Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

High Efficiency Gas Turbines Overcome Cogeneration Project Feasibility Hurdles  

E-Print Network [OSTI]

HIGH EFFICIENCY GAS TlJR1HNES OVERCOME COGENFRATION PROJECT FEASIBILITY HURDLES JIM KING Gas Turbine Perfonumce Engineer STEVART &: STEVENSON SERVICES. INC. Houston. TelUlS ABSTRACT Cogeneration project feasibility sometimes fails... during early planning stages due to an electrical cycle efficiency which could be improved through the use of aeroderivative gas turbine engines. The aeroderivative engine offers greater degrees of freedom in terms of power augmentation through...

King, J.

2

Baytown Cogeneration Project  

E-Print Network [OSTI]

The Baytown Cogeneration Project installed a GE 7FA gas turbine generator that produces 160 MW of electricity and 560-klB/hr of superheated 1500-psig steam. All of the steam and electricity are consumed by the ExxonMobil Refinery & Chemical Plant...

Lorenz, M. G.

2007-01-01T23:59:59.000Z

3

Natural Gas Procurement Challenges for a Project Financed Cogeneration Facility  

E-Print Network [OSTI]

these criteria as inconsistent with UCC project economics and normal procurement practice. A. TERM OF CONTRACT The trend in the industry was strongly moving away from long term fixed price contracts. Natural Gas prices had moved steadily upward through..., by 1986? the problem of long term take or pay contracts in the Industry was overwhelming. Most producers had written some contracts at very low prices that had not expired while consumers were replacing contract written at high prices. However...

Good, R. L.; Calvert, T. B.; Pavlish, B. A.

4

Why Cogeneration Development Projects Fail  

E-Print Network [OSTI]

WHY CXXlENERATION DEVElDHmNT PROJECTS FAIL RALPH w. GRBBtMX>D Regional Manager Bbasco Services Incorporated Houston, Texas ABSTRACT Cogeneration projects that are organized by developers fail to reach fruition for reasons other than... the basic economical or technical sotmdness of the opportunity. Cogeneration developnent projects fail because of misunderstanding?by the host or other participants of their obligations, inadequate management support by the host organization, regulatory...

Greenwood, R. W.

5

EIS-0201: Coyote Springs Cogeneration Project Morrow Count, Oregon  

Broader source: Energy.gov [DOE]

This environmental impact statement analyzes the protential impacts of the Coyote Springs Cogeneration Project, a proposed natural gas-fired cogeneration power plant near Boardman, Oregon. The proposed power plant would be built on a 22-acre site in the Port of Morrow Industrial Park. The plant would have two combustion turbines that would generate 440 average megawatts of energy when completed.

6

Reliability, Availability and Maintainability Considerations for Gas Turbine Cogeneration Systems  

E-Print Network [OSTI]

RELIABILITY, AVAILABILITY AND MAINTAINABILITY CONSIDERATIONS FOR GAS TURBINE COGENERATION SYSTEMS Gyrus B. Meher-Homji and Alfred B. Focke Boyce Engineering International, Inc. Houston, Texas ABSTRACT The success of a cogeneration system... the choice of the number of gas turbines and waste heat recovery units to be utilized down to small components, such as pumps, dampers, hea t exchangers and auxiliary systems. . Rand M studies must be initiated in the conceptual phases of the project...

Meher-Homji, C. B.; Focke, A. B.

1984-01-01T23:59:59.000Z

7

Cogeneration Project Analysis Update  

E-Print Network [OSTI]

in the project. For the typical system, as shown in Figure 2, sulfur and NOx are the prime fuel related environmental concerns. Another fuel related concern, which may surface during operation is the opacity of the exhaust. However, if the system is well... designed, this should not be a problem; Depending on the type of system and fuel used, you may need to treat the stack gases to be in compliance. This in itself will increase the project cost and complicate the system operation. Fuel Cost Criteria Ve...

Robinson, A. M.; Garcia, L. N.

8

Regulatory Requirements for Cogeneration Projects  

E-Print Network [OSTI]

for cogeneration, therefore, the discussion will be limited to those portions of each act that affect cogenerators. Since the original cogeneration legislation was passed in 1978 and implemented by the Federal Energy Regulatory Commission (FERC) in 1980... major pieces of legislation that impact cogeneration as well as an outline of the major provisions obtain ed in the Department of Energy Federal Energy Regulatory Commission final rule implementing Section 201 and Section 210 of PURPA. Public Uti...

Curry, K. A., Jr.

1982-01-01T23:59:59.000Z

9

Evaluation of Technology Risk in Project Cogeneration Project Returns  

E-Print Network [OSTI]

The economic returns of a cogeneration project are a direct function of the project margin, that is, the difference between revenues and expenses. Revenues and expenses, of course, are made up of both variable and fixed components. The revenues...

Thoennes, C. M.

10

Black liquor gasifier/gas turbine cogeneration  

SciTech Connect (OSTI)

The kraft process dominates pulp and paper production worldwide. Black liquor, a mixture of lignin and inorganic chemicals, is generated in this process as fiber is extracted from wood. At most kraft mills today, black liquor is burned in Tomlinson boilers to produce steam for on-site heat and power and to recover the inorganic chemicals for reuse in the process. Globally, the black liquor generation rate is about 85,000 MW{sub fuel} (or 0.5 million tonnes of dry solids per day), with nearly 50% of this in North America. The majority of presently installed Tomlinson boilers will reach the end of their useful lives during the next 5 to 20 years. As a replacement for Tomlinson-based cogeneration, black liquor-gasifier/gas turbine cogeneration promises higher electrical efficiency, with prospective environmental, safety, and capital cost benefits for kraft mills. Several companies are pursuing commercialization of black liquor gasification for gas turbine applications. This paper presents results of detailed performance modeling of gasifier/gas turbine cogeneration systems using different black liquor gasifiers modeled on proposed commercial designs.

Consonni, S. [Politecnico di Milano (Italy). Dept. di Energetica; Larson, E.D.; Keutz, T.G. [Princeton Univ., NJ (United States); Berglin, N. [Chalmers Univ. of Technology, Goteborg (Sweden). Dept. of Heat and Power Technology

1998-07-01T23:59:59.000Z

11

Financing Co-generation Projects  

E-Print Network [OSTI]

profit generated by energy intensive industries will not be sufficient to provide the capital required for both normal business expansion and energy conservation projects. Debt financing for energy saving equipment will adversely impact balance sheet...

Young, R.

1982-01-01T23:59:59.000Z

12

Waste-to-Energy Cogeneration Project, Centennial Park  

SciTech Connect (OSTI)

The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utility bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.

Johnson, Clay; Mandon, Jim; DeGiulio, Thomas; Baker, Ryan

2014-04-29T23:59:59.000Z

13

Klickitat Cogeneration Project : Final Environmental Assessment.  

SciTech Connect (OSTI)

To meet BPA`s contractual obligation to supply electrical power to its customers, BPA proposes to acquire power generated by Klickitat Cogeneration Project. BPA has prepared an environmental assessment evaluating the proposed project. Based on the EA analysis, BPA`s proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 for the following reasons: (1)it will not have a significant impact land use, upland vegetation, wetlands, water quality, geology, soils, public health and safety, visual quality, historical and cultural resources, recreation and socioeconomics, and (2) impacts to fisheries, wildlife resources, air quality, and noise will be temporary, minor, or sufficiently offset by mitigation. Therefore, the preparation of an environmental impact statement is not required and BPA is issuing this FONSI (Finding of No Significant Impact).

United States. Bonneville Power Administration; Klickitat Energy Partners

1994-09-01T23:59:59.000Z

14

EIS-0349: Cherry Point Co-generation Project  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to support BP West Coast Products, LLC proposal to construct and operate a 720-megawatt, natural-gas-fired, combined-cycle cogeneration facility on land adjacent to its BP Cherry Point Refinery.

15

BP Cherry Point Cogeneration Project, Draft Environmental Impact Statement  

SciTech Connect (OSTI)

BP West Coast Products, LLC (BP or the Applicant) proposes to construct and operate a nominal 720-megawatt (MW), natural-gas-fired, combined-cycle cogeneration facility next to the existing BP Cherry Point Refinery in Whatcom County, Washington. The Applicant also owns and operates the refinery, but the cogeneration facility and the refinery would be operated as separate business units. The cogeneration facility and its ancillary infrastructure would provide steam and 85 MW of electricity to meet the operating needs of the refinery and 635 MW of electrical power for local and regional consumption. The proposed cogeneration facility would be located between Ferndale and Blaine in northwestern Whatcom County, Washington. The Canadian border is approximately 8 miles north of the proposed project site. The Washington State Energy Facility Site Evaluation Council (EFSEC) has jurisdiction over the evaluation of major energy facilities including the proposed project. As such, EFSEC will recommend approval or denial of the proposed cogeneration facility to the governor of Washington after an environmental review. On June 3, 2002, the Applicant filed an Application for Site Certification (ASC No. 2002-01) with EFSEC in accordance with Washington Administrative Code (WAC) 463-42. On April 22, 2003, the Applicant submitted an amended ASC that included, among other things, a change from air to water cooling. With the submission of the ASC and in accordance with the State Environmental Policy Act (SEPA) (WAC 463-47), EFSEC is evaluating the siting of the proposed project and conducting an environmental review with this Environmental Impact Statement (EIS). Because the proposed project requires federal agency approvals and permits, this EIS is intended to meet the requirements under both SEPA and the National Environmental Policy Act (NEPA). The Bonneville Power Administration (Bonneville) and U.S. Army Corps of Engineers (Corps) also will use this EIS as part of their respective decision-making processes associated with the Applicant's request to interconnect to Bonneville's transmission system and proposed location of the project within wetland areas. Therefore, this Draft EIS serves as the environmental review document for SEPA and for NEPA as required by Bonneville for the interconnection and the Corps for its 404 individual permit. The EIS addresses direct, indirect, and cumulative impacts of the proposed project, and potential mitigation measures proposed by the Applicant, as well as measures recommended by EFSEC. The information and resulting analysis presented in this Draft EIS are based primarily on information provided by the Applicant in the ASC No. 2002-01 (BP 2002). Where additional information was used to evaluate the potential impacts associated with the proposed action, that information has been referenced. EFSEC's environmental consultant, Shapiro and Associates, Inc., did not perform additional studies during the preparation of this Draft EIS.

N /A

2003-09-19T23:59:59.000Z

16

Cogeneration  

E-Print Network [OSTI]

environment, that of the state of California. The panel for this tutorial session includes representative from a broad cross-section of the cogeneration industry including industrial users, engineering firms, developers and equipment manufacturers. 129...

Jenkins, S. C.

17

SECO - Dow Corning's Wood Fueled Industrial Cogeneration Project  

E-Print Network [OSTI]

In 1979, Dow Corning Corporation decided to build a wood fueled steam and electric cogeneration (SECO) power plant at Midland, Michigan. This decision was prompted by the high cost of oil and natural gas, an abundant supply of wood in mid Michigan...

Betts, W. D.

1982-01-01T23:59:59.000Z

18

Second law analysis of a natural gas-fired steam boiler and cogeneration plant.  

E-Print Network [OSTI]

??A second law thermodynamic analysis of a natural gas-fired steam boiler and cogeneration plant at Rice University was conducted. The analysis included many components of… (more)

Conklin, Eric D

2010-01-01T23:59:59.000Z

19

BIOMASS AND BLACK LIQUOR GASIFIER/GAS TURBINE COGENERATION AT PULP AND PAPER MILLS  

E-Print Network [OSTI]

BIOMASS AND BLACK LIQUOR GASIFIER/GAS TURBINE COGENERATION AT PULP AND PAPER MILLS ERIC D. LARSON modeling of gasifier/gas turbine pulp-mill cogeneration systemsusing gasifier designs under commercial gasification. The use of biomass fuels with gas turbines could transform a typical pulp mill from a net

20

CROCKETT COGENERATION PROJECT (92-AFC-1C)  

E-Print Network [OSTI]

with the requirements of NFPA 56PS. · All purging and gas blowing will be accomplished by using oil-free air compressors to become familiar with the SOP and Fire Safety Plan. Geology Question Geo-1: Please explain why

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

HL&P/Du Pont Cogeneration Project  

E-Print Network [OSTI]

. Supplementary fireable HRSG's provide additional supply reliability for the steam host. Electricity from the project is delivered into HL&P's System through a new 138 KY substation. Such an arrangement offers Du Pont a significant cost saving opportunity as less...

Vadie, H. H.

2013-06-06T23:59:59.000Z

22

Optimization of Combustion Efficiency for Supplementally Fired Gas Turbine Cogenerator Exhaust Heat Receptors  

E-Print Network [OSTI]

A broad range of unique cogeneration schemes are being installed or considered for application in the process industries involving gas turbines with heat recovery from the exhaust gas. Depending on the turbine design, exhaust gases will range from...

Waterland, A. F.

1984-01-01T23:59:59.000Z

23

Computer-Aided Design Reveals Potential of Gas Turbine Cogeneration in Chemical and Petrochemical Plants  

E-Print Network [OSTI]

Gas turbine cogeneration cycles provide a simple and economical solution to the problems created by rising fuel and electricity costs. These cycles can be designed to accommodate a wide range of electrical, steam, and process heating demands...

Nanny, M. D.; Koeroghlian, M. M.; Baker, W. J.

1984-01-01T23:59:59.000Z

24

COGEN3: A Computer System for Design, Costing and Economic Optimization of Cogeneration Projects  

E-Print Network [OSTI]

COGEN3 is computer software that combines the capabilities for: conceptual engineering design, costing, economic optimization, and financial evaluation of cogeneration projects. COGEN3 considers the problems of equipment selection, fuel selection...

Manuel, E. H., Jr.

1984-01-01T23:59:59.000Z

25

Bagasse-based cogeneration projects in Kenya. Export trade information  

SciTech Connect (OSTI)

A Definitional Mission team evaluated the prospects of the US Trade and Development Program (TDP) funding a feasibility study that would assist the Government of Kenya in developing power cogeneration plants in three Kenyan sugar factories and possibly two more that are now in the planning stage or construction. The major Kenyan sugar producing region around Kisumu, on Lake Victoria has climatic conditions that permit cane growing operations ideally suitable for cogeneration of power in sugar factories. The total potentially available capacity from the proposed rehabilitation of the three mills will be approximately 25.15 MW, or 5.7 percent of total electricity production.

Kenda, W.; Shrivastava, V.K.

1992-03-01T23:59:59.000Z

26

A Utility-Affiliated Cogeneration Developer Perspective  

E-Print Network [OSTI]

This paper will address cogeneration from a utility-affiliated cogeneration developer perspective on cogeneration as it relates to the development and consumption of power available from a cogeneration project. It will also go beyond...

Ferrar, T. A.

27

Cogeneration for supermarkets  

SciTech Connect (OSTI)

The Gas Research Institute's supermarket dehumidification project and assessments of commercial cogeneration found that retail supermarkets represent an opportunity for packaged gas-fueled cogeneration systems. Although not currently large thermal users, supermarkets have several electrical loads that can be replaced with heat-driven absorption and adsorption if the cogeneration package is designed specifically for their needs. Field testing should verify the preliminary estimates of attractive paybacks combined with reliability and ease of operation that are required by supermarket operators. The system under examination provides all of the low and medium temperature refrigeration, most of the space heating, all of the water heating, and some of the electricity for lighting. 4 figures, 2 tables.

Walker, D.; Hynek, S.

1985-08-01T23:59:59.000Z

28

Cogeneration Planning  

E-Print Network [OSTI]

cogeneration projects for its plants. Of concern to us are rapidly escalating electrical costs plus concern about the future of some utilities to maintain reserve capacity. Our review to date revolves around (1) obtaining low-cost reliable fuel supplies...

Mozzo, M. A. Jr.

29

Gas Turbine Cogeneration Plant for the Dade County Government Center  

E-Print Network [OSTI]

in downtown Miami presents significant construction scheduling, environmental, and engineering challenges. Issues such as space limitations, emissions, noise pollution, and maintenance have been carefully addressed and successfully resolved. INTRODUCTION... CONSTRUCTION : I Another true challenge of implementing th~ Dade cogeneration system is in the area of scheduling and construction. The building to house the cogen~ration 139 ESL-IE-85-05-25 Proceedings from the Seventh National Industrial Energy...

Michalowski, R. W.; Malloy, M. K.

30

Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site  

SciTech Connect (OSTI)

This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

L.E. Demick

2011-10-01T23:59:59.000Z

31

Combined biomass and black liquor gasifier/gas turbine cogeneration at pulp and paper mills  

SciTech Connect (OSTI)

Kraft pulp and paper mills generate large quantities of black liquor and byproduct biomass suitable for gasification. These fuels are used today for onsite cogeneration of heat and power in boiler/steam turbine systems. Gasification technologies under development would enable these fuels to be used in gas turbines. This paper reports results of detailed full-load performance modeling of pulp-mill cogeneration systems based on gasifier/gas turbine technologies. Pressurized, oxygen-blown black liquor gasification, the most advanced of proposed commercial black liquor gasifier designs, is considered, together with three alternative biomass gasifier designs under commercial development (high-pressure air-blown, low-pressure air-blown, and low-pressure indirectly-heated). Heavy-duty industrial gas turbines of the 70-MW{sub e} and 25-MW {sub e} class are included in the analysis. Results indicate that gasification-based cogeneration with biomass-derived fuels would transform a typical pulp mill into significant power exporter and would also offer possibilities for net reductions in emissions of carbon dioxide relative to present practice.

Larson, E.D.; Kreutz, T.G. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies; Consonni, S. [Politecnico di Milano, Milan (Italy). Dipt. di Energetica

1999-07-01T23:59:59.000Z

32

PERFORMANCE OF BLACK LIQUOR GASIFIER/GAS TURBINE COMBINED CYCLE COGENERATION IN mE KRAFT PULP  

E-Print Network [OSTI]

PERFORMANCE OF BLACK LIQUOR GASIFIER/GAS TURBINE COMBINED CYCLE COGENERATION IN mE KRAFT PULP high-temperature gasifiers for gas turbine applications. ABB and MTCr/Stonechem are developing low-load performance of gasifier/gas turbine systemsincorporating the four above-noted gasifier designs are reported

33

Cogeneration Project Overview: J. M. Huber Corporation, Borger, Texas  

E-Print Network [OSTI]

of the plant is a refurbished utility steam turbine generator and related auxiliaries. Full output of the generator will be sold to the electric utility. Key issues which affected the project's design and management decisions are reviewed as well...

Dickinson, T. W.; Gibson, G. L.

1982-01-01T23:59:59.000Z

34

Fundamentals of a Third-Party Cogeneration Project  

E-Print Network [OSTI]

Base data from which the savings will be measured. This is usually a historical average of fuel and electrical costs adjusted, if necessary. to the present operating conditions. o Calculation of savings. The procedures for determining the revenues... and procedures formalized for the initial project. This can lead to honest misunderstandings and delays. Also, the utility is highly aware of precedent and sometimes treats any concession as being lost forever. Therefore. the utility can be hesitant on any...

Grantham, F.; Stovall, D.

35

Cogeneration/Cogeneration - Solid Waste  

E-Print Network [OSTI]

This paper reviews the rationale for cogeneration and basic turbine types available. Special considerations for cogeneration in conjunction with solid waste firing are outlined. Optimum throttle conditions for cogeneration are significantly...

Pyle, F. B.

1980-01-01T23:59:59.000Z

36

Integrated Chemical Complex and Cogeneration Analysis System: Energy Conservation and Greenhouse Gas Management Solutions  

E-Print Network [OSTI]

19f Integrated Chemical Complex and Cogeneration Analysis System: Energy Conservation and Cogeneration Analysis System is an advanced technology for energy conservation and pollution prevention, Beaumont, TX 77710, hopperjr@hal.lamar.edu, yawscl@hal.lamar.edu Key words; Energy Conservation, Greenhouse

Pike, Ralph W.

37

The Developer's Role in the Cogeneration Business  

E-Print Network [OSTI]

Although cogeneration technology is well-established, the business is new and still taking shape. Cogeneration projects involve a diverse mix of organizations, including equipment suppliers, engineering and construction firms, fuel suppliers...

Whiting, M. Jr.

38

Demonstration of an on-site PAFC cogeneration system with waste heat utilization by a new gas absorption chiller  

SciTech Connect (OSTI)

Analysis and cost reduction of fuel cells is being promoted to achieve commercial on-site phosphoric acid fuel cells (on-site FC). However, for such cells to be effectively utilized, a cogeneration system designed to use the heat generated must be developed at low cost. Room heating and hot-water supply are the most simple and efficient uses of the waste heat of fuel cells. However, due to the short room-heating period of about 4 months in most areas in Japan, the sites having demand for waste heat of fuel cells throughout the year will be limited to hotels and hospitals Tokyo Gas has therefore been developing an on-site FC and the technology to utilize tile waste heat of fuel cells for room cooling by means of an absorption refrigerator. The paper describes the results of fuel cell cogeneration tests conducted on a double effect gas absorption chiller heater with auxiliary waste heat recovery (WGAR) that Tokyo Gas developed in its Energy Technology Research Laboratory.

Urata, Tatsuo [Tokyo Gas Company, LTD, Tokyo (Japan)

1996-12-31T23:59:59.000Z

39

Cogeneration and its regulations  

SciTech Connect (OSTI)

In the near term, regulators, utility managements, and legislators will grapple with numerous issues surrounding the development of cogeneration projects as sources of electric power. The Federal Energy Regulatory Commission predicts that 12,000 MW of new cogeneration plants will be constructed during the 1980s, and all 50 states are in the process of implementing new regulations pursuant to the Public Utility Regulatory Policies Act. The US utility system's overall fuel efficiency of 29% offers rich opportunities to conserve fuel, reduce costs, and decrease pollution via cogeneration. Policymakers should stop viewing utilities simply as efficiency tax collectors on the one hand and opponents of innovation on the other. In addition to mothballing inefficient central utility stations, the US must rapidly deploy district heating with cogenerated heat; policymakers should look beyond the obsolete stream systems and encourage development of the high-temperature hot-water systems so successful in Europe.

Casten, T.R.; Ross, H.E.

1981-03-26T23:59:59.000Z

40

Cogeneration Considerations in the 1980's  

E-Print Network [OSTI]

fired industrial using noncondensing turbines to co fuel supplies. generate power prior to delivery of steam to the STEAM TURBINE GAS TURBINE POWER COGENERATION COGENERATION GENERATION SYSTEM SYSTEM ?1% 2% 15% OTHER BOILER 84% 75% POWER POWER... utilization diagram for a gas turbine with exhaust heat recovery is given in the righthand portion of Fig. 1. For this fuel oil fired unit, the unfired exhaust heat recovery sys tem results in a 300?F stack temperature. Gas tur bine cogeneration systems...

Kovacik, J. M.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DIGESTER GAS - FUEL CELL - PROJECT  

SciTech Connect (OSTI)

GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

2002-03-01T23:59:59.000Z

42

Australian Shale Gas Assessment Project Reza Rezaee  

E-Print Network [OSTI]

Australian Shale Gas Assessment Project Reza Rezaee Unconventional Gas Research Group, Department of Petroleum Engineering, Curtin University, Australia Shale gas is becoming an important source feet (Tcf) of technically recoverable shale gas resources. Western Australia (WA) alone

43

Coyote Springs Cogeneration Project, Morrow County, Oregon: Draft Environmental Impact Statement.  

SciTech Connect (OSTI)

BPA is considering whether to transfer (wheel) electrical power from a proposed privately-owned, combustion-turbine electrical generation plant in Oregon. The plant would be fired by natural gas and would use combined-cycle technology to generate up to 440 average megawatts (aMW) of energy. The plant would be developed, owned, and operated by Portland General Electric Company (PGE). The project would be built in eastern Oregon, just east of the City of Boardman in Morrow County. The proposed plant would be built on a site within the Port of Morrow Industrial Park. The proposed use for the site is consistent with the County land use plan. Building the transmission line needed to interconnect the power plant to BPA`s transmission system would require a variance from Morrow County. BPA would transfer power from the plant to its McNary-Slatt 500-kV transmission line. PGE would pay BPA for wheeling services. Key environmental concerns identified in the scoping process and evaluated in the draft Environmental Impact Statement (DEIS) include these potential impacts: (1) air quality impacts, such as emissions and their contributions to the {open_quotes}greenhouse{close_quotes} effect; (2) health and safety impacts, such as effects of electric and magnetic fields, (3) noise impacts, (4) farmland impacts, (5) water vapor impacts to transportation, (6) economic development and employment impacts, (7) visual impacts, (8) consistency with local comprehensive plans, and (9) water quality and supply impacts, such as the amount of wastewater discharged, and the source and amount of water required to operate the plant. These and other issues are discussed in the DEIS. The proposed project includes features designed to reduce environmental impacts. Based on studies completed for the DEIS, adverse environmental impacts associated with the proposed project were identified, and no evidence emerged to suggest that the proposed action is controversial.

United States. Bonneville Power Administration.

1994-01-01T23:59:59.000Z

44

Cogeneration Can Add To Your Profits  

E-Print Network [OSTI]

The predicted rapid escalation of gas and electric costs, particularly in those utility systems predominantly fired by gas, make it important for both industry and utilities to evaluate the role of cogeneration in their future plans. Industries...

Gerlaugh, H. E.

1983-01-01T23:59:59.000Z

45

Large-Scale Eucalyptus Energy Farms and Power Cogeneration1  

E-Print Network [OSTI]

Large-Scale Eucalyptus Energy Farms and Power Cogeneration1 Robert C. Noronla2 The initiation of a large-scale cogeneration project, especially one that combines construction of the power generation supplemental fuel source must be sought if the cogeneration facility will consume more fuel than

Standiford, Richard B.

46

Alternatives to Industrial Cogeneration: A Pinch Technology Perspective  

E-Print Network [OSTI]

ALTERNATIVES TO INDUSTRIAL COGENERATION: A PINCH TECHNOLOGY PERSPECTIVE ALAN KARP, Senior Consultant Linnhoff March, Inc., Leesburg, Virginia ABSTRACT Pinch Technology studies across a broad spectrum of processes confirm that existing... irrespective of the individual utility's attitude toward cogeneration. Both the Electric Power Research Institute and a growing number of individual utilities are now using Pinch Technology to assist in the analysis of cogeneration projects...

Karp, A.

47

Sensitivity Analysis of Factors Effecting the Financial Viability of Cogeneration Projects  

E-Print Network [OSTI]

demand and an energy charge? Is the price based on PURPA? What is the projected rate of increase in the price of electricity? Does the term of the electric contract extend throughout the period of repayment of the financing? o Projected operating... costs reasonable? Is there a fixed price contract for the construction of the project? What party is responsible for paying construction over-runs? o Permits Have all required permits and licenses necessary to construct and operate the Project...

Clunie, J. F.

1984-01-01T23:59:59.000Z

48

Thailand gas project now operational  

SciTech Connect (OSTI)

Now operational, Phase 1 of Thailand's first major natural gas system comprises one of the world's longest (264 miles) offshore gas lines. Built for the Petroleum Authority of Thailand (PTT), this system delivers gas from the Erawan field in the Gulf of Thailand to two electrical power plants near Bangkok, operated by the Electricity Generating Authority of Thailand (EGAT). The project required laying about 360 miles of pipeline, 34-in., 0.625 in.-thick API-5LX-60 pipe offshore and 28-in., 0.406 in.-thick API-5LX-60 onshore. The offshore pipe received a coal-tar coating, a 3.5-5.0 in. concrete coating, and zinc sacrificial-anode bracelets. The onshore line was coated with the same coal-tar enamel and, where necessary, with concrete up to 4.5 in. thick. Because EGAT's two power plants are the system's only customers, no more pipeline will be constructed until deliveries, currently averaging about 100 million CF/day, reach the 250 million CF/day level. The project's second phase will include additional pipelines as well as an onshore distribution network to industrial customers.

Horner, C.

1982-08-01T23:59:59.000Z

49

The Design and Development of An Externally Fired Steam Injected Gas Turbine for Cogeneration  

E-Print Network [OSTI]

This paper describes the theoretical background and the design and development of a prototype externally fired steam injected (ECSI) gas turbine which has a potential to utilize lower grade fuels. The system is designed around a 2 shaft 360 HP gas...

Boyce, M. P.; Meher-Homji, C.; Ford, D.

1981-01-01T23:59:59.000Z

50

Heat Recovery Design Considerations for Cogeneration Systems  

E-Print Network [OSTI]

The design and integration of the heat recovery section, which includes the steam generation, auxiliary firing, and steam turbine modules, is critical to the overall performance and economics of cogeneration, systems. In gas turbine topping...

Pasquinelli, D. M.; Burns, E. D.

51

Combined Cycle Cogeneration at NALCO Chemical  

E-Print Network [OSTI]

centrifugal chilling capacity expansion were integrated into the model. The gas turbine selection procedure is out lined. Bid evaulation procedure involved a life cycle cost comparison wherein the bid specification responses for each model turbine were... ~ STEAM USE - LB/HR Figure 1 ? NALCO CHEMICAL COMPANY, NAPERVILLE FACILITIES STEAM USE PROFILE Cogeneration Approach Three modes of cogeneration are typically available. These are steam cycle, gas turbine, and reciprocating engine. Preliminary...

Thunem, C. B.; Jacobs, K. W.; Hanzel, W.

52

Evaluating Sites for Industrial Cogeneration in Chicago  

E-Print Network [OSTI]

and hospital complexes; and new, densely populated residential developments that have large thermal and electric demands. Potential sites have been evaluated as part of a project to encourage industrial cogeneration applications in Chicago. Energy...

Fowler, G. L.; Baugher, A. H.

1982-01-01T23:59:59.000Z

53

The Hunters Point cogeneration project: Environmental justice in power plant siting  

SciTech Connect (OSTI)

The recent Hunters Point, San Francisco power plant siting process in California represents the first time that environmental justice has arisen as a major power plant siting issue. Intervenors argued that the siting process was racially and economically biased and were supported by leading environmental justice activists at the Golden Gate Law School`s Environmental Justice Clinic, a leading thinker in this field. The applicant argued that environmental justice charges cannot realistically be made against a modern natural-gas energy facility with state-of-the-art environmental controls. The applicant also argued that environmental justice concerns were fully addressed through the extensive environmental and socioeconomic review carried out by California Energy Commission staff. After extensive testimony and cross-examination, the Commission agreed with the applicant. This case has important lessons for companies that could be charged with environmental justice violations and environmental justice activists who must decide where to most effectively target their efforts. This paper reviews the proceeding and its lessons and makes recommendations regarding future applicability of environmental justice issues to the power generation sector. The authors represented the applicant in the facility siting proceeding.

Kosloff, L.H. [Trexler and Associates, Inc., Portland, OR (United States); Varanini, E.E. III [Marron, Reid and Sheehy, Sacramento, CA (United States)

1997-12-31T23:59:59.000Z

54

Industrial Cogeneration Application  

E-Print Network [OSTI]

recepts tax which is currently at 13.8%. These two bills will save thousands of dollars in this project alone. Additionally, other legislative activity is being proposed, such as exemption of cogeneration facilities from property tax. Such encouraging... was selected quickly for this pilot plant. The selected facility required steam year round for process as well as heat, averaging from about 8,000 lbs/hr to over 35,000 lbs/hr. This steam is generated in a boiler rated at 250 PSIG, but operated at 120 PSIG...

Mozzo, M. A.

55

Cogeneration Economics  

E-Print Network [OSTI]

Mbine ~ogen~on . the heat ~e ~ 5.500 BTU/kWh In an diuet engine ~ogen~on : . the heat ~e ~ 7.000 BTU/kWh TYPES OF COGENERATION SYSTEMS The te~hnology On thue vaJUoU.6 typu on ~ogen~oM ha.6 ~ontinued to impMve a.6 mo~e enMcient and low~ ~O.6t .6y.6tem... in ~ogen~n. Japanue n~ announ~ed a b~eal'LthMugh in ~ogen~n ~hill~ -heat~ te~hnology with up to 40 %mo~e U.6able en~y. G~an ~hemi~al n~ build today a 300 bM 580?C ~0a1. n~ed boil~ and a ~omb.{.ned pMduilion On .6te.am and etectAi~y. In USA - .6omeone...

Mongon, A.

1984-01-01T23:59:59.000Z

56

Flammable gas project topical report  

SciTech Connect (OSTI)

The flammable gas safety issue was recognized in 1990 with the declaration of an unreviewed safety question (USQ) by the U. S. Department of Energy as a result of the behavior of the Hanford Site high-level waste tank 241-SY-101. This tank exhibited episodic releases of flammable gas that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years there has been a considerable amount of knowledge gained about the chemical and physical processes that govern the behavior of tank 241-SY-1 01 and other tanks associated with the flammable gas safety issue. This report was prepared to provide an overview of that knowledge and to provide a description of the key information still needed to resolve the issue. Items covered by this report include summaries of the understanding of gas generation, retention and release mechanisms, the composition and flammability behavior of the gas mixture, the amounts of stored gas, and estimated gas release fractions for spontaneous releases. `Me report also discusses methods being developed for evaluating the 177 tanks at the Hanford Site and the problems associated with these methods. Means for measuring the gases emitted from the waste are described along with laboratory experiments designed to gain more information regarding rates of generation, species of gases emitted and modes of gas storage and release. Finally, the process for closing the USQ is outlined as are the information requirements to understand and resolve the flammable gas issue.

Johnson, G.D.

1997-01-29T23:59:59.000Z

57

An Assessment of Economic Analysis Methods for Cogeneration Systems  

E-Print Network [OSTI]

gas in this study) costs before and after cogeneration 3. Power plant operating and maintenance (O&M) cost before and after cogeneration 4. Initial investment 5. Discount rate 6. Differential escalation rates for the cost of electricity and fuel... electricity cost after cogener- ation ($) h = Differential escalation rate for the cost of electricity (escalation rate above inflation rate) (decimal) i = Discount rate (decimal) GB = Annual fuel cost before cogeneration ($1 GA = Annual fuel cost after...

Bolander, J. N.; Murphy, W. E.; Turner, W. D.

