 , , 64 . . 65 . . . 67 68 73 . . 74...

Fennell, Steven Rush

2012-06-07T23:59:59.000Z

383

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

electricity, such as steam engines or gas turbines. Typicalsystems, a sterling engine or steam turbine is typicallysuch as a steam turbine or sterling engine connected to an

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

384

Project 5 -- Solution gas drive in heavy oil reservoirs: Gas and oil phase mobilities in cold production of heavy oils. Quarterly progress report, October 1--December 31, 1996  

SciTech Connect (OSTI)

In this report, the authors present the results of their first experiment on a heavy crude of about 35,000 cp. A new visual coreholder was designed and built to accommodate the use of unconsolidated sand. From this work, several clear conclusions can be drawn: (1) oil viscosity does not decrease with the evolution of gas, (2) the critical gas saturation is in the range of 4--5%, and (3) the endpoint oil relative permeability is around 0.6. However, the most important parameter, gas phase mobility, is still unresolved. Gas flows intermittently, and therefore the length effect becomes important. Under the conditions that the authors run the experiment, recovery is minimal, about 7.5%. This recovery is still much higher than the recovery of the C{sub 1}/C{sub 10} model system which was 3%. After a duplicate test, they plan to conduct the experiment in the horizontal core. The horizontal core is expected to provide a higher recovery.

Firoozabadi, A.; Pooladi-Darvish, M.

1996-12-31T23:59:59.000Z

385

Estimating the efficiency of the vacuum deaerators used for treating network water at the Samara cogeneration station and their modernization  

Science Journals Connector (OSTI)

Results from experimental studies on analyzing the operating conditions of the vacuum deaerators used to treat makeup water for the heat supply network connected to the Samara cogeneration station are presente...

A. A. Kudinov; D. V. Obukhov; S. K. Ziganshina

2010-08-01T23:59:59.000Z

386

Modelling the hypothetical methane-leakage in a shale-gas project and the impact on groundwater quality  

Science Journals Connector (OSTI)

The hypothetical leakage of methane gas caused by fracking a 1,000-m deep Cretaceous claystone ... In summary, the geological risks of a fracking operation are minor. The technical risks are ... when rising metha...

Michael O. Schwartz

2014-10-01T23:59:59.000Z

387

LNG Project Development: Shipping and Terminal Considerations  

Science Journals Connector (OSTI)

Liquefied natural gas (LNG) projects require multibillion-dollar investments and multidisciplined ... of engineers, environmentalists, economists, and others. LNG projects can be divided into five major ... gas g...

V. V. Staffa; D. K. Jhaveri

1980-01-01T23:59:59.000Z

388

EARLY ENTRANCE CO-PRODUCTION PLANT-DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect (OSTI)

Waste Processors Management, Inc. (WMPI), along with its subcontractors entered into a Cooperative Agreement with the US Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from April 1, 2002 through June 30, 2002.

Unknown

2002-07-01T23:59:59.000Z

389

EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect (OSTI)

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement with the USDOE, National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co--product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases: Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report is WMPI's third quarterly technical progress report. It covers the period performance from October 1, 2001 through December 31, 2001.

John W. Rich

2001-03-01T23:59:59.000Z

390

Rankine and Brayton Cycle Cogeneration for Glass Melting  

E-Print Network [OSTI]

Rankine cycle, b) an organic Rankine cycle, c) an indirectly heated positive pressure Brayton cycle and d) a directly heated subatmospheric Brayton cycle. For the specified flue gas temperatures considered, the organic Rankine cycle produced the most...

Hnat, J. G.; Patten, J. S.; Sheth, P. R.

1981-01-01T23:59:59.000Z

391

Combined Cycles and Cogeneration - An Alternative for the Process Industries  

E-Print Network [OSTI]

SYSTEM Gasification Numerous programs are underway for gasification of solid fuels and heavy oils and it is among these systems that many feel medium Btu gas will be pro duced for use in combined cycle systems. Many of the problems now facing... the gasification approach are economic in nature caused by the compe titive costs of gas and oil. In addition, in areas lacking a coal infrastructure, extraordinary costs still exist in the early years. FIG. 13 INTEGRATED INTERMEDIATE Btu GASIFICATION CYCLE...

Harkins, H. L.

1981-01-01T23:59:59.000Z

392

NETL: 2013 Gasification Systems Project Portfolio  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Shelf > Project Portfolio Reference Shelf > Project Portfolio Gasification Systems 2013 Gasification Systems Project Portfolio Gasifier Optimization Gas Separation Gas Separation Gasifier Optimization Gasifier Optimization Gas Cleaning Gasifier Optimization Gas Cleaning Gas Separation U.S. Economic Competitiveness Gas Separation Gasifier Optimization U.S. Economic Competitiveness Gasifier Optimization U.S. Economic Competitiveness Gas Cleaning Gasifier Optimization Gas Cleaning Gasifier Optimization Gas Separation U.S. Economic Competitiveness Gas Separation U.S. Economic Competitiveness U.S. Economic Competitiveness Gas Cleaning Gas Cleaning Gas Separation Gas Cleaning Gas Separation Global Environmental Benefits Gas Separation Global Environmental Benefits Global Environmental Benefits Gas Cleaning Gas Separation Systems Analyses Global Environmental Benefits Gas Separation Systems Analyses Global Environmental Benefits Systems Analyses Global Environmental Benefits Gas Cleaning Systems Analyses Gas Cleaning Gas Separation Systems Analyses Systems Analyses Gas Cleaning Systems Analyses Systems Analyses Systems Analyses

393

Efficiency and Emissions Study of a Residential Micro–cogeneration System Based on a Stirling Engine and Fuelled by Diesel and Ethanol.  

E-Print Network [OSTI]

??This study examined the performance of a residential micro–cogeneration system based on a Stirling engine and fuelled by diesel and ethanol. An extensive number of… (more)

Farra, Nicolas

2010-01-01T23:59:59.000Z

394

Anisotropic models to account for large borehole washouts to estimate gas hydrate saturations in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Alaminos Canyon 21 B well  

Science Journals Connector (OSTI)

Through the use of 3-D seismic amplitude mapping, several gas hydrate prospects were identified in the Alaminos Canyon (AC) area of the Gulf of Mexico. Two locations were drilled as part of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (JIP Leg II) in May of 2009 and a comprehensive set of logging-while-drilling (LWD) logs were acquired at each well site. LWD logs indicated that resistivity in the range of ?2 ohm-m and P-wave velocity in the range of ?1.9 km/s were measured in the target sand interval between 515 and 645 feet below sea floor. These values were slightly elevated relative to those measured in the sediment above and below the target sand. However, the initial well log analysis was inconclusive regarding the presence of gas hydrate in the logged sand interval, mainly because large washouts caused by drilling in the target interval degraded confidence in the well log measurements. To assess gas hydrate saturations in the sedimentary section drilled in the Alaminos Canyon 21 B (AC21-B) well, a method of compensating for the effect of washouts on the resistivity and acoustic velocities was developed. The proposed method models the washed-out portion of the borehole as a vertical layer filled with sea water (drilling fluid) and the apparent anisotropic resistivity and velocities caused by a vertical layer are used to correct the measured log values. By incorporating the conventional marine seismic data into the well log analysis, the average gas hydrate saturation in the target sand section in the AC21-B well can be constrained to the range of 8–28%, with 20% being our best estimate.

