Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas coal emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

APPENDIX E: METHANE EMISSIONS FROM NATURAL GAS PRODUCTION, OIL PRODUCTION, COAL MINING, AND  

E-Print Network (OSTI)

APPENDIX E: METHANE EMISSIONS FROM NATURAL GAS PRODUCTION, OIL PRODUCTION, COAL MINING, AND OTHER PRODUCTION, COAL MINING, AND OTHER SOURCES An Appendix to the Report "A Lifecycle Emissions Model (LEM of natural gas, which is mostly CH4, occurs through natural gas production, oil production, and coal mining

Delucchi, Mark

2

Overview of coal consumption and related environmental trends, and implications for greenhouse gas emissions  

SciTech Connect

This paper reviews world and regional trends in coal consumption, and its growing contribution to greenhouse gas emissions. The paper then discusses a number of options within the coal system where greenhouse gas emissions, particularly CO{sub 2}, can be reduced. The commercial status and environmental performance of the main power plant technology options are briefly reviewed.

Johnson, C.J.; Wang, X.

1997-06-01T23:59:59.000Z

3

Flue Gas Conditioning to Reduce Particulate Emissions in Industrial Coal-Fired Boilers  

E-Print Network (OSTI)

Chemical technology has been used successfully to solve many of the operational and emissions problems that result from burning coal. This paper describes the use of blended chemical flue gas conditioners to significantly reduce particulate emissions in coal-fired industrial boilers. In many cases, these chemical conditioning agents have increased the efficiency of electrostatic precipitators and mechanical collectors by more than fifty percent. The effectiveness of this technology has been demonstrated on units generating 50,000 to 200,000 lbs./hr. steam. Results achieved at various industrial plants under actual operating conditions are presented.

Miller, B.; Keon, E.

1980-01-01T23:59:59.000Z

4

Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization  

Science Conference Proceedings (OSTI)

This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

2012-04-01T23:59:59.000Z

5

Coal Blending for the Reduction of Acid Gas Emissions: A Characterization of the Milling and Combustion Blends of Powder River Basin Coal and Bituminous Coal  

Science Conference Proceedings (OSTI)

This report describes a systematic study of performance and emission parameters from the combustion of Eastern bituminous coal, a Powder River Basin (PRB) coal, and various blends of these two coals. This study also investigated the effects of coal blending on mill performance, combustion, particulate emissions, and various emissions.

2004-09-21T23:59:59.000Z

6

Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation  

SciTech Connect

The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (United States). Civil and Environmental Engineering Department

2007-09-15T23:59:59.000Z

7

Capturing and Sequestering CO2 from a Coal-Fired Power Plant - Assessing the Net Energy and Greenhouse Gas Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Capturing and Sequestering CO Capturing and Sequestering CO 2 from a Coal-fired Power Plant - Assessing the Net Energy and Greenhouse Gas Emissions Pamela L. Spath (pamela_spath @nrel.gov; (303) 275-4460) Margaret K. Mann (margaret_mann @nrel.gov; (303) 275-2921) National Renewable Energy Laboratory 1617 Cole Boulevard Golden, CO 80401 INTRODUCTION It is technically feasible to capture CO 2 from the flue gas of a coal-fired power plant and various researchers are working to understand the fate of sequestered CO 2 and its long term environmental effects. Sequestering CO 2 significantly reduces the CO 2 emissions from the power plant itself, but this is not the total picture. CO 2 capture and sequestration consumes additional energy, thus lowering the plant's fuel to electricity efficiency. To compensate for this, more fossil fuel must be

8

Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas  

SciTech Connect

Liquid transportation fuels derived from coal and natural gas could help the United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTL fuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow. 28 refs., 2 figs., 4 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (USA). Civil and Environmental Engineering Department

2008-10-15T23:59:59.000Z

9

Zero emission coal  

DOE Green Energy (OSTI)

We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

Ziock, H.; Lackner, K.

2000-08-01T23:59:59.000Z

10

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

Environment Environment Emissions of Greenhouse Gases in the U. S. Release Date: March 31, 2011 | Next Release Date: Report Discontinued | Report Number: DOE/EIA-0573(2009) Greenhouse Gas Emissions Overview Diagram Notes [a] CO2 emissions related to petroleum consumption (includes 64 MMTCO2 of non-fuel-related emissions). [b] CO2 emissions related to coal consumption (includes 0.3 MMTCO2 of non-fuel-related emissions). [c] CO2 emissions related to natural gas consumption (includes 13 MMTCO2 of non-fuel-related emissions). [d] Excludes carbon sequestered in nonfuel fossil products. [e] CO2 emissions from the plastics portion of municipal solid waste (11 MMTCO2) combusted for electricity generation and very small amounts (0.4 MMTCO2) of geothermal-related emissions.

11

Advanced coal-fueled gas turbine systems  

SciTech Connect

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

12

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal  

Science Conference Proceedings (OSTI)

The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

Nick Degenstein; Minish Shah; Doughlas Louie

2012-05-01T23:59:59.000Z

13

COAL CLEANING BY GAS AGGLOMERATION  

SciTech Connect

The agglomeration of ultrafine-size coal particles in an aqueous suspension by means of microscopic gas bubbles was demonstrated in numerous experiments with a scale model mixing system. Coal samples from both the Pittsburgh No. 8 Seam and the Upper Freeport Seam were used for these experiments. A small amount of i-octane was added to facilitate the process. Microscopic gas bubbles were generated by saturating the water used for suspending coal particles with gas under pressure and then reducing the pressure. Microagglomerates were produced which appeared to consist of gas bubbles encapsulated in coal particles. Since dilute particle suspensions were employed, it was possible to monitor the progress of agglomeration by observing changes in turbidity. By such means it became apparent that the rate of agglomeration depends on the concentration of microscopic gas bubbles and to a lesser extent on the concentration of i-octane. Similar results were obtained with both Pittsburgh No. 8 coal and Upper Freeport coal.

MEIYU SHEN; ROYCE ABBOTT; T.D. WHEELOCK

1998-09-30T23:59:59.000Z

14

Comparative Assessment of Coal-and Natural Gas-fired Power Plants under a  

E-Print Network (OSTI)

Comparative Assessment of Coal- and Natural Gas-fired Power Plants under a CO2 Emission Performance standard (EPS) for pulverized coal (PC) and natural gas combined cycle (NGCC) power plants; · Evaluate · Coal-fired Power Plant: Supercritical pulverized coal (SC PC) Illinois #6 Coal Capacity Factor 75

15

Direct coal-fired gas turbines for combined cycle plants  

SciTech Connect

The combustion/emissions control island of the CFTCC plant produces cleaned coal combustion gases for expansion in the gas turbine. The gases are cleaned to protect the turbine from flow-path degeneration due to coal contaminants and to reduce environmental emissions to comparable or lower levels than alternate clean coal power plant tedmologies. An advantage of the CFTCC system over other clean coal technologies using gas turbines results from the CFTCC system having been designed as an adaptation to coal of a natural gas-fired combined cycle plant. Gas turbines are built for compactness and simplicity. The RQL combustor is designed using gas turbine combustion technology rather than process plant reactor technology used in other pressurized coal systems. The result is simpler and more compact combustion equipment than for alternate technologies. The natural effect is lower cost and improved reliability. In addition to new power generation plants, CFTCC technology will provide relatively compact and gas turbine compatible coal combustion/emissions control islands that can adapt existing natural gas-fired combined cycle plants to coal when gas prices rise to the point where conversion is economically attractive. Because of the simplicity, compactness, and compatibility of the RQL combustion/emission control island compared to other coal technologies, it could be a primary candidate for such conversions.

Rothrock, J.; Wenglarz, R.; Hart, P.; Mongia, H.

1993-11-01T23:59:59.000Z

16

Reducing Greenhouse Gas Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

fail to meet this demand, the most likely alternatives will be heavy oil, oil sands, oil shale, and liquids from natural gas and coal. These are carbon-intensive fuels that would...

17

Automated on-line determination of PPB levels of sodium and potassium in low-Btu coal gas and fluidized bed combustor exhaust by atomic emission spectrometry  

SciTech Connect

The Morgantown Energy Technology Center (METC), US Department of Energy, is involved in the development of processes and equipment for production of low-Btu gas from coal and for fluidized bed combustion of coal. The ultimate objective is large scale production of electricity using high temperature gas turbines. Such turbines, however, are susceptible to accelerated corrosion and self-destruction when relatively low concentrations of sodium and potassium are present in the driving gas streams. Knowledge and control of the concentrations of those elements, at part per billion levels, are critical to the success of both the gas cleanup procedures that are being investigated and the overall energy conversion processes. This presentation describes instrumentation and procedures developed at the Ames Laboratory for application to the problems outlined above and results that have been obtained so far at METC. The first Ames instruments, which feature an automated, dual channel flame atomic emission spectrometer, perform the sodium and potassium determinations simultaneously, repetitively, and automatically every two to three minutes by atomizing and exciting a fraction of the subject gas sample stream in either an oxyhydrogen flame or a nitrous oxide-acetylene flame. The analytical results are printed and can be transmitted simultaneously to a process control center.

Haas, W.J. Jr.; Eckels, D.E.; Kniseley, R.N.; Fassel, V.A.

1981-01-01T23:59:59.000Z

18

Measurement of Oil and Gas Emissions from a Marine Seep  

E-Print Network (OSTI)

hydrocarbon seeps near Coal Oil Point, California, Marineet al. , 2007, Measurement of Oil and Gas Emissions from aand P.G. Mikolaj, Natural oil seepage at Coal Oil Point,

Leifer, Ira; Boles, J R; Luyendyk, B P

2007-01-01T23:59:59.000Z

19

Regional GHG Emissions Stat s Greenhouse Gas and the Regional  

E-Print Network (OSTI)

6/5/2013 1 Regional GHG Emissions Stat s Greenhouse Gas and the Regional Power System Symposium.6% Coal 42% Hydro, 68.0% 10 #12;6/5/2013 6 Overall GHG Emissions: PNW vs. US Total US Greenhouse Gas Emissions by Economic Sector (2011) Total PNW* Greenhouse Gas Emissions by Economic Sector (2010

20

Coal Beneficiation by Gas Agglomeration  

DOE Patents (OSTI)

Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

Thomas D. Wheelock; Meiyu Shen

2000-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas coal emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Greenhouse Gas Emission Measurements  

Science Conference Proceedings (OSTI)

... climate change as a serious problem and that greenhouse gas (GHG ... models to determine the baselines of GHG emissions and the effect of GHG ...

2010-10-05T23:59:59.000Z

22

Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

Others wanting to learn more about greenhouse gas emissions and their reduction. About the ... based on ensuring the sustainability of finite natural resources.

23

Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass.  

SciTech Connect

This study expands and uses the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model to assess the effects of carbon capture and storage (CCS) technology and cellulosic biomass and coal cofeeding in Fischer-Tropsch (FT) plants on energy use and greenhouse gas (GHG) emissions of FT diesel (FTD). To demonstrate the influence of the coproduct credit methods on FTD life-cycle analysis (LCA) results, two allocation methods based on the energy value and the market revenue of different products and a hybrid method are employed. With the energy-based allocation method, fossil energy use of FTD is less than that of petroleum diesel, and GHG emissions of FTD could be close to zero or even less than zero with CCS when forest residue accounts for 55% or more of the total dry mass input to FTD plants. Without CCS, GHG emissions are reduced to a level equivalent to that from petroleum diesel plants when forest residue accounts for 61% of the total dry mass input. Moreover, we show that coproduct method selection is crucial for LCA results of FTD when a large amount of coproducts is produced.

Xie, X.; Wang, M.; Han, J. (Energy Systems)

2011-04-01T23:59:59.000Z

24

Economics of gas from coal  

SciTech Connect

This study deals with three questions: What does gas from coal cost and what affects this cost; How do different approaches and processes compare; and How near to competitive cost-levels is present-day technology. Discussion covers production of both substitute natural gas (SNG) and medium calorific gas (MCG: 10-16 MJ/Nm3 or 250-400 Btu/SCF). Conclusions are that SNG from low-cost U.S. coal and West German brown coal are, on the basis of mature technology and Government rates-of-return, roughly competitive with gas imports into the U.S. and Europe respectively. Similarly MCG from second-generation gasifiers is competitive with gas-oil or No. 2 heating oil in Europe, North America and Japan. However, capital costs form about half total gas costs at 10 percent rate-of-return, so that the competitiveness of gas from coal is sensitive to capital costs: this is the area of greatest uncertainty.

Teper, M.; Hemming, D.F.; Ulrich, W.C.

1983-01-01T23:59:59.000Z

25

The impact of wet flue gas desulfurization scrubbing on mercury emissions from coal-fired power stations  

Science Conference Proceedings (OSTI)

The article introduces a predictive capability for mercury (Hg) retention in any Ca-based wet flue gas desulfurization (FGD) scrubber, given Hg speciation at the FGD inlet, the flue gas composition, and the sulphur dioxide (SO{sub 2}) capture efficiency. A preliminary statistical analysis of data from 17 full-scale wet FGDs connects flue gas compositions, the extents of Hg oxidation at FGD inlets, and Hg retention efficiencies. These connections show that solution chemistry within the FGD determines Hg retention. A more thorough analysis based on thermochemical equilibrium yields highly accurate predictions for total Hg retention with no parameter adjustments. For the most reliable data, the predictions were within measurement uncertainties for both limestone and Mg/lime systems operating in both forced and natural oxidation mode. With the U.S. Environmental Protection Agency's (EPA) Information Collection Request (ICR) database, the quantitative performance was almost as good for the most modern FGDs, which probably conform to the very high SO{sub 2} absorption efficiencies assumed in the calculations. The large discrepancies for older FGDs are tentatively attributed to the unspecified SO{sub 2} capture efficiencies and operating temperatures and to the possible elimination of HCl in prescrubbers. The equilibrium calculations suggest that Hg retention is most sensitive to inlet HCl and O{sub 2} levels and the FGD temperature; weakly dependent on SO{sub 2} capture efficiency; and insensitive to HgCl{sub 2}, NO, CA:S ratio, slurry dilution level in limestone FGDs, and MgSO{sub 3} levels in Mg/lime systems. Consequently, systems with prescrubbers to eliminate HCl probably retain less Hg than fully integrated FGDs. The analysis also predicts re-emission of Hg{sub 0} but only for inlet O{sub 2} levels that are much lower than those in full-scale FGDs. 12 refs., 5 figs., 3 tabs.

Stephen Niksa; Naoki Fujiwara [Niksa Energy Associates, Belmont, CA (US)

2005-07-01T23:59:59.000Z

26

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal  

Science Conference Proceedings (OSTI)

The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbon??s catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full-automation was implemented to enable continuous operation (24/7) with minimum operator supervision. Continuous run was carried out for 40 days. Very high SOx (>99.9%) and NOx (98%) removal efficiencies were also achieved in a continuous unit. However, the retention capacity of carbon beds for SOx and NOx was decreased from ~20 hours to ~10 hours over a 40 day period of operation, which was in contrast to the results obtained in a batch unit. These contradictory results indicate the need for optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level and thus minimize the capital cost of the system. In summary, the activated carbon process exceeded performance targets for SOx and NOx removal efficiencies and it was found to be suitable for power plants burning both low and high sulfur coals. More efforts are needed to optimize the system performance.

Monica Zanfir; Rahul Solunke; Minish Shah

2012-06-01T23:59:59.000Z

27

Gas Turbine Emissions  

E-Print Network (OSTI)

Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack of regulatory interest in the 'real world' test results coupled with the difficulties of gathering analogous bench test data for systems employing gas turbines with Heat Recovery Steam Generators (HRSG) and steam injection. It appears that the agencies are getting a better grasp of emissions, but there are still problem areas, particularly CO and unburned hydrocarbon emissions. The lag in data has resulted in the imposition of a CO reactor as BACT for the gas turbine. With the renewed concern about the environment, air permits will have a high profile with offsets being the next fix beyond BACT. 'The manner in which technology developers and electric utilities will share emissions reductions in the coming era of pollution allowance trading is becoming prominent on the agendas of strategic planners at technology vendors and the electric power industry....' (1) Therefore, it becomes increasingly important that the proponents of gas turbine-based facilities establish more reliable data on their proposed emissions. This paper addresses the gas turbine emissions experiences of eight cogeneration plants utilizing: 1) steam injection for both NOx control and power augmentation, 2) CO reactors, 3) selective catalytic reduction units. It also looks at possible regulatory actions.

Frederick, J. D.

1990-06-01T23:59:59.000Z

28

Gas turbine plant emissions  

SciTech Connect

Many cogeneration facilities use gas turbines combined with heat recovery boilers, and the number is increasing. At the start of 1986, over 75% of filings for new cogeneration plants included plans to burn natural gas. Depending on the geographic region, gas turbines are still one of the most popular prime movers. Emissions of pollutants from these turbines pose potential risks to the environment, particularly in geographical areas that already have high concentrations of cogeneration facilities. Although environmental regulations have concentrated on nitrogen oxides (NO/sub x/) in the past, it is now necessary to evaluate emission controls for other pollutants as well.

Davidson, L.N.; Gullett, D.E.

1987-03-01T23:59:59.000Z

29

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

Greenhouse Gas Emissions of Shale Gas, Nuraral Gas, Coal,Emissions of Marcellus Shale Gas, ENvr_. Ries. LTRs. , Aug.acknowledge, "Marcellus shale gas production is still in its

Hagan, Colin R.

2012-01-01T23:59:59.000Z

30

Regional GHG Emissions O tlook Greenhouse Gas and the Regional  

E-Print Network (OSTI)

6/5/2013 1 Regional GHG Emissions O tlook Greenhouse Gas and the Regional Power System Symposium Natural Gas Prices 6. Potential Federal CO2 regulatory cost policy Two basic CO2 Cost 10 20 30 40 Million Generation Coal 19 % 15 % 13 % Natural Gas 10 % 10 % 14 % Wind & Other Renewables 8 % 12 % 13 % Emission

31

Zero Emission Coal Power, a New Concept  

NLE Websites -- All DOE Office Websites (Extended Search)

Emission Coal Power, a New Concept H.-J. Ziock, (ziock@lanl.gov; 505-667-7265), K. S. Lackner Los Alamos National Laboratory Mail stop D462 Los Alamos, NM 87545 D. P. Harrison,...

32

Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants  

E-Print Network (OSTI)

1 Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants by Sarah Bashadi and Policy Program #12;2 #12;3 Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power-combustion capture retrofits are expected to a near-term option for mitigating CO2 emissions from existing coal

33

Emissions of air toxics from coal-fired boilers: Arsenic  

Science Conference Proceedings (OSTI)

Concerns over emissions of hazardous air pollutants (air toxics) have emerged as a major environmental issue; the authority of the US Environmental Protection Agency to regulate such pollutants has been greatly expanded through passage of the Clean Air Act Amendments of 1990. Arsenic and arsenic compounds are of concern mainly because of their generally recognized toxicity. Arsenic is also regarded as one of the trace elements in coal subject to significant vaporization. This report summarizes and evaluates available published information on the arsenic content of coals mined in the United States, on arsenic emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Bituminous and lignite coals have the highest mean arsenic concentrations, with subbituminous and anthracite coals having the lowest. However, all coal types show very significant variations in arsenic concentrations. Arsenic emissions from coal combustion are not well-characterized, particularly with regard to determination of specific arsenic compounds. Variations in emission, rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of arsenic by environmental control technologies are available primarily for systems with cold electrostatic precipitators, where removals of approximately 50 to 98% have been reported. Limited data for wet flue-gas-desulfurization systems show widely varying removals of from 6 to 97%. On the other hand, waste incineration plants report removals in a narrow range of from 95 to 99%. This report briefly reviews several areas of research that may lead to improvements in arsenic control for existing flue-gas-cleanup technologies and summarizes the status of analytical techniques for measuring arsenic emissions from combustion sources.

Mendelsohn, M.H.; Huang, H.S.; Livengood, C.D.

1994-08-01T23:59:59.000Z

34

Effects of Air Emissions Controls on Coal Combustion Products: Interim Data Report  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is collecting information describing the effects of air emissions controls on coal combustion products (CCPs) as they pertain to disposal and use. Specifically, data are being collected to assess the impacts of calcium bromide (CaBr2) addition to coal, refined coal, halogen injection in the boiler, brominated activated carbon injection (BrACI) in the flue gas, dry sorbent injection (DSI) in the flue gas, and flue gas desulfurization (FGD) ...

2013-12-18T23:59:59.000Z

35

Emissions of airborne toxics from coal-fired boilers: Mercury  

Science Conference Proceedings (OSTI)

Concerns over emissions of hazardous air Pollutants (air toxics) have emerged as a major environmental issue, and the authority of the US Environmental Protection Agency to regulate such pollutants was greatly expanded through the Clean Air Act Amendments of 1990. Mercury has been singled out for particular attention because of concerns over possible effects of emissions on human health. This report evaluates available published information on the mercury content of coals mined in the United States, on mercury emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Anthracite and bituminous coals have the highest mean-mercury concentrations, with subbituminous coals having the lowest. However, all coal types show very significant variations in mercury concentrations. Mercury emissions from coal combustion are not well-characterized, particularly with regard to determination of specific mercury compounds. Variations in emission rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of mercury by environmental control technologies are available primarily for systems with electrostatic precipitators, where removals of approximately 20% to over 50% have been reported. Reported removals for wet flue-gas-desulfurization systems range between 35 and 95%, while spray-dryer/fabric-filter systems have given removals of 75 to 99% on municipal incinerators. In all cases, better data are needed before any definitive judgments can be made. This report briefly reviews several areas of research that may lead to improvements in mercury control for existing flue-gas-clean-up technologies and summarizes the status of techniques for measuring mercury emissions from combustion sources.

Huang, H.S.; Livengood, C.D.; Zaromb, S.

1991-09-01T23:59:59.000Z

36

Advanced coal-fueled gas turbine systems  

DOE Green Energy (OSTI)

Westinghouse's Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO[sub x] emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO[sub x] levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

Not Available

1992-09-01T23:59:59.000Z

37

Changes related to "Coal seam natural gas producing areas (Louisiana...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Coal seam natural gas producing areas (Louisiana)" Coal seam natural gas producing areas...

38

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

Greenhouse Gas Tables (1990-2009) Greenhouse Gas Tables (1990-2009) Table Title Formats Overview 1 U.S. emissions of greenhouse gases, based on global warming potential 2 U.S. greenhouse gas intensity and related factors 3 Distribution of total U.S. greenhouse gas emissions by end-use sector 4 World energy-related carbon dioxide emissions by region 5 Greenhouse gases and 100-year net global warming potentials Carbon dioxide emissions 6 U.S. carbon dioxide emissions from energy and industry 7 U.S. energy-related carbon dioxide emissions by end-use sector 8 U.S. carbon dioxide emission from residential sector energy consumption 9 U.S. carbon dioxide emissions from commercial sector energy consumption 10 U.S. carbon dioxide emissions from industrial sector energy consumption

39

Coal Biomodification to Reduce Mercury Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4132 heino.beckert@netl.doe.gov Coal BiomodifiCation to ReduCe meRCuRy emissions Description In partnership with a number of...

40

Gas distributor for fluidized bed coal gasifier  

DOE Patents (OSTI)

A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

Worley, Arthur C. (Mt. Tabor, NJ); Zboray, James A. (Irvine, CA)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coal emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Controlling mercury emissions from coal-fired power plants  

Science Conference Proceedings (OSTI)

Increasingly stringent US federal and state limits on mercury emissions form coal-fired power plants demand optimal mercury control technologies. This article summarises the successful removal of mercury emissions achieved with activated carbon injection and boiler bromide addition, technologies nearing commercial readiness, as well as several novel control concepts currently under development. It also discusses some of the issues standing in the way of confident performance and cost predictions. In testing conducted on western coal-fired units with fabric filters or TOXECON to date, ACI has generally achieved mercury removal rates > 90%. At units with ESPs, similar performance requires brominated ACI. Alternatively, units firing western coals can use boiler bromide addition to increase flue gas mercury oxidation and downstream capture in a wet scrubber, or to enhance mercury removal by ACI. At eastern bituminous fired units with ESPs, ACI is not as effective, largely due to SO{sub 3} resulting from the high sulfur content of the coal or the use of SO{sub 3} flue gas conditioning to improve ESP performance. 7 refs., 3 figs.

Chang, R. [Electric Power Research Institute, Palo Alto, CA (United States)

2009-07-15T23:59:59.000Z

42

Mercury emission behavior during isolated coal particle combustion  

E-Print Network (OSTI)

Of all the trace elements emitted during coal combustion, mercury is most problematic. Mercury from the atmosphere enters into oceanic and terrestrial waters. Part of the inorganic Hg in water is converted into organic Hg (CH3Hg), which is toxic and bioaccumulates in human and animal tissue. The largest source of human-caused mercury air emissions in the U.S is from combustion coal, a dominant fuel used for power generation. The Hg emitted from plants primarily occurs in two forms: elemental Hg and oxidized Hg (Hg2+). The coal chlorine content and ash composition, gas temperature, residence time and presence of different gases will decide the speciation of Hg into Hg0 and Hg2+. For Wyoming coal the concentrations of mercury and chlorine in coal are 120ppb and 140ppb. In order to understand the basic process of formulation of HgCl2 and Hg0 a numerical model is developed in the current work to simulate in the detail i) heating ii) transient pyrolysis of coal and evolution of mercury and chlorine, iii) gas phase oxidation iv) reaction chemistry of Hg and v) heterogeneous oxidation of carbon during isolated coal particle combustion. The model assumes that mercury and chlorine are released as a part of volatiles in the form of elemental mercury and HCl. Homogenous reaction are implemented for the oxidation of mercury. Heterogeneous Hg reactions are ignored. The model investigates the effect of different parameters on the extent of mercury oxidation; particle size, ambient temperature, volatile matter, blending coal with high chlorine coal and feedlot biomass etc,. Mercury oxidation is increased when the coal is blended with feedlot biomass and high chlorine coal and Hg % conversion to HgCl2 increased from 10% to 90% when 20% FB is blended with coal. The ambient temperature has a negative effect on mercury oxidation, an increase in ambient temperature resulted in a decrease in the mercury oxidation. The percentage of oxidized mercury increases from 9% to 50% when the chlorine concentration is increased from 100ppm to 1000ppm. When the temperature is decreased from 1950 K to 950 K, the percentage of mercury oxidized increased from 3% to 27%.

Puchakayala, Madhu Babu

2006-12-01T23:59:59.000Z

43

ZERO EMISSION COAL POWER, A NEW CONCEPT  

DOE Green Energy (OSTI)

The Zero Emission Coal Alliance (ZECA) is developing an integrated zero emission process that generates clean energy carriers (electricity or hydrogen) from coal. The process exothermically gasifies coal using hydrogen to produce a methane rich intermediate state. The methane is subsequently reformed using water and a CaO based sorbent. The sorbent supplies the energy needed to drive the reforming reaction and simultaneously removes the generated CO{sub 2} by producing CaCO{sub 3}. The resulting hydrogen product stream is split, approximately 1/2 going to gasify the next unit of coal, and the other half being the product. This product stream could then be split a second time, part being cleaned up with a high temperature hydrogen separation membrane to produce pure hydrogen, and the remainder used to generate electricity via a solid oxide fuel cell (SOFC). The inevitable high temperature waste heat produced by the SOFC would in turn be used to regenerate the CaO by calcining the CaCO{sub 3} product of the reforming stage thereby generating a pure stream of CO{sub 2}. The CO{sub 2} will be dealt with a mineral sequestration process discussed in other papers presented at this conference. The SOFC has the added advantage of doubling as an oxygen separation membrane, thereby keeping its exhaust stream, which is predominantly steam, free of any air. This exhaust stream is largely recycled back to the reforming stage to generate more hydrogen, with a slipstream being extracted and condensed. The slipstream carries with it the other initial contaminants present in the starting coal. Overall the process is effectively closed loop with zero gaseous emissions to the atmosphere. The process also achieves very high conversion efficiency from coal energy to electrical energy ({approximately} 70%) and naturally generates a pure stream of CO{sub 2} ready for disposal via the mineral sequestration process.

H. -J. ZIOCK; K. S. LACKNER; D. P. HARRISON

2001-04-01T23:59:59.000Z

44

"Blue Sky" Approaches to Reduce Greenhouse Gas Emissions: An Initial Assessment of Potential New Types of Greenhouse Gas Emissions Offsets  

Science Conference Proceedings (OSTI)

This report provides an initial assessment of potential new approaches to reducing greenhouse gas (GHG) emissions that might be capable of generating large-scale GHG emissions offsets at relatively low cost compared to other GHG mitigation options. The nine potential blue sky approaches assessed in this report include biochar, destruction of ozone depleting substances, control of natural fugitive methane seeps from coal seams, control of fugitive natural gas emissions associated with hydraulic fracturing...

2011-12-22T23:59:59.000Z

45

Coal seam natural gas producing areas (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is...

46

A Coal-Fired Power Plant with Zero Atmospheric Emissions  

SciTech Connect

This paper presents the thermodynamic analysis of a coal-based zero-atmospheric emissions electric power plant. The approach involves an oxygen-blown coal gasification unit. The resulting synthetic gas (syngas) is combusted with oxygen in a gas generator to produce the working fluid for the turbines. The combustion produces a gas mixture composed almost entirely of steam and carbon dioxide. These gases drive multiple turbines to produce electricity. The turbine discharge gases pass to a condenser where water is captured. A stream of carbon dioxide then results that can be used for enhanced oil recovery, or for sequestration. This analysis is based on a 400 MW electric power generating plant that uses turbines that are currently under development by a U.S. turbine manufacturer. The power plant has a net thermal efficiency of 42.6%. This efficiency is based on the lower heating value of the coal, and includes the energy necessary for coal gasification, air separation and for carbon dioxide separation and sequestration. The paper also presents an analysis of the cost of electricity (COE) and the cost of conditioning carbon dioxide for sequestration for the 400 MW power plant. Electricity cost is compared for three different gasification processes (Texaco, Shell, and Koppers-Totzek) and two types of coals (Illinois No.6 and Wyodak). Cost of electricity ranges from 5.16 {cents}/kWhr to 5.42 {cents}/kWhr, indicating that the cost of electricity varies by 5% for the three gasification processes considered and the two coal types used.

Martinez-Frias, J; Aceves, S M; Smith, J R; Brandt, H

2003-05-27T23:59:59.000Z

47

Coal-fueled diesel emissions control technology development  

DOE Green Energy (OSTI)

The objective of this project is to develop an emissions control system for a GE locomotive powered by a Coal Water Slurry (CWS) fuel diesel engine. The development effort is directed toward reducing particulate matter, SO{sub 2} and NO{sub x} emissions from the engine exhaust gas at 700--800F and 1-2 psig. The commercial system should be economically attractive while subject to limited space constraints. After testing various alternatives, a system composed of a barrier filter with sorbent injection ups was selected for controlling particulates, SO{sub 2} and NO{sub x} emissions. In bench scale and 500 acfm slip s tests, removal efficiencies greater than 90% for SO{sub 2} and 85% for NO{sub x} were achieved. Particulate emissions from the barrier filter are within NSPS limits.

Cook, C.; Gal, E.; Mengel, M.; Van Kleunen, W.

1993-03-01T23:59:59.000Z

48

Coal-fueled diesel emissions control technology development  

DOE Green Energy (OSTI)

The objective of this project is to develop an emissions control system for a GE locomotive powered by a Coal Water Slurry (CWS) fuel diesel engine. The development effort is directed toward reducing particulate matter, SO[sub 2] and NO[sub x] emissions from the engine exhaust gas at 700--800F and 1-2 psig. The commercial system should be economically attractive while subject to limited space constraints. After testing various alternatives, a system composed of a barrier filter with sorbent injection ups was selected for controlling particulates, SO[sub 2] and NO[sub x] emissions. In bench scale and 500 acfm slip s tests, removal efficiencies greater than 90% for SO[sub 2] and 85% for NO[sub x] were achieved. Particulate emissions from the barrier filter are within NSPS limits.

Cook, C.; Gal, E.; Mengel, M.; Van Kleunen, W.

1993-01-01T23:59:59.000Z

49

Mercury emission control for coal fired power plants using coal and biomass  

E-Print Network (OSTI)

Mercury is a leading concern among the air toxic metals addressed in the 1990 Clean Air Act Amendments (CAAA) because of its volatility, persistence, and bioaccumulation as methylmercury in the environment and its neurological health impacts. The Environmental Protection Agency (EPA) reports for 2001 shows that total mercury emissions from all sources in USA is about 145 tons per annum, of which coal fired power plants contribute around 33% of it, about 48 tons per annum. Unlike other trace metals that are emitted in particulate form, mercury is released in vapor phase in elemental (Hg0) or oxidized (Hg2+, mainly HgCl2) form. To date, there is no post combustion treatment which can effectively capture elemental mercury vapor, but the oxidized form of mercury can be captured in traditional emission control devices such as wet flue gas defulrization (WFGD) units, since oxidized mercury (HgCl2) is soluble in water. The chlorine concentration present during coal combustion plays a major role in mercury oxidation, which is evident from the fact that plants burning coal having high chlorine content have less elemental mercury emissions. A novel method of co-firing blends of low chlorine content coal with high chlorine content cattle manure/biomass was used in order to study its effect on mercury oxidation. For Texas Lignite and Wyoming coal the concentrations of chlorine are 139 ppm and 309 ppm on dry ash free basis, while for Low Ash Partially Composted Dairy Biomass it is 2,691 ppm. Co-firing experiments were performed in a 100,000 BTU/hr (29.3 kWt) Boiler Burner facility located in the Coal and Biomass Energy laboratory (CBEL); coal and biomass blends in proportions of 80:20, 90:10, 95:5 and 100:0 were investigated as fuels. The percentage reduction of Hg with 95:5, 90:10 and 80:20 blends were measured to be 28- 50%, 42-62% and 71-75% respectively. Though cattle biomass serves as an additive to coal, to increase the chlorine concentration, it leads to higher ash loading. Low Ash and High Ash Partially Composted Dairy Biomass have 164% and 962% more ash than Wyoming coal respectively. As the fraction of cattle biomass in blend increases in proportion, ash loading problems increase simultaneously. An optimum blend ratio is arrived and suggested as 90:10 blend with good reduction in mercury emissions without any compromise on ash loading.

Arcot Vijayasarathy, Udayasarathy

2007-12-01T23:59:59.000Z

50

Oxides Emissions from Coal-Fired Boilers TOPICAL REPORT NUMBER 14  

NLE Websites -- All DOE Office Websites (Extended Search)

Reburning Technologies for the Control of Nitrogen Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers TOPICAL REPORT NUMBER 14 MAY 1999 TOPICAL REPORT NUMBER 14 A report on three projects conducted under separate cooperative agreements between: The U.S. Department of Energy and * The Babcock & Wilcox Company * Energy and Environmental Research Corporation * New York State Electric & Gas Corporation MAY 1999 Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers Cover image: Schematic of reburning technology Source: Energy and Environmental Research Corporation Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers Executive Summary ..................................................................................................