1985-01-01T23:59:59.000Z

58

Electrical Cost Reduction Via Steam Turbine Cogeneration  

E-Print Network [OSTI]

ELECTRICAL COST REDUCTION VIA STEAM TURBINE COGENERATION LYNN B. DI TULLIO, P.E. Project Engineer Ewing Power Systems, Inc. South Deerfield, Mass. ABSTRACT Steam turbine cogeneration is a well established technology which is widely used... mature technology. Steam turbines and engines have been used by industry to cogen erate power since before there were electric utilities. While the technology for turbines, generators and controls has continued to develop there is very little about...

Ewing, T. S.; Di Tullio, L. B.

59

BioGas Project Applications for Federal Agencies and Utilities  

Broader source: Energy.gov (indexed) [DOE]

Alternate Energy Systems, Inc. Natural Gas Air Blenders for BioGas Installations BioGas Project Applications for Federal Agencies and Utilities Federal Utility Partnership...

60

Michigan utilities begin implementation of cogeneration programs  

SciTech Connect (OSTI)

Michigan's two major utilities, Consumers Power Corporation and Detroit Edison, are beginning to implement cogeneration and small power programs, although their approaches differ. Consumers Power is entering agreements to purchase cogenerated power at reasonable buyback rates to meet near-future capacity needs, while Detroit Edison is offering rate breaks to keep customers on the grid with an on-site cogeneration alternative rider because of excess capacity. Once its excess capacity is absorbed, Detroit Edison will encourage pursue the approach of Consumers Power. The latter recently filed to convert a Midland cancelled nuclear plant into a gas-fired cogeneration facility. The author reviews complications in this and other contracts and utility commission decisions. 2 tables.

Not Available

1987-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

GAS INJECTION/WELL STIMULATION PROJECT  

SciTech Connect (OSTI)

Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

John K. Godwin

2005-12-01T23:59:59.000Z

62

High Temperature Gas-Cooled Reactor Projected Markets and Preliminary Economics  

SciTech Connect (OSTI)

This paper summarizes the potential market for process heat produced by a high temperature gas-cooled reactor (HTGR), the environmental benefits reduced CO2 emissions will have on these markets, and the typical economics of projects using these applications. It gives examples of HTGR technological applications to industrial processes in the typical co-generation supply of process heat and electricity, the conversion of coal to transportation fuels and chemical process feedstock, and the production of ammonia as a feedstock for the production of ammonia derivatives, including fertilizer. It also demonstrates how uncertainties in capital costs and financial factors affect the economics of HTGR technology by analyzing the use of HTGR technology in the application of HTGR and high temperature steam electrolysis processes to produce hydrogen.

Larry Demick

2011-08-01T23:59:59.000Z

63

PETITION FOR POST CERTIFICATION PROJECT MODIFICATION  

E-Print Network [OSTI]

Cogeneration Authority Procter & Gamble Cogeneration Project Docket No. 93-AFC-2 December 2007 Prepared for: Sacramento Cogeneration Authority Prepared by: 2870 Gateway Oaks Drive, Suite 150 Sacramento, CA 95833 #12

64

Oilfield Flare Gas Electricity Systems (OFFGASES Project)  

SciTech Connect (OSTI)

The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

Rachel Henderson; Robert Fickes

2007-12-31T23:59:59.000Z

65

Cogeneration Development and Market Potential in China  

E-Print Network [OSTI]

China's Power Industry," Cogeneration Technolo- gy, V o l .tion Development," Cogeneration Technol- ogy, V o l . 41, NE Y NATIONAL LABORATORY Cogeneration Development and Market

Yang, F.

2010-01-01T23:59:59.000Z

66

Industrial Plant Objectives and Cogeneration System Development  

E-Print Network [OSTI]

HEAT 15% 48% BOILER CONOENSER ASSOC. LOSSES LOSSES FIG. 2 - FUEL UTILIZATION EFFECTIVENESS The three types of topping cogeneration cycles usually encountered in industrial practice are steam turbine, gas turbine, and combined cycles... more power than that avail able due to plant he t demands may provide an economically viable option. Gas Turbine and Combined Cycles Gas turbine cycles provide the opportunity to generate a larger power output per unit of heat 39~ required...

Kovacik, J. M.

1983-01-01T23:59:59.000Z

67

Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware)  

Broader source: Energy.gov [DOE]

The Delaware Greenhouse Gas Reduction Projects Grant Program is funded by the Greenhouse Gas Reduction Projects Fund, established by the Act to Amend Title 7 of the Delaware Code Relating to a...

68

Sycamore Cogeneration Company Box 80598, Bakersfield, CA 93380 (661) 615-4630 Neil E. Burgess, Executive Director  

E-Print Network [OSTI]

Sycamore Cogeneration Company Box 80598, Bakersfield, CA 93380 (661) 615-4630 Neil E. Burgess Commission 1516 Ninth Street Sacramento, CA 95814 Re: Sycamore Cogeneration Company (84-AFC-6C) Petition of the combustion gas turbine units at Sycamore Cogeneration Company in an extended startup mode. The petition

69

Detailed Execution Planning for Large Oil and Gas Construction Projects  

E-Print Network [OSTI]

Detailed Execution Planning for Large Oil and Gas Construction Projects Presented by James Lozon, University of Calgary There is currently 55.8 billion dollars worth of large oil and gas construction projects scheduled or underway in the province of Alberta. Recently, large capital oil and gas projects

Calgary, University of

70

The Cogeneration Plant: Meeting Long-Term Objectives  

E-Print Network [OSTI]

In order to meet economic objectives of cogeneration projects, reliable operation must be achieved. The key to successful operation is proper preparation beginning at the economic justification stage and continuing through conceptual design...

Greenwood, R. W.

71

EIS-0164: Pacific Gas Transmission/Pacific Gas and Electric and Altamont Natural Gas Pipeline Project  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission (FERC) has prepared the PGT/PG&E and Altamont Natural Gas Pipeline Projects Environmental Impact Statement to satisfy the requirements of the National Environmental Policy Act. This project addresses the need to expand the capacity of the pipeline transmission system to better transfer Canadian natural gas to Southern California and the Pacific Northwest. The U.S. Department of Energy cooperated in the preparation of this statement because Section 19(c) of the Natural Gas Act applies to the Department’s action of authorizing import/export of natural gas, and adopted this statement by the spring of 1992. "

72

BEHAVIOURAL REALISM IN A TECHNOLOGY EXPLICIT ENERGY-ECONOMY MODEL: THE ADOPTION OF INDUSTRIAL COGENERATION IN CANADA  

E-Print Network [OSTI]

COGENERATION IN CANADA by Nicholas J. Rivers B.Eng., Memorial University of Newfoundland, 2000 RESEARCH PROJECT: Behavioural realism in a technology explicit energy-economy model: The adoption of industrial cogeneration the results. The model showed that industrial cogeneration is a relatively unknown technology to many firms

73

The global dimension of the endomorphism ring of a generator-cogenerator for a hereditary artin algebra  

E-Print Network [OSTI]

The global dimension of the endomorphism ring of a generator-cogenerator for a hereditary artin a -module which is both a generator and a cogenerator. We are going to describe the possibilities is called a generator if any projective module belongs to add M; it is called a cogenerator if any injective

Ringel, Claus Michael

74

Industrial - Utility Cogeneration Systems  

E-Print Network [OSTI]

Cogeneration may be described as an efficient method for the production of electric power in conjunction with process steam or heat which optimizes the energy supplied as fuel to maximize the energy produced for consumption. In a conventional...

Harkins, H. L.

1979-01-01T23:59:59.000Z

75

Cogeneration Rules (Arkansas)  

Broader source: Energy.gov [DOE]

The Cogeneration Rules are enforced by the Arkansas Public Service Commission. These rules are designed to ensure that all power producers looking to sell their power to residents of Arkansas are...

76

Steam Turbine Cogeneration  

E-Print Network [OSTI]

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

77

Cogeneration Opportunities in Texas State Agencies  

E-Print Network [OSTI]

million using escalation rates of 4% for electricity and 2% for gas. Since no one knows what prices will do, the no escalation case should be considered the more conservative figure. There are several arguments which could be made for cogeneration... to switch from steam turbines to electric motor drives. However with the stable and even decreasing gas prices of the past two years, combined with the steadily increasing electric rates, any further conversion may be delayed for some years...

Murphy, W. E.; Turner, W. D.; O'Neal, D. L.; Bolander, J. N.; Seshan, S.

78

PV/cogeneration hybrid system nets large contract  

SciTech Connect (OSTI)

Alpha Solarco Inc. announced on May 18, 1987 the signing of two $175 million exclusive development contracts with the Pawnee and Otoe-Missouria Tribes of Oklahoma to build two 70,000-kilowatt photovoltaic electric generating stations on Tribal lands in Oklahoma to supply Indian and other requirements. The projects, to be built in four phases, will each consists of 35,000 kilowatts of photovoltaic generating capacity to be supplied by the company's proprietary Modular Solar-Electric Photovoltaic Generator (MSEPG), and 35,000 kilowatts of gas-fired cogeneration. Alpha Solarco is starting to build and finance itself a 500-kilowatt demonstration plant as the initial step in the first project. This plant will be used to demonstrate that proven MSEPG design and technology can be integrated in electric utility systems, either as a base-load generator for small utilities, or as a peak-shaving device for large ones.

Not Available

1987-09-01T23:59:59.000Z

79

French gas-storage project nearing completion  

SciTech Connect (OSTI)

Geomethane, jointly formed by Gaz de France and Geostock, is currently converting 7 of 36 solution-mined salt cavities at Manosque in southeast France from liquid hydrocarbon storage to natural-gas storage. In view of the large diameter (13 3/8 in.) of the original production wells and safety requirements, a unique high-capacity well completion has been developed for this project. It will have two fail-safe valves and a flow crossover 30 m below ground to isolate the production well in the event of problems at the surface. The project lies in the wooded Luberon Nature Reserve and due consideration has been given to locating the surface plant and blending it with the surroundings. The production wellheads are extra-low designs, the main plant was located outside the sensitive area, and the pipeline routes were landscaped. The paper discusses the history of salt cavern storage of natural gas; site characteristics; Manosque salt geology; salt mining and early storage; siting; engineering and construction; completion and monitoring; nature reserve protection; and fire and earthquake hazard mitigation.

Laguerie, P. de (Geostock, Rueil-Malmaison (France)); Durup, J.G. (Gaz de France, La Pluine St. Denis (France))

1994-12-12T23:59:59.000Z

80

Project Information Form Project Title Potential to Build Current Natural Gas Infrastructure to Accommodate  

E-Print Network [OSTI]

Project Information Form Project Title Potential to Build Current Natural Gas Infrastructure Project Natural gas is often touted as a `bridge' to low carbon fuels in the heavy duty transportation sector, and the number of natural gas-fueled medium and heavy-duty fleets is growing rapidly. Research

California at Davis, University of

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Cement Kiln Flue Gas Recovery Scrubber Project  

SciTech Connect (OSTI)

The Cement Kiln Flue Gas Recovery Scrubber Project was a technical success and demonstrated the following: CKD can be used successfully as the sole reagent for removing SO2 from cement kiln flue gas, with removal efficiencies of 90 percent or greater; Removal efficiencies for HCl and VOCs were approximately 98 percent and 70 percent, respectively; Particulate emissions were low, in the range of 0.005 to 0.007 grains/standard cubic foot; The treated CKD sorbent can be recycled to the kiln after its potassium content has been reduced in the scrubber, thereby avoiding the need for landfilling; The process can yield fertilizer-grade K2SO4, a saleable by-product; and Waste heat in the flue gas can provide the energy required for evaporation and crystallization in the by-product recovery operation. The demonstration program established the feasibility of using the Recovery Scrubber{trademark} for desulfurization of flue gas from cement kilns, with generally favorable economics, assuming tipping fees are available for disposal of ash from biomass combustion. The process appears to be suitable for commercial use on any type of cement kiln. EPA has ruled that CKD is a nonhazardous waste, provided the facility meets Performance Standards for the Management of CKD (U.S. Environmental Protection Agency 1999d). Therefore, regulatory drivers for the technology focus more on reduction of air pollutants and pollution prevention, rather than on treating CKD as a hazardous waste. Application of the Recovery Scrubbe{trademark} concept to other waste-disposal operations, where pollution and waste reductions are needed, appears promising.

National Energy Technology Laboratory

2001-11-30T23:59:59.000Z

82

PETITION FOR INSIGNIFICANT PROJECT MODIFICATION  

E-Print Network [OSTI]

Cosumnes River Boulevard Interchange SMUD Cogeneration Pipeline Project Docket No. 92-AFC-2P July 2007, CA 95833 #12;SMUD COGENERATION PIPELINE PROJECT Table of Contents K:\\Wprocess\\25832\\SMUD

83

Small-Scale Industrial Cogeneration: Design Using Reciprocating Engines and Absorption Chillers  

E-Print Network [OSTI]

SMALL-SCALE INDUSTRIAL COGENERATION: DESIGN USING RECIPROCATING ENGINES AND ABSORPTION CHILLER Joseph R. Wagner Mechanical Technology Incorporated Latham, ABSTRACT This paper describes a packaged cogeneration system designed for light... industrial applications (i.e., situations where a user wants a maximum of 1 MW of cogenerated electricity). The design employs reci procating engines fueled with natural gas or liquid fuels. Waste heat from the engine exhaust and jacket water is used...

Wagner, J. R.

84

Cogeneration for industrial and mixed-use parks. Volume 1. A handbook for utilities. Final report  

SciTech Connect (OSTI)

The purpose of this handbook is to assist utility personnel in identifying existing or planned mixed-use and industrial parks as potential cogeneration plant sites. This handbook describes a process for evaluating the potential of a given site for cogeneration. The process involves a set of screenings, based on selection criteria and some basic analyses, to identify sites which have the highest likelihood of supporting a successful cogeneration project. Also included in the handbook are worksheets and case studies.

Schiller, S.R.; Minicucci, D.D.; Tamaro, R.F.

1986-05-01T23:59:59.000Z

85

Sauget Plant Flare Gas Reduction Project  

E-Print Network [OSTI]

Empirical analysis of stack gas heating value allowed the Afton Chemical Corporation Sauget Plant to reduce natural gas flow to its process flares by about 50% while maintaining the EPA-required minimum heating value of the gas streams....

Ratkowski, D. P.

2007-01-01T23:59:59.000Z

86

Cogeneration using a thermionic combustor  

SciTech Connect (OSTI)

Thermionic energy conversion is well adapted to cogeneration with high temperature processes which require direct heating. Such processes are found in the metals, glass and petroleum industries. A case study has been made for applying thermionic energy converters to a walking beam steel slab reheat furnace. The objective is to replace the present burners with thermionic combustors which provide electricity while supplying direct heat at the same temperature and heat release conditions as the original burners. The combustor utilizes a thermionic converter design which has demonstrated stable output for long periods using a natural gas burner. Combustion air is used to cool the collectors. A computer program was formulated to facilitate the analysis of the thermionic combustor. The design of the thermionic combustor is described. The performance of the thermionic modules is calculated based on varying furnace production rates.

Miskolczy, G.; Lieb, D.

1982-08-01T23:59:59.000Z

87

Evaluation of diurnal thermal energy storage combined with cogeneration systems  

SciTech Connect (OSTI)

This report describes the results of an evaluation of thermal energy storage (TES) integrated with simple gas turbine cogeneration systems. The TES system captures and stores thermal energy from the gas turbine exhaust for immediate or future generation of process heat. Integrating thermal energy storage with conventional cogeneration equipment increases the initial cost of the combined system; but, by decoupling electric power and process heat production, the system offers the following two significant advantages: (1) Electric power can be generated on demand, irrespective of the process heat load profile, thus increasing the value of the power produced; (2) Although supplementary firing could be used to serve independently varying electric and process heat loads, this approach is inefficient. Integrating TES with cogeneration can serve the two independent loads while firing all fuel in the gas turbine. The study evaluated the cost of power produced by cogeneration and cogeneration/TES systems designed to serve a fixed process steam load. The value of the process steam was set at the levelized cost estimated for the steam from a conventional stand-alone boiler. Power costs for combustion turbine and combined-cycle power plants were also calculated for comparison. The results indicated that peak power production costs for the cogeneration/TES systems were between 25% and 40% lower than peak power costs estimated for a combustion turbine and between 15% and 35% lower than peak power costs estimated for a combined-cycle plant. The ranges reflect differences in the daily power production schedule and process steam pressure/temperature assumptions for the cases evaluated. Further cost reductions may result from optimization of current cogeneration/TES system designs and improvement in TES technology through future research and development.

Somasundaram, S.; Brown, D.R.; Drost, M.K.

1992-11-01T23:59:59.000Z

88

Guidelines for Assessing the Feasibility of Small Cogeneration Systems  

E-Print Network [OSTI]

of the electric rate and fuel co t and useful heat, cogeneration achieves certain ef is quantified in Figure 1 for steam turbine sys ficiencies, which make possible the substantial en tems and in Figure 2 for gas turbine and diesel ergy savings. systems... Technologies: There are three basic types of cogeneration systems commercially available today: steam tur bines, gas turbines, and diesels. They are com pared in Tables 2 and 3. The steam turbine system is the simplest of the three and has historically...

Whiting, M., Jr.

1984-01-01T23:59:59.000Z

89

Project Information Form Project Title Reduction of Lifecycle Green House Gas Emissions From Road  

E-Print Network [OSTI]

Project Information Form Project Title Reduction of Lifecycle Green House Gas Emissions From Road@ucdavis.edu Funding Source(s) and Amounts Provided (by each agency or organization) US DOT $30,000 Total Project Cost Brief Description of Research Project This white paper will summarize the state of knowledge and state

California at Davis, University of

90

Case Studies of Industrial Cogeneration in the U. S.  

E-Print Network [OSTI]

(DEUS). The purpose of this project was to evaluate site specific data on DEUS from the utility perspective, identify promising candidates, and define R&D opportunities. The first major task in this DEUS project was a survey of industrial cogeneration...

Limaye, D. R.; Isser, S.; Hinkle, B.; Hough, T.

1980-01-01T23:59:59.000Z

91

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects  

Office of Energy Efficiency and Renewable Energy (EERE)

This webinar, held July 17, 2012, provided information on the challenges and benefits of developing successful community landfill gas-to-energy projects in Will County, Illinois, and Escambia...

92

BioGas Project Applications for Federal Agencies and Utilities  

Broader source: Energy.gov [DOE]

Presentation covers BioGas Project Applications for Federal Agencies and Utilities and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

93

Decentralised optimisation of cogeneration in virtual power plants  

SciTech Connect (OSTI)

Within several projects we investigated grid structures and management strategies for active grids with high penetration of renewable energy resources and distributed generation (RES and DG). Those ''smart grids'' should be designed and managed by model based methods, which are elaborated within these projects. Cogeneration plants (CHP) can reduce the greenhouse gas emissions by locally producing heat and electricity. The integration of thermal storage devices is suitable to get more flexibility for the cogeneration operation. If several power plants are bound to centrally managed clusters, it is called ''virtual power plant''. To operate smart grids optimally, new optimisation and model reduction techniques are necessary to get rid with the complexity. There is a great potential for the optimised management of CHPs, which is not yet used. Due to the fact that electrical and thermal demands do not occur simultaneously, a thermally driven CHP cannot supply electrical peak loads when needed. With the usage of thermal storage systems it is possible to decouple electric and thermal production. We developed an optimisation method based on mixed integer linear programming (MILP) for the management of local heat supply systems with CHPs, heating boilers and thermal storages. The algorithm allows the production of thermal and electric energy with a maximal benefit. In addition to fuel and maintenance costs it is assumed that the produced electricity of the CHP is sold at dynamic prices. This developed optimisation algorithm was used for an existing local heat system with 5 CHP units of the same type. An analysis of the potential showed that about 10% increase in benefit is possible compared to a typical thermally driven CHP system under current German boundary conditions. The quality of the optimisation result depends on an accurate prognosis of the thermal load which is realised with an empiric formula fitted with measured data by a multiple regression method. The key functionality of a virtual power plant is to increase the value of the produced power by clustering different plants. The first step of the optimisation concerns the local operation of the individual power generator, the second step is to calculate the contribution to the virtual power plant. With small extensions the suggested MILP algorithm can be used for an overall EEX (European Energy Exchange) optimised management of clustered CHP systems in form of the virtual power plant. This algorithm has been used to control cogeneration plants within a distribution grid. (author)

Wille-Haussmann, Bernhard; Erge, Thomas; Wittwer, Christof [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstrasse 2, 79110 Freiburg (Germany)

2010-04-15T23:59:59.000Z

94

DISTRIBUTED GENERATION AND COGENERATION POLICY  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION DISTRIBUTED GENERATION AND COGENERATION POLICY ROADMAP FOR CALIFORNIA to the development of this report by the Energy Commission's Distributed Generation Policy Advisory Team; Melissa;ABSTRACT This report defines a year 2020 policy vision for distributed generation and cogeneration

95

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

and Electrical Cogeneration ……………………. …………… 16 2.4.OptimalELECTRICAL AND THERMAL COGENERATION A thesis submitted inFOR ELECTRICAL AND THERMAL COGENERATION A solar tracker and

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

96

Gas Turbine Technology, Part A: Overview, Cycles, and Thermodynamic Performance  

E-Print Network [OSTI]

The growth of cogeneration technology has accelerated in recent years, and it is estimated that fifty percent of the cogeneration market will involve gas turbines. To several energy engineers, gas turbine engines present a new and somewhat...

Meher-Homji, C. B.; Focke, A. B.

97

Thailand natural-gas project moves ahead  

SciTech Connect (OSTI)

The longest offshore pipeline currently under construction in the world is the 264-mile 34-in. submarine transmission line connecting Union Oil's natural gas production platform in the Gulf of Thailand to the 99-mile 28-in. onshore pipeline being laid from the landfall point to Bangkok. The entire facility will be operating by Sept. 15, 1981. Custody of the gas will be transferred to the Petroleum Authority of Thailand (PTT) at the platform; the gas will pass through a dewpoint-control unit at the shoreline near Rayong and to a mainline pressure-regulation and odor-injection station before it is delivered to the Electricity Generation Authority of Thailand (EGAT) at two power plants, Bang Pakong and South Bangkok.

Knapp-Fisher, R.N.; Paritpokee, S.

1981-02-09T23:59:59.000Z

98

1986 Cogeneration Market Assessment  

E-Print Network [OSTI]

implementation path such as changing energy general direction. prices, tax laws, FERC decisions, avoided costs, permitting etc., the cogeneration industry is What's missing is usually the meaning of th still strong. market assessment to the end user... If there was an answer to all these questi s cost savings. These savings can enable him to once and for all and if none of these remain competitive in the face of severe influencing factors would change, wouldn't 1ife world-wide competition. be simple. Benefits...

Wallace, D. G.

99

Project AIRSTREAM: Trace gas final report  

SciTech Connect (OSTI)

The results of 10 years of sampling for trace gases in the upper troposphere and lower stratosphere are presented. These samples were collected under the auspices of the Atomic Energy Commission (AEC), the Energy Research and Development Administration (ERDA) and the Department of Energy (DOE). Almost 1000 whole air samples were collected during the years 1973 to 1983 under Project AIRSTREAM. Project AIRSTREAM was part of the Environmental Measurements Laboratory`s (EML, at that time called the Health and Safety Laboratory/HASL) research effort to investigate the impact of the injection of radionuclides and stable compounds into the stratosphere. One or more of the following compounds were analyzed: CCl{sub 3}F, CCl{sub 2}F{sub 2}, CCl{sub 4}, N{sub 2}O, SF{sub 6}, CO{sub 2}, CH{sub 4}, CH{sub 3}CCl{sub 3}, and COS. Details of the Project`s quality assurance program are discussed. Also included in the report are two-dimensional plots of the concentration of CCl{sub 3}F and a complete tabulation of the data.

Leifer, R.

1992-12-01T23:59:59.000Z

100

Evaluation of Industrial Energy Options for Cogeneration, Waste Heat Recovery and Alternative Fuel Utilization  

E-Print Network [OSTI]

This paper describes the energy options available to Missouri industrial firms in the areas of cogeneration, waste heat recovery, and coal and alternative fuel utilization. The project, being performed by Synergic Resources Corporation...

Hencey, S.; Hinkle, B.; Limaye, D. R.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The Influence of Regulation on the Decision to Cogenerate  

E-Print Network [OSTI]

recent contracts have been signed for 850 MW of power to be del ivered by mid-1987. In addition, there are more than 4,500 MW in identified, potential projects that could become operational in the next two years. Texas has a continuing need... will center on the amount of capacity the state needs and who will supply it, utilities or cogenerators. A fair and efficient method of allocation quantities between the util ities and the cogenerators is not yet well establ ished in Texas. However...

King, J. L. II

102

Project AIRSTREAM: Trace gas final report  

SciTech Connect (OSTI)

The results of 10 years of sampling for trace gases in the upper troposphere and lower stratosphere are presented. These samples were collected under the auspices of the Atomic Energy Commission (AEC), the Energy Research and Development Administration (ERDA) and the Department of Energy (DOE). Almost 1000 whole air samples were collected during the years 1973 to 1983 under Project AIRSTREAM. Project AIRSTREAM was part of the Environmental Measurements Laboratory's (EML, at that time called the Health and Safety Laboratory/HASL) research effort to investigate the impact of the injection of radionuclides and stable compounds into the stratosphere. One or more of the following compounds were analyzed: CCl[sub 3]F, CCl[sub 2]F[sub 2], CCl[sub 4], N[sub 2]O, SF[sub 6], CO[sub 2], CH[sub 4], CH[sub 3]CCl[sub 3], and COS. Details of the Project's quality assurance program are discussed. Also included in the report are two-dimensional plots of the concentration of CCl[sub 3]F and a complete tabulation of the data.

Leifer, R.

1992-12-01T23:59:59.000Z

103

A Regulator's View of Cogeneration  

E-Print Network [OSTI]

of the total national electric generation. In view of the energy requirements of Pennsylvania's industry and the impact of increasing energy costs on employment the Commission directed its technical staff to investigate the potential for industrial cogeneration...

Shanaman, S. M.

1982-01-01T23:59:59.000Z

104

Cogeneration Assessment Methodology for Utilities  

E-Print Network [OSTI]

A methodology is presented that enables electric utilities to assess the cogeneration potential among industrial, commercial, and institutional customers within the utility's service area. The methodology includes a survey design, analytic...

Sedlik, B.

1983-01-01T23:59:59.000Z

105

Electric Rate Alternatives to Cogeneration  

E-Print Network [OSTI]

"ELECTRIC RATE ALTERNATIVES TO COGENERATION" K. R. SANDBERG, JR. INDUSTRIAL ACCOUNTS MANAGER - TEXAS GULF STATES UTILITIES COMPANY BEAUMONT, TEXAS ABSTRACT This paper discusses electric rate slternatives to cogeneration for the industrisl... PERSPECTIVE Gulf States Utilities was incorporated in 1925 and is primarily in the business of generating. transmitting and distributing electricity to 555.000 customers in southeast Texas and south Louisiana. The service area extends 350 miles westward...

Sandberg, K. R. Jr.

106

Methane Gas Utilization Project from Landfill at Ellery (NY)  

SciTech Connect (OSTI)

Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

Pantelis K. Panteli

2012-01-10T23:59:59.000Z

107

Economic analysis of coal-fired cogeneration plants for Air Force bases  

SciTech Connect (OSTI)

The Defense Appropriations Act of 1986 requires the Department of Defense to use an additional 1,600,000 tons/year of coal at their US facilities by 1995 and also states that the most economical fuel should be used at each facility. In a previous study of Air Force heating plants burning gas or oil, Oak Ridge National Laboratory found that only a small fraction of this target 1,600,000 tons/year could be achieved by converting the plants where coal is economically viable. To identify projects that would use greater amounts of coal, the economic benefits of installing coal-fired cogeneration plants at 7 candidate Air Force bases were examined in this study. A life-cycle cost analysis was performed that included two types of financing (Air Force and private) and three levels of energy escalation for a total of six economic scenarios. Hill, McGuire, and Plattsburgh Air Force Bases were identified as the facilities with the best potential for coal-fired cogeneration, but the actual cost savings will depend strongly on how the projects are financed and to a lesser extent on future energy escalation rates. 10 refs., 11 figs., 27 tabs.

Holcomb, R.S.; Griffin, F.P.

1990-10-01T23:59:59.000Z

108

Operating and Maintaining a 465MW Cogeneration Plant  

E-Print Network [OSTI]

OPERATING AND HAINTAINING A 465MW COGENERATION PLANT -- R. E. Theisen Plant Hanager CoGen Lyondell PSE Inc. Houston, Texas ABSTRACT The on-line av ilability of the five Fr me-7E gas turbine generators installed at the 465MW Lyondell... performed promptly on discovered design, operating, and maintenance weaknesses uncovered during the early months of operation. INTRODUCTION In March, 1985, a pa"per was presented at the ASHE-Sponsored Gas Turbine Conference in Houston, Texas...

Theisen, R. E.

109

Reliable steam: To cogenerate or not to cogenerate?  

SciTech Connect (OSTI)

Leading industrial companies and institutions are forever seeking new and better ways to reduce their expenses, reduce waste, meet environmental standards, and, in general, improve their bottom-line. One approach to achieving all of these goals is a 100 year-old concept, cogeneration. Many industrial and institutional plants need thermal energy, generally as steam, for manufacturing processes and heating. They also need electric power for motors, lighting, compressed air and air conditioning. Traditionally, these fundamental needs are met separately. Steam is produced with industrial boilers and electricity is purchased from a local utility company. However, these needs can be met at the same time with cogeneration, using the same heat source. Cogeneration is the concurrent production of electrical power and thermal energy from the same heat source. Large steam users commonly take advantage of cogeneration by using high pressure steam with a back pressure turbine to generate electricity, and extract lower pressure steam from the turbine exhaust for their process needs. This approach reduces their electric utility bills while still providing thermal energy for industrial processes. The result is also a more efficient process that uses less total heat and discharges less smoke up the stack. Newer technologies are making cogeneration opportunities available to smaller-sized thermal plants, and electric utility deregulation opportunities are causing many CEOs to seriously consider cogeneration in their manufacturing plants. Whether steam is created through cogeneration or separate generation, many opportunities exist to improve productivity in the distribution system, operation, and maintenance. These opportunities are captured by taking a systems approach, which is promoted by programs such as the Department of Energy's Steam Challenge.

Jaber, D.; Jones, T.; D'Anna, L.; Vetterick, R.

1999-07-01T23:59:59.000Z

110

Small Power Production and Cogeneration (Maine)  

Broader source: Energy.gov [DOE]

Maine's Small Power Production and Cogeneration statute says that any small power producer or cogenerator may generate or distribute electricity through his private property solely for his own use,...

111

Cogeneration: An Industrial Steam and Power Option  

E-Print Network [OSTI]

Industrial facilities of all sizes have the ability to reduce and better control both power and steam costs with a cogeneration system. Unlike the larger systems that sell almost all of the cogenerated power to a regulated electric utility...

Orlando, J. A.; Stewart, M. M.; Roberts, J. R.

112

Case Studies from the Climate Technology Partnership: Landfill Gas Projects in South Korea and Lessons Learned  

SciTech Connect (OSTI)

This paper examines landfill gas projects in South Korea. Two case studies provide concrete examples of lessons learned and offer practical guidance for future projects.

Larney, C.; Heil, M.; Ha, G. A.

2006-12-01T23:59:59.000Z

113

Development and use of an interactive computer simulation for generalized technical and economic assessments of cogeneration systems  

E-Print Network [OSTI]

comprehensive sensitivity analysis were completed to demonstrate the employment of the simulation program. The simulation can model cogeneration systems using either a gas turbine, internal combustion (IC) engine or steam turbine prime mover for both electrical...

Baxter, Geoffrey R.

1997-01-01T23:59:59.000Z

114

The Economics of Cogeneration Selection  

E-Print Network [OSTI]

. The number of years of construction, the first year of oper ation, the general inflation rate, and other specific rates and escalations are parameters used to define the investment and operating costs of a cogeneration facility. Table II lists the...'set of general economic ground rules used later in the sample cogeneration opportunity analysis. Table II General Economic Groundrules Fuel Cost $/MBtu (HHV) 4.00 (1984) Escalation Rate (in percent) 7.0 Utility Avoided Cost ?/kWh 4.50 (1984...

Fisk, R. W.; Hall, E. W.; Sweeney, J. H.

115

Efficiently generate steam from cogeneration plants  

SciTech Connect (OSTI)

As cogeneration gets more popular, some plants have two choices of equipment for generating steam. Plant engineers need to have a decision chart to split the duty efficiently between (oil-fired or gas-fired) steam generators (SGs) and heat recovery steam generators (HRSGs) using the exhaust from gas turbines. Underlying the dilemma is that the load-versus-efficiency characteristics of both types of equipment are different. When the limitations of each type of equipment and its capability are considered, analysis can come up with several selection possibilities. It is almost always more efficient to generate steam in an HRSG (designed for firing) as compared with conventional steam generators. However, other aspects, such as maintenance, availability of personnel, equipment limitations and operating costs, should also be considered before making a final decision. Loading each type of equipment differently also affects the overall efficiency or the fuel consumption. This article describes the performance aspects of representative steam generators and gas turbine HRSGs and suggests how plant engineers can generate steam efficiently. It also illustrates how to construct a decision chart for a typical installation. The equipment was picked arbitrarily to show the method. The natural gas fired steam generator has a maximum capacity of 100,000 lb/h, 400-psig saturated steam, and the gas-turbine-exhaust HRSG has the same capacity. It is designed for supplementary firing with natural gas.

Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

1997-05-01T23:59:59.000Z

116

Risk analysis in oil and gas projects : a case study in the Middle East  

E-Print Network [OSTI]

Global demand for energy is rising around the world. Middle East is a major supplier of oil and gas and remains an important region for any future oil and gas developments. Meanwhile, managing oil and gas projects are ...

Zand, Emad Dolatshahi

2009-01-01T23:59:59.000Z

117

Managing Abnormal Operation through Process Integration and Cogeneration Systems  

E-Print Network [OSTI]

area. Since it is found in deep reservoirs it may contain components such as hydrogen sulfide and carbon dioxide. These components due to their properties cause corrosion and are toxic therefore they should be separated from natural gas before... organizations (UNEP 2006). 19 De-aerator is also one of the units in cogeneration system. Since dissolved gases such as oxygen and carbon dioxide can cause corrosion, deaerator unit is responsible for separating them from condensate stream to steam...