M.W. Lee; T.S. Collett; K.A. Lewis

2012-01-01T23:59:59.000Z

395

The Birmingham-CfA cluster scaling project - I: gas fraction and the M-T relation  

E-Print Network [OSTI]

We have assembled a large sample of virialized systems, comprising 66 galaxy clusters, groups and elliptical galaxies with high quality X-ray data. To each system we have fitted analytical profiles describing the gas density and temperature variation with radius, corrected for the effects of central gas cooling. We present an analysis of the scaling properties of these systems and focus in this paper on the gas distribution and M-T relation. In addition to clusters and groups, our sample includes two early-type galaxies, carefully selected to avoid contamination from group or cluster X-ray emission. We compare the properties of these objects with those of more massive systems and find evidence for a systematic difference between galaxy-sized haloes and groups of a similar temperature. We derive a mean logarithmic slope of the M-T relation within R_200 of 1.84+/-0.06, although there is some evidence of a gradual steepening in the M-T relation, with decreasing mass. We recover a similar slope using two additional methods of calculating the mean temperature. Repeating the analysis with the assumption of isothermality, we find the slope changes only slightly, to 1.89+/-0.04, but the normalization is increased by 30%. Correspondingly, the mean gas fraction within R_200 changes from (0.13+/-0.01)h70^-1.5 to (0.11+/-0.01)h70^-1.5, for the isothermal case, with the smaller fractional change reflecting different behaviour between hot and cool systems. There is a strong correlation between the gas fraction within 0.3*R_200 and temperature. This reflects the strong (5.8 sigma) trend between the gas density slope parameter, beta, and temperature, which has been found in previous work. (abridged)

A. J. R. Sanderson; T. J. Ponman; A. Finoguenov; E. J. Lloyd-Davies; M. Markevitch

2003-01-03T23:59:59.000Z

396

Project 350  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Hydrates Gas Hydrates CONTACTS Ray Boswell Acting Technology Manager Gas Technology Management Division 304-285-4541 ray.boswell@netl.doe.gov James Ammer Director Gas Technology Management Division 304-285-4383 james.ammer@netl.doe.gov Kelly Rose Project Manager Gas Technology Management Division 304-285-4157 kelly.rose@netl.doe.gov Joseph Wilder Research Group Leader Simulation, Analysis and Computational Science Division 304-285-0989 joseph.wilder@netl.doe.gov NETL - DIRECTING THE DEVELOPMENT OF WORLD-CLASS GAS HYDRATE RESERVOIR SIMULATORS Development of reliable simulators that accurately predict the behavior methane hydrates in nature is a critical component of NETL's program to appraise the gas supply potential of hydrates. NETL is leading the development of a suite of modeling tools that are providing

397

Energy Value vs. Energy Cost: A Fundamental Concept of Economics Applied to Cogeneration  

E-Print Network [OSTI]

known as MESA (Modular Energy System Analyzer).* CONCLUSIONS Economic cogeneration by any reasonable def ini tion is a desirable practice. The effective application of principles and concepts that lead to minimum expenditure of resources... been very accurately calculated by the use of MESA. The value of the shaft power has been estab lished by the alternative option of pur chased elec tr ical energy at a known incremental cost. These examples do not aPl?ly universally to all steam...

Viar, W. L.

1983-01-01T23:59:59.000Z

398

Coyote Springs Cogeneration Project - Final Environmental Impact Statement and Record of Decision (DOE/EIS-0201)  

Broader source: Energy.gov (indexed) [DOE]

(152K) (152K) 1. 2. 3. S.l S.2 S.3 S.4 S.5 S.6 S.7 Table of Contents Page Purpose and Need ...................................................................................................................... S-1 Proposed Action ............................................................................................................................ S-2 No Action Alternative .................................................................................................................... S-2 Affected Environment .................................................................................................................... S-3 Environmental Consequences ........................................................................................................ S-6

399

Power and Hydrogen Co-generation from Biogas  

Science Journals Connector (OSTI)

Furthermore, the Piedmont Regional framework is very oriented toward clean transport, in both the public sector (the GTT public transportation fleet has a multitude of natural gas-fueled buses) and the private one (FIAT has decided on methane cars as a market target in the short term, and Centro Ricerche FIAT has already developed several generations of H2-fueled car prototypes). ... The first configuration (A in Figure 1) requires less water and air, produces a higher amount of hydrogen, but has a lower power generation at the turbine. ... Cannock landfill gas powering a small tubular solid oxide fuel cell - a case study ...

Samir Bensaid; Nunzio Russo; Debora Fino

2010-02-19T23:59:59.000Z

400

Computer-Aided Design Reveals Potential of Gas Turbine Cogeneration in Chemical and Petrochemical Plants  

E-Print Network [OSTI]

UN(, RAil U\\/ : ,~, ~. I I V> z. _I 'io~ , a.0llt I I~ 5>-c I I ~ I 0 z. _I 'io~ , a.0llt I I~ 5>-c I I ~ I 0

Nanny, M. D.; Koeroghlian, M. M.; Baker, W. J.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1991--June 1992  

SciTech Connect (OSTI)

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump & Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

402

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1-23, 2012 1-23, 2012 2 Presentation Outline I. Benefits II. Project Overview III. Technical Status A. Background B. Results IV. Accomplishments V. Summary 3 Benefit to the Program * Program goals. - Prediction of CO 2 storage capacity. * Project benefits. - Workforce/Student Training: Support of 3 student GAs in use of multiphase flow and geochemical models simulating CO 2 injection. - Support of Missouri DGLS Sequestration Program. 4 Project Overview: Goals and Objectives Project Goals and Objectives. 1. Training graduate students in use of multi-phase flow models related to CO 2 sequestration. 2. Training graduate students in use of geochemical models to assess interaction of CO

403

The final LDRD report for the project entitled: {open_quotes}Enhanced analysis of complex gas mixtures by pattern recognition of microsensor array signals{close_quotes}  

SciTech Connect (OSTI)

Microsensors do not have the selectivity to chemical species available in large laboratory instruments. This project employed arrays of catalytically gated silicon microsensors with different catalysts to create data streams which can be analyzed by pattern recognition programs. One of the most significant accomplishments of the program was the demonstration of that mixtures of H{sub 2} with the oxidants NO{sub x} and O{sub 2} could distinguished from one another by the use of different catalytic metals on the Sandia Robust Hydrogen (SRH) sensors and the newly developed pattern recognition algorithm. This sensor system could be used to identify explosive gas mixtures and analyze exhaust streams for pollution control.

Hughes, R.C.; Osbourn, G.C.

1996-09-01T23:59:59.000Z

404

Feasibility study of wood-fired cogeneration at a Wood Products Industrial Park, Belington, WV. Phase II  

SciTech Connect (OSTI)

Customarily, electricity is generated in a utility power plant while thermal energy is generated in a heating/cooling plant; the electricity produced at the power plant is transmitted to the heating/cooling plant to power equipments. These two separate systems waste vast amounts of heat and result in individual efficiencies of about 35%. Cogeneration is the sequential production of power (electrical or mechanical) and thermal energy (process steam, hot/chilled water) from a single power source; the reject heat of one process issued as input into the subsequent process. Cogeneration increases the efficiency of these stand-alone systems by producing these two products sequentially at one location using a small additional amount of fuel, rendering the system efficiency greater than 70%. This report discusses cogeneration technologies as applied to wood fuel fired system.

Vasenda, S.K.; Hassler, C.C.

1992-06-01T23:59:59.000Z

405

Assessment of the Technical Potential for Micro-Cogeneration in Small Commerical Buildings across the United States: Preprint  

SciTech Connect (OSTI)

This paper presents an assessment of the technical potential for micro-cogeneration in small commercial buildings throughout the United States. The cogeneration devices are simulated with the computer program EnergyPlus using models developed by Annex 42, a working group of the International Energy Agency's Energy Efficiency in Buildings and Community Systems (IEA/ECBCS). Although the Annex 42 models were developed for residential applications, this study applies them to small commercial buildings, assumed to have a total floor area of 500 m2 or less. The potential for micro-cogeneration is examined for the entire existing stock of small U.S. commercial buildings using a bottom-up method based on 1,236 EnergyPlus models.

Griffith, B.