51

Innovative coal gas cleaning at Sparrows Point Coal Chemical Plant, Maryland for Bethlehem Steel Corporation  

SciTech Connect

In response to the Clean Coal II solicitation, Bethlehem Steel Corporation (BSC) submitted a proposal to the DOE in May 1988. The proposal submitted by BSC describes a Unique integration of commercial technologies developed by Davy/Still Otto to clean coke oven gas being produced at its Sparrows Point, Maryland steel plant. This innovative coke oven gas cleaning system combines secondary gas cooling with hydrogen sulfide and ammonia removal, hydrogen sulfide and ammonia recovery, ammonia destruction and sulfur recovery to produce a cleaner fuel gas for plant use. The primary environmental benefit associated with employing this innovative coke oven gas cleaning system is realized when the fuel gas is burned within the steel plant. Emissions of sulfur dioxide are reduced by more than 60 percent. The removal, recovery and destruction of ammonia eliminates the disposal problems associated with an unmarketable ammonium sulfate by-product. Significant reduction in benzene and hydrogen cyanide emissions are also obtained.

Antrobus, K.; Platts, M. (Davy/Still Otto, Pittsburgh, PA (US)); Harbold, L. (Bethlehem Steel Corp., PA (USA)); Kornosky, R. (Office of Clean Coal Technology, US DOE, Pittsburgh, PA (US))

1990-01-01T23:59:59.000Z

52

Waste Coal Fines Reburn for NOx and Mercury Emission Reduction  

SciTech Connect

Injection of coal-water slurries (CWS) made with both waste coal and bituminous coal was tested for enhanced reduction of NO{sub x} and Hg emissions at the AES Beaver Valley plant near Monaca, PA. Under this project, Breen Energy Solutions (BES) conducted field experiments on the these emission reduction technologies by mixing coal fines and/or pulverized coal, urea and water to form slurry, then injecting the slurry in the upper furnace region of a coal-fired boiler. The main focus of this project was use of waste coal fines as the carbon source; however, testing was also conducted using pulverized coal in conjunction with or instead of waste coal fines for conversion efficiency and economic comparisons. The host site for this research and development project was Unit No.2 at AES Beaver Valley cogeneration station. Unit No.2 is a 35 MW Babcock & Wilcox (B&W) front-wall fired boiler that burns eastern bituminous coal. It has low NO{sub x} burners, overfire air ports and a urea-based selective non-catalytic reduction (SNCR) system for NO{sub x} control. The back-end clean-up system includes a rotating mechanical ash particulate removal and electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. Coal slurry injection was expected to help reduce NOx emissions in two ways: (1) Via fuel-lean reburning when the slurry is injected above the combustion zone. (2) Via enhanced SNCR reduction when urea is incorporated into the slurry. The mercury control process under research uses carbon/water slurry injection to produce reactive carbon in-situ in the upper furnace, promoting the oxidation of elemental mercury in flue gas from coal-fired power boilers. By controlling the water content of the slurry below the stoichiometric requirement for complete gasification, water activated carbon (WAC) can be generated in-situ in the upper furnace. As little as 1-2% coal/water slurry (heat input basis) can be injected and generate sufficient WAC for mercury capture. During July, August, and September 2007, BES designed, procured, installed, and tested the slurry injection system at Beaver Valley. Slurry production was performed by Penn State University using equipment that was moved from campus to the Beaver Valley site. Waste coal fines were procured from Headwaters Inc. and transported to the site in Super Sacks. In addition, bituminous coal was pulverized at Penn State and trucked to the site in 55-gallon drums. This system was operated for three weeks during August and September 2007. NO{sub x} emission data were obtained using the plant CEM system. Hg measurements were taken using EPA Method 30B (Sorbent Trap method) both downstream of the electrostatic precipitator and in the stack. Ohio Lumex Company was on site to provide rapid Hg analysis on the sorbent traps during the tests. Key results from these tests are: (1) Coal Fines reburn alone reduced NO{sub x} emissions by 0-10% with up to 4% heat input from the CWS. However, the NO{sub x} reduction was accompanied by higher CO emissions. The higher CO limited our ability to try higher reburn rates for further NO{sub x} reduction. (2) Coal Fines reburn with Urea (Carbon enhanced SNCR) decreased NO{sub x} emissions by an additional 30% compared to Urea injection only. (3) Coal slurry injection did not change Hg capture across the ESP at full load with an inlet temperature of 400-430 F. The Hg capture in the ESP averaged 40%, with or without slurry injection; low mercury particulate capture is normally expected across a higher temperature ESP because any oxidized mercury is thought to desorb from the particulate at ESP temperatures above 250 F. (4) Coal slurry injection with halogen salts added to the mixing tank increased the Hg capture in the ESP to 60%. This significant incremental mercury reduction is important to improved mercury capture with hot-side ESP operation and wherever hindrance from sulfur oxides limit mercury reduction, because the higher temperature is above sulfur oxide dew point interference.

Stephen Johnson; Chetan Chothani; Bernard Breen

2008-04-30T23:59:59.000Z

53

Greenhouse Gas Emissions Inventory  

E-Print Network (OSTI)

are calculated using the eGRID post 2006 emission factor for all subject years (1990-2009); the CA-CP Calculator uses a different (lower) factor (eGRID pre 2006) for years 1990-2006. WUSTL deviated from the CA-CP Calculator on this emission factor because using the pre and post eGRID factors skews GHG emissions

Dobbins, Ian G.

54

Geomechanics of coal-gas interactions : the role of coal permeability evolution.  

E-Print Network (OSTI)

??[Truncated abstract] Complex interactions between stress and sorptive chemistry exert strong influence on coal geomechanics. These include influences on gas sorption and flow, coal deformation, (more)

Chen, Zhongwei

2012-01-01T23:59:59.000Z

55

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

1. Greenhouse Gas Emissions Overview 1. Greenhouse Gas Emissions Overview 1.1 Total emissions Total U.S. anthropogenic (human-caused) greenhouse gas emissions in 2009 were 5.8 percent below the 2008 total (Table 1). The decline in total emissions-from 6,983 million metric tons carbon dioxide equivalent (MMTCO2e) in 2008 to 6,576 MMTCO2e in 2009-was the largest since emissions have been tracked over the 1990-2009 time frame. It was largely the result of a 419-MMTCO2e drop in carbon dioxide (CO2) emissions (7.1 percent). There was a small increase of 7 MMTCO2e (0.9 percent) in methane (CH4) emissions, and an increase of 8 MMTCO2e (4.9 percent), based on partial data, in emissions of man-made gases with high global warming potentials (high-GWP gases). (Draft estimates for emissions of HFC and PFC

56

Near-zero Emissions Oxy-combustion Flue Gas Purification  

NLE Websites -- All DOE Office Websites (Extended Search)

Near-zero Emissions Oxy-combustion Near-zero Emissions Oxy-combustion Flue Gas Purification Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) R&D Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The EPEC R&D Program portfolio of post- and

57

Integrated Low Emissions Cleanup system for direct coal fueled turbines  

Science Conference Proceedings (OSTI)

The United States Department of.Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of coal-fired turbine technology in the areas of Pressurized Fluidized Bed Combustion, Integrated Gasification Combined Cycles, and Direct Coal-Fired Turbines. A major technical challenge remaining for the development of coal-fired turbine systems is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating an Integrated Low Emissions Cleanup (ILEC) concept that has been configured to meet this technical challenge. This ceramic barrier filter, ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases, and is considering cleaning temperatures up to 2100{degrees}F. This document describes Phase II of the program, the design, construction, and shakedown of a bench-scale facility to test and confirm the feasibility of this ILEC technology.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Smeltzer, E.E.; Lippert, T.E.

1993-07-01T23:59:59.000Z

58

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

from coal- or natural gas-fired power plants occur "up-of natural gas is lost before reaching the power plant." 30power plant. Yet, when it comes to upstream emissions, the lifecycle for natural gas

Hagan, Colin R.

2012-01-01T23:59:59.000Z

59

U.S. zero emission coal alliance techology  

DOE Green Energy (OSTI)

For coal to maintain its major role in supplying the world's energy, eventually all emissions to the atmosphere must be eliminated. Not only must conventional pollutants, like sulfur compounds and dust particles be kept out of the air, but also the far larger quantities of carbon dioxide that result from the combustion of carbon. We present a new technology for coal-based power that generates hydrogen from carbon and water, avoids emissions to the atmosphere, and disposes of the carbon dioxide as inert, solid mineral carbonates. Based on the available resources, coal power is sustainable for centuries. Our zero emission technology makes coal energy as clean as renewable energy.

Lackner, K. S. (Klaus S.); Ziock, H. J. (Hans-Joachim)

2001-01-01T23:59:59.000Z

60

Prediction of Coal /Gas Outbursts Based on Selective Ensemble Learning  

Science Conference Proceedings (OSTI)

For the purpose of achieving accurate and reliable coal /gas outbursts prediction, a coal /gas outbursts prediction algorithm based on selective ensemble learning is presented. The component learners consisted of RS-PNN network, and the redundant component ... Keywords: Coal and gas outburst, selective ensemble learning, RS-PNN classifier, classification

Wang Heng, Shao Liangshan, Liu Shuanhong, Lu Lin

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coal emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Carbon Dioxide Emission Factors for Coal  

Reports and Publications (EIA)

The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

William Watson

1994-08-01T23:59:59.000Z

62

LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE  

SciTech Connect

In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

2004-08-01T23:59:59.000Z

63

Cost and carbon emissions of coal and combined cycle power plants...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost and carbon emissions of coal and combined cycle power plants in India: international implications Title Cost and carbon emissions of coal and combined cycle power plants in...

64

Shale gas production: potential versus actual greenhouse gas emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

OSullivan, Francis Martin

65

Technical progress in the development of zero emission coal technologies.  

DOE Green Energy (OSTI)

We present an update on the development of technologies required for the Zero Emission Carbon (ZEC) concept being pursued by ZECA Corporation. The concept has a highly integrated design involving hydrogasification, a calcium oxide driven reforming step that includes simultaneous C02 separation, coal compatible fuel cells for electricity production and heat recovery, and a closed loop gas system in which coal contaminants are removed either as liquids or solids. The process does not involve any combustion and as such has neither smokestack nor air emissions. An independent assessment of the concept by Nexant, a Bcchtel affiliated company, suggests a net efficiency of approximately 70% for conversion of the higher heat value fuel energy into electrical output. This is even after the penalties of carbon dioxide separation and pressurization to 1000 psi are taken into account. For carbon dioxide sequestration a variety of options are being considered, which include enhanced oil recovery in the near-term and mineral carbonation as a long-term approach. We report on our early results in the development of sulfur tolerant anode materials for solid oxide fuel cells; a critical analysis of the calcium oxide - calcium carbonate cycle; trace element removal; and the recent results of hydrogasification tests.

Ziock, H. J. (Hans-Joachim); Anthony, E. J.; Brosha, E. L. (Eric L.); Garzon, F. H. (Fernando H.); Guthrie, G. D. (George D.); Johnson, A. A. (Alan A.); Kramer, A. (Andrew); Lackner, K. S. (Klaus S.); Lau, Francis,; Mukundan, R. (Rangachary); Robison, Thomas W.; Roop, B. J. (Bobbi J.); Ruby, J. D. (John D.); Smith, B. F. (Barbara F.); Wang, J. (Joseph)

2002-01-01T23:59:59.000Z

66

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

all fuels including electricity and syngas will be used forGas Electricity Biomass Syngas Space Heating Coal Oil Gas

2006-01-01T23:59:59.000Z

67

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

factors for production of coal products -- patent fuel, cokeoven coke,coke oven gas, blast furnace gas and briquettes (BKB) --

2006-01-01T23:59:59.000Z

68

Greenhouse gas emissions in biogas production systems  

E-Print Network (OSTI)

Augustin J et al. Automated gas chromatographic system forof the atmospheric trace gases methane, carbon dioxide, andfuel consumption and of greenhouse gas (GHG) emissions from

Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

2009-01-01T23:59:59.000Z

69

Advanced Coal-Fueled Gas Turbine Program  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

70

Gas, oil, and coal biotechnology I  

SciTech Connect

This papers presented at the First International IGT Symposium on Gas, Oil, and Coal Biotechnology, New Orleans, Louisiana, December 5-7, 1988, are reproduced in this book. This symposium was designed to provide a forum for the exchange of ideas among leading scientists, engineers, managers, and administrators in this rapidly advancing branch of biotechnology. The presentations and discussions by scientists and engineers from the academic, industrial, and government research laboratories, along with technical program managers and administrators, emphasized the biotechnological approaches to interrelated issues of energy utilization, supply, and environment. The symposium papers are organized in this book under topics that reflect the following program sessions. These topics are: (1) An Emerging Industry, and Programs to Encourage its Development; (2) Coal Biotechnology; (3) Gas Biotechnology; (4) Oil Biotechnology; and (5) Environmental Biotechnology. Twenty-three papers have been indexed separately for inclusion on the data base.

Akin, C.; Smith, J. (eds.)

1990-01-01T23:59:59.000Z

71

Detecting of Coal Gas Weak Signals Using Lyapunov Exponent under Strong Noise Background  

Science Conference Proceedings (OSTI)

In coal gas monitoring system, the early detecting of gas concentration is key technique for preventing the gas explosion because the coal gas signals are very weak under strong noise background in mining digging laneway. In this paper, the coal gas ... Keywords: Coal gas, weak signals, coal mine underground, Lyapunov exponent, Duffing chaotic oscillator

Ma Xian-Min

2013-01-01T23:59:59.000Z

72

Shale gas production: potential versus actual greenhouse gas emissions*  

E-Print Network (OSTI)

Shale gas production: potential versus actual greenhouse gas emissions* Francis O Environ. Res. Lett. 7 (2012) 044030 (6pp) doi:10.1088/1748-9326/7/4/044030 Shale gas production: potential gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level

73

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

Greenhouse Gas Emissions of Shale Gas, Natural Gas, Coal,of Unconventional Shale-Gas Reservoirs. In Society oftight gas reservoirs, shale gas, tight oil, oil shale, and

Coughlin, Katie

2013-01-01T23:59:59.000Z

74

Gas Emission Rate Prediction in Fully-Mechanized Excavated Faces Based on Support Vector Machine  

Science Conference Proceedings (OSTI)

In order to ensure safety in coal production, full assurance is given for fully-mechanized excavated faces. Based on the vector supporting machine for regression (SVR), a model is established for predicting the gas emission in fully-mechanized excavated ... Keywords: SVM, Tracking, emission rate, fully-mechanized excavated faces, gas prediction

Wang Changlong; Fu Weihua

2009-11-01T23:59:59.000Z

75

Emissions mitigation of blended coals through systems optimization  

Science Conference Proceedings (OSTI)

For coal fired power stations, such as those located in the US, that have installed NOx and SOx emissions abatement equipment substantial carbon dioxide reduction could be achieved by shifting from pure PRB coal to blended coals with local bituminous coal. Don Labbe explains how. The article is based on a presentation at Power-Gen Asia 2009, which takes place 7-9 October in Bangkok, Thailand and an ISA POWID 2009 paper (19th Annual Joint ISA POWID/EPRI Controlls and Instrumentation Conference, Chicago, Illinois, May 2009). 4 refs., 3 figs.

Don Labbe [IOM Invensys Operations Management (United States)

2009-10-15T23:59:59.000Z

76

Electricity generation from coal and natural gas both increased ...  

U.S. Energy Information Administration (EIA)

Historically, the average fuel cost of operating a combined-cycle natural gas generator exceeded that for a coal-fired generator. Until 2010, ...

77

Electricity generation from coal and natural gas both increased ...  

U.S. Energy Information Administration (EIA)

Coal generation shares declined in some regions ... the share of natural gas-fired power generation is most influenced by the availability of hydroelectric power, ...

78

Coal seam natural gas producing areas (Louisiana) | Open Energy...  

Open Energy Info (EERE)

Data Page Edit with form History Share this page on Facebook icon Twitter icon Coal seam natural gas producing areas (Louisiana) This is the approved revision of this...

79

Prod. of Oil, Gas & Coal - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Production of oil, gas, and coal. Projected supply and disposition of crude oil. The model now uses the EIAs projections of production, imports, and consumption of ...

80

Optical Gas Sensors for Advanced Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

Presentation Title, Optical Gas Sensors for Advanced Coal-Fired Power Plants. Author(s), Paul Ohodnicki, Congjun Wang, Douglas Kauffman, Kristi Kauffman,...

Note: This page contains sample records for the topic "gas coal emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Gas transport, sorption, and mechanical response of fractured coal.  

E-Print Network (OSTI)

??Fractured coal exhibits strong and dynamic coupling between fluid transport and mechanical response especially when the pore fluid is a sorbing gas. This complex interaction (more)

Wang, Shugang

2012-01-01T23:59:59.000Z

82

EIA - Greenhouse Gas Emissions - Nitrous Oxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

4. Nitrous Oxide Emissions 4. Nitrous Oxide Emissions 4.1 Total emissions U.S. nitrous oxide emissions in 2009 were 4 MMTCO2e (1.7 percent) below their 2008 total (Table 22). Sources of U.S. nitrous oxide emissions include agriculture, energy use, industrial processes, and waste management (Figure 22). The largest source is agriculture (73 percent), and the majority of agricultural emissions result from nitrogen fertilization of agricultural soils (87 percent of the agriculture total) and management of animal waste (13 percent). U.S. nitrous oxide emissions rose from 1990 to 1994, fell from 1994 to 2002, and returned to an upward trajectory from 2003 to 2007, largely as a result of increased use of synthetic fertilizers. Fertilizers are the primary contributor of emissions from nitrogen fertilization of soils, which grew by more than 30 percent from

83

EIA - Greenhouse Gas Emissions - Methane Emissions  

U.S. Energy Information Administration (EIA)

Residential wood consumption accounted for just over 45 percent of U.S. methane emissions from stationary combustion in 2009.

84

Greenhouse Gas Emissions from the Nuclear Fuel Cycle  

Science Conference Proceedings (OSTI)

Since greenhouse gases are a global concern, rather than a local concern as are some kinds of effluents, one must compare the entire lifecycle of nuclear power to alternative technologies for generating electricity. A recent critical analysis by Sovacool (2008) gives a clearer picture. "It should be noted that nuclear power is not directly emitting greenhouse gas emissions, but rather that lifecycle emissions occur through plant construction, operation, uranium mining and milling, and plant decommissioning." "[N]uclear energy is in no way 'carbon free' or 'emissions free,' even though it is much better (from purely a carbon-equivalent emissions standpoint) than coal, oil, and natural gas electricity generators, but worse than renewable and small scale distributed generators" (Sovacool 2008). According to Sovacool, at an estimated 66 g CO2 equivalent per kilowatt-hour (gCO2e/kWh), nuclear power emits 15 times less CO2 per unit electricity generated than unscrubbed coal generation (at 1050 gCO2e/kWh), but 7 times more than the best renewable, wind (at 9 gCO2e/kWh). The U.S. Nuclear Regulatory Commission (2009) has long recognized CO2 emissions in its regulations concerning the environmental impact of the nuclear fuel cycle. In Table S-3 of 10 CFR 51.51(b), NRC lists a 1000-MW(electric) nuclear plant as releasing as much CO2 as a 45-MW(e) coal plant. A large share of the carbon emissions from the nuclear fuel cycle is due to the energy consumption to enrich uranium by the gaseous diffusion process. A switch to either gas centrifugation or laser isotope separation would dramatically reduce the carbon emissions from the nuclear fuel cycle.

Strom, Daniel J.

2010-03-01T23:59:59.000Z

85

EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

2. Carbon Dioxide Emissions 2. Carbon Dioxide Emissions 2.1. Total carbon dioxide emissions Annual U.S. carbon dioxide emissions fell by 419 million metric tons in 2009 (7.1 percent), to 5,447 million metric tons (Figure 9 and Table 6). The annual decrease-the largest over the 19-year period beginning with the 1990 baseline-puts 2009 emissions 608 million metric tons below the 2005 level, which is the Obama Administration's benchmark year for its goal of reducing U.S. emissions by 17 percent by 2020. The key factors contributing to the decrease in carbon dioxide emissions in 2009 included an economy in recession with a decrease in gross domestic product of 2.6 percent, a decrease in the energy intensity of the economy of 2.2 percent, and a decrease in the carbon intensity of energy supply of

86

Carbon Dioxide Emission Factors for Coal  

U.S. Energy Information Administration (EIA)

by B.D. Hong and E. R. Slatick. Note: This article was originally published in Energy Information Administration, Quarterly Coal Report, January-April 1994, DOE/EIA ...

87

Nitrogen oxide emissions from coal fired MHD plants  

DOE Green Energy (OSTI)

In this topical report, the nitrogen oxide emission issues from a coal fired MHD steam combined cycle power plant are summarized, both from an experimental and theoretical/calculational viewpoint. The concept of staging the coal combustion to minimize NO{sub x} is described. The impact of NO{sub x} control design choices on electrical conductivity and overall plant efficiency are described. The results of the NO{sub x} measurements in over 3,000 hours of coal fired testing are summarized. A chemical kinetics model that was used to model the nooks decomposition is described. Finally, optimum design choices for a low nooks plant are discussed and it is shown that the MHD Steam Coal Fired Combined Cycle Power Plant can be designed to operate with nooks emissions less than 0.05 lbm/MMBTU.

Chapman, J.N. [ed.

1996-03-01T23:59:59.000Z

88

Production of Substitute Natural Gas from Coal  

DOE Green Energy (OSTI)

The goal of this research program was to develop and demonstrate a novel gasification technology to produce substitute natural gas (SNG) from coal. The technology relies on a continuous sequential processing method that differs substantially from the historic methanation or hydro-gasification processing technologies. The thermo-chemistry relies on all the same reactions, but the processing sequences are different. The proposed concept is appropriate for western sub-bituminous coals, which tend to be composed of about half fixed carbon and about half volatile matter (dry ash-free basis). In the most general terms the process requires four steps (1) separating the fixed carbon from the volatile matter (pyrolysis); (2) converting the volatile fraction into syngas (reforming); (3) reacting the syngas with heated carbon to make methane-rich fuel gas (methanation and hydro-gasification); and (4) generating process heat by combusting residual char (combustion). A key feature of this technology is that no oxygen plant is needed for char combustion.

Andrew Lucero

2009-01-31T23:59:59.000Z

89

EIA - Greenhouse Gas Emissions - Methane Emissions  

Gasoline and Diesel Fuel Update (EIA)

oil production dropping by 28 percent from 1990 to 2009, methane emissions from petroleum exploration and production have declined by the same percentage. Residential wood...

90

EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions  

U.S. Energy Information Administration (EIA)

Nonfuel uses of fossil fuels (for purposes other than their energy value) create carbon dioxide emissions and also sequester carbon in nonfuel products, ...

91

Quantification of Variability and Uncertainty in Hourly NOx Emissions from Coal-Fired Power Plants  

E-Print Network (OSTI)

1 Quantification of Variability and Uncertainty in Hourly NOx Emissions from Coal-Fired Power to quantify variability and uncertainty for NOx emissions from coal-fired power plants. Data for hourly NOx Uncertainty, Variability, Emission Factors, Coal-Fired Power Plants, NOx emissions, Regression Models

Frey, H. Christopher

92

Study breaks tenuous truce in coal, gas fuel war  

Science Conference Proceedings (OSTI)

The long-simmering battle between the coal and gas industries for market share in the electric generation market heated up again last week with the release of a report by Energy Ventures Analysis showing that baseload coal-fired plants will cost at least 22 percent less than power from baseload gas plants after 2000.

Kaplan, D.

1994-06-03T23:59:59.000Z

93

Zero emission coal, a new approach and why it is needed.  

DOE Green Energy (OSTI)

A new approach to zero emission coal-based power generation originated at Los Alamos National Laboratory is being pursued by the Zero Emission Coal Alliance (ZECA), an international coalition whose goal is no atmospheric emissions from coal-fueled power and hydrogen production plants. The avoidance of atmospheric emissions addresses carbon dioxide, in addition to the more commonly considered coal by-products such as NOX, SOX, particulates, and heavy metals. The new approach combines and updates a number of concepts previously tested separately at the pilot plant scale, but in a new, highly integrated design. The integrated approach will provide fuel to electric energy conversion efficiencies of approximately 70%, double that of today's conventional power plants, while simultaneously yielding a pure, high-pressure CO2 stream that is ready for sequestration. For sequestration, ZECA is examining the conversion of the CO2 into mineral carbonates, thereby achieving safe and permanent disposal of the CO2 in an inert solid form. The high efficiency power generation step provides for a substantial reduction ({approx} a factor of 2) in the amount of fuel consumed per unit of power reduced, thereby reducing the amount and cost of by-product disposal by a similar factor. Unlike most other emission reduction processes being investigated, which typically offer only marginal and short-term improvements, the ZECA concept is a long-term solution capable of supplying many centuries of abundant, secure, clean, low cost, coal-based fossil energy. As the underlying chemistry of the process works on carbon, the zero emission coal (ZEC) technology is also adaptable to a wide range of other fuels including biomass, heavy oils, tars, natural gas, etc.

Ziock, H. J. (Hans-Joachim); Guthrie, G. D. (George D.); Lackner, K. S. (Klaus S.); Ruby, J. D. (John D.); Nawaz, Mohammad

2001-01-01T23:59:59.000Z

94

Agricultural greenhouse gas emissions : costs associated with farm level mitigation.  

E-Print Network (OSTI)

??Agricultural greenhouse gas emissions within New Zealand account for 48 percent of all national greenhouse gas emissions. With the introduction of the emissions trading scheme (more)

Wolken, Antony Raymond

2009-01-01T23:59:59.000Z

95

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

Greenhouse Gas Emissions of Shale Gas, Natural Gas, Coal,Footprint of Natural Gas from Shale Formations. Climaticof Unconventional Shale-Gas Reservoirs. In Society of

Coughlin, Katie

2013-01-01T23:59:59.000Z

96

Pages that link to "Coal seam natural gas producing areas (Louisiana...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Coal seam natural gas producing areas (Louisiana)" Coal seam natural gas producing areas...

97

Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California  

E-Print Network (OSTI)

Mar Lett (2010) 30:331338 Fig. 3 Coal Oil Point seep field,hydrocarbon seeps near Coal Oil Point, California. Marhydrocarbon seep emissions, Coal Oil Point seep field,

Leifer, Ira; Kamerling, Marc J.; Luyendyk, Bruce P.; Wilson, Douglas S.

2010-01-01T23:59:59.000Z

98

Coal seam natural gas producing areas (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal seam natural gas producing areas (Louisiana) Coal seam natural gas producing areas (Louisiana) Coal seam natural gas producing areas (Louisiana) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Louisiana Program Type Environmental Regulations Siting and Permitting Provider Louisiana Department of Natural Resources In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is authorized, as provided in this law, to establish a single unit to be served by one or more wells for a coal seam natural gas producing area. Without in any way modifying the authority granted to the commissioner to establish a drilling unit or

99

Zero Emissions Coal Syngas Oxygen Turbo Machinery  

SciTech Connect

Siemens Energy, Inc. (formerly Siemens Westinghouse Power Corporation) worked with Clean Energy Systems and Florida Turbine Technologies to demonstrate the commercial feasibility of advanced turbines for oxy-fuel based power systems that discharge negligible CO{sub 2} into the atmosphere. The approach builds upon ultra supercritical steam turbine and advanced gas turbine technology with the goal of attaining plant efficiencies above 50% in the 2015 timeframe. Conceptual designs were developed for baseline, near term, and long term oxy-fuel turbine cycles, representing commercial introductions of increasingly advanced thermal conditions and increasing exposure to steam-CO{sub 2} mixtures. An economic analysis and market demand study was performed by Science Applications International Corp. (SAIC), and indicated that long-term oxy-fuel turbine cycles start to look attractive in 2025 when the CO{sub 2} tax is assumed to reach $40/ ton, and by 2030 it has a clear advantage over both IGCC with sequestration and pulverized coal with sequestration. A separate risk analysis of the oxy-fuel combustor, HP turbine, re-heater, and IP turbine of the long-term cycle identified and categorized risks and proposed mitigation measures. In 2007 the program began to focus on a potential oxy-fuel turbine power generation demonstration project in the 2012 -13 time period while still maintaining a link to the requirements of the long-term oxy-syngas cycle. The SGT-900 turbine was identified as the best fit for modification into an intermediate pressure turbine (IPT) for this application. The base metals, bond coats, thermal barrier coatings (TBCs), and rotor materials used in the SGT-900 were tested for their ability to operate in the steam- CO{sub 2} environment of the oxy-fuel OFT-900. Test results indicated that these same materials would operate satisfactorily, and the plan, is to use SGT-900materials for the OFT-900. Follow-on programs for corrosion testing and evaluation of crack growth rates in oxy-fuel environments have been proposed to build on these results and provide quantifiable assessments of the effects of oxy-fuel environments on the service lives of turbine components.

Dennis Horazak

2010-12-31T23:59:59.000Z

100

Corporate Carbon Strategy and Procurement of Greenhouse Gas Emissions Offsets for Compliance with Mandatory Carbon Constraints  

Science Conference Proceedings (OSTI)

This report explores strategies that may be employed by electric companies and other industrial enterprises to reduce their greenhouse gas (GHG) emissions to comply with potential future mandatory GHG emissions reduction programs. It explores the opportunities, challenges and risks associated with reducing GHG emissions from within a company's own operations, as well as other approaches that may be used for compliance such as real-time coal-to-natural gas fuel switching in the regional dispatch of electr...

2010-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "gas coal emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fact book: synthetic pipeline gas from coal. 1982 update  

SciTech Connect

This book illustrates the major advantages of synthetic pipeline gas from coal. Progress on many of the coal gasification projects envisioned over the past decade has been thwarted by regulatory, permitting, and financing delays. The rationale for developing a synthetic pipeline gas industry remains as strong as ever from the nation's viewpoint, and the pioneer US commercial scale high-Btu coal gasification plant is now under construction-the Great Plains coal gasification plant in North Dakota. Also, the US Synthetic Fuels Corporation is now operational and can move forward to provide the guarantees which are necessary to overcome the financial barriers to a commercial synfuels capability in the United States. Compared to other principal means of utilizing America's vast coal reserves, coal gasification uses coal and land more efficiently, uses less water, emits less air pollutants, requires less capital and results in a lower cost of energy to consumers. (DP)

Not Available

1982-01-01T23:59:59.000Z

102

Atmospheric particulate emissions from dry abrasive blasting using coal slag  

Science Conference Proceedings (OSTI)

Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions. 40 refs., 5 figs., 2 tabs.

Bhaskar Kura; Kalpalatha Kambham; Sivaramakrishnan Sangameswaran; Sandhya Potana [University of New Orleans, New Orleans, LA (United States). Department of Civil and Environmental Engineering

2006-08-15T23:59:59.000Z

103

Toxic emissions from a cyclone burner boiler with an ESP and with the SNOX demonstration and from a pulverized coal burner boiler with an ESP/wet flue gas desulfurization system  

SciTech Connect

Emission factors for VOC and aldehydes, dioxins/furans, and PAH/SVOC are presented in Tables 6--8, respectively. Each table includes results for Coal Creek, Niles Boiler, and the SNOX process. As shown in Table 6, benzene and toluene were measured in the Coal Creek, Niles Boiler, and SNOX stack emissions in highly variable concentrations. Over 90 percent of the VOC analyzed were not detected in the stack gases, and the emission factor for these VOC ranges from 1.1 to 1.4 {mu}g/MJ for the three systems. Emission factors for the four aldehydes that were measured range from 0.47 to 31 {mu}g/MJ for Coal Creek, 1.7 to 38 {mu}g/MJ for the Niles Boiler, and 3.6 to 167 {mu}g/MJ for the SNOX process. Acetaldehyde is at the highest concentration of the four aldehydes in all three units, a finding which is consistent with previous work. Dioxin/furan emission factors are provided in Table 7. Emission, factors for these compounds range from 0.40 to 6.51 pg/MJ for Coal Creek and 0.45 to 8.14 pg/MJ for the Niles Boiler. Dioxins/furans were not determined in the SNOX process. The compounds 1,2,3,4,6,7,8heptachlorodibenzo-p-dioxin, octachlorodibenzo-p-dioxin, and 2,3,7,8-tetrachlorodibenzofuran were detected in both units. The predominance of these species in high SO{sub 2} environments has been previously observed. All other 2,3,7,8 substituted dioxin/furan isomers listed in Table 8 were not detected in either unit. Table 8 lists the emission factors for PAH/SVOC. Emission factors range from 0.3 to 233 ng/MJ for Coal Creek, 0.5 to 273 ng/MJ for the Niles Boiler, and 0.3 to 130 ng/MJ for the SNOX process. Acetophenone is at the highest concentration of the PAH/SVOC in all three units. Naphthalene, dibenzofuran, phenanthrene, and fluoranthene are also present at relatively high concentrations in comparison to the other PAH/SVOC.

Sverdrup, G.M.; Riggs, K.B.; Kelly, T.J.; Barrett, R.E. [Battelle, Columbus, OH (United States); Peltier, R.G.; Cooper, J.A. [Chester Environmental, Monroeville, PA (United States)

1994-05-01T23:59:59.000Z

104

GREENHOUSE GAS EMISSIONS FROM AGROECOSYSTEMS: SIMULATING MANAGEMENT EFFECTS ON DAIRY FARM EMISSIONS.  

E-Print Network (OSTI)

??How does agriculture contribute to greenhouse gas emissions and what farm management scenarios decrease net emissions from agroecosystems? The reduction of greenhouse gas emissions is (more)

Sedorovich, Dawn

2008-01-01T23:59:59.000Z

105

Steam-injected gas turbines uneconomical with coal gasification equipment  

SciTech Connect

Researchers at the Electric Power Research Institute conducted a series of engineering and economic studies to assess the possibility of substituting steam-injected gas (STIG) turbines for the gas turbines currently proposed for use in British Gas Corporation (BGC)/Lurgi coal gasification-combined cycle plants. The study sought to determine whether steam-injected gas turbines and intercooled steam-injected gas turbines, as proposed by General Electric would be economically competitive with conventional gas and steam turbines when integrated with coal gasification equipment. The results are tabulated in the paper.