Kamrava, Serveh

2014-08-05T23:59:59.000Z

118

Cogeneration Rangan Banerjee  

E-Print Network [OSTI]

Steam Turbine 5.9 ( 3-7) Gas Turbine 1.5 Combined Cycle 1.2 D.G. Set 0.7 DecreasingX #12;Evaluation of using a high pressure boiler generating steam at 50 bar 400° C and a back pressure turbine #12;C GT GAS TURBINE BASED COGEN CC WHRB Steam to Process Suppl Fuel Fuel Stack Air Feed water Power #12;Gas Turbine

Banerjee, Rangan

119

Cogeneration: The Need for Utility-Industry Cooperation  

E-Print Network [OSTI]

Cogeneration is receiving increasing attention because of its potential for efficient utilization of energy. Many recent cogeneration studies, however, have concentrated on the benefits and costs of cogeneration to industry, giving little...

Limaye, D. R.

1982-01-01T23:59:59.000Z

120

Negotiating a Favorable Cogeneration Contract with your Utility Company  

E-Print Network [OSTI]

A relatively small cogenerator may find it difficult to negotiate a favorable cogeneration contract with a relatively large utility. This paper will tell prospective cogenerators some things they can do to make sure the contract they negotiate meets...

Lark, D. H.; Flynn, J.

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A Feasibility Study of Fuel Cell Cogeneration in Industry  

E-Print Network [OSTI]

Up until now, most of the literature on fuel cell cogeneration describes cogeneration at commercial sites. In this study, a PC25C phosphoric acid fuel cell cogeneration system was designed for an industrial facility and an economic analysis...

Phelps, S. B.; Kissock, J. K.

122

SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity...  

Office of Environmental Management (EM)

SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste...

123

EIS-0511: Aguirre Offshore GasPort Project, Puerto Rico  

Broader source: Energy.gov [DOE]

FERC prepared an EIS with 10 cooperating agencies, including DOE, for the proposed Aguirre Offshore GasPort Project. The proposal would include construction and operation of a marine LNG-receiving facility about 1 mile outside of Jobos Bay, near the towns of Salinas and Guayama, Puerto Rico, and a 4-mile subsea pipeline connecting to the Aguirre Plant in Salinas. Additional information is available from the FERC website (www.ferc.gov); at the eLibrary link, click on “General Search” and enter docket number CP13-193.

124

Cogeneration- The Rest of the Story  

E-Print Network [OSTI]

COGENERATION - THE REST OF THE STORY JOEL S. GILBERT, P.E. Director, Energy Group Dames & Moore Atlanta, Georgia ABSTRACI Everyone is praising the daylights out of cogeneration these days. And while it may be the best energy system... have professionalism, ethics and car gone? Why is it that only five of the past 100 cogeneration evaluations we reVIewed were conservative and fair representations? This paper illustrates a step-by-step approach to checking the accuracy of a...

Gilbert, J. S.

125

A Simplified Self-Help Approach to Sizing of Small-Scale Cogeneration Systems  

E-Print Network [OSTI]

304 KV Hence, size of the Cogeneration system selected from Table 1 is 300 KW (c) Average Cost of Gas (d) Average Thermal Energy Required = (Total MCF of Gas Used Annually for Heating Steam and Hot Water) x 1,000,000 Btu/MCF x 0.8/(operating hours in a... Thermal Load 4 (d) Selection of Engine Size 5 (e) The Percent Thermal Energy Utilization 6 (f) Use of Nomographs to Determine Economic Feasibility of a Cogeneration System 6 Discussion of Examples 13 Limitations of this Simplified Self-Help Approach 13...

Somasundaram, S.; Turner, W. D.

1987-01-01T23:59:59.000Z

126

EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida  

Broader source: Energy.gov [DOE]

This EA will evaluate the potential environmental impacts associated with a proposal by Emera CNG, LLC that would include Emera's CNG plant Emera’s CNG plant would include facilities to receive, dehydrate, and compress gas to fill pressure vessels with an open International Organization for Standardization (ISO) container frame mounted on trailers. Emera plans to truck the trailers a distance of a quarter mile from its proposed CNG facility to a berth at the Port of Palm Beach, where the trailers will be loaded onto a roll-on/roll-off ocean going carrier. Emera plans to receive natural gas at its planned compression facility from the Riviera Lateral, a pipeline owned and operated by Peninsula Pipeline Company. Although this would be the principal source of natural gas to Emera’s CNG facility for export, during periods of maintenance at Emera’s facility, or at the Port of Palm Beach, Emera may obtain CNG from other sources and/or export CNG from other general-use Florida port facilities. The proposed Emera facility will initially be capable of loading 8 million cubic feet per day (MMcf/day) of CNG into ISO containers and, after full build-out, would be capable to load up to 25 MMcf/day. For the initial phase of the project, Emera intends to send these CNG ISO containers from Florida to Freeport, Grand Bahama Island, where the trailers will be unloaded, the CNG decompressed, and injected into a pipeline for transport to electric generation plants owned and operated by Grand Bahama Power Company (GBPC). DOE authorizing the exportation of CNG and is not providing funding or financial assistance for the Emera Project.

127

Cogeneration - A Utility Perspective  

E-Print Network [OSTI]

are discussed from a utility perspective as how they influence utility participation in future projects. The avoided cost methodology is examined, and these payments for sale of energy to the utility are compared with utility industrial rates. In addition...

Williams, M.

1983-01-01T23:59:59.000Z

128

Evaluation of diurnal thermal energy storage combined with cogeneration systems. Phase 2  

SciTech Connect (OSTI)

This report describes the results of a study of thermal energy storage (TES) systems integrated with combined-cycle gas turbine cogeneration systems. Integrating thermal energy storage with conventional cogeneration equipment increases the initial cost of the combined system; but, by decoupling electric power and process heat production, the system offers two significant advantages. First, electric power can be generated on demand, irrespective of the process heat load profile, thus increasing the value of the power produced. Second, although supplementary firing could be used to serve independently varying electric and process heat loads, this approach is inefficient. Integrating TES with cogeneration can serve the two independent loads while firing all fuel in the gas turbine. An earlier study analyzed TES integrated with a simple-cycle cogeneration system. This follow-on study evaluated the cost of power produced by a combined-cycle electric power plant (CC), a combined-cycle cogeneration plant (CC/Cogen), and a combined-cycle cogeneration plant integrated with thermal energy storage (CC/TES/Cogen). Each of these three systems was designed to serve a fixed (24 hr/day) process steam load. The value of producing electricity was set at the levelized cost for a CC plant, while the value of the process steam was for a conventional stand-alone boiler. The results presented here compared the costs for CC/TES/Cogen system with those of the CC and the CC/Cogen plants. They indicate relatively poor economic prospects for integrating TES with a combined-cycle cogeneration power plant for the assumed designs. The major reason is the extremely close approach temperatures at the storage media heaters, which makes the heaters large and therefore expensive.

Somasundaram, S.; Brown, D.R.; Drost, M.K.

1993-07-01T23:59:59.000Z

129

Sweet-Talking the Climate? Evaluating Sugar Mill Cogeneration and Climate Change Financing in India  

E-Print Network [OSTI]

2004).   Bagasse  Cogeneration  ??  Global  Review  and ?Promotion  of  biomass  cogeneration  with  power  export WADE  2004.   Bagasse  Cogeneration  –  Global  Review  and 

Ranganathan, Malini; Haya, Barbara; Kirpekar, Sujit

2005-01-01T23:59:59.000Z

130

Western Gas Sands Project. Status report, April-June 1982  

SciTech Connect (OSTI)

The progress during April, May and June 1982, of government-sponsored projects to increase gas production from low permeability gas sands of the Western United States, is summarized in this edition of the WGSP Quarterly Status Report. In an effort to eliminate wellbore storage during the testing of tight reservoirs and substantially reduce time and cost of testing, CER Corporation is investigating downhole shut-off to develop a shut-off tool. During the quarter, the University of Oklahoma completed the two-dimensional lenticular well simulator model and submitted a final report. At Lawrence Livermore National Laboratories, work is complete on the 2-D crack model and work has begun on developing a pseudo 3-D crack model. Preparations have begun at Los Alamos National Laboratory to test the 6-in. permanent magnet pre-prototype tool in the American Petroleum Institute test pit at the University of Houston. At Sandia National Laboratories, an analytical version of the Surface Electrical Potential (SEP) mathematical model has been completed. The data provided by DOE Well Test Facility's drill stem test (DST) of MWX-1 indicated wellbore storage was predominant during the buildup period of the test and essentially masks the pressure transient normally used in the DST analysis. For the Multi-Well Experiment program, cased hole logging, directional surveys and two geophysical surveys were accomplished this quarter. 38 figures.

Not Available

1983-01-01T23:59:59.000Z

131

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version)  

Office of Energy Efficiency and Renewable Energy (EERE)

Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012.

132

Assessing water and environmental impacts of oil and gas projects in Nigeria.  

E-Print Network [OSTI]

??Oil and gas development projects are major sources of social and environmental problems particularly in oil-rich developing countries like Nigeria. Yet, data paucity hinders our… (more)

Anifowose, Babatunde A.

2011-01-01T23:59:59.000Z

133

Alaska Oil and Gas Exploration, Development, and Permitting Project  

SciTech Connect (OSTI)

This is the final technical report for Project 15446, covering the grant period of October 2002 through March 2006. This project connects three parts of the oil exploration, development, and permitting process to form the foundation for an advanced information technology infrastructure to better support resource development and resource conservation. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells. The broad goal of this grant is to increase domestic production from Alaska's known producing fields through the implementation of preferred upstream management practices. (PUMP). Internet publication of extensive and detailed geotechnical data is the first task, improving the permitting process is the second task, and building an advanced geographical information system to offer continuing support and public access of the first two goals is the third task. Excellent progress has been made on all three tasks; the technical objectives as defined by the approved grant sub-tasks have been met. The end date for the grant was March 31, 2006.

Richard McMahon; Robert Crandall

2006-03-31T23:59:59.000Z

134

NISCO Cogeneration Facility  

E-Print Network [OSTI]

of feedstocks with higher concentrations of sulfur. Its burning in conventional pulverized coal type units is not desirable unless flue gas desulfurization is available or the coke is blended with the coal to achieve acceptable sulfur emissions. In a...>h 0xypD Moilture PETROlEUM COKE FUEL 79.14 3.31 1.61 4.41 0.21 0.00 10.60 OF 1~ -86 3.0 -3.6 1.3-1.9 3.4-B 0.0 ? 0.6 0.0 - 0.1 ~..s-I~.o HHV, BTUILB 14,nl 13,4.51 12.600 NiH PROPERTIES, PPM v__ DIO coal formations...

Zierold, D. M.

135

EIA responds to Nature article on shale gas projections  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and...

136

Graphene as the Ultimate Membrane for Gas Separation Project...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Graphene as the Ultimate Membrane for Gas Separation Graphene as the Ultimate Membrane for Gas Separation GraphenePore.jpg Key Challenges: Investigate the permeability and...

137

Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report  

SciTech Connect (OSTI)

The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

NONE

1996-04-30T23:59:59.000Z

138

Gasification of kraft black liquor and use of the products in combined cycle cogeneration. Final report, Phase II  

SciTech Connect (OSTI)

This Phase II study of kraft black liquor gasification and use of the product gases in combined cycle cogeneration based on combustion gas turbines was motivated by the very promising results of the Phase I feasibility study. The Phase I study indicated that the alternative technology to the Tomlinson recovery furnace had the potential of improving the energy efficiency and safety of combusting black liquor, reducing the capital and operating costs, increasing the electric power output, and providing an economical system for incremental kraft capacity additions. During Phase II, additional bench-scale experiments were run, pilot-scale experiments were conducted, equipment systems were investigated, and performance and economics were reanalyzed. All of the objectives of the Phase II project were met. Recommendations are summarized.

Kelleher, E.G.

1985-07-01T23:59:59.000Z

139

Bayou Cogeneration Plant- A Case Study  

E-Print Network [OSTI]

electric power and over 1.3 million 1b/hr of high pressLre steam. i I I In addition, the plant has cleared virtually all the ~ hurdles of getting a cogeneration plant up and runnin . It has qualified as a cogenerator under FERC regulatio s. Ten... from cogeneration. A joint venture of Big Three Industries, Inc., and General Electric Company, this $100 million power plant became operational late last year and produces approximately 1.4 million Ib/hr of process steam and 300 MW of electri city...

Bray, M. E.; Mellor, R.; Bollinger, J. M.

140

SAFETY OF HYDROGEN/NATURAL GAS MIXTURES BY PIPELINES: ANR FRENCH PROJECT HYDROMEL  

E-Print Network [OSTI]

1 SAFETY OF HYDROGEN/NATURAL GAS MIXTURES BY PIPELINES: ANR FRENCH PROJECT HYDROMEL Hébrard, J.1 linked with Hydrogen/Natural gas mixtures transport by pipeline, the National Institute of Industrial scenario, i.e. how the addition of a quantity of hydrogen in natural gas can increase the potential

Boyer, Edmond

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Natural Gas Vehicle Cylinder Safety, Training and Inspection Project  

SciTech Connect (OSTI)

Under the auspices of the National Energy Technology Laboratory and the US Department of Energy, the Clean Vehicle Education Foundation conducted a three-year program to increase the understanding of the safe and proper use and maintenance of vehicular compressed natural gas (CNG) fuel systems. High-pressure fuel systems require periodic inspection and maintenance to insure safe and proper operation. The project addressed the needs of CNG fuel containers (cylinders) and associated high-pressure fuel system components related to existing law, codes and standards (C&S), available training and inspection programs, and assured coordination among vehicle users, public safety officials, fueling station operators and training providers. The program included a public and industry awareness campaign, establishment and administration of a cylinder inspector certification training scholarship program, evaluation of current safety training and testing practices, monitoring and investigation of CNG vehicle incidents, evaluation of a cylinder recertification program and the migration of CNG vehicle safety knowledge to the nascent hydrogen vehicle community.

Hank Seiff

2008-12-31T23:59:59.000Z

142

Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, A DOE Assessment  

SciTech Connect (OSTI)

The AFGD process as demonstrated by Pure Air at the Bailly Station offers a reliable and cost-effective means of achieving a high degree of SO{sub 2} emissions reduction when burning high-sulfur coals. Many innovative features have been successfully incorporated in this process, and it is ready for widespread commercial use. The system uses a single-loop cocurrent scrubbing process with in-situ oxidation to produce wallboard-grade gypsum instead of wet sludge. A novel wastewater evaporation system minimizes effluents. The advanced scrubbing process uses a common absorber to serve multiple boilers, thereby saving on capital through economies of scale. Major results of the project are: (1) SO{sub 2} removal of over 94 percent was achieved over the three-year demonstration period, with a system availability exceeding 99.5 percent; (2) a large, single absorber handled the combined flue gas of boilers generating 528 MWe of power, and no spares were required; (3) direct injection of pulverized limestone into the absorber was successful; (4) Wastewater evaporation eliminated the need for liquid waste disposal; and (5) the gypsum by-product was used directly for wallboard manufacture, eliminating the need to dispose of waste sludge.

National Energy Technology Laboratory

2001-08-31T23:59:59.000Z

143

Using landfill gas for energy: Projects that pay  

SciTech Connect (OSTI)

Pending Environmental Protection Agency regulations will require 500 to 700 landfills to control gas emissions resulting from decomposing garbage. Conversion of landfill gas to energy not only meets regulations, but also creates energy and revenue for local governments.

NONE

1995-02-01T23:59:59.000Z

144

The Integration of Cogeneration and Space Cooling  

E-Print Network [OSTI]

Cogeneration is the production of electrical and thermal energy from a single fuel source. In comparison, electric power generation rejects the useful heat energy into lakes or other heat sinks. Electric generation alone provides approximately 30...

Phillips, J.

1987-01-01T23:59:59.000Z

145

Management decisions for cogeneration : executive summary  

E-Print Network [OSTI]

This report summarizes two interdependent studies which explore the underlying factors in the decision by private, private non-profit, and public sector facility owners to invest in cogeneration technology. They employ ...

Radcliffe, Robert R.

1982-01-01T23:59:59.000Z

146

Management decisions for cogeneration : a survey analysis  

E-Print Network [OSTI]

This study explores the underlying factors in the decision by private, private non-profit, and public sector facility owners to invest in cogeneration technology. It employs alpha factor analysis techniques to develop ...

Radcliffe, Robert R.

1982-01-01T23:59:59.000Z

147

Absorption Cooling Optimizes Thermal Design for Cogeneration  

E-Print Network [OSTI]

Contrary to popular concept, in most cases, thermal energy is the real VALUE in cogeneration and not the electricity. The proper consideration of the thermal demands is equal to or more important than the electrical demands. High efficiency two...

Hufford, P. E.

1986-01-01T23:59:59.000Z

148

The Utilities' Role in Conservation and Cogeneration  

E-Print Network [OSTI]

The electric utility industry is uniquely qualified and positioned to serve as an effective 'deliverer' of energy conservation services and alternative energy supply options, such as cogeneration, rather than merely as a 'facilitator...

Mitchell, R. C., III

1982-01-01T23:59:59.000Z

149

Design Considerations for Large Industrial Cogeneration Systems  

E-Print Network [OSTI]

available to fully exploit this technology be fully understood. This paper will review the considerations required to develop meaningful cogeneration systems. Turbine types, ratings, steam conditions and other parameters will be discussed and their impact...

Kovacik, J. M.

1979-01-01T23:59:59.000Z

150

Cogeneration Markets: An Industry in Transition  

E-Print Network [OSTI]

was accountable to very large, multiple gas turbine combined cycle systems, including much more electric generating capability than was matched with or needed to serve a useful process steam demand. Second, previously initiated projects designed wholly or largely...

Breuer, C. T.

151

EIS-0498: Magnolia Liquefied Natural Gas Project, Calcasieu Parish, Louisiana  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission (FERC) is preparing an EIS for a proposal to build and operate a liquefied natural gas (LNG) facility on land at the Port of Lake Charles. DOE is a cooperating agency in preparing the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

152

Methodological and Practical Considerations for Developing Multiproject Baselines for Electric Power and Cement Industry Projects in Central America  

E-Print Network [OSTI]

energy projects (small hydro and bagasse co-generators) andPCF) in Guatemala for a small hydro project assumes that the

Murtishaw, Scott; Sathaye, Jayant; Galitsky, Christina; Dorion, Kristel

2008-01-01T23:59:59.000Z

153

Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission Fourth Quarter 1983  

SciTech Connect (OSTI)

At the end of 1983, the number of signed contracts and letter agreements for cogeneration and small power production projects was 305, with a total estimated nominal capacity of 2,389 MW. Of these totals, 202 projects, capable of producing 566 MW, are operational (Table A). A map indicating the location of operational facilities under contract with PG and E is provided as Figure A. Developers of cogeneration, solid waste, or biomass projects had signed 101 contracts with a potential of 1,408 MW. In total, 106 contracts and letter agreements had been signed with projects capable of producing 1,479 MW. PG and E also had under active discussion 29 cogeneration projects that could generate a total of 402 MW to 444 MW, and 13 solid waste or biomass projects with a potential of 84 MW to 89 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. There were 7 solar projects with signed contracts and a potential of 37 MW, as well as 3 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 28, with a generating capability of 618 MW. Also, discussions were being conducted with 14 wind farm projects, totaling 365 MW. There were 100 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 8 other small wind projects under active discussion. There were 59 hydroelectric projects with signed contracts and a potential of 146 MW, as well as 72 projects under active discussion for 169 MW. In addition, there were 31 hydroelectric projects, with a nominal capacity of 185 MW, that PG and E was planning to construct. Table B displays the above information. In tabular form, in Appendix A, are status reports of the projects as of December 31, 1983.

None

1983-01-01T23:59:59.000Z

154

Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using Nearby Resources for Local Application  

SciTech Connect (OSTI)

Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode, respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall integrated system assembly was not completed because of limited resources. An inexpensive metallic interconnects fabrication process was developed in-house. BOP components were fabricated and evaluated under the forecasted operating conditions. Proof-of-concept demonstration of cogenerating hydrogen and electricity was performed, and demonstrated SOFEC operational stability over 360 hours with no significant degradation. Cost analysis was performed for providing an economic assessment of the cost of hydrogen production using the targeted hybrid technology, and for guiding future research and development.

Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar; Thangamani, Nithyanantham; Anderson, Harlan, U.; Brow, Richard, K.

2009-06-30T23:59:59.000Z

155

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1)  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1) Host institution: University of Oxford Cartwright Project description: Recovery of natural gas from mudstone (shale) formations has triggered

Henderson, Gideon

156

TWO-PHASE FLOW TURBINE FOR COGENERATION, GEOTHERMAL,  

E-Print Network [OSTI]

TWO-PHASE FLOW TURBINE FOR COGENERATION, GEOTHERMAL, SOLAR AND OTHER APPLICATIONS Prepared For REPORT (FAR) TWO-PHASE FLOW TURBINE FOR COGENERATION, GEOTHERMAL, SOLAR AND OTHER APPLICATIONS EISG://www.energy.ca.gov/research/index.html. #12;Page 1 Two-Phase Flow Turbine For Cogeneration, Geothermal, Solar And Other Applications EISG

157

Abatement of Air Pollution: Greenhouse Gas Emissions Offset Projects...  

Broader source: Energy.gov (indexed) [DOE]

Projects that either capture and destroy landfill methane, avoid sulfur hexafluoride emissions, sequester carbon through afforestation, provide end-use energy efficiency, or avoid...

158

Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission First Quarter 1984  

SciTech Connect (OSTI)

At the end of the First Quarter of 1984, the number of signed contracts and letter agreements for cogeneration and small power production projects was 322, with a total estimated nominal capacity of 2,643 MW. Of these totals, 215 projects, capable of producing 640 MW, are operational. A map indicating the location of operational facilities under contract with PG and E is provided. Developers of cogeneration, solid waste, or biomass projects had signed 110 contracts with a potential of 1,467 MW. In total, 114 contracts and letter agreements had been signed with projects capable of producing 1,508 MW. PG and E also had under active discussion 35 cogeneration projects that could generate a total of 425 MW to 467 MW, and 11 solid waste or biomass projects with a potential of 94 MW to 114 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. There were 7 solar projects with signed contracts and a potential of 37 MW, as well as 5 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 32, with a generating capability of 848 MW. Also, discussions were being conducted with 18 wind farm projects, totaling 490 MW. There were 101 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 6 other small wind projects under active discussion. There were 64 hydroelectric projects with signed contracts and a potential of 148 MW, as well as 75 projects under active discussion for 316 MW. In addition, there were 31 hydroelectric projects, with a nominal capacity of 187 MW, that Pg and E was planning to construct.

None

1984-01-01T23:59:59.000Z

159

Application Filing Requirements for Natural Gas Pipeline Construction Projects (Wisconsin)  

Broader source: Energy.gov [DOE]

Any utility proposing to construct a natural gas pipeline requiring a Certificate of Authority (CA) under Wis. Stat. §196.49 must prepare an application for Commission review.  These regulations ...

160

Unconventional Oil and Gas Projects Help Reduce Environmental...  

Broader source: Energy.gov (indexed) [DOE]

As these "conventional" reservoirs become harder to find, however, we are turning to oil and natural gas in shale or other less-permeable geologic formations, which do not...

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Well Test Interpretation in Unconventional (Tight and Shale) Gas Reservoirs Host institution: Heriot-watt University) are carried out in such low permeability formations the results are often inconclusive and/or the estimates

Henderson, Gideon

162

Project Information Form Project Title Working toward a policy framework for reducing greenhouse gas  

E-Print Network [OSTI]

Provided (by each agency or organization) US DOT $37,874 Total Project Cost $37,874 Agency ID or ContractProject Information Form Project Title Working toward a policy framework for reducing greenhouse of Research Project This white paper is concerned with a preliminary investigation of the extent to which

California at Davis, University of

163

High Temperature Gas-cooled Reactor Projected Markets and Scoping Economics  

SciTech Connect (OSTI)

The NGNP Project has the objective of developing the high temperature gas-cooled reactor (HTGR) technology to supply high temperature process heat to industrial processes as a substitute for burning of fossil fuels, such as natural gas. Applications of the HTGR technology that have been evaluated by the NGNP Project for supply of process heat include supply of electricity, steam and high-temperature gas to a wide range of industrial processes, and production of hydrogen and oxygen for use in petrochemical, refining, coal to liquid fuels, chemical, and fertilizer plants.

Larry Demick

2010-08-01T23:59:59.000Z

164

EIS-0140: Ocean State Power Project, Tennessee Gas Pipeline Company  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission prepared this statement to evaluate potential impacts of construction and operation of a new natural gas-fired, combined-cycle power plant which would be located on a 40.6-acre parcel in the town of Burrillville, Rhode Island, as well as construction of a 10-mile pipeline to transport process and cooling water to the plant from the Blackstone River and a 7.5-mile pipeline to deliver No. 2 fuel oil to the site for emergency use when natural gas may not be available. The Economic Regulatory Administration adopted the EIS on 7/15/1988.

165

Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission. Second Quarter 1984  

SciTech Connect (OSTI)

At the end of the Second Quarter of 1984, the number of signed contracts and letter agreements for cogeneration and small power production projects was 334, with total estimated nominal capacity of 2,876 MW. Of these totals, 232 projects, capable of producing 678 MW, are operational (Table A). A map indicating the location of operational facilities under contract with PG and E is provided as Figure A. Developers of cogeneration projects had signed 80 contracts with a potential of 1,161 MW. Thirty-three contracts had been signed for solid waste/biomass projects for a total of 298 MW. In total, 118 contracts and letter agreements had been signed with cogeneration, solid waste, and biomass projects capable of producing 1,545 MW. PG and E also had under active discussion 46 cogeneration projects that could generate a total of 688 MW to 770 MW, and 13 solid waste or biomass projects with a potential of 119 MW to 139 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. Two geothermal projects were under active discussion for a total of 2 MW. There were 8 solar projects with signed contracts and a potential of 37 MW, as well as 4 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 34, with a generating capability of 1,042 MW, Also, discussions were being conducted with 23 wind farm projects, totaling 597 MW. There were 100 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 7 other small wind projects under active discussion. There were 71 hydroelectric projects with signed contracts and a potential of 151 MW, as well as 76 projects under active discussion for 505 MW. In addition, there were 18 hydroelectric projects, with a nominal capacity of 193 MW, that PG and E was planning to construct. Table B displays the above information. Appendix A displays in tabular form the status reports of the projects as of June 30, 1984.

None

1984-01-01T23:59:59.000Z

166

Cogeneration : A Regulatory Guide to Leasing, Permitting, and Licensing in Idaho, Montana, Oregon, and Washington.  

SciTech Connect (OSTI)

This guidebook focuses on cogeneration development. It is one of a series of four guidebooks recently prepared to introduce the energy developer to the federal, state and local agencies that regulate energy facilities in Idaho, Montana, Oregon, and Washington (the Bonneville Power Administration Service Territory). It was prepared specifically to help cogeneration developers obtain the permits, licenses and approvals necessary to construct and operate a cogeneration facility. The regulations, agencies and policies described herein are subject to change. Changes are likely to occur whenever energy or a project becomes a political issue, a state legislature meets, a preexisting popular or valuable land use is thought threatened, elected and appointed officials change, and new directions are imposed on states and local governments by the federal government. Accordingly, cogeneration developers should verify and continuously monitor the status of laws and rules that might affect their plans. Developers are cautioned that the regulations described herein may only be a starting point on the road to obtaining all the necessary permits.

Deshaye, Joyce; Bloomquist, R.Gordon

1992-12-01T23:59:59.000Z

167

Estimating the greenhouse gas benefits of forestry projects: A Costa Rican Case Study  

SciTech Connect (OSTI)

If the Clean Development Mechanism proposed under the Kyoto Protocol is to serve as an effective means for combating global climate change, it will depend upon reliable estimates of greenhouse gas benefits. This paper sketches the theoretical basis for estimating the greenhouse gas benefits of forestry projects and suggests lessons learned based on a case study of Costa Rica's Protected Areas Project, which is a 500,000 hectare effort to reduce deforestation and enhance reforestation. The Protected Areas Project in many senses advances the state of the art for Clean Development Mechanism-type forestry projects, as does the third-party verification work of SGS International Certification Services on the project. Nonetheless, sensitivity analysis shows that carbon benefit estimates for the project vary widely based on the imputed deforestation rate in the baseline scenario, e.g. the deforestation rate expected if the project were not implemented. This, along with a newly available national dataset that confirms other research showing a slower rate of deforestation in Costa Rica, suggests that the use of the 1979--1992 forest cover data originally as the basis for estimating carbon savings should be reconsidered. When the newly available data is substituted, carbon savings amount to 8.9 Mt (million tones) of carbon, down from the original estimate of 15.7 Mt. The primary general conclusion is that project developers should give more attention to the forecasting land use and land cover change scenarios underlying estimates of greenhouse gas benefits.

Busch, Christopher; Sathaye, Jayant; Sanchez Azofeifa, G. Arturo

2000-09-01T23:59:59.000Z

168

Table 8. Total Natural Gas Consumption, Projected vs. Actual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary:Principal shale gas::Total

169

Natural Gas Vehicle Cylinder Safety, Training and Inspection Project |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department U.S.NationalNatural GasHigh SchoolNatural

170

Table 8. Total Natural Gas Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c : U.S.WelcomeDomesticb. Natural Gas

171

SANBAG Natural Gas Truck Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap for BioenergyBuilding TechnologiesNatural Gas

172

Thermodynamics -2 A cogeneration plant (plant which provides both electricity and thermal energy) executes a cycle  

E-Print Network [OSTI]

Thermodynamics - 2 A cogeneration plant (plant which provides both electricity and thermal energy] Determine the rate of heat addition in the steam generator. Now consider an ideal, reversible cogeneration 1 2 3 45 6 Cogeneration Plant Boundary #12;

Virginia Tech

173

Projects Selected to Boost Unconventional Oil and Gas Resources |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sofAppendix B, SeptemberandIDLDRD Project List -|

174

In the field. Pilot project uses innovative process to capture CO{sub 2} from flue gas  

SciTech Connect (OSTI)

A pilot project at We Energies' Pleasant Prairie Power Plant uses chilled ammonia to capture CO{sub 2} from flue gas. 3 photos.

NONE

2008-04-01T23:59:59.000Z

175

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas activity: a west of Shetland case study industry and government identified sponge grounds in areas of interest to the oil and gas sector

Henderson, Gideon

176

Gas Turbine Technology, Part B: Components, Operations and Maintenance  

E-Print Network [OSTI]

This paper builds on Part A and discusses the hardware involved in gas turbines as well as operations and maintenance aspects pertinent to cogeneration plants. Different categories of gas turbines are reviewed such as heavy duty aeroderivative...

Meher-Homji, C. B.; Focke, A. B.

177

Western Gas Sands Project. Status report, 1 January-31 January 1980  

SciTech Connect (OSTI)

This report summarizes January, 1980, progress of the government-sponsored projects directed toward increasing gas production from the low-permeability gas sands of the western United States. The USGS continued activities in the four primary areas of interest in the WGSP; coring and logging of Rainbow Resources No. 1-3 Federal well, Sweetwater County, Wyoming, was completed during January. The DOE Well Test Facility was moved to Wattenberg field to monitor well tests at the Colorado Interstate Gas Company cyclic injection site. Sixteen minifracs were conducted at the Nevada Test Site in conjunction with Sandia Mineback program.

Not Available

1980-01-01T23:59:59.000Z

178

High-Efficiency Solar Cogeneration with TPV & Fiber-Optic Daylighting...  

Broader source: Energy.gov (indexed) [DOE]

High-Efficiency Solar Cogeneration with TPV & Fiber-Optic Daylighting High-Efficiency Solar Cogeneration with TPV & Fiber-Optic Daylighting Lead Performer: Creative Light Source,...

179

Cogeneration handbook for the petroleum refining industry. [Glossary included  

SciTech Connect (OSTI)

This Handbook deals only with industrial cogeneration, that is, simultaneous production of both heat and electricity at the industrial plant site. The cogenerator has the option of either selling all cogenerated power to the utility while simultaneously purchasing power to satisfy his plant demand, or directly supplying the plant demand with cogenerated power, thus displacing utility-supplied power. This Handbook provides the refinery plant manager or company energy coordinator with a framework for making a preliminary assessment of the feasibility and viability of cogeneration at a particular plant. The handbook is intended to provide an understanding of the potential of several standardized cogeneration systems, as well as their limitations. However, because the decision to cogenerate is very site specific, the handbook cannot provide all of the answers. It does attempt, however, to bring to light the major issues that should be addressed in the decision-making process. The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. 39 figures, 37 tables.

Not Available

1984-02-01T23:59:59.000Z

180

Assessment of the Technical Potential for Micro-Cogeneration...  

Open Energy Info (EERE)

throughout the United States. The cogeneration devices are simulated with the computer program EnergyPlus using models developed by Annex 42, a working group of the...

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alternate Energy Production, Cogeneration, and Small Hydro Facilities (Indiana)  

Broader source: Energy.gov [DOE]

This legislation aims to encourage the development of alternative energy, cogeneration, and small hydropower facilities. The statute requires utilities to enter into long-term contracts with these...

182

Project 35013 Species-and Site-specific Impacts of Gas Supersaturation on Aquatic Animals  

E-Print Network [OSTI]

three species tend to be bottom oriented and deep water species, and most TDG effects are in the upperProject 35013 Species- and Site-specific Impacts of Gas Supersaturation on Aquatic Animals Sponsor in the river?" The proposal was submitted primarily at the request of the state water quality agencies

183

Identifying Energy Systems that Maximize Cogeneration Savings  

E-Print Network [OSTI]

the method of Lagrange mult1pl1ers: 120 ESL-IE-88-09-24 Proceedings from the Tenth Annual Industrial Energy Technology Conference, Houston, TX, September 13-15, 1988 aV/akW, + ~at1/akW1 ~ 0 (4) aO p/HR p1 a01 /HR c1 (11 ) aV/ aO p 1 + ~1 at2/aOp1 o (5...Igure 5 Indicates t e incremental cogeneratIon power cost trends for dependent cogeneratIon systems. for these systems the maxlmum benef1ts are achleved at condlt1on (11). The process heat to power ratio 1s constant, and thus, sIte cogenerat1on...