2008-05-01T23:59:59.000Z

406

Achieving greenhouse gas emission reductions in developing countries through energy efficient lighting projects in the Clean Development Mechanism (CDM)  

SciTech Connect (OSTI)

Energy efficiency can help address the challenge of increasing access to modern energy services, reduce the need for capital-intensive supply investments as well as mitigating climate change. Efficient lighting is a promising sector for improving the adequacy and reliability of power systems and reducing emissions in developing countries. However, these measures are hardly represented in the CDM portfolio. The COP/MOP decision to include programs of activities in the CDM could open the door to the implementation of a large number of energy efficiency projects in developing countries. Since GHG reductions are essentially the emission equivalent of energy savings, the CDM can benefit from long established energy efficiency methodologies for quantifying energy savings and fulfilling CDM methodological requirements. The integration of the CDM into energy efficiency programs could help spur a necessary transformation in the lighting market.

Figueres, C.; Bosi, M.

2006-11-15T23:59:59.000Z

407

DOE/EA-1605: Environmental Assessment for Biomass Cogeneration and Heating Facilities at the Savannah River Site (August 2008)  

Broader source: Energy.gov (indexed) [DOE]

605 605 ENVIRONMENTAL ASSESSMENT FOR BIOMASS COGENERATION AND HEATING FACILITIES AT THE SAVANNAH RIVER SITE AUGUST 2008 U. S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE DOE/EA-1605 ENVIRONMENTAL ASSESSMENT FOR BIOMASS COGENERATION AND HEATING FACILITIES AT THE SAVANNAH RIVER SITE AUGUST 2008 U.S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE This page intentionally left blank - i - TABLE OF CONTENTS Page 1.0 INTRODUCTION ...................................................................................................1 1.1 Background and Proposed Action ...............................................................1 1.2 Purpose and Need ........................................................................................4

408

Advanced cogeneration and absorption chillers potential for service to Navy bases. Final report  

SciTech Connect (OSTI)

The US military uses millions of Btu`s of thermal energy to heat, cool and deliver process thermal energy to buildings on military bases, much of which is transmitted through a pipeline system incorporating thousands of miles of pipe. Much of this pipeline system is in disrepair and is nearing the end of its useful life, and the boilers which supply it are old and often inefficient. In 1993, Brookhaven National Laboratory (BNL) proposed to SERDP a three-year effort to develop advanced systems of coupled diesel cogenerators and absorption chillers which would be particularly useful in providing a continuation of the services now provided by increasingly antiquated district systems. In mid-February, 1995, BNL learned that all subsequent funding for our program had been canceled. BNL staff continued to develop the Program Plan and to adhere to the requirements of the Execution Plan, but began to look for ways in which the work could be made relevant to Navy and DoD energy needs even without the extensive development plan formerly envisioned. The entire program was therefore re-oriented to look for ways in which small scale cogeneration and absorption chilling technologies, available through procurement rather than development, could provide some solutions to the problem of deteriorated district heating systems. The result is, we believe, a striking new approach to the provision of building services on military bases: in many cases, serious study should be made of the possibility that the old district heating system should be removed or abandoned, and small-scale cogenerators and absorption chillers should be installed in each building. In the remainder of this Summary, we develop the rationale behind this concept and summarize our findings concerning the conditions under which this course of action would be advisable and the economic benefits which will accrue if it is followed. The details are developed in the succeeding sections of the report.

Andrews, J.W.; Butcher, T.A.; Leigh, R.W.; McDonald, R.J.; Pierce, B.L.

1996-04-01T23:59:59.000Z

409

Design and Economic Evaluation of Thermionic Cogeneration in a Chlorine-Caustic Plant  

E-Print Network [OSTI]

-callsti~ plant with therm ion ie Cl)gf~neration. Thermion i.e combustors replace the exi.sting hllrners of the boilers uSI!d to raise stp.am for th(~ evaporators, Rnd are capable of generating approximately 2.6 MW of de power. This satisfies about 5 percent... BURNER BOILER AUX I ..> BUS AND SWITCH GEAR THERMIONIC COMBUSTOR CELL f--- ROOM TO EVAPORATORS BOILER F==:> Figure 1. Block Diagram of Cogeneration System D STANDBY CELL ROOMS EVAPORATORS THEAMtOMC MODULES Figure 2. Schematic Layout...

Miskolezy, G.; Morgan, D.; Turner, R.

410

Improving the Thermal Output Availability of Reciprocating Engine Cogeneration Systems by Mechanical Vapor Compression  

E-Print Network [OSTI]

LOW?PRESSURE I WASTE STEAM r ... IMPROVING THE THERMAL OUTPUT AVAILABILITY OF RECIPROCATING ENGINE COGENERATION SYSTEMS BY MECHANICAL VAPOR COMPRESSION F.E. Becker and F.A. DiBella Tecogen, Inc., a Subsidiary of Thermo El~ctron Corporation...-user with electric power and process heat that is totally in the form of high-pressure steam. Current recipro cating engine systems can now provide only low pressure steam or hot water from the engine jacket, and this often is not needed or not the most appro...

Becker, F. E.; DiBella, F. A.; Lamphere, F.

411

NETL: Oil & Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil & Gas Publications KMD Contacts Project Summaries EPAct 2005 Arctic Energy Office Announcements Software Stripper Wells Efficient recovery of our nation's fossil fuel resources...

412

Western Greenbrier Co-Production Demonstration Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

contacts contacts Brad tomer Director Office of Major Demonstrations National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4692 brad.tomer@netl.doe.gov nelson Rekos Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4066 nelson.rekos@netl.doe.gov PaRtIcIPant Western Greenbrier Co-Generation, LLC Lewisburg, WV Western Greenbrier Co-ProduCtion demonstration ProjeCt (disContinued) Project Description The Western Greenbrier Co-Production (WGC) project will generate about 100 megawatts of electricity and commercial quantities of salable ash by-products by burning waste coal presently contained in numerous coal refuse dumps in the vicinity of the plant. These refuse dumps, created by coal cleaning operations over

413

Technical and economic analysis of different cogeneration systems for energy production from biomass  

Science Journals Connector (OSTI)

This paper compares the results of a techno-economic performance analysis of seven plants for energy production from biomass with the aim of identifying the most effective solution. Small (?250 KWe) and micro (?100 KWe) size plants were investigated: 50 kWe diesel internal combustion engine coupled with a gasifier and 35 kWe Stirling engine coupled with a gasifier with an overall efficiency of 41.1% and 87.5% respectively, two biomass cogenerators, one of 25 kWe and the other of 100 kWe, 250 kWe Otto internal combustion engine coupled with a gasifier and 250 kWe diesel internal combustion engine coupled with a gasifier and 238 kWe biomass ORC plant. The technical analysis provided calculations for specific biomass consumption, electricity generation, heat produced and overall system efficiency. The economic evaluation was carried on through a discounted cash flow analysis. Data were provided by literature, analysis of case study at Italian and European level, and directly by the manufacturers of cogeneration systems. The results showed that a combined heat and power (CHP) generator is the best solution because it is economically viable with a high NPV and a PBP of five years and also technically performing with a global efficiency of 78.2% and a low biomass consumption.

Giancarlo Giacchetta; Mariella Leporini; Barbara Marchetti

2014-01-01T23:59:59.000Z

414

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bynatural gas and simulated landfill gas as a fuel source.

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

415

500 Capitol Mall. 5ui!e 1600 STOEL Sacramento. California 95814  

E-Print Network [OSTI]

to modify the Crockett Cogeneration Project ("CCP") by installing electric motor driven natural gas of Pacific Gas & Electric Company's ("PG&E") derating of its natural gas supply and delivery pipeline system

416

Natural Gas Vehicle Cylinder Safety, Training and Inspection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Vehicle Cylinder Safety, Training and Inspection Project Natural Gas Vehicle Cylinder Safety, Training and Inspection Project Presentation from the U.S. DOE Office of...

417

Community Renewable Energy Success Stories: Landfill Gas-to-Energy...  

Broader source: Energy.gov (indexed) [DOE]

Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text...