1986-09-01T23:59:59.000Z

106

Proceedings of the eighth annual coal-fueled heat engines and gas stream cleanup systems contractors review meeting  

SciTech Connect

The goal of the Heat Engines and Gas Stream Cleanup Programs at Morgantown Energy Technology Center is to develop essential technologies so the private sector can commercialize power plants burning coal-derived fuels. The purpose of this annual meeting is to provide a forum for scientists and engineers to present their results, exchange ideas and talk about their plans. Topics discussed were: Heat Engines Commercialization and Proof of Concepts Projects; Components and Testing of Coal-Fueled Gas Turbines; Advances in Barrier Filters; Pulse Combustion/Agglomeration; Advances in Coal-Fueled Diesels; Gas Stream Cleanup; Turbine and Diesel Emissions; and Poster Presentations.

Webb, H.A.; Bedick, R.C.; Geiling, D.W.; Cicero, D.C. (eds.)

1991-07-01T23:59:59.000Z

107

Impact of Air Emissions Controls on Coal Combustion Products  

Science Conference Proceedings (OSTI)

Coal combustion products (CCPs) have been extensively studied and well characterized over the last 30 years. However, new air emissions control technologies at power plants will change the characteristics of some existing CCPs. These changes may affect the selection of appropriate management methods for high-volume CCPs with respect to both disposal and use. This report examines evolving air emissions controls and their likely impact on CCPs.

2008-10-15T23:59:59.000Z

108

New Generating Technology to Reduce Greenhouse Gas Emissions  

U.S. Energy Information Administration (EIA) Indexed Site

Generating Technology to Generating Technology to Reduce Greenhouse Gas Emissions ENERGY INFORMATION ADMINISTRATION 30 TH BIRTHDAY CONFERENCE April 7, 2008 Linda G. Stuntz Stuntz, Davis & Staffier, P.C. Stuntz, Davis & Staffier, P.C. 2 The Target * Energy related emissions of CO2 will increase by about 16% in AEO 2008 Reference Case between 2006 and 2030 (5,890 MM metric tons to 6,859 MM metric tons). (#s from Caruso Senate Energy testimony of 3/4/08). * Last year, emissions from electricity generation were 40% of total energy-related GHG emissions. * Based on projected annual electricity demand growth of 1.1%. Stuntz, Davis & Staffier, P.C. 3 The Target Cont'd * 16.4 GW of new nuclear + 2.7 GW Uprates of existing plants less 4.5 GW of retirements. * Coal responsible for 54% of generation in 2030.

109

Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls and Implications for Global Emission  

E-Print Network (OSTI)

Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls from coal-fired power plants in the U.S. at typical operating conditions with and without the presence this, a novel method for collection and isotopic analysis of coal-fired stack NOx emission samples

Elliott, Emily M.

110

Overview of SOFC Anode Interactions with Coal Gas Impurities  

SciTech Connect

An overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic and actual coal gas for periods greater than 1000 hours. Post-test analyses were performed to identify reaction products formed and their distribution, and compared to phases expected from thermochemical modeling. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

O. A. Marina; L. R. Pederson; R. Gemmen; K. Gerdes; H. Finklea; I. B. Celik

2010-03-01T23:59:59.000Z

111

Prediction of light gas composition in coal devolatilization  

Science Conference Proceedings (OSTI)

The chemical percolation devolatilization (CPD) model describes the devolatilization behavior of rapidly heated coal based on the chemical structure of the coal. It predicts the overall char, tar, and light gas yields. This paper presents an improved CPD model with improved capability for predicting light gas composition. This is achieved by incorporating a kinetic model that simulates the release of various light gas species from their respective sources/functional groups in coal. The improved CPD model is validated using experiments with a wire mesh reactor and published experimental observations.13 refs., 9 figs., 1 tab.

Ravichandra S. Jupudi; Vladimir Zamansky; Thomas H. Fletcher [GE Global Research, Bangalore (India)

2009-05-15T23:59:59.000Z

112

Overview of SOFC Anode Interactions with Coal Gas Impurities  

Science Conference Proceedings (OSTI)

An overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic and actual coal gas for periods greater than 1000 hours. Post-test analyses were performed to identify reaction products formed and their distribution, and compared to phases expected from thermochemical modeling. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

Marina, Olga A.; Pederson, Larry R.; Gemmen, Randall; Gerdes, Kirk; Finklea, Harry; Celik, Ismail B.

2010-05-01T23:59:59.000Z

113

Emissions, Monitoring and Control of Mercury from Subbituminous Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

The Subbituminous Energy Coalition (SEC) identified a need to re-test stack gas emissions from power plants that burn subbituminous coal relative to compliance with the EPA mercury control regulations for coal-fired plants. In addition, the SEC has also identified the specialized monitoring needs associated with mercury continuous emissions monitors (CEM). The overall objectives of the program were to develop and demonstrate solutions for the unique emission characteristics found when burning subbituminous coals. The program was executed in two phases; Phase I of the project covered mercury emission testing programs at ten subbituminous coal-fired plants. Phase II compared the performance of continuous emission monitors for mercury at subbituminous coal-fired power plants and is reported separately. Western Research Institute and a number of SEC members have partnered with Eta Energy and Air Pollution Testing to assess the Phase I objective. Results of the mercury (Hg) source sampling at ten power plants burning subbituminous coal concluded Hg emissions measurements from Powder River Basin (PBR) coal-fired units showed large variations during both ICR and SEC testing. Mercury captures across the Air Pollution Control Devices (APCDs) present much more reliable numbers (i.e., the mercury captures across the APCDs are positive numbers as one would expect compared to negative removal across the APCDs for the ICR data). Three of the seven units tested in the SEC study had previously shown negative removals in the ICR testing. The average emission rate is 6.08 lb/TBtu for seven ICR units compared to 5.18 lb/TBtu for ten units in the SEC testing. Out of the ten (10) SEC units, Nelson Dewey Unit 1, burned a subbituminous coal and petcoke blend thus lowering the total emission rate by generating less elemental mercury. The major difference between the ICR and SEC data is in the APCD performance and the mercury closure around the APCD. The average mercury removal values across the APCDs are 2.1% and 39.4% with standard deviations (STDs) of 1990 and 75%, respectively for the ICR and SEC tests. This clearly demonstrates that variability is an issue irrespective of using 'similar' fuels at the plants and the same source sampling team measuring the species. The study also concluded that elemental mercury is the main Hg specie that needs to be controlled. 2004 technologies such as activated carbon injection (ACI) may capture up to 60% with double digit lb/MMacf addition of sorbent. PRB coal-fired units have an Hg input of 7-15 lb/TBtu; hence, these units must operate at over 60% mercury efficiency in order to bring the emission level below 5.8 lb/TBtu. This was non-achievable with the best technology available as of 2004. Other key findings include: (1) Conventional particulate collectors, such as Cold-side Electro-Static Precipitators (CESPs), Hot-side Electro-Static Precipitator (HESP), and Fabric Filter (FF) remove nearly all of the particulate bound mercury; (2) CESPs perform better highlighting the flue gas temperature effect on the mercury removal. Impact of speciation with flue gas cooling is apparent; (3) SDA's do not help in enhancing adsorption of mercury vapor species; and (4) Due to consistently low chlorine values in fuels, it was not possible to analyze the impact of chlorine. In summary, it is difficult to predict the speciation at two plants that burn the same fuel. Non-fuel issues, such as flue gas cooling, impact the speciation and consequently mercury capture potential.

Alan Bland; Kumar Sellakumar; Craig Cormylo

2007-08-01T23:59:59.000Z

114

Testing for market integration crude oil, coal, and natural gas  

SciTech Connect

Prompted by the contemporaneous spike in coal, oil, and natural gas prices, this paper evaluates the degree of market integration both within and between crude oil, coal, and natural gas markets. Our approach yields parameters that can be readily tested against a priori conjectures. Using daily price data for five very different crude oils, we conclude that the world oil market is a single, highly integrated economic market. On the other hand, coal prices at five trading locations across the United States are cointegrated, but the degree of market integration is much weaker, particularly between Western and Eastern coals. Finally, we show that crude oil, coal, and natural gas markets are only very weakly integrated. Our results indicate that there is not a primary energy market. Despite current price peaks, it is not useful to think of a primary energy market, except in a very long run context.

Bachmeier, L.J.; Griffin, J.M. [Texas A& amp; M Univ, College Station, TX (United States)

2006-07-01T23:59:59.000Z

115

Air extraction in gas turbines burning coal-derived gas  

SciTech Connect

In the first phase of this contracted research, a comprehensive investigation was performed. Principally, the effort was directed to identify the technical barriers which might exist in integrating the air-blown coal gasification process with a hot gas cleanup scheme and the state-of-the-art, US made, heavy-frame gas turbine. The guiding rule of the integration is to keep the compressor and the expander unchanged if possible. Because of the low-heat content of coal gas and of the need to accommodate air extraction, the combustor and perhaps, the flow region between the compressor exit and the expander inlet might need to be modified. In selecting a compressed air extraction scheme, one must consider how the scheme affects the air supply to the hot section of the turbine and the total pressure loss in the flow region. Air extraction must preserve effective cooling of the hot components, such as the transition pieces. It must also ensure proper air/fuel mixing in the combustor, hence the combustor exit pattern factor. The overall thermal efficiency of the power plant can be increased by minimizing the total pressure loss in the diffusers associated with the air extraction. Therefore, a study of airflow in the pre- and dump-diffusers with and without air extraction would provide information crucial to attaining high-thermal efficiency and to preventing hot spots. The research group at Clemson University suggested using a Griffith diffuser for the prediffuser and extracting air from the diffuser inlet. The present research establishes that the analytically identified problems in the impingement cooling flow are factual. This phase of the contracted research substantiates experimentally the advantage of using the Griffith diffuser with air extraction at the diffuser inlet.

Yang, Tah-teh; Agrawal, A.K.; Kapat, J.S.

1993-11-01T23:59:59.000Z

116

OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS  

DOE Green Energy (OSTI)

Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2005-10-01T23:59:59.000Z

117

Control of emissions from cofiring of coal and RDF. Final report  

DOE Green Energy (OSTI)

Research has been conducted toward developing technology for co-firing of coal with municipal solid waste (MSW) in order to reduce emissions of chlorinated organic compounds, particularly polychlorinated dibenzo-p-dioxins and furans (PCDDs and PCDFs). Previous bench- and pilot-scale research has shown that presence of SO{sub 2} can inhibit the PCDD and PCDF formation, and suggested co-firing high-sulfur coal with refuse derived fuel (RDF) to reduce the emissions. The objective of this research is to identify the effect of process and co-firing options in reducing PCDD and PCDF yield from waste combustion. Two types of municipal waste based fuels were used: a fluff refuse-derived fuel (simply referred to as RDF) and a densified refuse derived fuel (dRDF). The coal used was high-sulfur Illinois No. 6 coal. Experiments were conducted in US EPA`s recently constructed Multi-Fuel Combustor (MFC), a state-of-the-art facility with fuel handling and combustion release rates representative of large field units. The MFC was fired, at varying rates, with RDF/dRDF and coal, and sampled for PCDD and PCDF. Tests were conducted over a range of process variables such as lime injection, HCl concentration, flue gas temperature, quench, and residence time so that the results are applicable to a wide variety of waste combustors. The data are used for developing a comprehensive statistical model for PCDD and PCDF formation and control.

Raghunathan, K.; Bruce, K.R. [Acurex Environmental Corp., Research Triangle Park, NC (United States)

1997-09-01T23:59:59.000Z

118

Coal liquefaction and gas conversion: Proceedings. Volume 1  

Science Conference Proceedings (OSTI)

Volume I contains papers presented at the following sessions: AR-Coal Liquefaction; Gas to Liquids; and Direct Liquefaction. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

Not Available

1993-12-31T23:59:59.000Z

119

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

Trends in Global Energy Use and Greenhouse Gas Emissions Lynn Price,Trends in Global Energy Use and Greenhouse Gas Emissions Lynn Price,Trends in Global Energy Use and Greenhouse Gas Emissions Lynn Price,

2006-01-01T23:59:59.000Z

120

Measurement of Oil and Gas Emissions from a Marine Seep  

E-Print Network (OSTI)

2007, Measurement of Oil and Gas Emissions from a Marine2007, Measurement of Oil and Gas Emissions from a MarineTides and the emission of oil and gas from an abandoned oil

Leifer, Ira; Boles, J R; Luyendyk, B P

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coal emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

DOE Green Energy (OSTI)

This program has the objectives to: A. Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition. B. Determine emissions characteristics including NO, NO{sub x}, CO, levels etc. associated with each of the diluents, and C. Operate with at least two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions. As a result of this program: 1. GE Engineering is now confident that the syngas fuels produced by all currently--viable coal gasifiers can be accommodated by the GE advanced (``F`` Technology) combustion system, and 2. For proposed syngas fuels with varying amounts of steam, nitrogen or CO{sub 2} diluent, the combustion and emissions characteristics can be reasonably estimated without undertaking expensive new screening tests for each different fuel.

Ekstrom, T.E.; Battista, R.A.; Belisle, F.H.; Maxwell, G.P.

1993-11-01T23:59:59.000Z

122

Economics of producing substitute natural gas from coal. Occasional pub  

Science Conference Proceedings (OSTI)

Using the cost levelization approach, the economics of producing substitute natural gas (SNG) are examined under different assumptions regarding conversion technologies, coal types and plant financing. A comparison of levelized constant dollar cost-of-service price estimated for Westinghouse and dry bottom Lurgi processes for 1990-2019 shows that SNG from coal produced at western sites is competitive with natural gas and fuel oils.

Rosenberg, J.I.; Ashby, A.B.

1983-07-01T23:59:59.000Z

123

Greenhouse Gas Emissions for Different Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Greenhouse Gas Emissions for Different Fuels Greenhouse Gas Emissions for Different Fuels This calculator currently focuses on electricity for a number of reasons. The public's interest in vehicles fueled by electricity is high, and as a result consumers are interested in better understanding the emissions created when electricity is produced. For vehicles that are fueled solely by electricity, tailpipe emissions are zero, so electricity production accounts for all GHG emissions associated with such vehicles. Finally, GHG emissions from electricity production vary significantly by region, which makes a calculator like this one-which uses regional data instead of national averages-particularly useful. If you want to compare total tailpipe plus fuel production GHG emissions for an electric or plug-in hybrid electric vehicle to those for a gasoline

124

Optimizing Techology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants  

SciTech Connect

More than 56,000 coal quality data records from five public data sets have been selected for use in this project. These data will be used to create maps showing where coals with low mercury and acid-gas emissions might be found for power plants classified by air-pollution controls. Average coal quality values, calculated for 51,156 commercial coals by U.S. county-of-origin, are listed in the appendix. Coal moisture values are calculated for commercially shipped coal from 163 U.S. counties, where the raw assay data (including mercury and chlorine values) are reported on a dry basis. The calculated moisture values are verified by comparison with observed moisture values in commercial coal. Moisture in commercial U.S. coal shows provincial variation. For example, high volatile C bituminous rank coal from the Interior province has 3% to 4% more moisture than equivalent Rocky Mountain province coal. Mott-Spooner difference values are calculated for 4,957 data records for coals collected from coal mines and exploration drill holes. About 90% of the records have Mott-Spooner difference values within {+-}250 Btu/lb.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2004-01-31T23:59:59.000Z

125

Sulfur emissions reduction at the Great Plains coal gasification facility: Technical and economic evaluations  

SciTech Connect

This report provides an in-depth technical and economic review of over 40 sulfur control technologies that were considered for use at the Great Plains coal gasification facility in Beulah, North Dakota. The review was based on the production of substitute natural gas at rates of 152.5 {times} 10{sup 6} and 160 {times} 10{sup 6} scf/d from lignite containing 1.7% sulfur. The factors considered in evaluating each technology included the reduction of SO{sub 2} emissions, capital and operating costs, incremental cost per unit of produced gas, cost-effectiveness, and probability of success. 21 figs., 37 tabs.

Doctor, R.D.; Wilzbach, K.E. (Argonne National Lab., IL (USA). Energy Systems Div.); Joseph, T.W. (USDOE Chicago Operations Office, Argonne, IL (USA))

1990-01-01T23:59:59.000Z

126

South Africa - Greenhouse Gas Emission Baselines and Reduction...  

Open Energy Info (EERE)

Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name South Africa - Greenhouse Gas Emission Baselines and Reduction...

127

Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials...  

Open Energy Info (EERE)

Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials...

128

Verifying Greenhouse Gas Emissions: Methods to Support International...  

Open Energy Info (EERE)

Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements Jump to: navigation, search Tool Summary Name: Verifying Greenhouse Gas Emissions: Methods...

129

Biofuels & Greenhouse Gas Emissions: Myths versus Facts | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuels & Greenhouse Gas Emissions: Myths versus Facts Biofuels & Greenhouse Gas Emissions: Myths versus Facts A fact sheet about the myths versus facts of ethanol and greenhouse...

130

Biofuels & Greenhouse Gas Emissions: Myths versus Facts | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuels & Greenhouse Gas Emissions: Myths versus Facts Biofuels & Greenhouse Gas Emissions: Myths versus Facts A fact sheet about the myth versus facts about biofuels and...

131

NETL: Fugitive Gas Emissions Detection Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Fugitive Gas Emissions Detection Facilities Fugitive Gas Emissions Detection Facilities NETL uses an array of innovative laboratory techniques and field methods to detect and monitor fugitive emissions of CO2 stored in geologic formations. By providing an accurate accounting of stored CO2 and a high level of confidence that the CO2 will permanently remain in storage, these efforts can help ensure the technical soundness and economic viability of carbon sequestration, a technology that is critical to meeting the national goal of reduced greenhouse gas emissions. Successful research to establish the stability and integrity of host formations will help developers of sequestration projects secure permits and emissions reduction credits, while preventing damage to ecosystems and ensuring public health and safety.

132

Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions  

E-Print Network (OSTI)

installed to replace hydro power, in terms of GHG emissions.coal-fired power plant or a hydro-power facility. 4. The GHG

Reich-Weiser, Corinne

2010-01-01T23:59:59.000Z

133

Radiative Forcing Due to Reactive Gas Emissions  

Science Conference Proceedings (OSTI)

Reactive gas emissions (CO, NOx, VOC) have indirect radiative forcing effects through their influences on tropospheric ozone and on the lifetimes of methane and hydrogenated halocarbons. These effects are quantified here for the full set of ...

T. M. L. Wigley; S. J. Smith; M. J. Prather

2002-09-01T23:59:59.000Z

134

Advanced coal-fueled industrial cogeneration gas turbine system  

SciTech Connect

Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1991-07-01T23:59:59.000Z

135

Combustion of Illinois coals and chars with natural gas. [Quarterly] technical report, March 1, 1992--May 31, 1992  

Science Conference Proceedings (OSTI)

Combined combustion of coal and natural gas offers advantages compared to burning coal or natural gas alone. For example, low volatile coals or low volatile chars derived from treatment or gasification processes can be of limited use due to their poor flammability characteristics. However, the use of natural gas in conjunction with the solid fuel can provide the necessary ``volatiles`` to enhance the combustion. Additionally, natural gas provides a clean cofiring fuel source which can enhance the usefulness of coals with high sulfur content. Addition of natural gas may reduce SO{sub x} emissions through increased sulfur retention in the ash and reduce NO{sub x} emissions by varying local stoichiometry and temperature levels. This research program seeks to clarify the contributions and to identify the controlling mechanisms of coining natural gas with Illinois coal through studies of particle ignition, burning rates and ash characterization. The first two quarters focused on the ignition delay measurements and their analysis, along with the incorporation of particle porosity into the burning rate model. The emphasis of the third quarter was on a more detailed understanding of the burning rate process, as well as understanding of cofiring`s effects on sulfur retention. The contributions of particle burning area to the quantification of the particle burning mechanisms have been shown to be important and continue to be investigated. Ash samples for various methane concentrations under similar other conditions have shown positive trends in reducing S0{sub 2} emission through increased sulfur capture in the ash.

Buckius, R.O.; Peters, J.E.; Krier, H.

1992-10-01T23:59:59.000Z

136

Evaluation of Stringent Emission Control Options for Pulverized Coal Plants  

Science Conference Proceedings (OSTI)

This report contains the results from one of a series of studies sponsored by the Canadian Clean Power Coalition (CCPC), EPRI, and the International Energy Agency (IEA). The CCPC established a goal to develop projects to demonstrate technology at a commercial utility scale for retrofit to existing plants, or for use in new coal-fired power plants, that would allow all emissions, including CO2, to be controlled to meet foreseeable new regulatory requirements. The purpose of this study conducted by Neill &...

2004-03-24T23:59:59.000Z

137

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

Science Conference Proceedings (OSTI)

U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

D. Straub; D. Ferguson; K. Casleton; G. Richards

2006-03-01T23:59:59.000Z

138

Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Greenhouse Gas State Greenhouse Gas (GHG) Emissions Reduction Strategy to someone by E-mail Share Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Facebook Tweet about Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Twitter Bookmark Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Google Bookmark Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Delicious Rank Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Digg Find More places to share Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on AddThis.com... More in this section... Federal

139

EIA - Greenhouse Gas Emissions Overview  

U.S. Energy Information Administration (EIA)

Net carbon dioxide sequestration in U.S. urban trees, yard trimmings, and food scraps : 35: Emissions of carbon dioxide from biofuel/bioenergy use by sector and fuel

140

Development of a coal-fired gas turbine cogeneration system: Status report  

SciTech Connect

The Allison Advanced Coal-Fueled Turbine Program is now in the sixth year of a development effort that has led to a POC engine demonstration test on a Coal-Water-Slurry (CWS) fuel. Earlier forecasts by CWS suppliers that suitable CWS fuels would be commercially available at an economic price have not been realized. A program replan has, therefore, been executed that incorporates the use of readily available dry pulverized coal. To support this program, technology issues relating to combustor performance and emission control, hot gas cleanup, and turbine deposition, erosion and corrosion (DEC) have been addressed. In addition, system assessment studies have been performed to evaluate the commercial prospects for small (<8 MWe) coal-fired industrial cogeneration systems and the application of the rich-quench-lean (RQL) coal-combustion technology to larger (> 100 MWe) utility-sized gas turbines. These results are reported by Wenglarz (1992). Combustor and engine tests on dry coal are now planned in preparation for a commercial demonstration that will follow the completion of this program.

Wilkes, C.; Wenglarz, R.A.; Hart, P.J.; Thomas, W.H.; Rothrock, J.W.; Harris, C.N.; Bourke, R.C.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coal emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Overview of SOFC Anode Interactions with Coal Gas Impurities  

Science Conference Proceedings (OSTI)

Efficiencies greater than 50 percent (higher heating value) have been projected for solid oxide fuel cell (SOFC) systems fueled with gasified coal, even with carbon sequestration. Multiple minor and trace components are present in coal that could affect fuel cell performance, however, which vary widely depending on coal origin and type. Minor and trace components have been classified into three groups: elements with low volatility that are likely to remain in the ash, elements that will partition between solid and gas phases, and highly volatile elements that are unlikely to condense. Those in the second group are of most concern. In the following, an overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic coal gas. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

Marina, Olga A.; Pederson, Larry R.; Gemmen, Randall; Gerdes, Kirk; Finklea, Harry; Celik, Ismail B.

2009-08-11T23:59:59.000Z

142

Information about the Greenhouse Gas Emission Calculations  

NLE Websites -- All DOE Office Websites (Extended Search)

Sources and Assumptions for the Electric and Plug-in Hybrid Vehicle Sources and Assumptions for the Electric and Plug-in Hybrid Vehicle Greenhouse Gas Emissions Calculator To estimate your CO2 emissions rates and generate the bar graph, we used the following sources and assumptions. Your CO2 Emissions Rates Tailpipe (grams CO2/mile) This is the tailpipe CO2 emissions rate for combined city and highway driving that is shown on the fuel economy and environment label for the vehicle model you selected. It is the same regardless of where you live. Total (grams CO2/mile) This includes the vehicle's tailpipe emissions and emissions associated with the production of electricity used to charge the vehicle. For plug-in hybrid electric vehicles, it also includes emissions associated with the production of gasoline. It is estimated using the sources and assumptions below, and will vary based on where you live.

143

Gas Cofiring Assessment for Coal Fired Utility Boilers  

Science Conference Proceedings (OSTI)

This study evaluates gas co-firing as one option for coal-fired utility boilers. It provides electric power generators an objective review of the potential, experience to date, and economics of five gas co-firing technologies, plus a sixth pilot-scale application.

2000-08-23T23:59:59.000Z

144

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

removal from flue gas of coal-fired power plants. Environ.Speciation in a 100-MW Coal-Fired Boiler with Low-NOxControl Technologies for Coal-Fired Power Plants, DOE/NETL

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

145

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

from flue gas of coal-fired power plants. Environ. Sci. &Technologies for Coal-Fired Power Plants, DOE/NETL Mercurynumber of coal-fired generating plants (1-3). The mercury is

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

146

Zero emission coal: a future source of clean electric power and hydrogen  

DOE Green Energy (OSTI)

The pairing of two novel technologies may permit coal energy to satisfy a dramatically increasing world energy demand for the next few hundred years. This can be done while virtually eliminating not only airborne SO{sub x}, NO{sub x}, mercury and particulate emissions, but also the main greenhouse gas, carbon dioxide (CO{sub 2}). The Zero Emission Coal Alliance, a collaboration of approximately 20 international industrial and government entities is investigating these concepts with the objective of completing the first pilot plant within 5 years. Paradoxically, climate change was not the overriding consideration that drove the development of these inventions. The more important consideration was that, if world carbon use continues to accelerate at rates even close to those in the last century, carbon from fossil fuels will overwhelm the natural CO{sub 2} sinks. In this view, the 'Kyoto' objectives are almost meaningless and misdirect enormous resources - both human and financial. If a world population of 10 billion reaches a standard of living comaprable, on the average, to that of the US in 2000 (with similar carbon use), then world yearly CO{sub 2} emissions will be ten times their current level. Carbon (in the form of coal) is our most important energy resource. The Challenge is to find sustainable ways of using it.

Ziock, H. J. (Hans-Joachim)

2001-01-01T23:59:59.000Z

147

Federal Energy Management Program: Evaluate Greenhouse Gas Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Profile to someone by E-mail Emissions Profile to someone by E-mail Share Federal Energy Management Program: Evaluate Greenhouse Gas Emissions Profile on Facebook Tweet about Federal Energy Management Program: Evaluate Greenhouse Gas Emissions Profile on Twitter Bookmark Federal Energy Management Program: Evaluate Greenhouse Gas Emissions Profile on Google Bookmark Federal Energy Management Program: Evaluate Greenhouse Gas Emissions Profile on Delicious Rank Federal Energy Management Program: Evaluate Greenhouse Gas Emissions Profile on Digg Find More places to share Federal Energy Management Program: Evaluate Greenhouse Gas Emissions Profile on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Basics Federal Requirements Guidance & Reporting

148

Program on Technology Innovation: Assessment of Coal Cleaning for Near-Zero Emissions (NZE)  

Science Conference Proceedings (OSTI)

The goal of this project was to determine if there are pre-combustion coal cleaning technologies, applicable to bituminous coals, that can result in near-zero emissions (NZE). That would imply removing 90% of the sulfur and mercury and reducing the ash content substantially from all Eastern and Midwestern bituminous coals at the mine site. A comprehensive literature search was completed and an annual coal preparation conference was attended to obtain the most recent information regarding coal ...

2012-11-05T23:59:59.000Z

149

Evaluation of biological conversion of coal-derived synthesis gas  

DOE Green Energy (OSTI)

Foster Wheeler USA Corporation conducted an evaluation study on the biological conversion of synthesis gas to methane which is under development at the University of Arkansas. A conceptual design of an integrated coal-based SNG plant, employing the bioconversion process route, was developed together with the corresponding capital and operating costs. The economics were compared to those for a coal-based SNG plant design using the conventional catalytic route for shift and methanation. 5 refs., 10 figs., 22 tabs.

Fu, R.K.; Mazzella, G.

1990-09-01T23:59:59.000Z

150

Advanced coal-fueled industrial cogeneration gas turbine system  

DOE Green Energy (OSTI)

The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. This quarter, work was centered on design, fabrication, and testing of the combustor, cleanup, fuel specifications, and hot end simulation rig. 2 refs., 59 figs., 29 tabs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1990-07-01T23:59:59.000Z

151

Environmental performance of air staged combustor with flue gas recirculation to burn coal/biomass  

DOE Green Energy (OSTI)

The environmental and thermal performance of a 1.07 m diameter, 440 kW atmospheric fluidized bed combustor operated at 700{degrees}C-920{degrees}C and burning coal was studied. Flue gas recirculation was incorporated to enhance the thermal performance and air staging was used to control emissions of SO{sub 2}, CO, NO{sub x} and N{sub 2}O. Studies focused on the effect of excess air, firing rate, and use of sorbent on system performance. The recirculation-staging mode with limestone had the highest thermal efficiency (0.67) using the firing equation. Emission data showed that flue gas recirculation (ratio of 0.7) significantly reduced NO{sub x} emissions; and that use of limestone sorbent at a Ca/S ratio of 3 reduced SO{sub 2} emissions by 64% to approximately 0.310 g/MJ.

Anuar, S.H.; Keener, H.M.

1995-12-31T23:59:59.000Z

152

Commercialization of coal-fueled gas turbine systems  

SciTech Connect

The overall goal of this program is to develop and demonstrate the technological bases for economically attractive, commercial, coal- fired gas turbine systems. Objectives to accomplish this goal include these: identify candidate technical approaches to meet the challenges of using coal as a turbine fuel, screen the candidate technical approaches by testing their relative performance and evaluating their effects on the economic attractiveness of commercial coal-fueled systems, demonstrate the most promising technologies and associated components in proof-of-concept system tests leading up to commercialization. This paper presents background information on the project, and results on cogeneration systems, combined cycle power plants to include performance and cost.

Wilkes, C.; Wenglarz, R.A.

1992-12-01T23:59:59.000Z

153

Commercialization of coal-fueled gas turbine systems  

SciTech Connect

The overall goal of this program is to develop and demonstrate the technological bases for economically attractive, commercial, coal- fired gas turbine systems. Objectives to accomplish this goal include these: identify candidate technical approaches to meet the challenges of using coal as a turbine fuel, screen the candidate technical approaches by testing their relative performance and evaluating their effects on the economic attractiveness of commercial coal-fueled systems, demonstrate the most promising technologies and associated components in proof-of-concept system tests leading up to commercialization. This paper presents background information on the project, and results on cogeneration systems, combined cycle power plants to include performance and cost.

Wilkes, C.; Wenglarz, R.A.

1992-01-01T23:59:59.000Z

154

Characterizing Coal-Fired Power Plant Mercury Emissions Variability at Low Concentrations  

Science Conference Proceedings (OSTI)

This technical update presents a further evaluation of the variability of mercury emission from coal-fired power plants, based on additional measurements by continuous mercury monitors (CMMs) at two coal-fired power plants with low-level mercury emissions. Emissions variability is important for control technology selection as well as regulatory considerations.

2003-10-20T23:59:59.000Z

155

Mitigating greenhouse gas emissions: Voluntary reporting  

Science Conference Proceedings (OSTI)

The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

NONE

1997-10-01T23:59:59.000Z

156

OVERVIEW OF THE ZECA (ZERO EMISSION COAL ALLIANCE) TECHNOLOGY  

DOE Green Energy (OSTI)

We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Although we focus on coal, the basic approach is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without the need for the combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells, which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end-products of the sequestration process are stable, naturally-occurring minerals. Sufficient high quality ultramafic deposits exist to easily handle all the world's coal.

H. ZIOCK; K. LACKNER

2000-12-01T23:59:59.000Z

157

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O'Sullivan, Francis

158

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

SciTech Connect

There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO[sub x], CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if logical'' refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO[sub x]; determine the effects of methane inclusion in the fuel.

Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

1992-01-01T23:59:59.000Z

159

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

DOE Green Energy (OSTI)

There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO{sub x}, CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if ``logical`` refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO{sub x}; determine the effects of methane inclusion in the fuel.

Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

1992-12-31T23:59:59.000Z

160

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

DOE Green Energy (OSTI)

There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO[sub x], CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if logical'' refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO[sub x]; determine the effects of methane inclusion in the fuel.

Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coal emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Potential for Biofuel-based Greenhouse Gas Emission Mitigation: Rationale and Potential  

E-Print Network (OSTI)

1 Potential for Biofuel-based Greenhouse Gas Emission Mitigation: Rationale and Potential By Bruce biofuel usage. Biofuel feedstocks are a source of raw material that can be transformed into petroleum for coal. In the USA, liquid fuel biofuel production has not proven to be broadly economically feasible

McCarl, Bruce A.

162

Solar coal gasification reactor with pyrolysis gas recycle  

DOE Patents (OSTI)

Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

Aiman, William R. (Livermore, CA); Gregg, David W. (Morago, CA)

1983-01-01T23:59:59.000Z

163

Alternative Fuels Data Center: Natural Gas Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions to someone by E-mail Emissions to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle Emissions on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Laws & Incentives Natural Gas Vehicle Emissions Natural gas burns cleaner than conventional gasoline or diesel due to its

164

Coal-fired open cycle magnetohydrodynamic power plant emissions and energy efficiences  

E-Print Network (OSTI)

This study is a review of projected emissions and energy efficiencies of coal-fired open cycle MHD power plants. Ideally one

Gruhl, Jim

165

Demonstration of a Carbonate Fuel Cell on Coal Derived Gas  

E-Print Network (OSTI)

Several studies indicate that carbonate fuel cell systems have the potential to offer efficient, cost competitive, and environmentally preferred power plants operating on natural gas or coal derived gas (syn-gas). To date, however, no fuel cell system has run on actual syn-gas. Consequently, the Electric Power Research Institute (EPRI) has sponsored a 20 kW carbonate fuel cell pilot plant that will begin operating in March at Destec Energys coal gasification plant in Plaquemine, Louisiana. The primary purpose of the test is to determine the effect of syn-gas contaminants on the performance and life of the carbonate fuel cell. This paper will describe the project objectives, design aspects of the pilot facility, and the status of the project.

Rastler, D. M.; Keeler, C. G.; Chi, C. V.

1993-03-01T23:59:59.000Z

166

Greenhouse Gas Emissions (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Minnesota) (Minnesota) Greenhouse Gas Emissions (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Climate Policies This statute sets goals for the reduction of statewide greenhouse gas emissions by at least 15 percent by 2015, 30 percent by 2025, and 80

167

Destruction of acid gas emissions  

DOE Green Energy (OSTI)

A method of destroying NO{sub x} and SO{sub x} in a combustion gas is disclosed. The method includes generating active species by treating stable molecules in a high temperature plasma. Ammonia, methane, steam, hydrogen, nitrogen or a combustion of these gases can be selected as the stable molecules. The gases are subjected to plasma conditions sufficient to create free radicals, ions or excited atoms such as N, NH, NH{sub 2}, OH, CH and/or CH{sub 2}. These active species are injected into a combustion gas at a location of sufficiently high temperature to maintain the species in active state and permit them to react with NO{sub x} and SO{sub x}. Typically the injection is made into the immediate post-combustion gases at temperatures of 475--950{degrees}C. 1 fig.