Ahner, D. J.

184

EPRI Cogeneration Models -- DEUS and COPE  

E-Print Network [OSTI]

process thermal requirement; under the user-specified-megawatt size, capacity matches both the specified electrical output and the maximum process needs. The third phase matches the steam and energy load profiles by dispatching the required... cogeneration units for both a thermal matched dispatch and an economic dispatch. A thermal dispatch is performed for therrnal-match size plants and an economic dispatch is performed for user-specified-MW-size plants. Under a thermal dispatch, the plant...

Mauro, R.; Hu, S. D.

1983-01-01T23:59:59.000Z

185

Hunterdon Cogeneration LP | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy Resources Jump to:Cogeneration LP Jump to:

186

"Matrix/Modular" - An Approach to Analyzing Cogeneration Opportunities in Industry  

E-Print Network [OSTI]

, our cogeneration facility will be located in the Gulf Coast area and will have access to a variety of transportation modes -- ship, barge, rail and truck (or any combination of these modes) to deliver coal and haul away ash and other waste material... cost of imported oil have prompted the Federal Government to limit the use of oil and gas for steam and power generation. The Powerplant & Industrial Fuel Use Act - 1978 prohibits the use of natural gas and oil for generation of steam and power...

Canty, W. R.

1979-01-01T23:59:59.000Z

187

Western gas sands project. Status report, 1 April-30 April, 1980  

SciTech Connect (OSTI)

The progress of the government-sponsored projects directed towards increasing gas production from the low permeability gas sands of the western United States is summarized. Planning activities continued for the multi-well experiment. Bartlesville Energy Technology Center continued formation evaluation studies for the WGSP. Theoretical analyses continued at Lawrence Livermore Laboratory for fracture growth across frictional interfaces and fluid flow in a fracture. Studies have begun at Los Alamos Scientific Laboratory on NMR signals coming from fluids in porous media. Analyses continued of information gathered from Sandia's fracture experiment in Grayson County, Texas. Tests using the DOE Well Test Facility were completed for the Colorado Interstate Gas Company cyclic dry gas injection experiment. At the NTS, Sandia is conducting minifractures.

Not Available

1980-01-01T23:59:59.000Z

188

Refinery Fuel Balancing with Cogeneration  

E-Print Network [OSTI]

in order to tie-in during a scheduled refinery wide turnaround and to be on line during the summer 1990 operating period. The two gas turbines exhaust to two existing boilers where the oxygen in the turbine exhaust is utilized for combustion. Supplementary...

Passman, K. W.; Taylor, R. I.; Williams, D. E.; Emanuel, D.

189

1992 National census for district heating, cooling and cogeneration  

SciTech Connect (OSTI)

District energy systems are a major part of the energy use and delivery infrastructure of the United States. With nearly 6,000 operating systems currently in place, district energy represents approximately 800 billion BTU per hour of installed thermal production capacity, and provides over 1.1 quadrillion BTU of energy annually -- about 1.3% of all energy used in the US each year. Delivered through more that 20,000 miles of pipe, this energy is used to heat and cool almost 12 billion square feet of enclosed space in buildings that serve a diverse range of office, education, health care, military, industrial and residential needs. This Census is intended to provide a better understanding of the character and extent of district heating, cooling and cogeneration in the United States. It defines a district energy system as: Any system that provides thermal energy (steam, hot water, or chilled water) for space heating, space cooling, or process uses from a central plant, and that distributes the energy to two or more buildings through a network of pipes. If electricity is produced, the system is a cogenerating facility. The Census was conducted through surveys administered to the memberships of eleven national associations and agencies that collectively represent the great majority of the nation`s district energy system operators. Responses received from these surveys account for about 11% of all district systems in the United States. Data in this report is organized and presented within six user sectors selected to illustrate the significance of district energy in institutional, community and utility settings. Projections estimate the full extent of district energy systems in each sector.

Not Available

1993-07-01T23:59:59.000Z

190

$XMM-Newton$ $?$ project: III. Gas mass fraction shape in high redshift clusters  

E-Print Network [OSTI]

We study the gas mass fraction, $f\\_{\\rm gas},$ behavior in $XMM-Newton$ $\\Omega$ project. The typical $f\\_{\\rm gas}$ shape of high redshift galaxy clusters follows the global shape inferred at low redshift quite well. This result is consistent with the gravitational instability picture leading to self similar structures for both the dark and baryonic matter. However, the mean $f\\_{\\rm gas} in distant clusters shows some differences to local ones, indicating a departure from strict scaling. This result is consistent with the observed evolution in the luminosity-temperature relation. We quantitatively investigate this departure from scaling laws. Within the local sample we used, a moderate but clear variation of the amplitude of the gas mass fraction with temperature is found, a trend that weakens in the outer regions. These variations do not explain departure from scaling laws of our distant clusters. An important implication of our results is that the gas fraction evolution, a test of the cosmological parameters, can lead to biased values when applied at radii smaller than the virial radius. From our $XMM$ clusters, the apparent gas fraction at the virial radius is consistent with a non-evolving universal value in a high matter density model and not with a concordance.

Rachida Sadat; Alain Blanchard; Sebastien C. Vauclair; David H. Lumb; James Bartlett; A. K. Romer; Jean-Philippe Bernard; Michel Boer; Philippe Marty; Jukka Nevalainen; Douglas J. Burke; C. A. Collins; Robert C. Nichol

2005-03-19T23:59:59.000Z

191

Minimizing Project Risk Through Financing Strategies  

E-Print Network [OSTI]

One of the major barriers to greater corporate investment in energy conservation, cogeneration and alternative energy projects is the level of risk associated with these investments. Potential risks include technical malfunction of the equipment and...

Michaelson, M.

192

A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY Scott B. Phelps and J. Kelly Kissock  

E-Print Network [OSTI]

A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY Scott B. Phelps and J. Kelly Kissock of the literature on fuel cell cogeneration describes cogeneration at commercial sites. In this study, a PC25C phosphoric acid fuel cell cogeneration system was designed for an industrial facility and an economic

Kissock, Kelly

193

250 MW single train CFB cogeneration facility. Annual report, October 1993--September 1994  

SciTech Connect (OSTI)

This Technical Progress Report (Draft) is submitted pursuant to the Terms and Conditions of Cooperative Agreement No. DE-FC21-90MC27403 between the Department of Energy (Morgantown Energy Technology Center) and York County Energy Partners, L.P. a wholly owned project company of Air Products and Chemicals, Inc. covering the period from January 1994 to the present for the York County Energy Partners CFB Cogeneration Project. The Technical Progress Report summarizes the work performed during the most recent year of the Cooperative Agreement including technical and scientific results.

NONE

1995-02-01T23:59:59.000Z

194

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Quantifying the role of groundwater in hydrocarbon systems using noble gas  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Quantifying the role of groundwater in hydrocarbon systems using noble gas isotopes (EARTH-15-CB1) Host institution biodegradation of oil can remove its value ­ but what controls the biodegradation? The deep biosphere plays a key

Henderson, Gideon

195

Advanced Gas Turbine (AGT) technology development project. Annual report, July 1984-June 1985  

SciTech Connect (OSTI)

This report is the tenth in a series of Technical Summary reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorized under NASA Contract DEN3-167, and sponsored by the Department of Energy (DOE). This report was prepared by Garrett Turbine Engine Company, A Division of the Garrett Corporation, and includes information provided by Ford Motor Company, the Carborundum Company, and AiResearch Casting Company.

Not Available

1986-07-01T23:59:59.000Z

196

Western Gas Sands Project. Status report, 1 March-31 March 1980  

SciTech Connect (OSTI)

The March, 1980 progress of the government-sponsored projects directed towards increasing gas production from the low permeability gas sands of the western United States is summarized in this report. A site for the multi-well experiment was approved by the industry review committee; drilling is expected by mid-summer. Bartlesville Energy Technology Center continued work on fracture conductivity, rock/fluid interaction, and log evaluation and interpretation techniques. Lawrence Livermore Laboratory continued experimental and theoretical work on hydraulic fracturing mechanics and analysis of well test data. Analysis of data obtained from a test of the borehole seismic unit by Sandia Laboratories continued. The DOE Well Test Facility continued bottom-hole pressure buildup measurements at the Colorado Interstate Gas Company Miller No. 1 well.

Not Available

1980-01-01T23:59:59.000Z

197

Industrial cogeneration optimization program. Volume II. Appendix A. Conceptual designs and preliminary equipment specifications. Appendix B. Characterization of cogeneration systems (near-term technology). Appendix C. Optimized cogeneration systems  

SciTech Connect (OSTI)

This appendix to a report which evaluates the technical, economic, and institutional aspects of industrial cogeneration for conserving energy in the food, chemical, textile, paper, and petroleum industries contains data, descriptions, and diagrams on conceptual designs and preliminary equipment specifications for cogeneration facilities; characterization of cogeneration systems in terms of fuel utilization, performance, air pollution control, thermal energy storage systems, and capital equipment costs; and optimized cogeneration systems for specific industrial plants. (LCL)

Not Available

1980-01-01T23:59:59.000Z

198

JV 38-APPLICATION OF COFIRING AND COGENERATION FOR SOUTH DAKOTA SOYBEAN PROCESSORS  

SciTech Connect (OSTI)

Cogeneration of heat and electricity is being considered by the South Dakota Soybean Processors for its facility in Volga, South Dakota, and a new facility to be located in Brewster, Minnesota. The Energy & Environmental Research Center has completed a feasibility study, with 40% funding provided from the U.S. Department of Energy's Jointly Sponsored Research Program to determine the potential application of firing biomass fuels combined with coal and comparative economics of natural gas-fired turbines. Various biomass fuels are available at each location. The most promising options based on availability are as follows. The economic impact of firing 25% biomass with coal can increase return on investment by 0.5 to 1.5 years when compared to firing natural gas. The results of the comparative economics suggest that a fluidized-bed cogeneration system will have the best economic performance. Installation for the Brewster site is recommended based on natural gas prices not dropping below a $4.00/MMBtu annual average delivered cost. Installation at the Volga site is only recommended if natural gas prices substantially increase to $5.00/MMBtu on average. A 1- to 2-year time frame will be needed for permitting and equipment procurement.

Darren D. Schmidt

2002-11-01T23:59:59.000Z

199

Ceramic stationary gas turbine  

SciTech Connect (OSTI)

The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

Roode, M. van

1995-12-31T23:59:59.000Z

200

A Texas project illustrates the benefits of integrated gasification  

SciTech Connect (OSTI)

Gasification can be an attractive option for converting a variety of petroleum feedstocks to chemicals. Natural gas is commonly sued to produce acetic acid, isocyanates, plastics, and fibers. But low-cost, bottom-of-the-barrel feeds, such as vacuum resid, petroleum coke, and asphaltenes, also can be used. In any case, gasification products include synthesis gas, carbon monoxide, hydrogen, steam, carbon dioxide, and power. The more a gasification facility is integrated with utilities and other non-core operations of a production complex, the more economical the products are for all consumers. The paper discusses gasification of natural gas, light hydrocarbons (ethane, propanes, and butanes), and heavy hydrocarbons (distillates, heavy residues, asphalts, coals, petroleum coke). The paper then describes a Texas City Gasification Project, which gasifies methane to produce carbon monoxide, hydrogen, and alcohol. The plant is integrated with a cogeneration plant. Economics are discussed.

Philcox, J. [Praxair Inc., Houston, TX (United States); Fenner, G.W. [Praxair Inc., Tonawanda, NY (United States)

1997-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

GULF OF MEXICO SEAFLOOR STABILITY AND GAS HYDRATE MONITORING STATION PROJECT  

SciTech Connect (OSTI)

The gas hydrates research Consortium (HRC), established and administered at the University if Mississippi's Center for Marine Research and Environmental Technology (CMRET) has been active on many fronts in FY 03. Extension of the original contract through March 2004, has allowed completion of many projects that were incomplete at the end of the original project period due, primarily, to severe weather and difficulties in rescheduling test cruises. The primary objective of the Consortium, to design and emplace a remote sea floor station for the monitoring of gas hydrates in the Gulf of Mexico by the year 2005 remains intact. However, the possibility of levering HRC research off of the Joint Industries Program (JIP) became a possibility that has demanded reevaluation of some of the fundamental assumptions of the station format. These provisions are discussed in Appendix A. Landmark achievements of FY03 include: (1) Continuation of Consortium development with new researchers and additional areas of research contribution being incorporated into the project. During this period, NOAA's National Undersea Research Program's (NURP) National Institute for Undersea Science and Technology (NIUST) became a Consortium funding partner, joining DOE and Minerals Management Service (MMS); (2) Very successful annual and semiannual meetings in Oxford Mississippi in February and September, 2003; (3) Collection of piston cores from MC798 in support of the effort to evaluate the site for possible monitoring station installation; (4) Completion of the site evaluation effort including reports of all localities in the northern Gulf of Mexico where hydrates have been documented or are strongly suspected to exist on the sea floor or in the shallow subsurface; (5) Collection and preliminary evaluation of vent gases and core samples of hydrate from sites in Green Canyon and Mississippi Canyon, northern Gulf of Mexico; (6) Monitoring of gas activity on the sea floor, acoustically and thermally; (7) Design, construction, and successful deployment of an in situ pore-water sampling device; (8) Improvements to the original Raman spectrometer (methane sensor); (9) Laboratory demonstration of the impact of bacterially-produced surfactants' rates of hydrate formation; (10) Construction and sea floor emplacement and testing--with both watergun and ship noise sources--of the prototypal vertical line array (VLA); (11) Initiation of studies of spatial controls on hydrates; (12) Compilation and analyses of seismic data, including mapping of surface anomalies; (13) Additional field verification (bottom samples recovered), in support of the site selection effort; (14) Collection and preliminary analyses of gas hydrates from new sites that exhibit variant structures; (15) Initial shear wave tests carried out in shallow water; (16) Isolation of microbes for potential medicinal products development; (17) Preliminary modeling of occurrences of gas hydrates.

J. Robert Woolsey; Thomas M. McGee; Robin C. Buchannon

2004-11-01T23:59:59.000Z

202

Cogeneration Partnerships -- A "Win-Win" Approach for All Parties  

E-Print Network [OSTI]

proven technology that provides an economical, efficient, and environmental friendly way to increase electricity supply in appropriately sized increments. By facilitating, cogeneration installations and sharing in their ownership, the utility can protect...

Steigelmann, W.; Campbell, V.

203

An Application of Integrated Thermal and Electrical Energy Cogeneration Optimization  

E-Print Network [OSTI]

, installed and is operational at a large industrial cogeneration facility. A description of the specifics of this entire system is beyond tbe scope of this paper, however, a discussion of selected system features will be given. This application involves...

Ahner, D. J.; Mills, R. J.

204

Co-Generation at a Practical Plant Level  

E-Print Network [OSTI]

The Steam Turbine: A basic description of how a steam turbine converts available heat into mechanical energy to define the formulae used for the cost comparisons in the subsequent examples. Co-Generation: Comparison between condensing cycle...

Feuell, J.

1980-01-01T23:59:59.000Z

205

Industrial cogeneration optimization program. Final report, September 1979  

SciTech Connect (OSTI)

This study program is part of the DOE Integrated Industry Cogeneration Program to optimize, evaluate, and demonstrate cogeneration systems, with direct participation of the industries most affected. One objective is to characterize five major energy-intensive industries with respect to their energy-use profiles. The industries are: petroleum refining and related industries, textile mill products, paper and allied products, chemicals and allied products, and food and kindred products. Another objective is to select optimum cogeneration systems for site-specific reference case plants in terms of maximum energy savings subject to given return on investment hurdle rates. Analyses were made that define the range of optimal cogeneration systems for each reference-case plant considering technology applicability, economic factors, and energy savings by type of fuel. This study also provides guidance to other parts of the program through information developed with regard to component development requirements, institutional and regulatory barriers, as well as fuel use and environmental considerations. (MCW)

Not Available

1980-01-01T23:59:59.000Z

206

Combined Cycles and Cogeneration - An Alternative for the Process Industries  

E-Print Network [OSTI]

Cogeneration may be described as an efficient method for the production of electric power sequentially with process steam or heat which optimizes the energy supplied as fuel to maximize the energy produced for consumption. The state...

Harkins, H. L.

1981-01-01T23:59:59.000Z

207

Cogeneration systems and processes for treating hydrocarbon containing formations  

DOE Patents [OSTI]

A system for treating a hydrocarbon containing formation includes a steam and electricity cogeneration facility. At least one injection well is located in a first portion of the formation. The injection well provides steam from the steam and electricity cogeneration facility to the first portion of the formation. At least one production well is located in the first portion of the formation. The production well in the first portion produces first hydrocarbons. At least one electrical heater is located in a second portion of the formation. At least one of the electrical heaters is powered by electricity from the steam and electricity cogeneration facility. At least one production well is located in the second portion of the formation. The production well in the second portion produces second hydrocarbons. The steam and electricity cogeneration facility uses the first hydrocarbons and/or the second hydrocarbons to generate electricity.

Vinegar, Harold J. (Bellaire, TX); Fowler, Thomas David (Houston, TX); Karanikas, John Michael (Houston, TX)

2009-12-29T23:59:59.000Z

208

Evaluating Benefits with Independent and Cogenerated Power Production  

E-Print Network [OSTI]

of "stakeholders", (e.g. IPP's, ?cogenerators, industrial hosts, utility shareholders and rate payers), and additional technical issues (e.g. generation dispatch, transmission, wheeling, etc.) associated with independent power generation. This paper...

Ahner, D. J.

209

The Role of Feasibility Analysis in Successful Cogeneration  

E-Print Network [OSTI]

that led to its decline during the 20th century still remain. The long hiatus of cogeneration, its reintroduction in new forms, and the emergence of new market considerations leave potential designers and owners unaware of the variety of problems...

Wulfinghoff, D. R.

210

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

THERMAL COGENERATION A solar tracker and concentrator was3.1.Tracking System The solar tracker is designed to supportSummary and Conclusion A solar tracker and concentrator was

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

211

The Dynamics of Cogeneration or "The PURPA Ameoba"  

E-Print Network [OSTI]

commissions, utilities, and cogenerators) can be characterized as very dynamic. State Utility Commissions are struggling to implement rational policies to deal with the very complex matrix of issues and concerns. Utilities attitudes have changed...

Polsky, M. P.

212

Cogeneration Personal Property Tax Credit (District of Columbia)  

Broader source: Energy.gov [DOE]

The District of Columbia Council created a personal property tax exemption for solar energy systems and cogeneration systems within the District by enacting B19-0749 in December of 2012.

213

Utility & Regulatory Factors Affecting Cogeneration & Independent Power Plant Design & Operation  

E-Print Network [OSTI]

UTILITY & REGULATORY FACTORS AFFECTiNG COGENERATION & INDEPENDENT POWER PLANT DESIGN & OPERATION Richard P. Felak General Electric Company Schenectady, New York ABSTRACT In specifying a cogeneration or independent power plant, the owner... should be especially aware of the influences which electric utilities and regulatory bodies will have on key parameters such as size, efficiency, design. reliability/ availabilitY, operating capabilities and modes, etc. This paper will note examples...

Felak, R. P.

214

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect (OSTI)

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

215

Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development  

SciTech Connect (OSTI)

Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

2002-09-01T23:59:59.000Z

216

PEGASUS, a European research project on the effects of gas in underground storage facilities for radioactive waste  

SciTech Connect (OSTI)

Whereas the subject of gas generation and possible gas release from radioactive waste repositories has gained in interest on the international scene, the Commission of the European Communities has increased its research efforts on this issue. In particular in the 4th five year R and D program on Management and Storage of Radioactive Waste (1990--1994), a framework has been set up in which research efforts on the subject of gas generation and migration, supported by the CEC, are brought together and coordinated. In this project, called PEGASUS, Project on the Effects of GAS in Underground Storage facilities for radioactive waste, about 20 organizations and research institutes from 7 European countries are involved. The project covers both experimental and theoretical studies of the processes of gas formation and possible gas release from the different waste types, LLW, ILW and HLW, under typical repository conditions in suitable geological formations as clay, salt and granite. In this paper an overview is given of the various studies undertaken in the project as well as some first results presented.

Haijtink, B.; McMenamin, T. [Commission of the European Communities, Brussels (Belgium)

1993-12-31T23:59:59.000Z

217

USING A COGENERATION FACILITY ToIllustrateEngineeringPracticetoLower-LevelStudents  

E-Print Network [OSTI]

classroom USING A COGENERATION FACILITY ToIllustrateEngineeringPracticetoLower-LevelStudents ROBERT that are readily accessible to engineering students. At Rowan University, we use.our cogeneration facility in our

Hesketh, Robert

218

Hot gas cleanup test facility for gasification and pressurized combustion project. Quarterly report, October--December 1995  

SciTech Connect (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDs) into the structural and process designs. Substantial progress in construction activities was achieved during this quarter.

NONE

1996-02-01T23:59:59.000Z

219

High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests  

SciTech Connect (OSTI)

As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

Duffy, T.; Schneider, P.

1996-01-01T23:59:59.000Z

220

SS 2006 Selected Topics CMR Minimal infinite cogeneration-closed subcategories.  

E-Print Network [OSTI]

SS 2006 Selected Topics CMR Minimal infinite cogeneration-closed subcategories. Claus Michael C is finite. Finally, C is cogeneration-closed, provided it is also closed under submodules. Given subcategory containing X . Theorem. Let C be an infinite cogeneration-closed subcategory of mod . Then C

Ringel, Claus Michael

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

THE GROWTH OF A C0-SEMIGROUP CHARACTERISED BY ITS COGENERATOR  

E-Print Network [OSTI]

THE GROWTH OF A C0-SEMIGROUP CHARACTERISED BY ITS COGENERATOR TANJA EISNER AND HANS ZWART Abstract cogenerator V (or the Cayley transform of the generator) or its resolvent. In particular, we extend results of its cogenerator. As is shown by an example, the result is optimal. For analytic semigroups we show

222

SOFC Modeling for the Simulation of Residential Cogeneration Michael J. Carl  

E-Print Network [OSTI]

SOFC Modeling for the Simulation of Residential Cogeneration Systems by Michael J. Carl B of Residential Cogeneration Systems by Michael J. Carl B.Sc., University of Guelph, 2005 Supervisory Committee Dr made to the fuel cell power module (FCPM) within the SOFC cogeneration simulation code developed under

Victoria, University of

223

The Potential of Distributed Cogeneration in Commercial Sites in the Greater Vancouver  

E-Print Network [OSTI]

systems in commercial buildings in greater Vancouver. The research involved: (1) identifying all candidate with cogeneration in commercial buildings, and thus lower net CO2 emissions, the cogeneration option is generallyThe Potential of Distributed Cogeneration in Commercial Sites in the Greater Vancouver Regional

224

Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project  

SciTech Connect (OSTI)

The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

Rohrer, J.W. [Zurn/NEPCO, South Portland, MA (United States); Paisley, M. [Battelle Laboratories, Columbus, OH (United States)

1995-12-31T23:59:59.000Z

225

Monticello Unit 3 recovery project: The rebuild of a first generation wet flue gas desulfurization system  

SciTech Connect (OSTI)

Since November 1993, TU Electric and Sargent & Lundy have been engaged in the repair or replacement of equipment that was damaged by the collapse of the Monticello Unit 3 chimney. In addition to the replacement of the chimney, electrostatic precipitator, and various balance-of-plant systems, the scope of the project includes the demolition, engineering and design, procurement, and construction activities to rebuild major equipment within the wet limestone flue gas desulfurization (FGD) system. This paper reviews and discusses various aspects of the design, procurement and schedule associated with the rebuild of the FGD system. The paper reviews the design selections in the areas of process technology, the absorber island, and technical enhancements to improve the operability of this 1970s-vintage system. Finally, the challenges and solutions in implementing a 17-month schedule for the design, construction, and startup of an FGD system will be discussed.

Guletsky, P.W.; Katzberger, S.M. [Sargent & Lundy, Chicago, IL (United States); Jeanes, R.L. [TU Electric, Dallas, TX (United States)

1995-06-01T23:59:59.000Z

226

Carbonate fuel cell system development for industrial cogeneration. Final report Mar 80-Aug 81  

SciTech Connect (OSTI)

A survey of various industries was performed to investigate the feasibility of using natural gas-fueled carbonate fuel cell power plants as a cogeneration heat and power source. Two applications were selected: chlorine/caustic soda and aluminum. Three fuel processor technologies, conventional steam reforming, autothermal reforming and an advanced steam reformer concept were used to define three thermodynamic cycle concepts for each of the two applications. Performance and economic studies were conducted for the resulting systems. The advanced steam reformer was found among those studied to be most attractive and was evaluated further and compared to internally reforming the fuel within the fuel cell anodes. From the results of the studies it was concluded that the issues most affecting gas-fired carbonate fuel cell power plant commercial introduction are fuel cell and stack development, fuel reformer technology and the development of reliable, cost-effective heat transfer equipment.

Schnacke, A.W.; Reinstrom, R.M.; Najewicz, D.J.; Dawes, M.H.

1981-09-01T23:59:59.000Z

227

UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) Project Title: Authigenic mineral corrosion and the origins of secondary porosity in lacustrine  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) Project Title: Authigenic mineral corrosion and the origins of secondary porosity in lacustrine carbonate reservoirs). Additionally, the project will assess late diagenetic corrosion by examining the pathways triggered by shallow

Henderson, Gideon

228

Unaccounted-for gas project. Data bases. Volume 5. Final report  

SciTech Connect (OSTI)

The study identifies, explains, and quantifies unaccounted-for (UAF) gas volumes resulting from operating Pacific Gas and Electric (PG E) Co.'s gas transmission and distribution systems during 1987. The results demonstrate that the UAF volumes are reasonable for determining the indirectly billed gas requirements component of the gas cost and for operating the PG E gas system. Gas leakage is a small percentage of UAF. Summaries of studies on gas leakage, gas theft, measurement inaccuracies, and accounting methodologies are presented along with recommendations for further work which could reduce or more accurately measure UAF.

Cowgill, R.; Waller, R.L.; Grinstead, J.R.

1990-06-01T23:59:59.000Z

229

Flexible approach to the Italian cogeneration market  

SciTech Connect (OSTI)

Demand for energy is growing in Italy under new regulations issued by the Italian government in 1991 and 1992. While the national electrical authority, ENEL, is in the process of being privatized, independent power producers (IPPs) and several companies using large amounts of energy in their production processes have been active in setting up cogeneration and combined-cycle plants based purely on economics. In order to minimize emissions and make best use of fuel energy, the law commonly known as CIP 6/92 states that ENEL will grant a premium rate for electric power handled to the national grid from plants having an annual `energetic index` above 0.6, i.e., an efficiency higher than 60% measured over a one-year period. In order to benefit from the high rates granted by the law, it is necessary to build very efficient plants. Very high reliability is also required so the plan can operate at full load the year around, with only short stops for planned maintenance. This paper describes the activities of the major manufacturers of turbines in Italy.

Chellini, R.

1996-01-01T23:59:59.000Z

230

Advanced coal-fueled industrial cogeneration gas turbine system  

SciTech Connect (OSTI)

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

231

Texasgulf solar cogeneration program. Mid-term topical report  

SciTech Connect (OSTI)

The status of technical activities of the Texasgulf Solar Cogeneration Program at the Comanche Creek Sulfur Mine is described. The program efforts reported focus on preparation of a system specification, selection of a site-specific configuration, conceptual design, and facility performance. Trade-off studies performed to select the site-specific cogeneration facility configuration that would be the basis for the conceptual design efforts are described. Study areas included solar system size, thermal energy storage, and field piping. The conceptual design status is described for the various subsystems of the Comanche Creek cogeneration facility. The subsystems include the collector, receiver, master control, fossil energy, energy storage, superheat boiler, electric power generation, and process heat subsystems. Computer models for insolation and performance are also briefly discussed. Appended is the system specification. (LEW)

Not Available

1981-02-01T23:59:59.000Z

232

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS  

SciTech Connect (OSTI)

This report provides results from the first year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operations. Detailed emission rate and chemical speciation test results for a refinery gas-fired process heater and plans for cogeneration gas turbine tests and pilot-scale tests are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods to compare PM2.5 mass and chemical speciation. Test plans are presented for a gas turbine facility that will be tested in the fourth quarter of 2002. A preliminary approach for pilot-scale tests is presented that will help define design constraints for a new dilution sampler design that is smaller, lighter, and less costly to use.

Glenn C. England; Stephanie Wien; Mingchih O. Chang

2002-08-01T23:59:59.000Z

233

Economics of high performance steam systems (HPSS) cogeneration: A handbook  

SciTech Connect (OSTI)

This guidebook aims to farther industry's knowledge of HPSS and their potential benefits. It is also intended to provide industrial end-users with a basis for judging the merits of HPSS under various site-specific conditions by outlining the economics of HPSS and conventional cogeneration systems compared to boilers under representative sets of industrial process conditions. Electric utility companies have experimented with steam pressures in the range of 5,000 psig and temperatures up to 1,200[degrees]F, but generally have remained with more conservative throttle conditions of 2,400 psig, 1,000[degrees]F to improve reliability. Most industrial applications have used steam throttle conditions below 900 psig and 900[degrees]F. Yet thermodynamic analysis shows that in a steam turbine generator, the amount of electricity generated per pound of steam increases as the inlet steam temperature and pressure are increased. Furthermore, the incremental electricity that is generated by raising the steam temperature and pressure is produced in a highly efficient manner. Efforts in this direction explain why, recently, some industrial projects have been built with steam turbine inlet turbine conditions of 1,500 psig and above. The HPSS concept goes one step further: It is based on a high-temperature steam generator capable of producing 1,500[degrees]F superheated steam and a high-speed steam turbine-generator. By utilizing the HPSS system as a topping'' system, high-pressure steam can be expanded from 1,500[degrees]F to the traditional temperatures used by industry.

Not Available

1992-06-01T23:59:59.000Z

234

Economics of high performance steam systems (HPSS) cogeneration: A handbook  

SciTech Connect (OSTI)

This guidebook aims to farther industry`s knowledge of HPSS and their potential benefits. It is also intended to provide industrial end-users with a basis for judging the merits of HPSS under various site-specific conditions by outlining the economics of HPSS and conventional cogeneration systems compared to boilers under representative sets of industrial process conditions. Electric utility companies have experimented with steam pressures in the range of 5,000 psig and temperatures up to 1,200{degrees}F, but generally have remained with more conservative throttle conditions of 2,400 psig, 1,000{degrees}F to improve reliability. Most industrial applications have used steam throttle conditions below 900 psig and 900{degrees}F. Yet thermodynamic analysis shows that in a steam turbine generator, the amount of electricity generated per pound of steam increases as the inlet steam temperature and pressure are increased. Furthermore, the incremental electricity that is generated by raising the steam temperature and pressure is produced in a highly efficient manner. Efforts in this direction explain why, recently, some industrial projects have been built with steam turbine inlet turbine conditions of 1,500 psig and above. The HPSS concept goes one step further: It is based on a high-temperature steam generator capable of producing 1,500{degrees}F superheated steam and a high-speed steam turbine-generator. By utilizing the HPSS system as a ``topping`` system, high-pressure steam can be expanded from 1,500{degrees}F to the traditional temperatures used by industry.

Not Available

1992-06-01T23:59:59.000Z

235

Cogeneration handbook for the petroleum refining industry. [Contains glossary  

SciTech Connect (OSTI)

The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the petroleum refining industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Fassbender, A.G.; Eakin, D.E.; Gorges, H.A.

1984-03-01T23:59:59.000Z

236

Simulation, integration, and economic analysis of gas-to-liquid processes  

E-Print Network [OSTI]

specifications. Next, energy and mass integration studies are performed to address the following items: (a) heating and cooling utilities, (b) combined heat and power (process cogeneration), (c) management of process water, (c) optimization of tail-gas allocation...

Bao, Buping

2009-05-15T23:59:59.000Z

237

Where is the Cogeneration Business Going?  

E-Print Network [OSTI]

and quality of construction and operating conservatism should be mandated into supply side designs. For example, redundancy in fuel gas compression and consideration of hot weather derates on gas turbi e performance should be standards. Of course, one C0...

Gilbert, J. S.

238

Western gas sands project. Status report, July-August-September 1981  

SciTech Connect (OSTI)

The progress during July, August and September 1981 on increasing gas production from low permeability gas sands of the Western United States, is summarized in this edition of the WGSP Quarterly Status Report. During the quarter, CK GeoEnergy completed the field work in the Rifle Gap area near Rifle, Colorado, as well as the Draft Phase VI report covering the prognosis about reservoir geometry in the Multi-Well site area. The improved pressure coring system project, officially terminated Sept. 30. Accomplishments included increased capabilities for the pressure core barrel, improvements in the low invasion fluid plus various laboratory core intrusion studies and improved designs for PDC drill bits. At Lawrence Livermore National Laboratory, the P/sup 2/L/sup 2/ system described last quarter was evaluated further and the decision has been made to abandon further investigation. The Los Alamos National Laboratory Ceramics Materials Group is preparing to fabricate a ceramic sample with cylindrical pores of specified diameters. The NMR data on this type sample will contribute to a better understanding of the parameters affecting NMR relaxation rates in porous media. During the quarter, modifications were made in the operating and application software of the DOE Well Test Facility, which will support additions to the PDP-11/10 computer system. The Multi-Well Experiment well was spudded on Sept. 13 and by Sept. 30, total depth was 3358 ft. Coring operations are expected to begin at a depth of 4150 ft. At the Nevada Test Site, Sandia National Laboratories completed four additional coreholes for the Fluid Mechanics/ Proppant Transport Experiments.