418

List of Landfill Gas Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 377 Landfill Gas Incentives. CSV (rows 1 - 377) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric

419

NETL: Natural Gas Resources, Enhanced Oil Recovery, Deepwater Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Natural Gas Projects and Natural Gas Projects Index of Research Project Summaries Use the links provided below to access detailed DOE/NETL project information, including project reports, contacts, and pertinent publications. Search Natural Gas and Oil Projects Current Projects Natural Gas Resources Shale Gas Environmental Other Natural Gas Resources Ehanced Oil Recovery CO2 EOR Environmental Other EOR & Oil Resources Deepwater Technology Offshore Architecture Safety & Environmental Other Deepwater Technology Methane Hydrates DOE/NETL Projects Completed Projects Completed Natural Gas Resources Completed Enhanced Oil Recovery Completed Deepwater Technology Completed E&P Technologies Completed Environmental Solutions Completed Methane Hydrates Completed Transmission & Distribution

420

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

behavior of shales as behavior of shales as seals and storage reservoirs for CO2 Project Number: Car Stor_FY131415 Daniel J. Soeder USDOE/NETL/ORD U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Project Overview: Goals and Objectives * Program Goals - Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness * Project Objectives - Assess how shales behave as caprocks in contact with CO 2 under a variety of conditions - Assess the viability of depleted gas shales to serve as storage reservoirs for sequestered CO

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Co-Sequestration Co-Sequestration Studies Project Number 58159 Task 2 B. Peter McGrail Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 and mixed gas storage capacity in various geologic settings - Demonstrate fate of injected mixed gases * Project benefits statement:

422

The Millennium Gas project aims to undertake smoothed-particle hydrodynamic resimulations of the Millennium Simulation, providing many hundred massive galaxy clusters for comparison with X-ray surveys (170 clusters with kTsl > 3 keV). This paper looks at  

E-Print Network [OSTI]

. Abstract The Millennium Gas project aims to undertake smoothed-particle hydrodynamic-ray surveys (170 clusters with kTsl > 3 keV). This paper looks at the hot gas and stellar fractions-core systems but are successful in matching the hot gas profiles of non-cool-core clusters. Although

Thomas, Peter

423

Feasibility Study on the Use of a Solar Thermoelectric Cogenerator Comprising a Thermoelectric Module and Evacuated Tubular Collector with Parabolic Trough Concentrator  

Science Journals Connector (OSTI)

We have designed a new solar thermoelectric cogeneration system consisting of an evacuated tubular solar collector (ETSC) with a parabolic trough concentrator (PTC) and thermoelectric modules (TEMs) to supply ...

L. Miao; M. Zhang; S. Tanemura; T. Tanaka; Y. P. Kang…

2012-06-01T23:59:59.000Z

424

Thermoeconomic optimization of sensible heat thermal storage for cogenerated waste-to-energy recovery  

SciTech Connect (OSTI)

This paper investigates the feasibility of employing thermal storage for cogenerated waste-to-energy recovery such as using mass-burning water-wall incinerators and topping steam turbines. Sensible thermal storage is considered in rectangular cross-sectioned channels through which is passed unused process steam at 1,307 kPa/250 C (175 psig/482 F) during the storage period and feedwater at 1,307 kPa/102 C (175 psig/216 F) during the recovery period. In determining the optimum storage configuration, it is found that the economic feasibility is a function of mass and specific heat of the material and surface area of the channel as well as cost of material and fabrication. Economic considerations included typical cash flows of capital charges, energy revenues, operation and maintenance, and income taxes. Cast concrete is determined to be a potentially attractive storage medium.

Abdul-Razzak, H.A. [Texas A and M Univ., Kingsville, TX (United States). Dept. of Mechanical and Industrial Engineering; Porter, R.W. [Illinois Inst. of Tech., chicago, IL (United States). Dept. of Mechanical and Aerospace Engineering

1995-10-01T23:59:59.000Z

425

Energy, environmental, health and cost benefits of cogeneration from fossil fuels and nuclear energy using the electrical utility facilities of a province  

Science Journals Connector (OSTI)

A method is investigated for increasing the utilization efficiency of energy resources and reducing environmental emissions, focusing on utility-scale cogeneration and the contributions of nuclear energy. A case study is presented for Ontario using the nuclear and fossil facilities of the main provincial electrical utility. Implementation of utility-based cogeneration in Ontario or a region with a similar energy system and attributes is seen to be able to reduce significantly annual and cumulative uranium and fossil fuel use and related emissions, provide economic benefits for the province and its electrical utility, and substitute nuclear energy for fossil fuels. The reduced emissions of greenhouse gases are significant, and indicate that utility-based cogeneration can contribute notably to efforts to combat climate change. Ontario and other regions with similar energy systems and characteristics would benefit from working with the regional electrical utilities and other relevant parties to implementing cogeneration in a careful and optimal manner. Implementation decisions need to balance the interests of the stakeholders when determining which cogeneration options to adopt and barriers to regional utility-based cogeneration need to be overcome.

Marc A. Rosen

2009-01-01T23:59:59.000Z

426

Project 307  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INTEGRATING MONO ETHANOL AMINE (MEA) INTEGRATING MONO ETHANOL AMINE (MEA) REGENERATION WITH CO 2 COMPRESSION AND PEAKING TO REDUCE CO 2 CAPTURE COSTS Background In Phase I, Trimeric Corporation, in collaboration with the University of Texas at Austin, performed engineering and economic analyses necessary to determine the feasibility of novel MEA processing schemes aimed at reducing the cost of CO 2 capture from flue gas. These novel MEA-based CO 2 capture schemes are designed for integration into coal-fired power plants with the aim of reducing costs and improving efficiency. Primary Project Goal The primary goal of this project was to reduce the cost of MEA scrubbing for the recovery of CO 2 from flue gas by improved process integration. CONTACTS Sean I. Plasynski Sequestration Technology Manager

427

Advanced coal-fueled gas turbine systems  

SciTech Connect (OSTI)

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

428

Sweet-Talking the Climate? Evaluating Sugar Mill Cogeneration and Climate Change Financing in India  

E-Print Network [OSTI]

some argue that climate projects have the potential to design,  projects  that  bring  about  climate  benefits support  climate  change  mitigation  in  India,  projects 

Ranganathan, Malini; Haya, Barbara; Kirpekar, Sujit

2005-01-01T23:59:59.000Z

429

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Monitoring Geological CO Monitoring Geological CO 2 Sequestration using Perfluorocarbon and Stable Isotope Tracers Project Number FEAA-045 Tommy J. Phelps and David R. Cole* Oak Ridge National Laboratory Phone: 865-574-7290 email: phelpstj@ornl.gov (*The Ohio State University) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Developing the Technologies and Building the Infrastructure for CO 2 Storage August 22, 2013 2 Project Overview: Goals and Objectives Goal: Develop methods to interrogate subsurface for improved CO 2 sequestration, field test characterization and MVA, demonstrate CO 2 remains in zone, and tech transfer. Objectives: 1. Assessment of injections in field. PFT gas tracers are analyzed by GC-ECD to

430

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigation of the CO Investigation of the CO 2 Sequestration in Depleted Shale Gas Formations Project Number DE-FE-0004731 Jennifer Wilcox, Tony Kovscek, Mark Zoback Stanford University, School of Earth Sciences U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Project Benefits * Technical Status * Imaging at mm- to micron-scales using CT - Permeability measurements and application of the Klinkenberg effect - Molecular Dynamics simulations for permeability and viscosity estimates * Accomplishments to Date * Summary Stanford University 3 Benefit to the Program * Carbon Storage Program major goals

431

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Geotechnical Site and Geotechnical Site Investigations for the Design of a CO 2 Rich Flue Gas Direct Injection Facility Project Number DOE Grant FE0001833 Paul Metz Department of Mining & Geological Engineering University of Alaska Fairbanks U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Presentation Outline * Benefit to the Program * Project Overview: Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix: Not Included in Presentation 3 Benefit to the Program * Carbon Storage Program Major Goals: - Develop technologies that will support industries' ability to

432

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity Project Number DE-FE0002112 PIs Drs. John Kaszuba and Kenneth Sims Virginia Marcon University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status - Results - Conclusions - Next Steps * Summary 3 Benefit to the Program * Program goal being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. - Monitoring, Verification, and Accounting (MVA). MVA technologies seek to monitor, verify, and

433

Project Year Project Title  

E-Print Network [OSTI]

the cost of the project to labor only. The efficacy of the examples will be assessed through their useProject Year 2012-2013 Project Title Sight-Reading at the Piano Project Team Ken Johansen, Peabody) Faculty Statement The goal of this project is to create a bank of practice exercises that student pianists

Gray, Jeffrey J.