Mathur, M.P.; Fu, Yuan C.; Ekmann, J.M.; Boyle, J.M.

1990-12-31T23:59:59.000Z

168

Development and Demonstration of Waste Heat Integration with Solvent Process for More Efficient CO2 Removal from Coal-Fired Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

and Demonstration of and Demonstration of Waste Heat Integration with Solvent Process for More Efficient CO 2 Removal from Coal-Fired Flue Gas Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions, & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-

169

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

Contacts Contacts This report, Emissions of Greenhouse Gases in the United States 2009, was prepared under the general direction of John Conti, Assistant Administrator for Energy Analysis, and Paul Holtberg, Team Leader, Analysis Integration Team. General questions concerning the content of this report may be directed to the Office of Communications at 202/586-8800. Technical information concerning the content of the report may be obtained from Perry Lindstrom at 202/586-0934 (email, perry.lindstrom@eia.gov). Without the assistance of Science Applications International Corporation (SAIC), this report would not have been possible. In particular we would like to thank Erin Beddingfield, Keith Forbes, Kristin Igusky, Makely Lyon, Michael Mondshine, and Richard Richards. We also wish to acknowledge the

170

Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter)  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meat this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300[degree]F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1992-10-20T23:59:59.000Z

171

Integrated low emissions cleanup system for direct coal fueled turbines. Twenty-eighth quarterly report, July--September 1994  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of advanced, coal-fueled turbine power plants such as pressurized fluid bed combustion and coal gasification combined cycles. A major technical challenge remaining for the development of the coal-fueled turbine is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure process gases. This document reports the status of a program in the twenty-seventh quarter to develop this ILEC technology.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M. [and others

1996-02-01T23:59:59.000Z

172

THE EFFECT OF COAL/d-RDF CO-FIRING ON STACK EMISSIONS AT MILWAUKEE COUNTY  

E-Print Network (OSTI)

THE EFFECT OF COAL/d-RDF CO-FIRING ON STACK EMISSIONS AT MILWAUKEE COUNTY INSTITUTIONS' POWER PLANT the d-RDF is not clear. Separation and stratification of coal and d-RDF was reported to have occurred in the bunkers. The quantification of the variations in coal/d-RDF ratios exiting the bunkers would be helpful

Columbia University

173

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network (OSTI)

Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

174

Nuclear Power PROS -`No' greenhouse gas emissions  

E-Print Network (OSTI)

Nuclear Power PROS -`No' greenhouse gas emissions -Fuel is cheep -High energy density (1 ton U = 16 abundant elements found in natural crustal rocks) Nuclear Power CONS -High capital cost due to meeting if there is a movement towards electric cars? -What if the high capital costs of a nuclear power plant were invested

Toohey, Darin W.

175

NETL: IEP - Air Quality Research: Health Effects of Coal Plant Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Health Effects of Coal Plant Emissions Health Effects of Coal Plant Emissions Health Effects of Coal Plant Emissions Map Click on a Project Name to Get More Information Click to read a DOE TechLine [PDF-22KB] describing three new projects that will improve our current understanding of the link between power plant emissions, PM2.5, and human health. The Health Effects component of NETL's Air Quality Research Program is designed to enhance the body of scientific evidence relating stack emissions from coal plants to adverse health effects resulting from human exposures to air pollution. Despite the fact that coal plants emit significant amounts of PM2.5 and mercury to the atmosphere, there is currently a great deal of uncertainty regarding the actual amount of health damage resulting from these emissions. In order to devise cost-effective

176

Characterizing Variation in Mercury Emissions from Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

This report evaluates the variability of mercury emissions from coal-fired power plants, using EPRI's continuous mercury monitor (CMM) dataset. Emission variability is important for control technology selection as well as regulatory considerations.

2003-06-03T23:59:59.000Z

177

Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation  

Open Energy Info (EERE)

Greenhouse Gas Emissions and Mitigation Greenhouse Gas Emissions and Mitigation Potential in Agriculture Jump to: navigation, search Logo: Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation Potential in Agriculture (MAGHG) Name Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation Potential in Agriculture (MAGHG) Agency/Company /Organization Food and Agriculture Organization of the United Nations Sector Climate, Land Focus Area Agriculture, Greenhouse Gas Topics GHG inventory, Low emission development planning, -LEDS Resource Type Dataset, Technical report Website http://www.fao.org/climatechan References MICCA Website[1] The overall objective of the MAGHG project is to support developing countries assess and report their greenhouse gas (GHG) emissions from

178

Study on Data Quality Evaluation of Coal and Gas Outburst  

Science Conference Proceedings (OSTI)

Data quality evaluation is an important part of the process of data mining. This article has build the information quality evaluation index system and evaluation model, determines the quantitative index for each quality dimension, and also demonstrates ... Keywords: coal and gas outburst, data quality, dimension, assessment metadata, data warehousing

Dong Lihong; Hou Yunbing

2010-05-01T23:59:59.000Z

179

Quantifying Greenhouse Gas Emissions from Human Activities: Toward...  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantifying Greenhouse Gas Emissions from Human Activities: Toward Verification of Emissions Control Compliance Speaker(s): Marc Fischer Date: April 29, 2010 - 12:00pm Location:...

180

Enhancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual  

Science Conference Proceedings (OSTI)

The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved d,emonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit #1, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. `At each site where the technologies were to be demonstrated, performance goals were set to achieve air emission reductions of 60 percent for NOX and 50 percent for S02. These performance goals were exceeded during long term demonstration testing. For the tangentially fired unit, NO, emissions were reduced by 67.2?40 and SOZ emissions by 52.6Y0. For the cyclone-fired unit, NO, emissions were reduced by 62.9% and SOZ emissions by 57.9Y0.

None

1998-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coal emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Enahancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual  

Science Conference Proceedings (OSTI)

The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved demonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit W, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. At each site where the techno!o@es were to be demonstrated, petiormance goals were set to achieve air emission reductions of 60 percent for NO. and 50 percent for SO2. These performance goals were exceeded during long term demonstration testing. For the tangentially fired unit, NOX emissions were reduced by 67.2% and S02 emissions by 52.6%. For the cyclone-fired unit, NOX emissions were reduced by 62.9% and SOZ emissions by 57.9%.

None

1998-09-01T23:59:59.000Z

182

Comparing the greenhouse gas emissions from three alternative waste combustion concepts  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Tsupari, Eemeli; Sipilae, Kai [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Piispankatu 8, FIN 20500 Turku (Finland)

2012-03-15T23:59:59.000Z

183

Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Greenhouse Gas (GHG) Greenhouse Gas (GHG) Emissions Study to someone by E-mail Share Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Facebook Tweet about Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Twitter Bookmark Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Google Bookmark Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Delicious Rank Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Digg Find More places to share Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Greenhouse Gas (GHG) Emissions Study By October 13, 2013, the Washington Office of Financial Management must

184

Reducing greenhouse gas emissions for climate stabilization: framing regional options  

Science Conference Proceedings (OSTI)

The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO{sub 2} concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term. 31 refs., 3 figs., 1 tab.

Laura Schmitt Olabisi; Peter B. Reich; Kris A. Johnson; Anne R. Kapuscinski; Sangwon Suh; Elizabeth J. Wilson [University of Minnesota, Saint Paul, MN (United States). Ecosystem Science and Sustainability Initiative

2009-03-15T23:59:59.000Z

185

Integrated low emissions cleanup system for coal fueled turbines Phase III bench-scale testing and evaluation  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of coal-fired turbine technologies such as Pressurized Fluidized Bed Combustion (PFBC), coal Gasification Combined Cycles (GCC), and Direct Coal-Fired Turbines (DCFT). A major technical development challenge remaining for coal-fired turbine systems is high-temperature gas cleaning to meet environmental emissions standards, as well as to ensure acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, has evaluated an Integrated Low Emissions Cleanup (ILEC) concept that has been configured to meet this technical challenge. This ceramic hot gas filter (HGF), ILEC concept controls particulate emissions, while simultaneously contributing to the control of sulfur and alkali vapor contaminants in high-temperature, high-pressure, fuel gases or combustion gases. This document reports on the results of Phase III of the ILEC evaluation program, the final phase of the program. In Phase III, a bench-scale ILEC facility has been tested to (1) confirm the feasibility of the ILEC concept, and (2) to resolve some major filter cake behavior issues identified in PFBC, HGF applications.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M. [and others

1995-08-01T23:59:59.000Z

186

The Greenhouse Gas Protocol Initiative: Allocation of Emissions...  

Open Energy Info (EERE)

Greenhouse Gas Protocol Initiative: Allocation of Emissions from a Combined Heat and Power Plant Jump to: navigation, search Name The Greenhouse Gas Protocol Initiative: Allocation...

187

Producing Fuel and Electricity from Coal with Low Carbon Dioxide Emissions  

E-Print Network (OSTI)

-carbongaseousfuel from coal. Synthesisgas from a coal gasifier is shifted to a gas mixture consistingmainly of H2 and CO2 with the coal gasifier, the shift reactor and the CO2 recovery units. CO2 recovery and storage will increase in a number of sub- processeswhich will be describedstepby step.Figures given here arevalid for a gasifier

188

1 2Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants  

E-Print Network (OSTI)

Post-combustion capture retrofits are expected to a near-term option for mitigating CO2 emissions from existing coal-fired power plants. Much of the literature proposes using power from the existing coal plant and thermal integration of its supercritical steam cycle with the stripper reboiler to supply the energy needed for solvent regeneration and CO2 compression. This study finds that using an auxiliary natural gas turbine plant to meet the energetic demands of carbon capture and compression may make retrofits more attractive compared to using thermal integration in some circumstances. Natural gas auxiliary plants increase the power output of the base plant and reduce technological risk associated with CCS, but require favorable natural gas prices and regional electricity demand for excess electricity to make using an auxiliary plant more desirable. Three different auxiliary plant technologies were compared to integration for 90 % capture from an existing, 500 MW supercritical coal plant. CO2 capture and compression is simulated using Aspen Plus and a monoethylamine (MEA) absorption process. Thermoflow software is used to simulate three gas plant technologies. The three technologies assessed are the

Sarah Bashadi; Howard Herzog; Dava J. Newman; Sarah Bashadi

2010-01-01T23:59:59.000Z

189

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, 2 June 1992--1 June 1993  

SciTech Connect

This program was initiated in June of 1986 because advances in coal-fueled gas turbine technology over the previous few years, together with DOE-METC sponsored studies, served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine could ultimately be the preferred system in appropriate market application sectors. In early 1991 it became evident that a combination of low natural gas prices, stringent emission limits of the Clean Air Act and concerns for CO{sub 2} emissions made the direct coal-fueled gas turbine less attractive. In late 1991 it was decided not to complete this program as planned. The objective of the Solar/METC program was to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. Component development of the coal-fueled combustor island and cleanup system while not complete indicated that the planned engine test was feasible. Preliminary designs of the engine hardware and installation were partially completed. A successful conclusion to the program would have initiated a continuation of the commercialization plan through extended field demonstration runs. After notification of the intent not to complete the program a replan was carried out to finish the program in an orderly fashion within the framework of the contract. A contract modification added the first phase of the Advanced Turbine Study whose objective is to develop high efficiency, natural gas fueled gas turbine technology.

LeCren, L.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1993-06-01T23:59:59.000Z

190

Coal-fueled diesel technology development Emissions Control  

DOE Green Energy (OSTI)

GEESI Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a CWS fuel single cylinder research diesel engine to the design, installation, and operation of a full-size Emissions Control system for a full-size CWS fuel diesel engine designed for locomotive operation.Early 10 CFM slipstream testing program activity was performed to determine Emissions Characteristics and to evaluate Emissions Control concepts such a Barrier filtration, Granular bed filtration, and Cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO{sub 2} and NO{sub x} in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical Emissions Control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the Envelope Filter led to a subsequent progression to a similar configuration Envelope Filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This Envelope Filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

Van Kleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

1994-01-01T23:59:59.000Z

191

Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Wisconsin Reduces Wisconsin Reduces Emissions With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Google Bookmark Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Delicious Rank Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on AddThis.com... Oct. 2, 2010 Wisconsin Reduces Emissions With Natural Gas Trucks

192

Direct measurements improve estimates of dairy greenhouse-gas emissions  

E-Print Network (OSTI)

small quantity of Greenhouse gases measured enteric nitrousSC, Pain BF. 1994. Greenhouse gas emissions from intensiveE, Brose G. 2001. Greenhouse gas emissions from animal house

Mitloehner, Frank M; Sun, Huawei; Karlik, John F

2009-01-01T23:59:59.000Z

193

The Carbon Emission Analysis System Design of Coal-Fired Unit  

Science Conference Proceedings (OSTI)

Carbon dioxide is the main cause of global warming, that emission has been the world's attention. and the power industry is an important source of carbon dioxide emissions, this paper try to design the system of power plants for carbon emissions coal-fired ... Keywords: Analysis system, Carbon emissions, Energy saving

Han Jieping; Zhang Chengzhen

2011-08-01T23:59:59.000Z

194

Using auxiliary gas power for CCS energy needs in retrofitted coal power plants  

E-Print Network (OSTI)

Post-combustion capture retrofits are expected to a near-term option for mitigating CO 2 emissions from existing coal-fired power plants. Much of the literature proposes using power from the existing coal plant and thermal ...

Bashadi, Sarah (Sarah Omer)

2010-01-01T23:59:59.000Z

195

Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier  

DOE Patents (OSTI)

A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

Grindley, Thomas (Morgantown, WV)

1989-01-01T23:59:59.000Z

196

The Essential Role of State Enforcement in the Brave New World of Greenhouse Gas Emission Limits  

E-Print Network (OSTI)

the Brave New World of Greenhouse Gas Emission Limits MattNATURE AND EXTENT OF THE GREENHOUSE GAS EMISSION REDUCTIONa similar situation with greenhouse gas emission reductions.

Bogoshian, Matt; Alex, Ken

2009-01-01T23:59:59.000Z

197

EIA Energy Efficiency-Energy Related Greenhouse Gas Emissions Links for the  

U.S. Energy Information Administration (EIA) Indexed Site

Related Greenhouse Gas Emissions Links Related Greenhouse Gas Emissions Links Energy Related Greenhouse Gas Emissions Links Posted Date: May 2007 Page Last Modified: September 2010 EIA Links Disclaimer: These pages contain hypertext links to information created and maintained by other public and private organizations. These links provide additional information that may be useful or interesting and are being provided consistent with the intended purpose of the EIA website. EIA does not control or guarantee the accuracy, relevance, timeliness, or completeness of this outside information. EIA does not endorse the organizations sponsoring linked websites, the views they express, or the products and services they offer. Government Agencies / Associations Energy Information Administration - Annual Energy Outlook: Carbon Dioxide Emissions, CO2 emissions from the combustion of fossil fuels are proportional to fuel consumption. Among fossil fuel types, coal has the highest carbon content, natural gas the lowest, and petroleum in between. In the AEO2006 reference case, the shares of these fuels change slightly from 2004 to 2030, with more coal and less petroleum and natural gas. The combined share of carbon-neutral renewable and nuclear energy is stable from 2004 to 2030 at 14 percent

198

U.S. Agriculture's Role Greenhouse Gas Emission Mitigation World  

E-Print Network (OSTI)

U.S. Agriculture's Role in a Greenhouse Gas Emission Mitigation World: An Economic Perspective the IMPAC project. #12;Abstract International agreements are likely to stimulate greenhouse gas mitigation Words Agricultural Sinks, Emissions Trading, Greenhouse Gas Emission Reductions, Kyoto Protocol #12

McCarl, Bruce A.

199

Electrochemical polishing of hydrogen sulfide from coal synthesis gas  

DOE Green Energy (OSTI)

An advanced process has been developed for the separation of H{sub 2}S from coal gasification product streams through an electrochemical membrane. This technology is developed for use in coal gasification facilities providing fuel for cogeneration coal fired electrical power facilities and Molten Carbonate Fuel Cell electrical power facilities. H{sub 2}S is removed from the syn-gas by reduction to the sulfide ion and H at the cathode. The sulfide ion migrates to the anode through a molten salt electrolyte suspended in an inert ceramic matrix. Once at the anode it is oxidized to elemental sulfur and swept away for condensation in an inert gas stream. The syn-gas is enriched with the H{sub 2}. Order-of-magnitude reductions in H{sub 2}S have been repeatably recorded (100 ppm to 10 ppm H{sub 2}S) on a single pass through the cell. This process allows removal of H{sub 2}S without cooling the gas stream and with negligible pressure loss through the separator. Since there are no absorbents used, there is no absorption/regeneration step as with conventional technology. Elemental sulfur is produced as a by-product directly, so there is no need for a Claus process for sulfur recovery. This makes the process economically attractive since it is much less equipment intensive than conventional technology.

Gleason, E.F.; Winnick, J.

1995-11-01T23:59:59.000Z

200

An Assessment of Mercury Emissions from U.S. Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

In parallel with a U.S. Environmental Protection Agency (EPA) study of mercury emissions from coal-fired electric utility steam generating units, EPRI has reviewed the available data and re-estimated mercury emissions. This document provides an estimate of the mercury levels entering every U.S. coal-fired power plant in 1999, the total and speciated mercury emissions during the same period, and initial projections of the effect of operational and design changes on mercury levels in 2010.

2000-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "gas coal emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advanced Coal-Fueled Gas Turbine Program. Final report  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

202

Slag processing system for direct coal-fired gas turbines  

SciTech Connect

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

203

Quantifying Greenhouse Gas Emissions from Transit | Open Energy Information  

Open Energy Info (EERE)

Quantifying Greenhouse Gas Emissions from Transit Quantifying Greenhouse Gas Emissions from Transit Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Quantifying Greenhouse Gas Emissions from Transit Agency/Company /Organization: American Public Transportation Association Focus Area: GHG Inventory Development Topics: Analysis Tools Resource Type: Reports, Journal Articles, & Tools Website: www.aptastandards.com/Portals/0/SUDS/SUDSPublished/APTA_Climate_Change This Recommended Practice provides guidance to transit agencies for quantifying their greenhouse gas emissions, including both emissions generated by transit and the potential reduction of emissions through efficiency and displacement How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes

204

EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS  

SciTech Connect

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dryer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the seventh in a series of topical reports, describes the results and analysis of mercury sampling performed on a 1,300 MW unit burning a bituminous coal containing three percent sulfur. The unit was equipped with an ESP and a limestone-based wet FGD to control particulate and SO2 emissions, respectively. At the time of sampling an SCR was not installed on this unit. Four sampling tests were performed in September 2003. Flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. The results show that the FGD inlet flue gas oxidized:elemental mercury ratio was roughly 2:1, with 66% oxidized mercury and 34% elemental mercury. Mercury removal, on a coal-to-stack basis, was 53%. The average Hg concentration in the stack flue gas was 4.09 {micro}g/m{sup 3}. The average stack mercury emission was 3.47 Ib/TBtu. The mercury material balance closures ranged from 87% to 108%, with an average of 97%. A sampling program similar to this one was performed on a similar unit (at the same plant) that was equipped with an SCR for NOx control. Comparison of the results from the two units show that the SCR increases the percentage of mercury that is in the oxidized form, which, in turn, lends to more of the total mercury being removed in the wet scrubber. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NOx, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal.

J.A. Withum; S.C. Tseng; J.E. Locke

2005-11-01T23:59:59.000Z

205

Opening New Avenues for High-Efficiency, Low-Emission Coal Gasification |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Opening New Avenues for High-Efficiency, Low-Emission Coal Opening New Avenues for High-Efficiency, Low-Emission Coal Gasification Opening New Avenues for High-Efficiency, Low-Emission Coal Gasification April 10, 2012 - 1:00pm Addthis A rendering of the Pratt & Whitney Rocketdyne high pressure, dry-solids feed pump. A rendering of the Pratt & Whitney Rocketdyne high pressure, dry-solids feed pump. Washington, DC - Gasification. It's a versatile technology that uses coal to produce power, chemicals, and fuels. Inherently low in air emissions, solid byproducts, and wastewater, commercial gasification plants have proven capable of exceeding the most stringent regulations for air- and solids-emissions. However, capital and operational costs have prohibited the widespread adoption of gasification, especially for power

206

Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass  

SciTech Connect

This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation?s urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

Huffman, Gerald

2012-12-31T23:59:59.000Z

207

Ni/YSZ Anode Interactions with Impurities in Coal Gas  

DOE Green Energy (OSTI)

Performance of solid oxide fuel cell (SOFC) with nickel/zirconia anodes on synthetic coal gas in the presence of low levels of phosphorus, arsenic, selenium, sulfur, hydrogen chloride, and antimony impurities were evaluated. The presence of phosphorus and arsenic led to the slow and irreversible SOFC degradation due to the formation of secondary phases with nickel, particularly close to the gas inlet. Phosphorus and antimony surface adsorption layers were identified as well. Hydrogen chloride and sulfur interactions with the nickel were limited to the surface adsorption only, whereas selenium exposure also led to the formation of nickel selenide for highly polarized cells.

Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Thomsen, Edwin C.; Coffey, Greg W.

2009-10-16T23:59:59.000Z

208

Slag processing system for direct coal-fired gas turbines  

SciTech Connect

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

209

Enhancing the use of coals by gas reburning-sorbent injection: Volume 3 -- Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company. Final report  

Science Conference Proceedings (OSTI)

Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x} and SO{sub 2} from a wall fired unit at Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the as found baseline of 0.98 lb/MBtu and to reduce emissions of SO{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an SO{sub 2} limit of 1.8 lb/MBtu, the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with SO{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The system was designed to inject sorbent at a rate corresponding to a calcium (sorbent) to sulfur (coal) molar ratio of 2.0. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.

NONE

1996-03-01T23:59:59.000Z

210

NETL: IEP – Post-Combustion CO2 Emissions Control - Coal Direct Chemical  

NLE Websites -- All DOE Office Websites (Extended Search)

- Oxy-Combustion CO2 Emissions Control - Oxy-Combustion CO2 Emissions Control Coal Direct Chemical Looping Retrofit for Pulverized Coal-Fired Power Plants with In-Situ CO2 Capture Project No.: DE-NT0005289 Ohio State chemical looping metal carrier. Ohio State chemical looping metal carrier. The Ohio State University Research Foundation will further develop coal direct chemical looping (CDCL) technology. CDCL uses a patented iron oxide-based composite oxygen carrier and can be retrofit to existing coal-fired power plants. The development of the CDCL system will be conducted through experimental testing under bench- and sub-pilot scales. Related Papers and Publications: Coal Direct Chemical Looping Retrofit to Pulverized Coal Power Plants for In-Situ CO2 Capture [PDF-2.43MB] (July 2013) Presented by Samuel Bayham of the Ohio State University Research Foundation at the 2013 NETL CO2 Capture Technology Meeting.

211

Mitigating Greenhouse Gas Emissions: Voluntary Reporting  

Gasoline and Diesel Fuel Update (EIA)

08(96) 08(96) Distribution Category UC-950 Mitigating Greenhouse Gas Emissions: Voluntary Reporting October 1997 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. For More Information Individuals or members of organizations wishing to report reductions in emissions of greenhouse gases under the auspices of the Voluntary Reporting Program can contact the Energy Information Administration (EIA) at: Voluntary Reporting of Greenhouse Gases Energy Information Administration U.S. Department

212

Axion emission from a magnetized neutron gas  

SciTech Connect

By using the polarization density matrix for a neutron in a magnetic field, the axion luminosity of magnetic neutron stars that is associated with the flip of the anomalous magnetic moment of degenerate nonrelativistic neutrons is calculated. It is shown that, at values of the magnetic-field induction in the region B Greater-Than-Or-Equivalent-To 10{sup 18} G, this mechanism of axion emission is dominant in 'young' neutron stars of temperature about a few tens of MeV units. At B {approx} 10{sup 17} G, it is one of the basic mechanisms. The Fermi energy of a degenerate neutron gas in a magnetic field is found, and it is shown that there is no such mechanism of axion emission in the degenerate case.

Skobelev, V. V., E-mail: v.skobelev@inbox.ru [Moscow State Industrial University (Russian Federation)

2011-01-15T23:59:59.000Z

213

Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types.  

Science Conference Proceedings (OSTI)

Since the United States began a program to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types--categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly--from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path.

Wang, M.; Wu, M.; Huo, H.; Energy Systems

2007-04-01T23:59:59.000Z

214

Int. J. Oil, Gas and Coal Technology, Vol. 5, No. 1, 2012 1 Copyright 2012 Inderscience Enterprises Ltd.  

E-Print Network (OSTI)

Int. J. Oil, Gas and Coal Technology, Vol. 5, No. 1, 2012 1 Copyright © 2012 Inderscience Reservoir Modelling of Oil and Gas Producing Shale Reservoirs; Case Studies, Int. J. Oil, Gas, and Coal

Mohaghegh, Shahab

215

A fuel cycle framework for evaluating greenhouse gas emission reduction technology  

SciTech Connect

Energy-related greenhouse gas (GHG) emissions arise from a number of fossil fuels, processes and equipment types throughout the full cycle from primary fuel production to end-use. Many technology alternatives are available for reducing emissions based on efficiency improvements, fuel switching to low-emission fuels, GHG removal, and changes in end-use demand. To conduct systematic analysis of how new technologies can be used to alter current emission levels, a conceptual framework helps develop a comprehensive picture of both the primary and secondary impacts of a new technology. This paper describes a broad generic fuel cycle framework which is useful for this purpose. The framework is used for cataloging emission source technologies and for evaluating technology solutions to reduce GHG emissions. It is important to evaluate fuel mix tradeoffs when investigating various technology strategies for emission reductions. For instance, while substituting natural gas for coal or oil in end-use applications to reduce CO{sub 2} emissions, natural gas emissions of methane in the production phase of the fuel cycle may increase. Example uses of the framework are given.

Ashton, W.B.; Barns, D.W. (Pacific Northwest Lab., Richland, WA (USA)); Bradley, R.A. (USDOE Office of Policy, Planning and Analysis, Washington, DC (USA). Office of Environmental Analysis)

1990-05-01T23:59:59.000Z

216

Application of microturbines to control emissions from associated gas  

SciTech Connect

A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

Schmidt, Darren D.

2013-04-16T23:59:59.000Z

217

Does the presence of pseudovitrinite indicate gas-saturated coals? Some interesting observations from the Gething coals in Canada  

Science Conference Proceedings (OSTI)

The presence of pseudovitrinite at a depth of 1,000 m in the very gassy (up to 862 scf/ton total gas content, as-received basis) but low absolute permeability (0.5 mD), low-volatile bituminous Gething coals in the Canadian Foothills has been documented. Because oxidation is unlikely to occur at such depth, it is reasonable to expect that pseudovitrinite formed as a result of desiccation in a gas-saturated environment prior to the coals being uplifted to their present day depth. This raises the possibility that a coal that contains pseudovitrinite may have moisture content that is below its equilibrium moisture, which leads to higher methane adsorptive capacity compared with the same coal that has normal vitrinite (collotelinite). The presence of inertinite macerals in the coal, derived from wood fibers and charred remnants, has aided in the development and preservation of phyteral porosity and in the formation of interconnected microcavities, which should result in higher micropermeability and aid the flow of gas locally within the coal seam and surrounding strata. The Gething coals in the Highhat corehole share some of these characteristics, which may have important implications on the dynamics of coal-bed methane production. Volumetric strain (matrix shrinkage) of these gassy coals during production is conservatively estimated to be 0.5-0.75%, which may result in an absolute permeability increase of between 5 to 12 times, based on studies on coals of similar rank and gas content in United States basins. Although observations made in this preliminary study do not constitute a proof, they leave open the possibility of using pseudovitrinite, under certain circumstances, as an indicator of improved gas sorptive capacity and enhanced permeability in deep coals.

Gentzis, T. [Petron Resources LP, Frisco, TX (United States)

2008-07-01T23:59:59.000Z

218

Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from  

Open Energy Info (EERE)

Greenhouse Gas Emissions Baselines and Reduction Potentials from Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Agency/Company /Organization United Nations Environment Programme Sector Energy Focus Area Buildings Topics Baseline projection, GHG inventory, Pathways analysis, Background analysis Resource Type Publications Website http://www.unep.org/sbci/pdfs/ Country Mexico Central America References Greenhouse Emissions Baselines and Reduction Potentials for Buildings[1] Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Screenshot "This report represents the first comprehensive description of the factors that determine the present and future impacts of residential and commercial

219

Advanced coal-fueled gas turbine systems. Annual report, July 1991--June 1992  

DOE Green Energy (OSTI)

Westinghouse`s Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO{sub x} emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO{sub x} levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

Not Available

1992-09-01T23:59:59.000Z

220

Combustion research related to utilization of coal as a gas turbine fuel  

SciTech Connect

A nominal 293 kw (1 MBtu/hr) atmospheric pressure, refractory-lined combustor has been used to investigate the effects of a number of combustor and fuel dependent variables on combustion efficiency and flue gas characteristics for minimally cleaned, coal-derived gas (MCG) and coal water mixtures. The variables which have been evaluated include: percent excess air, air distribution, combustion air preheat temperature, swirl number, fuel feedrate, coal particle size, coal loading in slurry, and slurry viscosity. Characterization of the flue gas included major/minor gas species, alkali levels, and particulate loading, size, and composition. These atmospheric pressure combustion studies accompanied by data from planned pressurized studies on coal-water slurries and hot, minimally cleaned, coal-derived gas will aid in the determination of the potential of these fuels for use in gas turbines.

Davis-Waltermine, D.M.; Anderson, R.J.

1984-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coal emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Quantifying Greenhouse Gas Emissions from Human Activities: Toward  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantifying Greenhouse Gas Emissions from Human Activities: Toward Quantifying Greenhouse Gas Emissions from Human Activities: Toward Verification of Emissions Control Compliance Speaker(s): Marc Fischer Date: April 29, 2010 - 12:00pm Location: 90-3122 Local to international control of anthropogenic greenhouse gas (GHG) emissions will require systematic estimation of emissions and independent verification. California, the only state in the US with legislated controls on GHG emissions, is conducting research to enable emissions verification of the mandated emissions reductions (AB-32). The California Energy Commission supports the California Greenhouse Gas Emissions Measurement (CALGEM) project at LBNL. In collaboration with NOAA, CALGEM measures mixing ratios of all significant GHGs at two tall-towers and on aircraft in

222

Coal home heating and environmental tobacco smoke in relation to lower respiratory illness in Czech children, from birth to 3 years of age  

E-Print Network (OSTI)

effects of combustion emissions from wood (Honicky andfuel combustion sources, such as gas-, wood-, or coal-indoor combustion of cigarettes and of coal, wood, natural

2006-01-01T23:59:59.000Z

223

The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary Combustion Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary Combustion Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Buildings, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: Stationary Combustion Guidance[1] The Greenhouse Gas Protocol tool for stationary combustion is a free Excel spreadsheet calculator designed to calculate GHG emissions specifically

224

Analysis of safety precautions for coal and gas outburst-hazardous strata  

Science Conference Proceedings (OSTI)

The author analyses coal and gas outbursts and generalizes the available data on the approaches to solving the problematics of these gas-dynamic events in the framework of Czech Republic Grant 'Estimate of the Safety Precautions for Coal and Gas Outburst Hazardous Strata'.

Hudecek, V. [Technical University of Ostrava, Ostrava (Czech Republic)

2008-09-15T23:59:59.000Z

225

Engineering development of advanced coal-fired low-emission boiler system  

Science Conference Proceedings (OSTI)

The Pittsburgh Energy Technology Center of the US Department of Energy (DOE) has contracted with Combustion Engineering, Inc. (ABB CE) to perform work on the Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems'' Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis. The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: NO[sub x] emissions not greater than one-third NSPS; SO[sub x] emissions not greater than one-third NSPS; and particulate emissions not greater than one-half NSPS. The specific secondary objectives are: Improved ash disposability and reduced waste generation; reduced air toxics emissions; increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a commercial generation unit.

Not Available

1993-02-26T23:59:59.000Z

226

Advanced coal-fueled gas turbine systems  

Science Conference Proceedings (OSTI)

Activity towards completing Advanced Turbine Systems (ATS) Phase I work was begun again in December. Effort to complete the Phase I work was temporarily suspended upon receipt of the ATS Phase II RFP the last week in August. The Westinghouse ATS team's efforts were directed at preparing the ATS Phase II proposal which was submitted November 18. It is planned to finish Phase I work and submit the topical report by the end of February 1993. The objective of the four slogging combustor tests conducted during this reporting period (i.e., tests SL3-1 through SL3-4) were to perform sulfur capture experiments using limestoneand iron oxide based sorbents and to collect exhaust vapor phase and solids bound alkali measurements using the Westinghouse and Ames Laboratory alkali probes/monitors. The most significant, if not outstanding result revealed by these tests is that the Ames alkali monitor indicates that the vapor phase sodium is approximately 23--30 ppbw and the vapor phase potassium is approximately 5--20 ppbw. For reference, alkalilevels of 20 ppbw are acceptable in Westinghouse gas turbines fueled with crude oil.

Not Available

1993-02-03T23:59:59.000Z

227

Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development  

SciTech Connect

The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

Radisav Vidic; Joseph Flora; Eric Borguet

2008-12-31T23:59:59.000Z

228

Transportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation  

E-Print Network (OSTI)

Transportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation Oak Ridge sector is believed to be responsible for 28.4% of our greenhouse gas emissions (see figure), including 33% of the carbon dioxide we produce. As such it is a leading candidate for greenhouse gas ((GHG) (CO2, NH4, HFCs

229

Regulating Greenhouse Gas Emissions Date: March 7, 2011  

E-Print Network (OSTI)

Regulating Greenhouse Gas Emissions Date: March 7, 2011 To: Michigan's Congressional Delegation From: Michigan College, University, Agency and NGO Researchers RE: Clean Air Act and Greenhouse Gas note that the EPA's rules to reduce greenhouse gas emissions from new vehicles were welcomed

Shyy, Wei

230

Greenhouse gas emissions, waste and recycling policy Kaylee Acuff  

E-Print Network (OSTI)

Greenhouse gas emissions, waste and recycling policy Kaylee Acuff and Daniel T. Kaffine We thank@mines.edu.) 1 #12;Greenhouse gas emissions, waste and recycling policy Abstract This paper examines least-cost policies for waste reduction, incorporating upstream greenhouse gas externalities associated

231

Greenhouse Gas Emissions from Building and Operating Electric  

E-Print Network (OSTI)

Greenhouse Gas Emissions from Building and Operating Electric Power Plants in the Upper Colorado requires a life cycle perspective. This paper compares greenhouse gas (GHG) emissions from three renewable, and natural gas power plants is estimated for four time periods after construction. The assessment

Kammen, Daniel M.