None

1981-03-01T23:59:59.000Z

239

LANDFILL-GAS-TO-ENERGY PROJECTS: AN ANALYSIS OF NET PRIVATE AND SOCIAL BENEFITS  

E-Print Network [OSTI]

Materials Table A1: Model Results for West Lake Landfill WEST LAKE IC Engine Gas Turbine Steam Turbine Landfill WEST COUNTY IC Engine Gas Turbine Steam Turbine Average Landfill Gas Generation (mmcf/yr) 1,075 1,735 $1,250 Table A3: Model Results for Modern Landfill MODERN IC Engine Gas Turbine Steam Turbine Average

Jaramillo, Paulina

240

Unaccounted-for gas project. Leak Task Force. Volume 4. Final report  

SciTech Connect (OSTI)

The study was aimed at determining unaccounted-for (UAF) gas volumes resulting from operating Pacific Gas and Electric Co.'s transmission and distribution systems during 1987. The Leak Task Force quantified unintentional gas losses (leakage and dig-ins). Results show that 1987 gas leakage accounted for less than 5% of the operating UAF.

Cowgill, R.M.; Robertson, J.L.; Grinstead, J.R.; Luttrell, D.J.; Walden, E.R.

1990-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) Project Title: Exploring the petroleum potential of a frontier province: Cretaceous stratigraphy and  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) Project Title: Exploring Myanmar. It has been shown that gas and oil exists in the basin and that a considerable unconventional biogenic gas system exists in the deep-waters offshore. The sediments of the Rakhine Basin were deposited

Henderson, Gideon

242

Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion Project. Quarterly report, April--June 1996  

SciTech Connect (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived as streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed Include the integration of the particulate control devices into coal utilization systems, on-line cleaning, techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing, Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: 1 . Carbonizer/Pressurized Circulating, Fluidized Bed Gas Source; 2. Hot Gas Cleanup Units to mate to all gas streams; 3. Combustion Gas Turbine; 4. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during, this reporting period was continuing, the detailed design of the FW portion of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel is complete and the construction of steel for the coal preparation structure is complete.

NONE

1996-12-31T23:59:59.000Z

243

Gr\\"obner bases of ideals cogenerated by Pfaffians  

E-Print Network [OSTI]

We characterise the class of one-cogenerated Pfaffian ideals whose natural generators form a Gr\\"obner basis with respect to any anti-diagonal term-order. We describe their initial ideals as well as the associated simplicial complexes, which turn out to be shellable and thus Cohen-Macaulay. We also provide a formula for computing their multiplicity.

De Negri, Emanuela

2010-01-01T23:59:59.000Z

244

Final report for the ASC gas-powder two-phase flow modeling project AD2006-09.  

SciTech Connect (OSTI)

This report documents activities performed in FY2006 under the ''Gas-Powder Two-Phase Flow Modeling Project'', ASC project AD2006-09. Sandia has a need to understand phenomena related to the transport of powders in systems. This report documents a modeling strategy inspired by powder transport experiments conducted at Sandia in 2002. A baseline gas-powder two-phase flow model, developed under a companion PEM project and implemented into the Sierra code FUEGO, is presented and discussed here. This report also documents a number of computational tests that were conducted to evaluate the accuracy and robustness of the new model. Although considerable progress was made in implementing the complex two-phase flow model, this project has identified two important areas that need further attention. These include the need to compute robust compressible flow solutions for Mach numbers exceeding 0.35 and the need to improve conservation of mass for the powder phase. Recommendations for future work in the area of gas-powder two-phase flow are provided.

Evans, Gregory Herbert; Winters, William S.

2007-01-01T23:59:59.000Z

245

Thermionic-cogeneration-burner assessment study. Second quarterly technical progress report, January-March 1983  

SciTech Connect (OSTI)

The performance analysis work continued with the completion of the programming of the mathematical model and with the start of a series of parametric analyses. Initial studies predict that approximately 25 to 30% of the heat contained in the flue gas can be passed through the thermionic converters (TEC) and then be converted at 12 to 15% efficiency into electrical power. This results in up to 17 kWe per 1 million Btu/h burner firing rate. This is a 4 to 10 percent energy saving over power produced at the utility. The thermal burner design and construction have been completed, as well as initial testing on the furnace and preheat systems. The following industries are still considered viable options for use of the thermionic cogeneration burner: chlor-alkali, alumina-aluminum, copper refining, steel and gray iron, industries using resistance heating, electrolytic industries and electrochemical industries. Information gathered on these industries is presented.

Not Available

1983-01-01T23:59:59.000Z

246

Unaccounted-for gas project. Theft Task Force. Volume 3. Final report  

SciTech Connect (OSTI)

The study was aimed at determining unaccounted-for (UAF) gas volumes resulting from operating Pacific Gas and Electric Co.'s transmission and distribution systems during 1987. The Theft Task Force analyzed the percentage of customers involved in gas theft, the average annual volume of gas stolen by a single customer, and the total number of customers and their total gas usage. Results were used in conjunction with documented customer theft to arrive at a calculation that more accurately reflected the theft contribution to UAF for 1987.

Cima, K.M.; Cottengim, T.L.; Wong, R.M.; Cowgill, R.M.; Grinstead, J.R.

1990-06-01T23:59:59.000Z

247

Unaccounted-for gas project: Summary volume. Energy delivery and control. Final report  

SciTech Connect (OSTI)

The study was aimed at determining unaccounted-for (UAF) gas volumes resulting from operating Pacific Gas and Electric Co.'s transmission and distribution systems during 1987. The Theft Task Force analyzed the percentage of customers involved in gas theft, the average annual volume of gas stolen by a single customer, and the total number of customers and their total gas usage. Results were used in conjunction with documented customer theft to arrive at a calculation that more accurately reflected the theft contribution to UAF for 1987.

Cima, K.M.; Cottengim, T.L.; Wong, R.M.; Cowgill, R.M.; Grinstead, J.R.

1990-06-01T23:59:59.000Z

248

Review of the independent risk assessment of the proposed Cabrillo liquified natural gas deepwater port project.  

SciTech Connect (OSTI)

In March 2005, the United States Coast Guard requested that Sandia National Laboratories provide a technical review and evaluation of the appropriateness and completeness of models, assumptions, analyses, and risk management options presented in the Cabrillo Port LNG Deepwater Port Independent Risk Assessment-Revision 1 (Cabrillo Port IRA). The goal of Sandia's technical evaluation of the Cabrillo Port IRA was to assist the Coast Guard in ensuring that the hazards to the public and property from a potential LNG spill during transfer, storage, and regasification operations were appropriately evaluated and estimated. Sandia was asked to review and evaluate the Cabrillo Port IRA results relative to the risk and safety analysis framework developed in the recent Sandia report, ''Guidance on Risk Analysis and Safety Implications of a Large Liquefied Natural Gas (LNG) Spill over Water''. That report provides a framework for assessing hazards and identifying approaches to minimize the consequences to people and property from an LNG spill over water. This report summarizes the results of the Sandia review of the Cabrillo Port IRA and supporting analyses. Based on our initial review, additional threat and hazard analyses, consequence modeling, and process safety considerations were suggested. The additional analyses recommended were conducted by the Cabrillo Port IRA authors in cooperation with Sandia and a technical review panel composed of representatives from the Coast Guard and the California State Lands Commission. The results from the additional analyses improved the understanding and confidence in the potential hazards and consequences to people and property from the proposed Cabrillo Port LNG Deepwater Port Project. The results of the Sandia review, the additional analyses and evaluations conducted, and the resolutions of suggested changes for inclusion in a final Cabrillo Port IRA are summarized in this report.

Gritzo, Louis Alan; Hightower, Marion Michael; Covan, John Morgan; Luketa-Hanlin, Anay Josephine

2006-01-01T23:59:59.000Z

249

Conceptual design of a solar cogeneration facility at Pioneer Mill Co. , Ltd  

SciTech Connect (OSTI)

Results are reported of a conceptual design study of the retrofit of a solar central receiver system to an existing cogeneration facility at a Hawaii raw sugar factory. Background information on the site, the existing facility, and the project organization is given. Then the results are presented o the work to select the site specific configuration, including the working fluid, receiver concept, heliostat field site, and the determination of the solar facility size and of the role of thermal storage. The system selected would use water-steam as its working fluid in a twin-cavity receiver collecting sunlight from 41,420 m/sup 2/ of heliostat mirrors. The lates version of the system specification is appended, as are descriptions of work to measure site insolation and a site insolation mathematical model and interface data for the local utility. (LEW)

Not Available

1981-04-01T23:59:59.000Z

250

Clean Coal Technology III: 10 MW Demonstration of Gas Suspension Absorption final project performance and economics report  

SciTech Connect (OSTI)

The 10 MW Demonstration of the Gas Suspension Absorption (GSA) program is a government and industry co-funded technology development. The objective of the project is to demonstrate the performance of the GSA system in treating a 10 MW slipstream of flue gas resulting from the combustion of a high sulfur coal. This project involves design, fabrication, construction and testing of the GSA system. The Project Performance and Economics Report provides the nonproprietary information for the ``10 MW Demonstration of the Gas Suspension Absorption (GSA) Project`` installed at Tennessee Valley Authority`s (TVA) Shawnee Power Station, Center for Emissions Research (CER) at Paducah, Kentucky. The program demonstrated that the GSA flue-gas-desulfurization (FGD) technology is capable of achieving high SO{sub 2} removal efficiencies (greater than 90%), while maintaining particulate emissions below the New Source Performance Standards (NSPS), without any negative environmental impact (section 6). A 28-day test demonstrated the reliability and operability of the GSA system during continuous operation. The test results and detailed discussions of the test data can be obtained from TVA`s Final Report (Appendix A). The Air Toxics Report (Appendix B), prepared by Energy and Environmental Research Corporation (EERC) characterizes air toxic emissions of selected hazardous air pollutants (HAP) from the GSA process. The results of this testing show that the GSA system can substantially reduce the emission of these HAP. With its lower capital costs and maintenance costs (section 7), as compared to conventional semi-dry scrubbers, the GSA technology commands a high potential for further commercialization in the United States. For detailed information refer to The Economic Evaluation Report (Appendix C) prepared by Raytheon Engineers and Constructors.

Hsu, F.E.

1995-08-01T23:59:59.000Z

251

Cogeneration Plant is Designed for Total Energy  

E-Print Network [OSTI]

,000 1b/hr of 250-psig steam and 95,000 1b/hr of 300-psig steam to the ch10rine caustic process. The combined cycle plant configur ation shown in Figure 1 comprises: 1. Two.Genera1 Electric natural gas fired gas turbine-generators (GTG), with a size... depends on 271 ESL-IE-87-09-45 Proceedings from the Ninth Annual Industrial Energy Technology Conference, Houston, TX, September 16-18, 1987 two factors - ambient temperature and process steam demand. The gas turbines are operated at baseload, the HRSG...

Howell, H. D.; Vera, R. L.

252

STATE OF CALIFORNIA -NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

COGENERATION ) Order No. 12-0314-11 PROJECT ) ) ORDER APPROVING CROCKETT COGENERATION, ) Petition to Amend the Crockett A CALIFORNIA LIMITED ) Cogeneration Project to Allow PARTNERSHIP ) Installation of Electric Motor-Driven ) Natural Gas Compression Equipment On December 21, 2011, Crockett Cogeneration, a California Limited

253

Unaccounted-for gas project. Accounting Task Force. Volume 1. Energy delivery and control. Final report  

SciTech Connect (OSTI)

The study was conducted to determine unaccounted-for (UAF) gas volumes resulting from operating Pacific Gas and Electric (PG E) Co.'s transmission and distribution systems during 1987. The Accounting Task Force analyzed purchases and transport received, sales and transport delivered, interdepartmental sales, and gas department use to determine the effect on UAF. Findings show that accounting adjustments and cycle billing have a major impact on the 1987 operating UAF.

Luttrell, D.J.; Nelson, F.A.; Peterson, J.D.; Cowgill, R.M.; Waller, R.L.

1990-06-01T23:59:59.000Z

254

E-Print Network 3.0 - advanced technology cogeneration Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Operating Lease Services, Inc. and Simpson Paper Company. July 2, 1984. 6... of the California Cogeneration Council on Capacity Payments to Qualifying Facilities and Updating...

255

Small-scale biomass fueled cogeneration systems - A guidebook for general audiences  

SciTech Connect (OSTI)

What is cogeneration and how does it reduce costs? Cogeneration is the production of power -- and useful heat -- from the same fuel. In a typical biomass-fueled cogeneration plant, a steam turbine drives a generator, producing electricity. The plant uses steam from the turbine for heating, drying, or other uses. The benefits of cogeneration can mostly easily be seen through actual samples. For example, cogeneration fits well with the operation of sawmills. Sawmills can produce more steam from their waste wood than they need for drying lumber. Wood waste is a disposal problem unless the sawmill converts it to energy. The case studies in Section 8 illustrate some pluses and minuses of cogeneration. The electricity from the cogeneration plant can do more than meet the in-house requirements of the mill or manufacturing plant. PURPA -- the Public Utilities Regulatory Policies Act of 1978 -- allows a cogenerator to sell power to a utility and make money on the excess power it produces. It requires the utility to buy the power at a fair price -- the utility`s {open_quotes}avoided cost.{close_quotes} This can help make operation of a cogeneration plant practical.

Wiltsee, G.

1993-12-01T23:59:59.000Z

256

Unaccounted-for gas project. Measurement Task Force (orifice meter studies). Volume 2B. Final report  

SciTech Connect (OSTI)

The study was aimed at determining unaccounted-for (UAF) gas volumes resulting from operating Pacific Gas and Electric Co.'s transmission and distribution systems during 1987. Activities and methods are described and results are presented for research conducted on orifice meter accuracy. The Measurement Task Force determined that orifice metering inaccuracies were the largest single contributor to 1987 UAF.

Godkin, B.J.; Robertson, J.D.; Wlasenko, R.G.; Cowgill, R.M.; Grinstead, J.R.

1990-06-01T23:59:59.000Z

257

Demonstration projects for coalbed methane and Devonian shale gas: Final report. [None  

SciTech Connect (OSTI)

In 1979, the US Department of Energy provided the American Public Gas Association (APGA) with a grant to demonstrate the feasibility of bringing unconventional gas such as methane produced from coalbeds or Devonian Shale directly into publicly owned utility system distribution lines. In conjunction with this grant, a seven-year program was initiated where a total of sixteen wells were drilled for the purpose of providing this untapped resource to communities who distribute natural gas. While coalbed degasification ahead of coal mining was already a reality in several parts of the country, the APGA demonstration program was aimed at actual consumer use of the gas. Emphasis was therefore placed on degasification of coals with high methane gas content and on utilization of conventional oil field techniques. 13 figs.

Verrips, A.M.; Gustavson, J.B.

1987-04-01T23:59:59.000Z

258

773revision:2002-01-18modified:2002-01-19 Cotorsion theories cogenerated by 1-free abelian groups  

E-Print Network [OSTI]

773revision:2002-01-18modified:2002-01-19 Cotorsion theories cogenerated by 1-free abelian groups of the cotorsion class singly cogenerated by a torsion-free group G. Cotorsion theories were introduced by Salce

Shelah, Saharon

259

Optimum Operation of In-Plant Cogeneration Systems  

E-Print Network [OSTI]

which plant simulation model and a mathematical optimization package can determine the optimum settings for control variables of the power plant and eliminate uncertainties associated with achieving the minimum cost operation. TENSA Services.... The systems have been developed over a 20 year period culminating with real time data collection and performance monitoring and real time optimization for a variety of plants, including heat and power cogeneration plants. ICI has found that they have...

Craw, I. A.; Foster, D.; Reidy, K. D.

260

Optimizing Process Loads in Industrial Cogeneration Energy Systems  

E-Print Network [OSTI]

applied to power generation and industrial cogeneration are extended to solving this trigeneration problem where the optimum dispatch of the final load devices (i.e. compressors, fans, pumps, etc.) are an integral part of the total energy system...-04-29 Proceedings from the Seventeenth Industrial Energy Technology Conference, Houston, TX, April 5-6, 1995 optimum dispatch solutions, and an iterative simultaneous solution of the integrated system is required. The solution dependency arises when the end use...

Ahner, D. J.; Babson, P. E.

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The effect of cogeneration on system reliability indices  

E-Print Network [OSTI]

. Patton When cogeneration is operated in parallel with a utility's generating system the capacity requirements of the utility are reduced. Accurate evaluation of the reduced requirements is essential in order to determine the utility's avoided costs... rates used with the conventional four-state Markov models are investigated. The impact of modeling separate and distinct states for postponable outages as well as starting and running failures is numerically evaluated. A mean repair rate is derived...

Soethe, John Robert

1985-01-01T23:59:59.000Z

262

Lianyungang Baoxin Biomass Cogeneration Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster And Coolbaugh, 2007) Jump to:Baoxin Biomass Cogeneration Co Ltd

263

Energy Conservation Through Industrial Cogeneration Systems  

E-Print Network [OSTI]

illustrates potential savings. Assume that we have a business with a given thermal requirement. Assume further that it is possible to fill this requirement by recovering exhaust heat from a gas turbine which also powers an electric generator. Fuel....021 - 0.013 = 0.008 kWh ? Annual Saving/Kilowatt Installed = $72/kW CD Simple Payback: 266 --;- 72 = 3. 69 years @ Rate of Return = 15% Conclusion Solar has used gas turbine engines to provide site-generated electric power in almost every...

Solt, J. C.

1979-01-01T23:59:59.000Z

264

Energy & Environmental Benefits from Steam & Electricity Cogeneration  

E-Print Network [OSTI]

steam from two on-site powerhouses (one coal-fired and one natural gas-fired) and from gas-fired and waste heat boilers in its four hydrocarbon cracking plants. The challenge was to find a way to reduce costs and improve reliability of procuring and... the electricity required by TEX and sells excess power to wholesale customers in the region. It provides a large portion of TEX steam requirements, with sufficient reliability such that TEX decommissioned its coal-fired powerhouse and reduced operations...

Ratheal, R.

2004-01-01T23:59:59.000Z

265

814revision:2003-09-26modified:2003-09-29 ON THE COGENERATION OF COTORSION PAIRS  

E-Print Network [OSTI]

814revision:2003-09-26modified:2003-09-29 ON THE COGENERATION OF COTORSION PAIRS PAUL C. EKLOF modules, then C is cogenerated by a set. We show that () is the best result provable in ZFC in case R has a countable spectrum: the Uniformization Principle UP+ implies that C is not cogenerated by a set whenever C

Shelah, Saharon

266

FERC Order 636 spawns flurry of U. S. gas storage projects  

SciTech Connect (OSTI)

Precisely how storage utilization will affect U.S. gas markets is uncertain because many new players are offering storage services through mostly untested contractual arrangements. But a positive development is that available gas storage capacity in the U.S. is increasing. And that is due in large part to storage's relative value in markets taking on added luster as a result of Federal Energy Regulatory Commission Order 636, which takes effect Nov. 1. Order 636 in most cases ends interstate pipeline companies merchant functions, unbundles pipeline interstate gas transportation services and fees, and opens interstate transmission capacity to access by any qualified shipper on firm or interruptible basis. Interstate pipeline gas storage capacity is among the transportation services affected. As markets set values on controlling or aggregating gas supplies at given points on the U.S. interstate pipeline grid and on transporting those volumes to end use customers, storage will be valued according to its contribution in each supply chain. And because Order 636 allows storage to play a greater role in the supply chain, its value to producers, shippers, and consumers will grow as well. The paper discusses gas storage expansions, supply area storage, seasonal versus peak storage, salt cavern storage, storage service flexibility, and several specific storage facilities.

Not Available

1993-10-25T23:59:59.000Z

267

The Onsite Fuel Cell Cogeneration System  

E-Print Network [OSTI]

specifications. The thermal energy is used to maintain the operating temperature of the power plant components and to supply usable heat to the customer. Steam is recovered for use in the fuel-processing section. PARTICIPANTS' ACTIVITIES The gas 37...-grade heat up to 250 0 F. During the operation of each unit, detailed data collection allowed the comparison of measured to predicted efficiency. Using hourly simulations, these analyses indicated that 75 percent of the power plants met or exceeded...

Woods, R. R.; Cuttica, J. J.; Trimble, K. A.

268

High Btu gas from peat. A feasibility study. Part 2. Management plans for project continuation. Task 10. Final report  

SciTech Connect (OSTI)

The primary objective of this task, which was the responsibility of the Minnesota Gas Company, was to determine the needs of the project upon completion of the feasibility study and determine how to implement them most effectively. The findings of the study do not justify the construction of an 80 billion Btu/day SNG from peat plant. At the present time Minnegasco will concentrate on other issues of peat development. Other processes, other products, different scales of operation - these are the issues that Minnegasco will continue to study. 3 references.

Not Available

1982-01-01T23:59:59.000Z

269

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Evaluating the resilience of deepwater systems to recover from oil spills  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Evaluating the resilience of deepwater systems to recover from oil spills Host institution: Heriot-Watt University Gatliff (BGS), Jeffrey Polton (NOC), Alejandro Gallego and Eileen Bresnan (MSS). Project description: Oil

Henderson, Gideon

270

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Are non-marine organic-rich shales suitable exploration targets?  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Are non-marine organic-rich shales suitable exploration targets? (EARTH-15-SR2) Host institution: University of Oxford Supervisor 1: Stuart Robinson Supervisor 2: Steve Hesselbo (University of Exeter) Project description: Shales

Henderson, Gideon

271

Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification  

SciTech Connect (OSTI)

This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

None

1982-01-01T23:59:59.000Z

272

Active NOX Control of Cogen Gas Turbine Exhaust using a Nonlinear Feed Forward with Cascade Architecture  

E-Print Network [OSTI]

Active NOX Control of Cogen Gas Turbine Exhaust using a Nonlinear Feed Forward with Cascade control, cogeneration, gas turbine, model based control, feed forward, cascade ABSTRACT Presented is a model based strategy for controlling the NOX concentration of natural gas turbine emissions

Cooper, Doug

273

Cogeneration and community design: performance based model for optimization of the design of U.S. residential communities utilizing cogeneration systems in cold climates  

E-Print Network [OSTI]

typology, 5) envelope and building systems' efficiencies, 6) renewable energy utilization, 7) cogeneration system type, 8) size, and 9) operation strategy. Based on this, combinations of design characteristics achieving an optimum system performance were...

Rashed Ali Atta, Hazem Mohamed

2009-06-02T23:59:59.000Z

274

Gas Turbine Fired Heater Integration: Achieve Significant Energy Savings  

E-Print Network [OSTI]

GAS TURBINE FIRED HEATER INTEGRATION: ACHIEVE SIGNIFICANT ENERGY SAVINGS G. Iaquaniello**, P. Pietrogrande* *KTI Corp., Research and Development Division, Monrovia, California **KTI SpA, Rome, Italy ABSTRAer Faster payout will result if gas... as in steam turbines. A specific example of how cogeneration can work in this way is in the integration of a gas turbine with a fired heater as shown in Figure 2. Electrical or mechanical power is delivered by the gas turbine while the exhaust combustion...

Iaquaniello, G.; Pietrogrande, P.

275

Response to Comment on "Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power"  

E-Print Network [OSTI]

Response to Comment on "Prevented Mortality and Greenhouse Gas Emissions from Historical, and properly (sustain- ably) designed biomass energy (e.g., see ref 3). This is rooted in the fact that wind production by 2022 following Japan's Fukushima nuclear accident. Despite a major, laudable expansion of wind

276

Model of penetration of coal boilers and cogeneration in the paper industry  

SciTech Connect (OSTI)

A model has been developed to forecast the penetration of coal boilers and cogeneration of electricity in the paper industry. Given the demand for energy services (process steam and electricity) by the paper industry, the Penetration Model forecasts the demand for purchased fuel and electricity. The model splits the demand for energy service between energy carriers (coal, fuel oil/natural gas, bark, and spent liquor) on the basis of the installed capacity of 16 types of boilers (combinations of four types of energy carriers and four types of throttle conditions). Investment in new boilers is allocated by an empirical distribution function among the 16 types of boilers on the basis of life cycle cost. In the short run (5 years), the Penetration Model has a small price response. The model has a large price response in the long run (30 years). For constant fuel prices, the model forecasts a 19-percent share for coal and a 65-percent share for residual oil in the year 2000. If the real price of oil and gas doubles by the year 2000, the model forecasts a 68-percent share for coal and a 26-percent share for residual oil.

Reister, D.B.

1982-01-01T23:59:59.000Z

277

Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant  

SciTech Connect (OSTI)

Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok [Engineering Center of the Ural Power Industry (Russian Federation)

2007-01-15T23:59:59.000Z

278

Spatiotemporal evolution of dielectric driven cogenerated dust density waves  

SciTech Connect (OSTI)

An experimental observation of spatiotemporal evolution of dust density waves (DDWs) in cogenerated dusty plasma in the presence of modified field induced by glass plate is reported. Various DDWs, such as vertical, oblique, and stationary, were detected simultaneously for the first time. Evolution of spatiotemporal complexity like bifurcation in propagating wavefronts is also observed. As dust concentration reaches extremely high value, the DDW collapses. Also, the oblique and nonpropagating mode vanishes when we increase the number of glass plates, while dust particles were trapped above each glass plates showing only vertical DDWs.

Sarkar, Sanjib; Bose, M. [Department of Physics, Jadavpur University, Kolkata 700032 (India)] [Department of Physics, Jadavpur University, Kolkata 700032 (India); Mukherjee, S. [FCIPT, Institute for Plasma Research, Gandhinagar 382428 (India)] [FCIPT, Institute for Plasma Research, Gandhinagar 382428 (India); Pramanik, J. [Kharagpur College, Kharagpur 721305, West Bengal (India)] [Kharagpur College, Kharagpur 721305, West Bengal (India)

2013-06-15T23:59:59.000Z

279

Study of the 1991 unaccounted-for gas volume at the Southern California Gas Company. Final report, January 1991-December 1992. Volume 1. Project summary  

SciTech Connect (OSTI)

A study of unaccounted-for gas (UAF), performed by the Southern California Gas Company (SoCalGas) to determine the UAF gas volume in the SoCalGas system, to identify the factors contributing to UAF, and to estimate the gas volume associated with each factor, is described. It was found that measurement-related effects contributed more than 80% of SoCalGas' 1991 UAF volume. Less than 3% is associated with adjustments to SoCalGas' accounting system, and approximately 6% is associated with losses due to theft. Testing showed that the leakage element contributed only 8% of the UAF volume.

Meshkati, S.; Groot, J.; Law, E.; Ozenne, D.

1993-01-01T23:59:59.000Z

280

Engineering/design of a co-generation waste-to-energy facility  

SciTech Connect (OSTI)

Five hundred fifteen thousand tons of Municipal Solid Waste (MSW) is being generated every day in America. At present 68% of this trash is dumped into landfill operations. As the amount of garbage is increasing daily, the amount of land reserved for landfills is diminishing rapidly. With the sentiment of the public that you produce it, you keep it, the import-export of waste between the counties and states for the landfills, no longer appears to be feasible, especially when combined with expensive disposal costs. One method of reducing the quantity of waste sent to landfills is through the use of waste-to-energy facilities - the technology of resource recovery - the technology of today INCINERATION. All cogeneration projects are not alike. This paper examines several aspects of the electrical system of a particular municipal solid waste-to-energy project at Charleston, S.C. which includes plant auxiliary loads as well as a utility interconnection through a step-up transformer.

Bajaj, K.S.; Virgilio, R.J. (Foster Wheeler USA Corp., Clinton, NJ (United States))

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Projecting  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural Gas PipelinesBiodiesel30, to19571,157 608,520 576,194

282

Table 7a. Natural Gas Price, Electric Power Sector, Actual vs. Projected  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary:Principal shale gas:: Crude:a.

283

Table 7b. Natural Gas Price, Electric Power Sector, Actual vs. Projected  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary:Principal shale gas::

284

Memphis Light, Gas and Water Division Smart Grid Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanosElectric Co LtdJacksonLakeInformation Gas

285

DOE - Office of Legacy Management -- Project Gas Buggy Site - NM 14  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborne Co -0-19Gas Buggy Site - NM 14

286

The growth of a C_0-semigroup characterised by its cogenerator  

E-Print Network [OSTI]

We characterise contractivity, boundedness and polynomial boundedness for a C_0-semigroup on a Banach space in terms of its cogenerator V (or the Cayley transform of the generator) or its resolvent. In particular, we extend results of Gomilko and Brenner, Thomee and show that polynomial boundedness of a semigroup implies polynomial boundedness of its cogenerator. As is shown by an example, the result is optimal. For analytic semigroups we show that the converse holds, i.e., polynomial boundedness of the cogenerators implies polynomial boundedness of the semigroup. In addition, we show by simple examples in (C^2,\\|\\cdot\\|_p), p \

Eisner, Tanja

2008-01-01T23:59:59.000Z

287

Solar cogeneration: Cimarron River station, Central Telephone and Utilities-Western Power  

SciTech Connect (OSTI)

The site-specific conceptual design progress is described for a solar central receiver cogeneration facility at a Kansas utility. The process is described which led to the selection of the preferred solar cogeneration facility. The status of the conceptual design is presented. The evaluation of system performance is described. A test program is described that is to determine the magnitude of impact that local environmental factors have on collector system performance and to measure the direct normal insolation at the cogeneration facility site. The system specification is appended. (LEW)

Harder, J.E.

1981-04-01T23:59:59.000Z

288

Screening Assessment of Potential Human-Health Risk from Future Natural-Gas Drilling Near Project Rulison in Western Colorado  

SciTech Connect (OSTI)

The Project Rulison underground nuclear test was conducted in 1969 at a depth of 8,400 ft in the Williams Fork Formation of the Piceance Basin, west-central Colorado (Figure 1). The U.S. Department of Energy Office of Legacy Management (LM) is the steward of the site. Their management is guided by data collected from past site investigations and current monitoring, and by the results of calculations of expected behavior of contaminants remaining in the deep subsurface. The purpose of this screening risk assessment is to evaluate possible health risks from current and future exposure to Rulison contaminants so the information can be factored into LM's stewardship decisions. For example, these risk assessment results can inform decisions regarding institutional controls at the site and appropriate monitoring of nearby natural-gas extraction activities. Specifically, the screening risk analysis can provide guidance for setting appropriate action levels for contaminant monitoring to ensure protection of human health.

Daniels Jeffrey I.,Chapman Jenny B.

2012-01-01T23:59:59.000Z

289

Feasibility study: fuel cell cogeneration in a water pollution control facility. Final report  

SciTech Connect (OSTI)

A conceptual design study was conducted to investigate the technical and economic feasibility of a cogeneration fuel cell power plant operating in a large water pollution control facility. The fuel cell power plant would use methane-rich digester gas from the water pollution control facility as a fuel feedstock to provide electrical and thermal energy. Several design configurations were evaluated. These configurations were comprised of combinations of options for locating the fuel cell power plant at the site, electrically connecting it with the water pollution control facility, using the rejected power plant heat, supplying fuel to the power plant, and for ownership and operation. A configuration was selected which met institutional/regulatory constraints and provided a net cost savings to the industry and the electric utility. This volume of the report contains the appendices: (A) abbreviations and definitions, glossary; (B) 4.5 MWe utility demonstrator power plant study information; (C) rejected heat utilization; (D) availability; (E) conceptual design specifications; (F) details of the economic analysis; (G) detailed description of the selected configuration; and (H) fuel cell power plant penetration analysis. (WHK)

Not Available

1980-02-01T23:59:59.000Z

290

Energy recovery and cogeneration from an existing municipal incinerator: Phase IIA progress report on final design  

SciTech Connect (OSTI)

A feasibility study was prepared on energy recovery and cogeneration from and existing municipal incinerator in Wayne County, Michigan. The mechanical, electrical, structural, and instruments an controls equipment designs were established in sufficient depth to arrive at a construction cost estimate. The designs are described. All of the flue gas generated from each incinerator is directed into a waste heat boiler that will generate steam. A waste heat boiler will be provided for each of the three incinerators. Steam from these waste heat boilers will supply energy to two turbine-generators, which, in turn, will supply auxiliary power to the incinerator plant; the balance of the power will be sold to Detroit Edison Company (DEC). Exhaust steam from each turbine will be directed into a surface condenser operating under vacuum. The water to be supplied to each condenser will be recirculated water that has been cooled by means of a cooling tower. Other cooling water that could be subjected to oil contamination will be supplied from a separate recirculating water system. The water in this system will be cooled by an evaporative condenser. The main steam, boiler feedwater, and condensate systems will be similar to those used in central power stations. Flow diagrams for all systems, together with heat balances, electrical one-line diagrams, and plant layouts, are included in the Appendix. Also included in the Appendix are instruments and controls logic diagrams. (MCW)

Not Available

1982-02-01T23:59:59.000Z

291

Air-blown Integrated Gasification Combined Cycle demonstration project  

SciTech Connect (OSTI)

Clean Power Cogeneration, Inc. (CPC) has requested financial assistance from DOE for the design construction, and operation of a normal 1270 ton-per-day (120-MWe), air-blown integrated gasification combined-cycle (IGCC) demonstration plant. The demonstration plant would produce both power for the utility grid and steam for a nearby industrial user. The objective of the proposed project is to demonstrate air-blown, fixed-bed Integrated Gasification Combined Cycle (IGCC) technology. The integrated performance to be demonstrated will involve all the subsystems in the air-blown IGCC system to include coal feeding; a pressurized air-blown, fixed-bed gasifier capable of utilizing caking coal; a hot gas conditioning systems for removing sulfur compounds, particulates, and other contaminants as necessary to meet environmental and combustion turbine fuel requirements; a conventional combustion turbine appropriately modified to utilize low-Btu coal gas as fuel; a briquetting system for improved coal feed performance; the heat recovery steam generation system appropriately modified to accept a NO{sub x} reduction system such as the selective catalytic reduction process; the steam cycle; the IGCC control systems; and the balance of plant. The base feed stock for the project is an Illinois Basin bituminous high-sulfur coal, which is a moderately caking coal. 5 figs., 1 tab.

Not Available

1991-01-01T23:59:59.000Z

292

Simulation and optimization of cogeneration power plant operation using an Energy Optimization Program  

E-Print Network [OSTI]

The operation of a combined cycle cogeneration power plant system is complicated because of the complex interactions among components as well as the dynamic nature of the system. Studies of plant operation through experiments in such a sensitive...