434

Project Year Project Team  

E-Print Network [OSTI]

design goals for this project include low cost (less than $30 per paddle) and robustness. The projectProject Year 2001 Project Team Faculty: Allison Okamura, Mechanical Engineering, Whiting School Project Title Haptic Display of Dynamic Systems Audience 30 to 40 students per year, enrolled

Gray, Jeffrey J.

435

Project Year Project Team  

E-Print Network [OSTI]

-year section of the summer project will cost $1344.) This project will be measured by the CER surveys conductedProject Year 2005 Project Team Sean Greenberg, Faculty, Philosophy Department, Krieger School of Arts & Sciences; Kevin Clark, Student, Philosophy Department, Krieger School of Arts & Sciences Project

Gray, Jeffrey J.

436

Use of High Temperature Electrochemical Cells for Co-Generation of Chemicals and Electricity  

SciTech Connect (OSTI)

In this project, two key issues were addressed to show the feasibility of electrochemical partial oxidation (EPOx) in a SOFC. First, it was demonstrated that SOFCs can reliably operate directly with natural gas. These results are relevant to both direct-natural-gas SOFCs, where the aim is solely electrical power generation, and to EPOx. Second, it must be shown that SOFCs can work effectively as partial oxidation reactors, i.e, that they can provide high conversion efficiency of natural gas to syngas. The results of this study in both these areas look extremely promising. The main results are summarized briefly: (1) Stability and coke-free direct-methane SOFC operation is promoted by the addition of a thin porous inert barrier layer to the anode and the addition of small amounts of CO{sub 2} or air to the fuel stream; (2) Modeling results readily explained these improvements by a change in the gas composition at the Ni-YSZ anode to a non-coking condition; (3) The operation range for coke-free operation is greatly increased by using a cell geometry with a thin Ni-YSZ anode active layer on an inert porous ceramic support, i.e., (Sr,La)TiO{sub 3} or partially-stabilized zirconia (in segmented-in-series arrays); (4) Ethane and propane components in natural gas greatly increase coking both on the SOFC anode and on gas-feed tubes, but this can be mitigated by preferentially oxidizing these components prior to introduction into the fuel cell, the addition of a small amount of air to the fuel, and/or the use of ceramic-supported SOFC; (5) While a minimum SOFC current density was generally required to prevent coking, current interruptions of up to 8 minutes yielded only slight anode coking that caused no permanent damage and was completely reversible when the cell current was resumed; (6) Stable direct-methane SOFC operation was demonstrated under EPOx conditions in a 350 h test; (7) EPOx operation was demonstrated at 750 C that yielded 0.9 W/cm{sup 2} and a syngas production rate of 30 sccm/cm{sup 2}, and the reaction product composition was close to the equilibrium prediction during the early stages of cell testing; (8) The methane conversion to syngas continuously decreased during the first 100 h of cell testing, even though the cell electrical characteristics did not change, due to a steady decrease in the reforming activity of Ni-YSZ anodes; (9) The stability of methane conversion was substantially improved via the addition of a more stable reforming catalyst to the SOFC anode; (10) Modeling results indicated that a SOFC with anode barrier provides similar non-coking performance as an internal reforming SOFC, and provides a simpler approach with no need for a high-temperature exhaust-gas recycle pump; (11) Since there is little or no heat produced in the EPOx reaction, overall efficiency of the SOFC operated in this mode can, in theory, approach 100%; and (12) The combined value of the electricity and syngas produced allows the EPOx generator to be economically viable at a >2x higher cost/kW than a conventional SOFC.

Scott Barnett

2007-09-30T23:59:59.000Z

437

Forest County Potawatomi Community Project | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Forest County Potawatomi Community Project Forest County Potawatomi Community Project Forest County Potawatomi Community Project November 13, 2013 - 10:45am Addthis The Forest County Potawatomi Community, a federally recognized tribe with its reservation in Forest County, Wisconsin, and with trust lands in Milwaukee, Wisconsin, is implementing an integrated renewable energy deployment plan that will provide electricity for the Tribe's government buildings. The U.S. Department of Energy provided $2.6 million in funding for this Community Renewable Energy Deployment (CommRE) project. Biogas Generation Facility The Forest County Potawatomi CommRE project will include installation of a biogas generation plant on Tribe-owned land in Milwaukee County. The digesters associated with the biogas cogeneration plant will utilize a

438

Effect of Natural Gas Fuel Addition on the Oxidation of Fuel Cell Anode Gas  

SciTech Connect (OSTI)

The anode exhaust gas from a fuel cell commonly has a fuel energy density between 15 and 25% that of the fuel supply, due to the incomplete oxidation of the input fuel. This exhaust gas is subsequently oxidized (catalytically or non-catalytically), and the resultant thermal energy is often used elsewhere in the fuel cell process. Alternatively, additional fuel can be added to this stream to enhance the oxidation of the stream, for improved thermal control of the power plant, or to adjust the temperature of the exhaust gas as may be required in other specialty co-generation applications. Regardless of the application, the cost of a fuel cell system can be reduced if the exhaust gas oxidation can be accomplished through direct gas phase oxidation, rather than the usual catalytic oxidation approach. Before gas phase oxidation can be relied upon however, combustor design requirements need to be understood. The work reported here examines the issue of fuel addition, primarily as related to molten-carbonate fuel cell technology. It is shown experimentally that without proper combustor design, the addition of natural gas can readily quench the anode gas oxidation. The Chemkin software routines were used to resolve the mechanisms controlling the chemical quenching. It is found that addition of natural gas to the anode exhaust increases the amount of CH3 radicals, which reduces the concentration of H and O radicals and results in decreased rates of overall fuel oxidation.

Randall S. Gemmen; Edward H. Robey, Jr.

1999-11-01T23:59:59.000Z

439

Integrated Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of hydrogen from natural gas and opens the possibility of incorporating wind and solar energy effectively. To learn more about integrated technology validation projects now...

440

Japan to get Alaskan gas  

Science Journals Connector (OSTI)

Japan to get Alaskan gas ... More than $100 million will be invested overall in the project in which Japan will receive 50 billion cubic feet per year of liquefied natural gas from Alaska for 15 years, starting in 1969. ...