232

Estimation Methodology for Total and Elemental Mercury Emissions from Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

This report provides a tool for estimating total and speciated mercury emissions from coal-fired power plants. The mercury emissions methodology is based on EPRI's analyses of the results from the U.S. Environmental Protection Agency (EPA) Mercury Information Collection Request (ICR). The Mercury ICR required owner/operators of coal-fired electric utility steam generating units to report for calendar year 1999 the quantity of fuel consumed and the mercury content of that fuel. In addition, 84 power plant...

2001-04-18T23:59:59.000Z

233

Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that these data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the ninth in a series of topical reports, describes the results and analysis of mercury sampling performed on Unit 1 at Plant 7, a 566 MW unit burning a bituminous coal containing 3.6% sulfur. The unit is equipped with a SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions, respectively. Four sampling tests were performed in August 2004 during ozone season with the SCR operating; flue gas mercury speciation and concentrations were determined at the SCR inlet, SCR outlet, air heater outlet (ESP inlet), ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Three sampling tests were also performed in November 2004 during non-ozone season with the SCR bypassed; flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet). Process samples for material balances were collected during the flue gas measurements. The results show that, at the point where the flue gas enters the FGD, a greater percentage of the mercury was in the oxidized form when the SCR was operating compared to when the SCR was bypassed (97% vs 91%). This higher level of oxidation resulted in higher mercury removals in the FGD because the FGD removed 90-94% of the oxidized mercury in both cases. Total coal-to-stack mercury removal was 86% with the SCR operating, and 73% with the SCR bypassed. The average mercury mass balance closure was 81% during the ozone season tests and 87% during the non-ozone season tests.

J. A. Withum; S. C. Tseng; J. E. Locke

2006-01-31T23:59:59.000Z

234

Greenhouse gas emissions in biogas production systems  

E-Print Network (OSTI)

Cameron KC. Nitrous oxide emissions from two dairy pastureand land use on N 2 O emissions from an imperfectly drainedoptions for N 2 O emissions from differently managed

Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

2009-01-01T23:59:59.000Z

235

Sticking of Iron Ore Pellets in Direct Reduction with Coal Gas  

Science Conference Proceedings (OSTI)

Abstract Scope, A series of reduction experiments of iron ore pellets with coal gasification gas were carried out in a laboratory scale shaft furnace. The sticking

236

Rock, Mineral, Coal, Oil, and Gas Resources on State Lands (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter authorizes and regulates prospecting permits and mining leases for the exploration and development of rock, mineral, oil, coal, and gas resources on state lands.

237

Evaluate Buildings Greenhouse Gas Emissions Contribution by Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluate Buildings Greenhouse Gas Emissions Contribution by Program Evaluate Buildings Greenhouse Gas Emissions Contribution by Program Evaluate Buildings Greenhouse Gas Emissions Contribution by Program October 7, 2013 - 10:48am Addthis When prioritizing building types and sites for evaluating greenhouse gas (GHG) emissions, Federal agencies should first determine which programs contribute the most to their total building greenhouse gas (GHG) emissions and focus their analysis on those programs. Using the total buildings energy use by program, these emissions profile can be calculated using the Federal Energy Management Program's Annual GHG and Sustainability Data Report site. In the example below, Agency ABC should focus on Programs B and C first because together they represent over 80% of building emissions. Agencies

238

Combustion of ultrafine coal/water mixtures and their application in gas turbines: Final report  

Science Conference Proceedings (OSTI)

The feasibility of using coal-water fuels (CWF) in gas turbine combustors has been demonstrated in recent pilot plant experiments. The demands of burning coal-water fuels with high flame stability, complete combustion, low NO/sub x/ emission and a resulting fly ash particle size that will not erode turbine blades represent a significant challenge to combustion scientists and engineers. The satisfactory solution of these problems requires that the variation of the structure of CWF flames, i.e., the fields of flow, temperature and chemical species concentration in the flame, with operating conditions is known. Detailed in-flame measurements are difficult at elevated pressures and it has been proposed to carry out such experiments at atmospheric pressure and interpret the data by means of models for gas turbine combustor conditions. The research was carried out in five sequential tasks: cold flow studies; studies of conventional fine-grind CWF; combustion studies with ultrafine CWF fuel; reduction of NO/sub x/ emission by staged combustion; and data interpretation-ignition and radiation aspects. 37 refs., 61 figs., 9 tabs.

Toqan, M.A.; Srinivasachar, S.; Staudt, J.; Varela, F.; Beer, J.M.

1987-10-01T23:59:59.000Z

239

The Future of Coal in a Greenhouse Gas Constrained World Howard Herzog1  

E-Print Network (OSTI)

1 The Future of Coal in a Greenhouse Gas Constrained World Howard Herzog1 , James Katzer1 1 M coal can make to the growing world energy demand during a period of increasing concern about global pursue in the short-term so that we can utilize coal in the longer-term and reduce its associated CO2

240

Near-Zero Emissions Oxy-Combustion Flue Gas Purification  

Science Conference Proceedings (OSTI)

The objectives of this project were to carry out an experimental program to enable development and design of near zero emissions (NZE) CO{sub 2} processing unit (CPU) for oxy-combustion plants burning high and low sulfur coals and to perform commercial viability assessment. The NZE CPU was proposed to produce high purity CO{sub 2} from the oxycombustion flue gas, to achieve > 95% CO{sub 2} capture rate and to achieve near zero atmospheric emissions of criteria pollutants. Two SOx/NOx removal technologies were proposed depending on the SOx levels in the flue gas. The activated carbon process was proposed for power plants burning low sulfur coal and the sulfuric acid process was proposed for power plants burning high sulfur coal. For plants burning high sulfur coal, the sulfuric acid process would convert SOx and NOx in to commercial grade sulfuric and nitric acid by-products, thus reducing operating costs associated with SOx/NOx removal. For plants burning low sulfur coal, investment in separate FGD and SCR equipment for producing high purity CO{sub 2} would not be needed. To achieve high CO{sub 2} capture rates, a hybrid process that combines cold box and VPSA (vacuum pressure swing adsorption) was proposed. In the proposed hybrid process, up to 90% of CO{sub 2} in the cold box vent stream would be recovered by CO{sub 2} VPSA and then it would be recycled and mixed with the flue gas stream upstream of the compressor. The overall recovery from the process will be > 95%. The activated carbon process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx, thus exceeding the performance targets of >99% and >95%, respectively. The process was also found to be suitable for power plants burning both low and high sulfur coals. Sulfuric acid process did not meet the performance expectations. Although it could achieve high SOx (>99%) and NOx (>90%) removal efficiencies, it could not produce by-product sulfuric and nitric acids that meet the commercial product specifications. The sulfuric acid will have to be disposed of by neutralization, thus lowering the value of the technology to same level as that of the activated carbon process. Therefore, it was decided to discontinue any further efforts on sulfuric acid process. Because of encouraging results on the activated carbon process, it was decided to add a new subtask on testing this process in a dual bed continuous unit. A 40 days long continuous operation test confirmed the excellent SOx/NOx removal efficiencies achieved in the batch operation. This test also indicated the need for further efforts on optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level. The VPSA process was tested in a pilot unit. It achieved CO{sub 2} recovery of > 95% and CO{sub 2} purity of >80% (by vol.) from simulated cold box feed streams. The overall CO{sub 2} recovery from the cold box VPSA hybrid process was projected to be >99% for plants with low air ingress (2%) and >97% for plants with high air ingress (10%). Economic analysis was performed to assess value of the NZE CPU. The advantage of NZE CPU over conventional CPU is only apparent when CO{sub 2} capture and avoided costs are compared. For greenfield plants, cost of avoided CO{sub 2} and cost of captured CO{sub 2} are generally about 11-14% lower using the NZE CPU compared to using a conventional CPU. For older plants with high air intrusion, the cost of avoided CO{sub 2} and capture CO{sub 2} are about 18-24% lower using the NZE CPU. Lower capture costs for NZE CPU are due to lower capital investment in FGD/SCR and higher CO{sub 2} capture efficiency. In summary, as a result of this project, we now have developed one technology option for NZE CPU based on the activated carbon process and coldbox-VPSA hybrid process. This technology is projected to work for both low and high sulfur coal plants. The NZE CPU technology is projected to achieve near zero stack emissions

Minish Shah; Nich Degenstein; Monica Zanfir; Rahul Solunke; Ravi Kumar; Jennifer Bugayong; Ken Burgers

2012-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas coal emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Secretary Chu Announces Two New Projects to Reduce Emissions from Coal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Two New Projects to Reduce Emissions from Two New Projects to Reduce Emissions from Coal Plants Secretary Chu Announces Two New Projects to Reduce Emissions from Coal Plants July 1, 2009 - 1:00pm Addthis Washington, DC - U.S. Department of Energy Secretary Steven Chu announced today that projects by Basin Electric Power Cooperative and Hydrogen Energy International LLC have been selected for up to $408 million in funding from the American Recovery and Reinvestment Act. The two projects selected -- an existing power plant in North Dakota and a new facility in California -- will incorporate advanced technologies to reduce carbon dioxide (CO2) emissions. "Today's announcement represents a major step forward in the fight to reduce CO2 emissions from coal-based power plants. These new technologies

242

Secretary Chu Announces Two New Projects to Reduce Emissions from Coal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Projects to Reduce Emissions from New Projects to Reduce Emissions from Coal Plants Secretary Chu Announces Two New Projects to Reduce Emissions from Coal Plants July 1, 2009 - 12:00am Addthis Washington, DC - U.S. Department of Energy Secretary Steven Chu announced today that projects by Basin Electric Power Cooperative and Hydrogen Energy International LLC have been selected for up to $408 million in funding from the American Recovery and Reinvestment Act. The two projects selected -- an existing power plant in North Dakota and a new facility in California -- will incorporate advanced technologies to reduce carbon dioxide (CO2) emissions. "Today's announcement represents a major step forward in the fight to reduce CO2emissions from coal-based power plants. These new technologies will not only help fight climate change, they will also create new jobs and

243

Rough surface mitigates electron and gas emission  

SciTech Connect

Heavy-ion beams impinging on surfaces near grazing incidence (to simulate the loss of halo ions) generate copious amounts of electrons and gas that can degrade the beam. We measured emission coefficients of {eta}{sub e} {le} 130 and {eta}{sub 0} {approx} 10{sup 4} respectively, with 1 MeV K{sup +} incident on stainless steel. Electron emission scales as {eta}{sub e} {proportional_to} 1/cos({theta}), where {theta} is the ion angle of incidence relative to normal. If we were to roughen a surface by blasting it with glass beads, then ions that were near grazing incidence (90{sup o}) on smooth surface would strike the rims of the micro-craters at angles closer to normal incidence. This should reduce the electron emission: the factor of 10 reduction, Fig. 1(a), implies an average angle of incidence of 62{sup o}. Gas desorption varies more slowly with {theta} (Fig. 1(b)) decreasing a factor of {approx}2, and along with the electron emission is independent of the angle of incidence on a rough surface. In a quadrupole magnet, electrons emitted by lost primary ions are trapped near the wall by the magnetic field, but grazing incidence ions can backscatter and strike the wall a second time at an azimuth where magnetic field lines intercept the beam. Then, electrons can exist throughout the beam (see the simulations of Cohen, HIF News 1-2/04). The SRIM (TRIM) Monte Carlo code predicts that 60-70% of 1 MeV K{sup +} ions backscatter when incident at 88-89{sup o} from normal on a smooth surface. The scattered ions are mostly within {approx}10{sup o} of the initial direction but a few scatter by up to 90{sup o}. Ion scattering decreases rapidly away from grazing incidence, Fig. 1(c ). At 62 deg. the predicted ion backscattering (from a rough surface) is 3%, down a factor of 20 from the peak, which should significantly reduce electrons in the beam from lost halo ions. These results are published in Phys. Rev. ST - Accelerators and Beams.

Molvik, A

2004-09-03T23:59:59.000Z

244

San Diego's carbon footprint : measuring and mitigating greenhouse gas emissions.  

E-Print Network (OSTI)

??Climate Change is one of the most pressing issues of our time. The best way to measure and mitigate the greenhouse gas emissions causing climate (more)

Bushman, Tara Rose

2013-01-01T23:59:59.000Z

245

Gas emissions from dairy cow and fattening pig buildings.  

E-Print Network (OSTI)

??The objective of this research is to contribute to the knowledge concerning the abatement of gas emissions from livestock production. Investigations regarding the choice of (more)

Ngwabie, Ngwa Martin

2011-01-01T23:59:59.000Z

246

Natural Gas Stove Emissions and Respiratory Health: Evidence...  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Stove Emissions and Respiratory Health: Evidence from NHANES III NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not...

247

Greenhouse gas emissions from public consumption in Gothenburg.  

E-Print Network (OSTI)

??The purpose of this thesis is to explore and estimate greenhouse gas emissions from the public consumption in Gothenburg. By doing so it should be (more)

Sinclair, Robin

2013-01-01T23:59:59.000Z

248

Greenhouse gas emissions from cultivated peat soils in Sweden.  

E-Print Network (OSTI)

??Greenhouse gas emissions and peat subsidence are major concerns both from an environmental perspective and for farmers with declining soil production capacity. Agricultural databases, digitised (more)

Berglund, rjan

2011-01-01T23:59:59.000Z

249

Method for increasing the calorific value of gas produced by the in situ combustion of coal  

DOE Patents (OSTI)

The present invention relates to the production of relatively high Btu gas by the in situ combustion of subterranean coal. The coal bed is penetrated with a horizontally-extending borehole and combustion is initiated in the coal bed contiguous to the borehole. The absolute pressure within the resulting combustion zone is then regulated at a desired value near the pore pressure within the coal bed so that selected quantities of water naturally present in the coal will flow into the combustion zone to effect a hydrogen and carbon monoxide-producing steam-carbon reaction with the hot carbon in the combustion zone for increasing the calorific value of the product gas.

Shuck, Lowell Z. (Morgantown, WV)

1978-01-01T23:59:59.000Z

250

Impact of the Great Plains coal gasification decision on a coal gas industry  

SciTech Connect

In approving the special tariff and financing features of the Great Plains coal-gasification project, the Federal Energy Regulatory Commission took the first major federal action toward encouraging the construction of a commercial-sized synthetic-fuels facility, asserts the law firm of Morley, Caskin and Generelly. Owned by Great Plains Gasification Associates - a partnership of five pipeline companies - the commercial-sized plant qualifies for FERC approval under the commission's RD and D regulations. The special financing terms for the project will require customers of existing natural gas companies to bear the costs incurred by the project regardless of its success in operation or the amount of gas produced for the customer's utilization. This RD and D rate treatment serves to mitigate market forces and thus operates as an effective subsidy for the pipeline industry. If this or a similar regulatory subsidy is extended to other coal-gas projects, the pipeline industry could take the lead in the nation's synfuels program.

Zipp, J.F.

1980-05-08T23:59:59.000Z

251

Impact of Canadas Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

Technologies for Reducing Greenhouse Gas Emissions form RoadConsiders Copying Californias Greenhouse Gas Law. http://Regulations to Control Greenhouse Gas Emissions from Motor

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

252

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

Technologies for Reducing Greenhouse Gas Emissions form RoadConsiders Copying Californias Greenhouse Gas Law. http://Regulations to Control Greenhouse Gas Emissions from Motor

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

253

FETC Programs for Reducing Greenhouse Gas Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Energy Technology Center Federal Energy Technology Center Pittsburgh, Pennsylvania Morgantown, West Virginia FETC's Customer Service Line: (800) 553-7681 FETC's Homepage: http://www.fetc.doe.gov/ DOE/FETC-98/1058 (DE98002029) FETC Programs for Reducing Greenhouse Gas Emissions John A. Ruether February 1998 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein

254

Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant  

E-Print Network (OSTI)

Cornell's conversion of a coal fired heating plant to natural Gas University began operating with natural gas, instead of the coal-fired generators of the coal that had been stockpiled, the Plant is running completely on natural gas

Keinan, Alon

255

title Estimating Policy Driven Greenhouse Gas Emissions Trajectories  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy Driven Greenhouse Gas Emissions Trajectories Estimating Policy Driven Greenhouse Gas Emissions Trajectories in California The California Greenhouse Gas Inventory Spreadsheet GHGIS Model year month institution Lawrence Berkeley National Laboratory address Berkeley abstract p A California Greenhouse Gas Inventory Spreadsheet GHGIS model was developed to explore the impact of combinations of state policies on state greenhouse gas GHG and regional criteria pollutant emissions The model included representations of all GHGemitting sectors of the California economy including those outside the energy sector such as high global warming potential gases waste treatment agriculture and forestry in varying degrees of detail and was carefully calibrated using available data and projections from multiple state agencies and

256

EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on Hg speciation and the efficacy of different FGD technologies for Hg capture. This document, the second in a series of topical reports, describes the results and analysis of mercury sampling performed on a 330 MW unit burning a bituminous coal containing 1.0% sulfur. The unit is equipped with a SCR system for NOx control and a spray dryer absorber for SO{sub 2} control followed by a baghouse unit for particulate emissions control. Four sampling tests were performed in March 2003. Flue gas mercury speciation and concentrations were determined at the SCR inlet, air heater outlet (ESP inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. Due to mechanical problems with the boiler feed water pumps, the actual gross output was between 195 and 221 MW during the tests. The results showed that the SCR/air heater combination oxidized nearly 95% of the elemental mercury. Mercury removal, on a coal-to-stack basis, was 87%. The mercury material balance closures for the four tests conducted at the plant ranged from 89% to 114%, with an average of 100%. These results appear to show that the SCR had a positive effect on mercury removal. In earlier programs, CONSOL sampled mercury at six plants with wet FGDs for SO{sub 2} control without SCR catalysts. At those plants, an average of 61 {+-} 15% of the mercury was in the oxidized form at the air heater outlet. The principal purpose of this work is to develop a better understanding of the potential Hg removal ''co-benefits'' achieved by NOx, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of Hg chemistry in flue gas, the catalytic effect of SCR systems on Hg speciation and the efficacy of different FGD technologies for Hg capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize Hg removal.

J. A. Withum; S.C. Tseng; J. E. Locke

2004-10-31T23:59:59.000Z

257

Determine Largest Mobile Greenhouse Gas Emission Sources | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Largest Mobile Greenhouse Gas Emission Sources Largest Mobile Greenhouse Gas Emission Sources Determine Largest Mobile Greenhouse Gas Emission Sources October 7, 2013 - 11:39am Addthis YOU ARE HERE Step 2 For the purposes of portfolio planning, a Federal agency's first data analysis step is to determine which mobile emissions sources represent the largest contributors to the agency's overall greenhouse gas (GHG) emissions. Agencies can use agency-level data to determine which fleets/locations, which vehicle assets (e.g., fleet vehicles, non-fleet equipment, etc.), and which fuel types are producing the largest amounts of emissions. Based on this analysis, the agency can better define which mitigation strategies will be most effective. For instance, if a single fleet comprises over half of the agency's vehicle and equipment emissions, the

258

Estimate Greenhouse Gas Emissions by Building Type | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type October 7, 2013 - 10:51am Addthis YOU ARE HERE Step 2 Starting with the programs contributing the greatest proportion of building greenhouse gas (GHG) emissions, the agency should next determine which building types operated by those programs use the most energy (Figure 1). Energy intensity is evaluated instead of emissions in this approach because programs may not have access to emissions data by building type. Figure 1 - An image of an organizational-type chart. A rectangle labeled 'Program 1' has lines pointing to three other rectangles below it labeled 'Building Type 1,' 'Building Type 2,' and 'Building Type 3.' Next to the building types it says, 'Step 2. Estimate emissions by building type.

259

Greenhouse Gas Emissions from Aviation and Marine Transportation:  

Open Energy Info (EERE)

Greenhouse Gas Emissions from Aviation and Marine Transportation: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies Jump to: navigation, search Tool Summary Name: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies Agency/Company /Organization: Pew Center on Global Climate Change Sector: Climate, Energy Focus Area: Greenhouse Gas, Transportation Topics: GHG inventory Resource Type: Publications, Technical report Website: www.pewclimate.org/docUploads/aviation-and-marine-report-2009.pdf Cost: Free References: Greenhouse Gas emissions from aviation and marine transportation: mitigation potential and policies[1] "This paper provides an overview of greenhouse gas (GHG) emissions from aviation and marine transportation and the various mitigation options to

260

CE to do 150-MW coal-gas-retrofit design study  

Science Conference Proceedings (OSTI)

Combustion Engineering (CE) has a $5 million DOE contract to design a coal gasifier that will convert eastern coal into a fuel gas and replace the oil and gas now burned in a Gulf States Utility unit. A pilot unit which has been converting Pittsburgh No. 8 seam coal into 110-Btu fuel gas will be scaled up. The company will also begin testing four other coal types. CE finds that retrofitting an air-blown atmospheric pressure system is cost-effective, but warns that the costs of a large-scale intergrated plant are still speculative. (DCK)

Not Available

1980-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coal emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS  

Science Conference Proceedings (OSTI)

ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and related combustion performance. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive Powder River Basin coal (PRB) to a moderately reactive Midwestern bituminous coal (HVB) to a less reactive medium volatile Eastern bituminous coal (MVB). Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis.

Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

2002-12-30T23:59:59.000Z

262

Hydrogen production and delivery analysis in US markets : cost, energy and greenhouse gas emissions.  

DOE Green Energy (OSTI)

Hydrogen production cost conclusions are: (1) Steam Methane Reforming (SMR) is the least-cost production option at current natural gas prices and for initial hydrogen vehicle penetration rates, at high production rates, SMR may not be the least-cost option; (2) Unlike coal and nuclear technologies, the cost of natural gas feedstock is the largest contributor to SMR production cost; (3) Coal- and nuclear-based hydrogen production have significant penalties at small production rates (and benefits at large rates); (4) Nuclear production of hydrogen is likely to have large economies of scale, but because fixed O&M costs are uncertain, the magnitude of these effects may be understated; and (5) Given H2A default assumptions for fuel prices, process efficiencies and labor costs, nuclear-based hydrogen is likely to be more expensive to produce than coal-based hydrogen. Carbon taxes and caps can narrow the gap. Hydrogen delivery cost conclusions are: (1) For smaller urban markets, compressed gas delivery appears most economic, although cost inputs for high-pressure gas trucks are uncertain; (2) For larger urban markets, pipeline delivery is least costly; (3) Distance from hydrogen production plant to city gate may change relative costs (all results shown assume 100 km); (4) Pipeline costs may be reduced with system 'rationalization', primarily reductions in service pipeline mileage; and (5) Liquefier and pipeline capital costs are a hurdle, particularly at small market sizes. Some energy and greenhouse gas Observations: (1) Energy use (per kg of H2) declines slightly with increasing production or delivery rate for most components (unless energy efficiency varies appreciably with scale, e.g., liquefaction); (2) Energy use is a strong function of production technology and delivery mode; (3) GHG emissions reflect the energy efficiency and carbon content of each component in a production-delivery pathway; (4) Coal and natural gas production pathways have high energy consumption and significant GHG emissions (in the absence of carbon caps, taxes or sequestration); (5) Nuclear pathway is most favorable from energy use and GHG emissions perspective; (6) GH2 Truck and Pipeline delivery have much lower energy use and GHG emissions than LH2 Truck delivery; and (7) For LH2 Truck delivery, the liquefier accounts for most of the energy and GHG emissions.

Mintz, M.; Gillette, J.; Elgowainy, A. (Decision and Information Sciences); ( ES)

2009-01-01T23:59:59.000Z

263

2 Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 1, 2009 Copyright 2009 Inderscience Enterprises Ltd.  

E-Print Network (OSTI)

2 Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 1, 2009 Copyright © 2009 Inderscience, Gas, and Coal Technology, Vol. 2, No. 1, pp.2­23. Biographical notes: Shahab D. Mohaghegh is currently

Mohaghegh, Shahab

264

Int. J. Oil, Gas and Coal Technology, Vol. 1, Nos. 1/2, 2008 65 Copyright 2008 Inderscience Enterprises Ltd.  

E-Print Network (OSTI)

Int. J. Oil, Gas and Coal Technology, Vol. 1, Nos. 1/2, 2008 65 Copyright © 2008 Inderscience using neural networks', Int. J. Oil, Gas and Coal Technology, Vol. 1, Nos. 1/2, pp.65­80. Biographical

Mohaghegh, Shahab

265

Treatment of Gas Emissions in Potrooms  

Science Conference Proceedings (OSTI)

The paper presents the solutions developed by Fives to eliminate two of the main sources of HF emissions in the potrooms: - Emissions from pots, when they...

266

The reduction of gas emissions from the use of bioethanol  

Science Conference Proceedings (OSTI)

This work deals with the examination of farm Tractor with Diesel engine from the viewpoint of power and gas emissions, using as fuel Diesel-ethanol mixtures. A series of laboratory instruments was used for the realization of the experiments. The tractor ... Keywords: bioethanol, biofuels, gas emissions

Charalampos Arapatsakos

2009-02-01T23:59:59.000Z

267

Water Extraction from Coal-Fired Power Plant Flue Gas  

Science Conference Proceedings (OSTI)

The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.

Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

2006-06-30T23:59:59.000Z

268

DOE Strengthens Public Registry to Track Greenhouse Gas Emissions |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Registry to Track Greenhouse Gas Emissions Public Registry to Track Greenhouse Gas Emissions DOE Strengthens Public Registry to Track Greenhouse Gas Emissions April 17, 2006 - 10:20am Addthis Announces Revised Guidelines for U.S. Companies to Report and Register Reductions WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today announced revised guidelines for the department's Voluntary Greenhouse Gas Reporting Program, known as "1605 (b)" that encourage broader reporting of emissions and sequestration by utilities, and industries, as well as small businesses and institutions. The revised guidelines strengthen the existing public registry for emissions and sequestration data and introduce new methods for U.S. businesses and institutions to calculate entity-wide emission reductions that contribute to the President's goal of substantially

269

South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials  

Open Energy Info (EERE)

Africa - Greenhouse Gas Emission Baselines and Reduction Potentials Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings Agency/Company /Organization United Nations Environment Programme Sector Energy Focus Area Buildings Topics Baseline projection, GHG inventory, Pathways analysis, Background analysis Resource Type Publications Website http://www.unep.org/sbci/pdfs/ Country South Africa UN Region Southern Africa References South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings[1] South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings Screenshot "This report aims to provide: a summary quantification of the influence of buildings on climate

270

Mitigating Greenhouse Gas Emissions: Voluntary Reporting  

U.S. Energy Information Administration (EIA)

Carbon Sequestration ..... 199 62 Halogenated Substances ..... 22 18 Other Emissions Reductions ..... 59 45 Total ...

271

MINIMIZING NET CARBON DIOXIDE EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL/BIOMASS BLENDS  

DOE Green Energy (OSTI)

Solid fuels vary significantly with respect to the amount of CO{sub 2} directly produced per unit heating value. Elemental carbon is notably worse than other solid fuels in this regard, and since carbon (char) is an intermediate product of the combustion of almost all solid fuels, there is an opportunity to reduce specific CO{sub 2} emissions by reconfiguring processes to avoid char combustion wholly or in part. The primary goal of this one-year Innovative Concepts project is to make a fundamental thermodynamic assessment of three modes of solid fuel use: (1) combustion, (2) carbonization, and (3) oxidative pyrolysis, for a wide range of coal and alternative solid fuels. This period a large set of thermodynamic calculations were carried out to assess the potential of the three processes. The results show that the net carbon dioxide emissions and the relative ranking of the different processes depends greatly on the particular baseline fossil fuel being displaced by the new technology. As an example, in a baseline natural gas environment, it is thermodynamically more advantageous to carbonize biomass than to combust it, and even more advantageous to oxidatively pyrolyze the biomass.

Robert Hurt; Todd Lang

2001-06-25T23:59:59.000Z

272

Measuring of exhaust gas emissions using absorption spectroscopy  

Science Conference Proceedings (OSTI)

This paper describes an optical fibre sensor for the detection of NOx (NO2 and NO) and CO2 in the exhaust system of a road vehicle. The measurement is based on a free path interaction zone which is interrogated using ... Keywords: absorption spectroscopy, air pollution, carbon dioxide, emissions measurement, exhaust gas emissions, gas sensors, infrared, nitrogen dioxide, nitrogen oxide, optical fibre sensors, ultraviolet, vehicle emissions

Eamonn Hawe; Gerard Dooly; Colin Fitzpatrick; Paul Chambers; Elfed Lewis; W. Z. Zhao; T. Sun; K. T. V. Grattan; M. Degner; H. Ewald; S. Lochmann; G. Bramman; C. Wei; D. Hitchen; J. Lucas; A. Al-Shamma'a; E. Merlone-Borla; P. Faraldi; M. Pidria

2008-02-01T23:59:59.000Z

273

Trace metal particulates in coal-fired power plant emissions.  

E-Print Network (OSTI)

??Since coal-fired power plants produce approximately 50% of U.S. energy, the toxic and environmental damaging effects of this energy source are important. Trace metals are (more)

Marett, Lanette Simone

2007-01-01T23:59:59.000Z

274

Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the tenth in a series of topical reports, describes the results and analysis of mercury sampling performed on two 468 MW units burning bituminous coal containing 1.3-1.7% sulfur. Unit 2 is equipped with an SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions, respectively. Unit 1 is similar to Unit 2, except that Unit 1 has no SCR for NOx control. Four sampling tests were performed on both units in January 2005; flue gas mercury speciation and concentrations were determined at the economizer outlet, air heater outlet (ESP inlet), ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process samples for material balances were collected with the flue gas measurements. The results show that the SCR increased the oxidation of the mercury at the air heater outlet. At the exit of the air heater, a greater percentage of the mercury was in the oxidized and particulate forms on the unit equipped with an SCR compared to the unit without an SCR (97.4% vs 91%). This higher level of oxidation resulted in higher mercury removals in the scrubber. Total mercury removal averaged 97% on the unit with the SCR, and 87% on the unit without the SCR. The average mercury mass balance closure was 84% on Unit 1 and 103% on Unit 2.

J. A. Withum; J. E. Locke

2006-02-01T23:59:59.000Z

275

Assess Potential Agency Size Changes that Impact Greenhouse Gas Emissions |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emissions Emissions Assess Potential Agency Size Changes that Impact Greenhouse Gas Emissions October 7, 2013 - 10:12am Addthis Federal agencies should establish planned changes in operations that could have a substantial impact on emissions for each greenhouse gas (GHG) emission source: Buildings Vehicles and mobile equipment Business travel Employee commuting. Such changes could represent either an additional significant hurdle to overcome or a significant reduction in the effort required to drive emissions down-in the absence of any direct GHG mitigation reduction strategies. This will help each organization establish its "business as usual" emission profile in 2020, the year agencies are expected to meet their Scope 1 and 2 and Scope 3 GHG emission-reduction goals.

276

Evaluate Greenhouse Gas Emissions Profile | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emissions Profile Emissions Profile Evaluate Greenhouse Gas Emissions Profile October 7, 2013 - 10:14am Addthis Evaluating a Federal agency's greenhouse gas (GHG) emissions profile means getting a solid understanding of the organization's largest emission categories, largest emission sources, and its potential for improvement: Buildings Vehicles and mobile equipment Business travel Employee commuting. While the data required for annual GHG reporting are sufficient to establish an agency's overall emission inventory, these data are not typically enough information for effectively managing emissions. A detailed, bottom-up assessment can provide the foundation for much more robust Strategic Sustainability Performance Plans. Because detailed analyses of all assets can be time-intensive, strategic planning helps the

277

Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter)  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: a baseline ceramic barrier filter nEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300[degrees]F. This document reports the status of a program in the eighteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1992-04-20T23:59:59.000Z

278

Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twenty-third quarterly status report, April--June 1993  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: A baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degrees}F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1993-07-19T23:59:59.000Z

279

Integrated Low Emissions Cleanup system for direct coal fueled turbines (moving bed, fluid contactor/ceramic filter). Twenty-second quarterly status report, January--March 1993  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: A baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degrees}F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1993-10-01T23:59:59.000Z

280

Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twentieth quarterly status report, July--September 1992  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meat this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degree}F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1992-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "gas coal emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twenty-ninth quarterly status report, October--December 1994  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of advanced, coal-fueled turbine power plants such as pressurized fluid bed combustion and coal gasification combined cycles. A major technical challenge remaining for the development of the coal-fueled turbine is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure process gases. This document reports the status of a program in the twenty-seventh quarter to develop this ILEC technology.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M. [and others

1996-02-01T23:59:59.000Z

282

Integrated Low Emissions Cleanup system for direct coal fueled turbines, (moving bed, fluid bed contactor/ceramic filter). Twenty-fourth quarterly status report, July--September 1993  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degree}F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1993-12-31T23:59:59.000Z

283

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated April 28, 2004) Spot coal prices in the East rose steadily since Labor Day 2003, with rapid escalations ...

284

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated September 26) The average spot prices for reported coal purchases rose once again ...

285

Development of biological coal gasification (MicGAS Process)  

Science Conference Proceedings (OSTI)

The overall goal of the project is to develop an advanced, clean coal biogasification (MicGAS) Process. The objectives of the research during FY 1993--94 were to: (1) enhance kinetics of methane production (biogasification, biomethanation) from Texas lignite (TxL) by the Mic-1 consortium isolated and developed at ARCTECH, (2) increase coal solids loading, (3) optimize medium composition, and (4) reduce retention time. A closer analysis of the results described here indicate that biomethanation of TxL at >5% solids loading is feasible through appropriate development of nutrient medium and further adaptation of the microorganisms involved in this process. Further understanding of the inhibitory factors and some biochemical manipulations to overcome those inhibitions will hasten the process considerably. Results are discussed on the following: products of biomethanation and enhance of methane production including: bacterial adaptation; effect of nutrient amendment substitutes; effects of solids loading; effect of initial pH of the culture medium; effect of hydrogen donors and carbon balance.

Walia, D.S.; Srivastava, K.C.

1994-10-01T23:59:59.000Z

286

Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

7 JUNE 2012 7 JUNE 2012 Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions and Improve Efficiency 2 Cover Photos: * Top left: Great River Energy's Coal Creek Station * Top right: We Energy's Presque Isle Power Plant * Bottom: Dynegy's Baldwin Energy Complex A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * NeuCo. , Inc. * WeEnergies 3 Executive Summary 4 Clean Coal Technology Demonstration Program 5 CCPI Program 6 Demonstration of Integrated Optimization Software at

287

THE EFFECT OF COAL/d-RDF CO-FIRIN"G ON STACK EMISSIONS AT MILWAUKEE COUNTY  

E-Print Network (OSTI)

THE EFFECT OF COAL/d-RDF CO-FIRIN"G ON STACK EMISSIONS AT MILWAUKEE COUNTY INSTITUTIONS' POWER coal with refuse derived fuel at the Milwaukee County Institutions' Power Plant. A research and development project was car ried out to mix a den'sified refuse derived fuel with coal at the fuel receiving

Columbia University

288

An Evaluation of Low-BTU Gas from Coal as an Alternate Fuel for Process Heaters  

E-Print Network (OSTI)

As the price gap between oil and natural gas and coal continues to widen, Monsanto has carefully searched out and examined opportunities to convert fuel use to coal. Preliminary studies indicate that the low-btu gas produced by fixed-bed, air blown gasifiers could potentially replace the natural gas now used in process heaters. The technology is well established and requires less capital than the higher-btu process heaters. Low-btu gas has sufficient heating value and flame temperature to be acceptable fuel for most process heaters. Economics for gas production appear promising, but somewhat uncertain. Rough evaluations indicate rates of return of as much as 30-40%. However, the economics are very dependent on a number of site- specific considerations including: coal vs. natural gas prices, economic life of the gas-consuming facility, quantity of gas required, need for desulfurization, location of gasifiers in relation to gas users, existence of coal unloading and storage facilities, etc. Two of these factors, the difference between coal and natural gas prices and the project life are difficult to predict. The resulting uncertainty has caused Monsanto to pursue coal gasification for process heaters with cautious optimism, on a site by site basis.

Nebeker, C. J.

1982-01-01T23:59:59.000Z

289

Carbon-centered free radicals in particulate matter emissions from wood and coal combustion  

SciTech Connect

Electron paramagnetic resonance (EPR) spectroscopy was used to measure the free radicals in the particulate matter (PM) emissions from wood and coal combustion. The intensity of radicals in PM dropped linearly within two months of sample storage and stabilized after that. This factor of storage time was adjusted when comparing radical intensities among different PM samples. An inverse relationship between coal rank and free radical intensities in PM emissions was observed, which was in contrast with the pattern of radical intensities in the source coals. The strong correlation between intensities of free radical and elemental carbon in PM emissions suggests that the radical species may be carbon-centered. The increased g-factors, 2.0029-2.0039, over that of purely carbon-centered radicals may indicate the presence of vicinal oxygen heteroatom. The redox and biology activities of these carbon-centered radicals are worthy of evaluation. 22 refs., 4 figs., 1 tab.

Linwei Tian; Catherine P. Koshland; Junko Yano; Vittal K. Yachandra; Ignatius T.S. Yu; S.C. Lee; Donald Lucas [Chinese University of Hong Kong, Hong Kong (China). School of Public Health

2009-05-15T23:59:59.000Z

290

Dispersion modeling of mercury emissions from coal-fired power plants at Coshocton and Manchester, Ohio  

Science Conference Proceedings (OSTI)

Mercury emissions from coal-fired power plants are estimated to contribute to approximately 46% of the total US anthropogenic mercury emissions and required to be regulated by maximum achievable control technology (MACT) standards. Dispersion modeling of mercury emissions using the AERMOD model and the industrial source complex short term (ISCST3) model was conducted for two representative coal-fired power plants at Coshocton and Manchester, Ohio. Atmospheric mercury concentrations, dry mercury deposition rates, and wet mercury deposition rates were predicted in a 5 x 5 km area surrounding the Coonesville and JM Stuart coal-fired power plants. In addition, the analysis results of meteorological parameters showed that wet mercury deposition is dependent on precipitation, but dry mercury deposition is influenced by various meteorological factors. 8 refs., 5 figs., 3 tabs.

Lee, S.; Keener, T.C. [University of Cincinnati, Cincinnati, OH (United States). Dept. of Civil and Environmental Engineering

2009-09-15T23:59:59.000Z

291

Silica membranes for hydrogen separation from coal gas. Final report  

DOE Green Energy (OSTI)

This project is a continuation of a previous DOE-UCR project (DE-FG22- 89PC89765) dealing with the preparation of silica membranes highly permselective to hydrogen at elevated temperatures, suitable for hydrogen separation from coal gas. The membranes prepared in the previous project had very high selectivity but relatively low permeance. Therefore, the general objectives of this project were to improve the permeance of these membranes and to obtain fundamental information about membrane structure and properties. The specific objectives were: (1) to explore new silylation reagents and reaction conditions with the purpose of reducing the thickness and increasing the permeance of silica membranes prepared by chemical vapor deposition (CVD), (2) to characterize the membrane structure, (3) to delineate mechanism and kinetics of deposition, (4) to measure the permeability of silica layers at different extents of deposition, and (5) to mathematically model the relationship between structure and deposition kinetics.

Gavalas, G.R.

1996-01-01T23:59:59.000Z

292

Enhancing the use of coals by gas reburning-sorbent injection. Volume 3, Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company  

Science Conference Proceedings (OSTI)

Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x}, and SO{sub 2} from a wall fired unit. A GR-SI system was designed for Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The unit is rated at 117 MW(e) (net) and is front wall fired with a pulverized bituminous coal blend. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the ``as found`` baseline of 0.98 lb/MBtu (420 mg/MJ), and to reduce emissions of S0{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an S0{sub 2} limit Of 1.8 lb/MBtu (770 mg/MJ), the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. The design natural gas input corresponds to 18% of the total heat input. Burnout (overfire) air is injected at a higher elevation to burn out fuel combustible matter at a normal excess air level of 18%. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with S0{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.

NONE

1994-10-01T23:59:59.000Z

293

Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems  

SciTech Connect

The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

1990-12-01T23:59:59.000Z

294

PPPL Celebrates Earth Day with Reduction in Greenhouse Gas Emissions |  

NLE Websites -- All DOE Office Websites (Extended Search)

PPPL Celebrates Earth Day with Reduction in Greenhouse Gas Emissions PPPL Celebrates Earth Day with Reduction in Greenhouse Gas Emissions By Patti Wieser April 25, 2011 Tweet Widget Facebook Like Google Plus One PPPL's Tim Stevenson takes inventory of the SF6 levels at a power supply tank for NSTX. (Photo by Elle Starkman, PPPL Office of Communications) PPPL's Tim Stevenson takes inventory of the SF6 levels at a power supply tank for NSTX. In an effort to respond to President Obama's call to reduce greenhouse gas emissions by 28 percent by the year 2020, researchers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have identified ways to cut emissions that will allow the facility to exceed that goal - a decade early. Staff members at the laboratory, where scientists are finding ways to produce fusion energy, have trimmed the facility's greenhouse gas emissions

295

Evaluate Greenhouse Gas Emissions Profile Using Renewable Energy in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluate Greenhouse Gas Emissions Profile Using Renewable Energy in Evaluate Greenhouse Gas Emissions Profile Using Renewable Energy in Buildings Evaluate Greenhouse Gas Emissions Profile Using Renewable Energy in Buildings October 7, 2013 - 11:16am Addthis After assessing the potential for agency size changes, a Federal agency should evaluate its greenhouse gas (GHG) emissions profile using renewable energy in buildings. When using renewable energy in buildings, the approach for evaluating GHG emissions involves evaluating the renewable energy resource potential and determining what type of renewable energy technology to use in a building. To help determine renewable energy resource potential at a site, see FEMP's information on Renewable Energy Resource Maps and Screening Tools. Also see Renewable Energy Project Planning and Implementation.

296

System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines  

SciTech Connect

Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

Shahrokh Etemad; Lance Smith; Kevin Burns

2004-12-01T23:59:59.000Z

297

Establish Internal Greenhouse Gas Emission Reduction Targets | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Establish Internal Greenhouse Gas Emission Reduction Targets Establish Internal Greenhouse Gas Emission Reduction Targets Establish Internal Greenhouse Gas Emission Reduction Targets October 7, 2013 - 10:24am Addthis Question to Answer What are appropriate GHG emission reduction targets for specific agency programs and sites? Not all administrative units within the agency have the same potential to contribute to agency-level targets. This step aims to help agencies establish what each major administrative unit (e.g. program site) should contribute to the agency goal based on its planned growth trajectory and estimates of its cost and potential to reduce GHG emissions. As illustrated in the figure below, two sites may have equal potential to reduce GHG emissions. But a site expecting significant mission-related growth prior to the 2020 target year may have a lower reduction target

298

The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration and Air Conditioning Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration and Air Conditioning Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: Refrigerant Guide[1] The Greenhouse Gas Protocol tool for refrigeration is a free Excel spreadsheet calculator designed to calculate GHG emissions specifically

299

The Greenhouse Gas Protocol Initiative: Allocation of Emissions from a  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: Allocation of Emissions from a The Greenhouse Gas Protocol Initiative: Allocation of Emissions from a Combined Heat and Power Plant Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: Allocation of Emissions from a Combined Heat and Power Plant Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Climate Focus Area: - Central Plant, Buildings, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: CHP Guidance v1.0[1] The Greenhouse Gas Protocol tool for allocation of GHG emissions from a combined heat and power (CHP) plant is a free Excel spreadsheet calculator

300

The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased Electricity Jump to: navigation, search Tool Summary Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased Electricity Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Buildings, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: Electricity Heat, and Steam Purchase Guidance v1.2[1] The Greenhouse Gas Protocol tool for purchased electricity is a free Excel spreadsheet calculator designed to calculate GHG emissions specifically

Note: This page contains sample records for the topic "gas coal emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Meeting an 80% Reduction in Greenhouse Gas Emissions from Transportation by 2050: A Case Study in California  

E-Print Network (OSTI)

an 80% reduction in greenhouse gas emissions from ,Board, 2008. California Greenhouse Gas Emission Inventory.A. , 2003. Reducing Greenhouse Gas Emissions from US

Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

2009-01-01T23:59:59.000Z

302

Carbon Emissions: Stone, Clay, and Glass Industry  

Gasoline and Diesel Fuel Update (EIA)

Stone et al. Industries Energy-Related Carbon Emissions for the Stone, Clay, and Glass Industry by Source, 1994. Three sources, coal, natural gas, and electricity, account for...

303

Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies  

E-Print Network (OSTI)

and the Environment. Greenhouse Gas Emissions from AviationD17): 4560. EPA (2006). Greenhouse Gas Emissions from theInventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-

McCollum, David L; Gould, Gregory; Greene, David L

2010-01-01T23:59:59.000Z

304

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Volume 1, Final report  

SciTech Connect

A major objective of the coal-fired high performance power systems (HIPPS) program is to achieve significant increases in the thermodynamic efficiency of coal use for electric power generation. Through increased efficiency, all airborne emissions can be decreased, including emissions of carbon dioxide. High Performance power systems as defined for this program are coal-fired, high efficiency systems where the combustion products from coal do not contact the gas turbine. Typically, this type of a system will involve some indirect heating of gas turbine inlet air and then topping combustion with a cleaner fuel. The topping combustion fuel can be natural gas or another relatively clean fuel. Fuel gas derived from coal is an acceptable fuel for the topping combustion. The ultimate goal for HIPPS is to, have a system that has 95 percent of its heat input from coal. Interim systems that have at least 65 percent heat input from coal are acceptable, but these systems are required to have a clear development path to a system that is 95 percent coal-fired. A three phase program has been planned for the development of HIPPS. Phase 1, reported herein, includes the development of a conceptual design for a commercial plant. Technical and economic feasibility have been analysed for this plant. Preliminary R&D on some aspects of the system were also done in Phase 1, and a Research, Development and Test plan was developed for Phase 2. Work in Phase 2 include s the testing and analysis that is required to develop the technology base for a prototype plant. This work includes pilot plant testing at a scale of around 50 MMBtu/hr heat input. The culmination of the Phase 2 effort will be a site-specific design and test plan for a prototype plant. Phase 3 is the construction and testing of this plant.

NONE

1996-02-01T23:59:59.000Z

305

An option for the coal industry in dealing with the carbon dioxide global greenhouse effect including estimates for reduced CO/sub 2/ emissions technologies  

SciTech Connect

A new technical option for the coal industry in dealing with the carbon dioxide greenhouse effect has been devised. The option concerns a ''hydrogen economy'' based on coal. We have developed a very efficient process called HYDROCARB, which effectively splits coal into carbon and hydrogen. This process produces a clean, pure carbon fuel from coal for application in both mobile and stationary heat engines. We are suggesting that coal refineries be built based on this technology. A co-product of the process is a hydrogen-rich gas. If one is concerned about the greenhouse effect, then either all or part of the carbon can be withheld and either mainly or only the hydrogen is used as fuel. If one desires to attain the ultimate, and eliminate all CO/sub 2/ emissions from coal, then all of the carbon can be stored and only the hydrogen used. The option is still open for utilizing the clean carbon, which would be placed in monitored retrievable storage, not unlike the strategic petroleum reserve (SPR). Should the greenhouse effect be found to be a myth in the future, the carbon would be taken out of storage and utilized as a clean fuel, the impurities having been previously removed. This concept can be valuable to the coal industry in response to the arguments of the anti-coal critics. Total capital cost estimates have been made to replace all conventional coal burning power plants in the US with technologies that eliminate emissions of CO/sub 2/. These include removal, recovery and disposal of CO/sub 2/, nuclear, solar, photovoltaics, biomass, and HYDROCARB. 12 refs., 1 fig. 4 tabs.

Steinberg, M.

1988-12-01T23:59:59.000Z

306

Reduction of Greenhouse Gas Emissions (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduction of Greenhouse Gas Emissions (Connecticut) Reduction of Greenhouse Gas Emissions (Connecticut) Reduction of Greenhouse Gas Emissions (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Climate Policies Provider Department of Energy and Environmental Protection

307

Greenhouse Gas Emissions Reduction Act (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduction Act (Maryland) Reduction Act (Maryland) Greenhouse Gas Emissions Reduction Act (Maryland) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Environmental Regulations Provider Maryland Department of the Environment The Greenhouse Gas Emissions Reduction Act requires the Department of the Environment to publish and update an inventory of statewide greenhouse gas emissions for calendar year 2006 and requires the State to reduce statewide

308

Coal....  

U.S. Energy Information Administration (EIA)

Coal Prices and Earnings (updated August 12) According to Platts Coal Outlooks Weekly Price Survey (August 11), the ...

309

Coal....  

U.S. Energy Information Administration (EIA)

Coal Prices and Earnings (updated September 2) The average spot prices for coal traded last week were relatively ...

310

Life cycle greenhouse gas emissions from geothermal electricity production  

Science Conference Proceedings (OSTI)

A life cycle analysis (LCA) is presented for greenhouse gas (GHG) emissions and fossil energy use associated with geothermal electricity production with a special focus on operational GHG emissions from hydrothermal flash and dry steam plants. The analysis includes results for both the plant and fuel cycle components of the total life cycle. The impact of recent changes to California's GHG reporting protocol for GHG emissions are discussed by comparing emission rate metrics derived from post and pre revision data sets. These metrics are running capacity weighted average GHG emission rates (g/kWh) and emission rate cumulative distribution functions. To complete our life cycle analysis plant cycle results were extracted from our previous work and added to fuel cycle results. The resulting life cycle fossil energy and greenhouse gas emissions values are compared among a range of fossil

2013-01-01T23:59:59.000Z

311

Canadas Voluntary Agreement on Vehicle Greenhouse Gas Emissions: When the Details Matter  

E-Print Network (OSTI)

of ?uorinated greenhouse gases. greenhouse gas emissions. Washington,ective e?orts to reduce greenhouse gas emissions. C.D. Howe

Lutsey, Nicholas P.; Sperling, Dan

2007-01-01T23:59:59.000Z

312

Process for the production of fuel gas from coal  

DOE Patents (OSTI)

An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

Patel, Jitendra G. (Bolingbrook, IL); Sandstrom, William A. (Chicago, IL); Tarman, Paul B. (Elmhurst, IL)

1982-01-01T23:59:59.000Z

313

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS  

SciTech Connect

Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

Nsakala ya Nsakala; Gregory N. Liljedahl

2003-05-15T23:59:59.000Z

314

Co-Production of Substitute Natural Gas/Electricity Via Catalytic Coal Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Co-ProduCtion of SubStitute natural GaS / eleCtriCity via CatalytiC Coal GaSifiCation Description The United States has vast reserves of low-cost coal, estimated to be sufficient for the next 250 years. Gasification-based technology, such as Integrated Gasification Combined Cycle (IGCC), is the only environmentally friendly technology that provides the flexibility to co-produce hydrogen, substitute natural gas (SNG), premium hydrocarbon liquids including transportation fuels, and electric power in desired combinations from coal and other carbonaceous feedstocks. Rising costs and limited domestic supply of crude oil and natural gas provide a strong incentive for the development of coal gasification-based co-production processes. This project addresses the co-production of SNG and electricity from coal via gasification

315

Analysis of the market and product costs for coal-derived high Btu gas  

Science Conference Proceedings (OSTI)

DOE analyzed the market potential and economics of coal-derived high-Btu gas using supply and demand projections that reflect the effects of natural gas deregulation, recent large oil-price rises, and new or pending legislation designed to reduce oil imports. The results indicate that an increasingly large market for supplemental gas should open up by 1990 and that SNG from advanced technology will probably be as cheap as gas imports over a wide range of assumptions. Although several studies suggest that a considerable market for intermediate-Btu gas will also exist, the potential supplemental gas demand is large enough to support both intermediate - and high-Btu gas from coal. Advanced SNG-production technology will be particularly important for processing the US's abundant, moderately to highly caking Eastern coals, which current technology cannot handle economically.

Not Available

1980-12-01T23:59:59.000Z

316

Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental  

Open Energy Info (EERE)

Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental Goods Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental Goods Agency/Company /Organization: International Institute for Sustainable Development (IISD) Sector: Energy, Land Focus Area: Industry Topics: Market analysis, Policies/deployment programs, Background analysis Resource Type: Publications Website: www.iisd.org/pdf/2009/bali_2_copenhagen_egs.pdf References: Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental Goods[1] Background "As part of a suite of activities under the From Bali to Copenhagen project, IISD's work on low-carbon goods has focused on trying to measure the actual potential climate gains from what's now on the table in the WTO

317

Survey Employees to Evaluate Greenhouse Gas Emissions Profile for Commuting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Survey Employees to Evaluate Greenhouse Gas Emissions Profile for Survey Employees to Evaluate Greenhouse Gas Emissions Profile for Commuting Survey Employees to Evaluate Greenhouse Gas Emissions Profile for Commuting October 7, 2013 - 1:47pm Addthis YOU ARE HERE Step 2 For evaluating a greenhouse gas (GHG) profile for employee commuting, data on behavior and attitudes are best collected through an agency-wide survey. The default survey methodology in the Federal GHG Accounting Guidance is designed to collect the minimum data for emissions calculations. Additional information may be necessary to determine which trip reduction strategies are best suited for specific employee populations. The optional questions in the advanced survey methodology or data gathered through an agency-defined employee commute survey can provide this understanding.

318

EIA - Greenhouse Gas Emissions - Table-Figure Notes and Sources  

U.S. Energy Information Administration (EIA)

Carbon sequestration in U.S. croplands and grasslands, 1990-2008: Source: U.S. Environmental Protection Agency, Inventory of U.S. Greenhouse Gas Emissions and Sinks: ...

319

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Business  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Collect Data to Evaluate Greenhouse Gas Emissions Profile for Business Travel Collect Data to Evaluate Greenhouse Gas Emissions Profile for Business Travel October 7, 2013 - 1:27pm Addthis YOU ARE HERE Step 2 To evaluate a greenhouse gas (GHG) emissions profile, most of the information required to support air travel demand management is currently available through Federal agency-level travel information systems, such as GovTrip. However, that information may not be distributed to programs, regional offices, and sites, which are in the best position to evaluate opportunities to reduce travel. Considerations that may help the agency determine the level at which data should be collected and analyzed include: Where are budgets and policies regarding travel made and modified?

320

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Collect Data to Evaluate Greenhouse Gas Emissions Profile for Buildings Collect Data to Evaluate Greenhouse Gas Emissions Profile for Buildings October 7, 2013 - 10:45am Addthis YOU ARE HERE Step 2 Strategic planning for greenhouse gas (GHG) mitigation in buildings requires an understanding of a Federal agency's buildings portfolio, including which programs, building types, and sites contribute the most to the agency's emissions. The data described in Table 1 below will support this type of analysis. It is recommended that this information be collected at the agency and program level. Programs refer to major operating units within the agency where there is a significant degree of autonomy in planning and decision-making. In many cases, the type of data required for portfolio planning may already

Note: This page contains sample records for the topic "gas coal emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills  

Open Energy Info (EERE)

Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills Volcano (Rome, Italy)- Geochemical Evidence Of Magmatic Degassing? Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills Volcano (Rome, Italy)- Geochemical Evidence Of Magmatic Degassing? Details Activities (0) Areas (0) Regions (0) Abstract: Recent studies suggested that Alban Hills (Rome) is a quiescent and not an extinct volcano, as it produced Holocene eruptions and several lahars until Roman times by water overflow from the Albano crater lake. Alban Hills are presently characterized by high PCO2 in groundwaters and by several cold gas emissions usually in sites where excavations removed the

322

Greenhouse Gas Emission Impacts of Carsharing in North America  

Science Conference Proceedings (OSTI)

This paper evaluates the greenhouse gas (GHG) emission impacts that result from individuals participating in carsharing organizations within North America. The authors conducted an online survey with members of major carsharing organizations and evaluated ...

Elliot W. Martin; Susan A. Shaheen

2011-12-01T23:59:59.000Z

323

Cal Climate Action Partnership: Reducing Greenhouse Gas Emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cal Climate Action Partnership: Reducing Greenhouse Gas Emissions at UC Berkeley Speaker(s): Fahmida Ahmed Date: January 11, 2007 - 12:00pm Location: 90-3122 Seminar HostPoint of...

324

Modeling NOx emissions from coal-fired utility boilers using support vector regression with ant colony optimization  

Science Conference Proceedings (OSTI)

Modeling NO"x emissions from coal fired utility boiler is critical to develop a predictive emissions monitoring system (PEMS) and to implement combustion optimization software package for low NO"x combustion. This paper presents an efficient NO"x emissions ... Keywords: Ant colony optimization, Artificial neural networks, Combustion modeling, NOx emissions modeling, Support vector regression

Hao Zhou; Jia Pei Zhao; Li Gang Zheng; Chun Lin Wang; Ke Fa Cen

2012-02-01T23:59:59.000Z

325

How Does Wind Affect Coal? Cycling, Emissions, and Costs (Presentation)  

DOE Green Energy (OSTI)

This presentation describes in general fashion what the emissions and economic impacts of wind power generation on fossil power plants looks like and also offers some mitigation ideas.

Lew, D.; Brinkman, G.; Milligan, M.

2011-05-01T23:59:59.000Z

326

EPA rule requires SO 2 emissions reduction from Texas coal ...  

U.S. Energy Information Administration (EIA)

Starting in 2012, power plants in 23 states must meet new sulfur dioxide (SO 2) emissions caps in order to comply with the Cross State Air Pollution ...

327

Assessment of Furnace Coal Flow Balancing on Combustion Efficiency and Emissions  

Science Conference Proceedings (OSTI)

In theory, boiler performance and emissions can be affected by fuel conveyance. After evaluating both the measurement instrumentation and the control devices in the Electric Power Research Institutes (EPRIs) unique flow loop laboratory, the analysis was brought into an operating power plant setting to determine the effect of coal and air flow delivery balance on boiler efficiency and emissions. These tests describe the effects of fuel and air flow ...

2013-06-28T23:59:59.000Z

328

Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies  

E-Print Network (OSTI)

Speed Redcutions on Vessel-Based Emissions for InternationalAviation-Related GHG Emissions: A Systems Analysis forthe Environment. Greenhouse Gas Emissions from Aviation and

McCollum, David L; Gould, Gregory; Greene, David L

2010-01-01T23:59:59.000Z

329

The Transportation Greenhouse Gas Inventory: A First Step Toward City-Driven Emissions Rationalization  

E-Print Network (OSTI)

for greenhouse gas emissions, Department of Chemical andStep Toward City-Driven Emissions Rationalization ChrisStep toward City-Driven Emissions Rationalization Submitted

Ganson, Chris

2008-01-01T23:59:59.000Z

330

Health Effects of SubChronic Inhalation of Simulated Downwind Coal Combustion Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

sara M. Pletcher sara M. Pletcher Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4236 sara.pletcher@netl.doe.gov Joe L. Mauderly Principal Investigator Lovelace Respiratory Research Institute 2425 Ridgecrest Drive, SE Albuquerque, NM 87108-5129 505-348-9432 jmauderl@lrri.org Environmental and Water Resources HealtH effects of sub-cHronic inHalation of simulated downwind coal combustion emissions Background Emissions from coal-fired power plants and their associated atmospheric reaction products contribute to environmental air pollution and are often cited as a critical cause of pollution-related health risks. However, there have been few toxicological evaluations of the heath hazards resulting from the inhalation of coal combustion

331

168 Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 2, 2009 Copyright 2009 Inderscience Enterprises Ltd.  

E-Print Network (OSTI)

168 Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 2, 2009 Copyright © 2009 Inderscience.Y. (2009) `Geology and coal potential of Somaliland', Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 2, pp.168­185. Biographical notes: Mohammed Y. Ali has a degree in Exploration Geology, MSc

Ali, Mohammed

332

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Jeffery Greenblatt November 2013 For decades, California has used groundbreaking tools to collect and analyze emissions data from a variety of sources to establish a scientific basis for policy making. As its scope has expanded to include greenhouse gas (GHG) reductions, it has sought out similar tools to use to achieve the goals of legislation such as the Global Warming Solutions Act of 2006 (AB 32). To support this effort, Lawrence Berkeley National Laboratory developed a California Greenhouse Gas Inventory Spreadsheet (GHGIS) model funded by the California Air Resources Board (ARB), to explore the impact of combinations

333

Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers  

E-Print Network (OSTI)

Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers Carlos E. Romero *, Ying Li, Harun Bilirgen, Nenad Sarunac, Edward K. Levy Energy Research Center type, boiler operation, fly ash characteristics and type of environmental control equipment installed

Li, Ying

334

Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.  

DOE Green Energy (OSTI)

In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

Parkinson, W. J. (William Jerry),

2003-01-01T23:59:59.000Z

335

How much coal, natural gas, or petroleum is used to generate a ...  

U.S. Energy Information Administration (EIA)

How much coal, natural gas, or petroleum is used to generate a kilowatt-hour of electricity? The amount of fuel used to generate electricity depends on the efficiency ...

336

Steady-state model for estimating gas production from underground coal gasification  

Science Conference Proceedings (OSTI)

A pseudo-one-dimensional channel model has been developed to estimate gas production from underground coal gasification. The model incorporates a zero-dimensional steady-state cavity growth submodel and models mass transfer from the bulk gas to the coal wall using a correlation for natural convection. Simulations with the model reveal that the gas calorific value is sensitive to coal reactivity and the exposed reactive surface area per unit volume in the channel. A comparison of model results with several small-scale field trials conducted at Centralia in the U.S.A. show that the model can make good predictions of the gas production and composition under a range of different operating conditions, including operation with air and steam/oxygen mixtures. Further work is required to determine whether the model formulation is also suitable for simulating large-scale underground coal gasification field trials.

Greg Perkins; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). School of Materials Science and Engineering

2008-11-15T23:59:59.000Z

337

The competition between coal and natural gas : the importance of sunk costs  

E-Print Network (OSTI)

This paper explores the seeming paradox between the predominant choice of natural gas for capacity additions to generate electricity in the United States and the continuing large share of coal in meeting incremental ...

Ellerman, A. Denny

1996-01-01T23:59:59.000Z

338

Fuel composition effects on natural gas vehicle emissions  

DOE Green Energy (OSTI)

Under a contract from DOE`s National Renewable Energy Laboratory (NREL) and support from Brooklyn Union Gas Company (BUG), Northern Illinois Gas Co., the Institute of Gas Technology (IGT) evaluated four state-of-the-art, electronic, closed-loop natural gas vehicle (NGV) conversion systems. The systems included an Impco electronic closed-loop system, Mogas electronic closed-loop system, Stewart and Stevenson`s GFI system, and an Automotive Natural Gas Inc. (ANGI) Level 1 electronic closed-loop conversion system. Conversion system evaluation included emission testing per 40 CFR Part 86, and driveability. All testing was performed with a 1993 Chevy Lumina equipped with a 3.1 liter MPFI V6 engine. Each system was emission tested using three different certified compositions of natural gas, representing the 10th, mean and 90th percentile gas compositions distributed in the United States. Emission testing on indolene was performed prior to conversion kit testing to establish a base emission value. Indolene testing was also performed at the end of the project when the vehicle was converted to its OEM configuration to ensure that the vehicle`s emissions were not altered during testing. The results of these tests will be presented.

Blazek, C.F.; Grimes, J.; Freeman, P. [Institute of Gas Technology, Chicago, IL (United States); Bailey, B.K.; Colucci, C. [National Renewable Energy Lab., Golden, CO (United States)

1994-09-01T23:59:59.000Z

339

Systems Study for Improving Gas Turbine Performance for Coal/IGCC Application  

SciTech Connect

This study identifies vital gas turbine (GT) parameters and quantifies their influence in meeting the DOE Turbine Program overall Integrated Gasification Combined Cycle (IGCC) plant goals of 50% net HHV efficiency, $1000/kW capital cost, and low emissions. The project analytically evaluates GE advanced F class air cooled technology level gas turbine conceptual cycle designs and determines their influence on IGCC plant level performance including impact of Carbon capture. This report summarizes the work accomplished in each of the following six Tasks. Task 1.0--Overall IGCC Plant Level Requirements Identification: Plant level requirements were identified, and compared with DOE's IGCC Goal of achieving 50% Net HHV Efficiency and $1000/KW by the Year 2008, through use of a Six Sigma Quality Functional Deployment (QFD) Tool. This analysis resulted in 7 GT System Level Parameters as the most significant. Task 2.0--Requirements Prioritization/Flow-Down to GT Subsystem Level: GT requirements were identified, analyzed and prioritized relative to achieving plant level goals, and compared with the flow down of power island goals through use of a Six Sigma QFD Tool. This analysis resulted in 11 GT Cycle Design Parameters being selected as the most significant. Task 3.0--IGCC Conceptual System Analysis: A Baseline IGCC Plant configuration was chosen, and an IGCC simulation analysis model was constructed, validated against published performance data and then optimized by including air extraction heat recovery and GE steam turbine model. Baseline IGCC based on GE 207FA+e gas turbine combined cycle has net HHV efficiency of 40.5% and net output nominally of 526 Megawatts at NOx emission level of 15 ppmvd{at}15% corrected O2. 18 advanced F technology GT cycle design options were developed to provide performance targets with increased output and/or efficiency with low NOx emissions. Task 4.0--Gas Turbine Cycle Options vs. Requirements Evaluation: Influence coefficients on 4 key IGCC plant level parameters (IGCC Net Efficiency, IGCC Net Output, GT Output, NOx Emissions) of 11 GT identified cycle parameters were determined. Results indicate that IGCC net efficiency HHV gains up to 2.8 pts (40.5% to 43.3%) and IGCC net output gains up to 35% are possible due to improvements in GT technology alone with single digit NOx emission levels. Task 5.0--Recommendations for GT Technical Improvements: A trade off analysis was conducted utilizing the performance results of 18 gas turbine (GT) conceptual designs, and three most promising GT candidates are recommended. A roadmap for turbine technology development is proposed for future coal based IGCC power plants. Task 6.0--Determine Carbon Capture Impact on IGCC Plant Level Performance: A gas turbine performance model for high Hydrogen fuel gas turbine was created and integrated to an IGCC system performance model, which also included newly created models for moisturized syngas, gas shift and CO2 removal subsystems. This performance model was analyzed for two gas turbine technology based subsystems each with two Carbon removal design options of 85% and 88% respectively. The results show larger IGCC performance penalty for gas turbine designs with higher firing temperature and higher Carbon removal.

Ashok K. Anand

2005-12-16T23:59:59.000Z

340

Systems Study for Improving Gas Turbine Performance for Coal/IGCC Application  

DOE Green Energy (OSTI)

This study identifies vital gas turbine (GT) parameters and quantifies their influence in meeting the DOE Turbine Program overall Integrated Gasification Combined Cycle (IGCC) plant goals of 50% net HHV efficiency, $1000/kW capital cost, and low emissions. The project analytically evaluates GE advanced F class air cooled technology level gas turbine conceptual cycle designs and determines their influence on IGCC plant level performance including impact of Carbon capture. This report summarizes the work accomplished in each of the following six Tasks. Task 1.0--Overall IGCC Plant Level Requirements Identification: Plant level requirements were identified, and compared with DOE's IGCC Goal of achieving 50% Net HHV Efficiency and $1000/KW by the Year 2008, through use of a Six Sigma Quality Functional Deployment (QFD) Tool. This analysis resulted in 7 GT System Level Parameters as the most significant. Task 2.0--Requirements Prioritization/Flow-Down to GT Subsystem Level: GT requirements were identified, analyzed and prioritized relative to achieving plant level goals, and compared with the flow down of power island goals through use of a Six Sigma QFD Tool. This analysis resulted in 11 GT Cycle Design Parameters being selected as the most significant. Task 3.0--IGCC Conceptual System Analysis: A Baseline IGCC Plant configuration was chosen, and an IGCC simulation analysis model was constructed, validated against published performance data and then optimized by including air extraction heat recovery and GE steam turbine model. Baseline IGCC based on GE 207FA+e gas turbine combined cycle has net HHV efficiency of 40.5% and net output nominally of 526 Megawatts at NOx emission level of 15 ppmvd{at}15% corrected O2. 18 advanced F technology GT cycle design options were developed to provide performance targets with increased output and/or efficiency with low NOx emissions. Task 4.0--Gas Turbine Cycle Options vs. Requirements Evaluation: Influence coefficients on 4 key IGCC plant level parameters (IGCC Net Efficiency, IGCC Net Output, GT Output, NOx Emissions) of 11 GT identified cycle parameters were determined. Results indicate that IGCC net efficiency HHV gains up to 2.8 pts (40.5% to 43.3%) and IGCC net output gains up to 35% are possible due to improvements in GT technology alone with single digit NOx emission levels. Task 5.0--Recommendations for GT Technical Improvements: A trade off analysis was conducted utilizing the performance results of 18 gas turbine (GT) conceptual designs, and three most promising GT candidates are recommended. A roadmap for turbine technology development is proposed for future coal based IGCC power plants. Task 6.0--Determine Carbon Capture Impact on IGCC Plant Level Performance: A gas turbine performance model for high Hydrogen fuel gas turbine was created and integrated to an IGCC system performance model, which also included newly created models for moisturized syngas, gas shift and CO2 removal subsystems. This performance model was analyzed for two gas turbine technology based subsystems each with two Carbon removal design options of 85% and 88% respectively. The results show larger IGCC performance penalty for gas turbine designs with higher firing temperature and higher Carbon removal.

Ashok K. Anand

2005-12-16T23:59:59.000Z

Note: This page contains sample records for the topic "gas coal emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

EIA - Greenhouse Gas Emissions - Land use  

U.S. Energy Information Administration (EIA)

53 Wood products originating from forests outside the United States are not included in the U.S. greenhouse gas inventory. 54 Source: U.S. Energy Information ...

342

Combustion characteristics and NOx emissions of two kinds of swirl burners in a 300-MWe wall-fired pulverized-coal utility boiler  

SciTech Connect

Measurements were performed in a 300-MWe wall-fired pulverized-coal utility boiler. Enhanced ignition-dual register (EI-DR) burners and centrally fuel rich (CFR) swirl coal combustion burners were installed in the bottom row of the furnace during experiments. Local mean concentrations of O{sub 2}, CO, CO{sub 2} and NOx gas species, gas temperatures, and char burnout were determined in the region of the two types of burners. For centrally fuel rich swirl coal combustion burners, local mean CO concentrations, gas temperatures and the temperature gradient are higher and mean concentrations of O{sub 2} and NOx along the jet flow direction in the burner region are lower than for the enhanced ignition-dual register burners. Moreover, the mean O{sub 2} concentration is higher and the gas temperature and mean CO concentration are lower in the side wall region. For centrally fuel rich swirl coal combustion burners in the bottom row, the combustion efficiency of the boiler increases from 96.73% to 97.09%, and NOx emission decreases from 411.5 to 355 ppm at 6% O{sub 2} compared to enhanced ignition-dual register burners and the boiler operates stably at 110 MWe without auxiliary fuel oil.

Li, Z.Q.; Jing, J.P.; Chen, Z.C.; Ren, F.; Xu, B.; Wei, H.D.; Ge, Z.H. [Harbin Institute for Technology, Harbin (China). School for Energy Science & Engineering

2008-07-01T23:59:59.000Z

343

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Warm Gas Multicontaminant Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Description Integrated Gasification Combined Cycle (IGCC) technology offers a means to utilize coal -the most abundant fuel in the United States-to produce a host of products, ranging from electricity to value-added chemicals like transportation fuels and hydrogen, in an efficient, environmentally friendly manner. However, the overall cost (capital, operating,

344

Modeling of gas generation from the Cameo coal zone in the Piceance Basin Colorado  

Science Conference Proceedings (OSTI)

The gas generative potential of the Cretaceous Cameo coal in the Piceance Basin, northwestern Colorado, was evaluated quantitatively by sealed gold tube pyrolysis. The H/C and O/C elemental ratios show that pyrolyzed Cameo coal samples follow the Van Krevelen humic coal evolution pathway, reasonably simulating natural coal maturation. Kinetic parameters (activation energy and frequency factor) for gas generation and vitrinite reflectance (R{sub o}) changes were calculated from pyrolysis data. Experimental R{sub o} results from this study are not adequately predicted by published R{sub o} kinetics and indicate the necessity of deriving basin-specific kinetic parameters when building predictive basin models. Using derived kinetics for R{sub o}, evolution and gas generation, basin modeling was completed for 57 wells across the Piceance Basin, which enabled the mapping of coal-rank and coalbed gas potential. Quantities of methane generated at approximately 1.2% R{sub o} are about 300 standard cubic feet per ton (scf/ton) and more than 2500 scf/ton (in-situ dry-ash-free coal) at R{sub o}, values reaching 1.9%. Gases generated in both low- and high-maturity coals are less wet, whereas the wetter gas is expected where R{sub o} is approximately 1.4-1.5%. As controlled by regional coal rank and net coal thickness, the largest in-place coalbed gas resources are located in the central part of the basin, where predicted volumes exceed 150 bcf/mi, excluding gases in tight sands.

Zhang, E.; Hill, R.J.; Katz, B.J.; Tang, Y.C. [Shell Exploration and Production Co., BTC, Houston, TX (United States)

2008-08-15T23:59:59.000Z

345

Should we transport coal, gas, or electricity: cost, efficiency, and environmental implications  

Science Conference Proceedings (OSTI)

The authors examine the life cycle costs, environmental discharges, and deaths of moving coal via rail, coal to synthetic natural gas via pipeline, and electricity via wire from the Powder River Basin (PRB) in Wyoming to Texas. Which method has least social cost depends on how much additional investment in rail line, transmission, or pipeline infrastructure is required, as well as how much and how far energy is transported. If the existing rail lines have unused capacity, coal by rail is the cheapest method (up to 200 miles of additional track could be added). If no infrastructure exists, greater distances and larger amounts of energy favor coal by rail and gasified coal by pipeline over electricity transmission. For 1,000 miles and 9 gigawatts of power, a gas pipeline is cheapest, has less environmental discharges, uses less land, and is least obtrusive. 28 refs., 4 figs., 3 tabs.

Joule A. Bergerson; Lester B. Lave [Carnegie Mellon University, Pittsburgh, PA (US)

2005-08-15T23:59:59.000Z

346

The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or  

Open Energy Info (EERE)

Transport or Transport or Mobil Sources Jump to: navigation, search Tool Summary Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or Mobil Sources Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Transportation, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free The Greenhouse Gas Protocol tool for mobile combustion is a free Excel spreadsheet calculator designed to calculate GHG emissions specifically from mobile combustion sources, including vehicles under the direct control

347

Comparative study of combustion product emissions of Pakistani coal briquettes and traditional Pakistani domestic fuels  

DOE Green Energy (OSTI)

A comparative emissions study was conducted on combustion products of various solid domestic cooking fuels; the objective was to compare relative levels of organic and inorganic toxic emissions from traditional Pakistani fuels (wood, wood charcoal, and dried animal dung) with manufactured low-rank coal briquettes (Lakhra and Sor- Range coals) under conditions simulating domestic cooking. A small combustion shed 12 m[sup 3] internal volume, air exchange rate 14 h[sup [minus]1] was used to simulate south Asian cooking rooms. 200-g charges of the various fuels were ignited in an Angethi stove located inside the shed, then combusted to completion; effluents from this combustion were monitored as a function of time. Measurements were made of respirable particulates, volatile and semi-volatile organics, CO, SO[sub 2], and NO[sub x]. Overall it appears that emissions from coal briquettes containing combustion amendments (slaked lime, clay, and potassium nitrate oxidizer) are no greater than emissions from traditional fuels, and in some cases are significantly lower; generally, emissions are highest for all fuels in the early stages of combustion.

Wachter, E.A.; Gammage, R.B.; Haas, J.W. III; Wilson, D.L. (Oak Ridge National Lab., TN (United States)); DePriest, J.C.; Wade, J. (Midwest Technical, Inc., Oak Ridge, TN (United States)); Ahmad, N.; Sibtain, F.; Zahid Raza, M. (Pakistan Council of Scientific and Industrial Research Labs., Karachi (Pakistan))

1992-10-01T23:59:59.000Z

348

Comparative study of combustion product emissions of Pakistani coal briquettes and traditional Pakistani domestic fuels  

DOE Green Energy (OSTI)

A comparative emissions study was conducted on combustion products of various solid domestic cooking fuels; the objective was to compare relative levels of organic and inorganic toxic emissions from traditional Pakistani fuels (wood, wood charcoal, and dried animal dung) with manufactured low-rank coal briquettes (Lakhra and Sor- Range coals) under conditions simulating domestic cooking. A small combustion shed 12 m{sup 3} internal volume, air exchange rate 14 h{sup {minus}1} was used to simulate south Asian cooking rooms. 200-g charges of the various fuels were ignited in an Angethi stove located inside the shed, then combusted to completion; effluents from this combustion were monitored as a function of time. Measurements were made of respirable particulates, volatile and semi-volatile organics, CO, SO{sub 2}, and NO{sub x}. Overall it appears that emissions from coal briquettes containing combustion amendments (slaked lime, clay, and potassium nitrate oxidizer) are no greater than emissions from traditional fuels, and in some cases are significantly lower; generally, emissions are highest for all fuels in the early stages of combustion.

Wachter, E.A.; Gammage, R.B.; Haas, J.W. III; Wilson, D.L. [Oak Ridge National Lab., TN (United States); DePriest, J.C.; Wade, J. [Midwest Technical, Inc., Oak Ridge, TN (United States); Ahmad, N.; Sibtain, F.; Zahid Raza, M. [Pakistan Council of Scientific and Industrial Research Labs., Karachi (Pakistan)

1992-10-01T23:59:59.000Z

349

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems  

SciTech Connect

CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

1990-07-01T23:59:59.000Z

350

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated July 7, 2004) In the trading week ended July 2, the average spot coal prices tracked by EIA were mixed.

351

DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Draft Strategic Plan for Reducing Greenhouse Gas Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology September 22, 2005 - 10:45am Addthis WASHINGTON, DC - The Department of Energy today released for public review and comment a plan for accelerating the development and reducing the cost of new and advanced technologies that avoid, reduce, or capture and store greenhouse gas emissions - the technology component of a comprehensive U.S. approach to climate change. The technologies developed under the Climate Change Technology program will be used and deployed among the United States' partners in the Asia-Pacific Partnership for Clean Development that was announced earlier this year.

352

Natural Gas Stove Emissions and Respiratory Health: Evidence from NHANES  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Stove Emissions and Respiratory Health: Evidence from NHANES Natural Gas Stove Emissions and Respiratory Health: Evidence from NHANES III Speaker(s): Ronald Briggs Date: August 15, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Brett Singer Do emissions from natural gas stoves in American homes degrade respiratory health? The combustion of natural gas yields byproducts such as NOx , PM2.5 , and CO that the US EPA regulates outdoors. But while ambient air quality has improved in the US over the last few decades as a consequence of the Clean Air Act of and its amendments, the prevalence of asthma and morbidity and mortality associated with asthma continue to rise (Mannino /et al./, 1998). Concentrations of most air pollutants are higher indoors than outdoors in the US, however, and people in the US spend more than 90%

353

EIA - Greenhouse Gas Emissions - Table-Figure Notes and Sources  

Gasoline and Diesel Fuel Update (EIA)

A1. Notes and Sources A1. Notes and Sources Tables Chapter 1: Greenhouse gas emissions overview Table 1. U.S. emissions of greenhouse gases, based on global warming potential, 1990-2009: Sources: Emissions: EIA estimates. Data in this table are revised from the data contained in the previous EIA report, Emissions of Greenhouse Gases in the United States 2008, DOE/EIA-0573(2008) (Washington, DC, December 2009). Global warming potentials: Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical Science Basis: Errata (Cambridge, UK: Cambridge University Press, 2008), website http://ipcc-wg1.ucar.edu/wg1/Report/AR4WG1_Errata_2008-12-01.pdf. Table 2. U.S. greenhouse gas intensity and related factors, 1990-2009: Sources: Emissions: EIA estimates. Data in this table are revised from the

354

Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions  

SciTech Connect

The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions. These technology pathways (which are described in greater detail in Appendix B, Technology Pathways) address three areas: energy efficiency, clean energy, and carbon sequestration (removing carbon from emissions and enhancing carbon storage). Based on an assessment of each of these technology pathways over a 30-year planning horizon, the directors of the Department of Energy's (DOE's) national laboratories conclude that success will require pursuit of multiple technology pathways to provide choices and flexibility for reducing greenhouse gas emissions. Advances in science and technology are necessary to reduce greenhouse gas emissions from the United States while sustaining economic growth and providing collateral benefits to the nation.

National Lab Directors, . .

2001-04-05T23:59:59.000Z

355

Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions  

SciTech Connect

The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions. These technology pathways (which are described in greater detail in Appendix B, Technology Pathways) address three areas: energy efficiency, clean energy, and carbon sequestration (removing carbon from emissions and enhancing carbon storage). Based on an assessment of each of these technology pathways over a 30-year planning horizon, the directors of the Department of Energy's (DOE's) national laboratories conclude that success will require pursuit of multiple technology pathways to provide choices and flexibility for reducing greenhouse gas emissions. Advances in science and technology are necessary to reduce greenhouse gas emissions from the United States while sustaining economic growth and providing collateral benefits to the nation.

National Lab Directors, . .

2001-04-05T23:59:59.000Z

356

Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier  

DOE Patents (OSTI)

A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.

Grindley, T.

1988-04-05T23:59:59.000Z

357

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1990--June 1991  

SciTech Connect

Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1991-07-01T23:59:59.000Z

358

Coal/biomass fuels and the gas turbine: Utilization of solid fuels and their derivatives  

Science Conference Proceedings (OSTI)

This paper discusses key design and development issues in utilizing coal and other solid fuels in gas turbines. These fuels may be burned in raw form or processed to produce liquids or gases in more or less refined forms. The use of such fuels in gas turbines requires resolution of technology issues which are of little or no consequence for conventional natural gas and refined oil fuels. For coal, these issues are primarily related to the solid form in which coal is naturally found and its high ash and contaminant levels. Biomass presents another set of issues similar to those of coal. Among the key areas discussed are effects of ash and contaminant level on deposition, corrosion, and erosion of turbine hot parts, with particular emphasis on deposition effects.

DeCorso, M. [Power Tech Associates, Inc., Paramus, NJ (United States); Newby, R. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Anson, D. [Battelle, Columbus, OH (United States); Wenglarz, R. [Allison Engine Co., Indianapolis, IN (United States); Wright, I. [Oak Ridge National Lab., TN (United States)

1996-06-01T23:59:59.000Z

359

Prospects of Oxy-Coal Steam-Electric Power Plants Achieving "Minor Source" Status for Air Emissions Permitting  

Science Conference Proceedings (OSTI)

Oxy-coal power plants have been proposed for capturing carbon dioxide (CO2) from coal combustion in a relatively concentrated form for storage in geological formations. The particular processes employed for oxy-combustion have the positive side effect of reducing emissions to very low levels. This report assesses the extent to which oxy-coal power plants might meet near-zero emissions proposed by several organizations and qualify as a minor source for the purposes of air emissions permitting. The rep...

2009-12-28T23:59:59.000Z

360

The Implications of a Gasoline Price Floor for the California Budget and Greenhouse Gas Emissions  

E-Print Network (OSTI)

Gas Daily Quantity Daily GhG Emissions Oil Price Price elasGas Daily Quantity Daily GhG Emissions Oil Price Price elasDaily Quantity Daily GhG Emissions Surcharge Revenues Oil

Borenstein, Severin

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coal emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Mitigating Greenhouse Gas Emissions: Voluntary Reporting 1996  

Reports and Publications (EIA)

Presents information on voluntary actions to reduce greenhouse gases or remove such gases from the atmosphere in 1995. It provides an overview of participation in the Voluntary Reporting Program, a perspective on the composition of activities reported, and a review of some key issues in interpreting and evaluating achievements associated with reported emissions mitigation initiatives.

Information Center

1997-10-01T23:59:59.000Z

362

Liquefaction and desulfurization of coal using synthesis gas  

DOE Patents (OSTI)

A process for desulfurizing and liquefying coal by heating said coal at a temperature of 375.degree.-475.degree. C in the presence of a slurry liquid, hydrogen, carbon monoxide, steam, and a catalyst comprising a desulfurization catalyst and an alkali metal salt.

Fu, Yuan C. (Bethel Park, PA)

1977-03-08T23:59:59.000Z

363

EIA - Greenhouse Gas Emissions - High-GWP gases  

Gasoline and Diesel Fuel Update (EIA)

5. High-GWP gases 5. High-GWP gases 5.1. Total emissions Greenhouse gases with high global warming potential (high-GWP gases) are hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6), which together represented 3 percent of U.S. greenhouse gas emissions in 2009. Emissions estimates for the high-GWP gases are provided to EIA by the EPA's Office of Air and Radiation. The estimates for emissions of HFCs not related to industrial processes or electric transmission are derived from the EPA Vintaging Model. Emissions from manufacturing and utilities are derived by the EPA from a mix of public and proprietary data, including from the EPA's voluntary emission reduction partnership programs. For this year's EIA inventory, 2008 values for HFC-23 from HCFC-22

364

The economical production of alcohol fuels from coal-derived synthesis gas. Sixth quarterly technical progress report, January 1, 1993--March 31, 1993  

Science Conference Proceedings (OSTI)

Preliminary economic investigations have focused on cost reduction measures in the production of syngas from coal. A spread sheet model has been developed which can determine the cost of syngas production based upon the cost of equipment and raw materials and the market value of energy and by-products. In comparison to natural gas derived syngas, coal derived syngas is much more expensive, suggesting a questionable economic status of coal derived alcohol fuels. While it is possible that use of less expensive coal or significant integration of alcohol production and electricity production may reduce the cost of coal derived syngas, it is unlikely to be less costly to produce than syngas from natural gas. Fuels evaluation is being conducted in three parts. First, standard ASTM tests are being used to analyze the blend characteristics of higher alcohols. Second, the performance characteristics of higher alcohols are being evaluated in a single-cylinder research engine. Third, the emissions characteristics of higher alcohols are being investigated. The equipment is still under construction and the measurement techniques are still being developed. Of particular interest is n-butanol, since the MoS{sub 2} catalyst produces only linear higher alcohols. There is almost no information on the combustion and emission characteristics of n-butanol, hence the importance of gathering this information in this research.

Not Available

1993-04-01T23:59:59.000Z

365

Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050  

E-Print Network (OSTI)

and A. Schafer, Reducing Greenhouse Gas Emissions from U.S.Marintek, Study of Greenhouse Gas Emissions from Ships .Biofuels Increases Greenhouse Gases Through Emissions from

Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

2008-01-01T23:59:59.000Z

366

Emissions Resulting from the Full-Scale Cofiring of Pelletized Refuse-Derived Fuel and Coal  

E-Print Network (OSTI)

Full-scale cofiring tests of binder-enhanced pellets of densified, refuse-derived fuel (dRDF) and high-sulfur coal were conducted during June and July of 1987 in Boiler #5 at Argonne National Laboratory. These tests were conducted with industry, state, and municipality participation both in critiquing the test plan and in witnessing the actual test runs. Approximately 600 tons of dRDF containing 0%, 4%, or 8% binder were blended with high-sulfur coal at levels of up to 30%, based on the BTU content. This paper describes the dRDF/coal cofiring tests, the emissions and ash samples that were taken, the analyses that were conducted on these samples, preliminary test results, and future research plans.

Ohlsson, O. O.; Daugherty, K.; Venables, B.

1988-09-01T23:59:59.000Z

367

Synthesis and development of processes for the recovery of sulfur from acid gases. Part 1, Development of a high-temperature process for removal of H{sub 2}S from coal gas using limestone -- thermodynamic and kinetic considerations; Part 2, Development of a zero-emissions process for recovery of sulfur from acid gas streams  

SciTech Connect

Limestone can be used more effectively as a sorbent for H{sub 2}S in high-temperature gas-cleaning applications if it is prevented from undergoing calcination. Sorption of H{sub 2}S by limestone is impeded by sintering of the product CaS layer. Sintering of CaS is catalyzed by CO{sub 2}, but is not affected by N{sub 2} or H{sub 2}. The kinetics of CaS sintering was determined for the temperature range 750--900{degrees}C. When hydrogen sulfide is heated above 600{degrees}C in the presence of carbon dioxide elemental sulfur is formed. The rate-limiting step of elemental sulfur formation is thermal decomposition of H{sub 2}S. Part of the hydrogen thereby produced reacts with CO{sub 2}, forming CO via the water-gas-shift reaction. The equilibrium of H{sub 2}S decomposition is therefore shifted to favor the formation of elemental sulfur. The main byproduct is COS, formed by a reaction between CO{sub 2} and H{sub 2}S that is analogous to the water-gas-shift reaction. Smaller amounts of SO{sub 2} and CS{sub 2} also form. Molybdenum disulfide is a strong catalyst for H{sub 2}S decomposition in the presence of CO{sub 2}. A process for recovery of sulfur from H{sub 2}S using this chemistry is as follows: Hydrogen sulfide is heated in a high-temperature reactor in the presence of CO{sub 2} and a suitable catalyst. The primary products of the overall reaction are S{sub 2}, CO, H{sub 2} and H{sub 2}O. Rapid quenching of the reaction mixture to roughly 600{degrees}C prevents loss Of S{sub 2} during cooling. Carbonyl sulfide is removed from the product gas by hydrolysis back to CO{sub 2} and H{sub 2}S. Unreacted CO{sub 2} and H{sub 2}S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H{sub 2} and CO, which recovers the hydrogen value from the H{sub 2}S. This process is economically favorable compared to the existing sulfur-recovery technology and allows emissions of sulfur-containing gases to be controlled to very low levels.

Towler, G.P.; Lynn, S.

1993-05-01T23:59:59.000Z

368

FETC Programs for Reducing Greenhouse Gas Emissions  

SciTech Connect

Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called `greenhouse gases.` Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth`s atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide.

Ruether, J.A.

1998-02-01T23:59:59.000Z

369

EIA - Greenhouse Gas Emissions - Land use  

Gasoline and Diesel Fuel Update (EIA)

6. Land use 6. Land use 6.1. Total land use, land use change, and forests This chapter presents estimates of carbon sequestration (removal from the atmosphere) and emissions (release into the atmosphere) from forests, croplands, grasslands, and residential areas (urban trees, grass clippings, and food scraps) in the United States. In 2008, land use, land use change, and forests were responsible for estimated net carbon sequestration of 940 MMTCO2e (Table 31), representing 16 percent of total U.S. CO2 emissions. The largest sequestration category in 2008 was forest lands and harvested wood pools,49 with estimated sequestration increasing from 730 MMTCO2e in 1990 to 792 MMTCO2e in 2008. The second-largest carbon sequestration category was urban trees,50 responsible for 57 MMTCO2e in 1990 and 94

370

Costa Rica-Mitigation of Greenhouse Gas Emissions through Avoided  

Open Energy Info (EERE)

Greenhouse Gas Emissions through Avoided Greenhouse Gas Emissions through Avoided Deforestation of Tropical Rainforests on Privately-owned Lands in High Conservation Value Areas Jump to: navigation, search Name Costa Rica-Mitigation of Greenhouse Gas Emissions through Avoided Deforestation of Tropical Rainforests on Privately-owned Lands in High Conservation Value Areas Agency/Company /Organization Government of Costa Rica, Peace with Nature Sector Land Focus Area Forestry Topics Co-benefits assessment, Implementation, Policies/deployment programs, Resource assessment, Background analysis Resource Type Publications Website http://www.paxnatura.org/pax_n Country Costa Rica UN Region Latin America and the Caribbean References Costa Rica[1] Overview References ↑ "Costa Rica" Retrieved from

371

Evaluate Greenhouse Gas Emissions Profile for Vehicles and Mobile Equipment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles and Mobile Vehicles and Mobile Equipment Evaluate Greenhouse Gas Emissions Profile for Vehicles and Mobile Equipment October 7, 2013 - 11:32am Addthis YOU ARE HERE Step 2 To gain a good understanding of a Federal agency's Scope 1 vehicle and mobile equipment greenhouse gas (GHG) emissions, the agency must first collect the necessary data to profile any emissions sources then analyze the data in a way that will clarify the most viable strategies and alternatives. Emissions cannot be managed until they are measured. Through the use of fleet/vehicle management information systems, as well as reporting to the Federal Energy Management Program and General Services Administration, agencies are increasingly collecting and documenting useful data elements at the headquarters-and sometimes at specific site -levels.

372

emissions while preserving the option of using coal and other...  

NLE Websites -- All DOE Office Websites (Extended Search)

The report concludes that CCS technologies can be vital in reducing domestic greenhouse gas (GHG) U . S . D e p a r t m e n t o f E n e r g y * O f f i c e o f F o s s i l E n e r...

373

The Role of Hydropower Reservoirs in Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

Recent publications of measurements and analyses of reservoir greenhouse gas (GHG) emissions have sparked debate about the carbon neutrality of hydropower. This report describes the results of two initial tasks of a multiyear study to assess the importance of carbon cycling and GHG emissions from hydropower reservoirs and operations in the United States. The risks this issue presents to the U.S. hydropower industry are discussed, and a plan to resolve uncertainties is presented. Throughout this report, r...

2010-05-20T23:59:59.000Z

374

The EPRI Greenhouse Gas Emissions Offset Policy Dialogue  

Science Conference Proceedings (OSTI)

In 2008, EPRI launched the EPRI Greenhouse Gas (GHG) Emissions Offset Policy Dialogue project. The goals of this project are to inform key constituencies involved in the development of U.S. climate mitigation strategies and policies about GHG emissions offset-related policies and design issues, and to provide a forum in which representatives of key sectors of the U.S. economy and communities involved in the ongoing development and debate on climate change policies can discuss these issues. This Technical...

2008-12-23T23:59:59.000Z

375

Repowering oil-fired boilers with combustion turbines fired with gas from coal. Final report  

Science Conference Proceedings (OSTI)

The results of a study on repowering of oil fired reheat steam plants using combustion turbines and coal gas from the Texaco oxygen blown gasifier are presented. The steam plant utilizes combustion turbine exhaust gas as its combustion air supply. In some examples coal gas is fired in both the combustion turbines and the main boiler, while, in other cases, oil firing is retained in the boiler. Plant configurations, equipment changes, and performance are determined for three basic forms: (1) repowering based on coal gas supplied by pipeline (remote source); (2) repowering based on complete integration of the gasification system with the power plant; and (3) repowering based on partial integration of the gasification system wherein the boiler retains oil firing.

Garland, R.V.

1981-07-01T23:59:59.000Z

376

Materials exposure test facilities for varying low-Btu coal-derived gas  

SciTech Connect

As a part of the United States Department of Energy's High Temperature Turbine Technology Readiness Program, the Morgantown Energy Technology Center is participating in the Ceramics Corrosion/Erosion Materials Study. The objective is to create a technology base for ceramic materials which could be used by stationary gas power turbines operating in a high-temperature, coal-derived, low-Btu gas products of combustion environment. Two METC facilities have been designed, fabricated and will be operated simultaneously exposing ceramic materials dynamically and statically to products of combustion of a coal-derived gas. The current studies will identify the degradation of ceramics due to their exposure to a coal-derived gas combustion environment.

Nakaishi, C.V.; Carpenter, L.K.

1980-01-01T23:59:59.000Z

377

Portfolio Manager Technical Reference: Greenhouse Gas Emissions | ENERGY  

NLE Websites -- All DOE Office Websites (Extended Search)

Greenhouse Gas Emissions Greenhouse Gas Emissions Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

378

Coal - U.S. Energy Information Administration (EIA) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights ... Electric power sector consumption of coal by census region, 2010

379

Small gas turbines exhibit single-digit emissions in service  

Science Conference Proceedings (OSTI)

A 10 MW-class, THM 1304-10D gas turbine from MAN-GHH, equipped with dry low-NO[sub x] combustion chambers, including hybrid burners, entered service last October. The unit was installed on the Stegal long-distance natural gas pipeline from the Olbernhau compression station on the Czech border. The pipeline transmits gas from Russia to the central part of Germany. A similar compression station, featuring three THM 1304-D driven compressor packages, started commercial operation last March in the Rehden station on the Midal pipeline. A test program carried out by MAN-GHH has demonstrated that the THM 1304 gas turbine has a wide operating range with NO[sub x] emission well under TA luft limits and, at the same time, negligible CO emissions. This is accomplished by combined effect of large volume combustion chambers, optimized wall cooling and premix dry low-NO[sub x] burners. 3 figs.

Chellini, R.

1994-06-01T23:59:59.000Z

380

Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants  

Science Conference Proceedings (OSTI)

Revised maps and associated data show potential mercury, sulfur, and chlorine emissions for U.S. coal by county of origin. Existing coal mining and coal washing practices result in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Selection of low-mercury coal is a good mercury control option for plants having hot-side ESP, cold-side ESP, or hot-side ESP/FGD emission controls. Chlorine content is more important for plants having cold-side ESP/FGD or SDA/FF controls; optimum net mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2005-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas coal emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Greenhouse gas performance standards: From each according to his emission intensity or from each according to his emissions?  

E-Print Network (OSTI)

and Refining of Crude oil. Our dataset comprises of 89is then upgraded to crude oil for furthering refining. Forfuel sources such as coal, oil and natural gas and which are

Rajagopal, Deepak

2013-01-01T23:59:59.000Z

382

Unanticipated Consequences of Regional Greenhouse Gas Policies: Criteria Emissions and the Regional Greenhouse Gas Initiave.  

E-Print Network (OSTI)

??The Regional Greenhouse Gas Initiative (RGGI) has been developed by 10 Northeastern and Mid-Atlantic states in an attempt to curb emissions of carbon dioxide (C02) (more)

Olesniewicz, Timothy J.

2008-01-01T23:59:59.000Z

383

Impact of supplemental firing of tire-derived fuel (TDF) on mercury species and mercury capture with the advanced hybrid filter in a western subbituminous coal flue gas  

Science Conference Proceedings (OSTI)

Pilot-scale experimental studies were carried out to evaluate the impacts of cofiring tire-derived fuel and a western subbituminous coal on mercury species in flue gas. Mercury samples were collected at the inlet and outlet of the Advanced Hybrid filter to determine mercury concentrations in the flue gas with and without TDF cofiring, respectively. Cofiring of TDF with a subbituminous coal had a significant effect on mercury speciation in the flue gas. With 100% coal firing, there was only 16.8% oxidized mercury in the flue gas compared to 47.7% when 5% TDF (mass basis) was fired and 84.8% when 10% TDF was cofired. The significantly enhanced mercury oxidation may be the result of additional homogeneous gas reactions between Hg{sup 0} and the reactive chlorine generated in the TDF-cofiring flue gas and the in situ improved reactivity of unburned carbon in ash by the reactive chlorine species. Although the cofiring of TDF demonstrated limited improvement on mercury-emission control with the Advanced Hybrid filter, it proved to be a very cost-effective mercury control approach for power plants equipped with wet or dry flue gas desulfurization (FGD) systems because of the enhanced mercury oxidation. 15 refs., 4 figs., 4 tabs.

Ye Zhuang; Stanley J. Miller [University of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center

2006-05-15T23:59:59.000Z

384

DEVELOPMENT OF ANALYTICAL METHODS FOR THE QUANTIFICATION OF THE CHEMICAL FORMS OF MERCURY AND OTHER TARGET POLLUTANTS IN COAL-FIRED BOILER FLUE GAS  

Science Conference Proceedings (OSTI)

Since approximately 55% of the electrical power produced in the U. S. is generated by coal-based power utility plants, there is serious concern about the massive amounts of coal combustion products emitted into the atmosphere annually. Furthermore, Title III of the 1990 Clean Air Act Amendments (CAAA) requires the measurement and inventory of a possible 189 hazardous air pollutants (HAPs) from any stationary source producing more than 10 tons per year of any one pollutant or more than 25 tons per year of total pollutants. Although power utilities are not presently included on the list of source categories, the CAAA requires the U. S. Environmental Protection Agency to carry out a study of emissions from electricity generation using fossil fuels. Since many of these HAPs are known to be present in coal derived flue gas, coal-fired electric power utilities may be subject to regulation following these studies if Congress considers it necessary. In a cooperative effort with the U. S. Environmental Protection Agency (EPA), the U. S. Department of Energy (DOE) through its Federal Energy Technology Center (FETC) initiated such a study in 1991. DOE-FETC commissioned five primary contractors to conduct emission studies at eight different coal-fired electric utilities. The eight sites represented a cross section of feed coal type, boiler designs, and particulate and gaseous pollutant control technologies. The major goal of these studies was to determine the sampling and analytical methodologies that could be used efficiently to perform these emission tests while producing representative and reliable emission data. The successful methodology could then be recommended to the EPA for use in compliance testing in the event the regulation of air toxic emissions from coal-fired power plants is implemented. A secondary purpose of the testing was to determine the effectiveness of the control technologies in reducing target hazardous air pollutants. Advanced Technology Systems, Inc. (ATS) as a secondary DOE contractor on this project, assessed the sampling and analytical plans and the emission reports of the five primary contractors to determine how successful the contractors were in satisfying their defined objectives. ATS identified difficulties and inconsistencies in a number of sampling and analytical methodologies in these studies. In particular there was uncertainty as to the validity of the sampling and analytical methods used to differentiate the chemical forms of mercury observed in coal flue gas. Considering the differences in the mercury species with regard to human toxicity, the rate of transport through the ecosystem and the design variations in possible emission control schemes, DOE sought an accurate and reliable means to identify and quantify the various mercury compounds emitted by coal-fired utility boilers. ATS, as a contractor for DOE, completed both bench- and pilot-scale studies on various mercury speciation methods. The final validation of the modified Ontario-Hydro Method, its acceptance by DOE and submission of the method for adoption by ASTM was a direct result of these studies carried out in collaboration with the University of North Dakota's Energy and Environmental Research Center (UNDEERC). This report presents the results from studies carried out at ATS in the development of analytical methods to identify and quantify various chemical species, particularly those of mercury, in coal derived flue gas. Laboratory- and pilot-scale studies, not only on mercury species, but also on other inorganics and organics present in coal combustion flue gas are reported.

Terence J. McManus, Ph.D.

1999-06-30T23:59:59.000Z

385

Dilution-based emissions sampling from stationary sources: part 2 - gas-fired combustors compared with other fuel-fired systems  

SciTech Connect

With the recent focus on fine particle matter (PM2.5), new, self- consistent data are needed to characterize emissions from combustion sources. Emissions data for gas-fired combustors are presented, using dilution sampling as the reference. The sampling and analysis of the collected particles in the presence of precursor gases, SO{sub 2}, nitrogen oxide, volatile organic compound, and NH{sub 3} is discussed; the results include data from eight gas fired units, including a dual- fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of {approximately}10{sup -4} lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with {approximately} 5 x 10{sup -3} lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of {approximately} 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas- fired combustor particles are low in concentration. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon is found on the particle collector and a backup filter. It is likely that measurement artifacts are positively biasing 'true' particulate carbon emissions results. 49 refs., 1 fig., 12 tabs.

England, G.C.; Watson, J.G.; Chow, J.C.; Zielinska, B.; Chang, M.C.O.; Loos, K.R.; Hidy. G.M. [GE Energy, Santa Ana, CA (United States)

2007-01-15T23:59:59.000Z

386

POTENTIAL HEALTH RISK REDUCTION ARISING FROM REDUCED MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.  

Science Conference Proceedings (OSTI)

The U.S. Environmental Protection Agency (EPA) has announced plans to regulate mercury (Hg) emissions from coal-fired power plants. EPA has not prepared a quantitative assessment of the reduction in risk that could be achieved through reduction in coal plant emissions of Hg. To address this issue, Brookhaven National Laboratory (BNL) with support from the U.S. Department of Energy Office of Fossil Energy (DOE FE) prepared a quantitative assessment of the reduction in human health risk that could be achieved through reduction in coal plant emissions of Hg. The primary pathway for Hg exposure is through consumption of fish. The most susceptible population to Hg exposure is the fetus. Therefore the risk assessment focused on consumption of fish by women of child-bearing age. Dose response factors were generated from studies on loss of cognitive abilities (language skills, motor skills, etc.) by young children whose mothers consumed large amounts of fish with high Hg levels. Population risks were estimated for the general population in three regions of the country, (the Midwest, Northeast, and Southeast) that were identified by EPA as being heavily impacted by coal emissions. Three scenarios for reducing Hg emissions from coal plants were considered: (1) A base case using current conditions; (2) A 50% reduction; and, (3) A 90% reduction. These reductions in emissions were assumed to translate linearly into a reduction in fish Hg levels of 8.6% and 15.5%, respectively. Population risk estimates were also calculated for two subsistence fisher populations. These groups of people consume substantially more fish than the general public and, depending on location, the fish may contain higher Hg levels than average. Risk estimates for these groups were calculated for the three Hg levels used for the general population analyses. Analysis shows that the general population risks for exposure of the fetus to Hg are small. Estimated risks under current conditions (i.e., no specific Hg controls) ranged from 5.7 x 10{sup -6} in the Midwest to 2 x 10{sup -5} in the Southeast. Reducing emissions from coal plants by 90% reduced the estimated range in risk to 5 x 10{sup -6} in the Midwest and 1.5 x 10{sup -5} in Southeast, respectively. The population risk for the subsistence fisher using the Southeast regional fish Hg levels was 3.8 x 10{sup -3}, a factor of 200 greater than the general population risk. For the subsistence fishers and the Savannah River Hg levels, the population risk was 4.3 x 10{sup -5}, a factor of 2 greater than for the general population. The estimated risk reductions from a 90% reduction in coal plant Hg emissions ranged from 25%-68%, which is greater than the assumed reduction in Hg levels in fish, (15.5%). To place this risk in perspective, there are approximately 4 x 10{sup 6} births/year in the U.S (National Vital Statistics Report, 2000). Assuming that the Southeast risk level (the highest of the regions) is appropriate for the entire U.S., an estimate of 80 newborn children per year have a 5% chance of realizing any of the 16 adverse effects used to generate the DRF. If Hg emissions from power plants are reduced 90%, the number of children at risk is reduced to 60.

SULLIVAN,T.M.LIPFERT,F.W.MORRIS,S.C.MOSKOWITZ,P.D.

2001-09-01T23:59:59.000Z

387

Sensitivity of Multi-gas Climate Policy to Emission Metrics  

Science Conference Proceedings (OSTI)

Multi-gas greenhouse emission targets require that different emissions be combined into an aggregate total. The Global Warming Potential (GWP) index is currently used for this purpose, despite various criticisms of the underlying concept. It is not possible to uniquely define a single metric that perfectly captures the different impacts of emissions of substances with widely disparate atmospheric lifetimes, which leads to a wide range of possible index values. We examine the sensitivity of emissions and climate outcomes to the value of the index used to aggregate methane emissions using a technologically detailed integrated assessment model. We find that the sensitivity to index value is of order 4-14% in terms of methane emissions and 2% in terms of total radiative forcing, using index values between 4 and 70 for methane, with larger regional differences in some cases. The sensitivity to index value is much higher in economic terms, with total 2-gas mitigation cost decreasing 4-5% for a lower index and increasing 10-13% for a larger index, with even larger changes if the emissions reduction targets are small. The sensitivity to index value also depends on the assumed maximum amount of mitigation available in each sector. Evaluation of the maximum mitigation potential for major sources of non-CO2 greenhouse gases would greatly aid analysis

Smith, Steven J.; Karas, Joseph F.; Edmonds, James A.; Eom, Jiyong; Mizrahi, Andrew H.

2013-04-01T23:59:59.000Z

388

Coal industry annual 1994  

SciTech Connect

This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

NONE

1995-10-01T23:59:59.000Z

389

Estimating Gas Concentration of Coal Mines Based on ISGNN  

Science Conference Proceedings (OSTI)

Online detecting failure of gas sensors in mine wells is an important problem. A key step for solution of the problem is estimating sample values of detected gas sensor, according to sample values of other gas sensors. We propose a scheme based on ISGNN ... Keywords: Estimating gas concentration, Gas concentration modeling, Generating Neural Networks, ISGNN

Aiguo Li; Lina Song

2009-11-01T23:59:59.000Z

390

Evaluation of BOC'S Lotox Process for the Oxidation of Elemental Mercury in Flue Gas from a Coal-Fired Boiler  

SciTech Connect

Linde's Low Temperature Oxidation (LoTOx{trademark}) process has been demonstrated successfully to remove more than 90% of the NOx emitted from coal-fired boilers. Preliminary findings have shown that the LoTOx{trademark} process can be as effective for mercury emissions control as well. In the LoTOx{trademark} system, ozone is injected into a reaction duct, where NO and NO{sub 2} in the flue gas are selectively oxidized at relatively low temperatures and converted to higher nitrogen oxides, which are highly water soluble. Elemental mercury in the flue gas also reacts with ozone to form oxidized mercury, which unlike elemental mercury is water-soluble. Nitrogen oxides and oxidized mercury in the reaction duct and residual ozone, if any, are effectively removed in a wet scrubber. Thus, LoTOx{trademark} appears to be a viable technology for multi-pollutant emission control. To prove the feasibility of mercury oxidation with ozone in support of marketing LoTOx{trademark} for multi-pollutant emission control, Linde has performed a series of bench-scale tests with simulated flue gas streams. However, in order to enable Linde to evaluate the performance of the process with a flue gas stream that is more representative of a coal-fired boiler; one of Linde's bench-scale LoTOx{trademark} units was installed at WRI's combustion test facility (CTF), where a slipstream of flue gas from the CTF was treated. The degree of mercury and NOx oxidation taking place in the LoTOx{trademark} unit was quantified as a function of ozone injection rates, reactor temperatures, residence time, and ranks of coals. The overall conclusions from these tests are: (1) over 80% reduction in elemental mercury and over 90% reduction of NOx can be achieved with an O{sub 3}/NO{sub X} molar ratio of less than two, (2) in most of the cases, a lower reactor temperature is preferred over a higher temperature due to ozone dissociation, however, the combination of both low residence time and high temperature proved to be effective in the oxidation of both NOx and elemental mercury, and (3) higher residence time, lower temperature, and higher molar ratio of O{sub 3}/NOx contributed to the highest elemental mercury and NOx reductions.

Khalid Omar

2008-04-30T23:59:59.000Z

391

EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), evaluated the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)-wet flue gas desulfurization (FGD) combination or a spray dyer absorber-fabric filter (SDA-FF) combination. In this program CONSOL determined mercury speciation and removal at 10 bituminous coal-fired facilities; at four of these facilities, additional tests were performed on units without SCR, or with the existing SCR bypassed. This project final report summarizes the results and discusses the findings of the body of work as a whole. Eleven Topical Reports were issued (prior to this report) that describe in great detail the sampling results at each of the ten power plants individually. The results showed that the SCR-FGD combination removed a substantial fraction of mercury from flue gas. The coal-to-stack mercury removals ranged from 65% to 97% for the units with SCR and from 53% to 87% for the units without SCR. There was no indication that any type of FGD system was more effective at mercury removal than others. The coal-to-stack mercury removal and the removal in the wet scrubber were both negatively correlated with the elemental mercury content of the flue gas and positively correlated with the scrubber liquid chloride concentration. The coal chlorine content was not a statistically significant factor in either case. Mercury removal in the ESP was positively correlated with the fly ash carbon content and negatively correlated with the flue gas temperature. At most of the units, a substantial fraction (>35%) of the flue gas mercury was in the elemental form at the boiler economizer outlet. After passing through the SCR-air heater combination very little of the total mercury (<10%) remained in the elemental form in the flue gas; this was true for all SCR catalyst types and sources. Although chlorine has been suggested as a factor affecting the mercury speciation in flue gas, coal chlorine was not a statistically significant factor affecting mercury speciation at the economizer exit or at the air heater exit. The only statistically significant factors were the coal ash CaO content and the fly ash carbon content; the fraction of mercury in the elemental form at the economizer exit was positively correlated with both factors. In a direct comparison at four SCR-equipped units vs. similar units at the same sites without SCR (or with the SCR bypassed), the elemental mercury fractions (measured at the ESP outlet) were lower, and the coal-to-stack mercury removals were higher, when the SCR was present and operating. The average coal-to-stack mercury removal at the four units without an operating SCR was 72%, whereas the average removal at the same sites with operating SCRs was 88%. The unit mercury mass balance (a gauge of the overall quality of the tests) at all of the units ranged from 81% to 113%, which were within our QA/QC criterion of 80-120%.

J.A. Withum

2006-03-07T23:59:59.000Z

392

Results Summary Investigating the Use of Liquid CO2 Coal Slurry for Feeding Low Rank Coal to the E-Gas Gasifier  

Science Conference Proceedings (OSTI)

This report summarizes the results of US Department of Energy (DOE) Award No. DE-FE0007977, Liquid CO2/Coal Slurry for Feeding Low Rank Coal to Gasifiers, which investigates the practicality of using a liquid CO2/coal slurry preparation and feed system for the E-Gas gasifier in an integrated-gasificationcombined-cycle (IGCC) electric power generation plant configuration.Liquid CO2 (LCO2) has several property differences from water that ...

2013-12-11T23:59:59.000Z

393

Development of Mercury and Hydrogen Chloride Emission Monitors for Coal Gasifiers  

SciTech Connect

The gas conditioning issues involved with coal gasification streams are very complex and do not have simple solutions. This is particularly true in view of the fact that the gas conditioning system must deal with tars, high moisture contents, and problems with NH{sub 3} without affecting low ppb levels of Hg, low levels (low ppm or less) of HCl, or the successful operation of conditioner components and analytical systems. Those issues are far from trivial. Trying to develop a non-chemical system for gas conditioning was very ambitious in view of the difficult sampling environment and unique problems associated with coal gasification streams. Although a great deal was learned regarding calibration, sample transport, instrumentation options, gas stream conditioning, and CEM design options, some challenging issues still remain. Sample transport is one area that is often not adequately considered. Because of the gas stream composition and elevated temperatures involved, special attention will need to be given to the choice of materials for the sample line and other plumbing components. When using gas stream oxidation, there will be sample transport regions under oxidizing as well as reducing conditions, and each of those regions will require different materials of construction for sample transport. The catalytic oxidation approach worked well for removal of tars and NH{sub 3} on a short term basis, but durability issues related to using the catalyst tube during extended testing periods still require study.

G. Norton; D. Eckels; C. Chriswell

2001-02-26T23:59:59.000Z

394

Landfill gas emission prediction using Voronoi diagrams and importance sampling  

Science Conference Proceedings (OSTI)

Municipal solid waste (MSW) landfills are among the nation's largest emitters of methane, a key greenhouse gas, and there is considerable interest in quantifying the surficial methane emissions from landfills. There are limitations in obtaining accurate ... Keywords: Air dispersion modeling, Delaunay tessellation, Kriging, Least squares, MSW landfill, Voronoi diagram

K. R. Mackie; C. D. Cooper

2009-10-01T23:59:59.000Z

395

CHBE 484: Term Report Greenhouse Gas Emissions Analysis  

E-Print Network (OSTI)

CHBE 484: Term Report Greenhouse Gas Emissions Analysis of Future UBC Transportation Options Curtis of UBC transportation in: 2007, 2020 based on the current transportation methods, the elimination for cars and 2316.08 tonnes CO2 for trolley and conventional buses traveling to UBC. If the transportation

396

Greenhouse gas emissions related to ethanol produced from corn  

DOE Green Energy (OSTI)

This report confers the details of a panel meeting discussion on greenhouse gases. The topic of this discussion was ethanol. Members discussed all aspects of growing corn and producing ethanol. Then the question was raised as to whether or not this is a suitable substitute to fossil fuel usage in the reduction of greenhouse gas emissions.

Marland, G.

1994-04-01T23:59:59.000Z

397

Modeling Swtichgrass Biomass Production and Associated Greenhouse Gas Emissions  

E-Print Network (OSTI)

Modeling Swtichgrass Biomass Production and Associated Greenhouse Gas Emissions Weiyuan Zhu, Johan in the atmosphere have led to renewed interest in energy from plant biomass. Surfing the internet or flipping to a series of concerns, apprehensions and challenges presented by a shift to a heavier reliance on biomass

California at Davis, University of

398

Advanced coal fueled industrial cogeneration gas turbine system. Final report, June 1986--April 1994  

SciTech Connect

Demonstration of a direct coal-fueled gas turbine system that is environmentally, technically, and economically viable depends on the satisfactory resolution of several key issues. Solar Turbines, Incorporates technical approach to these issues was to advance a complete direct coal-fueled gas turbine system that incorporated near-term technology solutions to both historically demonstrated problem areas such as deposition, erosion, and hot end corrosion, and to the emergent environmental constraints based on NO{sub x}, SO{sub x}, and particulates. Solar`s program approach was keyed to the full commercialization of the coal-fueled cogeneration gas turbine which would occur after extended field verification demonstrations conducted by the private sector. The program was structured in three phases plus an optional fourth phase: Phase 1 -- system description; Phase 2 -- component development; Phase 3 -- prototype system verification; and Phase 4 -- field evaluation.

LeCren, R.T.

1994-05-01T23:59:59.000Z

399

Novel carbons from Illinois coal for natural gas storage. Technical report, March 1--May 31, 1995  

DOE Green Energy (OSTI)

Goal is to develop a technology for producing microengineered adsorbent carbons from Illinois coal and to evaluate their potential application for storing natural gas for use in emerging low pressure, natural gas vehicles (NGVs). Focus is to design and engineer adsorbents that meet or exceed performance and cost targets established for low-pressure natural gas storage materials. Potentially, about two million tons adsorbent could be consumed in NGVs by year 2000. If successful, the results could lead to use of Illinois coal in a market that could exceed 6 million tons per year. Activated carbon samples were prepared from IBC-106 coal by controlling both the preoxidation temperature and time, and the devolatilization temperature in order to eliminate coal caking. A 4.6 cc pressurized vessel was constructed to measure the Vm/Vs methane adsorption capacity (volume of stored methane at STP per volume storage container). Several IBC-106 derived activated carbons showed methane adsorption capacities comparable to that of a 1000 m{sup 2}/g commercial activated carbon. Results indicated that surface area and micropore volume of activated carbons are important for natural gas storage. Work is in progress to synthesize samples from IBC-106 coal with optimum pore diameter for methane adsorption.

Rostam-Abadi, M.; Sun, Jian; Lizzio, A.A.

1995-12-31T23:59:59.000Z

400

Solar coal-gasification reactor with pyrolysis-gas recycle. [Patent application  

DOE Patents (OSTI)

Coal (or other carbonaceous matter, such as biomass) is converted into a product gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor, and solar energy is directed into the reactor onto coal char, creating a gasification front and a pyrolysis front. A gasification zone is produced well above the coal level within the reactor. A pyrolysis zone is produced immediately above the coal level. Steam, injected into the reactor adjacent to the gasification zone, reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases flow from the gasification zone to the pyrolysis zone to generate hot char. Gases are withdrawn from the pyrolysis zone and reinjected into the region of the reactor adjacent the gasification zone. This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas is withdrawn from a region of the reactor between the gasification zone and the pyrolysis zone. The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

Aiman, W.R.; Gregg, D.W.

1981-04-06T23:59:59.000Z

Note: This page contains sample records for the topic "gas coal emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Mercury Emissions Control in Coal Combustion Systems Using Potassium Iodide: Bench-Scale and Pilot-Scale Studies  

E-Print Network (OSTI)

to develop effective Hg0 capture or oxidation technologies. In coal combustion flue gases, Hg0 is oxidized mercury in the gas phase upon introduction of KI, indicating that the oxidation product HgI2 was captured and hydrogen bromide gas16 to flue gas was demonstrated to enhance Hg0 oxidation, but the extent of enhancement

Li, Ying

402

Aspects on Bioenergy as a Technical Measure to Reduce Energy Related Greenhouse Gas Emissions.  

E-Print Network (OSTI)

??Greenhouse gas emission assessments of energy supply systems have traditionally included the CO2 emissions produced as the fuel is burned. A lot of models and (more)

Wihersaari, Margareta

2005-01-01T23:59:59.000Z

403

Aspects on bioenergy as a technical measure to reduce energy related greenhouse gas emissions.  

E-Print Network (OSTI)

??Greenhouse gas emission assessments of energy supply systems have traditionally included the CO2 emissions produced as the fuel is burned. A lot of models and (more)

Wihersaari, Margareta

2005-01-01T23:59:59.000Z

404

Greenhouse gas emissions associated with different meat-free diets in Sweden.  

E-Print Network (OSTI)

?? The production of food is responsible for large share of the anthropogenic greenhouse gas emissions. There is a wide range of emissions associated with (more)

Baumann, Andreas

2013-01-01T23:59:59.000Z

405

Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions in Agricultural Crop Production  

Science Conference Proceedings (OSTI)

This final project report describes a three-year long EPRI supplemental project entitled "Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions." This EPRI-sponsored project investigated an innovative approach to developing large-scale, cost-effective greenhouse gas (GHG) emissions offsets that potentially can be implemented across broad geographic areas of the United States and internationally.

2009-12-17T23:59:59.000Z

406

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

DOE Green Energy (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark V. Scotto; Mark A. Perna

2010-05-30T23:59:59.000Z

407

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

DOE Green Energy (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark Scotto

2010-05-30T23:59:59.000Z

408

Estonian greenhouse gas emissions inventory report  

SciTech Connect

It is widely accepted that the increase of greenhouse gas concentrations in the atmosphere due to human activities would result in warming of the Earth`s surface. To examine this effect and better understand how the GHG increase in the atmosphere might change the climate in the future, how ecosystems and societies in different regions of the World should adapt to these changes, what must policymakers do for the mitigation of that effect, the worldwide project within the Framework Convention on Climate Change was generated by the initiative of United Nations. Estonia is one of more than 150 countries, which signed the Framework Convention on Climate Change at the United Nations Conference on Environment and Development held in Rio de Janeiro in June 1992. In 1994 a new project, Estonian Country Study was initiated within the US Country Studies Program. The project will help to compile the GHG inventory for Estonia, find contemporary trends to investigate the impact of climate change on the Estonian ecosystems and economy and to formulate national strategies for Estonia addressing to global climate change.

Punning, J.M.; Ilomets, M.; Karindi, A.; Mandre, M.; Reisner, V. [Inst. of Ecology, Tallinn (Estonia); Martins, A.; Pesur, A. [Inst. of Energy Research, Tallinn (Estonia); Roostalu, H.; Tullus, H. [Estonian Agricultural Univ., Tartu (Estonia)

1996-07-01T23:59:59.000Z

409

Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants  

DOE Green Energy (OSTI)

County-average hydrogen values are calculated for the part 2, 1999 Information Collection Request (ICR) coal-quality data, published by the U.S. Environmental Protection Agency. These data are used together with estimated, county-average moisture values to calculate average net heating values for coal produced in U.S. counties. Finally, 10 draft maps of the contiguous U.S. showing the potential uncontrolled sulfur, chlorine and mercury emissions of coal by U.S. county-of-origin, as well as expected mercury emissions calculated for existing emission control technologies, are presented and discussed.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2004-07-31T23:59:59.000Z

410

Nitrogen oxides emission control through reburning with biomass in coal-fired power plants  

E-Print Network (OSTI)

Oxides of nitrogen from coal-fired power stations are considered to be major pollutants, and there is increasing concern for regulating air quality and offsetting the emissions generated from the use of energy. Reburning is an in-furnace, combustion control technology for NOx reduction. Another environmental issue that needs to be addressed is the rapidly growing feedlot industry in the United States. The production of biomass from one or more animal species is in excess of what can safely be applied to farmland in accordance with nutrient management plans and stockpiled waste poses economic and environmental liabilities. In the present study, the feasibility of using biomass as a reburn fuel in existing coal-fired power plants is considered. It is expected to utilize biomass as a low-cost, substitute fuel and an agent to control emission. The successful development of this technology will create environment-friendly, low cost fuel source for the power industry, provide means for an alternate method of disposal of biomass, and generate a possible revenue source for feedlot operators. In the present study, the effect of coal, cattle manure or feedlot biomass, and blends of biomass with coal on the ability to reduce NOx were investigated in the Texas A&M University 29.31 kW (100,000 Btu/h) reburning facility. The facility used a mixture of propane and ammonia to generate the 600 ppm NOx in the primary zone. The reburn fuel was injected using air. The stoichiometry tested were 1.00 to 1.20 in the reburn zone. Two types of injectors, circular jet and fan spray injectors, which produce different types of mixing within the reburn zone, were studied to find their effect on NOx emissions reduction. The flat spray injector performed better in all cases. With the injection of biomass as reburn fuel with circular jet injector the maximum NOx reduction was 29.9 % and with flat spray injector was 62.2 %. The mixing time was estimated in model set up as 936 and 407 ms. The maximum NOx reduction observed with coal was 14.4 % and with biomass it was 62.2 % and the reduction with blends lay between that of coal and biomass.

Arumugam, Senthilvasan

2004-12-01T23:59:59.000Z

411

Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings  

SciTech Connect

Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

2009-07-15T23:59:59.000Z

412

JEDI II: Jobs and Economic Development Impacts from Coal, Naural Gas and Wind Power (Poster)  

Wind Powering America (EERE)

JEDI II: JOBS AND ECONOMIC DEVELOPMENT IMPACTS JEDI II: JOBS AND ECONOMIC DEVELOPMENT IMPACTS FROM COAL, NATURAL GAS, AND WIND POWER Marshall Goldberg MRG & Associates Nevada City, California Suzanne Tegen National Renewable Energy Laboratory Golden, Colorado The information contained in this poster is subject to a government license. * WINDPOWER 2006 * Pittsburgh, PA * June 4-7, 2006 * NREL/PO-500-39908 Michael Milligan, Consultant National Renewable Energy Laboratory Golden, Colorado How does JEDI II work? The user enters data specific to the new coal, gas, or wind plant: * Year of installation * Size of the project * Location * Cost ($/kW) * Any other site-specific information

413

Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power  

DOE Green Energy (OSTI)

This paper estimates the quantity of hydrogen that could be produced from coal, natural gas, nuclear, and hydro power by county in the United States. The study estimates that more than 72 million tonnes of hydrogen can be produced from coal, natural gas, nuclear, and hydro power per year in the country (considering only 30% of their total annual production). The United States consumed about 396 million tonnes of gasoline in 2007; therefore, the report suggests the amount of hydrogen from these sources could displace about 80% of this consumption.

Milbrandt, A.; Mann, M.

2009-02-01T23:59:59.000Z

414

Engineering development of advanced coal-fired low emission boil systems. Quarterly technical progress report, October 1993--December 1993  

Science Conference Proceedings (OSTI)

The first test run of the Toroidal Vortex Combustor (TVC) was completed on December 6. Riley was unable to witness or set up independent sampling equipment for NO{sub x} and precursor measurement for this run. A second run which we witnessed, but did not sample, was completed December 17. This was conducted almost entirely near SR = 1.0 while Textron investigated temperature-load relationships to address concerns from Run 1. A third run was completed over the December holiday break on Dorchester coal to address concerns Textron had about the Illinois test coal. All subsequent tests will use the Illinois coal. Boiler, firing system design. Elevation drawings were developed for dry wall-fired, conventional U-fired slagging, and TVC fired slagging units. We are investigating the feasibility of modifying a conventional U-fired design for low-NOx operation as an alternative to the TVC. The approach taken to I date for NOx reduction in existing U-fired units is to retrofit with delayed-mixing burners with staging air at various places, similar to the approach with dry fired units. The concept of staged fuel addition or reburning for the U-fired system is being examined as a potential combustion NOx control approach. This concept has high potential due to the high temperature and long residence time available in the stagger. Some field trials with coke oven gas reburn produced very low NOx results. Modeling of this concept was identified as a priority task. The model development will include matching field data for air staging on slagging units to the predictions. Emissions control. Selection of an SO2 control process continues to be a high priority task. Sargent & Lundy completed a cost comparison of several regenerable processes, most of which have NOx control potential as well: Active coke, NOXSO, copper oxide, SNOX, ammonia (for SO only, ammonium sulfate byproduct), and a limestone scrubber for comparison.

Not Available

1993-12-31T23:59:59.000Z

415

Speaker to Address Impact of Natural Gas Production on Greenhouse Gas Emissions When used for power generation, Marcellus Shale natural gas can significantly reduce carbon  

E-Print Network (OSTI)

generation, Marcellus Shale natural gas can significantly reduce carbon dioxide emissions, but questions have been raised whether development of shale gas resources results in an overall lower greenhouse gas, "Life Cycle Greenhouse Gas Emissions of Marcellus Shale Gas," appeared in Environmental Research Letters

Boyer, Elizabeth W.

416

Life assessment and emissions monitoring of Indian coal-fired power plants. Final report  

Science Conference Proceedings (OSTI)

At the request of the Pittsburgh Energy Technology Center (PETC) of the United States Department of Energy (USDOE), the traveler, along with Dr. R. P. Krishnan, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee spent three weeks in India planning and performing emissions monitoring at the coal-fired Vijayawada Thermal Power Station (VTPS). The coordination for the Indian participants was provided by BHEL, Trichy and CPRI, Bangalore. The trip was sponsored by the PETC under the United States Agency for International Development (USAID)/Government of India (GOI)P Alternate Energy Resources Development (AERD) Project. The AERD Project is managed by PETC, and ORNL is providing the technical coordination and support for four coal projects that are being implemented with BHEL, Trichy. The traveler, after briefing the USAID mission in New Delhi visited BHEL, Trichy and CPRI, Bangalore to coordinate and plan the emissions test program. The site selection was made by BHEL, CPRI, TVA, and PETC. Monitoring was performed for 4 days on one of the 4 existing 210 MW coal-fired boilers at the VTPS, 400 km north of Madras, India.

Not Available

1992-07-01T23:59:59.000Z

417

Life assessment and emissions monitoring of Indian coal-fired power plants  

Science Conference Proceedings (OSTI)

At the request of the Pittsburgh Energy Technology Center (PETC) of the United States Department of Energy (USDOE), the traveler, along with Dr. R. P. Krishnan, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee spent three weeks in India planning and performing emissions monitoring at the coal-fired Vijayawada Thermal Power Station (VTPS). The coordination for the Indian participants was provided by BHEL, Trichy and CPRI, Bangalore. The trip was sponsored by the PETC under the United States Agency for International Development (USAID)/Government of India (GOI)P Alternate Energy Resources Development (AERD) Project. The AERD Project is managed by PETC, and ORNL is providing the technical coordination and support for four coal projects that are being implemented with BHEL, Trichy. The traveler, after briefing the USAID mission in New Delhi visited BHEL, Trichy and CPRI, Bangalore to coordinate and plan the emissions test program. The site selection was made by BHEL, CPRI, TVA, and PETC. Monitoring was performed for 4 days on one of the 4 existing 210 MW coal-fired boilers at the VTPS, 400 km north of Madras, India.

Not Available

1992-07-01T23:59:59.000Z

418

Health Effects of Subchronic Inhalation of Simulated Downwind Coal Combustion Emissions  

DOE Green Energy (OSTI)

The purpose of this project was to conduct a comprehensive laboratory-based evaluation of selected respiratory and cardiac health hazards of subchronic (up to 6 months) inhalation of simulated key components of 'downwind plume' emissions of coal combustion. This project was performed as an integral part of a joint government-industry program termed the 'National Environmental Respiratory Center' (NERC), which is aimed at disentangling the roles of different physical-chemical air pollutants and their sources in the health effects associated statistically with air pollution. The characterization of the exposure atmosphere and the health assays were identical to those employed in the NERC protocols used to evaluate other pollution source emissions, such as diesel, gasoline, and wood combustion. The project had two phases, each encompassing multiple tasks. Guidelines for the composition of the exposure atmosphere were set by consensus of an expert workshop. Development of the capability to generate the exposure atmosphere and pilot studies of the comparative exposure composition using two coal types were accomplished in Phase 1. In Phase 2, the toxicological study was conducted using Powder River Basin Sub-bituminous coal. NETL provided 50% support for the work in Phase 1 and had intended to provide 20% support for the work in Phase 2. Phase 1 is completed and Phase 2 is in the final stages. All animal exposures were completed without incident, and the composition of the exposure atmospheres met the targets. All of the health sample collections are completed, but some samples remain to be analyzed. Data summaries and final statistical analysis of results remain to be completed. The goal is to submit all publications before the end of FY-08. Repeated exposure to simulated downwind coal emissions caused some significant health effects, but the number of effects tended to be fewer than those caused by the other NERC exposures (diesel and gasoline emissions and hardwood smoke). the lowest concentration, a dilution containing approximately 100 {micro}g particulate matter (PM)/m{sup 3}, was a no-effects level for nearly all measured variables. One of the most interesting findings was that few, if indeed any, health outcomes appeared to be caused by the PM component of the exposure. This finding strongly suggests that PM simulating the major contributions of coal combustion to environmental PM is of very low toxicity.

Joe Mauderly

2009-01-07T23:59:59.000Z

419

Improved anode catalysts for coal gas-fueled phosphoric acid fuel cells  

Science Conference Proceedings (OSTI)

The feasibility of adapting phosphoric acid fuel cells to operate on coal gas fuels containing significant levels of contaminants such as CO, H{sub 2}S and COS has been investigated. The overall goal was the development of low-cost, carbon-supported anode fuel cell catalysts that can efficiently operate with a fossil fuel-derived hydrogen gas feed contaminated with carbon monoxide and other impurities. This development would reduce the cost of gas cleanup necessary in a coal gas-fueled PAFC power plant, thereby reducing the final power cost of the electricity produced. The problem to date has been that the contaminant gases typically adsorb on catalytic sites and reduce the activity for hydrogen oxidation. An advanced approach investigated was to modify these alloy catalyst systems to operate efficiently on coal gas containing higher levels of contaminants by increasing the alloy catalyst impurity tolerance and ability to extract energy from the CO present through (1) generation of additional hydrogen by promoting the CO/H{sub 2} water shift reaction or (2) direct oxidation of CO to CO{sub 2} with the same result. For operation on anode gases containing high levels of CO, a Pt-Ti-Zn and Pt-Ti-Ni anode catalyst showed better performance over a Pt baseline or G87A-17-2 catalyst. The ultimate aim of this effort was to allow PAFC-based power plants to operate on coal gas fuels containing increased contaminant concentrations, thereby decreasing the need for and cost of rigorous coal gas cleanup procedures. 4 refs., 15 figs., 10 tabs.

Kackley, N.D.; McCatty, S.A.; Kosek, J.A.

1990-07-01T23:59:59.000Z

420

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

RFG Running Hot Soak Diurnal CNG :Diesel Fuels Emissions RFGwith compressednatural gas (CNG),the hydrocarbontaitpipemethanol, natural gas (CNG),and hydrogen. As noted above,

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas coal emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review  

E-Print Network (OSTI)

ng/J) distributions from residential natural gas appliances.ng/J) distribution from residential natural gas appliances.Pollutant Emissions from Residential Heating Systems, EPA-

Traynor, G.W.

2011-01-01T23:59:59.000Z

422

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas  

SciTech Connect

One of the key obstacles for the introduction of commercial gasification technology for the production of power with Integrated Gasification Combined Cycle (IGCC) plants or the production of value added chemicals, transportation fuels, and hydrogen has been the cost of these systems. This situation is particularly challenging because the United States has ample coal resources available as raw materials and effective use of these raw materials could help us meet our energy and transportation fuel needs while significantly reducing our need to import oil. One component of the cost of these systems that faces strong challenges for continuous improvement is removing the undesirable components present in the syngas. The need to limit the increase in cost of electricity to < 35% for new coal-based power plants which include CO{sub 2} capture and sequestration addresses both the growing social concern for global climate change resulting from the emission of greenhouse gas and in particular CO{sub 2} and the need to control cost increases to power production necessary to meet this social objective. Similar improvements to technologies for trace contaminants are getting similar pressure to reduce environmental emissions and reduce production costs for the syngas to enable production of chemicals from coal that is cost competitive with oil and natural gas. RTI, with DOE/NETL support, has been developing sorbent technologies that enable capture of trace contaminants and CO{sub 2} at temperatures above 400 °F that achieve better capture performance, lower costs and higher thermal efficiency. This report describes the specific work of sorbent development for mercury (Hg), arsenic (As), selenium (Se), cadmium (Cd), and phosphorous (P) and CO{sub 2} removal. Because the typical concentrations of Hg, As, Se, Cd, and P are less than 10 ppmv, the focus has been on single-use sorbents with sufficient capacity to ensure replacement costs are cost effective. The research in this report describes the development efforts which expand this sorbent development effort to include Se, Cd, and P as well as Hg and As. Additional research has focused on improving removal performance with the goal of achieving effluent concentrations that are suitable for chemical production applications. By contrast, sorbent development for CO{sub 2} capture has focused on regenerable sorbents that capture the CO{sub 2} byproduct at higher CO{sub 2} pressures. Previous research on CO{sub 2} sorbents has demonstrated that the most challenging aspect of developing CO{sub 2} sorbents is regeneration. The research documented in this report investigates options to improve regeneration of the CO{sub 2} capture sorbents. This research includes effort on addressing existing regeneration limitations for sorbents previously developed and new approaches that focus initially on the regeneration performance of the sorbent.

Turk, Brian; Gupta, Raghubir; Sharma, Pradeepkumar; Albritton, Johnny; Jamal, Aqil

2010-09-30T23:59:59.000Z

423

A physics-based emissions model for aircraft gas turbine combustors  

E-Print Network (OSTI)

In this thesis, a physics-based model of an aircraft gas turbine combustor is developed for predicting NO. and CO emissions. The objective of the model is to predict the emissions of current and potential future gas turbine ...

Allaire, Douglas L

2006-01-01T23:59:59.000Z

424

Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems  

SciTech Connect

A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O) was injected before the ESP unit to control the emission of sulfur trioxide (SO{sub 3}). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. 47 refs., 3 figs., 11 tabs.

Chin-Min Cheng; Pauline Hack; Paul Chu; Yung-Nan Chang; Ting-Yu Lin; Chih-Sheng Ko; Po-Han Chiang; Cheng-Chun He; Yuan-Min Lai; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2009-09-15T23:59:59.000Z

425