Zhou, Jijun

2001-01-01T23:59:59.000Z

293

Electric utility forecasting of customer cogeneration and the influence of special rates  

E-Print Network [OSTI]

Cogeneration, or the simultaneous production of heat and electric or mechanical power, emerged as one of the main components of the energy conservation strategies in the past decade. Special tax treatment, exemptions from ...

Pickel, Frederick H.

1979-01-01T23:59:59.000Z

294

Energy Value vs. Energy Cost: A Fundamental Concept of Economics Applied to Cogeneration  

E-Print Network [OSTI]

fraction. The importance of the distinction is discussed, and a technique for accurate determination of the two factors is described. Specific examples involving cogeneration in an industrial steam power system will be presented. This will include...

Viar, W. L.

1983-01-01T23:59:59.000Z

295

Cogeneration Energy Profitability from the Energy User and Third-Party Viewpoint  

E-Print Network [OSTI]

This paper describes the relationship between major energy costs such as: fuel, electricity, and thermal energy and their effect on cogeneration profits and economics from both the energy user and the third party perspective. The relationship...

Polsky, M. P.

1984-01-01T23:59:59.000Z

296

Evaluation and Design of Utility Co-Owned Cogeneration Systems for Industrial Parks  

E-Print Network [OSTI]

The Electric Power Research Institute, EPRI, is currently evaluating the potential of utility co-owned cogeneration facilities in industrial parks. This paper describes part of the work performed by one of EPRI's contractors, Impell Corporation...

Hu, D. S.; Tamaro, R. F.; Schiller, S. R.

1984-01-01T23:59:59.000Z

297

Simplified thermoeconomic approach to cost allocation in acombined cycle cogeneration and district energy system  

E-Print Network [OSTI]

of the requirements for the degree of MASTER OF SCIENCE May 1997 Major Subject: Mechanical Engineering SIMPLIFIED THERMOECONOMIC APPROACH TO COST ALLOCATION IN A COMBINED CYCLE COGENERATION AND DISTRICT ENERGY SYSTEM A Thesis By JASON GRAHAM FLEMING... (Member) Jerald Caton (Head of Department) May 1997 lviajor Sui&ject: lviechanical Engineering ABSTRACT Simplified Thermoeconomic Approach to Cost Allocation in a Combined Cycle Cogeneration and District Energy System. (May 1997) Jason Graham...

Fleming, Jason Graham

1997-01-01T23:59:59.000Z

298

Marginal Cost of Steam and Power from Cogeneration Systems Using a Rational Value-Allocation Procedure  

E-Print Network [OSTI]

-Gwaiz, BS EE Energy Conservation Engineer Saudi Aramco, Ras Tanura, Saudi Arabia majid.gwaiz@aramco.com ABSTRACT The problem of pricing steam and power from cogeneration systems has confounded engineers, economists, and accountants for a very... MARGINAL COST OF STEAM AND POWER FROM COGENERATION SYSTEMS USING A RATIONAL VALUE-ALLOCATION PROCEDURE Jimmy D Kumana, MS ChE Energy Conservation Specialist Saudi Aramco, Dhahran, Saudi Arabia jimmy.kumana@aramco.com Majid M Al...

Kumana, J. D.; Al-Gwaiz, M. M.

2004-01-01T23:59:59.000Z

299

Ceramic stationary gas turbine development. Final report, Phase 1  

SciTech Connect (OSTI)

This report summarizes work performed by Solar Turbines Inc. and its subcontractors during the period September 25, 1992 through April 30, 1993. The objective of the work is to improve the performance of stationary gas turbines in cogeneration through implementation of selected ceramic components.

NONE

1994-09-01T23:59:59.000Z

300

Ceramic Stationary Gas Turbine Development. Technical progress report, April 1, 1993--October 31, 1994  

SciTech Connect (OSTI)

This report summarizes work performed by Solar Technologies Inc. and its subcontractors, during the period April 1, 1993 through October 31, 1994 under Phase II of the DOE Ceramic Stationary Gas Turbine Development program. The objective of the program is to improve the performance of stationary gas turbines in cogeneration through the implementation of selected ceramic components.

NONE

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect (OSTI)

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

Unknown

2003-01-01T23:59:59.000Z

302

Analysis of Homogeneous Charge Compression Ignition (HCCI) Engines for Cogeneration Applications  

SciTech Connect (OSTI)

This paper presents an evaluation of the applicability of Homogeneous Charge Compression Ignition Engines (HCCI) for small-scale cogeneration (less than 1 MWe) in comparison to five previously analyzed prime movers. The five comparator prime movers include stoichiometric spark-ignited (SI) engines, lean burn SI engines, diesel engines, microturbines and fuel cells. The investigated option, HCCI engines, is a relatively new type of engine that has some fundamental differences with respect to other prime movers. Here, the prime movers are compared by calculating electric and heating efficiency, fuel consumption, nitrogen oxide (NOx) emissions and capital and fuel cost. Two cases are analyzed. In Case 1, the cogeneration facility requires combined power and heating. In Case 2, the requirement is for power and chilling. The results show that the HCCI engines closely approach the very high fuel utilization efficiency of diesel engines without the high emissions of NOx and the expensive diesel fuel. HCCI engines offer a new alternative for cogeneration that provides a unique combination of low cost, high efficiency, low emissions and flexibility in operating temperatures that can be optimally tuned for cogeneration systems. HCCI engines are the most efficient technology that meets the oncoming 2007 CARB NOx standards for cogeneration engines. The HCCI engine appears to be a good option for cogeneration systems and merits more detailed analysis and experimental demonstration.

Aceves, S; Martinez-Frias, J; Reistad, G

2004-04-30T23:59:59.000Z

303

Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming  

SciTech Connect (OSTI)

Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

Not Available

1982-01-01T23:59:59.000Z

304

Numerical-model developments for stimulation technologies in the Eastern Gas Shales Project  

SciTech Connect (OSTI)

These efforts were directed towards the development of a numerical tensile failure model that could be used to make a parameter sensitivity study of the EGSP wellbore stimulation methods for gas recovery in Devonain shales, calculations were performed using the NTS Multi-Frac Mineback Experiments as the geometry, boundary conditions and material properties of the models. Several major accomplishments were achieved during this task. These include: development of a Crack and Void Strain (CAVS) tensile failure model for one-dimensional fracture analysis using the one-dimensional geometries available in SAI's STEALTH 1-D finite-difference code; modification of the original CAVS tensile failure criteria to improve its representation of multiple fracture development by introducing a logic that adjusts the material's tensile strength (both for crack initiation and crack propagation) according to the degree of cracking that has occurred; adding a submodel to CAVS to allow for cracking propping when a crack is reclosed and to require energy to be expanded during this process; adding a submodel to CAVS to allow for crack pressurization when a crack void strain is in communication with the fluid pressure of the borehole; and performing a parameter sensitivity analysis to determine the effect that the material properties of the rock has on crack development, to include the effects of yielding and compaction. Using the CAVS model and its submodels, a series of STEALTH calculations were then performed to estimate the response of the NTS unaugmented Dynafrac experiment. Pressure, acceleration and stress time histories and snapshot data were obtained and should aid in the evaluation of these experiments. Crack patterns around the borehole were also calculated and should be valuable in a comparison with the fracture patterns observed during mineback.

Barbour, T.G.; Maxwell, D.E.; Young, C.

1980-01-01T23:59:59.000Z

305

Coal and Co-generation at a Petro-Chemical Complex  

E-Print Network [OSTI]

Celanese Chemical Company, Inc. is converting from natural gas to coal as boiler fuel at its petrochemical plant in the Texas Panhandle. Coincident with that fuel conversion is a project in conjunction with Southwestern Public Service Company. High...

Turek, P.; Gibson, G. L.

1979-01-01T23:59:59.000Z

306

Combustion converter development for topping and cogeneration applications  

SciTech Connect (OSTI)

This paper discusses the development of combustion-heated thermionic converters. Combustion applications pose a materials problem that does not exist for thermionic converters used in the vacuum of outer space. The high-temperature components of a thermionic converter must be protected from the oxidizing terrestrial environment. A layer of silicon carbide provides the most satisfactory protective coating, or ''hot shell,'' for the emitter and lead of a combustion-heated thermionic converter. Four areas of work aimed at developing combustion heated thermionic converters will be discussed: improving the performance of the two-inch torispherical converter, modifications to the converter so that it may be used in multi-converter modules, the construction of a thermionic cogeneration test furnace, and a converter life test in an oil-fired furnace.

Goodale, D.; Lieb, D.; Miskolczy, G.; Moffat, A.

1983-08-01T23:59:59.000Z

307

An Assessment of Industrial Cogeneration Potential in Pennsylvania  

E-Print Network [OSTI]

as news items in energy related publications. Telephone and mail contacts with 95 industrial plant, institution, and building opera tors identified 41 cogeneration facilities in Pennsylvania. Of these, 32 are in industrial facilities and have... 1995 6.71 16.82 20.65 22.29 2.048 2000 8.93 22.19 28.42 30.67 2.697 2005 11. 82 29.11 38.90 42.02 3.526 2010 15.64 38.18 53.25 57.47 4.614 2015 20.70 50.09 72.89 78.71 6.038 2020 27.40 65.70 99.78 107.80 7.901 *Forecast of Fuel and Electricity...

Hinkle, B. K.; Qasim, S.; Ludwig, E. V., Jr.

1983-01-01T23:59:59.000Z

308

Assessment of the possibilities of electricity and heat co-generation from biomass in Romania's case  

SciTech Connect (OSTI)

This paper examines the use of biomass for electricity (and heat) production. The objectives of the works developed by RENEL--GSCI were to determine the Romanian potential biomass resources available in economic conditions for electricity production from biomass, to review the routes and the available equipment for power generation from biomass, to carry out a techno-economic assessment of different systems for electricity production from biomass, to identify the most suitable system for electricity and heat cogeneration from biomass, to carry out a detailed techno-economic assessment of the selected system, to perform an environmental impact assessment of the selected system and to propose a demonstration project. RENEL--GSCI (former ICEMENERG) has carried out an assessment concerning Romania's biomass potential taking into account the forestry and wood processing wastes (in the near term) and agricultural wastes (in mid term) as well as managing plantations (in the long term). Comparative techno-economical evaluation of biomass based systems for decentralized power generation was made. The cost analysis of electricity produced from biomass has indicated that the system based on boiler and steam turbine of 2,000 kW running on wood-wastes is the most economical. A location for a demonstration project with low cost financing possibilities and maximum benefits was searched. To mitigate the electricity cost it was necessary to find a location in which the fuel price is quite low, so that the low yield of small installation can be balanced. In order to demonstrate the performances of a system which uses biomass for electricity and heat generation, a pulp and paper mill which needed electricity and heat, and, had large amount of wood wastes from industrial process was found as the most suitable location. A technical and economical analysis for 8 systems for electricity production from bark and wood waste was performed.

Matei, M.

1998-07-01T23:59:59.000Z

309

The ATLAS 3D project - XVI. Physical parameters and spectral line energy distributions of the molecular gas in gas-rich early-type galaxies  

E-Print Network [OSTI]

[Abridged] We present a detailed study of the physical properties of the molecular gas in a sample of 18 molecular gas-rich early-type galaxies (ETGs) from the ATLAS$ 3D sample. Our goal is to better understand the star formation processes occurring in those galaxies, starting here with the dense star-forming gas. We use existing integrated $^{12}$CO(1-0, 2-1), $^{13}$CO(1-0, 2-1), HCN(1-0) and HCO$^{+}$(1-0) observations and present new $^{12}$CO(3-2) single-dish data. From these, we derive for the first time the average kinetic temperature, H$_{2}$ volume density and column density of the emitting gas, this using a non-LTE theoretical model. Since the CO lines trace different physical conditions than of those the HCN and HCO$^{+}$ lines, the two sets of lines are treated separately. We also compare for the first time the predicted CO spectral line energy distributions (SLEDs) and gas properties of our molecular gas-rich ETGs with those of a sample of nearby well-studied disc galaxies. The gas excitation con...

Bayet, Estelle; Davis, Timothy A; Young, Lisa M; Crocker, Alison F; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Cappellari, Michele; Davies, Roger L; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovi?, Davor; Kuntschner, Harald; McDermid, Richard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie

2012-01-01T23:59:59.000Z

310

Gas Turbine Considerations in the Pulp and Paper Industry  

E-Print Network [OSTI]

GAS TURBINE CONSIDERATIONS IN THlI: PULP AND PAPER INDUSTRY J. Steven Anderson, Ph.D. Director-Energy International Paper Company Purchase, NY INTRODUCTION The pulp and paper industry is one of the largest users of energy... for the coming century. The industry has also become aware that gas turbine-based cogeneration systems can frequently be highly desirable relative to their tra ditional steam turbine approach. BACKGROUND The pulp and paper industry ranks as the fourth...

Anderson, J. S.; Kovacik, J. M.

311

STATE OF CALIFORNIA NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor DATE: March 25, 2013  

E-Print Network [OSTI]

TO: Interested Parties FROM: Craig Hoffman, Compliance Project Manager SUBJECT: GILROY COGENERATION a revised petition with the California Energy Commission requesting to modify the Gilroy Cogeneration the district. The Gilroy Cogeneration Project is a 115-megawatt, natural gas-fired power plant located

312

Thailand's downstream projects proliferate  

SciTech Connect (OSTI)

Thailand continues to press expansion and modernization of its downstream sector. Among recent developments: Construction of an olefins unit at Thailand's second major petrochemical complex and a worldscale aromatics unit in Thailand is threatened by rising costs. Thailand's National Petrochemical Corp (NPC) let a 9 billion yen contract to Mitsui Engineering and Shipbuilding Co. and C. Itoh and Co. for a dual fuel cogeneration power plant at its Mab Ta Phud, Rayong province, petrochemical complex. Financing is in place to flash a green light for a $530 million Belgian-Thai joint venture sponsoring a worldscale polyvinyl chloride/vinyl chloride monomer plant in Thailand. Work is more than 50% complete on the $345 million second phase expansion of Thai Oil's Sri Racha refinery in Chon Buri province. Petroleum Authority of Thailand (PTT) endorsed a plan to install two more natural gas processing plants in Thailand to meet rapidly growing domestic demand for petroleum gas.

Not Available

1991-06-03T23:59:59.000Z

313

Proposal of a novel multifunctional energy system for cogeneration of coke, hydrogen, and power - article no. 052001  

SciTech Connect (OSTI)

This paper proposes a novel multifunctional energy system (MES), which cogenerates coke, hydrogen, and power, through the use of coal and coke oven gas (COG). In this system, a new type of coke oven, firing coal instead of COG as heating resource for coking, is adopted. The COG rich in H{sub 2} is sent to a pressure swing adsorption (PSA) unit to separate about 80% of hydrogen first, and then the PSA purge gas is fed to a combined cycle as fuel. The new system combines the chemical processes and power generation system, along with the integration of chemical conversion and thermal energy utilization. In this manner, both the chemical energy of fuel and thermal energy can be used more effectively. With the same inputs of fuel and the same output of coking heat, the new system can produce about 65% more hydrogen than that of individual systems. As a result, the thermal efficiency of the new system is about 70%, and the exergy efficiency is about 66%. Compared with individual systems, the primary energy saving ratio can reach as high as 12.5%. Based on the graphical exergy analyses, we disclose that the integration of synthetic utilization of COG and coal plays a significant role in decreasing the exergy destruction of the MES system. The promising results obtained may lead to a clean coal technology that will utilize COG and coal more efficiently and economically.

Jin, H.G.; Sun, S.; Han, W.; Gao, L. [Chinese Academy of Sciences, Beijing (China)

2009-09-15T23:59:59.000Z

314

Cogeneration System Analysis Summary Reports for Texas Woman’s University, Denton, Texas  

E-Print Network [OSTI]

plant. A Cogeneration analysis computer program called CELCAP was obtained from the Navy's Civil Engineering Laboratory. Hourly steam loads as well as hourly electrical loads were required to optimize the Cogeneration system. Other information required... Turbine Engine Systems 8 1.4 Back Pressure Steam Turbine Systems 8 1.5 Automatic Extraction Steam Turbine Systems 9 1.6 Bidding Information 11 2.0 Description of Institution 2.1 Campus Description .. 15 2.2 Description of Thermal Plant 15 2.3 Utility...

Turner, W. D.; Murphy, W. E.; Hartman, R.; Heffington, W. M.; Bolander, J. N.; Propp, A. D.

1985-01-01T23:59:59.000Z

315

Developing a gas purchasing strategy using a linear model  

SciTech Connect (OSTI)

This paper outlines the process of developing a gas purchasing strategy with the use of a linear programming model. The linear model is used to determine the least cost approach regarding the acquisition of natural gas which has a considerable impact on the company`s financial performance. The author discusses the importance of optimizing gas costs from an end-user`s perspective. The Midland Cogeneration Venture (MCV) is the country`s largest cogeneration facility. The Facility has been certified by FERC (Federal Energy Regulatory Commission) as a Q.F. (Qualifying Facility) under PURPA (Public Utility Regulatory Policies Act of 1978). Unlike utilities, who have the ability to pass costs through to customers, MCV`s revenues are based on long-term contracts with its utility and industrial customers. Therefore, MCV cannot pass costs through to its customers. As such, effectively managing costs is vital to the success of the company.

Alst, K.M. Van [Midland Cogeneration Venture Limited Partnership, Midland, MI (United States)

1995-12-31T23:59:59.000Z

316

Compressor and Hot Section Fouling in Gas Turbines- Causes and Effects  

E-Print Network [OSTI]

COMPRESSOR AND BOT SECTION FOOLING IN GAS TURBINES - CAUSES AND EPFECTS CYRUS B. MEHER-HOMJI Manager, Advanced Technology Boyce Engineering International, Inc. Houston, Texas ABSTRACT The fouling of axial flow compressors and turbines is a... serious operating problem in gas turbine eng ines. These prime movers are being increasingly used in cogeneration applications and with the large air mass flow rate (e.g. 633 Lbs/Sec for a 80 MWe gas turbine) foulants even in the ppm range can cause...

Meher-Homji, C. B.

317

Decentralized electricity, cogeneration, and conservation options. [Conference paper  

SciTech Connect (OSTI)

An early evaluation o the Home Insulation Program indicates that it is possible to carry on major conservation programs that result in a substantial saving to Tennessee Valley Authority (TVA) customers both from reduced electric bills and from reduction in electric system cost. The evidence from the TVA program strongly indicates that many utilities could realize benefits for themselves and their customers by implementing a comprehensive program for decentralized electricity, load management, cogeneration, and conservation. Of course, any financial benefit to the utility would be contingent on the treatment of costs associated with these programs on the balance sheet, on the income statement, and in allowable rate of return calculations. In particular, utility financing of customer installation of energy conservation and renewable energy systems must be treated in a manner that allows the utility to earn an acceptable rate of return. The Pacific Power and Light (PPL) Residential Energy Efficiency Rider is an example of how this can be handled. The program is beneficial to the utility because the entire cost of the weatherization measure can be added to the rate base with the customer paying the carrying charges on the capital. The customer benefits from the borrowing at the utility's cost of capital until the time of sale, at which time the value of the improvements is realized as a higher sale price for the house. While the value of such programs must be calculated on an individual basis, the authors feel that many utilities, particularly those that are in a position that makes it difficult to add new conventional capacity, could profit from the implementation of these programs. 1 reference, 2 figures, 6 tables.

Hemphill, R.F. Jr.; Maguire, M.J.

1980-01-01T23:59:59.000Z

318

Global dimensions of endomorphism algebras for generator-cogenerators over $m$-replicated algebras  

E-Print Network [OSTI]

Let $A$ be a finite dimensional hereditary algebra over a field $k$ and $A^{(m)}$ be the $m$-replicated algebra of $A$. We investigate the possibilities for the global dimensions of the endomorphism algebras of generator-cogenerators over $m$-replicated algebra $A^{(m)}$.

Lv, Hongbo

2008-01-01T23:59:59.000Z

319

EIS-0221: Proposed York County Energy Partners Cogeneration Facility, York County, PA  

Broader source: Energy.gov [DOE]

The Department of Energy prepared this environmental impact statement to assess the environmental and human health impacts associated with construction and operation of the York County Energy Partners, L.P. Cogeneration Facility on a 38- acre parcel in North Codorus Township, York County, Pennsylvania.

320

Biomass cogeneration, Port Townsend, Washington Study by Honors 220c, Energy & Environment,  

E-Print Network [OSTI]

Biomass cogeneration, Port Townsend, Washington Study by Honors 220c, Energy & Environment, Humans Townsend Biomass Power Plant When considering the slash sources that will be used to fuel the Port Townsend from the current 84,000 dry tons to 184,000 dry tons with the new biomass plant addition (Wise, 2012

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

External review of the thermal energy storage (TES) cogeneration study assumptions. Final report  

SciTech Connect (OSTI)

This report is to provide a detailed review of the basic assumptions made in the design, sizing, performance, and economic models used in the thermal energy storage (TES)/cogeneration feasibility studies conducted by Pacific Northwest Laboratory (PNL) staff. This report is the deliverable required under the contract.

Lai, B.Y.; Poirier, R.N. [Chicago Bridge and Iron Technical Services Co., Plainfield, IL (United States)

1996-08-01T23:59:59.000Z

322

Guideline for implementing Co-generation based on Biomass waste from  

E-Print Network [OSTI]

Guideline for implementing Co-generation based on Biomass waste from Thai Industries - through-generation based on Biomass waste from Thai Industries - through implementation and organisation of Industrial biomasse ressourcer fra det omkringliggende nærområde kan erhverves, og hvilke der er interessante

323

MODELLING AND CONTROL OF CO-GENERATION POWER PLANTS UNDER CONSIDERATION OF  

E-Print Network [OSTI]

MODELLING AND CONTROL OF CO-GENERATION POWER PLANTS UNDER CONSIDERATION OF LIFETIME CONSUMPTION of a combined cycle power plant under consideration of the real cost of lifetime usage is accomplished behavior of a combined cycle power plant. In order to model both the continuous/discrete dynamics

Ferrari-Trecate, Giancarlo

324

A design approach to a risk review for fuel cell-based distributed cogeneration systems  

E-Print Network [OSTI]

A risk review of a fuel cell-based distributed co-generation (FC-Based DCG) system was conducted to identify and quantify the major technological system risks in a worst-case scenario. A risk review entails both a risk assessment and a risk...

Luthringer, Kristin Lyn

2004-09-30T23:59:59.000Z

325

Computer Techniques for Cogeneration Plant Design and Testing  

E-Print Network [OSTI]

alternate ambient conditions, gas turbine part load operation, alternate gas turbine fuel, zero steam turbine production. The off-design run follows a calcula ion procedure similar to a design run. The first step is to calculate the GT performance... AND 259. DEGF -- - -- - ----- -- ----- -----.-- - -- -- ------ .---- - -- - --- - - ---- --- - ----~ -------------- ---- ------------- -- -- - GAS IURB INE LOAD 1 - 100.0 AM8. ORY BULB TEMP. OEGF - 66.0 PLANT HEAT 9ALANCE RELATIVE HUMIDITY 60...

Stewart, J. C.

326

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

electricity, such as steam engines or gas turbines. Typicalsystems, a sterling engine or steam turbine is typicallysuch as a steam turbine or sterling engine connected to an

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

327

RESULTS FROM THE (1) DATA COLLECTION WORKSHOP, (2) MODELING WORKSHOP AND (3) DRILLING AND CORING METHODS WORKSHOP AS PART OF THE JOINT INDUSTRY PARTICIPATION (JIP) PROJECT TO CHARACTERIZE NATURAL GAS HYDRATES IN THE DEEPWATER GULF OF MEXICO  

SciTech Connect (OSTI)

In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deepwater Gulf of Mexico. These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. As part of the project, three workshops were held. The first was a data collection workshop, held in Houston during March 14-15, 2002. The purpose of this workshop was to find out what data exist on gas hydrates and to begin making that data available to the JIP. The second and third workshop, on Geoscience and Reservoir Modeling, and Drilling and Coring Methods, respectively, were held simultaneously in Houston during May 9-10, 2002. The Modeling Workshop was conducted to find out what data the various engineers, scientists and geoscientists want the JIP to collect in both the field and the laboratory. The Drilling and Coring workshop was to begin making plans on how we can collect the data required by the project's principal investigators.

Stephen A. Holditch; Emrys Jones

2002-09-01T23:59:59.000Z

328

BEHAVIOURAL REALISM IN A TECHNOLOGY EXPLICIT ENERGY-ECONOMY MODEL: THE ADOPTION OF INDUSTRIAL COGENERATION IN CANADA  

E-Print Network [OSTI]

COGENERATION IN CANADA Prepared for: OFFICE OF ENERGY EFFICIENCY NATURAL RESOURCES CANADA Prepared by: NIC technology decision. A survey of 259 industrial firms in Canada was administered in 2002 and a discrete

329

Unaccounted-for gas project. Measurement Task Force (non-orifice meter studies). Volume 2A. Final report  

SciTech Connect (OSTI)

The study was conducted to determine unaccounted-for (UAF) gas volumes resulting from operating Pacific Gas and Electric Co.'s transmission and distribution systems during 1987. The Measurement Task Force identified the amount of UAF attributable to measurement inaccuracies. Results show that the major residential measurement-related UAF elements, fixed-factor temperature and elevation/barometric pressure effects, contribute to UAF due to assumptions inherent in the billing calculation for average temperature and elevation which are then applied to all residential customers.

Luttrell, D.J.; Noistering, R.H.; Peterson, J.D.; Cowgill, R.M.; Waller, R.L.

1990-06-01T23:59:59.000Z

330

EARLY ENTRANCE CO-PRODUCTION PLANT-DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect (OSTI)

Waste Processors Management, Inc. (WMPI), along with its subcontractors entered into a Cooperative Agreement with the US Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from April 1, 2002 through June 30, 2002.

Unknown

2002-07-01T23:59:59.000Z

331

Cogeneration of Electricity and Potable Water Using The International Reactor Innovative And Secure (IRIS) Design  

SciTech Connect (OSTI)

The worldwide demand for potable water has been steadily growing and is projected to accelerate, driven by a continued population growth and industrialization of emerging countries. This growth is reflected in a recent market survey by the World Resources Institute, which shows a doubling in the installed capacity of seawater desalination plants every ten years. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh/m3 of produced desalted water. At current U.S. water use rates, a dedicated 1000 MW power plant for every one million people would be required to meet our water needs with desalted water. Nuclear energy plants are attractive for large scale desalination application. The thermal energy produced in a nuclear plant can provide both electricity and desalted water without the production of greenhouse gases. A particularly attractive option for nuclear desalination is to couple a desalination plant with an advanced, modular, passively safe reactor design. The use of small-to-medium sized nuclear power plants allows for countries with smaller electrical grid needs and infrastructure to add new electrical and water capacity in more appropriate increments and allows countries to consider siting plants at a broader number of distributed locations. To meet these needs, a modified version of the International Reactor Innovative and Secure (IRIS) nuclear power plant design has been developed for the cogeneration of electricity and desalted water. The modular, passively safe features of IRIS make it especially well adapted for this application. Furthermore, several design features of the IRIS reactor will ensure a safe and reliable source of energy and water even for countries with limited nuclear power experience and infrastructure. The IRIS-D design utilizes low-quality steam extracted from the low-pressure turbine to boil seawater in a multi-effect distillation desalination plant. The desalination plant is based on the horizontal tube film evaporation design used successfully with the BN-350 nuclear plant in Aktau, Kazakhstan. Parametric studies have been performed to optimize the balance of plant design. Also, an economic analysis has been performed, which shows that IRIS-D should be able to provide electricity and clean water at highly competitive costs.

Ingersoll, D.T.; Binder, J.L.; Kostin, V.I.; Panov, Y.K.; Polunichev, V.; Ricotti, M.E.; Conti, D.; Alonso, G.

2004-10-06T23:59:59.000Z

332

Cogeneration Design Considerations for a Major Petrochemical Facility  

E-Print Network [OSTI]

were instituted to accommodate a declining steam load and increasing amounts of low pressure steam venting. However, as steam load was dropping, electrical rates were increasing both from rising natural gas costs and utility construction of a nuclear...

Good, R. L.

333

Design of a 465 MW Combined Cycle Cogeneration Plant  

E-Print Network [OSTI]

STEAM TUR8JNE GENERAIOR ELECTRICAl, POWER OUIPUI GAS TURBINE GENERAIORS ~==3:=:J PROCESS CONDENSATE TOIAl fUEl 90 MillION BBl./'l'R NEI ELECTRICAl GENERATION 46$.000 KW LOSSES Sl,\\OF JUHINPUI NfTHEAT . 10 PROCESS 43% EFFICIENT... energy efficiency within this operating envelope, the following design .features are incorporated: extraction-induction-condensing steam turbine modulating inlet guide vanes on the gas turbine~ supplementary firing on two boilers steam augmentation...

Leffler, D. W.

334

Advanced Cogeneration Control, Optimization, and Management: A Case Study  

E-Print Network [OSTI]

the performance assessment system is installed is a typical industrial application consisting of the following main components: ? Gas Turbine ? Heat Recovery Steam Generator ? Extraction-condensing Steam Turbine ? Surface condenser ? Cooling tower..., validates data integrity, and formats the data into files for transmittal to the DAM's. 2. The DAM's are device analysis modules. These modules do the performance analysis for the respective devices, gas turbine, heat recovery stearn generator...

Hinson, F.; Curtin, D.

335

Technical and economic evaluations of cogeneration systems using computer simulations  

E-Print Network [OSTI]

the tests give a good confidence to the accuracy of the programs' ability to model not only specific pieces of equipment, such as gas turbines, but also the varying electric rate schedules utilized throughout the state. In both the Austin State Hospital... and Southwest Texas State University (SWTSU) studies, the gas turbine modeling was shown to be within good tolerance of accepted models utilized previously. Also for the SWTSU study, the diesel engine modeling matched very closely to the accepted model...

Fennell, Steven Rush

1993-01-01T23:59:59.000Z

336

Cogeneration Leads to Major Aquaculture and Greenhouse Development in Canada  

E-Print Network [OSTI]

Utilizing waste heat from thermal electric or hydro-electric power stations offers substantial energy and cost savings to both the salmon aquaculture and greenhouse industries in Canada. Projects successfully demonstrating this technology have led...

Mercer, J.

1984-01-01T23:59:59.000Z

337

Targeting of Potential Industrial Cogeneration at the Plant Site  

E-Print Network [OSTI]

.70 7.64 7.713.40 12.46 10.87 10.84 3.53 N. West 4.65 3.44 3.54 1.29 8.70 7.59 6.74 3.42 12.46 10.84 9.50 2.86 diesels, steam turbines and gas turbines. passed through heat recovery boilers producing pro cess steam for the plant. In combined... cycle gas The diesel systems utilize an internal combus turbines systems, the gas turbine is coupled with tion engine as the prime mover coupled to an alter heat recovery boilers and steam turbines to produce nator to produce electric power. Heat...

Toy, M. P.; Brown, H. L.; Hamel, B. B.; Hedman, B. A.

1983-01-01T23:59:59.000Z

338

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1991--June 1992  

SciTech Connect (OSTI)

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump & Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

339

Natural Gas Vehicle Cylinder Safety, Training and Inspection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Vehicle Cylinder Safety, Training and Inspection Project Natural Gas Vehicle Cylinder Safety, Training and Inspection Project Presentation from the U.S. DOE Office of...

340

Community Renewable Energy Success Stories: Landfill Gas-to-Energy...  

Broader source: Energy.gov (indexed) [DOE]

Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text...

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Assessment of the Technical Potential for Micro-Cogeneration in Small Commerical Buildings across the United States: Preprint  

SciTech Connect (OSTI)

This paper presents an assessment of the technical potential for micro-cogeneration in small commercial buildings throughout the United States. The cogeneration devices are simulated with the computer program EnergyPlus using models developed by Annex 42, a working group of the International Energy Agency's Energy Efficiency in Buildings and Community Systems (IEA/ECBCS). Although the Annex 42 models were developed for residential applications, this study applies them to small commercial buildings, assumed to have a total floor area of 500 m2 or less. The potential for micro-cogeneration is examined for the entire existing stock of small U.S. commercial buildings using a bottom-up method based on 1,236 EnergyPlus models.

Griffith, B.

2008-05-01T23:59:59.000Z

342

Advanced cogeneration and absorption chillers potential for service to Navy bases. Final report  

SciTech Connect (OSTI)

The US military uses millions of Btu`s of thermal energy to heat, cool and deliver process thermal energy to buildings on military bases, much of which is transmitted through a pipeline system incorporating thousands of miles of pipe. Much of this pipeline system is in disrepair and is nearing the end of its useful life, and the boilers which supply it are old and often inefficient. In 1993, Brookhaven National Laboratory (BNL) proposed to SERDP a three-year effort to develop advanced systems of coupled diesel cogenerators and absorption chillers which would be particularly useful in providing a continuation of the services now provided by increasingly antiquated district systems. In mid-February, 1995, BNL learned that all subsequent funding for our program had been canceled. BNL staff continued to develop the Program Plan and to adhere to the requirements of the Execution Plan, but began to look for ways in which the work could be made relevant to Navy and DoD energy needs even without the extensive development plan formerly envisioned. The entire program was therefore re-oriented to look for ways in which small scale cogeneration and absorption chilling technologies, available through procurement rather than development, could provide some solutions to the problem of deteriorated district heating systems. The result is, we believe, a striking new approach to the provision of building services on military bases: in many cases, serious study should be made of the possibility that the old district heating system should be removed or abandoned, and small-scale cogenerators and absorption chillers should be installed in each building. In the remainder of this Summary, we develop the rationale behind this concept and summarize our findings concerning the conditions under which this course of action would be advisable and the economic benefits which will accrue if it is followed. The details are developed in the succeeding sections of the report.

Andrews, J.W.; Butcher, T.A.; Leigh, R.W.; McDonald, R.J.; Pierce, B.L.