1966-07-25T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Windscale Advanced Gas Cooled Reactor (WAGR) Decommissioning Project A Close Out Report for WAGR Decommissioning Campaigns 1 to 10 - 12474  

SciTech Connect (OSTI)

The reactor core of the Windscale Advanced Gas-Cooled Reactor (WAGR) has been dismantled as part of an ongoing decommissioning project. The WAGR operated until 1981 as a development reactor for the British Commercial Advanced Gas cooled Reactor (CAGR) power programme. Decommissioning began in 1982 with the removal of fuel from the reactor core which was completed in 1983. Subsequently, a significant amount of engineering work was carried out, including removal of equipment external to the reactor and initial manual dismantling operations at the top of the reactor, in preparation for the removal of the reactor core itself. Modification of the facility structure and construction of the waste packaging plant served to provide a waste route for the reactor components. The reactor core was dismantled on a 'top-down' basis in a series of 'campaigns' related to discrete reactor components. This report describes the facility, the modifications undertaken to facilitate its decommissioning and the strategies employed to recognise the successful decommissioning of the reactor. Early decommissioning tasks at the top of the reactor were undertaken manually but the main of the decommissioning tasks were carried remotely, with deployment systems comprising of little more than crane like devices, intelligently interfaced into the existing structure. The tooling deployed from the 3 tonne capacity (3te) hoist consisted either purely mechanical devices or those being electrically controlled from a 'push-button' panel positioned at the operator control stations, there was no degree of autonomy in the 3te hoist or any of the tools deployed from it. Whilst the ATC was able to provide some tele-robotic capabilities these were very limited and required a good degree of driver input which due to the operating philosophy at WAGR was not utilised. The WAGR box proved a successful waste package, adaptable through the use of waste box furniture specific to the waste-forms generated throughout the various decommissioning campaigns. The use of low force compaction for insulation and soft wastes provided a simple, robust and cost effective solution as did the direct encapsulation of LLW steel components in the later stages of reactor decommissioning. Progress through early campaigns was good, often bettering the baseline schedule, especially when undertaking the repetitive tasks seen during Neutron Shield and Graphite Core decommissioning, once the operators had become experienced with the equipment, though delays became more pronounced, mainly as a result of increased failures due to the age and maintainability of the RDM and associated equipment. Extensive delays came about as a result of the unsupported insulation falling away from the pressure vessel during removal and the inability of the ventilation system to manage the sub micron particulate generated during IPOPI cutting operations, though the in house development of revised and new methodologies ultimately led to the successful completion of PV and I removal. In a programme spanning over 12 years, the decommissioning of the reactor pressure vessel and core led to the production 110 ILW and 75 LLW WAGR boxes, with 20 LLW ISO freight containers of primary reactor wastes, resulting in an overall packaged volume of approximately 2500 cubic metres containing the estimated 460 cubic metres of the reactor structure. (authors)

Halliwell, Chris [Sellafield Ltd, Sellafield (United Kingdom)

2012-07-01T23:59:59.000Z

442

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Louise Pasternack, Chemistry Department, Krieger School, Krieger School of Arts & Sciences Project Title Introductory Chemistry Lab Demonstrations Audience an interactive virtual lab manual that will facilitate understanding of the procedures and techniques required

Gray, Jeffrey J.

443

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Development &  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelinesk > Development & Expansion Pipelinesk > Development & Expansion About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Development and Expansion Timing | Determining Market Interest | Expansion Options | Obtaining Approval | Prefiling Process | Approval | Construction | Commissioning Timing and Steps for a New Project An interstate natural gas pipeline construction or expansion project takes an average of about three years from the time it is first announced until the new pipe is placed in service. The project can take longer if it encounters major environmental obstacles or public opposition. A pipeline development or expansion project involves several steps: Determining demand/market interest

444

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bygas and simulated landfill gas as a fuel source. This

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

445

Notes 15. Gas Bearings for oil-free MTM  

E-Print Network [OSTI]

kWatt 4 Micro Gas Turbines 100 Turbec, ABB & Volvo 70, 250 Ingersoll Rand 175 General Electric 35, 60, 80, 150 Elliott Energy Systems 30, 60, 200 Capstone 25, 80 Bowman OUTPUT POWER (kW) MANUFACTURER Microturbine Power Conversion Technology Review..., ORNL/TM-2003/74. Cogeneration systems with high efficiency ? Multiple fuels (best if free) ? 99.99X% Reliability ? Low emissions ? Reduced maintenance ? Lower lifecycle cost 60kW MGT www.microturbine.com Hybrid System : MGT with Fuel Cell can reach...

San Andres, Luis

2010-01-01T23:59:59.000Z

446

Gas turbine considerations in the pulp and paper industry  

SciTech Connect (OSTI)

The pulp and paper industry is one of the largest users of energy in the industrial arena, requiring large quantities of process steam and electrical energy per unit of production. Developing power generation as an integral part of its power plant systems is one way for the industry to meet these requirements. Gas turbine-based cogeneration systems can also be a desirable approach. In recent years, competitive pressures, environmental concerns, the cost and availability of various fuels, and new power generation opportunities have awakened interest in power generation in the pulp and paper industry and other industries. This paper provides a strategic review of these issues of the pulp and paper industry.

Anderson, J.S. (International Paper Co., Purchase, NY (US)); Kovacik, J.M. (GE Co., Schenectady, NY (US))

1991-03-01T23:59:59.000Z

447

Project Year Project Team  

E-Print Network [OSTI]

(Karl) Zhang, Undergraduate Student, Biomedical Engineering, Whiting School of Engineering; Cheryl Kim Audio, Digital Video Project Abstract The goal of this project is to develop online modular units

Gray, Jeffrey J.

448

BNL experiment with gas jet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

project: Study of Hot Electron Transport and Subsequent Ion Acceleration using Overdense Gas Jet Target and Ultrafast TW CO2 Laser System Vitaly Yakimenko, Igor Pogorelsky ATF,...

449

Line Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(PDCI) Upgrade Project Whistling Ridge Energy Project Line Rebuild, Relocation and Substation Projects Wind Projects Line Projects BPA identifies critical infrastructure and...

450

Project Year Project Title  

E-Print Network [OSTI]

that incorporate video taped procedures for student preview. Solution This project will create videos for more to study the procedure and techniques before coming to class. Our previous fellowship project addressedProject Year 2009 Project Title Enhancing Biology Laboratory Preparation through Video

Gray, Jeffrey J.

451

Project Year Project Team  

E-Print Network [OSTI]

, there is no resource available to view the procedure before class. Solution The purpose of this project is to capture available to view the procedure before class. The purpose #12;of this project is to capture variousProject Year 2007 Project Team Kristina Obom, Faculty, Advanced Academic Programs, Krieger School

Gray, Jeffrey J.

452

Project Year Project Title  

E-Print Network [OSTI]

Project Year 2013-2014 Project Title German Online Placement Exam Project Team Deborah Mifflin to increased cost. As well, it lacked listening comprehension, writing and speaking components providing support, we will use Blackboard for this project. The creation will require numerous steps

Gray, Jeffrey J.

453

Exergy analysis of a cogeneration system through Artificial Neural Network (ANN) method  

Science Journals Connector (OSTI)

The main objective of this study is to apply the Artificial Neural Network (ANN) method to a cogeneration system, located in Izmir, Turkey, for exergetic evaluation purposes. The data used are based on the actual operational conditions and the results obtained from this system, which was exergetically analysed by the authors. It consists of three turbines with a total capacity of 13 MW, six spray dryers and two heat exchangers. A comparison between the exergy destruction values obtained from exergy analysis calculations and the ANN method is made. Fast ANN (FANN) package (library) has been chosen as an ANN application to implement into the C+ + code named CogeNNExT, which has been written and developed by the authors. From the single output of the ANN (FANN) results, the main exergy destruction rate with 60.96 MW in the exergetic analysis is found to be 61.001 MW with an error of 0.075%. From the two outputs of another ANN result, the mean input and output exergy values are found with errors of 0.438% and 2.211%, respectively.

Yilmaz Yoru; T. Hikmet Karakoc; Arif Hepbasli

2010-01-01T23:59:59.000Z

454

Theoretical study on a novel ammonia–water cogeneration system with adjustable cooling to power ratios  

Science Journals Connector (OSTI)

Abstract A novel ammonia–water cogeneration system with adjustable cooling to power ratios is proposed and investigated. In the combined system, a modified Kalina subcycle and an ammonia absorption cooling subcycle are interconnected by mixers, splitters, absorbers and heat exchangers. The proposed system can adjust its cooling to power ratios from the separate mode without splitting/mixing processes in the two subcycles to the combined operation modes which can produce different ratios of cooling and power. Simulation analysis is conducted to investigate the effects of operation parameter on system performance. The results indicate that the combined system efficiency can reach the maximum values of 37.79% as SR1 (split ratio 1) is equal to 1. Compared with the separate system, the combined efficiency and COP values of the proposed system can increase by 6.6% and 100% with the same heat input, respectively. In addition, the cooling to power ratios of the proposed system can be adjusted in the range of 1.8–3.6 under the given operating conditions.

Zeting Yu; Jitian Han; Hai Liu; Hongxia Zhao

2014-01-01T23:59:59.000Z

455

Empirical Methods for Detecting Regional Trends and Other Spatial Expressions in Antrim Shale Gas Productivity, with Implications for Improving Resource Projections Using Local Nonparametric Estimation Techniques  

Science Journals Connector (OSTI)

The primary objectives of this research were to (1) investigate empirical methods for establishing regional trends in unconventional gas resources as exhibited by historical production data ... 80-acre cells) fro...

Timothy C. Coburn; Philip A. Freeman; Emil D. Attanasi

2012-03-01T23:59:59.000Z

456

Project 371  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brent Marquis Brent Marquis Project Manager Sensor Research and Development 17 Godfrey Dr. Orono, ME. 04473 207-866-0100 ext. 241 SEMI-CONDUCTOR METAL OXIDE TECHNOLOGY FOR IN SITU DETECTION OF COAL-FIRED COMBUSTION GASES Description Sensor Research and Development Corporation is developing a robust prototype sensor system for in situ, real-time detection, identification, and measurement of coal-fired combustion gases. The sensor system is comprised of several unique semi-conducting metal oxide (SMO) sensor arrays in tandem with novel gas prefiltration techniques. The sensor array will be able to selectively detect and measure nitric oxide (NO), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), carbon dioxide (CO 2 ), carbon monoxide (CO), and ammonia (NH 3 ). The SMO sensor array is the heart of the combustion gas analyzer being developed

457

Project 320  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Philip Goldberg Philip Goldberg Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-5806 philip.goldberg@netl.doe.gov Marek Wojtowicz Advanced Fuel Research, Inc. 87 Church Street East Hartford, CT 06108 860-528-9806 marek@AFRinc.com Sequestration CARBON DIOXIDE RECOVERY FROM COMBUSTION FLUE GAS USING CARBON- SUPPORTED AMINE SORBENTS Background In Phase I, Advanced Fuel Research, Inc. will initiate development of a novel sorbent for the removal of carbon dioxide from combustion/incineration flue gas. The sorbent, based on amines supported on low-cost activated carbon, will be produced from scrap tires. Liquid-based amine systems are limited to relatively low concentrations to avoid corrosion. Corrosion should not be a

458

Project311  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lang Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4881 david.lang@netl.doe.gov John Bowser Principal Investigator Compact Membrane Systems, Inc. 325 Water Street Wilmington, DE 19804 302-999-7996 john.bowser@compactmembrane.com Sequestration CARBON DIOXIDE CAPTURE FROM LARGE POINT SOURCES Background Capture of carbon dioxide at the source of its emission has been a major focus in greenhouse gas emission control. Current technologies used for capturing CO 2 suffer from inefficient mass transfer and economics. In Phase I, Compact Membrane Systems, Inc. will fabricate and test a membrane-based absorption system for the removal of carbon dioxide from a simulated power-plant flue gas. The stability of the membrane system under various operating conditions

459

Applicant Location Requested DOE Funds Project Summary Feasibility Studies  

Broader source: Energy.gov (indexed) [DOE]

Requested Requested DOE Funds Project Summary Feasibility Studies Confederated Salish and Kootenai Tribes Pablo, MT $850,000 This project will evaluate the technical and economic viability of a co-generation biomass fuel power plant. The plant would use fuels from tribal forest management activities to provide between 2.5 to 20 megawatts (MW) of electricity to heat tribal buildings or sell on the wholesale market. Standing Rock Sioux Tribe Fort Yates, ND $430,982 This project will perform a feasibility study over the course of two years on three tribal sites to support the future development of 50 to 100 MW of wind power. Navajo Hopi Land Commission (NHLCO), Navajo Nation Window Rock, AZ $347,090 This project will conduct a feasibility study to explore potential

460

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Factors Influencing Factors Influencing CO 2 Storage Capacity and Injectivity in Eastern Gas Shales Contract No. DE-FE0004633 Michael Godec, Vice President Advanced Resources International mgodec@adv-res.com U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Program Benefits * Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefits to the Program * Program Goals Addressed - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Project Project HQ City HQ State ARRA Funding Total Value Additional  

Open Energy Info (EERE)

Beacon Power Beacon Power Corporation Smart Grid Demonstration Project Tyngsboro Massachusetts City of Painesville Smart Grid Demonstration Project City of Painesville Smart Grid Demonstration Project Painesville Ohio Duke Energy Business Services LLC Smart Grid Demonstration Project Duke Energy Business Services LLC Smart Grid Demonstration Project Charlotte North Carolina East Penn Manufacturing Co Smart Grid Demonstration Project East Penn Manufacturing Co Smart Grid Demonstration Project Lyon Station Pennsylvania Ktech Corporation Smart Grid Demonstration Project Ktech Corporation Smart Grid Demonstration Project Albuquerque New Mexico New York State Electric Gas Corporation Smart Grid Demonstration Project New York State Electric Gas Corporation Smart Grid Demonstration Project

462

Project 301  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2006 2006 Combustion Technologies CONTACTS Robert R. Romanosky Advanced Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4721 robert.romanosky@netl.doe.gov Arun C. Bose Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4467 arun.bose@netl.doe.gov ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION Background Over the past years, environmental concerns regarding pollutants have grown dramatically. Current annual greenhouse gas (GHG) emissions are 12% higher than they were in 1992. In addition, carbon dioxide (CO 2 ) emissions are projected to increase by an additional 34% over the next 20 years. About one third of carbon emissions in the

463

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Micro-Structured Sapphire Fiber Sensors for Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High-T and Dynamic Gas Pressure in Harsh Environments DE-FE0001127 Investigators: Hai Xiao, Hai-Lung Tsai, Missouri University of Science and Technology Junhang Dong, University of Cincinnati Program Manager: Norm Popkie, Gasification Division, NETL DOE Project Kickoff Meeting in the NETL Pittsburgh December 15, 2009 Outline * Background * Objectives * Project Elements * Management Plan * Research Plan and Approaches * Risk Management * Summary Background * Demands: High-performance, reliable, in situ sensors are highly demanded for advanced process control and lifecycle management in existing and future advanced power and fuel systems - Improved efficiency/safety/reliability/availability/maintainability

464

Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

national laboratory of the U.S. Department of Energy national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Subcontract Report Strategy for the Integration of NREL/SR-540-38720ďż˝ Hydrogen as a Vehicle Fuel into September 2005 ďż˝ the Existing Natural Gas Vehicle ďż˝ Fueling Infrastructure of the ďż˝ Interstate Clean Transportation ďż˝ Corridor Project ďż˝ April 22, 2004 - August 31, 2005 Gladstein, Neandross & Associates ďż˝ Santa Monica, California ďż˝ NREL is operated by Midwest Research Institute â—Ź Battelle Contract No. DE-AC36-99-GO10337 Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation

465

Current status of MHI CO2 capture plant technology, large scale demonstration project and road map to commercialization for coal fired flue gas application  

Science Journals Connector (OSTI)