1996-04-01T23:59:59.000Z

343

EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect (OSTI)

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from January 1, 2003 through March 31, 2003. Phase I Task 6 activities of Preliminary Site Analysis were documented and reported as a separate Topical Report on February 2003. Most of the other technical activities were on hold pending on DOE's announcement of the Clean Coal Power Initiative (CCPI) awards. WMPI was awarded one of the CCPI projects in late January 2003 to engineer, construct and operate a first-of-kind gasification/liquefaction facility in the U.S. as a continued effort for the current WMPI EECP engineering feasibility study. Since then, project technical activities were focused on: (1) planning/revising the existing EECP work scope for transition into CCPI, and (2) ''jump starting'' all environmentally related work in pursue of NEPA and PA DEP permitting approval.

John W. Rich

2003-06-01T23:59:59.000Z

344

Improving the Thermal Output Availability of Reciprocating Engine Cogeneration Systems by Mechanical Vapor Compression  

E-Print Network [OSTI]

LOW?PRESSURE I WASTE STEAM r ... IMPROVING THE THERMAL OUTPUT AVAILABILITY OF RECIPROCATING ENGINE COGENERATION SYSTEMS BY MECHANICAL VAPOR COMPRESSION F.E. Becker and F.A. DiBella Tecogen, Inc., a Subsidiary of Thermo El~ctron Corporation...-user with electric power and process heat that is totally in the form of high-pressure steam. Current recipro cating engine systems can now provide only low pressure steam or hot water from the engine jacket, and this often is not needed or not the most appro...

Becker, F. E.; DiBella, F. A.; Lamphere, F.

345

Design and Economic Evaluation of Thermionic Cogeneration in a Chlorine-Caustic Plant  

E-Print Network [OSTI]

-callsti~ plant with therm ion ie Cl)gf~neration. Thermion i.e combustors replace the exi.sting hllrners of the boilers uSI!d to raise stp.am for th(~ evaporators, Rnd are capable of generating approximately 2.6 MW of de power. This satisfies about 5 percent... BURNER BOILER AUX I ..> BUS AND SWITCH GEAR THERMIONIC COMBUSTOR CELL f--- ROOM TO EVAPORATORS BOILER F==:> Figure 1. Block Diagram of Cogeneration System D STANDBY CELL ROOMS EVAPORATORS THEAMtOMC MODULES Figure 2. Schematic Layout...

Miskolezy, G.; Morgan, D.; Turner, R.

346

Cogeneration and beyond: The need and opportunity for high efficiency, renewable community energy systems  

SciTech Connect (OSTI)

The justification, strategies, and technology options for implementing advanced district heating and cooling systems in the United States are presented. The need for such systems is discussed in terms of global warming, ozone depletion, and the need for a sustainable energy policy. Strategies for implementation are presented in the context of the Public Utilities Regulatory Policies Act and proposed new institutional arrangements. Technology opportunities are highlighted in the areas of advanced block-scale cogeneration, CFC-free chiller technologies, and renewable sources of heating and cooling that are particularly applicable to district systems.

Gleason, T.C.J.

1992-06-01T23:59:59.000Z

347

The Millennium Gas project aims to undertake smoothed-particle hydrodynamic resimulations of the Millennium Simulation, providing many hundred massive galaxy clusters for comparison with X-ray surveys (170 clusters with kTsl > 3 keV). This paper looks at  

E-Print Network [OSTI]

. Abstract The Millennium Gas project aims to undertake smoothed-particle hydrodynamic-ray surveys (170 clusters with kTsl > 3 keV). This paper looks at the hot gas and stellar fractions-core systems but are successful in matching the hot gas profiles of non-cool-core clusters. Although

Thomas, Peter

348

China Energy and Emissions Paths to 2030  

E-Print Network [OSTI]

Financial Analysis of Cogeneration Projects. Presentation atfinancial analysis for cogeneration projects in Thailand.integrated steel mills Cogeneration for the use of untapped

Fridley, David

2012-01-01T23:59:59.000Z

349

Development and demonstration of a wood-fired gas turbine system  

SciTech Connect (OSTI)

The objectives of the test program were to obtain some preliminary information regarding the nature of particulate and vapor phase alkali compounds produced and to assess any deleterious impact they might have on materials of construction. Power Generating Incorporated (PGI) is developing a wood-fired gas turbine system for specialized cogeneration applications. The system is based on a patented pressurized combustor designed and tested by PGI in conjunction with McConnell Industries. The other components of the system are fuel receiving, preparation, storage and feeding system, gas clean-up equipment, and a gas turbine generator.

Smith, V.; Selzer, B.; Sethi, V.

1993-08-01T23:59:59.000Z

350

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network [OSTI]

Photovoltaic (PV) Cogeneration Power Systems 4.2.6 L i g h tand C o o l i n g Cogeneration Photovoltaic Systems (PV)water systems and domestic cogeneration systems, lighting

2006-01-01T23:59:59.000Z

351

REVISED NATURAL GAS MARKET ASSESSMENT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION REVISED NATURAL GAS MARKET ASSESSMENT In Support of the 2007's natural gas market. It covers natural gas demand, supply, infrastructure, price, and possible alternative and the related Scenarios Project, and additional updated information. California natural gas demand growth

352

Integration of Biorefineries and Nuclear Cogeneration Power Plants - A Preliminary Analysis  

SciTech Connect (OSTI)

Biomass-based ethanol and nuclear power are two viable elements in the path to U.S. energy independence. Numerous studies suggest nuclear power could provide a practical carbon-free heat source alternative for the production of biomass-based ethanol. In order for this coupling to occur, it is necessary to examine the interfacial requirements of both nuclear power plants and bioethanol refineries. This report describes the proposed characteristics of a small cogeneration nuclear power plant, a biochemical process-based cellulosic bioethanol refinery, and a thermochemical process-based cellulosic biorefinery. Systemic and interfacial issues relating to the co-location of either type of bioethanol facility with a nuclear power plant are presented and discussed. Results indicate future co-location efforts will require a new optimized energy strategy focused on overcoming the interfacial challenges identified in the report.

Greene, Sherrell R [ORNL; Flanagan, George F [ORNL; Borole, Abhijeet P [ORNL

2009-03-01T23:59:59.000Z

353

Thermoeconomic optimization of sensible heat thermal storage for cogenerated waste-to-energy recovery  

SciTech Connect (OSTI)

This paper investigates the feasibility of employing thermal storage for cogenerated waste-to-energy recovery such as using mass-burning water-wall incinerators and topping steam turbines. Sensible thermal storage is considered in rectangular cross-sectioned channels through which is passed unused process steam at 1,307 kPa/250 C (175 psig/482 F) during the storage period and feedwater at 1,307 kPa/102 C (175 psig/216 F) during the recovery period. In determining the optimum storage configuration, it is found that the economic feasibility is a function of mass and specific heat of the material and surface area of the channel as well as cost of material and fabrication. Economic considerations included typical cash flows of capital charges, energy revenues, operation and maintenance, and income taxes. Cast concrete is determined to be a potentially attractive storage medium.

Abdul-Razzak, H.A. [Texas A and M Univ., Kingsville, TX (United States). Dept. of Mechanical and Industrial Engineering; Porter, R.W. [Illinois Inst. of Tech., chicago, IL (United States). Dept. of Mechanical and Aerospace Engineering

1995-10-01T23:59:59.000Z

354

Flash Steam Recovery Project  

E-Print Network [OSTI]

organic compounds, was targeted for improvement. This unit uses a portion of the high-pressure steam available from the plant's cogeneration facility. Continuous expansions within the unit had exceeded the optimum design capacity of the unit's steam...

Bronhold, C. J.

355

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network [OSTI]

capacity came from cogeneration, fuel gas emissionsof waste heat cogeneration capacity, and improvements to theof energy (e.g. , cogeneration); (ix) improving energy

Zhiping, L.

2010-01-01T23:59:59.000Z

356

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network [OSTI]

fuel cell (PEFC) cogeneration systems are expected tofor existing gas engine cogeneration systems is expectedoxide fuel cell (SOFC) cogeneration systems. For example,

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

357

China Energy Databook - Rev. 4  

E-Print Network [OSTI]

GW) (GW) (GW) of total: Cogeneration Gas Turbines Diesel ¥includes heat produced by cogeneration and dedicated heatWhile the capacity of cogeneration units has risen steadi-

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

358

High potential recovery -- Gas repressurization  

SciTech Connect (OSTI)

The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

Madden, M.P.

1998-05-01T23:59:59.000Z

359

Risk Management In Major Projects   

E-Print Network [OSTI]

The integration of risk management in major projects within the construction and oil and gas industries has never been more significant especially as these projects are becoming larger and more complex. The increased ...

Baker, Scott William

360

The Windscale Advanced Gas Cooled Reactor (WAGR) Decommissioning Project A Close Out Report for WAGR Decommissioning Campaigns 1 to 10 - 12474  

SciTech Connect (OSTI)

The reactor core of the Windscale Advanced Gas-Cooled Reactor (WAGR) has been dismantled as part of an ongoing decommissioning project. The WAGR operated until 1981 as a development reactor for the British Commercial Advanced Gas cooled Reactor (CAGR) power programme. Decommissioning began in 1982 with the removal of fuel from the reactor core which was completed in 1983. Subsequently, a significant amount of engineering work was carried out, including removal of equipment external to the reactor and initial manual dismantling operations at the top of the reactor, in preparation for the removal of the reactor core itself. Modification of the facility structure and construction of the waste packaging plant served to provide a waste route for the reactor components. The reactor core was dismantled on a 'top-down' basis in a series of 'campaigns' related to discrete reactor components. This report describes the facility, the modifications undertaken to facilitate its decommissioning and the strategies employed to recognise the successful decommissioning of the reactor. Early decommissioning tasks at the top of the reactor were undertaken manually but the main of the decommissioning tasks were carried remotely, with deployment systems comprising of little more than crane like devices, intelligently interfaced into the existing structure. The tooling deployed from the 3 tonne capacity (3te) hoist consisted either purely mechanical devices or those being electrically controlled from a 'push-button' panel positioned at the operator control stations, there was no degree of autonomy in the 3te hoist or any of the tools deployed from it. Whilst the ATC was able to provide some tele-robotic capabilities these were very limited and required a good degree of driver input which due to the operating philosophy at WAGR was not utilised. The WAGR box proved a successful waste package, adaptable through the use of waste box furniture specific to the waste-forms generated throughout the various decommissioning campaigns. The use of low force compaction for insulation and soft wastes provided a simple, robust and cost effective solution as did the direct encapsulation of LLW steel components in the later stages of reactor decommissioning. Progress through early campaigns was good, often bettering the baseline schedule, especially when undertaking the repetitive tasks seen during Neutron Shield and Graphite Core decommissioning, once the operators had become experienced with the equipment, though delays became more pronounced, mainly as a result of increased failures due to the age and maintainability of the RDM and associated equipment. Extensive delays came about as a result of the unsupported insulation falling away from the pressure vessel during removal and the inability of the ventilation system to manage the sub micron particulate generated during IPOPI cutting operations, though the in house development of revised and new methodologies ultimately led to the successful completion of PV and I removal. In a programme spanning over 12 years, the decommissioning of the reactor pressure vessel and core led to the production 110 ILW and 75 LLW WAGR boxes, with 20 LLW ISO freight containers of primary reactor wastes, resulting in an overall packaged volume of approximately 2500 cubic metres containing the estimated 460 cubic metres of the reactor structure. (authors)

Halliwell, Chris [Sellafield Ltd, Sellafield (United Kingdom)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Project Year Project Title  

E-Print Network [OSTI]

the cost of the project to labor only. The efficacy of the examples will be assessed through their useProject Year 2012-2013 Project Title Sight-Reading at the Piano Project Team Ken Johansen, Peabody) Faculty Statement The goal of this project is to create a bank of practice exercises that student pianists

Gray, Jeffrey J.

362

Project Year Project Team  

E-Print Network [OSTI]

design goals for this project include low cost (less than $30 per paddle) and robustness. The projectProject Year 2001 Project Team Faculty: Allison Okamura, Mechanical Engineering, Whiting School Project Title Haptic Display of Dynamic Systems Audience 30 to 40 students per year, enrolled

Gray, Jeffrey J.

363

Project Year Project Team  

E-Print Network [OSTI]

-year section of the summer project will cost $1344.) This project will be measured by the CER surveys conductedProject Year 2005 Project Team Sean Greenberg, Faculty, Philosophy Department, Krieger School of Arts & Sciences; Kevin Clark, Student, Philosophy Department, Krieger School of Arts & Sciences Project

Gray, Jeffrey J.

364

Prospects for biomass-to-electricity projects in Yunnan Province, China  

SciTech Connect (OSTI)

Efforts have been underway since 1989 to assess the prospects for biomass-to-electricity projects in Yunnan Province. Results of prefeasibility studies for specific projects suggest that they are both financially and technically viable. Because of low labor costs and favorable climate biomass can be grown on marginal and underutilized land and converted to electricity at costs lower than other alternatives. Bases on current plantation establishment rates, the potential size of the biomass resource can easily support over 1 GW of electric generating capacity in small-sized (up to 20-40 MW) cogeneration and stand-alone projects. These projects, if implemented, can ease power shortages, reduce unemployment, and help sustain the region`s economic growth. Moreover, the external environmental benefits of biomass energy are also potentially significant. This report briefly summarizes the history of biomass assessment efforts in Yunnan Province and discusses in more detail twelve projects that have been identified for U.S. private sector investment. This discussion includes a feasibility analysis of the projects (plantation-grown biomass and its conversion to electricity) and an estimate of the biomass resource base in the general vicinity of each project. This data as well as information on power needs and local capabilities to manage and operate a biomass-to-electricity project are then used to rank-order the twelve projects. One cogeneration and one stand-alone facility are recommended for additional study and possible investment.

Perlack, R.D.

1996-02-01T23:59:59.000Z

365

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Louise Pasternack, Chemistry Department, Krieger School, Krieger School of Arts & Sciences Project Title Introductory Chemistry Lab Demonstrations Audience an interactive virtual lab manual that will facilitate understanding of the procedures and techniques required

Gray, Jeffrey J.

366

Applications for Certificates for Electric, Gas, or Natural Gas Transmission Facilities (Ohio)  

Broader source: Energy.gov [DOE]

An applicant for a certificate to site a major electric power, gas, or natural gas transmission facility shall provide a project summary and overview of the proposed project. In general, the...

367

Use of High Temperature Electrochemical Cells for Co-Generation of Chemicals and Electricity  

SciTech Connect (OSTI)

In this project, two key issues were addressed to show the feasibility of electrochemical partial oxidation (EPOx) in a SOFC. First, it was demonstrated that SOFCs can reliably operate directly with natural gas. These results are relevant to both direct-natural-gas SOFCs, where the aim is solely electrical power generation, and to EPOx. Second, it must be shown that SOFCs can work effectively as partial oxidation reactors, i.e, that they can provide high conversion efficiency of natural gas to syngas. The results of this study in both these areas look extremely promising. The main results are summarized briefly: (1) Stability and coke-free direct-methane SOFC operation is promoted by the addition of a thin porous inert barrier layer to the anode and the addition of small amounts of CO{sub 2} or air to the fuel stream; (2) Modeling results readily explained these improvements by a change in the gas composition at the Ni-YSZ anode to a non-coking condition; (3) The operation range for coke-free operation is greatly increased by using a cell geometry with a thin Ni-YSZ anode active layer on an inert porous ceramic support, i.e., (Sr,La)TiO{sub 3} or partially-stabilized zirconia (in segmented-in-series arrays); (4) Ethane and propane components in natural gas greatly increase coking both on the SOFC anode and on gas-feed tubes, but this can be mitigated by preferentially oxidizing these components prior to introduction into the fuel cell, the addition of a small amount of air to the fuel, and/or the use of ceramic-supported SOFC; (5) While a minimum SOFC current density was generally required to prevent coking, current interruptions of up to 8 minutes yielded only slight anode coking that caused no permanent damage and was completely reversible when the cell current was resumed; (6) Stable direct-methane SOFC operation was demonstrated under EPOx conditions in a 350 h test; (7) EPOx operation was demonstrated at 750 C that yielded 0.9 W/cm{sup 2} and a syngas production rate of 30 sccm/cm{sup 2}, and the reaction product composition was close to the equilibrium prediction during the early stages of cell testing; (8) The methane conversion to syngas continuously decreased during the first 100 h of cell testing, even though the cell electrical characteristics did not change, due to a steady decrease in the reforming activity of Ni-YSZ anodes; (9) The stability of methane conversion was substantially improved via the addition of a more stable reforming catalyst to the SOFC anode; (10) Modeling results indicated that a SOFC with anode barrier provides similar non-coking performance as an internal reforming SOFC, and provides a simpler approach with no need for a high-temperature exhaust-gas recycle pump; (11) Since there is little or no heat produced in the EPOx reaction, overall efficiency of the SOFC operated in this mode can, in theory, approach 100%; and (12) The combined value of the electricity and syngas produced allows the EPOx generator to be economically viable at a >2x higher cost/kW than a conventional SOFC.

Scott Barnett

2007-09-30T23:59:59.000Z

368

Ceramic stationary gas turbine development program -- Fifth annual summary  

SciTech Connect (OSTI)

A program is being performed under the sponsorship of the US Department of Energy, Office of Industrial Technologies, to improve the performance of stationary gas turbines in cogeneration through the selective replacement of metallic hot section components with ceramic parts. The program focuses on design, fabrication, and testing of ceramic components, generating a materials properties data base, and applying life prediction and nondestructive evaluation (NDE). The development program is being performed by a team led by Solar Turbines Incorporated, and which includes suppliers of ceramic components, US research laboratories, and an industrial cogeneration end user. The Solar Centaur 50S engine was selected for the development program. The program goals included an increase in the turbine rotor inlet temperature (TRIT) from 1,010 C (1,850 F) to 1,121 C (2,050 F), accompanied by increases in thermal efficiency and output power. The performance improvements are attributable to the increase in TRIT and the reduction in cooling air requirements for the ceramic parts. The ceramic liners are also expected to lower the emissions of NOx and CO. Under the program uncooled ceramic blades and nozzles have been inserted for currently cooled metal components in the first stage of the gas producer turbine. The louvre-cooled metal combustor liners have been replaced with uncooled continuous-fiber reinforced ceramic composite (CFCC) liners. Modifications have been made to the engine hot section to accommodate the ceramic parts. To date, all first generation designs have been completed. Ceramic components have been fabricated, and are being tested in rigs and in the Centaur 50S engine. Field testing at an industrial co-generation site was started in May, 1997. This paper will provide an update of the development work and details of engine testing of ceramic components under the program.

Price, J.R.; Jimenez, O.; Faulder, L.; Edwards, B.; Parthasarathy, V.

1999-10-01T23:59:59.000Z

369

Project Year Project Title  

E-Print Network [OSTI]

Project Year 2013-2014 Project Title German Online Placement Exam Project Team Deborah Mifflin to increased cost. As well, it lacked listening comprehension, writing and speaking components providing support, we will use Blackboard for this project. The creation will require numerous steps

Gray, Jeffrey J.

370

Project Year Project Title  

E-Print Network [OSTI]

that incorporate video taped procedures for student preview. Solution This project will create videos for more to study the procedure and techniques before coming to class. Our previous fellowship project addressedProject Year 2009 Project Title Enhancing Biology Laboratory Preparation through Video

Gray, Jeffrey J.

371

Project Year Project Team  

E-Print Network [OSTI]

, there is no resource available to view the procedure before class. Solution The purpose of this project is to capture available to view the procedure before class. The purpose #12;of this project is to capture variousProject Year 2007 Project Team Kristina Obom, Faculty, Advanced Academic Programs, Krieger School

Gray, Jeffrey J.

372

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer Workshop in San Francisco, CA; and (6) Identify projects and prepare draft agenda for the fall GSTC Technology Transfer Workshop in Pittsburgh, PA.

Joel L. Morrison; Sharon L. Elder

2006-07-06T23:59:59.000Z

373

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

374

Breckinridge Project, initial effort  

SciTech Connect (OSTI)

The project cogeneration plant supplies electric power, process steam and treated boiler feedwater for use by the project plants. The plant consists of multiple turbine generators and steam generators connected to a common main steam header. The major plant systems which are required to produce steam, electrical power and treated feedwater are discussed individually. The systems are: steam, steam generator, steam generator fuel, condensate and feedwater deaeration, condensate and blowdown collection, cooling water, boiler feedwater treatment, coal handling, ash handling (fly ash and bottom ash), electrical, and control system. The plant description is based on the Phase Zero design basis established for Plant 31 in July of 1980 and the steam/condensate balance as presented on Drawing 31-E-B-1. Updating of steam requirements as more refined process information becomes available has generated some changes in the steam balance. Boiler operation with these updated requirements is reflected on Drawing 31-D-B-1A. The major impact of updating has been that less 600 psig steam generated within the process units requires more extraction steam from the turbine generators to close the 600 psig steam balance. Since the 900 psig steam generation from the boilers was fixed at 1,200,000 lb/hr, the additional extraction steam required to close the 600 psig steam balance decreased the quantity of electrical power available from the turbine generators. In the next phase of engineering work, the production of 600 psig steam will be augmented by increasing convection bank steam generation in the Plant 3 fired heaters by 140,000 to 150,000 lb/hr. This modification will allow full rated power generation from the turbine generators.

none,

1982-01-01T23:59:59.000Z

375

analysis project evaluating: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

uncertainties in typical oil and gas projects: 1. The oil price, 2. The investments (capex) and operating. The oil and gas reserves and production profiles, 5. The production...

376

LIQUEFIED NATURAL GAS IN CALIFORNIA  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION LIQUEFIED NATURAL GAS IN CALIFORNIA: HISTORY, RISKS, AND SITING Tyler Contributors Dave Maul Manager NATURAL GAS & SPECIAL PROJECTS OFFICE Terrence O'Brien, Deputy Commissioner and Leader of the Governor's Natural Gas Working Group #12;This paper was prepared as the result

377

Outlook for U.S. shale oil and gas  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2035 2040 Associated with oil Coalbed methane Tight gas Shale gas Alaska Non-associated offshore Non-associated onshore Projections History 2012 Adam Sieminski, IAEEAEA January...

378

Methodology for Assessing Greenhouse Gas Emissions and Assessing Mitigation Options for On-Road Mobile Sources Project for the Houston-Galveston Area Council  

E-Print Network [OSTI]

Methodology for Assessing Greenhouse Gas Emissions and Assessing Mitigation Options for On reductions in GHG, and b) use analytical tools/methods to assess the emissions reductions possible through and prioritized based on factors such as cost effectiveness, potential for emission reductions, and applicability

379

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Gregory Hager, Computer Science, Whiting School of Engineering Fellow: Alan Chen, Biomedical Engineering, Whiting School of Engineering Project Title Robotics is complicated, time-consuming, and costly, making a robot for an introductory-level class is not practical

Gray, Jeffrey J.

380

Project Proposal Project Logistics  

E-Print Network [OSTI]

Project Proposal · Project Logistics: ­ 2-3 person teams ­ Significant implementation, worth 55 and anticipated cost of copying to/from host memory. IV. Intellectual Challenges - Generally, what makes this computation worthy of a project? - Point to any difficulties you anticipate at present in achieving high

Hall, Mary W.

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Project Year Project Title  

E-Print Network [OSTI]

operators, matrix indexing, vector computations, loops, functions, and plotting graphs, among others basic arithmetic operators, matrix indexing, and vector computations in MATLAB. After creatingProject Year 2011-2012 Project Title Online Tutorial for MATLAB Project Team Eileen Haase, Whiting

Gray, Jeffrey J.

382

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2005 Project Team Krysia Hudson, Faculty, School of Nursing, Undergraduate Instruction for Educational Resources Project Title Enhanced Web-based Learning Environments for Beginning Nursing Students (e.g., demonstrations of procedures or tasks) into the WBL systems, it will be possible to increase

Gray, Jeffrey J.

383

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Michael McCloskey, Cognitive Science/Neuroscience, Krieger of Arts & Sciences Project Title Cognitive Neuropsychology Audience The initial audience to access. The current procedure calls for individual students or researchers to contact the faculty member

Gray, Jeffrey J.

384

A comparison of high temperature fuel cells and gas turbines for expansion of the MIT Cogeneration Plant  

E-Print Network [OSTI]

In the past decade the MIT campus has grown by leaps and bounds. New buildings such as the Zesiger Sports Center, Stata Center, Simmons Hall, and Sidney-Pacific Street Dorm are only some of the buildings erected in the ...

Jacobus, Headley Stewart

2005-01-01T23:59:59.000Z

385

Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)  

SciTech Connect (OSTI)

Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

Chad Smutzer

2006-01-01T23:59:59.000Z

386

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

387

UK Oil and Gas Collaborative Doctoral Training Centre For applications to the University of Aberdeen  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre For applications. IMPORTANT In section 2 Programme The Oil and Gas projects are all being BOX: PUT Oil and Gas CDT and the name of the project you're interested

Levi, Ran

388

The Geopolitics of Oil, Gas, and Ecology in the Caucasus and Caspian Sea Basin. 1998 Caucasus Conference Report.  

E-Print Network [OSTI]

Energy Agency, Caspian Oil and Gas. Paris: Energy Charterforecasting studies on oil and gas projects in Kazakhstan33 Map of oil and gas

Garcelon, Marc; Walker, Edward W.; Patten-Wood, Alexandra; Radovich, Aleksandra

1998-01-01T23:59:59.000Z

389

Hydraulic fracture model and diagnostics verification at GRI/DOE multi-site projects and tight gas sand program support. Final report, July 28, 1993--February 28, 1997  

SciTech Connect (OSTI)

The Mesaverde Group of the Piceance Basin in western Colorado has been a pilot study area for government-sponsored tight gas sand research for over twenty years. Early production experiments included nuclear stimulations and massive hydraulic fracture treatments. This work culminated in the US Department of Energy (DOE)`s Multiwell Experiment (MWX), a field laboratory designed to study the reservoir and production characteristics of low permeability sands. A key feature of MWX was an infrastructure which included several closely spaced wells that allowed detailed characterization of the reservoir through log and core analysis, and well testing. Interference and tracer tests, as well as the use of fracture diagnostics gave further information on stimulation and production characteristics. Thus, the Multiwell Experiment provided a unique opportunity for identifying the factors affecting production from tight gas sand reservoirs. The purpose of this operation was to support the gathering of field data that may be used to resolve the number of unknowns associated with measuring and modeling the dimensions of hydraulic fractures. Using the close-well infrastructure at the Multiwell Site near Rifle, Colorado, this operation focused primarily on the field design and execution of experiments. The data derived from the experiments were gathered and analyzed by DOE team contractors.

Schroeder, J.E.

1997-12-31T23:59:59.000Z

390

Applications of HRSG Simulation  

E-Print Network [OSTI]

Heat Recovery Steam Generators are widely used in cogeneration and combined cycle plants generating steam utilizing energy from gas turbine exhaust. Before planning cogen projects, consultants should study various options available in terms of steam...

Ganapathy, V. V.

391

CX-002459: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

of Recovery Act funds to purchase and install two gas turbine engines and two absorption chillers as part of a combined heat and power cogeneration project at the State...

392

Unconventional gas recovery program. Semi-annual report for the period ending September 30, 1979  

SciTech Connect (OSTI)

This document is the third semi-annual report describing the technical progress of the US DOE projects directed at gas recovery from unconventional sources. Currently the program includes Methane Recovery from Coalbeds Project, Eastern Gas Shales Project, Western Gas Sands Project, and Geopressured Aquifers Project.

Manilla, R.D. (ed.)

1980-04-01T23:59:59.000Z

393

Project Year Project Title  

E-Print Network [OSTI]

Project Year 2011-2012 Project Title Using M-Health and GIS Technology in the Field to Improve-specialized, but practically useless skill. Solution One goal of this summer's Applied Geographic Information Systems in Public lessons about observational epidemiology. Technologies Used Geographic Info System (GIS), Blackboard

Gray, Jeffrey J.

394

Local government guide to the emerging technologies of cogeneration and photovoltaics. Energy technology report of the energy task force of the urban consortium  

SciTech Connect (OSTI)

An overview of cogeneration and photovoltaics systems is presented to provide local government managers a basic understanding of the technologies. Issues and considerations associated with applications are presented. Discussions cover installation and maintenance requirements, equipment availability, costs, and risks/benefits. Data describing demonstration sites and contacts for further information are provided. (MCW)

None

1980-01-01T23:59:59.000Z

395

U.S. Natural Gas Supply to 2030 Larry Hughes  

E-Print Network [OSTI]

LNG Total Figure 1: U.S. natural gas supply (reference case) It should be noted that this is the reference case; the "side cases", based upon the volume of projected LNG (liquefied natural gas) imports gas supply projections for 2030 (TCF) Production Low LNG Reference High LNG Dry gas 21.99 20.83 19

Hughes, Larry

396

Project Accounts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Accounts Project Accounts Overview Project accounts are designed to facilitate collaborative computing by allowing multiple users to use the same account. All actions...

397

Hydrocarbon Processing`s HPI construction boxscore update  

SciTech Connect (OSTI)

Data are presented on construction projects in the petroleum and natural gas industries. The table lists the company, plant site, project, capacity, estimated cost (when available), status, licensor, engineering company, and construction firm. Projects include NGL recovery, hydrocracking units, natural gas plants, denitrogenation units, ammonia plants, waste gas cleanup, distillation units, CO{sub 2} removal, water treatment, methanol plants, desulfurization, and cogeneration plants.

NONE

1997-06-01T23:59:59.000Z

398

Virginia Natural Gas's Hampton Roads Pipeline Crossing  

Broader source: Energy.gov [DOE]

Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—covers Virginia Natural Gas's (VNG's) pipeline project at Hampton Roads Crossing (HRX).

399

Challenges and strategies of shale gas development.  

E-Print Network [OSTI]

??The objective of this paper is to help new investors and project developers identify the challenges of shale gas E&P and to enlighten them of… (more)

Lee, Sunje

2012-01-01T23:59:59.000Z

400

Unconventional gas outlook: resources, economics, and technologies  

SciTech Connect (OSTI)

The report explains the current and potential of the unconventional gas market including country profiles, major project case studies, and new technology research. It identifies the major players in the market and reports their current and forecasted projects, as well as current volume and anticipated output for specific projects. Contents are: Overview of unconventional gas; Global natural gas market; Drivers of unconventional gas sources; Forecast; Types of unconventional gas; Major producing regions Overall market trends; Production technology research; Economics of unconventional gas production; Barriers and challenges; Key regions: Australia, Canada, China, Russia, Ukraine, United Kingdom, United States; Major Projects; Industry Initiatives; Major players. Uneconomic or marginally economic resources such as tight (low permeability) sandstones, shale gas, and coalbed methane are considered unconventional. However, due to continued research and favorable gas prices, many previously uneconomic or marginally economic gas resources are now economically viable, and may not be considered unconventional by some companies. Unconventional gas resources are geologically distinct in that conventional gas resources are buoyancy-driven deposits, occurring as discrete accumulations in structural or stratigraphic traps, whereas unconventional gas resources are generally not buoyancy-driven deposits. The unconventional natural gas category (CAM, gas shales, tight sands, and landfill) is expected to continue at double-digit growth levels in the near term. Until 2008, demand for unconventional natural gas is likely to increase at an AAR corresponding to 10.7% from 2003, aided by prioritized research and development efforts. 1 app.

Drazga, B. (ed.)

2006-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

Joel L. Morrison; Sharon L. Elder

2006-05-10T23:59:59.000Z

402

Are distributed energy technologies a viable alternative for institutional settings? : lessons from MIT Cogeneration Plant  

E-Print Network [OSTI]

During the last decades, distributed energy (DE) resources received considerable attention and support because of the confluence of technology development - particularly gas turbines - and deregulation - which would allow ...

Tapia-Ahumada, Karen de los Angeles

2005-01-01T23:59:59.000Z

403

Mechanical properties of welds in commercial alloys for high-temperature gas-cooled reactor components  

SciTech Connect (OSTI)

Weld properties of Hastelloy-X, Incoloy alloy 800H (with and without Inconel-82 cladding), and 2 1/4 Cr-1 Mo are being studied to provide design data to support the development of steam generator, core auxiliary heat exchanger, and metallic thermal barrier components of the high-temperature gas-cooled reactor (HTGR) steam cycle/cogeneration plant. Tests performed include elevated-temperature creep rupture tests and tensile tests. So far, data from the literature and from relatively short-term tests at GA Technologies Inc. indicate that the weldments are satisfactory for HTGR application.

Lindgren, J.R.; Li, C.C.; Ryder, R.H.; Thurgood, B.E.

1984-07-01T23:59:59.000Z

404

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

Joel Morrison

2005-09-14T23:59:59.000Z

405

Modeling and Control of Co-generation Power Plants: A Hybrid System Approach  

E-Print Network [OSTI]

cycle is driven by some fossil fuel (usually natural gas) and produces electric power via expansion of the gas turbine and generates both electricity and steam for the industrial processes. Clearly, the liberalization of the energy market has promoted the need of operating CCPPs in the most efficient way

Ferrari-Trecate, Giancarlo

406

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

407

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

408

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids...  

Gasoline and Diesel Fuel Update (EIA)

demonstrate the possibility of an expanding role for domestic natural gas and crude oil in meeting both current and projected U.S. energy demands. Shale gas development in...

409

Gas Separations using Ceramic Membranes  

SciTech Connect (OSTI)

This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

Paul KT Liu

2005-01-13T23:59:59.000Z

410

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: Construction Project Team: Project Facts & Figures: Budget: £500,000 Funding Source: Capital Construction Project Programme: Start on Site: October 2010 End Date : April 2011 Occupation Date: n/a For further information contact Project Manager as listed above or the Imperial College

411

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: This project refurbished half of the 5th and 7th floors on the Faculty of Medicine, please visit: http://www1.imperial.ac.uk/medicine/ Construction Project Team: Project Facts & Figures: Budget: £3,500,000 Funding Source: SRIF III Construction Project Programme: Start

412

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

413

Project Management Project Managment  

E-Print Network [OSTI]

­ Inspired by agile methods #12;Background · Large-scale software development & IT projects, plagued relations #12;One Agile Approach to Scheduling · The creative nature of game development resist heavy up Problems ­incompatible platforms, 3rd party etc. #12;Is Games Development Similar? · Yes & No

Stephenson, Ben

414

Project Year Project Team  

E-Print Network [OSTI]

An Engineer's Guide to the Structures of Baltimore Audience Students from the Krieger School of Arts City, interfaced through a course website, the team will integrate descriptions of structural behavior format. Technologies Used HTML/Web Design, MySQL Project Abstract Structural analysis is typically taught

Gray, Jeffrey J.

415

STATE OF CALIFORNIA THE RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

: Connie Bruins, Compliance Project Manager SUBJECT: Midway Sunset Cogeneration Project (85-AFC-3C) Staff a petition from the Midway Sunset Cogeneration Company (MSCC) to amend the Energy Commission Decision for the Midway Sunset Cogeneration Project. The Midway Sunset Cogeneration Project is a 225 MW cogeneration power

416

Natural gas repowering experience  

SciTech Connect (OSTI)

Gas Research Institute has led a variety of projects in the past two years with respect to repowering with natural gas. These activities, including workshops, technology evaluations, and market assessments, have indicated that a significant opportunity for repowering exists. It is obvious that the electric power industry`s restructuring and the actual implementation of environmental regulations from the Clean Air Act Amendments will have significant impact on repowering with respect to timing and ultimate size of the market. This paper summarizes the results and implications of these activities in repowering with natural gas. It first addresses the size of the potential market and discusses some of the significant issues with respect to this market potential. It then provides a perspective on technical options for repowering which are likely to be competitive in the current environment. Finally, it addresses possible actions by the gas industry and GRI to facilitate development of the repowering market.

Bautista, P.J.; Fay, J.M. [Gas Research Institute, Chicago, IL (United States); Gerber, F.B. [BENTEK Energy Research, DeSoto, TX (United States)

1995-12-31T23:59:59.000Z

417

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: A state of the art facility, at Hammersmith information visit the Faculty of Medicine web pages http://www1.imperial.ac.uk/medicine/ Construction Project Team: Project Facts & Figures: Budget: £60 000 000 Funding Source: SRIF II (Imperial College), GSK, MRC

418

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: The refurbishment of the instrumentation equipment. This project encompasses refurbishment work on over 1,150m2 of laboratory space across four, the completed project will allow researchers to expand their work in satellite instrumentation, the fabrication

419

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: In the first phase of the Union Building re.union.ic.ac.uk/marketing/building Construction Project Team: Project Facts & Figures: Budget: £1,400,000 Funding Source: Capital Plan and Imperial College Union reserves Construction Project Programme: Start on Site: August 2006 End Date: March

420

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

Joel Morrison; Elizabeth Wood; Barbara Robuck

2010-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Project Information Form Project Title Program for Vehicle Regulatory Reform: Assessing Life Cycle-Based  

E-Print Network [OSTI]

,931.44 Total Project Cost $98,931.44 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates November 1Project Information Form Project Title Program for Vehicle Regulatory Reform: Assessing Life Cycle, 2014 ­ October 31, 2015 Brief Description of Research Project Current greenhouse gas emissions

California at Davis, University of

422

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing negotiations of the four sub-awards working toward signed contracts with the various organizations involved. Second, an Executive Council meeting was held at Penn State September 9, 2004. And third, the GSTC participated in the SPE Eastern Regional Meeting in Charleston, West Virginia, on September 16th and 17th. We hosted a display booth with the Stripper Well Consortium.

Robert W. Watson

2004-10-18T23:59:59.000Z

423

Volume Project  

E-Print Network [OSTI]

Math 13900. Volume Project. For the following project, you may use any materials. This must be your own original creation. Construct a right pyramid with a base ...

rroames

2010-01-12T23:59:59.000Z

424

Feasibility of black liquor gasification in combined cycle cogeneration. Final report, Phase I  

SciTech Connect (OSTI)

A small-scale test program of 65% solids black liquor gasification was conducted in the bench-scale molten salt gasifier. Nine tests were performed using both air and oxygen as the oxidant. The black liquor gasified readily and the product gas had a dry-basis heating value of 70 Btu/scf with air and about 250 Btu/scf with oxygen. These values were almost identical to values predicted on the basis of thermodynamic equilibrium in the gas phase, indicating that the system had achieved near-equilibrium. However, the reduction of the melt to sodium sulfide was generally low. An independent research program aimed at improving the performance of air-blown black liquor gasification was conducted. That work resulted in a modified gasifier system design which increased the off-gas heating value to 120 Btu/scf and the reduction of the melt to over 95%. This was an improvement that would potentially allow use of the scrubbed product gas as a feed to a combustion gas turbine without prior enrichment.

Kelleher, E.G.

1983-06-30T23:59:59.000Z

425

EA-1752: Pacific Gas & Electric Company (PG&E), Compressed Air...  

Broader source: Energy.gov (indexed) [DOE]

52: Pacific Gas & Electric Company (PG&E), Compressed Air Energy Storage (CAES) Compression Testing Phase Project, San Joaquin County, California EA-1752: Pacific Gas & Electric...

426

Canastota Renewable Energy Facility Project  

SciTech Connect (OSTI)

The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.

Blake, Jillian; Hunt, Allen

2013-12-13T23:59:59.000Z

427

Commissioning and Start Up of a 110 MegaWatt Cogeneration Facility  

E-Print Network [OSTI]

manufacturing facility constraints 4. Mechanical problems 5. Electrical problems 6. Control system/instrumentation problems The commissioning and start up had to be coordinated with existing Plant operations. As a result of the Project Team's efforts...

Good, R.

428

Production Cost Modeling of Cogenerators in an Interconnected Electric Supply System  

E-Print Network [OSTI]

The Optimal State Electricity Supply System in Texas (OSEST) research project is part of the continuing Public Utility Commission of Texas (PUCT) effort to identify possible improvements in the production, transmission, and use of electricity...

Ragsdale, K.

429

Co-generation of electricity and chemicals from propane fuel in solid oxide fuel cells with anode containing nano-bimetallic catalyst  

E-Print Network [OSTI]

Co-generation of electricity and chemicals from propane fuel in solid oxide fuel cells with anode propane fueled SOFCs. CoeFe bimetallic phase was formed from Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3Ã?d SOFC anode aromatic hydrocarbons were produced from SOFCs using propane as fuel. a r t i c l e i n f o Article history

Frenkel, Anatoly

430

Project Controls  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

1997-03-28T23:59:59.000Z

431

Combined Heat and Power (CHP), also known as cogeneration, is the concurrent production of electricity or  

E-Print Network [OSTI]

movers or technology types, which include: Reciprocating Engines Combustion or Gas Turbines Steam systems can provide the following products: Electricity Direct mechanical drive Steam or hot water, integrated systems that consist of various components ranging from prime mover (heat engine), generator

432

Table 10. Natural Gas Net Imports, Projected vs. Actual Projected  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary statistics for

433

Table 9. Natural Gas Production, Projected vs. Actual Projected  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary:Principal shaleMajor U.S.

434

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: The works cover the refurbishment of floors 4, 5, with `wet' labs for molecular biology, materials characterisation, cell culture and flow studies, and `dry operating theatre. The Bionanotechnology Centre is one of the projects funded from the UK Government's £20

435

Natural Gas Wells Near Project Rulison  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE Cores" _ ,' ,:.' :r-2 . .for

436

Gas hydrate reservoir characteristics and economics  

SciTech Connect (OSTI)

The primary objective of the DOE-funded USGS Gas Hydrate Program is to assess the production characteristics and economic potential of gas hydrates in northern Alaska. The objectives of this project for FY-1992 will include the following: (1) Utilize industry seismic data to assess the distribution of gas hydrates within the nearshore Alaskan continental shelf between Harrison Bay and Prudhoe Bay; (2) Further characterize and quantify the well-log characteristics of gas hydrates; and (3) Establish gas monitoring stations over the Eileen fault zone in northern Alaska, which will be used to measure gas flux from destabilized hydrates.

Collett, T.S.; Bird, K.J.; Burruss, R.C.; Lee, Myung W.

1992-01-01T23:59:59.000Z

437

Gas hydrate reservoir characteristics and economics  

SciTech Connect (OSTI)

The primary objective of the DOE-funded USGS Gas Hydrate Program is to assess the production characteristics and economic potential of gas hydrates in northern Alaska. The objectives of this project for FY-1992 will include the following: (1) Utilize industry seismic data to assess the distribution of gas hydrates within the nearshore Alaskan continental shelf between Harrison Bay and Prudhoe Bay; (2) Further characterize and quantify the well-log characteristics of gas hydrates; and (3) Establish gas monitoring stations over the Eileen fault zone in northern Alaska, which will be used to measure gas flux from destabilized hydrates.

Collett, T.S.; Bird, K.J.; Burruss, R.C.; Lee, Myung W.

1992-06-01T23:59:59.000Z

438

Circle Project  

E-Print Network [OSTI]

This project asks students to decide if a collection of points in space do or do not lie on a ... The project is accessible to linear algebra students who have studied ...

439

A natural-gas fuel processor for a residential fuel cell system.  

SciTech Connect (OSTI)

A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor--namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor--were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing {approx} 48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored.

Adachi, H.; Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.; Yamazaki, Y.; Japan Institute of Energy

2009-03-01T23:59:59.000Z

440

Reduced Nitrogen and Natural Gas Consumption at Deepwell Flare  

E-Print Network [OSTI]

Facing both an economic downturn and the liklihood of steep natural gas price increases, company plants were challenged to identify and quickly implement energy saving projects that would reduce natural gas usage. Unit operating personnel...

Williams, C.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Forecasting long-term gas production from shale  

E-Print Network [OSTI]

Oil and natural gas from deep shale formations are transforming the United States economy and its energy outlook. Back in 2005, the US Energy Information Administration published projections of United States natural gas ...

Cueto-Felgueroso, Luis

442

Experimental observation of the behaviour of cogenerated dusty plasma using a bipolar pulsed direct current power supply  

SciTech Connect (OSTI)

We have experimentally observed the behaviour of cogenerated dusts in unmagnetized plasma produced using a bipolar pulsed dc power supply. In this experiment, the dust particles have been generated through sputtering of graphite cathode and were stratified between two electrodes. This stratification of dust clouds has obtained at a typical range of plasma parameters, namely, 650 V (peak-to-peak) with 0.2 mbar pressure. In above condition, we detected the Taylor-like instability at the interface of two dusty clouds with different densities. A very less dust density (void like) region inside the lesser dust density portion is also noted. Again, it has been observed that a self excited dust density wave propagates towards the higher density dust fluid inside the system as well as a stationary band structure of thin multiple layers of dust particles when we apply a higher voltage (750 V peak-to-peak). The wavelength, phase velocity, and frequency of the excited wave have also been estimated.

Sarkar, Sanjib; Bose, M. [Department of Physics, Jadavpur University, Kolkata 700032 (India); Pramanik, J. [Kharagpur College, Kharagpur 721305, West Bengal (India); Mukherjee, S. [FCIPT, Institute for Plasma Research, Gandhinagar 382428 (India)

2013-02-15T23:59:59.000Z

443

Energy Efficiency Project Development  

SciTech Connect (OSTI)

The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through December 31, 2002. At the request of the DOE, we have also included in this report additional activities during the reporting period January, 1999 through January, 2001. This additional information had been reported earlier in the Final Technical Reports that summarized activities undertaken in those earlier periods.

IUEP

2004-03-01T23:59:59.000Z

444

Commercialization of coal-fired diesel engines for cogeneration and non-utility power markets  

SciTech Connect (OSTI)

The primary objective of this METC project is to established practical, durable components compatible with clean coal slurry fuel and capable of low emissions. The components will be integrated into a coal power system for a 100-hr proof-of-concept test. The goal of this program is to advance the stationary coal-fueled diesel engine to the next plateau of technological readiness, and thus provide the springboard to commercialization.

Wilson, R.P.; Rao, K.; Benedek, K.R.; Itse, D.; Parkinson, J.; Kimberley, J.; Balles, E.N.; Benson, C.E.; Smith, C.

1992-01-01T23:59:59.000Z

445

Commercialization of coal-fired diesel engines for cogeneration and non-utility power markets  

SciTech Connect (OSTI)

The primary objective of this METC project is to established practical, durable components compatible with clean coal slurry fuel and capable of low emissions. The components will be integrated into a coal power system for a 100-hr proof-of-concept test. The goal of this program is to advance the stationary coal-fueled diesel engine to the next plateau of technological readiness, and thus provide the springboard to commercialization.

Wilson, R.P.; Rao, K.; Benedek, K.R.; Itse, D.; Parkinson, J.; Kimberley, J.; Balles, E.N.; Benson, C.E.; Smith, C.

1992-12-31T23:59:59.000Z

446

Cogeneration System Analysis Summary Reports for Austin State Hospital, Austin, Texas  

E-Print Network [OSTI]

and 1.3 MW. For at least one scenario of fuel price escalation, a larger size (1.3 MW) would be preferred based upon this analysis, if no standby power charges occurred. The gas turbine system could be installed at one of various sites at the hospital... cost escalation above inflation, the 1.0 MW (1000kW) system shows an NPV from 1.0 million dollars to 1.8 million dollars depending on the standby charge. The other curve shown in each graph is for the case when the escalation rates for electricity...

Turner, W. D.; Murphy, W. E.; Hartman, R.; Heffington, W. M.; Bolander, J. N.; Propp, A. D.

1985-01-01T23:59:59.000Z

447

Toms Creek IGCC Demonstration Project  

SciTech Connect (OSTI)

The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020[degree]F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

Virr, M.J.

1992-01-01T23:59:59.000Z

448

Toms Creek IGCC Demonstration Project  

SciTech Connect (OSTI)

The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020{degree}F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

Virr, M.J.

1992-11-01T23:59:59.000Z

449

Clean Fuel Advanced Technology Awarded Projects Organization Project Descriptions  

E-Print Network [OSTI]

Mountains National Park Biodiesel (B50) Tanks1,3 $33,681 $13,204 $46,885 -16 18 110 11 Duke Energy 2 Hybrid 555 3634 332 2007 CFAT Projects(12 projects) City of Hickory 1 Natural Gas Vehicle - Honda Civic GX6 with Crankcase Filtration System2 $24,671 $6,168 $30,839 0 115 828 85 Holmes Oil Co. ** E85 infrastructure1,7 $42

450

Unconventional Oil and Gas Resources  

SciTech Connect (OSTI)

World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

none

2006-09-15T23:59:59.000Z

451

Secretary Moniz Announces New Biofuels Projects to Drive Cost...  

Energy Savers [EERE]

waste materials and algae can directly replace gasoline and other fuels in our gas tanks and refineries. The research projects announced today build on the Energy Department's...

452

DOE Announces $14 Million Industry Partnership Projects to Increase...  

Broader source: Energy.gov (indexed) [DOE]

particulate matter and nitrous oxides sensors suitable to support an exhaust gas recirculation control system in diesel engines. The project will include validation and...

453

New Jersey Natural Gas- SAVEGREEN Residential Rebate Program  

Broader source: Energy.gov [DOE]

Through the SAVEGREEN Project, New Jersey Natural Gas (NJNG) provides rebates that supplement the statewide WARMAdvantage Program. NJNG Enhanced Rebate is available for customers who upgrade to a...

454

Energy Department Assisting Launch of Low Greenhouse Gas-Emitting...  

Broader source: Energy.gov (indexed) [DOE]

Launch of Low Greenhouse Gas-Emitting Jet Fuels Crow Nation Students Participate in Algae Biomass Research Project Secretary Chu Announces 100 Million for Advanced Research...

455

Baltimore Gas and Electric Company (Electric)- Commercial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Baltimore Gas and Electric (BGE) provides incentives for technical assistance, retrofitting inefficient equipment, starting a new construction project, launching a major renovation, purchasing new...

456

Natural Gas Engine Development: July 2003--July 2005  

SciTech Connect (OSTI)

Describes project to develop natural gas engines that would be certifiable to nitrogen oxide and nonmethane hydrocarbon emission levels below 2004 federal standards.

Lekar, T. C.; Martin, T. J.

2006-03-01T23:59:59.000Z

457

Natural Gas Engine Development: July 2003 -- July 2005  

SciTech Connect (OSTI)

Discusses project to develop heavy-duty, 8.1L natural gas vehicle engines that would be certifiable below the 2004 federal emissions standards and commercially viable.

Lekar, T. C.; Martin, T. J.

2006-11-01T23:59:59.000Z

458

Heavy-Duty Natural Gas Drayage Truck Replacement Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy-Duty Natural Gas Drayage Truck Replacement Program Principal Investigator: Vicki White South Coast Air Quality Management District May 16, 2012 Project ID ARRAVT045 This...

459

US10 Capable Prototype Volvo MG11 Natural Gas Engine Development: Final Report, December 16, 2003 - July 31, 2006  

SciTech Connect (OSTI)

The report discusses a project to develop a low-emissions natural gas engine with exhaust gas recirculation (EGR) and a three-way catalyst (TWC).

Tai, C.; Reppert, T.; Chiu, J.; Christensen, L.; Knoll, K.; Stewart, J.

2006-10-01T23:59:59.000Z

460

Fuel Cell Applied Research Project  

SciTech Connect (OSTI)

Since November 12, 2003, Northern Alberta Institute of Technology has been operating a 200 kW phosphoric acid fuel cell to provide electrical and thermal energy to its campus. The project was made possible by funding from the U.S. Department of Energy as well as by a partnership with the provincial Alberta Energy Research Institute; a private-public partnership, Climate Change Central; the federal Ministry of Western Economic Development; and local natural gas supplier, ATCO Gas. Operation of the fuel cell has contributed to reducing NAIT's carbon dioxide emissions through its efficient use of natural gas.

Lee Richardson

2006-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Project Information Form Project Title Environmentally Friendly Driving Feedback Systems Research and  

E-Print Network [OSTI]

Provided (by each agency or organization) Caltrans $136,000 Total Project Cost $136,000 Agency IDProject Information Form Project Title Environmentally Friendly Driving Feedback Systems Research of Research Project Among several strategies to reduce fuel consumption and greenhouse gas emissions from

California at Davis, University of

462

The Mississippi CCS Project  

SciTech Connect (OSTI)

The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.

Doug Cathro

2010-09-30T23:59:59.000Z

463

ConocoPhillips Gas Hydrate Production Test  

SciTech Connect (OSTI)

Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

Schoderbek, David; Farrell, Helen; Howard, James; Raterman, Kevin; Silpngarmlert, Suntichai; Martin, Kenneth; Smith, Bruce; Klein, Perry

2013-06-30T23:59:59.000Z

464

Advanced Materials for Mercury 50 Gas Turbine Combustion System  

SciTech Connect (OSTI)

Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70,

Price, Jeffrey

2008-09-30T23:59:59.000Z

465

Project Construction  

Broader source: Energy.gov [DOE]

Integrating renewable energy into Federal new construction or major renovations requires effective structuring of the construction team and project schedule. This overview discusses key construction team considerations for renewable energy as well as timing and expectations for the construction phase. The project construction phase begins after a project is completely designed and the construction documents (100%) have been issued. Construction team skills and experience with renewable energy technologies are crucial during construction, as is how the integration of renewable energy affects the project construction schedule.

466

Magnesium Projects  

Broader source: Energy.gov (indexed) [DOE]

cyberinfrastructure projects and will be augmented by original research in Computer Science and Software Engineering towards the creation of large, distributed, autonomic and...

467

EIS-0394: FutureGen Project  

Broader source: Energy.gov [DOE]

The EIS provides information about the potential environmental impacts of the DOE's proposal to provide federal funding to FutureGen Alliance, Inc. for the FutureGen Project. The project would include the planning, design, construction, and operation by the Alliance of a coal-fueled electric power and hydrogen gas production plant integrated with carbon dioxide capture and geologic sequestration of the captured gas.

468

Natural gas recovery, storage, and utilization SBIR program  

SciTech Connect (OSTI)

A Fossil Energy natural-gas topic has been a part of the DOE Small Business Innovation Research (SBIR) program since 1988. To date, 50 Phase SBIR natural-gas applications have been funded. Of these 50, 24 were successful in obtaining Phase II SBIR funding. The current Phase II natural-gas research projects awarded under the SBIR program and managed by METC are presented by award year. The presented information on these 2-year projects includes project title, awardee, and a project summary. The 1992 Phase II projects are: landfill gas recovery for vehicular natural gas and food grade carbon dioxide; brine disposal process for coalbed gas production; spontaneous natural as oxidative dimerization across mixed conducting ceramic membranes; low-cost offshore drilling system for natural gas hydrates; motorless directional drill for oil and gas wells; and development of a multiple fracture creation process for stimulation of horizontally drilled wells.The 1993 Phase II projects include: process for sweetening sour gas by direct thermolysis of hydrogen sulfide; remote leak survey capability for natural gas transport storage and distribution systems; reinterpretation of existing wellbore log data using neural-based patter recognition processes; and advanced liquid membrane system for natural gas purification.

Shoemaker, H.D.

1993-12-31T23:59:59.000Z

469

The TESLA Time Projection Chamber  

E-Print Network [OSTI]

A large Time Projection Chamber is proposed as part of the tracking system for a detector at the TESLA electron positron linear collider. Different ongoing R&D studies are reviewed, stressing progress made on a new type readout technique based on Micro-Pattern Gas Detectors.

Nabil Ghodbane

2002-12-12T23:59:59.000Z

470

Power Generation Subprogram status report, 1988-1989  

SciTech Connect (OSTI)

The status of individual contracts are described for projects within GRI's Power Generation Subprogram. The funding rationale, goals and objectives, accomplishments, and strategy are described for projects in cogeneration and power systems, prime mover and component development, and natural gas vehicles research. These project areas cut across the residential, commercial, industrial, transportation, and electric utility sectors.

Not Available

1989-09-01T23:59:59.000Z

471

Project X  

E-Print Network [OSTI]

provided by Project X would be a cost- effective approach toin Section I and for the cost estimate necessary as part ofby DOE order 413.3b. The cost range required for CD-0 will

Holmes, Steve

2014-01-01T23:59:59.000Z

472

Project Manager  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve as a project manager in the Fuel Cell Technologies Office in the DOE-EERE Office of Transportation responsible for a wide variety of highly...

473

Project Title:  

Broader source: Energy.gov (indexed) [DOE]

0 181 0 Hazardous Air Pollutants? Is the project subject to emissions limitations in an Air Quality 0 181 0 Control Region? 2 Revised on: 11122008 NEPA COMPLIANCE SURVEY Impacts...

474

STATE OF CALIFORNIA NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor DATE: February 25, 2011  

E-Print Network [OSTI]

) submitted a petition to amend various Conditions of Certification for the Gilroy Cogeneration Project (GCP, as currently written. BACKGROUND The Gilroy Cogeneration facility is a 115 MW cogeneration facility in Santa

475

Graduate Opportunities in Atmospheric Modeling to Understand Greenhouse Gas Emissions  

E-Print Network [OSTI]

Graduate Opportunities in Atmospheric Modeling to Understand Greenhouse Gas Emissions University://www.atmos.utah.edu/) seeks multiple graduate students to study greenhouse gas emissions associated with urban development greenhouse gas emissions. Samples of guiding questions as part of the projects include: · What can explain

Lin, John Chun-Han

476

Project Fact Sheet Project Update  

E-Print Network [OSTI]

medical and dental centre; shop and café area for students and vacation accommodation centre. The new & Figures: Budget: £51,074,000 Funding Source: Capital Plan Construction Project Programme: Start on Site

477

Assessment of coal bed gas prospects  

SciTech Connect (OSTI)

Coal bed gas is an often overlooked source of clean, methane-rich, H{sub 2}S-free natural gas. The economic development of coal bed gas requires a knowledge of coal gas reservoir characteristics and certain necessary departures from conventional evaluation, drilling, completion, and production practices. In many ways coal seam reservoirs are truly unconventional. Most coals sufficient rank have generated large volumes of gas that may be retained depth in varying amounts through adsorption. Coal gas production can take place only when the reservoir pressure is reduced sufficiently to allow the gas to desorb. Gas flow to the well bore takes place through a hierarchy of natural fractures, not the relatively impermeable coal matrix. Economic production is dependent upon critical factors intrinsic to the reservoir, including coal petrology, gas content, internal formation stratigraphy, fracture distribution, hydrogeology, in situ stress conditions, initial reservoir pressure and pressure regime, and the presence or absence of a {open_quote}free{close_quotes} gas saturation. Further, the coal bed reservoir is readily subject to formation damage through improper drilling, completion, or production techniques. This presentation will review the data types critical to the assessment of any coal seam gas prospect, suggest an outline method for screening such prospects, and point out some possible pitfalls to be considered in any coal bed gas development project.

Moore, T.R. [Phillips Petroleum Co., Bartlesville, OK (United States)

1996-12-31T23:59:59.000Z

478

Gas sensor  

DOE Patents [OSTI]

A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

2014-09-09T23:59:59.000Z

479

Project Final Report UBC LBS Project Services1 Project Final Report UBC LBS Project Services2  

E-Print Network [OSTI]

Project Final Report UBC LBS Project Services1 #12;Project Final Report UBC LBS Project Services2 EXECUTIVE SUMMARY The purpose of the UBC Project Services web-based project management portal project on campus within Project Services, and with the rest of the UBC community. We began this project by defining

480

TECO BGA Completes Milestone Project for U.S. Navy  

E-Print Network [OSTI]

TECO BGA completes milestone project for U.S. Navy Matthew Ossi TECO BGA TECO BGA and its affiliate Peoples Gas System teamed with the United States Navy to develop and implement an innovative energy conservation project for the military... branch's naval air station in Jacksonville, Florida. Described as the "single largest project that we've undertaken to date" by Peoples Gas company president Bill Cantrell, the energy conservation program - centered on the decentralization of the large...

Ossi, M.

Note: This page contains sample records for the topic "gas cogeneration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Cloudnet Project  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

Hogan, Robin

482

Ceramic Technology Project  

SciTech Connect (OSTI)

The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

Not Available

1992-03-01T23:59:59.000Z

483

Design of a diesel exhaust-gas purification system for inert-gas drilling  

SciTech Connect (OSTI)

To combat the serious oxygen corrosion of drill pipe when a low density drilling fluid (air or mist) is used in geothermal drilling, a system has been designed that produces an inert gas (essentially nitrogen) to be substituted for air. The system fits on three flatbed trailers, is roadable and produces 2000 scfm of gas. The projected cost for gas is slightly less than $2.00 per thousand standard cubic feet.

Caskey, B.C.

1982-01-01T23:59:59.000Z

484

Gas stream cleanup  

SciTech Connect (OSTI)

This report describes the current status and recent accomplishments of gas stream cleanup (GSCU) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Gas Stream Cleanup Program is to develop contaminant control strategies that meet environmental regulations and protect equipment in advanced coal conversion systems. Contaminant control systems are being developed for integration into seven advanced coal conversion processes: Pressurized fludized-bed combustion (PFBC), Direct coal-fueled turbine (DCFT), Intergrated gasification combined-cycle (IGCC), Gasification/molten carbonate fuel cell (MCFC), Gasification/solid oxide fuel cell (SOFC), Coal-fueled diesel (CFD), and Mild gasification (MG). These advanced coal conversion systems present a significant challenge for development of contaminant control systems because they generate multi-contaminant gas streams at high-pressures and high temperatures. Each of the seven advanced coal conversion systems incorporates distinct contaminant control strategies because each has different contaminant tolerance limits and operating conditions. 59 refs., 17 figs., 5 tabs.

Bossart, S.J.; Cicero, D.C.; Zeh, C.M.; Bedick, R.C.

1990-08-01T23:59:59.000Z

485

Semi-annual report for the unconventional gas recovery program, period ending September 30, 1980  

SciTech Connect (OSTI)

Progress is reported in research on methane recovery from coalbeds, eastern gas shales, western gas sands, and geopressured aquifers. In the methane from coalbeds project, data on information evaluation and management, resource and site assessment and characterization, model development, instrumentation, basic research, and production technology development are reported. In the methane from eastern gas shales project, data on resource characterization and inventory, extraction technology, and technology testing and verification are presented. In the western gas sands project, data on resource assessments, field tests and demonstrations and project management are reported. In the methane from geopressured aquifers project, data on resource assessment, supporting research, field tests and demonstrations, and technology transfer are reported.

Manilla, R.D. (ed.)

1980-11-01T23:59:59.000Z

486

Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 87  

SciTech Connect (OSTI)

Approximately 30 research projects are summarized in this report. Title of the project, contract number, company or university, award amount, principal investigators, objectives, and summary of technical progress are given for each project. Enhanced oil recovery projects include chemical flooding, gas displacement, and thermal recovery. Most of the research projects though are related to geoscience technology and reservoir characterization.

NONE

1997-10-01T23:59:59.000Z

487

NATURAL GAS MARKET ASSESSMENT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

488

PROJECT REQUEST FORM PROJECT HOLDER INFORMATION  

E-Print Network [OSTI]

PROJECT REQUEST FORM Last Name: Email: PROJECT HOLDER INFORMATION UCID:Last Name: Email: Institute if different than Project Holder) First Name: Project Short Name: (50 characters max) (for eFIN view only) Project Title: PROJECT INFORMATION Start Date (MM/DD/YYYY): End Date (MM/DD/YYYY): For Questions or HELP

de Leon, Alex R.

489

Grant Reference Grant Holder Research Organisation Project Title NE/I015299/1 Robert Upstill-Goddard Newcastle University Surfactant control of air-sea gas exchange in coastal waters  

E-Print Network [OSTI]

Grant Reference Grant Holder Research Organisation Project Title NE/I015299/1 Robert Upstill of Holocene Monsoon intensity from Central Asia NE/I016414/1 Michael James Lancaster University Quantifying's University of Belfast 14C as a tool to trace terrestrial carbon in a complex lake: implications for food

490

An Integrated Approach to Evaluating the Technical and Commercial Options for Cogeneration Facilities in the Process Industry  

E-Print Network [OSTI]

, economic and financial considerations, as well as to the determination of the appropriate degree of thermal integration of the power and process subsystems. An overview of steam and gas turbine cycle options for process/power integration typical...

Cooke, D. H.; McCue, R. H.

491

Discharge source with gas curtain for protecting optics from particles  

DOE Patents [OSTI]

A gas curtain device is employed to deflect debris that is generated by an extreme ultraviolet and soft x-ray radiation discharge source such as an electric discharge plasma source. The gas curtain device projects a stream of gas over the path of the radiation to deflect debris particles into a direction that is different from that of the path of the radiation. The gas curtain can be employed to prevent debris accumulation on the optics used in photolithography.

Fornaciari, Neal R.; Kanouff, Michael P.

2004-03-30T23:59:59.000Z

492

CALIFORNIA ENERGY COMMISSION 16 NINTH STREET  

E-Print Network [OSTI]

: Interested Parties FROM: Nancy Tronaas, Compliance Project Manager SUBJECT: Kern River Cogeneration Project from the Kern River Cogeneration Company (KRCC) to modify the Kern River Cogeneration Project (KRCP of State Route 99 in Kern County, California. KRCC requests that two of the four existing cogeneration

493

Recovery of Water from Boiler Flue Gas  

SciTech Connect (OSTI)

This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

2008-09-30T23:59:59.000Z

494

Georgia Tech Dangerous Gas  

E-Print Network [OSTI]

1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

Sherrill, David

495

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Name: Centre for Assisted Robotic Surgery Number: BESS1002b Project Champion: Professor Guang-Zong Yang of the refurbishment is to renew and expand the laboratory space for Robotic Assisted Surgery at the South Kensington Campus as par to the Hamlyn Centre for Robotic Surgery. The overall programme incorpo- rates both core

496

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Natural gas and waste coal fines were evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. A design was developed for a cofiring combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures in a power generation boiler, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. Following the preliminary design, GTI evaluated the gasification characteristics of selected feedstocks for the project. To conduct this work, GTI assembled an existing ''mini-bench'' unit to perform the gasification tests. The results of the test were used to confirm the process design completed in Phase Task 1. As a result of the testing and modeling effort, the selected biomass feedstocks gasified very well, with a carbon conversion of over 98% and individual gas component yields that matched the RENUGAS{reg_sign} model. As a result of this work, the facility appears very attractive from a commercial standpoint. Similar facilities can be profitable if they have access to low cost fuels and have attractive wholesale or retail electrical rates for electricity sales. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. Phase II has not been approved for construction at this time.

Francis S. Lau

2003-09-01T23:59:59.000Z

497

Alaskan Natural Gas Pipeline Developments (released in AEO2007)  

Reports and Publications (EIA)

The Annual Energy Outlook 2007 reference case projects that an Alaska natural gas pipeline will go into operation in 2018, based on the Energy Information Administration's current understanding of the projects time line and economics. There is continuing debate, however, about the physical configuration and the ownership of the pipeline. In addition, the issue of Alaskas oil and natural gas production taxes has been raised, in the context of a current market environment characterized by rising construction costs and falling natural gas prices. If rates of return on investment by producers are reduced to unacceptable levels, or if the project faces significant delays, other sources of natural gas, such as unconventional natural gas production and liquefied natural gas imports, could fulfill the demand that otherwise would be served by an Alaska pipeline.

2007-01-01T23:59:59.000Z

498

The Cogeneration Quandary  

E-Print Network [OSTI]

FERC regulations that enacted section 210 of PURPA established that electric utilities must purchase power made available by small independent power producers at a price equal to the utility’s avoided cost. Promulgated during the last decade...

Einhorn, M. A.

499

Cogeneration System Design Options  

E-Print Network [OSTI]

, engine, turbine, generator, switchgear, and balance of plant can be bewildering. This paper presents an overview and a systematic approach to the basic system alternatives and attributes. The presentation illustrates how these options match the electrical...

Gilbert, J. S.

500

Cogeneration in Texas  

E-Print Network [OSTI]

to dispatch the QF b) The reliability of the QF c) The terms of any legally enforceable obligations, especially the duration of the obligation d) The ability to coordinate scheduled outages of the QF with the utility 3. The relationship...'s power. The quality of firmness of a QF's power refers to the degree to which the capacity offered by the QF is an equivalent quality substitute for the utility's own generation or firm purchased power. Under the principles of economic dispatch...

Halicki, T.

1981-01-01T23:59:59.000Z