(1) It is becoming increasingly evident that the prolonged utilization of fossil fuels for primary energy production, especially coal which is relatively cheap and abundant, is inevitable and that Carbon Capture and Storage (CCS) technology can significantly reduce CO2 emissions from this sector thus allowing the continued environmentally sustainable use of this important energy commodity on a global basis. (2) MHI has co-developed the Kansai Mitsubishi Carbon Dioxide Recovery Process (KM-CDR Process™) and KS-1™ absorbent, which has been deployed in seven CO2 capture plants, now under commercial operation operating at a CO2 capture capacity of 450 metric tons per day (tpd). In addition, a further two commercial plants are now under construction all of which capture CO2 from natural gas fired flue gas boilers and steam reformers. Accordingly this technology is now available for commercial scale CO2 capture for gas boiler and gas turbine application. (3) However before offering commercial CO2 capture plants for coal fired flue gas application, it is necessary to verify the influence of, and develop countermeasures for, related impurities contained in coal fired flue gas. This includes the influence on both the absorbent and the entire system of the CO2 capture plant to achieve high operational reliability and minimize maintenance requirements. (4) Preventing the accumulation of impurities, especially the build up of dust, is very important when treating coal fired flue gas and MHI has undertaken significant work to understand the impact of impurities in order to achieve reliable and stable operating conditions and to efficiently optimize integration between the CO2 capture plant, the coal fired power plant and the flue gas clean up equipment. (5) To achieve this purpose, MHI constructed a 10 tpd CO2 capture demonstration plant at the Matsushima 1000 MW Power Station and confirmed successful, long term demonstration following ?5000 hours of operation in 2006–07 with 50% financial support by RITE, as a joint program to promote technological development with the private sector, and cooperation from J-POWER. (6) Following successful demonstration testing at Matsushima, additional testing was undertaken in 2008 to examine the impact of entrainment of higher levels of flue gas impurities (primarily \\{SOx\\} and dust by bypassing the existing FGD) and to determine which components of the CO2 recovery process are responsible for the removal of these impurities. Following an additional 1000 demonstration hours, results indicated stable operational performance in relation to the following impurities; (1) SO2: Even at higher SO2 concentrations were almost completely removed from the flue gas before entering the CO2 absorber. (2) Dust: The accumulation of dust in the absorbent was higher, leading to an advanced understanding of the behavior of dust in the CO2 capture plant and the dust removal efficiency of each component within the CO2 recovery system. The data obtained is useful for the design of large-scale units and confirms the operating robustness of the CO2 capture plant accounting for wide fluctuations in impurity concentrations. (7) This important coal fired flue gas testing showed categorically that minimizing the accumulation of large concentrations of impurities, and to suppress dust concentrations below a prescribed level, is important to achieve long-term stable operation and to minimize maintenance work for the CO2 capture plant. To comply with the above requirement, various countermeasures have been developed which include the optimization of the impurity removal technology, flue gas pre treatment and improved optimization with the flue gas desulfurization facility. (8) In case of a commercial scale CO2 capture plant applied for coal fired flue gas, its respective size will be several thousand tpd which represents a considerable scale-up from the 10 tpd demonstration plant. In order to ensure the operational reliability and to accurately confirm the influence and the behavior of the impurities in coal fired fl

Takahiko Endo; Yoshinori Kajiya; Hiromitsu Nagayasu; Masaki Iijima; Tsuyoshi Ohishi; Hiroshi Tanaka; Ronald Mitchell

2011-01-01T23:59:59.000Z

466

Projectivities and Projective Embeddings  

Science Journals Connector (OSTI)

In this chapter, we aim to prove some of the main achievements in the theory of generalized polygons. First, we want to show what the little projective group and the groups of projectivities of some Moufang po...

Hendrik van Maldeghem

1998-01-01T23:59:59.000Z

467

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

468

R&D Research/Demonstration Greenhouse Using Methane Gas from a Landfill for Co-Generation  

Science Journals Connector (OSTI)

A research/demonstration greenhouse for the production of greenhouse tomatoes using the single truss tomato production ... from landfills or other sources for heating and lighting to maximize crop production whil...

William J. Roberts

1997-01-01T23:59:59.000Z

469

Project Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Questions Keeler-Pennwalt Wood Pole Removal Line Projects Line Rebuild, Relocation and Substation Projects Spacer Damper Replacement Program Wind Projects Project Overview BPA...

470

Project Year Project Title  

E-Print Network [OSTI]

operators, matrix indexing, vector computations, loops, functions, and plotting graphs, among others basic arithmetic operators, matrix indexing, and vector computations in MATLAB. After creatingProject Year 2011-2012 Project Title Online Tutorial for MATLAB Project Team Eileen Haase, Whiting

Gray, Jeffrey J.

471

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2005 Project Team Krysia Hudson, Faculty, School of Nursing, Undergraduate Instruction for Educational Resources Project Title Enhanced Web-based Learning Environments for Beginning Nursing Students (e.g., demonstrations of procedures or tasks) into the WBL systems, it will be possible to increase

Gray, Jeffrey J.

472

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Michael McCloskey, Cognitive Science/Neuroscience, Krieger of Arts & Sciences Project Title Cognitive Neuropsychology Audience The initial audience to access. The current procedure calls for individual students or researchers to contact the faculty member

Gray, Jeffrey J.

473

Project Year Project Title  

E-Print Network [OSTI]

Project Year 2011-2012 Project Title Using M-Health and GIS Technology in the Field to Improve into teams and having each team use a different m-health data collection tool (e.g., cellular phones, smart health patterns. The Tech Fellow, Jacqueline Ferguson, will assist in creating an m-health project

Gray, Jeffrey J.

474

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Gregory Hager, Computer Science, Whiting School of Engineering Fellow: Alan Chen, Biomedical Engineering, Whiting School of Engineering Project Title Robotics is complicated, time-consuming, and costly, making a robot for an introductory-level class is not practical

Gray, Jeffrey J.

475

Project Proposal Project Logistics  

E-Print Network [OSTI]

Project Proposal · Project Logistics: ­ 2-3 person teams ­ Significant implementation, worth 55 and anticipated cost of copying to/from host memory. IV. Intellectual Challenges - Generally, what makes this computation worthy of a project? - Point to any difficulties you anticipate at present in achieving high

Hall, Mary W.

476

Methodology for Assessing Greenhouse Gas Emissions and Assessing Mitigation Options for On-Road Mobile Sources Project for the Houston-Galveston Area Council  

E-Print Network [OSTI]

Methodology for Assessing Greenhouse Gas Emissions and Assessing Mitigation Options for On reductions in GHG, and b) use analytical tools/methods to assess the emissions reductions possible through and prioritized based on factors such as cost effectiveness, potential for emission reductions, and applicability

477

Warm Gas Cleanup  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Warm Gas Cleanup Warm Gas Cleanup NETL Office of Research and Development Project Number: FWP-2012.03.03 Task 5 Project Description The Environmental Protection Agency (EPA) has established strict regulations for the trace contaminant emissions from integrated gasification combined cycle (IGCC) systems. The Department of Energy (DOE) performance goals for trace contaminant removal were selected to meet or exceed EPA's standard limits for contaminants, as well as to avoid poisoning of: the catalysts utilized in making liquids from fuel gas the electrodes in fuel cells selective catalytic reduction (SCR) catalysts The objective of the NETL's ORD Warm Gas Cleanup project is to assist in achieving both DOE and EPA targets for trace contaminant capture from coal gasification, while preserving the high thermal efficiency of the IGCC system. To achieve this, both lab and pilot-scale research is underway to develop sorbents capable of removing the following contaminants from high temperature syngas (up to 550°F):

478

Natural Gas | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

January 26, 2012 January 26, 2012 The Office of Fossil Energy sponsored early research that refined more cost-effective and innovative production technologies for U.S. shale gas production -- such as directional drilling. By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet, representing nearly half of all U.S. natural gas production. | Image courtesy of the Office of Fossil Energy. Producing Natural Gas From Shale By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet. When you consider that 1 tcf of natural gas is enough to heat 15 million homes for one year, the importance of this resource to the nation becomes obvious. January 26, 2012 Natural Gas Production and U.S. Oil Imports Take a look at the Energy Information Administration's projections for

479

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

projects have been proposed to import natural gas from neighboring countries. Natural Gas Transportation Update Northwest Pipeline Company on Wednesday, August 25, said it will...

480

Heat Exchanger Design for Solar Gas-Turbine Power Plant.  

E-Print Network [OSTI]

?? The aim of this project is to select appropriate heat exchangers out of available gas-gas heat exchangers for used in a proposed power plant.… (more)

Yakah, Noah

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta