Sample records for gas coal emissions

  1. Flue Gas Conditioning to Reduce Particulate Emissions in Industrial Coal-Fired Boilers 

    E-Print Network [OSTI]

    Miller, B.; Keon, E.

    1980-01-01T23:59:59.000Z

    Chemical technology has been used successfully to solve many of the operational and emissions problems that result from burning coal. This paper describes the use of blended chemical flue gas conditioners to significantly reduce particulate...

  2. Uncertainty in Life Cycle Greenhouse Gas Emissions from United States Coal

    E-Print Network [OSTI]

    Jaramillo, Paulina

    and transport, to compare its environmental impact with other fuels. Until recent years, LCA studies environmental impacts between two competing fuels/products are small. This study builds upon an existingUncertainty in Life Cycle Greenhouse Gas Emissions from United States Coal Aranya Venkatesh

  3. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01T23:59:59.000Z

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  4. Flue Gas Conditioning to Reduce Particulate Emissions in Industrial Coal-Fired Boilers

    E-Print Network [OSTI]

    Miller, B.; Keon, E.

    1980-01-01T23:59:59.000Z

    FLUE GAS CONDITIONING TO REDUCE PARTICULATE EMISSIONS IN INDUSTRIAL COAL-FIRED BOILERS Barry Miller and Ed Keon Apollo Technologies, Inc. Whippany, New Jersey ABSTRACT Chemical technology has been used successfully to solve many... inspection of the ESP, careful observation of ESP controls to determine spark rate and voltage drop during sparking, in-situ resistivity mea surements, rapper on-off observations, and a re view of records to investigate the relationship of boiler...

  5. College Of Wooster 2012 Greenhouse Gas Emissions From Coal and Natural Gas Combustion Default Values From EPA Greenhouse Gas Rule

    E-Print Network [OSTI]

    Wilson, Mark A.

    56410 CO2 = 1 X 10 -3 X Fuel X HHV X EF Where CO2 = Annual CO2 mass emissions for the specific fuel type high heat value. EF =Fuel default CO2 Emission Factor from Table C-1Page 56410 CO2 Coal CO2 = 1 X 10 -3 Default CO2 Emission Factor For Bituminous Coal = 93.40 kg/mmbtu Default CH4 Emission Factor

  6. Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity Generation

    E-Print Network [OSTI]

    Jaramillo, Paulina

    1 Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity from the LNG life-cycle. Notice that local distribution of natural gas falls outside our analysis boundary. Figure 1S: Domestic Natural Gas Life-cycle. Figure 2S: LNG Life-cycle. Processing Transmission

  7. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (United States). Civil and Environmental Engineering Department

    2007-09-15T23:59:59.000Z

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  8. Zero emission coal

    SciTech Connect (OSTI)

    Ziock, H.; Lackner, K.

    2000-08-01T23:59:59.000Z

    We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

  9. Comparative Life-Cycle Air Emissions of Coal, Domestic Natural

    E-Print Network [OSTI]

    Jaramillo, Paulina

    come domestically from the production of synthetic natural gas (SNG) via coal gasification- methanation gasification technologies that use coal to produce SNG. This National Gasification Strategy callsComparative Life-Cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity

  10. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect (OSTI)

    MEIYU SHEN; ROYCE ABBOTT; T.D. WHEELOCK

    1998-09-30T23:59:59.000Z

    The agglomeration of ultrafine-size coal particles in an aqueous suspension by means of microscopic gas bubbles was demonstrated in numerous experiments with a scale model mixing system. Coal samples from both the Pittsburgh No. 8 Seam and the Upper Freeport Seam were used for these experiments. A small amount of i-octane was added to facilitate the process. Microscopic gas bubbles were generated by saturating the water used for suspending coal particles with gas under pressure and then reducing the pressure. Microagglomerates were produced which appeared to consist of gas bubbles encapsulated in coal particles. Since dilute particle suspensions were employed, it was possible to monitor the progress of agglomeration by observing changes in turbidity. By such means it became apparent that the rate of agglomeration depends on the concentration of microscopic gas bubbles and to a lesser extent on the concentration of i-octane. Similar results were obtained with both Pittsburgh No. 8 coal and Upper Freeport coal.

  11. Toward zero emissions from coal in China Robert H. Williams

    E-Print Network [OSTI]

    is oxygen-blown (O2­blown) gasification to generate synthesis gas from coal. This technology is used is a strong candidate for becoming the "third" clean energy carrier for China. Evolving a coal-based energyToward zero emissions from coal in China Robert H. Williams Princeton Environmental Institute, Room

  12. Comparative Assessment of Coal-and Natural Gas-fired Power Plants under a

    E-Print Network [OSTI]

    Comparative Assessment of Coal- and Natural Gas-fired Power Plants under a CO2 Emission Performance standard (EPS) for pulverized coal (PC) and natural gas combined cycle (NGCC) power plants; · Evaluate · Coal-fired Power Plant: Supercritical pulverized coal (SC PC) Illinois #6 Coal Capacity Factor 75

  13. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    SciTech Connect (OSTI)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01T23:59:59.000Z

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  14. Coal beneficiation by gas agglomeration

    DOE Patents [OSTI]

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14T23:59:59.000Z

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  15. Coal Beneficiation by Gas Agglomeration

    SciTech Connect (OSTI)

    Thomas D. Wheelock; Meiyu Shen

    2000-03-15T23:59:59.000Z

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  16. Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities

    E-Print Network [OSTI]

    Hagan, Colin R.

    2012-01-01T23:59:59.000Z

    gas emissions from conven- tional power sources like coal.total emissions from coal- or natural gas-fired power plantsemissions, the lifecycle for natural gas power production is more complicated than that of coal.

  17. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect (OSTI)

    T.D. Wheelock

    1999-03-01T23:59:59.000Z

    The technical feasibility of a gas agglomeration method for cleaning coal was demonstrated by means of bench-scale tests conducted with a mixing system which enabled the treatment of ultra-fine coal particles with a colloidal suspension of microscopic gas bubbles in water. A suitable suspension of microbubbles was prepared by first saturating water with air or carbon dioxide under pressure then reducing the pressure to release the dissolved gas. The formation of microbubbles was facilitated by agitation and a small amount of i-octane. When the suspension of microbubbles and coal particles was mixed, agglomeration was rapid and small spherical agglomerates were produced. Since the agglomerates floated, they were separated from the nonfloating tailings in a settling chamber. By employing this process in numerous agglomeration tests of moderately hydrophobic coals with 26 wt.% ash, it was shown that the ash content would be reduced to 6--7 wt.% while achieving a coal recovery of 75 to 85% on a dry, ash-free basis. This was accomplished by employing a solids concentration of 3 to 5 w/w%, an air saturation pressure of 136 to 205 kPa (5 to 15 psig), and an i-octane concentration of 1.0 v/w% based on the weight of coal.

  18. Impact of mine closure and access facilities on gas emissions from old mine workings to surface: examples of French iron and coal

    E-Print Network [OSTI]

    Boyer, Edmond

    : examples of French iron and coal Lorraine basins C. Lagny, R. Salmon, Z. Pokryszka and S. Lafortune (INERIS of mine shafts located in the iron Lorraine basin, in the Lorraine and in North-East coal basins are quite in mine workings but gas entrance and exit are allowed. Coal shafts are secured and can be equipped

  19. Measurement of Oil and Gas Emissions from a Marine Seep

    E-Print Network [OSTI]

    Leifer, Ira; Boles, J R; Luyendyk, B P

    2007-01-01T23:59:59.000Z

    hydrocarbon seeps near Coal Oil Point, California, Marineet al. , 2007, Measurement of Oil and Gas Emissions from aand P.G. Mikolaj, Natural oil seepage at Coal Oil Point,

  20. Assessment of coal bed gas prospects

    SciTech Connect (OSTI)

    Moore, T.R. [Phillips Petroleum Co., Bartlesville, OK (United States)

    1996-12-31T23:59:59.000Z

    Coal bed gas is an often overlooked source of clean, methane-rich, H{sub 2}S-free natural gas. The economic development of coal bed gas requires a knowledge of coal gas reservoir characteristics and certain necessary departures from conventional evaluation, drilling, completion, and production practices. In many ways coal seam reservoirs are truly unconventional. Most coals sufficient rank have generated large volumes of gas that may be retained depth in varying amounts through adsorption. Coal gas production can take place only when the reservoir pressure is reduced sufficiently to allow the gas to desorb. Gas flow to the well bore takes place through a hierarchy of natural fractures, not the relatively impermeable coal matrix. Economic production is dependent upon critical factors intrinsic to the reservoir, including coal petrology, gas content, internal formation stratigraphy, fracture distribution, hydrogeology, in situ stress conditions, initial reservoir pressure and pressure regime, and the presence or absence of a {open_quote}free{close_quotes} gas saturation. Further, the coal bed reservoir is readily subject to formation damage through improper drilling, completion, or production techniques. This presentation will review the data types critical to the assessment of any coal seam gas prospect, suggest an outline method for screening such prospects, and point out some possible pitfalls to be considered in any coal bed gas development project.

  1. Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass.

    SciTech Connect (OSTI)

    Xie, X.; Wang, M.; Han, J. (Energy Systems)

    2011-04-01T23:59:59.000Z

    This study expands and uses the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model to assess the effects of carbon capture and storage (CCS) technology and cellulosic biomass and coal cofeeding in Fischer-Tropsch (FT) plants on energy use and greenhouse gas (GHG) emissions of FT diesel (FTD). To demonstrate the influence of the coproduct credit methods on FTD life-cycle analysis (LCA) results, two allocation methods based on the energy value and the market revenue of different products and a hybrid method are employed. With the energy-based allocation method, fossil energy use of FTD is less than that of petroleum diesel, and GHG emissions of FTD could be close to zero or even less than zero with CCS when forest residue accounts for 55% or more of the total dry mass input to FTD plants. Without CCS, GHG emissions are reduced to a level equivalent to that from petroleum diesel plants when forest residue accounts for 61% of the total dry mass input. Moreover, we show that coproduct method selection is crucial for LCA results of FTD when a large amount of coproducts is produced.

  2. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal

    SciTech Connect (OSTI)

    Monica Zanfir; Rahul Solunke; Minish Shah

    2012-06-01T23:59:59.000Z

    The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbonâ??s catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full-automation was implemented to enable continuous operation (24/7) with minimum operator supervision. Continuous run was carried out for 40 days. Very high SOx (>99.9%) and NOx (98%) removal efficiencies were also achieved in a continuous unit. However, the retention capacity of carbon beds for SOx and NOx was decreased from ~20 hours to ~10 hours over a 40 day period of operation, which was in contrast to the results obtained in a batch unit. These contradictory results indicate the need for optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level and thus minimize the capital cost of the system. In summary, the activated carbon process exceeded performance targets for SOx and NOx removal efficiencies and it was found to be suitable for power plants burning both low and high sulfur coals. More efforts are needed to optimize the system performance.

  3. Experimental research on emission and removal of dioxins in flue gas from a co-combustion of MSW and coal incinerator

    SciTech Connect (OSTI)

    Zhong Zhaoping [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China)]. E-mail: zzhong@seu.edu.cn; Jin Baosheng [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China); Huang Yaji [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China); Zhou Hongcang [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China); Lan Jixiang [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China)

    2006-07-01T23:59:59.000Z

    This paper describes the experimental study of dioxins removal from flue gas from a co-combustion municipal solid waste and coal incinerator by means of a fluidized absorption tower and a fabric filter. A test rig has been set up. The flow rate of flue gas of the test rig is 150-2000 m{sup 3}/h. The system was composed of a humidification and cooling system, an absorption tower, a demister, a slurry make-up tank, a desilter, a fabric filter and a measurement system. The total height of the absorption tower was 6.5 m, and the diameter of the reactor pool was 1.2 m. When the absorbent was 1% limestone slurry, the recirculation ratio was 3, the jet rate was 5-15 m/s and the submerged depth of the bubbling pipe under the slurry was 0.14 m, the removal efficiency for dioxins was 99.35%. The concentration of dioxins in the treated flue gas was 0.1573 x 10{sup -13} kg/Nm{sup 3} and the concentration of oxygen was 11%. This concentration is comparable to the emission standards of other developed countries.

  4. Interaction of coal-derived synthesis gas impurities with solid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coal-derived synthesis gas impurities with solid oxide fuel cell metallic components. Interaction of coal-derived synthesis gas impurities with solid oxide fuel cell metallic...

  5. Emissions of airborne toxics from coal-fired boilers: Mercury

    SciTech Connect (OSTI)

    Huang, H.S.; Livengood, C.D.; Zaromb, S.

    1991-09-01T23:59:59.000Z

    Concerns over emissions of hazardous air Pollutants (air toxics) have emerged as a major environmental issue, and the authority of the US Environmental Protection Agency to regulate such pollutants was greatly expanded through the Clean Air Act Amendments of 1990. Mercury has been singled out for particular attention because of concerns over possible effects of emissions on human health. This report evaluates available published information on the mercury content of coals mined in the United States, on mercury emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Anthracite and bituminous coals have the highest mean-mercury concentrations, with subbituminous coals having the lowest. However, all coal types show very significant variations in mercury concentrations. Mercury emissions from coal combustion are not well-characterized, particularly with regard to determination of specific mercury compounds. Variations in emission rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of mercury by environmental control technologies are available primarily for systems with electrostatic precipitators, where removals of approximately 20% to over 50% have been reported. Reported removals for wet flue-gas-desulfurization systems range between 35 and 95%, while spray-dryer/fabric-filter systems have given removals of 75 to 99% on municipal incinerators. In all cases, better data are needed before any definitive judgments can be made. This report briefly reviews several areas of research that may lead to improvements in mercury control for existing flue-gas-clean-up technologies and summarizes the status of techniques for measuring mercury emissions from combustion sources.

  6. Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California

    E-Print Network [OSTI]

    Luyendyk, Bruce

    geology and gas-phase (methane) seepage for the Coal Oil Point (COP) seep field, one of the worldORIGINAL Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field's largest and best-studied marine oil and gas seep fields, located over a producing hydrocarbon reservoir

  7. Gas distributor for fluidized bed coal gasifier

    DOE Patents [OSTI]

    Worley, Arthur C. (Mt. Tabor, NJ); Zboray, James A. (Irvine, CA)

    1980-01-01T23:59:59.000Z

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  8. Production cost and air emissions impacts of coal cycling in power systems with large-scale wind penetration

    E-Print Network [OSTI]

    Jaramillo, Paulina

    on dispatchable generating capacity, such as coal and natural gas power plants, which can be cycled in responseProduction cost and air emissions impacts of coal cycling in power systems with large-scale wind emissions impacts of coal cycling in power systems with large-scale wind penetration David Luke Oates

  9. Greenhouse Gas Emissions (Minnesota)

    Broader source: Energy.gov [DOE]

    This statute sets goals for the reduction of statewide greenhouse gas emissions by at least 15 percent by 2015, 30 percent by 2025, and 80 percent by 2050, calculated relative to 2005 levels. These...

  10. Coal seam natural gas producing areas (Louisiana)

    Broader source: Energy.gov [DOE]

    In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is...

  11. Innovative coal gas cleaning at Sparrows Point Coal Chemical Plant, Maryland for Bethlehem Steel Corporation

    SciTech Connect (OSTI)

    Antrobus, K.; Platts, M. (Davy/Still Otto, Pittsburgh, PA (US)); Harbold, L. (Bethlehem Steel Corp., PA (USA)); Kornosky, R. (Office of Clean Coal Technology, US DOE, Pittsburgh, PA (US))

    1990-01-01T23:59:59.000Z

    In response to the Clean Coal II solicitation, Bethlehem Steel Corporation (BSC) submitted a proposal to the DOE in May 1988. The proposal submitted by BSC describes a Unique integration of commercial technologies developed by Davy/Still Otto to clean coke oven gas being produced at its Sparrows Point, Maryland steel plant. This innovative coke oven gas cleaning system combines secondary gas cooling with hydrogen sulfide and ammonia removal, hydrogen sulfide and ammonia recovery, ammonia destruction and sulfur recovery to produce a cleaner fuel gas for plant use. The primary environmental benefit associated with employing this innovative coke oven gas cleaning system is realized when the fuel gas is burned within the steel plant. Emissions of sulfur dioxide are reduced by more than 60 percent. The removal, recovery and destruction of ammonia eliminates the disposal problems associated with an unmarketable ammonium sulfate by-product. Significant reduction in benzene and hydrogen cyanide emissions are also obtained.

  12. Implications of Near-Term Coal Power Plant Retirement for SO2 and NOX and Life Cycle GHG Emissions

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Implications of Near-Term Coal Power Plant Retirement for SO2 and NOX and Life Cycle GHG Emissions for electricity generation, by comparing systems that consist of individual natural gas and coal power plants when coal power plants are retired. These models estimate the order in which existing power plants

  13. Cleantech: Innovative Lab Partnership Reduces Emissions from Coal

    Broader source: Energy.gov [DOE]

    Learn how the National Energy Technology Laboratory is working to reduce the emission of pollutants from existing coal-fired power plants.

  14. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    produced. Primary energy associated with coal products wasUse EJ China Residential Energy Use Gas Coal Oil Biomass GasUse EJ China Residential Energy Use Gas Coal Oil Gas Biomass

  15. Advanced Coal-Fueled Gas Turbine Program

    SciTech Connect (OSTI)

    Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

    1989-02-01T23:59:59.000Z

    The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

  16. Carbon Dioxide Emission Factors for Coal

    Reports and Publications (EIA)

    1994-01-01T23:59:59.000Z

    The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

  17. Demonstration of a Carbonate Fuel Cell on Coal Derived Gas

    E-Print Network [OSTI]

    Rastler, D. M.; Keeler, C. G.; Chi, C. V.

    Several studies indicate that carbonate fuel cell systems have the potential to offer efficient, cost competitive, and environmentally preferred power plants operating on natural gas or coal derived gas (“syn-gas”). To date, however, no fuel cell...

  18. Measurement of alkali-vapor emission from pressurized fluidized-bed combustion of Illinois coals

    SciTech Connect (OSTI)

    Lee, S.H.D.; Teats, F.G.; Swift, W.M. (Argonne National Lab., IL (United States)); Banerjee, D.D. (Illinois Clean Coal Inst., Carterville, IL (United States))

    1993-01-01T23:59:59.000Z

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were separately combusted in a laboratory-scale (15-cm dia) pressurized fluidized-bed combustor (PFBC) combined with an alkali sorber. These coals were combusted in a fluidized bed of Tymochtee dolomite at temperatures ranging from 910 to 950[degree]C and a system pressure of 9.2 atm absolute. Alkali-vapor emission (Na and K) in the PFBC flue gas was determined by the analytical activated-bauxite sorber bed technique developed at Argonne National Laboratory. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas, and that the level of sodium-vapor emission increases linearly with both Na and Cl contents in the coals. This suggests that the sodium-vapor emission results from direct vaporization of NaCl present in the coals. The measured alkali-vapor concentration (Na + K), 67 to 190 ppbW, is more than 2.5 times greater than the allowable alkali limit of 24 ppb for an industrial gas turbine. Combusting these coals in a PFBC for power generation may require developing a method to control alkali vapors.

  19. Measurement of alkali-vapor emission from pressurized fluidized-bed combustion of Illinois coals

    SciTech Connect (OSTI)

    Lee, S.H.D.; Teats, F.G.; Swift, W.M. [Argonne National Lab., IL (United States); Banerjee, D.D. [Illinois Clean Coal Inst., Carterville, IL (United States)

    1993-04-01T23:59:59.000Z

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were separately combusted in a laboratory-scale (15-cm dia) pressurized fluidized-bed combustor (PFBC) combined with an alkali sorber. These coals were combusted in a fluidized bed of Tymochtee dolomite at temperatures ranging from 910 to 950{degree}C and a system pressure of 9.2 atm absolute. Alkali-vapor emission (Na and K) in the PFBC flue gas was determined by the analytical activated-bauxite sorber bed technique developed at Argonne National Laboratory. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas, and that the level of sodium-vapor emission increases linearly with both Na and Cl contents in the coals. This suggests that the sodium-vapor emission results from direct vaporization of NaCl present in the coals. The measured alkali-vapor concentration (Na + K), 67 to 190 ppbW, is more than 2.5 times greater than the allowable alkali limit of 24 ppb for an industrial gas turbine. Combusting these coals in a PFBC for power generation may require developing a method to control alkali vapors.

  20. Degradation Mechanisms of SOFC Anodes in Coal Gas Containing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phosphorus. Abstract: The interaction of phosphorus in synthetic coal gas with the nickel-based anode of solid oxide fuel cells has been investigated. Tests with both...

  1. Producing Fuel and Electricity from Coal with Low Carbon Dioxide Emissions

    E-Print Network [OSTI]

    effects of global warming. In this article we describe a process which producesa lowProducing Fuel and Electricity from Coal with Low Carbon Dioxide Emissions K. Blok, C.A. Hendriks the electricity production cost by one third. The secondprovides hydrogenor a hydrogen-rich fuel gas

  2. Removal of Mercury from Coal-Derived Synthesis Gas

    SciTech Connect (OSTI)

    None

    2005-09-29T23:59:59.000Z

    A paper study was completed to survey literature, patents, and companies for mercury removal technologies applicable to gasification technologies. The objective was to determine if mercury emissions from gasification of coal are more or less difficult to manage than those from a combustion system. The purpose of the study was to define the extent of the mercury problem for gasification-based coal utilization and conversion systems. It is clear that in coal combustion systems, the speciation of mercury between elemental vapor and oxidized forms depends on a number of factors. The most important speciation factors are the concentration of chlorides in the coal, the temperatures in the ducting, and residence times. The collection of all the mercury was most dependent upon the extent of carbon in the fly ash, and the presence of a wet gas desulfurization system. In combustion, high chloride content plus long residence times at intermediate temperatures leads to oxidation of the mercury. The mercury is then captured in the wet gas desulfurization system and in the fly ash as HgCl{sub 2}. Without chloride, the mercury oxidizes much slower, but still may be trapped on thick bag house deposits. Addition of limestone to remove sulfur may trap additional mercury in the slag. In gasification where the mercury is expected to be elemental, activated carbon injection has been the most effective method of mercury removal. The carbon is best injected downstream where temperatures have moderated and an independent collector can be established. Concentrations of mercury sorbent need to be 10,000 to 20,000 the concentrations of the mercury. Pretreatment of the activated carbon may include acidification or promotion by sulfur.

  3. Emissions mitigation of blended coals through systems optimization

    SciTech Connect (OSTI)

    Don Labbe [IOM Invensys Operations Management (United States)

    2009-10-15T23:59:59.000Z

    For coal fired power stations, such as those located in the US, that have installed NOx and SOx emissions abatement equipment substantial carbon dioxide reduction could be achieved by shifting from pure PRB coal to blended coals with local bituminous coal. Don Labbe explains how. The article is based on a presentation at Power-Gen Asia 2009, which takes place 7-9 October in Bangkok, Thailand and an ISA POWID 2009 paper (19th Annual Joint ISA POWID/EPRI Controlls and Instrumentation Conference, Chicago, Illinois, May 2009). 4 refs., 3 figs.

  4. LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE

    SciTech Connect (OSTI)

    Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

    2004-08-01T23:59:59.000Z

    In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

  5. Effect of Coal Gas Contaminants on Solid Oxide Fuel Cell Operation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Gas Contaminants on Solid Oxide Fuel Cell Operation. Effect of Coal Gas Contaminants on Solid Oxide Fuel Cell Operation. Abstract: The operation of solid oxide fuel cells...

  6. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    all fuels including electricity and syngas will be used forGas Electricity Biomass Syngas Space Heating Coal Oil Gas

  7. Gas Turbine Emissions 

    E-Print Network [OSTI]

    Frederick, J. D.

    1990-01-01T23:59:59.000Z

    of regulatory interest in the 'real world' test results coupled with the difficulties of gathering analogous bench test data for systems employing gas turbines with Heat Recovery Steam Generators (HRSG) and steam injection. It appears that the agencies...

  8. Shale gas production: potential versus actual greenhouse gas emissions

    E-Print Network [OSTI]

    O’Sullivan, Francis Martin

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

  9. Overview of SOFC Anode Interactions with Coal Gas Impurities

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Gemmen, Randall; Gerdes, Kirk; Finklea, Harry; Celik, Ismail B.

    2010-05-01T23:59:59.000Z

    An overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic and actual coal gas for periods greater than 1000 hours. Post-test analyses were performed to identify reaction products formed and their distribution, and compared to phases expected from thermochemical modeling. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

  10. Overview of SOFC Anode Interactions with Coal Gas Impurities

    SciTech Connect (OSTI)

    O. A. Marina; L. R. Pederson; R. Gemmen; K. Gerdes; H. Finklea; I. B. Celik

    2010-03-01T23:59:59.000Z

    An overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic and actual coal gas for periods greater than 1000 hours. Post-test analyses were performed to identify reaction products formed and their distribution, and compared to phases expected from thermochemical modeling. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

  11. Secondary emission gas chamber

    E-Print Network [OSTI]

    V. In'shakov; V. Kryshkin; V. Skvortsov

    2014-12-10T23:59:59.000Z

    For a hadron calorimeter active element there is considered a gaseous secondary emis-sion detector (150 micron gap, 50 kV/cm). Such one-stage parallel plate chamber must be a radiation hard, fast and simple. A model of such detector has been produced, tested and some characteristics are presented.

  12. Testing for market integration crude oil, coal, and natural gas

    SciTech Connect (OSTI)

    Bachmeier, L.J.; Griffin, J.M. [Texas A& amp; M Univ, College Station, TX (United States)

    2006-07-01T23:59:59.000Z

    Prompted by the contemporaneous spike in coal, oil, and natural gas prices, this paper evaluates the degree of market integration both within and between crude oil, coal, and natural gas markets. Our approach yields parameters that can be readily tested against a priori conjectures. Using daily price data for five very different crude oils, we conclude that the world oil market is a single, highly integrated economic market. On the other hand, coal prices at five trading locations across the United States are cointegrated, but the degree of market integration is much weaker, particularly between Western and Eastern coals. Finally, we show that crude oil, coal, and natural gas markets are only very weakly integrated. Our results indicate that there is not a primary energy market. Despite current price peaks, it is not useful to think of a primary energy market, except in a very long run context.

  13. Clean coal technology: selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect (OSTI)

    NONE

    2005-05-01T23:59:59.000Z

    The report discusses a project carried out under the US Clean Coal Technology (CCT) Demonstration Program which demonstrated selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulphur coal-fired boilers under typical boilers conditions in the United States. The project was conducted by Southern Company Services, Inc., who served as a co-funder and as the host at Gulf Power Company's Plant Crist. The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the flue gas through a catalyst bed where the Nox and NH{sub 3} react to form nitrogen and water vapor. The results of the CCTDP project confirmed the applicability of SCR for US coal-fired power plants. In part as a result of the success of this project, a significant number of commercial SCR units have been installed and are operating successfully in the United States. By 2007, the total installed SCR capacity on US coal-fired units will number about 200, representing about 100,000 MWe of electric generating capacity. This report summarizes the status of SCR technology. 21 refs., 3 figs., 2 tabs., 10 photos.

  14. Gas Turbine Emissions

    E-Print Network [OSTI]

    Frederick, J. D.

    technology developers and electric utilities will share emissions reductions in the coming era of pollution allowance trading is becoming prominent on the agendas of strategic planners at technology vendors and the electric power industry ??? ? (1...., "Authority to Construct for Badger Creek Limited," Kern County Air Pollution Control District, Bakersfield.. Ca., June 20, 1989. 3) Wark, K. and Warner, C. F., Air Pollution - Its Origin and Control, Harper and Row, New York, New York, 1976, pp. 453...

  15. Zero Emissions Coal Syngas Oxygen Turbo Machinery

    SciTech Connect (OSTI)

    Dennis Horazak

    2010-12-31T23:59:59.000Z

    Siemens Energy, Inc. (formerly Siemens Westinghouse Power Corporation) worked with Clean Energy Systems and Florida Turbine Technologies to demonstrate the commercial feasibility of advanced turbines for oxy-fuel based power systems that discharge negligible CO{sub 2} into the atmosphere. The approach builds upon ultra supercritical steam turbine and advanced gas turbine technology with the goal of attaining plant efficiencies above 50% in the 2015 timeframe. Conceptual designs were developed for baseline, near term, and long term oxy-fuel turbine cycles, representing commercial introductions of increasingly advanced thermal conditions and increasing exposure to steam-CO{sub 2} mixtures. An economic analysis and market demand study was performed by Science Applications International Corp. (SAIC), and indicated that long-term oxy-fuel turbine cycles start to look attractive in 2025 when the CO{sub 2} tax is assumed to reach $40/ ton, and by 2030 it has a clear advantage over both IGCC with sequestration and pulverized coal with sequestration. A separate risk analysis of the oxy-fuel combustor, HP turbine, re-heater, and IP turbine of the long-term cycle identified and categorized risks and proposed mitigation measures. In 2007 the program began to focus on a potential oxy-fuel turbine power generation demonstration project in the 2012 -13 time period while still maintaining a link to the requirements of the long-term oxy-syngas cycle. The SGT-900 turbine was identified as the best fit for modification into an intermediate pressure turbine (IPT) for this application. The base metals, bond coats, thermal barrier coatings (TBCs), and rotor materials used in the SGT-900 were tested for their ability to operate in the steam- CO{sub 2} environment of the oxy-fuel OFT-900. Test results indicated that these same materials would operate satisfactorily, and the plan, is to use SGT-900materials for the OFT-900. Follow-on programs for corrosion testing and evaluation of crack growth rates in oxy-fuel environments have been proposed to build on these results and provide quantifiable assessments of the effects of oxy-fuel environments on the service lives of turbine components.

  16. Quantification of Variability and Uncertainty in Hourly NOx Emissions from Coal-Fired Power Plants

    E-Print Network [OSTI]

    Frey, H. Christopher

    to quantify variability and uncertainty for NOx emissions from coal-fired power plants. Data for hourly NOx Uncertainty, Variability, Emission Factors, Coal-Fired Power Plants, NOx emissions, Regression Models for different source categories, NOx emissions from coal-fired power plants are analyzed in this #12;2 paper

  17. Zero emission coal, a new approach and why it is needed.

    SciTech Connect (OSTI)

    Ziock, H. J. (Hans-Joachim); Guthrie, G. D. (George D.); Lackner, K. S. (Klaus S.); Ruby, J. D. (John D.); Nawaz, Mohammad

    2001-01-01T23:59:59.000Z

    A new approach to zero emission coal-based power generation originated at Los Alamos National Laboratory is being pursued by the Zero Emission Coal Alliance (ZECA), an international coalition whose goal is no atmospheric emissions from coal-fueled power and hydrogen production plants. The avoidance of atmospheric emissions addresses carbon dioxide, in addition to the more commonly considered coal by-products such as NOX, SOX, particulates, and heavy metals. The new approach combines and updates a number of concepts previously tested separately at the pilot plant scale, but in a new, highly integrated design. The integrated approach will provide fuel to electric energy conversion efficiencies of approximately 70%, double that of today's conventional power plants, while simultaneously yielding a pure, high-pressure CO2 stream that is ready for sequestration. For sequestration, ZECA is examining the conversion of the CO2 into mineral carbonates, thereby achieving safe and permanent disposal of the CO2 in an inert solid form. The high efficiency power generation step provides for a substantial reduction ({approx} a factor of 2) in the amount of fuel consumed per unit of power reduced, thereby reducing the amount and cost of by-product disposal by a similar factor. Unlike most other emission reduction processes being investigated, which typically offer only marginal and short-term improvements, the ZECA concept is a long-term solution capable of supplying many centuries of abundant, secure, clean, low cost, coal-based fossil energy. As the underlying chemistry of the process works on carbon, the zero emission coal (ZEC) technology is also adaptable to a wide range of other fuels including biomass, heavy oils, tars, natural gas, etc.

  18. Coal liquefaction and gas conversion: Proceedings. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    Volume I contains papers presented at the following sessions: AR-Coal Liquefaction; Gas to Liquids; and Direct Liquefaction. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  19. Permeability changes in coal resulting from gas desorption

    SciTech Connect (OSTI)

    Levine, J.R.; Tsay, F.

    1990-01-01T23:59:59.000Z

    Measurement of sorption capacity of coals by microbalance in a high pressure environment requires that corrections be made for the buoyancy of the gas that is displaced by the solid coal. As the pressure increases, the gas density increases, requiring that a correction factor be applied to the weight of the sample as measured by microbalance. A brief report summarizing this correction is attached as Appendix A.

  20. Two-stage coal liquefaction without gas-phase hydrogen

    DOE Patents [OSTI]

    Stephens, H.P.

    1986-06-05T23:59:59.000Z

    A process is provided for the production of a hydrogen-donor solvent useful in the liquefaction of coal, wherein the water-gas shift reaction is used to produce hydrogen while simultaneously hydrogenating a donor solvent. A process for the liquefaction of coal using said solvent is also provided. The process enables avoiding the use of a separate water-gas shift reactor as well as high pressure equipment for liquefaction. 3 tabs.

  1. Atmospheric particulate emissions from dry abrasive blasting using coal slag

    SciTech Connect (OSTI)

    Bhaskar Kura; Kalpalatha Kambham; Sivaramakrishnan Sangameswaran; Sandhya Potana [University of New Orleans, New Orleans, LA (United States). Department of Civil and Environmental Engineering

    2006-08-15T23:59:59.000Z

    Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions. 40 refs., 5 figs., 2 tabs.

  2. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect (OSTI)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01T23:59:59.000Z

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  3. Greenhouse Gas Emissions Reduction Act (Maryland)

    Broader source: Energy.gov [DOE]

    The Greenhouse Gas Emissions Reduction Act requires the Department of the Environment to publish and update an inventory of statewide greenhouse gas emissions for calendar year 2006 and requires...

  4. Emissions, Monitoring and Control of Mercury from Subbituminous Coal-Fired Power Plants

    SciTech Connect (OSTI)

    Alan Bland; Kumar Sellakumar; Craig Cormylo

    2007-08-01T23:59:59.000Z

    The Subbituminous Energy Coalition (SEC) identified a need to re-test stack gas emissions from power plants that burn subbituminous coal relative to compliance with the EPA mercury control regulations for coal-fired plants. In addition, the SEC has also identified the specialized monitoring needs associated with mercury continuous emissions monitors (CEM). The overall objectives of the program were to develop and demonstrate solutions for the unique emission characteristics found when burning subbituminous coals. The program was executed in two phases; Phase I of the project covered mercury emission testing programs at ten subbituminous coal-fired plants. Phase II compared the performance of continuous emission monitors for mercury at subbituminous coal-fired power plants and is reported separately. Western Research Institute and a number of SEC members have partnered with Eta Energy and Air Pollution Testing to assess the Phase I objective. Results of the mercury (Hg) source sampling at ten power plants burning subbituminous coal concluded Hg emissions measurements from Powder River Basin (PBR) coal-fired units showed large variations during both ICR and SEC testing. Mercury captures across the Air Pollution Control Devices (APCDs) present much more reliable numbers (i.e., the mercury captures across the APCDs are positive numbers as one would expect compared to negative removal across the APCDs for the ICR data). Three of the seven units tested in the SEC study had previously shown negative removals in the ICR testing. The average emission rate is 6.08 lb/TBtu for seven ICR units compared to 5.18 lb/TBtu for ten units in the SEC testing. Out of the ten (10) SEC units, Nelson Dewey Unit 1, burned a subbituminous coal and petcoke blend thus lowering the total emission rate by generating less elemental mercury. The major difference between the ICR and SEC data is in the APCD performance and the mercury closure around the APCD. The average mercury removal values across the APCDs are 2.1% and 39.4% with standard deviations (STDs) of 1990 and 75%, respectively for the ICR and SEC tests. This clearly demonstrates that variability is an issue irrespective of using 'similar' fuels at the plants and the same source sampling team measuring the species. The study also concluded that elemental mercury is the main Hg specie that needs to be controlled. 2004 technologies such as activated carbon injection (ACI) may capture up to 60% with double digit lb/MMacf addition of sorbent. PRB coal-fired units have an Hg input of 7-15 lb/TBtu; hence, these units must operate at over 60% mercury efficiency in order to bring the emission level below 5.8 lb/TBtu. This was non-achievable with the best technology available as of 2004. Other key findings include: (1) Conventional particulate collectors, such as Cold-side Electro-Static Precipitators (CESPs), Hot-side Electro-Static Precipitator (HESP), and Fabric Filter (FF) remove nearly all of the particulate bound mercury; (2) CESPs perform better highlighting the flue gas temperature effect on the mercury removal. Impact of speciation with flue gas cooling is apparent; (3) SDA's do not help in enhancing adsorption of mercury vapor species; and (4) Due to consistently low chlorine values in fuels, it was not possible to analyze the impact of chlorine. In summary, it is difficult to predict the speciation at two plants that burn the same fuel. Non-fuel issues, such as flue gas cooling, impact the speciation and consequently mercury capture potential.

  5. Overview of SOFC Anode Interactions with Coal Gas Impurities

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Gemmen, Randall; Gerdes, Kirk; Finklea, Harry; Celik, Ismail B.

    2009-08-11T23:59:59.000Z

    Efficiencies greater than 50 percent (higher heating value) have been projected for solid oxide fuel cell (SOFC) systems fueled with gasified coal, even with carbon sequestration. Multiple minor and trace components are present in coal that could affect fuel cell performance, however, which vary widely depending on coal origin and type. Minor and trace components have been classified into three groups: elements with low volatility that are likely to remain in the ash, elements that will partition between solid and gas phases, and highly volatile elements that are unlikely to condense. Those in the second group are of most concern. In the following, an overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic coal gas. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

  6. Mercury emission control for coal fired power plants using coal and biomass

    E-Print Network [OSTI]

    Arcot Vijayasarathy, Udayasarathy

    2009-05-15T23:59:59.000Z

    . The Environmental Protection Agency (EPA) reports for 2001 shows that total mercury emissions from all sources in USA is about 145 tons per annum, of which coal fired power plants contribute around 33% of it, about 48 tons per annum. Unlike other trace metals...

  7. Shale gas production: potential versus actual greenhouse gas emissions*

    E-Print Network [OSTI]

    Shale gas production: potential versus actual greenhouse gas emissions* Francis O, monitor and verify greenhouse gas emissions and climatic impacts. This reprint is one of a series intended Environ. Res. Lett. 7 (2012) 044030 (6pp) doi:10.1088/1748-9326/7/4/044030 Shale gas production: potential

  8. Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls and Implications for Global Emission

    E-Print Network [OSTI]

    Elliott, Emily M.

    Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls from coal-fired power plants in the U.S. at typical operating conditions with and without the presence this, a novel method for collection and isotopic analysis of coal-fired stack NOx emission samples

  9. Permeability changes in coal resulting from gas desorption

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The goal of this task is to accurately measure the elongation and shrinkage exhibited by coal as it sorbs and desorbs methane gas at elevated pressure. Our research group has discussed several possible methods to measure this strain, including: optical microscopy, laser interferometry, conventional strain gauges, and LVDT strain gauges. There are advantages and disadvantages of each method. We had planned to use optical microscopy but, on further investigation, this approach will be less satisfactory than the strain gauge method. Accordingly, we have switched our focws to the use of strain gauges. Conventional strain gauges also involve potential problems which must be overcome, including: (1) Contrast in strength between the coal and the strain gauge must be minimized, (2) The proper glue that is neither too strong or too weak must be used to affix the strain gauge to the coal or the strain in the coal will not be accurately transmitted to the gauge, and (3) We must be aware that the total strain in the coal may not be homogeneously distributed through the specimen (due either either to boundary effects or contrast in composition of the coal layers). A high pressure chamber for sorption-strain experiments is currently being tested an modified and tested. The chamber will accommodate several small blocks of coal simultaneously. This will optimize efficiency, owing to the long times required to reequilibrate the coal blocks to changes in methane pressure.

  10. Solar coal gasification reactor with pyrolysis gas recycle

    DOE Patents [OSTI]

    Aiman, William R. (Livermore, CA); Gregg, David W. (Morago, CA)

    1983-01-01T23:59:59.000Z

    Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

  11. Control of Trace Metal Emissions During Coal Combustion

    SciTech Connect (OSTI)

    Thomas C. Ho

    1996-10-01T23:59:59.000Z

    Emissions of toxic trace metals in the form of metal fumes or submicron particulate from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold-end of the process by air-pollution control devices (APCDS) such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions, alternatively, at the hot-end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process, which would effectively eliminate the metal emission problems. Specifically, the technology is to employ suitable sorbents to (1) reduce the amount of metal volatilization during combustion and (2) capture volatilized metal vapors. The objectives of the project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor.

  12. Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers

    E-Print Network [OSTI]

    Li, Ying

    's studies have determined that mercury emissions from coal-fired power plants pose significant hazards to public health and must be reduced. Coal-fired power plants represent a significant fraction and reduce Hg emissions from coal-fired power plants. EPA is proposing two alternatives that include

  13. Environmental performance of air staged combustor with flue gas recirculation to burn coal/biomass

    SciTech Connect (OSTI)

    Anuar, S.H.; Keener, H.M.

    1995-12-31T23:59:59.000Z

    The environmental and thermal performance of a 1.07 m diameter, 440 kW atmospheric fluidized bed combustor operated at 700{degrees}C-920{degrees}C and burning coal was studied. Flue gas recirculation was incorporated to enhance the thermal performance and air staging was used to control emissions of SO{sub 2}, CO, NO{sub x} and N{sub 2}O. Studies focused on the effect of excess air, firing rate, and use of sorbent on system performance. The recirculation-staging mode with limestone had the highest thermal efficiency (0.67) using the firing equation. Emission data showed that flue gas recirculation (ratio of 0.7) significantly reduced NO{sub x} emissions; and that use of limestone sorbent at a Ca/S ratio of 3 reduced SO{sub 2} emissions by 64% to approximately 0.310 g/MJ.

  14. Optimal transition from coal to gas and renewable power under capacity constraints and adjustment costs

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Optimal transition from coal to gas and renewable power under capacity constraints and adjustment existing coal power plants to gas and renewable power under a carbon budget. It solves a model of polluting, exhaustible resources with capacity constraints and adjustment costs (to build coal, gas, and renewable power

  15. Demonstration of a Carbonate Fuel Cell on Coal Derived Gas 

    E-Print Network [OSTI]

    Rastler, D. M.; Keeler, C. G.; Chi, C. V.

    1993-01-01T23:59:59.000Z

    system has run on actual syn-gas. Consequently, the Electric Power Research Institute (“EPRI”) has sponsored a 20 kW carbonate fuel cell pilot plant that will begin operating in March at Destec Energy’s coal gasification plant in Plaquemine, Louisiana...

  16. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01T23:59:59.000Z

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  17. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    DOE Patents [OSTI]

    Grindley, Thomas (Morgantown, WV)

    1989-01-01T23:59:59.000Z

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  18. Turbine Drive Gas Generator for Zero Emission Power Plants

    SciTech Connect (OSTI)

    Doyle, Stephen E.; Anderson, Roger E.

    2001-11-06T23:59:59.000Z

    The Vision 21 Program seeks technology development that can reduce energy costs, reduce or eliminate atmospheric pollutants from power plants, provide choices of alternative fuels, and increase the efficiency of generating systems. Clean Energy Systems is developing a gas generator to replace the traditional boiler in steam driven power systems. The gas generator offers the prospects of lower electrical costs, pollution free plant operations, choices of alternative fuels, and eventual net plant efficiencies in excess of 60% with sequestration of carbon dioxide. The technology underlying the gas generator has been developed in the aerospace industry over the past 30 years and is mature in aerospace applications, but it is as yet unused in the power industry. This project modifies and repackages aerospace gas generator technology for power generation applications. The purposes of this project are: (1) design a 10 MW gas generator and ancillary hardware, (2) fabricate the gas generator and supporting equipment, (3) test the gas generator using methane as fuel, (4) submit a final report describing the project and test results. The principal test objectives are: (1) define start-up, shut down and post shutdown control sequences for safe, efficient operation; (2) demonstrate the production of turbine drive gas comprising steam and carbon dioxide in the temperature range 1500 F to 3000 F, at a nominal pressure of 1500 psia; (3) measure and verify the constituents of the drive gas; and (4) examine the critical hardware components for indications of life limitations. The 21 month program is in its 13th month. Design work is completed and fabrication is in process. The gas generator igniter is a torch igniter with sparkplug, which is currently under-going hot fire testing. Fabrication of the injector and body of the gas generator is expected to be completed by year-end, and testing of the full gas generator will begin in early 2002. Several months of testing are anticipated. When demonstrated, this gas generator will be the prototype for use in demonstration power plants planned to be built in Antioch, California and in southern California during 2002. In these plants the gas generator will demonstrate durability and its operational RAM characteristics. In 2003, it is expected that the gas generator will be employed in new operating plants primarily in clean air non-attainment areas, and in possible locations to provide large quantities of high quality carbon dioxide for use in enhanced oil recovery or coal bed methane recovery. Coupled with an emission free coal gasification system, the CES gas generator would enable the operation of high efficiency, non-polluting coal-fueled power plants.

  19. EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual2 EIA372.

  20. EIA - Greenhouse Gas Emissions - Methane Emissions

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual23. Methane

  1. EIA - Greenhouse Gas Emissions - Nitrous Oxide Emissions

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual23.

  2. Enahancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual

    SciTech Connect (OSTI)

    None

    1998-09-01T23:59:59.000Z

    The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved demonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit W, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. At each site where the techno!o@es were to be demonstrated, petiormance goals were set to achieve air emission reductions of 60 percent for NO. and 50 percent for SO2. These performance goals were exceeded during long term demonstration testing. For the tangentially fired unit, NOX emissions were reduced by 67.2% and S02 emissions by 52.6%. For the cyclone-fired unit, NOX emissions were reduced by 62.9% and SOZ emissions by 57.9%.

  3. Enhancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual

    SciTech Connect (OSTI)

    None

    1998-06-01T23:59:59.000Z

    The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved d,emonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit #1, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. `At each site where the technologies were to be demonstrated, performance goals were set to achieve air emission reductions of 60 percent for NOX and 50 percent for S02. These performance goals were exceeded during long term demonstration testing. For the tangentially fired unit, NO, emissions were reduced by 67.2?40 and SOZ emissions by 52.6Y0. For the cyclone-fired unit, NO, emissions were reduced by 62.9% and SOZ emissions by 57.9Y0.

  4. Coal-fired open cycle magnetohydrodynamic power plant emissions and energy efficiences

    E-Print Network [OSTI]

    Gruhl, Jim

    This study is a review of projected emissions and energy efficiencies of coal-fired open cycle MHD power plants. Ideally one

  5. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect (OSTI)

    Jost O.L. Wendt

    2002-08-15T23:59:59.000Z

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO2 control, NOx control, and inorganic fine particle and toxic metal emissions will be determined. Previous research has yielded data on trace metal partitioning for MSS by itself, with natural gas assist, for coal plus MSS combustion together, and for coal alone. We have re-evaluated the inhalation health effects of ash aerosol from combustion of MSS both by itself and also together with coal. We have concluded that ash from the co-combustion of MSS and coal is very much worse from an inhalation health point of view, than ash from either MSS by itself or coal by itself. The reason is that ZnO is not the ''bad actor'' as had been suspected before, but the culprit is, rather, sulfated Zn. The MSS supplies the Zn and the coal supplies the sulfur, and so it is the combination of coal and MSS that makes that process environmentally bad. If MSS is to be burned, it should be burned without coal, in the absence of sulfur.

  6. Measurements of POM emissions from coal-fired utility boilers. Final report

    SciTech Connect (OSTI)

    Sonnichsen, T.W.

    1983-02-01T23:59:59.000Z

    Emissions of polycyclic organic matter (POM) from fossil-fuel combustion systems are of concern due to the potential carcinogenic activity of specific POM species. The initial objectives of this research program were to (1) conduct a limited laboratory verification of state-of-the-art POM sampling and analysis techniques for pulverized coal-fired combustion exhausts and (2) measure the POM emissions of up to four coal-fired utility boilers. Initial laboratory tests, involving the injection of synthetic POM tracers into the sampling and analytical procedures were capable of accurate POM measurements. However, subsequent tracer recovery results and measurements of combustion generated POM from a coal-fired laboratory test furnace and a utility boiler were highly erratic. The program was consequently redirected to include a comprehensive evaluation of the analytical techniques and interfering factors in the flue gas or sampling train that may have impacted the POM measurements. State-of-the-art GC/MS analytical technical techniques were shown to be generally adequate, but some questions remain concerning sample preparation and adaptability for routine measurements. Review of the literature identified the potential for interaction of POM with the fly ash in either the flue-gas stream or the sampling system. The results of these evaluations were incorporated into a final field-test program on a coal-fired utility boiler. While some improvement in tracer recoveries and combustion-generated POM were obtained, several inconsistencies in the data were still apparent. Recommendations for future POM-measurement programs on utility boilers are presented.

  7. Using auxiliary gas power for CCS energy needs in retrofitted coal power plants

    E-Print Network [OSTI]

    Bashadi, Sarah (Sarah Omer)

    2010-01-01T23:59:59.000Z

    Post-combustion capture retrofits are expected to a near-term option for mitigating CO 2 emissions from existing coal-fired power plants. Much of the literature proposes using power from the existing coal plant and thermal ...

  8. Gas Migration from Closed Coal Mines to the Surface RISK ASSESSMENT METHODOLOGY AND PREVENTION MEANS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Gas Migration from Closed Coal Mines to the Surface RISK ASSESSMENT METHODOLOGY AND PREVENTION to the surface is especially significant in the context of coal mines. This is because mine gas can migrate of the scheduled closure of all coal mining operations in France, INERIS has drawn up, at the request of national

  9. Methane emission from flooded coal seams in abandoned mines, in the light of laboratory investigations

    E-Print Network [OSTI]

    Boyer, Edmond

    Methane emission from flooded coal seams in abandoned mines, in the light of laboratory of methane from flooded unexploited coal seams Field experience from the flooding operations of the abandoned gassy coal seams in abandoned mines. The tests included the following main stages: - Determining

  10. A study of toxic emissions from a coal-fired gasification plant. Final report

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    Under the Fine Particulate Control/Air Toxics Program, the US Department of Energy (DOE) has been performing comprehensive assessments of toxic substance emissions from coal-fired electric utility units. An objective of this program is to provide information to the US Environmental Protection Agency (EPA) for use in evaluating hazardous air pollutant emissions as required by the Clean Air Act Amendments (CAAA) of 1990. The Electric Power Research Institute (EPRI) has also performed comprehensive assessments of emissions from many power plants and provided the information to the EPA. The DOE program was implemented in two. Phase 1 involved the characterization of eight utility units, with options to sample additional units in Phase 2. Radian was one of five contractors selected to perform these toxic emission assessments.Radian`s Phase 1 test site was at southern Company Service`s Plant Yates, Unit 1, which, as part of the DOE`s Clean Coal Technology Program, was demonstrating the CT-121 flue gas desulfurization technology. A commercial-scale prototype integrated gasification-combined cycle (IGCC) power plant was selected by DOE for Phase 2 testing. Funding for the Phase 2 effort was provided by DOE, with assistance from EPRI and the host site, the Louisiana Gasification Technology, Inc. (LGTI) project This document presents the results of that effort.

  11. Unconventional gas sources. Executive summary. [Coal seams, Devonian shale, geopressured brines, tight gas reservoirs

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The long lead time required for conversion from oil or gas to coal and for development of a synthetic fuel industry dictates that oil and gas must continue to supply the United States with the majority of its energy requirements over the near term. In the interim period, the nation must seek a resource that can be developed quickly, incrementally, and with as few environmental concerns as possible. One option which could potentially fit these requirements is to explore for, drill, and produce unconventional gas: Devonian Shale gas, coal seam gas, gas dissolved in geopressured brines, and gas from tight reservoirs. This report addresses the significance of these sources and the economic and technical conditions under which they could be developed.

  12. Slag processing system for direct coal-fired gas turbines

    DOE Patents [OSTI]

    Pillsbury, Paul W. (Winter Springs, FL)

    1990-01-01T23:59:59.000Z

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

  13. Advanced Coal-Fueled Gas Turbine Program. Final report

    SciTech Connect (OSTI)

    Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

    1989-02-01T23:59:59.000Z

    The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

  14. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    DOE Patents [OSTI]

    Jha, Mahesh C. (Arvada, CO); Blandon, Antonio E. (Thornton, CO); Hepworth, Malcolm T. (Edina, MN)

    1988-01-01T23:59:59.000Z

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  15. Measurement of Oil and Gas Emissions from a Marine Seep

    E-Print Network [OSTI]

    Leifer, Ira; Boles, J R; Luyendyk, B P

    2007-01-01T23:59:59.000Z

    2007, Measurement of Oil and Gas Emissions from a Marine2007, Measurement of Oil and Gas Emissions from a MarineTides and the emission of oil and gas from an abandoned oil

  16. EIA - Greenhouse Gas Emissions Overview

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOrigin State Glossary Home > Coal>‹

  17. Slag processing system for direct coal-fired gas turbines

    DOE Patents [OSTI]

    Pillsbury, Paul W. (Winter Springs, FL)

    1990-01-01T23:59:59.000Z

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

  18. Ni/YSZ Anode Interactions with Impurities in Coal Gas

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Thomsen, Edwin C.; Coffey, Greg W.

    2009-10-16T23:59:59.000Z

    Performance of solid oxide fuel cell (SOFC) with nickel/zirconia anodes on synthetic coal gas in the presence of low levels of phosphorus, arsenic, selenium, sulfur, hydrogen chloride, and antimony impurities were evaluated. The presence of phosphorus and arsenic led to the slow and irreversible SOFC degradation due to the formation of secondary phases with nickel, particularly close to the gas inlet. Phosphorus and antimony surface adsorption layers were identified as well. Hydrogen chloride and sulfur interactions with the nickel were limited to the surface adsorption only, whereas selenium exposure also led to the formation of nickel selenide for highly polarized cells.

  19. Regulated Emissions from Diesel and Compressed Natural Gas Transit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions from Diesel and Compressed Natural Gas Transit Buses Regulated Emissions from Diesel and Compressed Natural Gas Transit Buses Poster presentaiton at the 2007 Diesel...

  20. Verifying Greenhouse Gas Emissions: Methods to Support International...

    Open Energy Info (EERE)

    Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements Jump to: navigation, search Tool Summary Name: Verifying Greenhouse Gas Emissions: Methods...

  1. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Energy Savers [EERE]

    Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop The Advanced Manufacturing Office...

  2. Emissions tradeoffs associated with cofiring forest biomass with coal: A case study in Colorado, USA

    E-Print Network [OSTI]

    Fried, Jeremy S.

    , especially in North America and Europe, promote the substitution of forest biomass for fossil fuels to helpEmissions tradeoffs associated with cofiring forest biomass with coal: A case study in Colorado mine and power plant. Model emissions tradeoffs of cofiring forest biomass with coal up to 20% by heat

  3. Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass

    SciTech Connect (OSTI)

    Huffman, Gerald

    2012-12-31T23:59:59.000Z

    This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation?s urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

  4. Enhancing the use of coals by gas reburning-sorbent injection

    SciTech Connect (OSTI)

    Not Available

    1990-10-20T23:59:59.000Z

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on two coal fired utility boilers in Illinois. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device. This project is conducted in three phases at each site: (1) Design and Permitting, (2) Construction and Startup, and (3) Operation, Data Collection, Reporting and Disposition. Progress is discussed.

  5. Enhancing the use of coals by gas reburning-sorbent injection

    SciTech Connect (OSTI)

    Not Available

    1990-07-19T23:59:59.000Z

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on two coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential and cyclone fired. Work on a third unit, wall fired, is on hold'' because of funding limitations. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80{endash}85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device.

  6. Enhancing the use of coals by gas reburning-sorbent injection

    SciTech Connect (OSTI)

    Not Available

    1989-09-27T23:59:59.000Z

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on three coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential, wall, and cyclone fired. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device.

  7. Enhancing the use of coals by gas reburning-sorbent injection

    SciTech Connect (OSTI)

    Not Available

    1988-12-22T23:59:59.000Z

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on three coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices; tangential, wall, and cyclone fired. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace, at the superheater exit or into the ducting following the air heater. The sorbents trap SO{sub x} as solid sulfates and sulfites, which are collected in the particulate control device.

  8. Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California

    E-Print Network [OSTI]

    Leifer, Ira; Kamerling, Marc J.; Luyendyk, Bruce P.; Wilson, Douglas S.

    2010-01-01T23:59:59.000Z

    the subsurface geology and the gas bubble (with oil) plumesgeology and gas-phase (methane) seepage for the Coal Oilwith offshore oil production. Geology 27:1047–1050 Shindell

  9. LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    SciTech Connect (OSTI)

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; MILIAN, L.; LIPFERT, F.; SUBRAMANIAM, S.; BLAKE, R.

    2005-09-21T23:59:59.000Z

    Mercury is a neurotoxin that accumulates in the food chain and is therefore a health concern. The primary human exposure pathway is through fish consumption. Coal-fired power plants emit mercury and there is uncertainty over whether this creates localized hot spots of mercury leading to substantially higher levels of mercury in water bodies and therefore higher exposure. To obtain direct evidence of local deposition patterns, soil and vegetations samples from around three U.S. coal-fired power plants were collected and analyzed for evidence of hot spots and for correlation with model predictions of deposition. At all three sites, there was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. It was estimated that less than 2% of the total mercury emissions from these plants deposited within 15 km of these plants. These small percentages of deposition are consistent with the literature review findings of only minor perturbations in environmental levels, as opposed to hot spots, near the plants. The major objective of the sampling studies was to determine if there was evidence for hot spots of mercury deposition around coal-fired power plants. From a public health perspective, such a hot spot must be large enough to insure that it did not occur by chance, and it must increase mercury concentrations to a level in which health effects are a concern in a water body large enough to support a population of subsistence fishers. The results of this study suggest that neither of these conditions has been met.

  10. Potential for Biofuel-based Greenhouse Gas Emission Mitigation: Rationale and Potential

    E-Print Network [OSTI]

    McCarl, Bruce A.

    1 Potential for Biofuel-based Greenhouse Gas Emission Mitigation: Rationale and Potential By Bruce biofuel usage. Biofuel feedstocks are a source of raw material that can be transformed into petroleum for coal. In the USA, liquid fuel biofuel production has not proven to be broadly economically feasible

  11. Coal-fueled diesel technology development Emissions Control

    SciTech Connect (OSTI)

    Van Kleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

    1994-01-01T23:59:59.000Z

    GEESI Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a CWS fuel single cylinder research diesel engine to the design, installation, and operation of a full-size Emissions Control system for a full-size CWS fuel diesel engine designed for locomotive operation.Early 10 CFM slipstream testing program activity was performed to determine Emissions Characteristics and to evaluate Emissions Control concepts such a Barrier filtration, Granular bed filtration, and Cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO{sub 2} and NO{sub x} in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical Emissions Control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the Envelope Filter led to a subsequent progression to a similar configuration Envelope Filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This Envelope Filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

  12. Enhancing the use of coals by gas reburning-sorbent injection: Volume 3 -- Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company. Final report

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x} and SO{sub 2} from a wall fired unit at Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the as found baseline of 0.98 lb/MBtu and to reduce emissions of SO{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an SO{sub 2} limit of 1.8 lb/MBtu, the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with SO{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The system was designed to inject sorbent at a rate corresponding to a calcium (sorbent) to sulfur (coal) molar ratio of 2.0. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.

  13. Air toxic emissions from the combustion of coal: Identifying and quantifying hazardous air pollutants from US coals

    SciTech Connect (OSTI)

    Szpunar, C.B.

    1992-09-01T23:59:59.000Z

    This report addresses the key air toxic emissions likely to emanate from continued and expanded use of domestic coal. It identifies and quantifies those trace elements specified in the US 1990 Clean Air Act Amendments, by tabulating selected characterization data on various source coals by region, state, and rank. On the basis of measurements by various researchers, this report also identifies those organic compounds likely to be derived from the coal combustion process (although their formation is highly dependent on specific boiler configurations and operating conditions).

  14. Rock, Mineral, Coal, Oil, and Gas Resources on State Lands (Montana)

    Broader source: Energy.gov [DOE]

    This chapter authorizes and regulates prospecting permits and mining leases for the exploration and development of rock, mineral, oil, coal, and gas resources on state lands.

  15. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    E-Print Network [OSTI]

    Kahrl, Fredrich James

    2011-01-01T23:59:59.000Z

    coal mining, petroleum extraction and refining, coking, andCoal Mining and Dressing Petroleum and Natural Gas Extraction Petroleum Processing, Coking andCoal Mining and Dressing Petroleum and Natural Gas Extraction Petroleum Processing, Coking and

  16. acid gas emissions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gas ((GHG) (CO2, NH4, HFCs 26 INTRODUCTION Greenhouse Gas Emissions in an Urban Environment Environmental Sciences and Ecology Websites Summary: INTRODUCTION Greenhouse Gas...

  17. Next Generation Pressurized Oxy-Coal Combustion: High Efficiency and No Flue Gas Recirculation

    SciTech Connect (OSTI)

    Rue, David

    2013-09-30T23:59:59.000Z

    The Gas Technology Institute (GTI) has developed a pressurized oxy-coal fired molten bed boiler (MBB) concept, in which coal and oxygen are fired directly into a bed of molten coal slag through burners located on the bottom of the boiler and fired upward. Circulation of heat by the molten slag eliminates the need for a flue gas recirculation loop and provides excellent heat transfer to steam tubes in the boiler walls. Advantages of the MBB technology over other boilers include higher efficiency (from eliminating flue gas recirculation), a smaller and less expensive boiler, modular design leading to direct scalability, decreased fines carryover and handling costs, smaller exhaust duct size, and smaller emissions control equipment sizes. The objective of this project was to conduct techno-economic analyses and an engineering design of the MBB project and to support this work with thermodynamic analyses and oxy-coal burner testing. Techno-economic analyses of GTI’s pressurized oxy-coal fired MBB technology found that the overall plant with compressed CO2 has an efficiency of 31.6%. This is a significant increase over calculated 29.2% efficiency of first generation oxy-coal plants. Cost of electricity (COE) for the pressurized MBB supercritical steam power plant with CO2 capture and compression was calculated to be 134% of the COE for an air-coal supercritical steam power plant with no CO2 capture. This compares positively with a calculated COE for first generation oxy-coal supercritical steam power plants with CO2 capture and compression of 164%. The COE for the MBB power plant is found to meet the U.S. Department of Energy (DOE) target of 135%, before any plant optimization. The MBB power plant was also determined to be simpler than other oxy-coal power plants with a 17% lower capital cost. No other known combustion technology can produce higher efficiencies or lower COE when CO2 capture and compression are included. A thermodynamic enthalpy and exergy analysis found a number of modifications and adjustments that could provide higher efficiency and better use of available work. Conclusions from this analysis will help guide the analyses and CFD modeling in future process development. The MBB technology has the potential to be a disruptive technology that will enable coal combustion power plants to be built and operated in a cost effective way, cleanly with no carbon dioxide emissions. A large amount of work is needed to quantify and confirm the great promise of the MBB technology. A Phase 2 proposal was submitted to DOE and other sponsors to address the most critical MBB process technical gaps. The Phase 2 proposal was not accepted for current DOE support.

  18. Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development

    SciTech Connect (OSTI)

    Radisav Vidic; Joseph Flora; Eric Borguet

    2008-12-31T23:59:59.000Z

    The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

  19. EIA - Greenhouse Gas Emissions Overview

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual23.A1.

  20. EIA - Greenhouse Gas Emissions Overview

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual23.A1.1.

  1. EIA - Greenhouse Gas Emissions Overview

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual23.A1.1.A2.

  2. EIA - Greenhouse Gas Emissions Overview

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms

  3. The Future of Coal in a Greenhouse Gas Constrained World Howard Herzog1

    E-Print Network [OSTI]

    1 The Future of Coal in a Greenhouse Gas Constrained World Howard Herzog1 , James Katzer1 1 M coal can make to the growing world energy demand during a period of increasing concern about global pursue in the short-term so that we can utilize coal in the longer-term and reduce its associated CO2

  4. CO2 gas production understanding above a partly flooded coal post-mining area

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - The Westphalian deposit is constituted by numerous exploited coal seams of different thicknesses. These seamsCO2 gas production understanding above a partly flooded coal post-mining area Candice Lagnya, a former coal mining area. To understand the origin of this production, a borehole of 90 meters deep

  5. LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    SciTech Connect (OSTI)

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; LIPFERT, D.D.; MORRIS, S.M.; BANDO, A.; ET AL.

    2004-03-30T23:59:59.000Z

    A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. There are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows (Lopez et al. 2003)). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg(0) in power plant plumes and the role of water chemistry in the relationship between Hg deposition and fish content. Soil and vegetation sampling programs were performed around two mid-size coal fired power plants. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with model predictions. These programs found the following: (1) At both sites, there was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. At the Kincaid plant, there was excess soil Hg along heavily traveled roads. The spatial pattern of soil mercury concentrations did not match the pattern of vegetation Hg concentrations at either plant. (2) At both sites, the subsurface (5-10 cm) samples the Hg concentration correlated strongly with the surface samples (0-5 cm). Average subsurface sample concentrations were slightly less than the surface samples, however, the difference was not statistically significant. (3) An unequivocal definition of background Hg was not possible at either site. Using various assumed background soil mercury concentrations, the percentage of mercury deposited within 10 km of the plant ranged between 1.4 and 8.5% of the RGM emissions. Based on computer modeling, Hg deposition was primarily RGM with much lower deposition from elemental mercury. Estimates of the percentage of total Hg deposition ranged between 0.3 and 1.7%. These small percentages of deposition are consistent with the empirical findings of only minor perturbations in environmental levels, as opposed to ''hot spots'', near the plants. The major objective of this study was to determine if there was evidence for ''hot spots'' of mercury deposition around coal-fired power plants. Although the term has been used extensively, it has never been defined. From a public health perspective, such a ''hot spot'' must be large enough to insure that it did not occur by chance, and it must affect water bodies large enough to support a population of subsistence fishers. The results of this study support the hypothesis

  6. Combustion of ultrafine coal/water mixtures and their application in gas turbines: Final report

    SciTech Connect (OSTI)

    Toqan, M.A.; Srinivasachar, S.; Staudt, J.; Varela, F.; Beer, J.M.

    1987-10-01T23:59:59.000Z

    The feasibility of using coal-water fuels (CWF) in gas turbine combustors has been demonstrated in recent pilot plant experiments. The demands of burning coal-water fuels with high flame stability, complete combustion, low NO/sub x/ emission and a resulting fly ash particle size that will not erode turbine blades represent a significant challenge to combustion scientists and engineers. The satisfactory solution of these problems requires that the variation of the structure of CWF flames, i.e., the fields of flow, temperature and chemical species concentration in the flame, with operating conditions is known. Detailed in-flame measurements are difficult at elevated pressures and it has been proposed to carry out such experiments at atmospheric pressure and interpret the data by means of models for gas turbine combustor conditions. The research was carried out in five sequential tasks: cold flow studies; studies of conventional fine-grind CWF; combustion studies with ultrafine CWF fuel; reduction of NO/sub x/ emission by staged combustion; and data interpretation-ignition and radiation aspects. 37 refs., 61 figs., 9 tabs.

  7. Shale Gas Production: Potential versus Actual GHG Emissions

    E-Print Network [OSTI]

    O'Sullivan, Francis

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

  8. Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant

    E-Print Network [OSTI]

    Keinan, Alon

    Cornell's conversion of a coal fired heating plant to natural Gas University began operating with natural gas, instead of the coal-fired generators of the coal that had been stockpiled, the Plant is running completely on natural gas

  9. Mitigating greenhouse gas emissions: Voluntary reporting

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  10. Comparing the greenhouse gas emissions from three alternative waste combustion concepts

    SciTech Connect (OSTI)

    Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Tsupari, Eemeli; Sipilae, Kai [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Piispankatu 8, FIN 20500 Turku (Finland)

    2012-03-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

  11. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01T23:59:59.000Z

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that aims to predict the conversion of char-nitrogen to nitric oxide should allow for the conversion of char-nitrogen to HCN. The extent of the HCN conversion to NO or N{sub 2} will depend on the composition of the atmosphere surrounding the particle. A pilot-scale testing campaign was carried out to evaluate the impact of multiburner firing on NO{sub x} emissions using a three-burner vertical array. In general, the results indicated that multiburner firing yielded higher NO{sub x} emissions than single burner firing at the same fuel rate and excess air. Mismatched burner operation, due to increases in the firing rate of the middle burner, generally demonstrated an increase in NO{sub x} over uniform firing. Biased firing, operating the middle burner fuel rich with the upper and lower burners fuel lean, demonstrated an overall reduction in NO{sub x} emissions; particularly when the middle burner was operated highly fuel rich. Computational modeling indicated that operating the three burner array with the center burner swirl in a direction opposite to the other two resulted in a slight reduction in NO{sub x}.

  12. An Evaluation of Low-BTU Gas from Coal as an Alternate Fuel for Process Heaters

    E-Print Network [OSTI]

    Nebeker, C. J.

    1982-01-01T23:59:59.000Z

    As the price gap between oil and natural gas and coal continues to widen, Monsanto has carefully searched out and examined opportunities to convert fuel use to coal. Preliminary studies indicate that the low-btu gas produced by fixed-bed, air blown...

  13. Control of toxic metallic emissions formed during the combustion of Ohio coals. Final report, September 1, 1993--August 31, 1994

    SciTech Connect (OSTI)

    Biswas, P.; Owens, T.M.; Wu, Chang-Yu [Cincinnati Univ., OH (United States)

    1995-02-01T23:59:59.000Z

    The objective of the project was to characterize metallic emissions from representative coals and develop strategies for their control. Though metallic emissions from coal combustors have been extensively studied, more studies need to be performed to better characterize the interaction of various species which is required for the selection and design of sorbents for effective control of these emissions. Some coals are rich in sulfur, and utilities using these coals will have to use some form of Flue Gas Desulfurization (FGD). A technique for FGD is the use of calcium based sorbents, and the degree of metals capture of these sorbents under different conditions will be researched. The objective of the first year of the study was to understand the evolution of metallic aerosol size distributions and the capture characteristics of various sorbents. Also, the metallic emissions resulting from the combustion of two seams of Ohio coals were to be characterized. Studies on the evolution of the metallic aerosol size distributions have been completed and the use of silicon and calcium based sorbents for capture of lead species has been examined. Co-injection of metallic compounds along with organometallic silicon indicated a high degree of capture of lead in a certain temperature regime. Preliminary results with calcium based sorbents also indicate capture of metallic species. To gain a further understanding of the capture processes, in situ optical diagnostic studies were performed in collaboration with researchers at the National Institute of Standards and Technology. Spectroscopic studies (laser induced fluorescence coupled with particle scattering) were performed to help understand the mechanisms of metallic species capture.

  14. Int. J. Oil, Gas and Coal Technology, Vol. 1, Nos. 1/2, 2008 65 Copyright 2008 Inderscience Enterprises Ltd.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Int. J. Oil, Gas and Coal Technology, Vol. 1, Nos. 1/2, 2008 65 Copyright © 2008 Inderscience using neural networks', Int. J. Oil, Gas and Coal Technology, Vol. 1, Nos. 1/2, pp.65­80. Biographical

  15. Int. J. Oil, Gas and Coal Technology, Vol. 7, No. 2, 2014 115 Copyright 2014 Inderscience Enterprises Ltd.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Int. J. Oil, Gas and Coal Technology, Vol. 7, No. 2, 2014 115 Copyright © 2014 Inderscience fields in Saudi Arabia', Int. J. Oil, Gas and Coal Technology, Vol. 7, No. 2, pp.115­131. Biographical

  16. 104 Int. J. Oil, Gas and Coal Technology, Vol. 4, No. 2, 2011 Copyright 2011 Inderscience Enterprises Ltd.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    104 Int. J. Oil, Gas and Coal Technology, Vol. 4, No. 2, 2011 Copyright © 2011 Inderscience, Gas and Coal Technology, Vol. 4, No. 2, pp.104­133. Biographical notes: Amirmasoud Kalantari

  17. 2 Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 1, 2009 Copyright 2009 Inderscience Enterprises Ltd.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    2 Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 1, 2009 Copyright © 2009 Inderscience, Gas, and Coal Technology, Vol. 2, No. 1, pp.2­23. Biographical notes: Shahab D. Mohaghegh is currently

  18. Water Extraction from Coal-Fired Power Plant Flue Gas

    SciTech Connect (OSTI)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30T23:59:59.000Z

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.

  19. Nitrogen oxides emission control through reburning with biomass in coal-fired power plants 

    E-Print Network [OSTI]

    Arumugam, Senthilvasan

    2005-02-17T23:59:59.000Z

    Oxides of nitrogen from coal-fired power stations are considered to be major pollutants, and there is increasing concern for regulating air quality and offsetting the emissions generated from the use of energy. Reburning ...

  20. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #844: Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

  1. Measurements of Methane Emissions at Natural Gas Production Sites

    E-Print Network [OSTI]

    Lightsey, Glenn

    Measurements of Methane Emissions at Natural Gas Production Sites in the United States #12;Why = 21 #12;Need for Study · Estimates of methane emissions from natural gas production , from academic in assumptions in estimating emissions · Measured data for some sources of methane emissions during natural gas

  2. NOx EMISSIONS PRODUCED WITH COMBUSTION OF POWDER RIVER BASIN COAL IN A UTILITY BOILER

    SciTech Connect (OSTI)

    John S. Nordin; Norman W. Merriam

    1997-04-01T23:59:59.000Z

    The objective of this report is to estimate the NOx emissions produced when Powder River Basin (PRB) coal is combusted in a utility boiler. The Clean Air Act regulations specify NOx limits of 0.45 lb/mm Btu (Phase I) and 0.40 lb/mm Btu (Phase II) for tangentially fired boilers, and 0.50 lb/mm 13tu (Phase II) and 0.46 lb/mm Btu (Phase II) for dry-bottom wall-fired boilers. The Clean Air Act regulations also specify other limits for other boiler types. Compliance for Phase I has been in effect since January 1, 1996. Compliance for Phase II goes into effect on January 1, 2000. Emission limits are expressed as equivalent NO{sub 2} even though NO (and sometimes N{sub 2}O) is the NOx species emitted during combustion. Regulatory agencies usually set even lower NOx emission limits in ozone nonattainment areas. In preparing this report, Western Research Institute (WRI) used published test results from utilities burning various coals, including PRB coal, using state-of-the art control technology for minimizing NOx emissions. Many utilities can meet Clean Air Act NOx emission limits using a combination of tight combustion control and low-NOx burners and by keeping furnaces clean (i.e., no slag buildup). In meeting these limits, some utilities also report problems such as increased carbon in their fly ash and excessive furnace tube corrosion. This report discusses utility experience. The theory of NOx emission formation during coal combustion as related to coal structure and how the coal is combusted is also discussed. From this understanding, projections are made for NOx emissions when processed PRB coal is combusted in a test similar to that done with other coals. As will be shown, there are a lot of conditions for achieving low NOx emissions, such as tight combustion control and frequent waterlancing of the furnace to avoid buildup of deposits.

  3. Shale Gas Production: Potential versus Actual GHG Emissions

    E-Print Network [OSTI]

    Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

  4. Clean coal technology and emissions trading: Is there a future for high-sulfur coal under the Clean Air Act Amendments of 1990?

    SciTech Connect (OSTI)

    Bailey, K.A.; South, D.W. [Argonne National Lab., IL (United States); McDermott, K.A. [Argonne National Lab., IL (United States)]|[Illinois State Univ., Normal, IL (United States)

    1991-12-31T23:59:59.000Z

    The near-term and long-term fate of high-sulfur coal is linked to utility compliance plans, the evolution of emission allowance trading, state and federal regulation, and technological innovation. All of these factors will play an implicit role in the demand for high-sulfur coal. This paper will explore the potential impact that emissions trading will have on high-sulfur coal utilization by electric utilities. 28 refs., 6 figs., 4 tabs.

  5. Clean coal technology and emissions trading: Is there a future for high-sulfur coal under the Clean Air Act Amendments of 1990

    SciTech Connect (OSTI)

    Bailey, K.A.; South, D.W. (Argonne National Lab., IL (United States)); McDermott, K.A. (Argonne National Lab., IL (United States) Illinois State Univ., Normal, IL (United States))

    1991-01-01T23:59:59.000Z

    The near-term and long-term fate of high-sulfur coal is linked to utility compliance plans, the evolution of emission allowance trading, state and federal regulation, and technological innovation. All of these factors will play an implicit role in the demand for high-sulfur coal. This paper will explore the potential impact that emissions trading will have on high-sulfur coal utilization by electric utilities. 28 refs., 6 figs., 4 tabs.

  6. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    E-Print Network [OSTI]

    Kahrl, Fredrich James

    2011-01-01T23:59:59.000Z

    Commission (NDRC), 2007. Natural Gas Use Policy [??? ????].Commission (NDRC), 2007. Natural Gas Use Policy [??? ????].coal, crude oil, and natural gas. Hydropower, nuclear, and

  7. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect (OSTI)

    Hepworth, M.T.; Ben-Slimane, R.

    1995-11-01T23:59:59.000Z

    The primary major deposit of manganese in the US which can be readily mined by an in situ process is located in the Emily district of Minnesota. The US Bureau of Mines Research Centers at both the Twin Cities and Salt Lake City have developed a process for extracting and refining manganese in the form of a high-purity carbonate product. This product has been formulated into pellets by a multi-step process of drying, calcination, and induration to produce relatively high-strength formulations which are capable of being used for hot fuel gas desulfurization. These pellets, which have been developed at the University of Minnesota under joint sponsorship of the US Department of Energy and the US Bureau of Mines, appear superior to other, more expensive, formulations of zinc titanate and zinc ferrite which have previously been studied for multi-cycle loading (desulfurization) and regeneration (evolution of high-strength SO{sub 2} and restoration of pellet reactivity). Although these other formulations have been under development for the past twelve years, their prices still exceed $7 per pound. If manganese pellets perform as predicted in fixed bed testing, and if a significant number of utilities which burn high-sulfur coals incorporate combined-cycle gasification with hot coal gas desulfurization as a viable means of increasing conversion efficiencies, then the potential market for manganese pellets may be as high as 200,000 tons per year at a price not less than $3 per pound. This paper discusses the role of manganese pellets in the desulfurization process with respect to the integrated gasification combined-cycle (IGCC) for power generation.

  8. The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary...

    Open Energy Info (EERE)

    The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary Combustion Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative:...

  9. [Page Intentionally Left Blank] Life Cycle Greenhouse Gas Emissions from

    E-Print Network [OSTI]

    Reuter, Martin

    ..........................................................................11 4.2 Conventional Jet Fuel from Crude Oil2 June #12;[Page Intentionally Left Blank] #12;Life Cycle Greenhouse Gas Emissions from Alternative .......................................5 3.1 Life cycle Greenhouse Gas Emissions

  10. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Broader source: Energy.gov (indexed) [DOE]

    Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop November 12, 2014 11:00AM EST to...

  11. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30T23:59:59.000Z

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and related combustion performance. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive Powder River Basin coal (PRB) to a moderately reactive Midwestern bituminous coal (HVB) to a less reactive medium volatile Eastern bituminous coal (MVB). Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis.

  12. Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

  13. Synthesis gas production with an adjustable H{sub 2}/CO ratio through the coal gasification process: effects of coal ranks and methane addition

    SciTech Connect (OSTI)

    Yan Cao; Zhengyang Gao; Jing Jin; Hongchang Zhou; Marten Cohron; Houying Zhao; Hongying Liu; Weiping Pan [Western Kentucky University (WKU), Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology (ICSET)

    2008-05-15T23:59:59.000Z

    Direct production of synthesis gas using coal as a cheap feedstock is attractive but challenging due to its low H{sub 2}/CO ratio of generated synthesis gas. Three typical U.S. coals of different ranks were tested in a 2.5 in. coal gasifier to investigate their gasification reactivity and adjustability on H{sub 2}/CO ratio of generated synthesis gas with or without the addition of methane. Tests indicated that lower-rank coals (lignite and sub-bituminous) have higher gasification reactivity than bituminous coals. The coal gasification reactivity is correlated to its synthesis-gas yield and the total percentage of H{sub 2} and CO in the synthesis gas, but not to the H{sub 2}/CO ratio. The H{sub 2}/CO ratio of coal gasification was found to be correlated to the rank of coals, especially the H/C ratio of coals. Methane addition into the dense phase of the pyrolysis and gasification zone of the cogasification reactor could make the best use of methane in adjusting the H{sub 2}/CO ratio of the generated synthesis gas. The maximum methane conversion efficiency, which was likely correlated to its gasification reactivity, could be achieved by 70% on average for all tested coals. The actual catalytic effect of generated coal chars on methane conversion seemed coal-dependent. The coal-gasification process benefits from methane addition and subsequent conversion on the adjustment of the H{sub 2}/CO ratio of synthesis gas. The methane conversion process benefits from the use of coal chars due to their catalytic effects. This implies that there were likely synergistic effects on both. 25 refs., 3 figs., 3

  14. Assessment of the Flue Gas Recycle Strategies on Oxy-Coal Power Plants using an Exergy-based Methodology

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Assessment of the Flue Gas Recycle Strategies on Oxy- Coal Power Plants using an Exergy to be competitive with post-combustion for carbon capture on coal-fired power plants. In order to achieve is produced from coal (IEA 2012b), the development of CO2 capture technology on coal-fired power plants

  15. Process for the production of fuel gas from coal

    DOE Patents [OSTI]

    Patel, Jitendra G. (Bolingbrook, IL); Sandstrom, William A. (Chicago, IL); Tarman, Paul B. (Elmhurst, IL)

    1982-01-01T23:59:59.000Z

    An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

  16. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Volume 1, Final report

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    A major objective of the coal-fired high performance power systems (HIPPS) program is to achieve significant increases in the thermodynamic efficiency of coal use for electric power generation. Through increased efficiency, all airborne emissions can be decreased, including emissions of carbon dioxide. High Performance power systems as defined for this program are coal-fired, high efficiency systems where the combustion products from coal do not contact the gas turbine. Typically, this type of a system will involve some indirect heating of gas turbine inlet air and then topping combustion with a cleaner fuel. The topping combustion fuel can be natural gas or another relatively clean fuel. Fuel gas derived from coal is an acceptable fuel for the topping combustion. The ultimate goal for HIPPS is to, have a system that has 95 percent of its heat input from coal. Interim systems that have at least 65 percent heat input from coal are acceptable, but these systems are required to have a clear development path to a system that is 95 percent coal-fired. A three phase program has been planned for the development of HIPPS. Phase 1, reported herein, includes the development of a conceptual design for a commercial plant. Technical and economic feasibility have been analysed for this plant. Preliminary R&D on some aspects of the system were also done in Phase 1, and a Research, Development and Test plan was developed for Phase 2. Work in Phase 2 include s the testing and analysis that is required to develop the technology base for a prototype plant. This work includes pilot plant testing at a scale of around 50 MMBtu/hr heat input. The culmination of the Phase 2 effort will be a site-specific design and test plan for a prototype plant. Phase 3 is the construction and testing of this plant.

  17. Enhancing the use of coals by gas reburning-sorbent injection. Volume 3, Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company

    SciTech Connect (OSTI)

    NONE

    1994-10-01T23:59:59.000Z

    Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x}, and SO{sub 2} from a wall fired unit. A GR-SI system was designed for Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The unit is rated at 117 MW(e) (net) and is front wall fired with a pulverized bituminous coal blend. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the ``as found`` baseline of 0.98 lb/MBtu (420 mg/MJ), and to reduce emissions of S0{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an S0{sub 2} limit Of 1.8 lb/MBtu (770 mg/MJ), the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. The design natural gas input corresponds to 18% of the total heat input. Burnout (overfire) air is injected at a higher elevation to burn out fuel combustible matter at a normal excess air level of 18%. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with S0{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.

  18. Using auxiliary gas power for CCS energy needs in retrofitted coal power plants

    E-Print Network [OSTI]

    Bashadi, Sarah O.

    Adding post-combustion capture technology to existing coal-fired power plants is being considered as a near-term option for mitigating CO[subscript 2] emissions. To supply the thermal energy needed for CO[subscript 2] ...

  19. Regional GHG Emissions Stat s Greenhouse Gas and the Regional

    E-Print Network [OSTI]

    Klamath CoGen (536 MW) (300 MW) #12;6/5/2013 4 CO2 Emissions from Electricity in PNW (1990-2010 ) 25,00070.0 Historical CO2 Emissions of the NW Power System CO2 Emissions Hydro Gen Fossil Fuel Gen (NG + Coal) Wind Gen (MWa) 7 0 5,000 0.0 10.0 20.0 Annual CO2 Annual En CO2 Emissions by Resource in PNW (1995-2010) 80

  20. An Evaluation of Low-BTU Gas from Coal as an Alternate Fuel for Process Heaters 

    E-Print Network [OSTI]

    Nebeker, C. J.

    1982-01-01T23:59:59.000Z

    of these factors, the difference between coal and natural gas prices and the project life are difficult to predict. The resulting uncertainty has caused Monsanto to pursue coal gasification for process heaters with cautious optimism, on a site by site basis....

  1. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types.

    SciTech Connect (OSTI)

    Wang, M.; Wu, M.; Huo, H.; Energy Systems

    2007-04-01T23:59:59.000Z

    Since the United States began a program to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types--categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly--from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path.

  2. System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines

    SciTech Connect (OSTI)

    Shahrokh Etemad; Lance Smith; Kevin Burns

    2004-12-01T23:59:59.000Z

    Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

  3. The competition between coal and natural gas : the importance of sunk costs

    E-Print Network [OSTI]

    Ellerman, A. Denny

    1996-01-01T23:59:59.000Z

    This paper explores the seeming paradox between the predominant choice of natural gas for capacity additions to generate electricity in the United States and the continuing large share of coal in meeting incremental ...

  4. Mercury Emissions Control in Coal Combustion Systems Using Potassium Iodide: Bench-Scale and Pilot-Scale Studies

    E-Print Network [OSTI]

    Li, Ying

    Addition of halogens or halides has been reported to promote mercury removal in coal-fired power plants in the particulate phase. This is very beneficial in coal-fired power plants equipped with electrostatic (CAMR) to regulate Hg emissions from coal-fired power plants through a cap-and- trade approach.2 However

  5. Size distribution of fine Particles in Stack emissions of a 600-MWe coal-fired Power Plant

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Size distribution of fine Particles in Stack emissions of a 600-MWe coal-fired Power Plant I coal-fired power plant. Aknowledgements: French environment agency ADEME (Contract number 04-74-C0018 that was carried out in March 2006 at a 600-MWe coal-fired power plant. 51 ineris-00973267,version1-4Apr2014 Author

  6. Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    DOE Patents [OSTI]

    Grindley, T.

    1988-04-05T23:59:59.000Z

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.

  7. A fuel cycle framework for evaluating greenhouse gas emission reduction technology

    SciTech Connect (OSTI)

    Ashton, W.B.; Barns, D.W. (Pacific Northwest Lab., Richland, WA (USA)); Bradley, R.A. (USDOE Office of Policy, Planning and Analysis, Washington, DC (USA). Office of Environmental Analysis)

    1990-05-01T23:59:59.000Z

    Energy-related greenhouse gas (GHG) emissions arise from a number of fossil fuels, processes and equipment types throughout the full cycle from primary fuel production to end-use. Many technology alternatives are available for reducing emissions based on efficiency improvements, fuel switching to low-emission fuels, GHG removal, and changes in end-use demand. To conduct systematic analysis of how new technologies can be used to alter current emission levels, a conceptual framework helps develop a comprehensive picture of both the primary and secondary impacts of a new technology. This paper describes a broad generic fuel cycle framework which is useful for this purpose. The framework is used for cataloging emission source technologies and for evaluating technology solutions to reduce GHG emissions. It is important to evaluate fuel mix tradeoffs when investigating various technology strategies for emission reductions. For instance, while substituting natural gas for coal or oil in end-use applications to reduce CO{sub 2} emissions, natural gas emissions of methane in the production phase of the fuel cycle may increase. Example uses of the framework are given.

  8. Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report No. 23, April 1--June 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-15T23:59:59.000Z

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x} and sulfur (SO{sub x}), on two coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential and cyclone fired. Work on a third unit, wall fired, has been stopped because of funding limitations. Specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. This project is conducted in three phases at each site: (1) Design and Permitting, (2) Construction and Startup, and (3) Operation, Data Collection, Reporting and Disposition. In phase AIII at Hennepin - Testing, Data Collection, Reporting and Disposition - Gas Reburning runs were made that indicate as high as 77% reduction in NO{sub x} emission using about 18% gas. Gas Reburning - Sorbent Injection test results indicated as high as 62% reduction in S0{sub 2}. A year of long term testing was completed in October, 1992.

  9. Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.

    SciTech Connect (OSTI)

    Parkinson, W. J. (William Jerry),

    2003-01-01T23:59:59.000Z

    In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

  10. BioCoComb -- Gasification of biomass and co-combustion of the gas in a pulverized-coal-boiler

    SciTech Connect (OSTI)

    Anderl, H.; Zotter, T.; Mory, A.

    1999-07-01T23:59:59.000Z

    In a demonstration project supported by an European Community Thermie Fund a biomass gasifier for bark, wood chips, saw dust, etc. has been installed by Austrian Energy and Environment at the 137 MW{sub el} pulverized-coal fired power station in Zeltweg, Austria. The project title BioCoComb is an abbreviation for Preparation of Biofuel for Co-Combustion, where co-combustion means combustion together with coal in existing power plants. According to the thermal capacity of 10 MW the produced gas substitutes approx. 3% of the coal fired in the boiler. Only the coarse fraction of the biomass has to pass a shredder and is then fed together with the fine fraction without any further pretreatment into the gasifier. In the gasification process the biomass will combust in a substoichiometric atmosphere, create the necessary temperature of 820 C and partly gasify due to the lack of oxygen in the combustion chamber (autothermal operation). The gasifier uses circulating fluidized bed technology, which guarantees even relatively low temperatures in all parts of the gasifier to prevent slagging. The intense motion of the bed material also favors attrition of the biomass particles. Via a hot gas duct the produced low calorific value (LCV) gas is directly led into the furnace of the existing pulverized coal fired boiler for combustion. The gas also contains fine wood char particles, that can pass the retention cyclone and burn out in the furnace of the coal boiler. The main advantages of the BioCoComb concept are: low gas quality sufficient for co-firing; no gas cleaning or cooling; no predrying of the biomass; relatively low temperatures in the gasifier to prevent slagging; favorable effects on power plant emissions (CO{sub 2}, NO{sub x}); no severe modifications of the existing coal fired boiler; and high flexibility in arranging and integrating the main components into existing plants. The plant started its trial run in November 1997 and has been in successful commercial operation since January 1998.

  11. Should we transport coal, gas, or electricity: cost, efficiency, and environmental implications

    SciTech Connect (OSTI)

    Joule A. Bergerson; Lester B. Lave [Carnegie Mellon University, Pittsburgh, PA (US)

    2005-08-15T23:59:59.000Z

    The authors examine the life cycle costs, environmental discharges, and deaths of moving coal via rail, coal to synthetic natural gas via pipeline, and electricity via wire from the Powder River Basin (PRB) in Wyoming to Texas. Which method has least social cost depends on how much additional investment in rail line, transmission, or pipeline infrastructure is required, as well as how much and how far energy is transported. If the existing rail lines have unused capacity, coal by rail is the cheapest method (up to 200 miles of additional track could be added). If no infrastructure exists, greater distances and larger amounts of energy favor coal by rail and gasified coal by pipeline over electricity transmission. For 1,000 miles and 9 gigawatts of power, a gas pipeline is cheapest, has less environmental discharges, uses less land, and is least obtrusive. 28 refs., 4 figs., 3 tabs.

  12. Nuclear Power PROS -`No' greenhouse gas emissions

    E-Print Network [OSTI]

    Toohey, Darin W.

    /transporting U! Coal Power PROS -Cheep -Easy to attain (Russia and US) -Infrastructure and technology well known provides a clean base load electricity that produces waste just a size of a coke can as compared to a coal,000 tons of coal to produce same amount of electricity) -Natural abundance of U (48th among the most

  13. Application of microturbines to control emissions from associated gas

    DOE Patents [OSTI]

    Schmidt, Darren D.

    2013-04-16T23:59:59.000Z

    A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

  14. Characterization of trace element emissions from a pilot-scale coal combustion unit

    SciTech Connect (OSTI)

    Hargis, R.A.; Pennline, H.W. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center

    1996-12-31T23:59:59.000Z

    The flue gas cleanup projects in the in-house research program at the Pittsburgh Energy Technology Center range from laboratory-scale work to testing with the combustion products of coal at a scale equivalent to about 0.75 MW of electric power generation. The largest unit is a 500-pound-per-hour coal combustor, complete with ductwork, spray dryer, baghouse, and ancillary equipment. Over the past year, tests to investigate the distribution and fate of trace elements have been conducted with this pilot unit. These investigations are an integral component of the Air Toxics and Fine Particulate Control subprogrammatic area of the AR and ET Power Systems Program. The overall effort of this area focuses on the improvement of existing technologies and the development of new technologies for the control of hazardous air pollutants and fine particulates associated with coal combustion. A major endeavor within the subprogram is the characterization of trace elements in flue gas from coal combustion, including a special emphasis on mercury speciation. The study described in this paper examined the results from an investigation on the pilot unit; the distribution of trace elements in the ash streams and flue gas stream, material recoveries for the system, baghouse removal efficiencies, and enrichment of ash particulate. Also, a preliminary comparison between the results from the pilot unit and a full-scale utility that burned coal from the same coal batch is provided.

  15. Systems Study for Improving Gas Turbine Performance for Coal/IGCC Application

    SciTech Connect (OSTI)

    Ashok K. Anand

    2005-12-16T23:59:59.000Z

    This study identifies vital gas turbine (GT) parameters and quantifies their influence in meeting the DOE Turbine Program overall Integrated Gasification Combined Cycle (IGCC) plant goals of 50% net HHV efficiency, $1000/kW capital cost, and low emissions. The project analytically evaluates GE advanced F class air cooled technology level gas turbine conceptual cycle designs and determines their influence on IGCC plant level performance including impact of Carbon capture. This report summarizes the work accomplished in each of the following six Tasks. Task 1.0--Overall IGCC Plant Level Requirements Identification: Plant level requirements were identified, and compared with DOE's IGCC Goal of achieving 50% Net HHV Efficiency and $1000/KW by the Year 2008, through use of a Six Sigma Quality Functional Deployment (QFD) Tool. This analysis resulted in 7 GT System Level Parameters as the most significant. Task 2.0--Requirements Prioritization/Flow-Down to GT Subsystem Level: GT requirements were identified, analyzed and prioritized relative to achieving plant level goals, and compared with the flow down of power island goals through use of a Six Sigma QFD Tool. This analysis resulted in 11 GT Cycle Design Parameters being selected as the most significant. Task 3.0--IGCC Conceptual System Analysis: A Baseline IGCC Plant configuration was chosen, and an IGCC simulation analysis model was constructed, validated against published performance data and then optimized by including air extraction heat recovery and GE steam turbine model. Baseline IGCC based on GE 207FA+e gas turbine combined cycle has net HHV efficiency of 40.5% and net output nominally of 526 Megawatts at NOx emission level of 15 ppmvd{at}15% corrected O2. 18 advanced F technology GT cycle design options were developed to provide performance targets with increased output and/or efficiency with low NOx emissions. Task 4.0--Gas Turbine Cycle Options vs. Requirements Evaluation: Influence coefficients on 4 key IGCC plant level parameters (IGCC Net Efficiency, IGCC Net Output, GT Output, NOx Emissions) of 11 GT identified cycle parameters were determined. Results indicate that IGCC net efficiency HHV gains up to 2.8 pts (40.5% to 43.3%) and IGCC net output gains up to 35% are possible due to improvements in GT technology alone with single digit NOx emission levels. Task 5.0--Recommendations for GT Technical Improvements: A trade off analysis was conducted utilizing the performance results of 18 gas turbine (GT) conceptual designs, and three most promising GT candidates are recommended. A roadmap for turbine technology development is proposed for future coal based IGCC power plants. Task 6.0--Determine Carbon Capture Impact on IGCC Plant Level Performance: A gas turbine performance model for high Hydrogen fuel gas turbine was created and integrated to an IGCC system performance model, which also included newly created models for moisturized syngas, gas shift and CO2 removal subsystems. This performance model was analyzed for two gas turbine technology based subsystems each with two Carbon removal design options of 85% and 88% respectively. The results show larger IGCC performance penalty for gas turbine designs with higher firing temperature and higher Carbon removal.

  16. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1990--June 1991

    SciTech Connect (OSTI)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01T23:59:59.000Z

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  17. Mercury emission behavior during isolated coal particle combustion

    E-Print Network [OSTI]

    Puchakayala, Madhu Babu

    2009-05-15T23:59:59.000Z

    Of all the trace elements emitted during coal combustion, mercury is most problematic. Mercury from the atmosphere enters into oceanic and terrestrial waters. Part of the inorganic Hg in water is converted into organic Hg (CH3Hg), which is toxic...

  18. Coal-fired gas turbine for locomotive propulsion

    SciTech Connect (OSTI)

    Green, L. Jr.

    1987-01-01T23:59:59.000Z

    Substitution of a deeply-cleaned coal-water slurry fuel for bulk solid coal in an atmospheric fluidized-bed combustor permits a sequence of evolutionary steps which can convert the conventional AFBC into a pressurized, combustion-stirred, fluidized-bed heat exchanger compact enough to propel a standard locomotive by use of a closed Brayton power cycle.

  19. Axion emission from a magnetized neutron gas

    SciTech Connect (OSTI)

    Skobelev, V. V., E-mail: v.skobelev@inbox.ru [Moscow State Industrial University (Russian Federation)

    2011-01-15T23:59:59.000Z

    By using the polarization density matrix for a neutron in a magnetic field, the axion luminosity of magnetic neutron stars that is associated with the flip of the anomalous magnetic moment of degenerate nonrelativistic neutrons is calculated. It is shown that, at values of the magnetic-field induction in the region B Greater-Than-Or-Equivalent-To 10{sup 18} G, this mechanism of axion emission is dominant in 'young' neutron stars of temperature about a few tens of MeV units. At B {approx} 10{sup 17} G, it is one of the basic mechanisms. The Fermi energy of a degenerate neutron gas in a magnetic field is found, and it is shown that there is no such mechanism of axion emission in the degenerate case.

  20. Greenhouse gas performance standards: From each according to his emission intensity or from each according to his emissions?

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2013-01-01T23:59:59.000Z

    status. Sector Conv. Oil and Gas Oilsand Coal Electricitypointing out that for oil and gas sector and oilsand sector,that for Conventional oil and gas, Oilsands, Fertilizers and

  1. Transportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation

    E-Print Network [OSTI]

    .S. CO2 emissions sources. U.S. CO2 transportation emissions sources by mode. #12;Center% of the carbon dioxide we produce. As such it is a leading candidate for greenhouse gas ((GHG) (CO2, NH4, HFCsTransportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation Oak Ridge

  2. Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report No. 11, April 1--June 30, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-07-19T23:59:59.000Z

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on two coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential and cyclone fired. Work on a third unit, wall fired, is ``on hold`` because of funding limitations. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80{endash}85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device.

  3. Near-Zero Emissions Oxy-Combustion Flue Gas Purification

    SciTech Connect (OSTI)

    Minish Shah; Nich Degenstein; Monica Zanfir; Rahul Solunke; Ravi Kumar; Jennifer Bugayong; Ken Burgers

    2012-06-30T23:59:59.000Z

    The objectives of this project were to carry out an experimental program to enable development and design of near zero emissions (NZE) CO{sub 2} processing unit (CPU) for oxy-combustion plants burning high and low sulfur coals and to perform commercial viability assessment. The NZE CPU was proposed to produce high purity CO{sub 2} from the oxycombustion flue gas, to achieve > 95% CO{sub 2} capture rate and to achieve near zero atmospheric emissions of criteria pollutants. Two SOx/NOx removal technologies were proposed depending on the SOx levels in the flue gas. The activated carbon process was proposed for power plants burning low sulfur coal and the sulfuric acid process was proposed for power plants burning high sulfur coal. For plants burning high sulfur coal, the sulfuric acid process would convert SOx and NOx in to commercial grade sulfuric and nitric acid by-products, thus reducing operating costs associated with SOx/NOx removal. For plants burning low sulfur coal, investment in separate FGD and SCR equipment for producing high purity CO{sub 2} would not be needed. To achieve high CO{sub 2} capture rates, a hybrid process that combines cold box and VPSA (vacuum pressure swing adsorption) was proposed. In the proposed hybrid process, up to 90% of CO{sub 2} in the cold box vent stream would be recovered by CO{sub 2} VPSA and then it would be recycled and mixed with the flue gas stream upstream of the compressor. The overall recovery from the process will be > 95%. The activated carbon process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx, thus exceeding the performance targets of >99% and >95%, respectively. The process was also found to be suitable for power plants burning both low and high sulfur coals. Sulfuric acid process did not meet the performance expectations. Although it could achieve high SOx (>99%) and NOx (>90%) removal efficiencies, it could not produce by-product sulfuric and nitric acids that meet the commercial product specifications. The sulfuric acid will have to be disposed of by neutralization, thus lowering the value of the technology to same level as that of the activated carbon process. Therefore, it was decided to discontinue any further efforts on sulfuric acid process. Because of encouraging results on the activated carbon process, it was decided to add a new subtask on testing this process in a dual bed continuous unit. A 40 days long continuous operation test confirmed the excellent SOx/NOx removal efficiencies achieved in the batch operation. This test also indicated the need for further efforts on optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level. The VPSA process was tested in a pilot unit. It achieved CO{sub 2} recovery of > 95% and CO{sub 2} purity of >80% (by vol.) from simulated cold box feed streams. The overall CO{sub 2} recovery from the cold box VPSA hybrid process was projected to be >99% for plants with low air ingress (2%) and >97% for plants with high air ingress (10%). Economic analysis was performed to assess value of the NZE CPU. The advantage of NZE CPU over conventional CPU is only apparent when CO{sub 2} capture and avoided costs are compared. For greenfield plants, cost of avoided CO{sub 2} and cost of captured CO{sub 2} are generally about 11-14% lower using the NZE CPU compared to using a conventional CPU. For older plants with high air intrusion, the cost of avoided CO{sub 2} and capture CO{sub 2} are about 18-24% lower using the NZE CPU. Lower capture costs for NZE CPU are due to lower capital investment in FGD/SCR and higher CO{sub 2} capture efficiency. In summary, as a result of this project, we now have developed one technology option for NZE CPU based on the activated carbon process and coldbox-VPSA hybrid process. This technology is projected to work for both low and high sulfur coal plants. The NZE CPU technology is projected to achieve near zero stack emissions

  4. DETERMINATION OF GUIDANCE VALUES FOR CLOSED LANDFILL GAS EMISSIONS

    E-Print Network [OSTI]

    Boyer, Edmond

    DETERMINATION OF GUIDANCE VALUES FOR CLOSED LANDFILL GAS EMISSIONS O. BOUR*, S. BERGER**, C Gambetta, 74 000 Annecy SUMMARY: In order to promote active landfill gas collection and treatment or natural attenuation, it is necessary to identify trigger values concerning landfill gas emissions

  5. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

  6. Experimental Characterization and Molecular Study of Natural Gas Mixtures

    E-Print Network [OSTI]

    Cristancho Blanco, Diego Edison

    2011-08-08T23:59:59.000Z

    ) 5, advanced gas turbine 5 and coal-based zero emissions power plant 6 are some of the technological advances recently reported. It is important to note that these technologies are adaptable to natural gas feedstock. However, until clean coal...

  7. Summary report: Trace substance emissions from a coal-fired gasification plant

    SciTech Connect (OSTI)

    Williams, A.; Wetherold, B.; Maxwell, D.

    1996-10-16T23:59:59.000Z

    The U.S. Department of Energy (DOE), the Electric Power Research Institute (EPRI), and Louisiana Gasification Technology Inc. (LGTI) sponsored field sampling and analyses to characterize emissions of trace substances from LGTI`s integrated gasification combined cycle (IGCC) power plant at Plaquemine, Louisiana. The results indicate that emissions from the LGTI facility were quite low, often in the ppb levels, and comparable to a well-controlled pulverized coal-fired power plant.

  8. Coal-bed methane - An unconventional but viable source of natural gas

    SciTech Connect (OSTI)

    Hallinger, D.E. (Southern California Gas Co., Los Angeles (United States))

    1991-02-01T23:59:59.000Z

    As of December 31, 1988, the potential Gas Committee, a group of industry experts, estimates that the remaining undiscovered potential supplies of natural gas amounted to 795.6 trillion cubic feet (TCF) in the United States, including the offshore areas. Besides the conventional sources, the sandstone and carbonate reservoirs that geologists have been looking for since Drake, there are a number of unconventional sources of natural gas. One of these, coal-bed methane (CBM) is being actively developed today and promises to provide significant additions to the proved reserves of this nation in the next ten years. The potential supplies of CBM are variously estimates to be between 400 to 1,000 tcf, or equal to the remaining undiscovered conventional supplies of natural gas. If these estimates are real, they will have a profound effect on forecasts of future prices and availability of natural gas. How valid are these estimates At what rate will this new source of natural gas come on stream The answers to these questions are dependent in part upon the uniqueness of the coal reservoir. Coal can contain more natural gas than a comparable size conventional reservoir. A coal reservoir exhibits positive production decline instead of the negative decline of conventional reservoirs. There are legal and economic considerations that will affect the development of this relatively new and exciting source of natural gas. All of these questions are discussed by the author.

  9. Comment on the “Role of SO2 for Elemental Mercury Removal from Coal Combustion Flue Gas by Activated Carbon”

    SciTech Connect (OSTI)

    Granite, E.J.; Presto, A.A.

    2008-09-01T23:59:59.000Z

    A communication in response to the excellent and timely paper entitled “Role of SO2 for Elemental Mercury Removal from Coal Combustion Flue Gas by Activated Carbon”.

  10. How Does Wind Affect Coal? Cycling, Emissions, and Costs (Presentation)

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Milligan, M.

    2011-05-01T23:59:59.000Z

    This presentation describes in general fashion what the emissions and economic impacts of wind power generation on fossil power plants looks like and also offers some mitigation ideas.

  11. Coal industry annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

  12. Geologic assessment of natural gas from coal seams in the Warrior Basin, Alabama. Topical report, September 1985-September 1986

    SciTech Connect (OSTI)

    McFall, K.S.; Wicks, D.E.; Kuuskraa, V.A.

    1986-11-01T23:59:59.000Z

    This study provides a detailed geologic assessment of the coal deposits in the Warrior Basin area that have high potential for natural gas from coal seams. The estimate of the natural gas in place in the four major coal groups is 19.8 trillion cubic feet. Although the bulk of the gas in place is in the deeper areally extensive Black Creek and Mary Lee coal groups, the more shallow Pratt coal group also shows good potential for coal seam gas. The most concentrated areas of methane in place are in the eastern portion of the Warrior Basin. These areas coincide with thick accumulations of high rank coals and their associated higher gas contents. These areas also appear to have been structurally altered, leading to enhanced permeability to gas and water. Thus, the eastern portions of the basin appear more favorable for coalbed methane production due to high gas contents, attractive coal thicknesses, closely-spaced coal cleats and joints, and moderate depths to the coal horizons.

  13. Greenhouse gas emissions in biogas production systems

    E-Print Network [OSTI]

    Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

    2009-01-01T23:59:59.000Z

    Cameron KC. Nitrous oxide emissions from two dairy pastureand land use on N 2 O emissions from an imperfectly drainedoptions for N 2 O emissions from differently managed

  14. Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmenta...

    Open Energy Info (EERE)

    Liberalizing Trade in Environmental Goods Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental Goods...

  15. The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport...

    Open Energy Info (EERE)

    calculation-toolsall-tools Cost: Free The Greenhouse Gas Protocol tool for mobile combustion is a free Excel spreadsheet calculator designed to calculate GHG emissions...

  16. Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials...

    Open Energy Info (EERE)

    Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Agency...

  17. Revised Draft Guidance on Consideration of Greenhouse Gas Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    how Federal departments and agencies should consider the effects of greenhouse gas emissions and climate change in their National Environmental Policy Act reviews. The revised...

  18. Greenhouse Gas Emissions from Aviation and Marine Transportation...

    Open Energy Info (EERE)

    Aviation and Marine Transportation: Mitigation Potentials and Policies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Emissions from Aviation and Marine...

  19. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlling Methane Emissions in the Natural Gas Sector: A Review of Federal & State Regulatory Frameworks Governing Production, Processing, Transmission, and Distribution...

  20. Costa Rica-Mitigation of Greenhouse Gas Emissions through Avoided...

    Open Energy Info (EERE)

    Value Areas Jump to: navigation, search Name Costa Rica-Mitigation of Greenhouse Gas Emissions through Avoided Deforestation of Tropical Rainforests on Privately-owned Lands in...

  1. Permeability changes in coal resulting from gas desorption. Quarterly report, August 16, 1989--November 15, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31T23:59:59.000Z

    The goal of this task is to accurately measure the elongation and shrinkage exhibited by coal as it sorbs and desorbs methane gas at elevated pressure. Our research group has discussed several possible methods to measure this strain, including: optical microscopy, laser interferometry, conventional strain gauges, and LVDT strain gauges. There are advantages and disadvantages of each method. We had planned to use optical microscopy but, on further investigation, this approach will be less satisfactory than the strain gauge method. Accordingly, we have switched our focws to the use of strain gauges. Conventional strain gauges also involve potential problems which must be overcome, including: (1) Contrast in strength between the coal and the strain gauge must be minimized, (2) The proper glue that is neither too strong or too weak must be used to affix the strain gauge to the coal or the strain in the coal will not be accurately transmitted to the gauge, and (3) We must be aware that the total strain in the coal may not be homogeneously distributed through the specimen (due either either to boundary effects or contrast in composition of the coal layers). A high pressure chamber for sorption-strain experiments is currently being tested an modified and tested. The chamber will accommodate several small blocks of coal simultaneously. This will optimize efficiency, owing to the long times required to reequilibrate the coal blocks to changes in methane pressure.

  2. Forecasting long-term gas production of dewatered coal seams and fractured gas shales

    SciTech Connect (OSTI)

    Spivey, J.P.; Semmelbeck, M.E.

    1995-12-31T23:59:59.000Z

    Production decline curves are routinely used by engineers to predict the future performance of oil and gas wells. Because the results of decline curve predictions are used for calculating asset value and estimating future revenue, they are one of the most important tools reservoir engineers use. There are numerous variations on the basic exponential or hyperbolic decline analysis method. Fetkovitch and other have extended the decline curve analysis method to handle gas wells properly and to be able to estimate reservoir properties from the analysis of these data. However, there has been considerable drilling activity in the last 10 years into unconventional reservoirs whose wells do not follow the traditional production decline characteristic shapes. Among these problem reservoirs are coalbed methane and fractured shale reservoirs. A procedure is presented which allows forecasting long range performance of dewatered coal and fractured gas shale reservoirs having nonlinear adsorption isotherms, using constant pressure solutions to the flow equation for slightly compressible liquids. A correlation is presented to show the range of applicability of this procedure.

  3. Greenhouse gas performance standards: From each according to his emission intensity or from each according to his emissions?

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2013-01-01T23:59:59.000Z

    2009. Stephen P Holland. Emissions taxes versus intensityindustry’s greenhouse gas emissions. Environmental Research2008. John CV Pezzey. Emission taxes and tradeable permits a

  4. Emissions from burning tire-derived fuel (TDF): Comparison of batch combustion of tire chips and continuous combustion of tire crumb mixed with coal

    SciTech Connect (OSTI)

    Levendis, Y.A.; Atal, A. [Northeastern Univ., Boston, MA (United States); Carlson, J.B. [Army Natick R, Natick, MA (United States)

    1998-04-01T23:59:59.000Z

    This laboratory study investigated the emissions of waste automobile tire-derived fuel (TDF). This fuel was burned in two different modes, either segmented in small pieces (tire chunks) or in pulverized form (tire crumb). Tire chunks were burned in fixed beds in batch mode in a horizontal furnace. Tire crumb was burned in a continous flow mode, dispersed in air, either alone or mixed with pulverized coal, in a verical furnace. The gas flow was laminar, the gas temperature was 1000{degrees}C in all cases, and the residence times of the combustion products in the furnaces were similar. Chunks of waste tires had dimensions in the range of 3-9 {mu}m, tire crumb was size-classified to be 180-212 {mu}m and the high volatile bituminous coal, used herein, was 63-75. The fuel mass loading in the furnaces was varied. The following emissions were monitored at the exit of the furnaces: CO, CO{sub 2}, NO{sub x} polynuclear aromatic hydrocarbon (PAH) and particulates. Results showed that combustion of TDF in fixed beds resulted in large yields (emissions per mass of fuel burned) of CO, soot and PAHs. Such yields increased with the size of the bed. CO, soot and PAHs yields from batch combustion of fixed beds of coal were lower by more than an order of magnitude than those from fixed beds of TDF. Continuous pulverized fuel combustion of TDF (tire crumb) resulted in dramatically lower yields of CO, soot and PAHs than those from batch combustion, especially when TDF was mixed with pulverized coal. To the contrary, switching the mode of combustion of coal (from fixed beds to pulverized fuel) did not result in large differences in the aforementioned emissions. CO{sub 2}, and, especially, NO{sub x} yields from batch combustion of TDF were lower than those from coal. Emissions of NO{sub x} were somewhat lower from batch combustion than from pulverized fuel combustion of TDF and coal.

  5. Desulfurization of hot fuel gas produced from high-chlorine Illinois coals. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    O`Brien, W.S. [Southern Illinois Univ., Carbondale, IL (United States); Gupta, R.P. [Research Triangle Inst., Durham, NC (United States)

    1992-09-01T23:59:59.000Z

    There is a primary need to increase the utilization of Illinois coal resources by developing new methods of converting the coal into electricity by highly efficient and environmentally acceptable systems. New coal gasification processes are now being developed that can generate electricity with high thermal efficiency in either an integrated gasification combined cycle (IGCC) system or a molten carbonate fuel cell (MCFC). Both of-these new coal-to-electricity pathways require that the coal-derived fuel gas be at a high temperature and be free of potential pollutants, such as-sulfur compounds. Unfortunately, some high-sulfur Illinois coals also contain significant chlorine which converts into hydrogen chloride (HCI) in the coal gas. This project investigates the effect of HCI, in concentrations typical of a gasifier fed by high-chlorine Illinois coals, on zinc-titanate sorbents that are currently being developed for H{sub 2}S and COS removal from hot coal gas. This study is designed to identify any deleterious changes in the sorbent caused by HCI, both in adsorptive operation and in the regeneration cycle, and will pave the way to modify the sorbent formulation or the process operating procedure to remove HCl along with the H{sub 2}S and COS from hot coal gas. This will negate any harmful consequences Of utilizing high-chlorine Illinois coal in these processes.

  6. Evaluation of BOC'S Lotox Process for the Oxidation of Elemental Mercury in Flue Gas from a Coal-Fired Boiler

    SciTech Connect (OSTI)

    Khalid Omar

    2008-04-30T23:59:59.000Z

    Linde's Low Temperature Oxidation (LoTOx{trademark}) process has been demonstrated successfully to remove more than 90% of the NOx emitted from coal-fired boilers. Preliminary findings have shown that the LoTOx{trademark} process can be as effective for mercury emissions control as well. In the LoTOx{trademark} system, ozone is injected into a reaction duct, where NO and NO{sub 2} in the flue gas are selectively oxidized at relatively low temperatures and converted to higher nitrogen oxides, which are highly water soluble. Elemental mercury in the flue gas also reacts with ozone to form oxidized mercury, which unlike elemental mercury is water-soluble. Nitrogen oxides and oxidized mercury in the reaction duct and residual ozone, if any, are effectively removed in a wet scrubber. Thus, LoTOx{trademark} appears to be a viable technology for multi-pollutant emission control. To prove the feasibility of mercury oxidation with ozone in support of marketing LoTOx{trademark} for multi-pollutant emission control, Linde has performed a series of bench-scale tests with simulated flue gas streams. However, in order to enable Linde to evaluate the performance of the process with a flue gas stream that is more representative of a coal-fired boiler; one of Linde's bench-scale LoTOx{trademark} units was installed at WRI's combustion test facility (CTF), where a slipstream of flue gas from the CTF was treated. The degree of mercury and NOx oxidation taking place in the LoTOx{trademark} unit was quantified as a function of ozone injection rates, reactor temperatures, residence time, and ranks of coals. The overall conclusions from these tests are: (1) over 80% reduction in elemental mercury and over 90% reduction of NOx can be achieved with an O{sub 3}/NO{sub X} molar ratio of less than two, (2) in most of the cases, a lower reactor temperature is preferred over a higher temperature due to ozone dissociation, however, the combination of both low residence time and high temperature proved to be effective in the oxidation of both NOx and elemental mercury, and (3) higher residence time, lower temperature, and higher molar ratio of O{sub 3}/NOx contributed to the highest elemental mercury and NOx reductions.

  7. An Assessment of Greenhouse Gas Emissions-Weighted

    E-Print Network [OSTI]

    Economic Analysis ­ Greenhouse Gas Emissions Prepared by Hawai`i Natural Energy Institute School of OceanAn Assessment of Greenhouse Gas Emissions-Weighted Clean Energy Standards Prepared for the U Hawai`i Distributed Energy Resource Technologies for Energy Security Subtask 12.3 Second Deliverable

  8. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power

    SciTech Connect (OSTI)

    Milbrandt, A.; Mann, M.

    2009-02-01T23:59:59.000Z

    This paper estimates the quantity of hydrogen that could be produced from coal, natural gas, nuclear, and hydro power by county in the United States. The study estimates that more than 72 million tonnes of hydrogen can be produced from coal, natural gas, nuclear, and hydro power per year in the country (considering only 30% of their total annual production). The United States consumed about 396 million tonnes of gasoline in 2007; therefore, the report suggests the amount of hydrogen from these sources could displace about 80% of this consumption.

  9. Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050

    E-Print Network [OSTI]

    Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

    2008-01-01T23:59:59.000Z

    Hydrogen (Natural Gas, pipeline) Hydrogen (Natural Gas,liquid H2 truck) Hydrogen (Coal, pipeline) Electricity (production? Hydrogen Production Mix Natural Gas, pipeline,

  10. Preliminary evaluation of coal and coalbed gas resource potential of western Clay County, Mississippi

    SciTech Connect (OSTI)

    Henderson, K.S.; Gazzier, C.A.

    1989-01-01T23:59:59.000Z

    After reviewing all previously published data it appeared that if the Mississippi portion of the Black Warrior Basin contained potentially economic seams of coal the thicker downdip section was a more likely place to look. The generosity of several exploration companies in providing an extensive suite of logs that could be correlated with samples contained in the Bureau of Geology Sample Library allowed the authors to correlate and identify these upper Pottsville coal groups previously unknown in Mississippi. The purpose of this study was to identify the potential for coal resources in western Clay County, Mississippi, and to correlate laterally any coal seams identified in order to develop a gross volumetric estimate of in-place resources. It became apparent that many of the shallow coal seams (1,800 feet-3,700 feet) had appreciable quantities of gas, for they exhibited excellent gas shows when drilled. Efforts to determine rank for these coals were made by vitrinite reflectance and thus a preliminary estimate was also made for the potential coalbed methane reserves. 73 refs., 8 figs., 3 tabs.

  11. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl

    2003-05-15T23:59:59.000Z

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

  12. Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities

    E-Print Network [OSTI]

    Hagan, Colin R.

    2012-01-01T23:59:59.000Z

    associated with coal generation occur at the smokestack. Theassociated with coal-fired electricity generation by up toCoal, Domestic Natural Gas, LNG, and SNG for Electricity Generation,

  13. Advanced coal-fueled gas turbine systems, Volume 1: Annual technical progress report

    SciTech Connect (OSTI)

    Not Available

    1988-07-01T23:59:59.000Z

    This is the first annual technical progress report for The Advanced Coal-Fueled Gas Turbine Systems Program. Two semi-annual technical progress reports were previously issued. This program was initially by the Department of Energy as an R D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular three-stage slagging combustor concept. Fuel-rich conditions inhibit NO/sub x/ formation from fuel nitrogen in the first stage; coal ash and sulfur is subsequently removed from the combustion gases by an impact separator in the second stage. Final oxidation of the fuel-rich gases and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage. 27 figs., 15 tabs.

  14. Synthesis and development of processes for the recovery of sulfur from acid gases. Part 1, Development of a high-temperature process for removal of H{sub 2}S from coal gas using limestone -- thermodynamic and kinetic considerations; Part 2, Development of a zero-emissions process for recovery of sulfur from acid gas streams

    SciTech Connect (OSTI)

    Towler, G.P.; Lynn, S.

    1993-05-01T23:59:59.000Z

    Limestone can be used more effectively as a sorbent for H{sub 2}S in high-temperature gas-cleaning applications if it is prevented from undergoing calcination. Sorption of H{sub 2}S by limestone is impeded by sintering of the product CaS layer. Sintering of CaS is catalyzed by CO{sub 2}, but is not affected by N{sub 2} or H{sub 2}. The kinetics of CaS sintering was determined for the temperature range 750--900{degrees}C. When hydrogen sulfide is heated above 600{degrees}C in the presence of carbon dioxide elemental sulfur is formed. The rate-limiting step of elemental sulfur formation is thermal decomposition of H{sub 2}S. Part of the hydrogen thereby produced reacts with CO{sub 2}, forming CO via the water-gas-shift reaction. The equilibrium of H{sub 2}S decomposition is therefore shifted to favor the formation of elemental sulfur. The main byproduct is COS, formed by a reaction between CO{sub 2} and H{sub 2}S that is analogous to the water-gas-shift reaction. Smaller amounts of SO{sub 2} and CS{sub 2} also form. Molybdenum disulfide is a strong catalyst for H{sub 2}S decomposition in the presence of CO{sub 2}. A process for recovery of sulfur from H{sub 2}S using this chemistry is as follows: Hydrogen sulfide is heated in a high-temperature reactor in the presence of CO{sub 2} and a suitable catalyst. The primary products of the overall reaction are S{sub 2}, CO, H{sub 2} and H{sub 2}O. Rapid quenching of the reaction mixture to roughly 600{degrees}C prevents loss Of S{sub 2} during cooling. Carbonyl sulfide is removed from the product gas by hydrolysis back to CO{sub 2} and H{sub 2}S. Unreacted CO{sub 2} and H{sub 2}S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H{sub 2} and CO, which recovers the hydrogen value from the H{sub 2}S. This process is economically favorable compared to the existing sulfur-recovery technology and allows emissions of sulfur-containing gases to be controlled to very low levels.

  15. Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas

    SciTech Connect (OSTI)

    Turk, Brian; Gupta, Raghubir; Sharma, Pradeepkumar; Albritton, Johnny; Jamal, Aqil

    2010-09-30T23:59:59.000Z

    One of the key obstacles for the introduction of commercial gasification technology for the production of power with Integrated Gasification Combined Cycle (IGCC) plants or the production of value added chemicals, transportation fuels, and hydrogen has been the cost of these systems. This situation is particularly challenging because the United States has ample coal resources available as raw materials and effective use of these raw materials could help us meet our energy and transportation fuel needs while significantly reducing our need to import oil. One component of the cost of these systems that faces strong challenges for continuous improvement is removing the undesirable components present in the syngas. The need to limit the increase in cost of electricity to < 35% for new coal-based power plants which include CO{sub 2} capture and sequestration addresses both the growing social concern for global climate change resulting from the emission of greenhouse gas and in particular CO{sub 2} and the need to control cost increases to power production necessary to meet this social objective. Similar improvements to technologies for trace contaminants are getting similar pressure to reduce environmental emissions and reduce production costs for the syngas to enable production of chemicals from coal that is cost competitive with oil and natural gas. RTI, with DOE/NETL support, has been developing sorbent technologies that enable capture of trace contaminants and CO{sub 2} at temperatures above 400 °F that achieve better capture performance, lower costs and higher thermal efficiency. This report describes the specific work of sorbent development for mercury (Hg), arsenic (As), selenium (Se), cadmium (Cd), and phosphorous (P) and CO{sub 2} removal. Because the typical concentrations of Hg, As, Se, Cd, and P are less than 10 ppmv, the focus has been on single-use sorbents with sufficient capacity to ensure replacement costs are cost effective. The research in this report describes the development efforts which expand this sorbent development effort to include Se, Cd, and P as well as Hg and As. Additional research has focused on improving removal performance with the goal of achieving effluent concentrations that are suitable for chemical production applications. By contrast, sorbent development for CO{sub 2} capture has focused on regenerable sorbents that capture the CO{sub 2} byproduct at higher CO{sub 2} pressures. Previous research on CO{sub 2} sorbents has demonstrated that the most challenging aspect of developing CO{sub 2} sorbents is regeneration. The research documented in this report investigates options to improve regeneration of the CO{sub 2} capture sorbents. This research includes effort on addressing existing regeneration limitations for sorbents previously developed and new approaches that focus initially on the regeneration performance of the sorbent.

  16. Clean Coal Technology III: 10 MW Demonstration of Gas Suspension Absorption final project performance and economics report

    SciTech Connect (OSTI)

    Hsu, F.E.

    1995-08-01T23:59:59.000Z

    The 10 MW Demonstration of the Gas Suspension Absorption (GSA) program is a government and industry co-funded technology development. The objective of the project is to demonstrate the performance of the GSA system in treating a 10 MW slipstream of flue gas resulting from the combustion of a high sulfur coal. This project involves design, fabrication, construction and testing of the GSA system. The Project Performance and Economics Report provides the nonproprietary information for the ``10 MW Demonstration of the Gas Suspension Absorption (GSA) Project`` installed at Tennessee Valley Authority`s (TVA) Shawnee Power Station, Center for Emissions Research (CER) at Paducah, Kentucky. The program demonstrated that the GSA flue-gas-desulfurization (FGD) technology is capable of achieving high SO{sub 2} removal efficiencies (greater than 90%), while maintaining particulate emissions below the New Source Performance Standards (NSPS), without any negative environmental impact (section 6). A 28-day test demonstrated the reliability and operability of the GSA system during continuous operation. The test results and detailed discussions of the test data can be obtained from TVA`s Final Report (Appendix A). The Air Toxics Report (Appendix B), prepared by Energy and Environmental Research Corporation (EERC) characterizes air toxic emissions of selected hazardous air pollutants (HAP) from the GSA process. The results of this testing show that the GSA system can substantially reduce the emission of these HAP. With its lower capital costs and maintenance costs (section 7), as compared to conventional semi-dry scrubbers, the GSA technology commands a high potential for further commercialization in the United States. For detailed information refer to The Economic Evaluation Report (Appendix C) prepared by Raytheon Engineers and Constructors.

  17. Development of Mercury and Hydrogen Chloride Emission Monitors for Coal Gasifiers

    SciTech Connect (OSTI)

    G. Norton; D. Eckels; C. Chriswell

    2001-02-26T23:59:59.000Z

    The gas conditioning issues involved with coal gasification streams are very complex and do not have simple solutions. This is particularly true in view of the fact that the gas conditioning system must deal with tars, high moisture contents, and problems with NH{sub 3} without affecting low ppb levels of Hg, low levels (low ppm or less) of HCl, or the successful operation of conditioner components and analytical systems. Those issues are far from trivial. Trying to develop a non-chemical system for gas conditioning was very ambitious in view of the difficult sampling environment and unique problems associated with coal gasification streams. Although a great deal was learned regarding calibration, sample transport, instrumentation options, gas stream conditioning, and CEM design options, some challenging issues still remain. Sample transport is one area that is often not adequately considered. Because of the gas stream composition and elevated temperatures involved, special attention will need to be given to the choice of materials for the sample line and other plumbing components. When using gas stream oxidation, there will be sample transport regions under oxidizing as well as reducing conditions, and each of those regions will require different materials of construction for sample transport. The catalytic oxidation approach worked well for removal of tars and NH{sub 3} on a short term basis, but durability issues related to using the catalyst tube during extended testing periods still require study.

  18. Investigation of mercury transformation by HBr addition in a slipstream facility with real flue gas atmospheres of bituminous coal and Powder River Basin Coal

    SciTech Connect (OSTI)

    Yan Cao; Quanhai Wang; Chien-wei Chen; Bobby Chen; Martin Cohron; Yi-chuan Tseng; Cheng-chung Chiu; Paul Chu; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

    2007-09-15T23:59:59.000Z

    An investigation of speciated mercury transformation with the addition of hydrogen bromide (HBr) at elevated temperatures was conducted in a slipstream reactor with real flue gas atmospheres. Test results indicated that adding HBr into the flue gas at several parts per million strongly impacted the mercury oxidation and adsorption, which were dependent upon temperature ranges. Higher temperatures (in the range of 300-350 C) promoted mercury oxidation by HBr addition but did not promote mercury adsorption. Lower temperatures (in a range of 150-200 C) enhanced mercury adsorption on the fly ash by adding HBr. Test results also verified effects of flue gas atmospheres on the mercury oxidation by the addition of HBr, which included concentrations of chlorine and sulfur in the flue gas. Chlorine species seemed to be involved in the competition with bromine species in the mercury oxidation process. With the addition of HBr at 3 ppm at a temperature of about 330 C, the additional mercury oxidation could be reached by about 55% in a flue gas atmosphere by burning PRB coal in the flue gas and by about 20% in a flue gas by burning bituminous coal. These are both greater than the maximum gaseous HgBr2 percentage in the flue gas (35% for PRB coal and 5% for bituminous coal) by thermodynamic equilibrium analysis predictions under the same conditions. This disagreement may indicate a greater complexity of mercury oxidation mechanisms by the addition of HBr. It is possible that bromine species promote activated chlorine species generation in the flue gas, where the kinetics of elemental mercury oxidation were enhanced. However, SO{sub 2} in the flue gas may involve the consumption of the available activated chlorine species. Thus, the higher mercury oxidation rate by adding bromine under the flue gas by burning PRB coal may be associated with its lower SO{sub 2} concentration in the flue gas. 39 refs., 8 figs., 4 tabs.

  19. Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report No. 27, April 1, 1994--June 30, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-07-15T23:59:59.000Z

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on two coal-fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential and cyclone-fired. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions through a combination of two technologies, gas reburning and sorbent injection.

  20. System and method for producing substitute natural gas from coal

    DOE Patents [OSTI]

    Hobbs, Raymond (Avondale, AZ)

    2012-08-07T23:59:59.000Z

    The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

  1. Office of Oil, Gas, and Coal Supply Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    of Energy Washington, DC 20585 April 2014 U.S. Energy Information Administration | Natural Gas Monthly ii This report was prepared by the U.S. Energy Information...

  2. Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

  3. A parametric study of the effects of coal seam properties on gas drainage efficiency

    SciTech Connect (OSTI)

    Remner, D.J.; Ertekin, T.; Sung, W.; King, G.R.

    1986-11-01T23:59:59.000Z

    A parametric study is conducted to investigate the effects of reservoir properties on gas drainage efficiency. It is found that when a coal seam is opened to production, the gas desorption and production rates increase to a maximum value and then decline. The magnitude of the early desorption peak was found to be a function of (1) the ability of the micropore matrix to supply gas to the macropore system, and (2) the coal seam's conductivity to water. The desorbing gas was observed to create a localized, high-gas-saturation bank in the area enclosed by the pressure transient. The gas bank provided an internal pressure maintenance to the reservoir, while it decreased the relative permeability to brine. This created a competing effect with respect to water production. Because water removal strongly influences the pressure decline and, consequently, the desorption rate, a unique production mechanism was observed. The study explored the interference effects on gas and water flow in multiple-well systems. It was found that the pressure drawdown caused by the multiple wells enhanced the desorption of gas into the macropore system and caused a positive interference effect on the gas flow rate. The water rate, however, encountered the more conventional negative interference effect.

  4. U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis...

    Broader source: Energy.gov (indexed) [DOE]

    Manufacturing Energy Use and Greenhouse Gas Emissions Analysis, November 2012 U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis, November 2012 The report ranks...

  5. U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Energy Use and Greenhouse Gas Emissions Analysis U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis thumbenergyuselossemissionslg.gif How...

  6. Kinetics of Direct Oxidation of H2S in Coal Gas to Elemental Sulfur

    SciTech Connect (OSTI)

    K.C. Kwon

    2005-11-01T23:59:59.000Z

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced Vision 21 plants that produce electric power and clean transportation fuels with coal and natural gas. These Vision 21 plants will require highly clean coal gas with H{sub 2}S below 1 ppm and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation Vision 21 plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and 400 square cells/inch{sup 2}, {gamma}-Al{sub 2}O{sub 3}-wash-coated monolithic catalyst, and various reactors such as a micro packed-bed reactor, a micro bubble reactor, and a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam.

  7. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor

    SciTech Connect (OSTI)

    Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan [Western Kentucky University (WKU), Bowling Green, KY (USA). Institute for Combustion Science and Environmental Technology (ICSET)

    2008-12-15T23:59:59.000Z

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

  8. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    E-Print Network [OSTI]

    Kahrl, Fredrich James

    2011-01-01T23:59:59.000Z

    renewables, including large hydropower, by 2020. In 2009,coal mining and hydropower), iron and steel, machinery, andoil, and natural gas. Hydropower, nuclear, and wind energy

  9. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    E-Print Network [OSTI]

    Kahrl, Fredrich James

    2011-01-01T23:59:59.000Z

    China Electricity Council. partial load in the evening whenof coal units run at partial load would make gas attractivemonth that is run at partial load, while other generators

  10. GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2)

    E-Print Network [OSTI]

    Green, Donna

    GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2) from the combustion),2 China, Russia, Japan, India and Canada--accounted for more than 70 percent of energy-related CO2. Figure 1 Global Carbon Dioxide Emissions: 1850­2030 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940

  11. Permeability changes in coal resulting from gas desorption

    SciTech Connect (OSTI)

    Levine, J.R.; Tsay, F.

    1989-11-19T23:59:59.000Z

    Sampling Procedure: This project requires a carefully coordinated sample preparation procedure that will ensure that specimens of the proper size and physical characteristics are available for the various measurement methods used. Coherent blocks of coal will be collected in the field, with subsamples being removed in the lab by 1 inch-diameter core drill. At least 5 separate cores will be drilled from each block. Coal blocks sampled in the field will be approximately 10 inches (times) 10 inches {times} 6 inches. Distinctive compositional lithologies should be selected for sampling. For example, a section of the seam containing particularly thick vitrain or durain bands might be selected; or the block might include a mineral matter rich layer. If necessary, several blocks should be selected to represent a range in compositions. Sampling procedure must include a method for retaining moisture. The sample must not be allowed to dry out. Exposure to atmospheric oxygen should be limited as much as possible. The samples must carefully packed for shipment so as to preserve their integrity.

  12. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    SciTech Connect (OSTI)

    Eric P. Robertson

    2007-09-01T23:59:59.000Z

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  13. Engineering development of advanced coal-fired low emission boil systems. Quarterly technical progress report, October 1993--December 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    The first test run of the Toroidal Vortex Combustor (TVC) was completed on December 6. Riley was unable to witness or set up independent sampling equipment for NO{sub x} and precursor measurement for this run. A second run which we witnessed, but did not sample, was completed December 17. This was conducted almost entirely near SR = 1.0 while Textron investigated temperature-load relationships to address concerns from Run 1. A third run was completed over the December holiday break on Dorchester coal to address concerns Textron had about the Illinois test coal. All subsequent tests will use the Illinois coal. Boiler, firing system design. Elevation drawings were developed for dry wall-fired, conventional U-fired slagging, and TVC fired slagging units. We are investigating the feasibility of modifying a conventional U-fired design for low-NOx operation as an alternative to the TVC. The approach taken to I date for NOx reduction in existing U-fired units is to retrofit with delayed-mixing burners with staging air at various places, similar to the approach with dry fired units. The concept of staged fuel addition or reburning for the U-fired system is being examined as a potential combustion NOx control approach. This concept has high potential due to the high temperature and long residence time available in the stagger. Some field trials with coke oven gas reburn produced very low NOx results. Modeling of this concept was identified as a priority task. The model development will include matching field data for air staging on slagging units to the predictions. Emissions control. Selection of an SO2 control process continues to be a high priority task. Sargent & Lundy completed a cost comparison of several regenerable processes, most of which have NOx control potential as well: Active coke, NOXSO, copper oxide, SNOX, ammonia (for SO only, ammonium sulfate byproduct), and a limestone scrubber for comparison.

  14. Deep cuts in household greenhouse gas emissions Andrew Blakers

    E-Print Network [OSTI]

    Deep cuts in household greenhouse gas emissions Andrew Blakers Director, Centre for Sustainable Energy Systems Australian National University Ph 61 2 6125 5905 Andrew.blakers@anu.edu.au Web: http

  15. Secretary of Energy Memorandum on DOE Greenhouse Gas Emission...

    Office of Environmental Management (EM)

    to a low-carbon economy. We must also lead by example in reducing greenhouse gas emissions associated with our own operations and facilities. On October 5,2009, the President...

  16. Biochar amendment and greenhouse gas emissions from agricultural soils 

    E-Print Network [OSTI]

    Case, Sean Daniel Charles

    2013-11-28T23:59:59.000Z

    The aim of this study was to investigate the effects of biochar amendment on soil greenhouse gas (GHG) emissions and to elucidate the mechanisms behind these effects. I investigated the suppression of soil carbon dioxide ...

  17. Improving UK greenhouse gas emission estimates using tall tower observations 

    E-Print Network [OSTI]

    Howie, James Edward

    2014-06-30T23:59:59.000Z

    Greenhouse gases in the Earth’s atmosphere play an important role in regulating surface temperatures. The UK is signatory to international agreements that legally commit the UK to reduce its greenhouse gas emissions, and ...

  18. Life assessment and emissions monitoring of Indian coal-fired power plants. Final report

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    At the request of the Pittsburgh Energy Technology Center (PETC) of the United States Department of Energy (USDOE), the traveler, along with Dr. R. P. Krishnan, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee spent three weeks in India planning and performing emissions monitoring at the coal-fired Vijayawada Thermal Power Station (VTPS). The coordination for the Indian participants was provided by BHEL, Trichy and CPRI, Bangalore. The trip was sponsored by the PETC under the United States Agency for International Development (USAID)/Government of India (GOI)P Alternate Energy Resources Development (AERD) Project. The AERD Project is managed by PETC, and ORNL is providing the technical coordination and support for four coal projects that are being implemented with BHEL, Trichy. The traveler, after briefing the USAID mission in New Delhi visited BHEL, Trichy and CPRI, Bangalore to coordinate and plan the emissions test program. The site selection was made by BHEL, CPRI, TVA, and PETC. Monitoring was performed for 4 days on one of the 4 existing 210 MW coal-fired boilers at the VTPS, 400 km north of Madras, India.

  19. Life assessment and emissions monitoring of Indian coal-fired power plants

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    At the request of the Pittsburgh Energy Technology Center (PETC) of the United States Department of Energy (USDOE), the traveler, along with Dr. R. P. Krishnan, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee spent three weeks in India planning and performing emissions monitoring at the coal-fired Vijayawada Thermal Power Station (VTPS). The coordination for the Indian participants was provided by BHEL, Trichy and CPRI, Bangalore. The trip was sponsored by the PETC under the United States Agency for International Development (USAID)/Government of India (GOI)P Alternate Energy Resources Development (AERD) Project. The AERD Project is managed by PETC, and ORNL is providing the technical coordination and support for four coal projects that are being implemented with BHEL, Trichy. The traveler, after briefing the USAID mission in New Delhi visited BHEL, Trichy and CPRI, Bangalore to coordinate and plan the emissions test program. The site selection was made by BHEL, CPRI, TVA, and PETC. Monitoring was performed for 4 days on one of the 4 existing 210 MW coal-fired boilers at the VTPS, 400 km north of Madras, India.

  20. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    SciTech Connect (OSTI)

    Not Available

    1986-12-01T23:59:59.000Z

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  1. Land Use Greenhouse Gas Emissions from Conventional Oil

    E-Print Network [OSTI]

    Turetsky, Merritt

    emissions of California crude and in situ oil sands production (crude refineryLand Use Greenhouse Gas Emissions from Conventional Oil Production and Oil Sands S O N I A Y E H and Alberta as examples for conventional oil production as well as oil sands production in Alberta

  2. Control of toxic metallic emissions formed during the combustion of Ohio coals. Final report, September 1994--March 1996

    SciTech Connect (OSTI)

    Wu, Chang-Yu; Owens, T.M.; Biswas, P.

    1996-03-29T23:59:59.000Z

    The objective of this project was to characterize metallic emissions from representative coals and develop strategies for their control. A technique for flue gas desulfurization is the use of calcium based sorbents, and the degree of metals capture of these sorbents under different conditions will be researched. The objective of the first year of the study was to understand the evolution of metallic aerosol size distributions and the capture characteristics of various sorbents. Also, the metallic emissions resulting from the combustion of two seams of Ohio coals were to be characterized. Studies on the evolution of the metallic aerosol size distributions have been completed and the use of silicon and calcium based sorbents for capture of lead species has been examined. Co-injection of metallic compounds along with organometallic silicon indicated a high degree of capture of lead in a certain temperature region. Preliminary results with calcium based sorbents also indicate capture of metallic species. In the second year, the work was extended to examine three different aspects: (1) understanding the mechanisms of capture of metals by vapor phase sorbents; (2) role of chlorine in speciation of metals and its importance in metals capture; and (3) capture of mercury by aerosol transformation. It was established that aerosol formation rates for Hg species is rather slow under typical combustion conditions, and hence would not be an effective way of capture of mercury. However, the use of titania based sorbents have provided exciting results. This is being developed further for effective capture of Hg species in combustion environments. Several theoretical investigations were also carried out to better understand and predict trace metal behavior in combustion environments. Publications and conference presentations resulting from work this year is listed.

  3. Bioconversion of coal-derived synthesis gas to liquid fuels. [Butyribacterium methylotrophicum

    SciTech Connect (OSTI)

    Jain, M.K.

    1991-01-01T23:59:59.000Z

    The use of coal-derived synthesis gas as an industrial feedstock for production of fuels and chemicals has become an increasingly attractive alternative to present petroleum-based chemicals production. However, one of the major limitations in developing such a process is the required removal of catalyst poisons such as hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), and other trace contaminants from the synthesis gas. Purification steps necessary to remove these are energy intensive and add significantly to the production cost, particularly for coals having a high sulfur content such as Illinois coal. A two-stage, anaerobic bioconversion process requiring little or no sulfur removal is proposed, where in the first stage the carbon monoxide (CO) gas is converted to butyric and acetic acids by the CO strain of Butyribacterium methylotrophicum. In the second stage, these acids along with the hydrogen (H{sub 2}) gas are converted to butanol, ethanol, and acetone by an acid utilizing mutant of Clostridium acetobutylicum. 18 figs., 18 tabs.

  4. Interaction of coal-derived synthesis gas impurities with solid oxide fuel cell metallic components

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Edwards, Danny J.; Chou, Y. S.; Cramer, Carolyn N.

    2010-05-28T23:59:59.000Z

    Chromium-containing iron-based alloys Crofer22 APU and SS 441 and nickel-based alloy Inconel600, all commonly used in a solid oxide fuel cell (SOFC) stack as interconnect materials, heat exchanger and gas feeding pipes, were exposed at 700-850oC to a synthetic coal gas containing ?2 ppm phosphine, arsine, sulfur and antimony. Samples were characterized by SEM/EDS and XRD to monitor the secondary phase formation. Exposure of ferritic stainless steels to P led to the formation of surface Cr-Mn-P-O and Fe-P-O compounds and increased temperatures accelerated the rate of interactions. Fewer interactions were observed after exposures to As and Sb. No sulfur containing compounds were found. Nickel-based alloy exhibited much stronger interactions with As and P in comparison with ferritic steels and the arsenic interactions were particularly strong. The difference between the iron- and nickel-based alloys is explained by the different chemistry and morphology of the scales grown on the alloy surfaces in coal gas. While P and As interactions with the metallic parts in the SOFC are likely to mitigate the nickel/zirconia anode poisoning, the other degradation mechanisms should be taken into consideration to avoid potential stack failures. Manganese spinels were found to be effective as phosphorus getters and could be used in coal gas cleanup.

  5. Digital Gas Joins Asian Waste-to-Energy Consortium: To Eliminate Coal as a Power Plant Fuel

    E-Print Network [OSTI]

    Columbia University

    Energy's patented technology produces a clean-burning by-product from the widest variety of processed-efficient technology represented by the coal-substitute technology. The same technology will be deployed by DIGGDigital Gas Joins Asian Waste-to-Energy Consortium: To Eliminate Coal as a Power Plant Fuel Digital

  6. Coal pump

    DOE Patents [OSTI]

    Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

    1983-01-01T23:59:59.000Z

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  7. Porosity of coal and shale: Insights from gas adsorption and SANS/USANS techniques

    SciTech Connect (OSTI)

    Mastalerz, Maria [Indiana Geological Survey; He, Lilin [ORNL; Melnichenko, Yuri B [ORNL; Rupp, John A [ORNL

    2012-01-01T23:59:59.000Z

    Two Pennsylvanian coal samples (Spr326 and Spr879-IN1) and two Upper Devonian-Mississippian shale samples (MM1 and MM3) from the Illinois Basin were studied with regard to their porosity and pore accessibility. Shale samples are early mature stage as indicated by vitrinite reflectance (R{sub o}) values of 0.55% for MM1 and 0.62% for MM3. The coal samples studied are of comparable maturity to the shale samples, having vitrinite reflectance of 0.52% (Spr326) and 0.62% (Spr879-IN1). Gas (N{sub 2} and CO{sub 2}) adsorption and small-angle and ultrasmall-angle neutron scattering techniques (SANS/USANS) were used to understand differences in the porosity characteristics of the samples. The results demonstrate that there is a major difference in mesopore (2-50 nm) size distribution between the coal and shale samples, while there was a close similarity in micropore (<2 nm) size distribution. Micropore and mesopore volumes correlate with organic matter content in the samples. Accessibility of pores in coal is pore-size specific and can vary significantly between coal samples; also, higher accessibility corresponds to higher adsorption capacity. Accessibility of pores in shale samples is low.

  8. Novel carbons from Illinois coal for natural gas storage. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Rostam-Abadi, M.; Sun, J.; Lizzio, A.A. [Illinois State Geological Survey, Champaign, IL (United States); Fatemi, M. [Amoco Research Center, Naperville, IL (United States)

    1994-12-31T23:59:59.000Z

    The goal of this project is to develop a technology for producing microengineered adsorbent carbons from Illinois coal and to evaluate the potential application of these novel materials for storing natural gas for use in emerging low pressure, natural gas vehicles (NGV). Potentially, about two million tons of adsorbent could be consumed in natural gas vehicles by year 2000. If successful, the results obtained in this project could lead to the use of Illinois coal in a growing and profitable market that could exceed 6 million tons per year. During this reporting period, a pyrolysis-gasification reactor system was designed and assembled. Four carbon samples were produced from a {minus}20+100 mesh size fraction of an Illinois Basin Coal (IBC-106) using a three-step process. The three steps were: coal oxidation in air at 250 C, oxicoal (oxidized coal) devolatilization in nitrogen at 425 C and char gasification in 50% steam-50% nitrogen at 860 C. These initial tests were designed to evaluate the effects of pre-oxidation on the surface properties of carbon products, and to determine optimum reaction time and process conditions to produce an activated carbon with high surface area. Nitrogen-BET surface areas of the carbon products ranged from 700--800 m{sup 2}/g. Work is in progress to further optimize reaction conditions in order to produce carbons with higher surface areas. A few screening tests were made with a pressurized thermogravimetric (PTGA) to evaluate the suitability of this instrument for obtaining methane adsorption isotherms at ambient temperature and pressures ranging from one to 30 atmospheres. The preliminary results indicate that PTGA can be used for both the adsorption kinetic and equilibrium studies.

  9. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz

    SciTech Connect (OSTI)

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

    2008-03-15T23:59:59.000Z

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

  10. EIA - Greenhouse Gas Emissions - Land use

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual2

  11. Comprehensive report to Congress: Clean Coal Technology program: Evaluation of gas reburning and low-NO sub x burners on a wall-fired boiler

    SciTech Connect (OSTI)

    Not Available

    1990-09-01T23:59:59.000Z

    This report briefly describes the Gas Reburning and Low-NO{sub x} Burners technology which is a low-cost technology that can be applied in both retrofit and new applications. This demonstration will be conducted on a utility boiler in Colorado at Cherokee Station {number sign}3; however, the technology is applicable to industrial boilers and other combustion systems. Although this technology is primarily a NO{sub x} reduction technology, some reductions in other emissions will take place. Since 15--20% of the coal is replaced with natural gas, SO{sub 2} and particulate emissions are reduced commensurately. Also the lower carbon-to-hydrogen ratio of natural gas compared to coal reduces CO{sub 2} emissions. The formation of NO{sub x} is controlled by several factors: (1) the amount of nitrogen that is chemically bound in the fuel; (2) the flame temperature; (3) the residence time that combustion products remain at very high temperatures; and (4) the amount of excess oxygen available, especially at the hottest parts of the flame. Decreasing any of these parameters, tends to reduce NO{sub x} formation. 6 figs., 1 tab.

  12. Int. J. Oil, Gas and Coal Technology, Vol. 5, No. 1, 2012 1 Copyright 2012 Inderscience Enterprises Ltd.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    production from shale formations. Examples of three case studies in Lower Huron and New Albany shale Reservoir Modelling of Oil and Gas Producing Shale Reservoirs; Case Studies, Int. J. Oil, Gas, and Coal Enterprises Ltd. Top-Down, Intelligent Reservoir Modeling of Oil and Gas Producing Shale Reservoirs; Case

  13. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    National Lab Directors, . .

    2001-04-05T23:59:59.000Z

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions. These technology pathways (which are described in greater detail in Appendix B, Technology Pathways) address three areas: energy efficiency, clean energy, and carbon sequestration (removing carbon from emissions and enhancing carbon storage). Based on an assessment of each of these technology pathways over a 30-year planning horizon, the directors of the Department of Energy's (DOE's) national laboratories conclude that success will require pursuit of multiple technology pathways to provide choices and flexibility for reducing greenhouse gas emissions. Advances in science and technology are necessary to reduce greenhouse gas emissions from the United States while sustaining economic growth and providing collateral benefits to the nation.

  14. Permeability changes in coal resulting from gas desorption. Second quarterly report, November 15, 1989--February 15, 1990

    SciTech Connect (OSTI)

    Levine, J.R.; Tsay, F.

    1990-12-31T23:59:59.000Z

    Measurement of sorption capacity of coals by microbalance in a high pressure environment requires that corrections be made for the buoyancy of the gas that is displaced by the solid coal. As the pressure increases, the gas density increases, requiring that a correction factor be applied to the weight of the sample as measured by microbalance. A brief report summarizing this correction is attached as Appendix A.

  15. Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-01-31T23:59:59.000Z

    Revised maps and associated data show potential mercury, sulfur, and chlorine emissions for U.S. coal by county of origin. Existing coal mining and coal washing practices result in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Selection of low-mercury coal is a good mercury control option for plants having hot-side ESP, cold-side ESP, or hot-side ESP/FGD emission controls. Chlorine content is more important for plants having cold-side ESP/FGD or SDA/FF controls; optimum net mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions.

  16. Permeability changes in coal resulting from gas desorption

    SciTech Connect (OSTI)

    Levine, J.R.

    1991-01-01T23:59:59.000Z

    A high pressure chamber with a microbalance inside was designed and constructed for the purpose of measuring weight changes due to gas sorption at increasing pressure steps from 0 to 1000 psig. The raw weight changes recorded during the experiments had to be corrected for buoyancy and sample swelling. As the pressure in the balance chamber increases, the buoyancy forces tend to increase. The data were corrected and examined on the basis of five different sets of assumptions. At high pressures gas volumes measured have to be corrected for compressibility. The experimental data was analysed using five cases. The different cases were developed with certain assumptions. The five cases and the equations involved in each of them are discussed here.

  17. Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

  18. Comprehensive assessment of toxic emissions from coal-fired power plants

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    The 1990 Clean Air Act Amendments (CAAA) have two primary goals: pollution prevention and a market-based least-cost approach to emission control. To address air quality issues as well as permitting and enforcement, the 1990 CAAA contain 11 sections or titles. The individual amendment titles are as follows: Title I - National Ambient Air Quality Standards Title II - Mobile Sources Title III - Hazardous Air Pollutants Title IV - Acid Deposition Control Title V - Permits Title VI - Stratospheric Ozone Protection Chemicals Title VII - Enforcement Title VIII - Miscellaneous Provisions Title IX - Clean Air Research Title X - Disadvantaged Business Concerns Title XI - Clean Air Employment Transition Assistance Titles I, III, IV, and V will change or have the potential to change how operators of coal-fired utility boilers control, monitor, and report emissions. For the purpose of this discussion, Title III is the primary focus.

  19. Determination of the Effect of Coal/Biomass-Derived Syngas Contaminants on the Performance of Fischer-Tropsch and Water-Gas-Shift Catalysts

    SciTech Connect (OSTI)

    Trembly, Jason; Cooper, Matthew; Farmer, Justin; Turk, Brian; Gupta, Raghubir

    2010-12-31T23:59:59.000Z

    Today, nearly all liquid fuels and commodity chemicals are produced from non-renewable resources such as crude oil and natural gas. Because of increasing scrutiny of carbon dioxide (CO{sub 2}) emissions produced using traditional fossil-fuel resources, the utilization of alternative feedstocks for the production of power, hydrogen, value-added chemicals, and high-quality hydrocarbon fuels such as diesel and substitute natural gas (SNG) is critical to meeting the rapidly growing energy needs of modern society. Coal and biomass are particularly attractive as alternative feedstocks because of the abundant reserves of these resources worldwide. The strategy of co-gasification of coal/biomass (CB) mixtures to produce syngas for synthesis of Fischer-Tropsch (FT) fuels offers distinct advantages over gasification of either coal or biomass alone. Co-feeding coal with biomass offers the opportunity to exploit economies of scale that are difficult to achieve in biomass gasification, while the addition of biomass to the coal gasifier feed leverages proven coal gasification technology and allows CO{sub 2} credit benefits. Syngas generated from CB mixtures will have a unique contaminant composition because coal and biomass possess different concentrations and types of contaminants, and the final syngas composition is also strongly influenced by the gasification technology used. Syngas cleanup for gasification of CB mixtures will need to address this unique contaminant composition to support downstream processing and equipment. To investigate the impact of CB gasification on the production of transportation fuels by FT synthesis, RTI International conducted thermodynamic studies to identify trace contaminants that will react with water-gas-shift and FT catalysts and built several automated microreactor systems to investigate the effect of single components and the synergistic effects of multiple contaminants on water-gas-shift and FT catalyst performance. The contaminants investigated were sodium chloride (NaCl), potassium chloride (KCl), hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), ammonia (NH{sub 3}), and combinations thereof. This report details the thermodynamic studies and the individual and multi-contaminant results from this testing program.

  20. LOCAL IMPACTS OF MERCURY EMISSIONS FROM THE MONTICELLO COAL FIRED POWER PLANT.

    SciTech Connect (OSTI)

    SULLIVAN, T.M.; ADAMS, J.; MILIAN, L.; SUBRAMANIAN, S.; FEAGIN, L.; WILLIAMS, J.; BOYD, A.

    2006-10-31T23:59:59.000Z

    The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as currently proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots of mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury ''hot spots'', using two types of evidence. First, the world-wide literature was searched for reports of deposition around mercury sources, including coal-fired power plants. Second, soil samples from around two mid-sized U.S. coal-fired power plants were collected and analyzed for evidence of ''hot spots'' and for correlation with model predictions of deposition. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (A) local soil concentration Hg increments of 30%-60%, (B) sediment increments of 18-30%, (C) wet deposition increments of 11-12%, and (D) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg(0) in power plant plumes and the role of water chemistry in the relationship between Hg deposition and fish content. Soil and vegetation sampling programs were performed around the Monticello coal fired power plant. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with model predictions. The study found the following: (1) There was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. At the Monticello plant, excess soil Hg was associated with soil characteristics with higher values near the lake. Vegetation concentration showed some correlation with soil concentrations having higher mercury in vegetation when the soil mercury. (2) Based on computer modeling, Hg deposition was primarily RGM with much lower deposition from elemental mercury. The total deposition within 50 Km of the plant was predicted to be 4.2% of the total emitted. In the deposition, RGM is responsible for 98.7% of the total deposition, elemental mercury accounts for 1.1% and particulate mercury accounts for 0.2%. Less than 1% of the elemental mercury emitted was predicted to deposit within 50 km.

  1. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

    2000-04-01T23:59:59.000Z

    Reduction of NO{sub x} emission is an important environmental issue in pulverized coal combustion. Final emissions of NO{sub x} are strongly affected by the nitrogen release during devolatilization, which is the first stage of coal combustion. The most cost-effective approach to NO{sub x} reduction is air-staging which can also operate with additional down-stream techniques such as reburning [1]. Air staging promotes the conversion of NO{sub x} precursors (HCN, NH{sub 3}, etc.) to N{sub 2} by delaying the oxygen supply to the greatest extent when those nitrogen species are released during devolatilization. Such a delay gives the primary volatiles a chance to undergo secondary reactions, including tar cracking and soot formation. Secondary reactions of volatiles largely determine the fate of the ultimate NO{sub x} production from pyrolysis, therefore a detailed investigation into the transformation of nitrogen species during secondary reactions and effects of soot on nitrogen release is critical for design and implementation of new pollution control strategies. Current nitrogen models (including the CPD model at BYU) only simulate the nitrogen release during primary pyrolysis, which happens at low temperatures. This project helps to build a nitrogen release model that accounts for secondary reactions and the effects of soot at temperatures relevant to industrial burners.

  2. Help for declining natural gas production seen in the unconventional sources of natural gas. [Eastern shales, tight sands, coal beds, geopressured zones

    SciTech Connect (OSTI)

    Staats, E.B.

    1980-01-10T23:59:59.000Z

    Oil imports could be reduced and domestic gas production increased if additional gas production is obtained from four unconventional resources-eastern Devonian shales, tight sands, coal beds, and geopressured zones. Gas produced from these resources can help maintain overall production levels as supplies from conventional gas sources gradually decline. The eastern shales and western sands are the chief potential contributors in the near term. Further demonstrations of coal bed methane's recovery feasibility could improve the prospects for its production while future geopressured methane production remains speculative at this time.

  3. A study of toxic emissions from a coal-fired power plant utilizing the SNOX innovative clean coal technology demonstration. Volume 1, Sampling/results/special topics: Final report

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    This study was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE during 1993. The motivation for those assessments was the mandate in the 1990 Clean Air Act Amendments that a study be made of emissions of hazardous air pollutants (HAPs) from electric utilities. The report is organized in two volumes. Volume 1: Sampling describes the sampling effort conducted as the basis for this study; Results presents the concentration data on HAPs in the several power plant streams, and reports the results of evaluations and calculations conducted with those data; and Special Topics report on issues such as comparison of sampling methods and vapor/solid distributions of HAPs. Volume 2: Appendices include quality assurance/quality control results, uncertainty analysis for emission factors, and data sheets. This study involved measurements of a variety of substances in solid, liquid, and gaseous samples from input, output, and process streams at the Innovative Clean Coal Technology Demonstration (ICCT) of the Wet Sulfuric Acid-Selective Catalytic Reduction (SNOX) process. The SNOX demonstration is being conducted at Ohio Edison`s Niles Boiler No. 2 which uses cyclone burners to burn bituminous coal. A 35 megawatt slipstream of flue gas from the boiler is used to demonstrate SNOX. The substances measured at the SNOX process were the following: 1. Five major and 16 trace elements, including mercury, chromium, cadmium, lead, selenium, arsenic, beryllium, and nickel; 2. Acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate); 3. Ammonia and cyanide; 4. Elemental carbon; 5. Radionuclides; 6. Volatile organic compounds (VOC); 7. Semi-volatile compounds (SVOC) including polynuclear aromatic hydrocarbons (PAH); and 8. Aldehydes.

  4. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    E.G.Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

    2001-06-01T23:59:59.000Z

    An initial testing campaign was carried out during the summer of 2000 to evaluate the impact of multiburner firing on NOx emissions. Extensive data had been collected during the Fall of 1999 and Spring of 2000 using a single pulverized-coal (PC) burner, and this data collection was funded by a separate Department of Energy program, the Combustion 2000 Low Emission Boiler System (LEBS) project under the direction of DB Riley. This single-burner data was thus available for comparison with NOx emissions obtained while firing three burners at the same overall load and operating conditions. A range of operating conditions were explored that were compatible with single-burner data, and thus the emission trends as a function of air staging, burner swirl and other parameters will be described below. In addition, a number of burner-to-burner operational variations were explored that provided interesing insight on their potential impact on NOx emissions. Some of these variations include: running one burner very fuel rich while running the others fuel lean; varying the swirl of a single burner while holding others constant; increasing the firing rate of a single burner while decreasing the others. In general, the results to date indicated that multiburner firing yielded higher NOx emissions than single burner firing at the same fuel rate and excess air. At very fuel rich burner stoichiometries (SR < 0.75), the difference between multiple and single burners became indistinguishable. This result is consistent with previous single-burner data that showed that at very rich stoichiometries the NOx emissions became independent of burner settings such as air distributions, velocities and burner swirl.

  5. Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration)

    SciTech Connect (OSTI)

    Quimby, J.M.; Kumar, K.S.

    1992-01-01T23:59:59.000Z

    The objective of this contract was to investigate the removal of SO[sub x] and particulate matter from direct coal fired combustion gas streams at high temperature and high pressure conditions. This investigation was to be accomplished through a bench scale testing and evaluation program for SO[sub x] removal and the innovative particulate collection concept of particulate growth through electrostatic agglomeration followed by high efficiency mechanical collection. The process goal was to achieve control better than that required by 1979 New Source Performance Standards. During Phase I, the designs of the combustor and gas cleanup apparatus were successfully completed. Hot gas cleanup was designed to be accomplished at temperature levels between 1800[degrees] and 2500[degrees]F at pressures up to 15 atmospheres. The combustor gas flow rate could be varied between 0.2--0.5 pounds per second. The electrostatic agglomerator residence time could be varied between 0.25 to 3 seconds. In Phase II, all components were fabricated, and erected successfully. Test data from shakedown testing was obtained. Unpredictable difficulties in pilot plant erection and shakedown consumed more budget resources than was estimated and as a consequence DOE, METC, decided ft was best to complete the contract at the end of Phase II. Parameters studied in shakedown testing revealed that high-temperature high pressure electrostatics offers an alternative to barrier filtration in hot gas cleanup but more research is needed in successful system integration between the combustor and electrostatic agglomerator.

  6. Abdel-Aziz, A. and H.C. Frey, "Quantification of Hourly Variability in Hourly Activity and NOx Emissions for Baseload Coal-Fired Power Plants," Proceedings, Annual Meeting of the Air & Waste Management Association, Pittsburgh, PA, June 2003

    E-Print Network [OSTI]

    Frey, H. Christopher

    Emissions for Baseload Coal- Fired Power Plants," Proceedings, Annual Meeting of the Air & Waste Management for Baseload Coal Fired Power Plants Paper No. 69572 Amr Abdel-Aziz and H. Christopher Frey Department of Civil emission factors from coal-fired power plants vary over time due to variation in coal composition fed

  7. Limiting net greenhouse gas emissions in the United States

    SciTech Connect (OSTI)

    Bradley, R A; Watts, E C; Williams, E R [eds.] [eds.

    1991-09-01T23:59:59.000Z

    In 2988 the Congress requested DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. This report presents the results of that study. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity), and the relationship between energy production and use and the emission of radiactively important gases. Topics discussed include: energy and environmental technology to reduce greenhouse gas emissions, fossil energy production and electricity generation technologies, nuclear energy technology, renewable energy technologies, energy storage, transmission, and distribution technology, transportation, technology, industrial technology, residential and commercial building technology, greenhouse gas removal technology, approaches to restructuring the demand for energy.

  8. Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds

    E-Print Network [OSTI]

    Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

    2008-01-01T23:59:59.000Z

    Coal-fired power generating plants contribute approximatelynumber of coal-fired generating plants (1-3). The mercury is

  9. Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report no. 8-A, June 1--August 31, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-09-27T23:59:59.000Z

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on three coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential, wall, and cyclone fired. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device.

  10. Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report no. 6, September 1, 1988--November 30, 1988

    SciTech Connect (OSTI)

    Not Available

    1988-12-22T23:59:59.000Z

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on three coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices; tangential, wall, and cyclone fired. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace, at the superheater exit or into the ducting following the air heater. The sorbents trap SO{sub x} as solid sulfates and sulfites, which are collected in the particulate control device.

  11. Hot Coal Gas Desulfurization With Manganese-Based Sorbents

    SciTech Connect (OSTI)

    Berns, J.J.; Hepworth, M.T. [Dept. of Civil Engineering, Univ. of Minnesota, Minneapolis, MN (United States)

    1996-12-31T23:59:59.000Z

    The objective of this project is to develop a pellet formulation which is capable of achieving low sulfur partial pressures and a high capacity for sulfur, loaded from a hot fuel gas and which is readily regenerable. Furthermore the pellet must be strong for potential use in a fluidized and regenerable over many cycles of loading and regeneration. Regeneration should be in air or oxygen-depleted air to produce a high-concentration sulfur dioxide. Fixed-bed tests were conducted with several formulations of manganese sesquioxide and titania, and alumina. They were subject to a simplified fuel gas of the oxygen-blown Shell type spiked with a 30,000 ppmv concentration of H{sub 2}S. Pellet crush strengths for 4 and 2 mm diameter pellets was typically 12 lbs per pellet and 4 lbs per pellet, respectively. For the most favorable of the formulations tested and under the criteria of break-through at less than 100 ppmv H{sub 2}S and loading temperatures of 5000 {degrees}C and an empty-bed space velocity of 4, 000 per hour, breakthrough occurred an effective loading of sulfur of 27 to 29% over 5 loading and regeneration cycles. At 90% of this saturation condition, the observed level of H{sub 2}S was below 10 ppmv. For regeneration, a temperature of 9000 {degrees}C is required to dissociate the sulfide into sulfur dioxide using air at atmospheric pressure. The mean sulfur dioxide concentration which is achieved during regeneration is 8% with empty-bed space velocities of 700/hr. TGA tests on individual pellets indicate that bentonite is not desirable as a bonding material and that Mn/Ti ratios higher than 7:1 produce relatively non-porous pellets. Whereas the reactivity is rapid below 12% conversion, the kinetics of conversion decreased significantly above this level. This observation may be the result of plugging of the pellet pores with sulfided product creating inaccessible pore volumes or alternately an increase in diffusional resistance by formation of MnS.

  12. Hot coal gas desulfurization with manganese-based sorbents. Final report, September 1992--December 1994

    SciTech Connect (OSTI)

    Hepworth, M.T.; Slimane, R.B.

    1994-11-01T23:59:59.000Z

    The focus of much current work being performed by the Morgantown Energy Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas desulfurization is in the use of zinc-based sorbents. METC has shown interest in formulating and testing manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200{degree}C temperature range. To substantiate the potential superiority of Mn-based pellets, a systematic approach toward the evaluation of the desulfurizing power of single-metal sorbents is developed based on thermodynamic considerations. This novel procedure considered several metal-based sorbents and singled out manganese oxide as a prime candidate sorbent capable of being utilized under a wide temperature range, irrespective of the reducing power (determined by CO{sub 2}/CO ratio) of the fuel gas. Then, the thermodynamic feasibility of using Mn-based pellets for the removal of H{sub 2}S from hot-coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided) pellets was established. It was concluded that MnO is the stable form of manganese for virtually all commercially available coal-derived fuel gases. In addition, the objective of reducing the H{sub 2}S concentration below 150 ppMv to satisfy the integrated gasification combined cycle system requirement was shown to be thermodynamically feasible. A novel process is developed for the manufacture of Mn-based spherical pellets which have the desired physical and chemical characteristics required.

  13. The new air emission regulations for gas turbine

    SciTech Connect (OSTI)

    Solt, C.

    1998-07-01T23:59:59.000Z

    In the US, there are three new regulations now in development that will lower the limits for NO{sub x} emissions from gas turbines: (1) New National Ambient Air Quality Standards (NAAQS) for Particulate Matter, and Possibly revision to the Ozone standard (both of these new programs will target NO{sub x} emissions); (2) New regulations stemming from the Ozone Transport Assessment Group (OTAG) recommendations (again, NO{sub x} is the primary focus); (3) Revision of the New Source Performance Standard (NSPS) for gas turbines and a new rule that will impose new toxic emission requirements, (the Industrial Combustion Coordinated Rulemaking, stemming from revisions to Title III of the Clean Sir Act Amendments of 1990). The toxic rule should be of particular concern to the gas turbine industry in that it may impose the use of expensive toxic emission control techniques that may not provide any significant health benefits to the public. In addition, the European Community is currently drafting a new regulation for combustion sources that will require gas turbines to meet levels that are lower than any in Europe today. This paper will consider all 5 of these regulatory actions and will: review the proposed regulations; discuss timing for regulation development and implementation; assess the probable impact of each regulation; and provide opinions on the fate of each regulation. Both manufacturers and users of gas turbines should be aware of these proceedings and take an active role in the rule development.

  14. An assessment of mercury emissions and health risks from a coal-fired power plant

    SciTech Connect (OSTI)

    Fthenakis, V.M.; Lipfert, F.; Moskowitz, P. [Brookhaven National Lab., Upton, NY (United States). Analytical Sciences Div.

    1994-12-01T23:59:59.000Z

    Title 3 of the 1990 Clean Air Act Amendments (CAAA) mandated that the US Environmental Protection Agency (EPA) evaluate the need to regulate mercury emissions from electric utilities. In support of this forthcoming regulatory analysis the U.S. DOE, sponsored a risk assessment project at Brookhaven (BNL) to evaluate methylmercury (MeHg) hazards independently. In the US MeHg is the predominant way of exposure to mercury originated in the atmosphere. In the BNL study, health risks to adults resulting from Hg emissions from a hypothetical 1,000 MW coal-fired power plant were estimated using probabilistic risk assessment techniques. This study showed that the effects of emissions of a single power plant may double the background exposures to MeHg resulting from consuming fish obtained from a localized area near the power plant. Even at these more elevated exposure levels, the attributable incidence in mild neurological symptoms was estimated to be quite small, especially when compared with the estimated background incidence in the population. The current paper summarizes the basic conclusions of this assessment and highlights issues dealing with emissions control and environmental transport.

  15. Clean Coal Technology: Reduction of NO{sub x} and SO{sub 2} using gas reburning, sorbent injection, and integrated technologies. Topical report No. 3, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program), is a unique government/industry cost-shared effort to develop these advanced coal-based technologies. The CCT Program provides numerous options for addressing a wide range of energy and environmental issues, including acid rain, global climate change, improved energy efficiency, energy security, and environmental qualitiy. It is intended to demonstrate a new generation of full-scale, ``showcase`` facilities built through the United States. Gas Reburning, Sorbent Injection and Integrated Technologies -- the subject of this Topical Report -- are one such set of promising innovative developments. In addition to discussing the technologies involved, this report will describe two specific projects, results to date, and the commercial promise of these processes. The objectives of Gas Reburning and Sorbent Injection were to have a 60% reduction in NO{sub x} emissions and a 50% reduction in SO{sub 2} emissions. These objectives have been achieved at the tangentially-fired boiler at the Hennepin site of Illinois Power and at the cyclone-fired boiler operated by City Water, Light and Power in Springfield, Illinois. The other project, Gas Reburning and Low NO{sub x} Burners had the goal of a 70% NO{sub x} reduction from the wall-fired boiler operated by Public Service of Colorado at Denver. In early preliminary testing, this goal was also achieved. Energy and Environmental Research (EER) is now ready to design and install Gas Rebunting and Sorbent Injection systems, and Gas Reburning-Low NO{sub x}, Burner systems for any utility or industrial application. These technologies are offered with performance and emission control guarantees.

  16. Life cycle greenhouse gas emissions of Marcellus shale gas This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Life cycle greenhouse gas emissions of Marcellus shale gas This article has been downloaded from.1088/1748-9326/6/3/034014 Life cycle greenhouse gas emissions of Marcellus shale gas Mohan Jiang1 , W Michael Griffin2,3 , Chris greenhouse gas (GHG) emissions from the production of Marcellus shale natural gas and compares its emissions

  17. A study of toxic emissions from a coal-fired power plant utilizing an ESP while demonstrating the ICCT CT-121 FGD Project. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-06-16T23:59:59.000Z

    The US Department of Energy is performing comprehensive assessments of toxic emissions from eight selected coal-fired electric utility units. This program responds to the Clean Air Act Amendments of 1990, which require the US Environmental Protection Agency (EPA) to evaluate emissions of hazardous air pollutants (HAPs) from electric utility power plants for Potential health risks. The resulting data will be furnished to EPA utility power plants and health risk determinations. The assessment of emissions involves the collection and analysis of samples from the major input, process, and output streams of each of the eight power plants for selected hazardous Pollutants identified in Title III of the Clean Air Act. Additional goals are to determine the removal efficiencies of pollution control subsystems for these selected pollutants and the Concentrations associated with the particulate fraction of the flue gas stream as a function of particle size. Material balances are being performed for selected pollutants around the entire power plant and several subsystems to identify the fate of hazardous substances in each utility system. Radian Corporation was selected to perform a toxics assessment at a plant demonstrating an Innovative Clean Coal Technology (ICCT) Project. The site selected is Plant Yates Unit No. 1 of Georgia Power Company, which includes a Chiyoda Thoroughbred-121 demonstration project.

  18. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect (OSTI)

    Jost O.L. Wendt

    2003-01-31T23:59:59.000Z

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. Previous research results have demonstrated that the inhalation of coal/MSS ash particles cause an increase in lung permeability than coal ash particles alone. Elemental analysis of the coal/MSS ash particles showed that Zn was more abundant in these ash particles than the ash particles of coal ash alone.

  19. Sensitivity of Multi-gas Climate Policy to Emission Metrics

    SciTech Connect (OSTI)

    Smith, Steven J.; Karas, Joseph F.; Edmonds, James A.; Eom, Jiyong; Mizrahi, Andrew H.

    2013-04-01T23:59:59.000Z

    Multi-gas greenhouse emission targets require that different emissions be combined into an aggregate total. The Global Warming Potential (GWP) index is currently used for this purpose, despite various criticisms of the underlying concept. It is not possible to uniquely define a single metric that perfectly captures the different impacts of emissions of substances with widely disparate atmospheric lifetimes, which leads to a wide range of possible index values. We examine the sensitivity of emissions and climate outcomes to the value of the index used to aggregate methane emissions using a technologically detailed integrated assessment model. We find that the sensitivity to index value is of order 4-14% in terms of methane emissions and 2% in terms of total radiative forcing, using index values between 4 and 70 for methane, with larger regional differences in some cases. The sensitivity to index value is much higher in economic terms, with total 2-gas mitigation cost decreasing 4-5% for a lower index and increasing 10-13% for a larger index, with even larger changes if the emissions reduction targets are small. The sensitivity to index value also depends on the assumed maximum amount of mitigation available in each sector. Evaluation of the maximum mitigation potential for major sources of non-CO2 greenhouse gases would greatly aid analysis

  20. Speaker to Address Impact of Natural Gas Production on Greenhouse Gas Emissions When used for power generation, Marcellus Shale natural gas can significantly reduce carbon

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    generation, Marcellus Shale natural gas can significantly reduce carbon dioxide emissions, but questions have been raised whether development of shale gas resources results in an overall lower greenhouse gas, "Life Cycle Greenhouse Gas Emissions of Marcellus Shale Gas," appeared in Environmental Research Letters

  1. A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

    E-Print Network [OSTI]

    Pei, Y J; Dong, X; Feng, G Y; Fu, S; Gao, H; Hong, Y; Li, G; Li, Y X; Shang, L; Sheng, L S; Tian, Y C; Wang, X Q; Wang, Y; Wei, W; Zhang, Y W; Zhou, H J

    2001-01-01T23:59:59.000Z

    A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

  2. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Mark Scotto

    2010-05-30T23:59:59.000Z

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  3. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Mark V. Scotto; Mark A. Perna

    2010-05-30T23:59:59.000Z

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  4. U.S. Agriculture's Role Greenhouse Gas Emission Mitigation World

    E-Print Network [OSTI]

    McCarl, Bruce A.

    U.S. Agriculture's Role in a Greenhouse Gas Emission Mitigation World: An Economic Perspective and Research Associate, respectively, Department of Agricultural Economics, Texas A&M University. Seniority of Authorship is shared. This research was supported by the Texas Agricultural Experiment Station through

  5. Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power

    E-Print Network [OSTI]

    . A facility with solar fraction less than 1 is a hybrid operating plant that combusts naturLife Cycle Greenhouse Gas Emissions from Concentrating Solar Power Over the last thirty years, more-scale concentrating solar power (CSP) systems. These LCAs have yielded wide-ranging results. Variation could

  6. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics

    E-Print Network [OSTI]

    Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics Over the last thirty years, hundreds and utility-scale solar photovoltaic (PV) systems. These LCAs have yielded wide-ranging results. Variation of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. ~40 g CO2

  7. Development of biological coal gasification (MicGAS process). Final report, May 1, 1990--May 31, 1995

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    ARCTECH has developed a novel process (MicGAS) for direct, anaerobic biomethanation of coals. Biomethanation potential of coals of different ranks (Anthracite, bitumious, sub-bitumious, and lignites of different types), by various microbial consortia, was investigated. Studies on biogasification of Texas Lignite (TxL) were conducted with a proprietary microbial consortium, Mic-1, isolated from hind guts of soil eating termites (Zootermopsis and Nasutitermes sp.) and further improved at ARCTECH. Various microbial populations of the Mic-1 consortium carry out the multi-step MicGAS Process. First, the primary coal degraders, or hydrolytic microbes, degrade the coal to high molecular weight (MW) compounds. Then acedogens ferment the high MW compounds to low MW volatile fatty acids. The volatile fatty acids are converted to acetate by acetogens, and the methanogens complete the biomethanation by converting acetate and CO{sub 2} to methane.

  8. Corresponding author: Tel. (617) 253-3901, Fax. (617) 253-9845, Email: jrm1@mit.edu THE FUTURE OF COAL CONSUMPTION IN A CARBON CONSTRAINED WORLD

    E-Print Network [OSTI]

    , and the dispatch between coal and natural gas generation technologies. In this paper, we develop plausible, yet of penalties or restrictions on carbon dioxide emissions, coal use for electricity generation is expected coal and natural gas generation technologies. This analysis emphasizes the time frame to 2050

  9. Implications of ethanol-based fuels for greenhouse gas emissions

    SciTech Connect (OSTI)

    Marland, G. [Oak Ridge National Lab., TN (United States); DeLuchi, M.A. [Univ. of California, Davis, CA (United States). Inst. of Transportation Studies; Wyman, C. [National Renewable Energy Lab., Golden, CO (United States)

    1994-02-14T23:59:59.000Z

    The US Environmental Protection Agency has proposed a rule which would mandate that 30% of the oxygen content of reformulated gasoline be provided by renewable oxygenates. The rule would essentially require that biomass-based ethanol, or ETBE derived from ethanol, be used to supply 30% of the oxygen in reformulated gasoline. This short statement addresses the very narrow question, ``Would this rule result in a net decrease in greenhouse gas emissions?`` The challenge then is to determine how much greenhouse gas is emitted during the ethanol fuel cycle, a fuel cycle that is much less mature and less well documented than the petroleum fuel cycle. In the petroleum fuel cycle, most of the greenhouse gas emissions come from fuel combustion. In the ethanol fuel cycle most of the greenhouse gas emissions come from the fuel production processes. Details of corn productivity, fertilizer use, process efficiency, fuel source, etc. become very important. It is also important that the ethanol fuel cycle produces additional products and the greenhouse gas emissions have somehow to be allocated among the respective products. With so many variables in the ethanol fuel cycle, the concern is actually with ethanol-based additives which will be produced in response to the proposed rule, and not necessarily with the average of ethanol which is being produced now. A first important observation is that the difference between standard gasoline and reformulated gasoline is very small so that when differences are drawn against alternative fuels, it makes little difference whether the contrast is against standard or reformulated gasoline. A second observation is that for this base case comparison, emissions of CO{sub 2} alone are roughly 13% less for the ethanol fuel cycle than for the reformulated gasoline cycle.

  10. MINIMIZING NET CO2 EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL / BIOMASS BLENDS

    SciTech Connect (OSTI)

    Todd Lang; Robert Hurt

    2001-12-23T23:59:59.000Z

    This study presents a set of thermodynamic calculations on the optimal mode of solid fuel utilization considering a wide range of fuel types and processing technologies. The technologies include stand-alone combustion, biomass/coal cofiring, oxidative pyrolysis, and straight carbonization with no energy recovery but with elemental carbon storage. The results show that the thermodynamically optimal way to process solid fuels depends strongly on the specific fuels and technologies available, the local demand for heat or for electricity, and the local baseline energy-production method. Burning renewable fuels reduces anthropogenic CO{sub 2} emissions as widely recognized. In certain cases, however, other processing methods are equally or more effective, including the simple carbonization or oxidative pyrolysis of biomass fuels.

  11. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    Costs References . . Coal-Electric Generation Technologyon coal preparation, coal-electric generation and emissionson coal preparation, coal-electric generation and emissions

  12. Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities

    E-Print Network [OSTI]

    Hagan, Colin R.

    2012-01-01T23:59:59.000Z

    estimates shown here for Marcellus gas are similar toGreenhouse Gas Emissions of Marcellus Shale Gas, ENvr_.research- ers acknowledge, "Marcellus shale gas production

  13. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    SciTech Connect (OSTI)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31T23:59:59.000Z

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no degradation in Polaris membrane performance during two months of continuous operation in a simulated flue gas environment containing up to 1,000 ppm SO{sub 2}. A successful slipstream field test at the APS Cholla power plant was conducted with commercialsize Polaris modules during this project. This field test is the first demonstration of stable performance by commercial-sized membrane modules treating actual coal-fired power plant flue gas. Process design studies show that selective recycle of CO{sub 2} using a countercurrent membrane module with air as a sweep stream can double the concentration of CO{sub 2} in coal flue gas with little energy input. This pre-concentration of CO{sub 2} by the sweep membrane reduces the minimum energy of CO{sub 2} separation in the capture unit by up to 40% for coal flue gas. Variations of this design may be even more promising for CO{sub 2} capture from NGCC flue gas, in which the CO{sub 2} concentration can be increased from 4% to 20% by selective sweep recycle. EPRI and WP conducted a systems and cost analysis of a base case MTR membrane CO{sub 2} capture system retrofitted to the AEP Conesville Unit 5 boiler. Some of the key findings from this study and a sensitivity analysis performed by MTR include: The MTR membrane process can capture 90% of the CO{sub 2} in coal flue gas and produce high-purity CO{sub 2} (>99%) ready for sequestration. CO{sub 2} recycle to the boiler appears feasible with minimal impact on boiler performance; however, further study by a boiler OEM is recommended. For a membrane process built today using a combination of slight feed compression, permeate vacuum, and current compression equipment costs, the membrane capture process can be competitive with the base case MEA process at 90% CO{sub 2} capture from a coal-fired power plant. The incremental LCOE for the base case membrane process is about equal to that of a base case MEA process, within the uncertainty in the analysis. With advanced membranes (5,000 gpu for CO{sub 2} and 50 for CO{sub 2}/N{sub 2}), operating with no feed compression and l

  14. Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration)

    SciTech Connect (OSTI)

    Quimby, J.M.

    1992-02-01T23:59:59.000Z

    The objective of this contract is to investigate the removal of So{sub x} and particulate matter from direct coal-fired combustion gas streams at high temperature and high pressure conditions. This investigation will be accomplished through a bench-scale testing and evaluation program employing sorbent mixed with a coal-water slurry for So{sub x} removal, and an innovative particulate control concept. The particulate control device utilizes electrostatic agglomeration followed by a high efficiency mechanical collector (cyclone). The process goal is to achieve particulate collection efficiency better than that required by the 1979 new source performance standards. An additional goal is to demonstrate 70% So{sub x} removal efficiency. This research project is now in the second of a 3 phase (Phase II) project. Phase II is to fabricate the combustor and particulate control devices and install the system at a test facility located at Research-Cottrell's, KVB Western Laboratory, Santa Ana, CA. There are three functional categories, or tasks which are to be completed in sequence. These tasks are itemized as follows: Design, procurement, and installation; Shakedown and startup; Reporting. Attempts to validate the concept of electrostatic agglomeration were not possible in the shakedown program before budget constraints halted the program. What was learned was that electrostatic precipitation is feasible in the temperature range of 1600--1800{degrees}F and at pressures above 10 atmospheres.

  15. Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration)

    SciTech Connect (OSTI)

    Quimby, J.M.

    1992-05-01T23:59:59.000Z

    The objective of this contract is to investigate the removal of SO[sub x] and particulate matter from direct coal-fired combustion gas streams at high temperature and high pressure conditions. This investigation will be accomplished through a bench-scale testing and evaluation program employing sorbent mixed with a coal-water slurry for SO[sub x] removal, and an innovative particulate control concept. The particulate control device utilizes electrostatic agglomeration followed by a high efficiency mechanical collector (cyclone). The process goal is to achieve particulate collection efficiency better than that required by the 1979 new source performance standards. An additional goal is to demonstrate 70% SO[sub x] removal efficiency. This research project is now in the second of a 3 phase (phase II) project. Phase II is to fabricate the combustor and particulate control devices and install the system at a test facility located at Research-Cottrell's, KVB Western Laboratory, Santa Ana, CA. There are three functional categories, or tasks which are to be completed in sequence. These tasks are itemized as follows: design, procurement, and installation, shakedown and startup, and reporting.

  16. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    SciTech Connect (OSTI)

    Kloosterman, Jeff

    2012-12-31T23:59:59.000Z

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  17. Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050

    E-Print Network [OSTI]

    Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

    2008-01-01T23:59:59.000Z

    natural gas reformation with pipeline distribution (64%),gas reformation (71%), centralized biomass gasification with pipeline distribution (pipeline distribution (65%), and onsite electrolysis (67%); and electricity generation from: biomass (40%), coal (45%) and natural gas

  18. Estonian greenhouse gas emissions inventory report

    SciTech Connect (OSTI)

    Punning, J.M.; Ilomets, M.; Karindi, A.; Mandre, M.; Reisner, V. [Inst. of Ecology, Tallinn (Estonia); Martins, A.; Pesur, A. [Inst. of Energy Research, Tallinn (Estonia); Roostalu, H.; Tullus, H. [Estonian Agricultural Univ., Tartu (Estonia)

    1996-07-01T23:59:59.000Z

    It is widely accepted that the increase of greenhouse gas concentrations in the atmosphere due to human activities would result in warming of the Earth`s surface. To examine this effect and better understand how the GHG increase in the atmosphere might change the climate in the future, how ecosystems and societies in different regions of the World should adapt to these changes, what must policymakers do for the mitigation of that effect, the worldwide project within the Framework Convention on Climate Change was generated by the initiative of United Nations. Estonia is one of more than 150 countries, which signed the Framework Convention on Climate Change at the United Nations Conference on Environment and Development held in Rio de Janeiro in June 1992. In 1994 a new project, Estonian Country Study was initiated within the US Country Studies Program. The project will help to compile the GHG inventory for Estonia, find contemporary trends to investigate the impact of climate change on the Estonian ecosystems and economy and to formulate national strategies for Estonia addressing to global climate change.

  19. MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS LOCAL IMPACTS ON HUMAN HEALTH RISK.

    SciTech Connect (OSTI)

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; LIPFERT, F.; MORRIS, S.M.; BANDO, A.; PENA, R.; BLAKE, R.

    2005-12-01T23:59:59.000Z

    A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. However, there are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg{sub 0} in power plant plumes and the role of water chemistry in the relationship between Hg deposition and fish content. Soil and vegetation sampling programs were performed around two mid-size coal fired power plants. The objectives were to determine if local mercury hot-spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with model predictions. These programs found the following: (1) At both sites, there was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. At the Kincaid plant, there was excess soil Hg along heavily traveled roads. The spatial pattern of soil mercury concentrations did not match the pattern of vegetation Hg concentrations at either plant. (2) At both sites, the subsurface (5-10 cm) samples the Hg concentration correlated strongly with the surface samples (0-5 cm). Average subsurface sample concentrations were slightly less than the surface samples; however, the difference was not statistically significant. (3) An unequivocal definition of background Hg was not possible at either site. Using various assumed background soil mercury concentrations, the percentage of mercury deposited within 10 km of the plant ranged between 1.4 and 8.5% of the RGM emissions. Based on computer modeling, Hg deposition was primarily RGM with much lower deposition from elemental mercury. Estimates of the percentage of total Hg deposition ranged between 0.3 and 1.7%. These small percentages of deposition are consistent with the empirical findings of only minor perturbations in environmental levels, as opposed to ''hot spots'', near the plants. The major objective of this study was to determine if there was evidence for ''hot-spots'' of mercury deposition around coal-fired power plants. Although the term has been used extensively, it has never been defined. From a public health perspective, such a ''hot spot'' must be large enough to insure that it did not occur by chance, and it must affect water bodies large enough to support a population of subsistence fishers. The results of this study support the hypothesis that n

  20. A physics-based emissions model for aircraft gas turbine combustors

    E-Print Network [OSTI]

    Allaire, Douglas L

    2006-01-01T23:59:59.000Z

    In this thesis, a physics-based model of an aircraft gas turbine combustor is developed for predicting NO. and CO emissions. The objective of the model is to predict the emissions of current and potential future gas turbine ...

  1. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric...

  2. Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across the Continental United States Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across...

  3. Control of trace metal emissions during coal combustion. Technical progress report, October 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    Ho, Thomas C.

    1996-01-01T23:59:59.000Z

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold end of the process by air-pollution control devices such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions at the hot end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process. Specifically, the technology is to employ suitable sorbents to reduce the amount of metal volatilization during combustion and capture volatized metal vapors. The objectives of this project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor. The following progress has been made during the performance period from Oct. 1, 1995 through Dec. 31, 1995: (1) Additional combustion experiments involving both coal and wood pellets were carried out in the constructed quartz fluidized bed combustor. (2) A new Buck Scientific Model 210VGP Atomic Absorption spectrophotometer equipped with a continuous flow hydride generator especially for arsenic and selenium was installed for the project. (3) A paper, entitled ``Capture of Toxic Metals by Various Sorbents during Fluidized Bed Coal Combustion,`` was presented at the 1995 AIChE Annual Meeting held in Miami, November 13--17, 1995. (4) A manuscript, entitled ``Trace Metal Capture by Various Sorbents during Fluidized Bed Coal Combustion,`` was submitted to the 26th International Symposium on Combustion for presentation and for publication in the symposium proceedings. 1 ref., 3 tabs.

  4. Effect of steam partial pressure on gasification rate and gas composition of product gas from catalytic steam gasification of HyperCoal

    SciTech Connect (OSTI)

    Atul Sharma; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group

    2009-09-15T23:59:59.000Z

    HyperCoal was produced from coal by a solvent extraction method. The effect of the partial pressure of steam on the gasification rate and gas composition at temperatures of 600, 650, 700, and 750{sup o}C was examined. The gasification rate decreased with decreasing steam partial pressure. The reaction order with respect to steam partial pressure was between 0.2 and 0.5. The activation energy for the K{sub 2}CO{sub 3}-catalyzed HyperCoal gasification was independent of the steam partial pressure and was about 108 kJ/mol. The gas composition changed with steam partial pressure and H{sub 2} and CO{sub 2} decreased and CO increased with decreasing steam partial pressure. By changing the partial pressure of the steam, the H{sub 2}/CO ratio of the synthesis gas can be controlled. 18 refs., 7 figs., 2 tabs.

  5. Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals-Phase I

    SciTech Connect (OSTI)

    Raymond Hobbs

    2007-05-31T23:59:59.000Z

    The Advanced Hydrogasification Process (AHP)--conversion of coal to methane--is being developed through NETL with a DOE Grant and has successfully completed its first phase of development. The results so far are encouraging and have led to commitment by DOE/NETL to begin a second phase--bench scale reactor vessel testing, expanded engineering analysis and economic perspective review. During the next decade new means of generating electricity, and other forms of energy, will be introduced. The members of the AHP Team envision a need for expanded sources of natural gas or substitutes for natural gas, to fuel power generating plants. The initial work the team has completed on a process to use hydrogen to convert coal to methane (pipeline ready gas) shows promising potential. The Team has intentionally slanted its efforts toward the needs of US electric utilities, particularly on fuels that can be used near urban centers where the greatest need for new electric generation is found. The process, as it has evolved, would produce methane from coal by adding hydrogen. The process appears to be efficient using western coals for conversion to a highly sought after fuel with significantly reduced CO{sub 2} emissions. Utilities have a natural interest in the preservation of their industry, which will require a dramatic reduction in stack emissions and an increase in sustainable technologies. Utilities tend to rank long-term stable supplies of fuel higher than most industries and are willing to trade some ratio of cost for stability. The need for sustainability, stability and environmentally compatible production are key drivers in the formation and progression of the AHP development. In Phase II, the team will add a focus on water conservation to determine how the basic gasification process can be best integrated with all the plant components to minimize water consumption during SNG production. The process allows for several CO{sub 2} reduction options including consumption of the CO{sub 2} in the original process as converted to methane. The process could under another option avoid emissions following the conversion to SNG through an adjunct algae conversion process. The algae would then be converted to fuels or other products. An additional application of the algae process at the end use natural gas fired plant could further reduce emissions. The APS team fully recognizes the competition facing the process from natural gas and imported liquid natural gas. While we expect those resources to set the price for methane in the near-term, the team's work to date indicates that the AHP process can be commercially competitive, with the added benefit of assuring long-term energy supplies from North American resources. Conversion of coal to a more readily transportable fuel that can be employed near load centers with an overall reduction of greenhouses gases is edging closer to reality.

  6. advanced coal-fired gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coal-fired unit at Hawthorn Station. Ultimately, KCPL decided to replace the destroyed steam generator with another coal-fired unit, and repower the existing turbinegenerator...

  7. Clean Coal Power Initiative | Department of Energy

    Office of Environmental Management (EM)

    Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other...

  8. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01T23:59:59.000Z

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  9. FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS

    SciTech Connect (OSTI)

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

    2004-01-29T23:59:59.000Z

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{trademark} baghouse. Activated carbon was injected between the ESP and COHPAC{trademark} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{trademark} unit. The test also showed that activated carbon was effective in removing both forms of mercury--elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{trademark}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{trademark} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{trademark} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  10. U.S. Natural Gas System Methane Emissions: State of Knowledge from LCAs, Inventories, and Atmospheric Measurements (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2014-04-01T23:59:59.000Z

    Natural gas (NG) is a potential "bridge fuel" during transition to a decarbonized energy system: It emits less carbon dioxide during combustion than other fossil fuels and can be used in many industries. However, because of the high global warming potential of methane (CH4, the major component of NG), climate benefits from NG use depend on system leakage rates. Some recent estimates of leakage have challenged the benefits of switching from coal to NG, a large near-term greenhouse gas (GHG) reduction opportunity. During this presentation, Garvin will review evidence from multiple perspectives - life cycle assessments (LCAs), inventories and measurements - about NG leakage in the US. Particular attention will be paid to a recent article in Science magazine which reviewed over 20 years of published measurements to better understand what we know about total methane emissions and those from the oil and gas sectors. Scientific and policy implications of the state of knowledge will be discussed.

  11. Carbon Emissions Primer Symposium on Greenhouse Gas andSymposium on Greenhouse Gas and

    E-Print Network [OSTI]

    6/5/2013 1 Carbon Emissions Primer Symposium on Greenhouse Gas andSymposium on Greenhouse Gas Council June 4, 2013 Portland, OR 1 CO2 Chemistry 1 molecule of CO 1 atom carbon1 molecule of CO2 = 1 atom carbon + 2 atoms oxygen 2 #12;6/5/2013 2 CO2 Chemistry 1 mole of carbon = 6 02 x 1023 carbon atoms 1

  12. Control of trace metal emissions during coal combustion. Technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    Ho, T.C.

    1995-07-01T23:59:59.000Z

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold-end of the process by air-pollution control devices (APCDs) such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions, alternatively, at the hot-end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process, which would effectively eliminate the metal emission problems. Specifically, the technology is to employ suitable sorbents to (1) reduce the amount of metal volatilization during combustion and (2) capture volatilized metal vapors. The objectives of the project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor.

  13. Control of trace metal emissions during coal combustion. Technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect (OSTI)

    Ho, T.C.

    1995-10-01T23:59:59.000Z

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold-end of the process by air-pollution control devices (APCDs) such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions, alternatively, at the hot-end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process, which would effectively eliminate the metal emission problems. Specifically, the technology is to employ suitable sorbents to reduce the amount of metal volatilization during combustion and capture volatilized metal vapors. The objectives of the project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor.

  14. The effect of natural gas supply on US renewable energy and CO2emissions

    E-Print Network [OSTI]

    Shearer, C; Shearer, C; Bistline, J; Inman, M; Davis, SJ; Davis, SJ

    2014-01-01T23:59:59.000Z

    leaks from North American natural gas systems Science 343of methane emissions at natural gas production sites in theThe effect of natural gas supply on US renewable energy and

  15. Florida CFB demo plant yields low emissions on variety of coals

    SciTech Connect (OSTI)

    NONE

    2005-07-01T23:59:59.000Z

    The US Department of Energy (DOE) has reported results of tests conducted at Jacksonville Electric Authority (JEA)'s Northside power plant using mid-to-low-sulfur coal, which indicate the facility is one of the cleanest burning coal-fired power plants in the world. A part of DOE's Clean Coal Technology Demonstration Program, the JEA project is a repowering demonstration of the operating and environmental performance of Foster Wheeler's utility-scale circulating fluidized bed combustion (CFB) technology on a range of high-sulfur coals and blends of coal and high-sulfur petroleum coke. The 300 MW demonstration unit has a non-demonstration 300 MW twin unit.

  16. FINE PARTICAL AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Wayne S. Seames; Art Fernandez

    2003-09-21T23:59:59.000Z

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and pulverized coal. The objective was to determine potential tradeoffs between CO{sub 2} mitigation through using a CO{sub 2} neutral fuel, such as municipal sewage sludge, and the emergence of other potential problems such as the emission of toxic fly ash particles. The work led to new insight into mechanisms governing the partitioning of major and trace metals from the combustion of sewage sludge, and mixtures of coal and sewage sludge. The research also showed that the co-combustion of coal and sewage sludge emitted fine particulate matter that might potentially cause greater lung injury than that from the combustion of either coal alone or municipal sewage sludge alone. The reason appeared to be that the toxicity measured required the presence of large amounts of both zinc and sulfur in particles that were inhaled. MSS provided the zinc while coal provided the sulfur. Additional research showed that the toxic effects could most likely be engineered out of the process, through the introduction of kaolinite sorbent downstream of the combustion zone, or removing the sulfur from the fuel. These results are consequences of applying ''Health Effects Engineering'' to this issue. Health Effects Engineering is a new discipline arising out of this work, and is derived from using a collaboration of combustion engineers and toxicologists to mitigate the potentially bad health effects from combustion of this biomass fuel.

  17. Life Cycle Analysis on Greenhouse Gas (GHG) Emissions of Marcellus Shale Gas Supporting Information

    E-Print Network [OSTI]

    Jaramillo, Paulina

    the well pad drilling site and the location for accommodation. The rig and auxiliary equipments for hydraulic fracturing process are trucked in trailers to the drilling site. Several wells on one multi-well 1. GHG Emissions Estimation for Production of Marcellus Shale Gas 1.1 Preparation of Well Pad

  18. Limiting net greenhouse gas emissions in the United States

    SciTech Connect (OSTI)

    Bradley, R A; Watts, E C; Williams, E R [eds.

    1991-09-01T23:59:59.000Z

    In 1988, Congress requested that DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity) and the relationship between energy production and use and the emission of radiatively important gases. Topics discussed include: state of the science in estimating atmosphere/climate change relationships, the potential consequences of atmosphere/climate change, us greenhouse emissions past and present, an approach to analyzing the technical potential and cost of reducing US energy-related greenhouse gas emissions, current policy base and National Energy Strategy actions, fiscal instruments, regulatory instruments, combined strategies and instruments, macroeconomic impacts, carbon taxation and international trade, a comparison to other studies.

  19. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01T23:59:59.000Z

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  20. Measurement of Oil and Gas Emissions from a Marine Seep

    E-Print Network [OSTI]

    Leifer, Ira; Boles, J R; Luyendyk, B P

    2007-01-01T23:59:59.000Z

    with offshore oil production, Geology, 27(11), 1047-1050,Coal Oil Point, California, Marine and Petroleum Geology 22(

  1. Environmental data energy technology characterizations: coal

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    This document describes the activities leading to the conversion of coal to electricity. Specifically, the activities consist of coal mining and beneficiation, coal transport, electric power generation, and power transmission. To enhance the usefulness of the material presented, resource requirements, energy products, and residuals for each activity area are normalized in terms of 10/sup 12/ Btus of energy produced. Thus, the total effect of producing electricity from coal can be determined by combining the residuals associated with the appropriate activity areas. Emissions from the coal cycle are highly dependent upon the type of coal consumed as well as the control technology assigned to the activity area. Each area is assumed to be equipped with currently available control technologies that meet environmental regulations. The conventional boiler, for example, has an electrostatic precipitator and a flue gas desulfurization scrubber. While this results in the removal of most of the particulate matter and sulfur dioxide in the flue gas stream, it creates other new environmental residuals -- solid waste, sludge, and ash. There are many different types of mined coal. For informational purposes, two types from two major producing regions, the East and the West, are characterized here. The eastern coal is typical of the Northern Appalachian coal district with a high sulfur and heat content. The western coal, from the Powder River Basin, has much less sulfur, but also has a substantially lower heating value.

  2. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  3. Coal industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-11-01T23:59:59.000Z

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  4. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    DOE Patents [OSTI]

    Siriwardane, Ranjani V. (Morgantown, WV)

    1997-01-01T23:59:59.000Z

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  5. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    DOE Patents [OSTI]

    Siriwardane, R.V.

    1997-12-30T23:59:59.000Z

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  6. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    DOE Patents [OSTI]

    Siriwardane, R.V.

    1999-02-02T23:59:59.000Z

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  7. Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas

    DOE Patents [OSTI]

    Siriwardane, Ranjani V. (Morgantown, WV)

    1999-01-01T23:59:59.000Z

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  8. Secondary atomization of coal-water fuels for gas turbine applications: Final report

    SciTech Connect (OSTI)

    Yu, T.U.; Kang, S.W.; Beer, J.M.

    1988-12-01T23:59:59.000Z

    The main research objective was to determine the effectiveness of the CWF treatments on atomization quality when applied to an ultrafine coal-water fuel (solids loading reduced to 50%) and to gas turbine operating conditions (atomization at elevated pressures). Three fuel treatment techniques were studied: (1) heating of CWF under pressure to produce steam as the pressure drops during passage of the CWF through the atomizer nozzle, (2) absorption of CO/sub 2/ gas in the CWF to produce a similar effect, and (3) a combination of the two treatments above. These techniques were expected to produce secondary atomization, that is, disruptive shattering of CWF droplets subsequent to their leaving the atomizing nozzle, and to lead to better burnout and finer fly ash size distribution. A parallel objective was to present quantitative information on the spray characteristics (mean droplet size, radial distribution of droplet size, and spray shape) of CWF with and without fuel treatment, applicable to the design of CWF-burning gas turbine combustors. The experiments included laser diffraction droplet size measurements and high-speed photographic studies in the MIT Spray Test Facility to determine mean droplet size (mass median diameter), droplet size distribution, and spray shape and angle. Three systems of atomized sprays were studied: (1) water sprays heated to a range of temperatures at atmospheric pressure; (2) CWF sprays heated at atmospheric pressure to different temperatures; and (3) sprays at elevated pressure. 31 refs., 47 figs., 1 tab.

  9. Conference on alternatives for pollution control from coal-fired low emission sources, Plzen, Czech Republic. Plzen Proceedings

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The Conference on Alternatives for Pollution Control from Coal-Fired Emission Sources presented cost-effective approaches for pollution control of low emission sources (LES). It also identified policies and strategies for implementation of pollution control measures at the local level. Plzen, Czech Republic, was chosen as the conference site to show participants first hand the LES problems facing Eastern Europe today. Collectively, these Proceedings contain clear reports on: (a) methods for evaluating the cost effectiveness of alternative approaches to control pollution from small coal-fired boilers and furnaces; (b) cost-effective technologies for controlling pollution from coal-fired boilers and furnaces; (c) case studies of assessment of cost effective pollution control measures for selected cities in eastern Europe; and (d) approaches for actually implementing pollution control measures in cities in Eastern Europe. It is intended that the eastern/central European reader will find in these Proceedings useful measures that can be applied to control emissions and clean the air in his city or region. The conference was sponsored by the United States Agency for International Development (AID), the United States Department of Energy (DOE), and the Czech Ministry of Industry and Trade. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  10. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

    2000-04-01T23:59:59.000Z

    Reduction of NO{sub x} emission is an important environmental issue in pulverized coal combustion. The most cost-effective approach to NO{sub x} reduction is air-staging which can also operate with additional down-stream techniques such as reburning [1]. Air staging promotes the conversion of NO{sub x} precursors (HCN, NH{sub 3}, etc.) to N{sub 2} by delaying the oxygen supply to the greatest extent when those nitrogen species are released during devolatilization. Such a delay gives the primary volatiles a chance to undergo secondary reactions, including tar cracking and soot formation. Secondary reactions of volatiles largely determine the fate of the ultimate NO{sub x} production from pyrolysis, therefore a detailed investigation into the transformation of nitrogen species during secondary reactions and effects of soot on nitrogen release is critical for design and implementation of new pollution control strategies. Current nitrogen models (including the CPD model at BYU) only simulate the nitrogen release during primary pyrolysis, which happens at low temperatures. This project helps to build a nitrogen release model that accounts for secondary reactions and the effects of soot at temperatures relevant to industrial burners.

  11. The economical production of alcohol fuels from coal-derived synthesis gas: Case studies, design, and economics

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    This project is a combination of process simulation and catalyst development aimed at identifying the most economical method for converting coal to syngas to linear higher alcohols to be used as oxygenated fuel additives. There are two tasks. The goal of Task 1 is to discover, study, and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas, and to explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. The goal of Task 2 is to simulate, by computer, energy efficient and economically efficient processes for converting coal to energy (fuel alcohols and/or power). The primary focus is to convert syngas to fuel alcohols. This report contains results from Task 2. The first step for Task 2 was to develop computer simulations of alternative coal to syngas to linear higher alcohol processes, to evaluate and compare the economics and energy efficiency of these alternative processes, and to make a preliminary determination as to the most attractive process configuration. A benefit of this approach is that simulations will be debugged and available for use when Task 1 results are available. Seven cases were developed using different gasifier technologies, different methods for altering the H{sub 2}/CO ratio of the syngas to the desired 1.1/1, and with the higher alcohol fuel additives as primary products and as by-products of a power generation facility. Texaco, Shell, and Lurgi gasifier designs were used to test gasifying coal. Steam reforming of natural gas, sour gas shift conversion, or pressure swing adsorption were used to alter the H{sub 2}/CO ratio of the syngas. In addition, a case using only natural gas was prepared to compare coal and natural gas as a source of syngas.

  12. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

    2007-03-01T23:59:59.000Z

    Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

  13. Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities

    E-Print Network [OSTI]

    Hagan, Colin R.

    2012-01-01T23:59:59.000Z

    Inherently, natural gas combustion produces significantlygas turbines were fuel gas combustion devices and that theyof greenhouse gas emissions released during combustion. 5 0

  14. Outlook and Challenges for Chinese Coal

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

    2008-06-20T23:59:59.000Z

    China has been, is, and will continue to be a coal-powered economy. The rapid growth of coal demand since 2001 has created deepening strains and bottlenecks that raise questions about supply security. Although China's coal is 'plentiful,' published academic and policy analyses indicate that peak production will likely occur between 2016 and 2029. Given the current economic growth trajectory, domestic production constraints will lead to a coal gap that is not likely to be filled with imports. Urbanization, heavy industry growth, and increasing per-capita consumption are the primary drivers of rising coal usage. In 2006, the power sector, iron and steel, and cement accounted for 71% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units could save only 14% of projected 2025 coal demand. If China follows Japan, steel production would peak by 2015; cement is likely to follow a similar trajectory. A fourth wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. New demand from coal-to-liquids and coal-to-chemicals may add 450 million tonnes of coal demand by 2025. Efficient growth among these drivers indicates that China's annual coal demand will reach 4.2 to 4.7 billion tonnes by 2025. Central government support for nuclear and renewable energy has not been able to reduce China's growing dependence on coal for primary energy. Few substitution options exist: offsetting one year of recent coal demand growth would require over 107 billion cubic meters of natural gas, 48 GW of nuclear, or 86 GW of hydropower capacity. While these alternatives will continue to grow, the scale of development using existing technologies will be insufficient to substitute significant coal demand before 2025. The central role of heavy industry in GDP growth and the difficulty of substituting other fuels suggest that coal consumption is inextricably entwined with China's economy in its current mode of growth. Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on its current growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Broadening awareness of the environmental costs of coal mining, transport, and combustion is raising the pressure on Chinese policy makers to find alternative energy sources. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China is short of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport. Transporting coal to users has overloaded the train system and dramatically increased truck use, raising transport oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 mt by 2025, significantly impacting regional markets. The looming coal gap threatens to derail China's growth path, possibly undermining political, economic, and social stability. High coal prices and domestic shortages will have regional and global effects. Regarding China's role as a global manufacturing center, a domestic coal gap will increase prices and constrain growth. Within the Asia-Pacific region, China's coal gap is likely to bring about increased competition with other coal-importing countries including Japan, South Korea, Taiwan, and India. As with petroleum, China may respond with a government-supported 'going-out' strategy of resource acquisition and vertical integration. Given its population and growing resource constraints, China may favor energy security, competitiveness, and local environmental protection over global climate change mitigation. The possibility of a large coal gap suggests that Chinese and international policy makers should maximize institutional and financial support

  15. [Engineering development of advanced coal-fired low-emission boiler systems]. Technical progress report, October--December 1995

    SciTech Connect (OSTI)

    Wesnor, J.D.; Bakke, E. [ABB Environmental Systems, Birmingham, AL (United States); Bender, D.J.; Kaminski, R.S. [Raytheon Engineers and Constructors, Inc., Philadelphia, PA (United States)

    1995-12-31T23:59:59.000Z

    The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emisssion boiler systems. The primary objectives are: NO{sub x} emissions, lb/million Btu; SO{sub 2} emissions, lb/million Btu; particulate emissions, lb/million Btu; and net plant efficiency, not less than 42%. The secondary objectives are: improved ash disposability; reduced waste generation; and reduced air toxics emissions. Accomplishments to date are summarized for the following tasks: task 1, project planning and management; task 7, component development and optimization; task 8, preliminary POC test facility design; task 9, subsystem test design and plan; task 10, subsystem test unit construction; and task 11, subsystem test operation and evaluation.

  16. Development of an advanced high efficiency coal combustor for boiler retrofit

    SciTech Connect (OSTI)

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

    1990-04-01T23:59:59.000Z

    The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

  17. Development of an advanced high efficiency coal combustor for boiler retrofit. Summary report

    SciTech Connect (OSTI)

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

    1990-04-01T23:59:59.000Z

    The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

  18. Volcanic gas emissions and their effect on ambient air character

    SciTech Connect (OSTI)

    Sutton, A.J. [Geological Survey, Menlo Park, CA (United States); Elias, T. [Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory

    1994-01-01T23:59:59.000Z

    This bibliography was assembled to service an agreement between Department of Energy and the USGS to provide a body of references and useful annotations for understanding background gas emissions from Kilauea volcano. The current East Rift Zone (ERZ) eruption of Kilauea releases as much as 500,000 metric tonnes of SO{sub 2} annually, along with lesser amounts of other chemically and radiatively active species including H{sub 2}S, HCl, and HF. Primary degassing locations on Kilauea are located in the summit caldera and along the middle ERZ. The effects of these emissions on ambient air character are a complex function of chemical reactivity, source geometry and effusivity, and local meteorology. Because of this complexity, we organized the bibliography into three main sections: (1) characterizing gases as they leave the edifice; (2) characterizing gases and chemical reaction products away from degassing sources; and (3) Hawaii Island meteorology.

  19. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Not Available

    1997-10-01T23:59:59.000Z

    This report serves as the technology basis of a needed national climate change technology strategy, with the confidence that a strong technology R&D program will deliver a portfolio of technologies with the potential to provide very substantial greenhouse gas emission reductions along with continued economic growth. Much more is needed to define such a strategy, including identification of complementary deployment policies and analysis to support the seeping and prioritization of R&D programs. A national strategy must be based upon governmental, industrial, and academic partnerships.

  20. The Velocity Field of Quasar Broad Emission Line Gas

    E-Print Network [OSTI]

    Brian Punsly

    2007-01-25T23:59:59.000Z

    In this Letter, the broad emission line (BEL) profiles of superluminal quasars with apparent jet velocities, $\\beta_{a}>10$, (ultraluminal QSOs, or ULQSOs hereafter) are studied as a diagnostic of the velocity field of the BEL emitting gas in quasars. The ULQSOs are useful because they satisfy a very strict kinematical constraint, their parsec scale jets must be propagating within $12^{\\circ}$ of the line of sight. We know the orientation of these objects with great certainty. The large BEL FWHM, $\\sim 3,000 \\mathrm{km/s} - 6,000 \\mathrm{km/s}$, in ULQSOs tend to indicate that the BEL gas has a larger component of axial velocity (either random or in a wind) along the jet direction than previously thought.

  1. A study of toxic emissions from a coal-fired power plant utilizing an ESP/Wet FGD system. Volume 1, Sampling, results, and special topics: Final report

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    This was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE-PETC in 1993 as mandated by the 1990 Clean Air Act. It is organized into 2 volumes; Volume 1 describes the sampling effort, presents the concentration data on toxic chemicals in several power plant streams, and reports the results of evaluations and calculations. The study involved solid, liquid, and gaseous samples from input, output, and process streams at Coal Creek Station Unit No. 1, Underwood, North Dakota (1100 MW mine-mouth plant burning lignite from the Falkirk mine located adjacent to the plant). This plant had an electrostatic precipitator and a wet scrubber flue gas desulfurization unit. Measurements were conducted on June 21--24, 26, and 27, 1993; chemicals measured were 6 major and 16 trace elements (including Hg, Cr, Cd, Pb, Se, As, Be, Ni), acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate), ammonia and cyanide, elemental C, radionuclides, VOCs, semivolatiles (incl. PAH, polychlorinated dioxins, furans), and aldehydes. Volume 2: Appendices includes process data log sheets, field sampling data sheets, uncertainty calculations, and quality assurance results.

  2. Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification

    SciTech Connect (OSTI)

    None

    1982-01-01T23:59:59.000Z

    This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

  3. DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS

    SciTech Connect (OSTI)

    Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

    2012-09-30T23:59:59.000Z

    The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

  4. Greenhouse gas emissions and the surface transport of freight in Canada

    E-Print Network [OSTI]

    Greenhouse gas emissions and the surface transport of freight in Canada Paul Steenhof a,*, Clarence committed to reducing its greenhouse gas (GHG) emissions to 6% below 1990 levels between 2008 and 2012's emissions of 740 million metric tonnes of carbon dioxide (mmTCO2e), and 41% of the CO2e emitted from

  5. MONITORING OF GAS TURBINE OPERATING PARAMETERS USING ACOUSTIC EMISSION

    E-Print Network [OSTI]

    R M Douglas; S Beugné; M D Jenkins; A K Frances; J A Steel; R L Reuben; P A Kew

    In this work, Acoustic Emission (AE) sensors were mounted on several parts of a laboratory-scale gas turbine operating under various conditions, the object being to assess the value of AE for inservice condition monitoring. The turbine unit comprised a gas generator (compressor and turbine on a common shaft) and a free-power turbine for power extraction. AE was acquired from several sensor positions on the external surfaces of the equipment over a range of gas generator running speeds. Relationships between parameters derived from the acquired AE signals and the running conditions are discussed. It is shown that the compressor impeller blade passing frequency is discernible in the AE record, allowing shaft speed to be obtained, and presenting a significant blade monitoring opportunity. Further studies permit a trend to be established between the energy contained in the AE signal and the turbine running speed. In order to study the effects of damaged rotor blades a fault was simulated in opposing blades of the free-power turbine and run again under the previous conditions. Also, the effect of an additional AE source, occurring due to abnormal operation in the gas generator area (likely rubbing), is shown to produce deviations from that expected during normal operation. The findings suggest that many aspects of the machine condition can be monitored.

  6. Uncertainty in Life Cycle Greenhouse Gas Emissions from United States Natural Gas and its Effects on Policy

    E-Print Network [OSTI]

    Jaramillo, Paulina

    presented in the Inventory (5). These activities include methane emissions due to well drilling, completion fuel by gas wells, fields and lease operations during the production of natural gas by state (2 to the production emissions that occurred once or a fixed number of times during the lifetime of a well were also

  7. Evaluation of sorbents for the cleanup of coal-derived synthesis gas at elevated temperatures

    E-Print Network [OSTI]

    Couling, David Joseph

    2012-01-01T23:59:59.000Z

    Integrated Gasification Combined Cycle (IGCC) with carbon dioxide capture is a promising technology to produce electricity from coal at a higher efficiency than with traditional subcritical pulverized coal (PC) power plants. ...

  8. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect (OSTI)

    Jost O.L. Wendt

    2001-05-04T23:59:59.000Z

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NO{sub x} concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. To this end we shall use an existing 17kW downflow laboratory combustor, available with coal and sludge feed capabilities. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NO{sub x} and low NO{sub x} combustion conditions will be investigated (unstaged and staged combustion). The proposed work uses existing analytical and experimental facilities and draws on 20 years of research on NO{sub x} and fine particles that has been funded by DOE in this laboratory. Four barrels of dried sewage sludge are currently in the laboratory. Insofar as possible pertinent mechanisms will be elucidated. Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined.

  9. Instructions on using the security-emissions software Larry Hughes

    E-Print Network [OSTI]

    Hughes, Larry

    for explaining the energy security- greenhouse gas emissions graphs described in (Hughes and Sheth 2008 of the application's energy security, the level of greenhouse gas emissions, and the effort needed to improve energy/kWh PJ 4 Oil 690 178.3 5 Domestic coal 940 10.3 6 Imported coal 940 69.1 7 Natural gas 460 2.3 8 Hydro 16

  10. Evolution of particulate emissions from a coal-fired power plant. [Ph. D. Thesis

    SciTech Connect (OSTI)

    Buckholtz, H.T.Y.

    1980-08-15T23:59:59.000Z

    A numerical model has been developed for the dispersal of aerosols downwind from a coal-fired power plant. The main goals were to evaluate with a mathematical simulation the evolution of the spatial extent and particle size distribution of the aerosol material and to predict settling rates affecting the surface environment in the downwind path. The hot air plume coming out of the power plant stack includes a large quantity of aerosol particles. The plume rises with initial upward emission speed until it reaches thermal and kinetic equilibria with the ambient air, then it is transported by the wind current. The plume disperses vertically and horizontally by wind turbulence. In the model particulate coagulation is mathematically described by Timiskii's equation. The relevant semi-empirical work of Smirnov is incorporated to provide the coagulation constant. Because of coagulation, the concentrations of different sizes of aerosol particles in the plume are changed. The numerical simulation studies the importance of particulate coagulation and turbulent dispersion on the downwind plume profile. The downwind transport of the aerosol particles is described by Fick's diffusion equation with the Brownian diffusion coefficient replaced by the turbulent diffusion coefficient. Particle sedimentation is incorporated into the diffusion equation as a first-order differential term. The transport equation is solved by an unconditionally stable finite difference method. At 20 miles downwind, most of the particles with diameter larger than 10 ..mu..m have settled to the ground. The size distribution is still bimodal. The distribution of larger particles remains almost unchanged, except for the departure of the super-micronic particles, because coagulation losses are approximately balanced by coagulation gains.

  11. Control of trace metal emissions during coal combustion. Technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect (OSTI)

    Ho, T.C.

    1996-07-01T23:59:59.000Z

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold-end of the process by air-pollution control devices (APCDs) such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions, alternatively, at the hot-end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process, which would effectively eliminate the metal emission problems. Specifically, the technology is to employ suitable sorbents to (1) reduce the amount of metal volatilization during combustion and (2) capture volatilized metal vapors. The objectives of the project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor. The observed experimental results indicated that metal capture by sorbents can be as high as 91% depending on the metal species and sorbent involved. All three sorbents tested, i.e., bauxite, zeolite and lime, were observed to be capable of capturing lead and cadmium in a various degree. Zeolite and lime were able to capture chromium. Results from thermodynamic equilibrium simulations suggested the formation of metal-sorbent compounds such as Pb{sub 2}SiO{sub 4}(s), CdAl{sub 2}O{sub 4}(s) and CdSiO{sub 3}(s) under the combustion conditions. Additional experiments are being carried out to provide more statistically representative results for better understanding the metal capture process.

  12. Deep cuts in household greenhouse gas emissions Andrew Blakers

    E-Print Network [OSTI]

    ) of carbon dioxide (CO2) by a coal fired power station. ActewAGL currently charges 13 cents for each k

  13. Bioconversion of coal-derived synthesis gas to liquid fuels. Final technical report, September 1, 1990--August 31, 1991

    SciTech Connect (OSTI)

    Jain, M.K.

    1991-12-31T23:59:59.000Z

    The use of coal-derived synthesis gas as an industrial feedstock for production of fuels and chemicals has become an increasingly attractive alternative to present petroleum-based chemicals production. However, one of the major limitations in developing such a process is the required removal of catalyst poisons such as hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), and other trace contaminants from the synthesis gas. Purification steps necessary to remove these are energy intensive and add significantly to the production cost, particularly for coals having a high sulfur content such as Illinois coal. A two-stage, anaerobic bioconversion process requiring little or no sulfur removal is proposed, where in the first stage the carbon monoxide (CO) gas is converted to butyric and acetic acids by the CO strain of Butyribacterium methylotrophicum. In the second stage, these acids along with the hydrogen (H{sub 2}) gas are converted to butanol, ethanol, and acetone by an acid utilizing mutant of Clostridium acetobutylicum. 18 figs., 18 tabs.

  14. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

    2000-04-01T23:59:59.000Z

    Coal continues to be one of the principal energy sources for electric power generation in the United States. One of the biggest environmental challenges involved with coal utilization is the reduction of nitrogen oxides (NO{sub x}) formed during coal combustion. The most economical method of NO{sub x} abatement in coal combustion is through burner modification. Air-staging techniques have been widely used in the development of low-NO{sub x} pulverized coal burners, promoting the conversion of NO{sub x} to N{sub 2} by delaying the mixing in the fuel-rich zone near the burner inlet. Previous studies have looked at the mechanisms of NO{sub x} evolution at relatively low temperatures where primary pyrolysis is dominant, but data published for secondary pyrolysis in the pulverized coal furnace are scarce. In this project, the nitrogen evolution behavior during secondary coal pyrolysis will be explored. The end result will be a complete model of nitrogen evolution and NO{sub x} precursor formation due to primary and secondary pyrolysis.

  15. 8 Prospects for Biological Carbon Sinks in Greenhouse Gas Emissions Trading Systems

    E-Print Network [OSTI]

    8 Prospects for Biological Carbon Sinks in Greenhouse Gas Emissions Trading Systems John Reilly1. With emissions trading, emitters who found they could cheaply reduce their emissions might have allowances- ing Australia, Canada, Japan and Russia. This group also pushed strongly for inter- national emissions

  16. Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere

    E-Print Network [OSTI]

    Montes-Hernandez, German

    Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere of anthropogenic emission of greenhouse gases into the atmosphere such as CO2, CH4, N2O and CFCs. The CO2 emissions to reflect, adsorb and emit the solar energy. However, the continuous emissions of CO2 into the atmosphere

  17. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    SciTech Connect (OSTI)

    Joseph Rabovitser

    2009-06-30T23:59:59.000Z

    The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

  18. Interaction of iron-copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal

    SciTech Connect (OSTI)

    Siriwardane, Ranjani V. [U.S. DOE; Ksepko, Ewelina; Tian, Hanging [URS

    2013-01-01T23:59:59.000Z

    The objective of this work was to prepare supported bimetallic Fe–Cu oxygen carriers and to evaluate their performance for the chemical-looping combustion (CLC) process with simulated synthesis gas derived from steam gasification of coal/air. Ten-cycle CLC tests were conducted with Fe–Cu oxygen carriers in an atmospheric thermogravimetric analyzer utilizing simulated synthesis gas derived from the steam gasification of Polish Janina coal and Illinois #6 coal as fuel. The effect of temperature on reaction rates, chemical stability, and oxygen transport capacity were determined. Fractional reduction, fractional oxidation, and global rates of reactions were calculated from the thermogravimetric analysis (TGA) data. The supports greatly affected reaction performance. Data showed that reaction rates and oxygen capacities were stable during the 10-cycle TGA tests for most Fe–Cu/support oxygen carriers. Bimetallic Fe–Cu/support oxygen carriers showed higher reduction rates than Fe-support oxygen carriers. The carriers containing higher Cu content showed better stabilities and better reduction rates. An increase in temperature from 800 °C to 900 °C did not have a significant effect on either the oxygen capacity or the reduction rates with synthesis gas derived from Janina coal. Oxidation reaction was significantly faster than reduction reaction for all supported Fe–Cu oxygen carriers. Carriers with higher Cu content had lower oxidation rates. Ten-cycle TGA data indicated that these oxygen carriers had stable performances at 800–900 °C and might be successfully used up to 900 °C for coal CLC reaction in the presence of steam.

  19. Sandia National Laboratories: Clean Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ManagementClean Coal Clean Coal The term clean coal refers to a number of initiatives that seek to reduce or eliminate the hazardous emission or byproducts that result from using...

  20. Application of an Artificial Neural Network to the Prediction of Firedamp Emissions in Coal Jean-Christophe Couillet ', Marc Prince 2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    99-72 Application of an Artificial Neural Network to the Prediction of Firedamp Emissions in Coal-linear physical laws and a high number of hardly accessible parameters. So artificial neural networks have been developed to model firedamp emissions : artificial neural networks äs universal approx'imators are able

  1. 2005 Inventory of Greenhouse Gas Emissions Ascribable to the University of Washington

    E-Print Network [OSTI]

    Kaminsky, Werner

    2005 Inventory of Greenhouse Gas Emissions Ascribable to the University of Washington October 2007....................................................................................................................4 Corporate vs. Geographic Inventories...........................................................................4 Inventory Protocol

  2. City Profile: Los Angeles A part of the study entitled: Reducing greenhouse gas emissions through local

    E-Print Network [OSTI]

    California at Davis, University of

    City Profile: Los Angeles A part of the study entitled: Reducing greenhouse gas emissions through, with its functions distributed across other city departments. Where possible, this profile references

  3. Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into account local.......................................................................................................................................................14 Chapter 1 Biofuels, greenhouse gases and climate change 1 Introduction

  4. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06T23:59:59.000Z

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  5. Pennsylvania Farmland and Forest Land Assessment Act of 1974- Utilization of Land or Conveyance of Rights for Exploration or Extraction of Gas, Oil or Coal Bed Methane

    Broader source: Energy.gov [DOE]

    This act prescribes the procedure utilization of land or conveyance of rights for exploration or extraction of gas, oil or coal bed methane in agricultural and forest reserve areas.

  6. Characterizing toxic emissions from a coal-fired power plant demonstrating the AFGD ICCT Project and a plant utilizing a dry scrubber/baghouse system: Bailly Station Units 7 and 8 and AFGD ICCT Project. Final report. Final report

    SciTech Connect (OSTI)

    Dismukes, E.B.

    1994-10-20T23:59:59.000Z

    This report describes results of assessment of the risk of emissions of hazardous air pollutants at one of the electric power stations, Bailly Station, which is also the site of a Clean Coal Technology project demonstrating the Pure Air Advanced Flue Gas Desulfurization process (wet limestone). This station represents the configuration of no NO{sub x} reduction, particulate control with electrostatic precipitators, and SO{sub 2} control with a wet scrubber. The test was conducted September 3--6, 1993. Sixteen trace metals were determined along with 5 major metals. Other inorganic substances and organic compounds were also determined.

  7. Nitrogen oxides emission control through reburning with biomass in coal-fired power plants

    E-Print Network [OSTI]

    Arumugam, Senthilvasan

    2005-02-17T23:59:59.000Z

    be applied to farmland in accordance with nutrient management plans and stockpiled waste poses economic and environmental liabilities. In the present study, the feasibility of using biomass as a reburn fuel in existing coal-fired power plants is considered...

  8. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard; Kenneth E. Baldrey; Richard Schlager

    2000-04-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. Preliminary testing has identified a class of common deliquescent salts that effectively control flyash resistivity on a variety of coals. A method to evaluate cohesive properties of flyash in the laboratory has been selected and construction of an electrostatic tensiometer test fixture is underway. Preliminary selection of a variety of chemicals that will be screened for effect on flyash cohesion has been completed.

  9. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Quarterly progress report No. 7, July--September 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. Foster Wheeler Development Corporation (FWDC) is leading a team of companies involved in this effort. The power generating system being developed in this project will be an improvement over current coal-fired systems. Goals have been specified that relate to the efficiency, emissions, costs, and general operation of the system. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degrees}F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400{degrees}F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown in Figure 1.

  10. Comparing Statewide Economic Impacts of New Generation from Wind, Coal, and Natural Gas in Arizona, Colorado, and Michigan: Preprint

    SciTech Connect (OSTI)

    Tegen, S.

    2005-08-01T23:59:59.000Z

    With increasing concerns about energy independence, job outsourcing, and risks of global climate change, it is important for policy makers to understand all impacts from their decisions about energy resources. This paper assesses one aspect of the impacts: direct economic effects. The paper compares impacts to states from equivalent new electrical generation from wind, natural gas, and coal. Economic impacts include materials and labor for construction, operations, maintenance, fuel extraction, and fuel transport, as well as project financing, property tax, and landowner revenues. We examine spending on plant construction during construction years, in addition to all other operational expenditures over a 20-year span. Initial results indicate that adding new wind power can be more economically effective than adding new gas or coal power, and that a higher percentage of dollars spent on coal and gas will leave the state. For this report, we interviewed industry representatives and energy experts, in addition to consulting government documents, models, and existing literature. The methodology for this research can be adapted to other contexts for determining economic effects of new power generation in other states and regions.

  11. Comparing Statewide Economic Impacts of New Generation from Wind, Coal, and Natural Gas in Arizona, Colorado, and Michigan

    SciTech Connect (OSTI)

    Tegen, S.

    2006-05-01T23:59:59.000Z

    With increasing concerns about energy independence, job outsourcing, and risks of global climate change, it is important for policy makers to understand all impacts from their decisions about energy resources. This paper assesses one aspect of the impacts: direct economic effects. The paper compares impacts to states from equivalent new electrical generation from wind, natural gas, and coal. Economic impacts include materials and labor for construction, operations, maintenance, fuel extraction, and fuel transport, as well as project financing, property tax, and landowner revenues. We examine spending on plant construction during construction years, in addition to all other operational expenditures over a 20-year span. Initial results indicate that adding new wind power can be more economically effective than adding new gas or coal power and that a higher percentage of dollars spent on coal and gas will leave the state. For this report, we interviewed industry representatives and energy experts, in addition to consulting government documents, models, and existing literature. The methodology for this research can be adapted to other contexts for determining economic effects of new power generation in other states and regions.

  12. Co-combustion of refuse derived fuel and coal in a cyclone furnace at the Baltimore Gas and Electric Company, C. P. Crane Station

    SciTech Connect (OSTI)

    Not Available

    1982-03-01T23:59:59.000Z

    A co-combustion demonstration burn of coal and fluff refuse-derived fuel (RDF) was conducted by Teledyne National and Baltimore Gas and Electric Company. This utility has two B and W cyclone furnaces capable of generating 400 MW. The facility is under a prohibition order to convert from No. 6 oil to coal; as a result, it was desirable to demonstrate that RDF, which has a low sulfur content, can be burned in combination with coals containing up to 2% sulfur, thus reducing overall sulfur emissions without deleterious effects. Each furnace consists of four cyclones capable of generating 1,360,000 pounds per hour steam. The tertiary air inlet of one of the cyclones was modified with an adapter to permit fluff RDF to be pneumatically blown into the cyclone. At the same time, coal was fed into the cyclone furnace through the normal coal feeding duct, where it entered the burning chamber tangentially and mixed with the RDF during the burning process. Secondary shredded fluff RDF was prepared by the Baltimore County Resource Recovery Facility. The RDF was discharged into a receiving station consisting of a belt conveyor discharging into a lump breaker, which in turn, fed the RDF into a pneumatic line through an air-lock feeder. A total of 2316 tons were burned at an average rate of 5.6 tons per hour. The average heat replacement by RDF for the cyclone was 25%, based on Btu input for a period of forty days. The range of RDF burned was from 3 to 10 tons per hour, or 7 to 63% heat replacement. The average analysis of the RDF (39 samples) for moisture, ash, heat (HHV) and sulfur content were 18.9%, 13.4%, 6296 Btu/lb and 0.26% respectively. RDF used in the test was secondary shredded through 1-1/2 inch grates producing the particle size distribution of from 2 inches to .187 inches. Findings to date after inspection of the boiler and superheater indicate satisfactory results with no deleterious effects from the RDF.

  13. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction technology for the control of nitrogen oxide emissions from high-sulfur coal-fired boilers. First and second quarterly technical progress reports, [January--June 1995]. Final report

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia (NH{sub 3}) into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor containing a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW nameplate capacity) near Pensacola, Florida. The project is funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

  14. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Third quarterly technical progress report 1992

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur, coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3} and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high-sulfur US coal. The demonstration will be performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida.

  15. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO[sub x]) emissions from high-sulfur coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO[sub x]) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO[sub x] to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur, coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO[sub 2] and SO[sub 3] and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high-sulfur US coal. The demonstration will be performed at Gulf Power Company's Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida.

  16. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.

  17. Combustor for a low-emissions gas turbine engine

    DOE Patents [OSTI]

    Glezer, Boris (Del Mar, CA); Greenwood, Stuart A. (San Diego, CA); Dutta, Partha (San Diego, CA); Moon, Hee-Koo (San Diego, CA)

    2000-01-01T23:59:59.000Z

    Many government entities regulated emission from gas turbine engines including CO. CO production is generally reduced when CO reacts with excess oxygen at elevated temperatures to form CO2. Many manufactures use film cooling of a combustor liner adjacent to a combustion zone to increase durability of the combustion liner. Film cooling quenches reactions of CO with excess oxygen to form CO2. Cooling the combustor liner on a cold side (backside) away from the combustion zone reduces quenching. Furthermore, placing a plurality of concavities on the cold side enhances the cooling of the combustor liner. Concavities result in very little pressure reduction such that air used to cool the combustor liner may also be used in the combustion zone. An expandable combustor housing maintains a predetermined distance between the combustor housing and combustor liner.

  18. Estakhri and Saylak 1 Potential for Reduced Greenhouse Gas Emissions in Texas Through the Use of

    E-Print Network [OSTI]

    to be balanced with the need for environmental preservation, natural resource conservation and pollution approximately 1.5 tons of limestone, and considerable amounts of both fossil fuel and electrical energy. Eighty ash (a coal combustion by-product). Canadian researchers have determined that CO2 emission reductions

  19. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOE Patents [OSTI]

    Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

    2008-11-25T23:59:59.000Z

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  20. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    SciTech Connect (OSTI)

    Noam Lior; Stuart W. Churchill

    2003-10-01T23:59:59.000Z

    The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at the Gordon Conference on Modern Development in Thermodynamics. The results obtained are very encouraging for the development of the RCSC as a commercial burner for significant reduction of NO{sub x} emissions, and highly warrants further study and development.

  1. Pumping carbon out of underground coal deposits

    SciTech Connect (OSTI)

    Steinberg, M.

    1999-07-01T23:59:59.000Z

    Thin steam and deep coal deposits are difficult and costly to mine. Underground coal gasification (UCG) with air or oxygen was thought to alleviate this problem. Experimental field tests were conducted in Wyoming and Illinois. Problems were encountered concerning a clear path for the team gasification to take place and removal of gas. The high endothermic heat of reaction requiring large quantities of steam and oxygen makes the process expensive. Safety problems due to incomplete reaction is also of concern. A new approach is proposed which can remedy most of these drawbacks for extracting energy from underground coal deposits. It is proposed to hydrogasify the coal underground with a heated hydrogen gas stream under pressure to produce a methane-rich gas effluent stream. The hydrogasification of coal is essentially exothermic so that no steam or oxygen is required. The gases formed are always in a reducing atmosphere making the process safe. The hydrogen is obtained by thermally decomposing the effluent methane above ground to elemental carbon and hydrogen. The hydrogen is returned underground for further hydrogasification of the coal seam. The small amount of oxygen and sulfur in the coal can be processed out above ground by removal as water and H{sub 2}S. Any CO can be removed by a methanation step returning the methane to process. The ash remains in the ground and the elemental carbon produced is the purest form of coal. The particulate carbon can be slurried with water to produce a fuel stream that can be fed to a turbine for efficient combined cycle power plants with lower CO{sub 2} emissions. Coal cannot be used for combined cycle because of its ash and sulfur content destroys the gas turbine. Depending on its composition of coal seam some excess hydrogen is also produced. Hydrogen is, thus, used to pump pure carbon out of the ground.

  2. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced

    SciTech Connect (OSTI)

    Kara G. Cafferty; Erin M. Searcy; Long Nguyen; Sabrina Spatari

    2014-11-01T23:59:59.000Z

    To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels and access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver on-spec biomass feedstocks at preprocessing “depots”, which densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The harvesting, preprocessing, and logistics (HPL) of biomass commodity supply chains thus could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logisticsHPL within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. Monte Carlo simulation was used to estimate the spatial uncertainty in the HPL gate-to-gate sequence. The results show that the transport of densified biomass introduces the highest variability and contribution to the carbon footprint of the logistics HPL supply chain (0.2-13 g CO2e/MJ). Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics HPL processes can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 to 41 g CO2e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this range can be minimized through optimizing the siting of preprocessing depots where ample rail infrastructure exists to supply biomass commodity to a regional biorefinery supply system

  3. Measurement of Oil and Gas Emissions from a Marine Seep

    E-Print Network [OSTI]

    Leifer, Ira; Boles, J R; Luyendyk, B P

    2007-01-01T23:59:59.000Z

    oil-gas separator, and gas flux turbine. B. Image of oil-gaslines connected the turbine to the oil-gas separator andoil. Absent the oil-gas separator, the turbine would have

  4. Measurement of Oil and Gas Emissions from a Marine Seep

    E-Print Network [OSTI]

    Leifer, Ira; Boles, J R; Luyendyk, B P

    2007-01-01T23:59:59.000Z

    the gas flux from shallow gas hydrate deposits: InteractionK.A. , Potential effects of gas hydrate on human welfare,Emerging US gas resources; 4, Hydrates contain vast store of

  5. Emissions trading to reduce greenhouse gas emissions in the United States : the McCain-Lieberman Proposal

    E-Print Network [OSTI]

    Paltsev, Sergey.

    The Climate Stewardship Act of 2003 (S. 139) is the most detailed effort to date to design an economy-wide cap-and-trade system for US greenhouse gas emissions reductions. The Act caps sectors at their 2000 emissions in ...

  6. Coal gasification 2006: roadmap to commercialization

    SciTech Connect (OSTI)

    NONE

    2006-05-15T23:59:59.000Z

    Surging oil and gas prices, combined with supply security and environmental concerns, are prompting power generators and industrial firms to further develop coal gasification technologies. Coal gasification, the process of breaking down coal into its constituent chemical components prior to combustion, will permit the US to more effectively utilize its enormous, low cost coal reserves. The process facilitates lower environmental impact power generation and is becoming an increasingly attractive alternative to traditional generation techniques. The study is designed to inform the reader as to this rapidly evolving technology, its market penetration prospects and likely development. Contents include: Clear explanations of different coal gasification technologies; Emissions and efficiency comparisons with other fuels and technologies; Examples of US and global gasification projects - successes and failures; Commercial development and forecast data; Gasification projects by syngas output; Recommendations for greater market penetration and commercialization; Current and projected gasification technology market shares; and Recent developments including proposals for underground gasification process. 1 app.

  7. PARAMETRIC STUDY OF SUBMICRON PARTICULATES FROM PULVERIZED COAL COMBUSTION

    E-Print Network [OSTI]

    Pennucci, J.

    2014-01-01T23:59:59.000Z

    Chemistry of Coal during Combustion and the Emissions fromParticulates Generated by Combustion of Pulverized Coal,Particles from Coal Combustion, presented at the Eighteenth

  8. Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Fourth quarterly progress report

    SciTech Connect (OSTI)

    NONE

    1992-12-31T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

  9. Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California

    E-Print Network [OSTI]

    Leifer, Ira; Kamerling, Marc J.; Luyendyk, Bruce P.; Wilson, Douglas S.

    2010-01-01T23:59:59.000Z

    methane from near-surface gas hydrates. Chem Geol 205:291–volcanoes and associated gas hydrates. Mar Geol 167:29–42

  10. Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Reich-Weiser, Corinne

    2010-01-01T23:59:59.000Z

    to GHG/kWh of the USA electricity supply chain are coalGHG/kWh of electricity example based on USA. Distributionnuclear (USA) are different because of the electricity mix

  11. Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation

    E-Print Network [OSTI]

    McCarl, Bruce A.

    Words): Use of biofuels diminishes fossil fuel combustion thereby also reducing net greenhouse gasEconomic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation Uwe A. Schneider emissions. However, subsidies are needed to make agricultural biofuel production economically feasible

  12. RESEARCH ARTICLE Greenhouse gas emissions (CO2, CH4, and N2O) from several

    E-Print Network [OSTI]

    Wehrli, Bernhard

    RESEARCH ARTICLE Greenhouse gas emissions (CO2, CH4, and N2O) from several perialpine and alpine hydropower reservoirs by diffusion and loss in turbines T. Diem · S. Koch · S. Schwarzenbach · B. Wehrli · C investigated greenhouse gas emissions (CO2, CH4, and N2O) from reservoirs located across an altitude gradient

  13. Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China

    E-Print Network [OSTI]

    Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China, Global Biogeochem. Cycles, 23, GB1007, doi:10.1029/2008GB003180. 1. Introduction [2] Carbon (C) sequestration has

  14. Effect of Environmental Factors on Sulfur Gas Emissions from Problem Drywall

    E-Print Network [OSTI]

    Effect of Environmental Factors on Sulfur Gas Emissions from Problem Drywall Randy Maddalena on Sulfur Gas Emissions from Problem Drywall Randy Maddalena Indoor Environment Department Environmental humidity (RH) and with an area-specific ventilation rate of ~1.5 cubic meters per square meter of emitting

  15. Response to Comment on "Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power"

    E-Print Network [OSTI]

    the common misconception that the electric energy produced by different electricity sources is interchangeable. For near-term mitigation of climate change and air pollution, fossil fuel sources of base load power such as coal and natural gas (i.e., those that can provide essentially continuous power) are most

  16. Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor, Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuel performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

  17. Advanced coal-fueled gas turbine systems reference system definition update

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The objective of the the Direct Coal-Fueled 80 MW Combustion Turbine Program is to establish the technology required for private sector use of an advanced coal-fueled combustion turbine power system. Under this program the technology for a direct coal-fueled 80 MW combustion turbine is to be developed. This unit would be an element in a 207 MW direct coal-fueled combustion turbine combined cycle which includes two combustion turbines, two heat recovery steam generators and a steam turbine. Key to meeting the program objectives is the development of a successful high pressure slagging combustor that burns coal, while removing sulfur, particulates, and corrosive alkali matter from the combustion products. Westinghouse and Textron (formerly AVCO Research Laboratory/Textron) have designed and fabricated a subscale slagging combustor. This slagging combustor, under test since September 1988, has been yielding important experimental data, while having undergone several design iterations.

  18. China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces

    E-Print Network [OSTI]

    Lu, Hongyou

    2013-01-01T23:59:59.000Z

    Coal Washed Coal Coke Coke Oven Gas Other Gas Other CokingTJ) Coal Coke Coke Oven Gas Other Gas Other Coking Products

  19. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Agency (IEA), 2004c. CO2 emissions from fuel combustion,of Carbon Dioxide Emissions on GNP Growth: Interpretation ofD. , 2000. Special Report on Emissions Scenarios: Report of

  20. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Agency (IEA), 2004c. CO2 emissions from fuel combustion,12. Global Energy-Related CO2 Emissions by End-Use Sector,2030. Energy-Related CO2 Emissions (GtC) Transport Buildings

  1. Utilization of coal mine ventilation exhaust as combustion air in gas-fired turbines for electric and/or mechanical power generation. Semi-annual topical report, June 1995--August 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    Methane emitted during underground coal mining operations is a hazard that is dealt with by diluting the methane with fresh air and exhausting the contaminated air to the atmosphere. Unfortunately this waste stream may contain more than 60% of the methane resource from the coal, and in the atmosphere the methane acts as a greenhouse gas with an effect about 24.5 times greater than CO{sub 2}. Though the waste stream is too dilute for normal recovery processes, it can be used as combustion air for a turbine-generator, thereby reducing the turbine fuel requirements while reducing emissions. Preliminary analysis indicates that such a system, built using standard equipment, is economically and environmentally attractive, and has potential for worldwide application.

  2. Abatement of Air Pollution: Greenhouse Gas Emissions Offset Projects (Connecticut)

    Broader source: Energy.gov [DOE]

    Projects that either capture and destroy landfill methane, avoid sulfur hexafluoride emissions, sequester carbon through afforestation, provide end-use energy efficiency, or avoid methane emissions...

  3. Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration). Draft final technical report

    SciTech Connect (OSTI)

    Quimby, J.M.; Kumar, K.S.

    1992-12-31T23:59:59.000Z

    The objective of this contract was to investigate the removal of SO{sub x} and particulate matter from direct coal fired combustion gas streams at high temperature and high pressure conditions. This investigation was to be accomplished through a bench scale testing and evaluation program for SO{sub x} removal and the innovative particulate collection concept of particulate growth through electrostatic agglomeration followed by high efficiency mechanical collection. The process goal was to achieve control better than that required by 1979 New Source Performance Standards. During Phase I, the designs of the combustor and gas cleanup apparatus were successfully completed. Hot gas cleanup was designed to be accomplished at temperature levels between 1800{degrees} and 2500{degrees}F at pressures up to 15 atmospheres. The combustor gas flow rate could be varied between 0.2--0.5 pounds per second. The electrostatic agglomerator residence time could be varied between 0.25 to 3 seconds. In Phase II, all components were fabricated, and erected successfully. Test data from shakedown testing was obtained. Unpredictable difficulties in pilot plant erection and shakedown consumed more budget resources than was estimated and as a consequence DOE, METC, decided ft was best to complete the contract at the end of Phase II. Parameters studied in shakedown testing revealed that high-temperature high pressure electrostatics offers an alternative to barrier filtration in hot gas cleanup but more research is needed in successful system integration between the combustor and electrostatic agglomerator.

  4. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 3, Appendix B: NO{sub x} and alkali vapor control strategies: Final report

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

  5. Power plant emissions verified remotely at Four Corners sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurements can support Clean Air Act regulations LOS ALAMOS, N.M., May 19, 2014-Air pollution and greenhouse gas emissions from two coal-fired power plants in the Four...

  6. Emissions Resulting from the Full-Scale Cofiring of Pelletized Refuse-Derived Fuel and Coal

    E-Print Network [OSTI]

    Ohlsson, O. O.; Daugherty, K.; Venables, B.

    Full-scale cofiring tests of binder-enhanced pellets of densified, refuse-derived fuel (dRDF) and high-sulfur coal were conducted during June and July of 1987 in Boiler #5 at Argonne National Laboratory. These tests were conducted with industry...

  7. Evaluation of air toxic emissions from advanced and conventional coal-fired power plants

    SciTech Connect (OSTI)

    Chu, P.; Epstein, M. [Electric Power Research Institute, Palo Alto, CA (United States); Gould, L. [Department of Energy, Pittsburgh, PA (United States); Botros, P. [Department of Energy, Morgantown, WV (United States)

    1995-12-31T23:59:59.000Z

    This paper evaluates the air toxics measurements at three advanced power systems and a base case conventional fossil fuel power plant. The four plants tested include a pressurized fluidized bed combustor, integrated gasification combined cycle, circulating fluidized bed combustor, and a conventional coal-fired plant.

  8. Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal

    SciTech Connect (OSTI)

    Barton, Tom

    2013-06-30T23:59:59.000Z

    The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

  9. Trace element chemistry of coal bed natural gas produced water in the Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    Richard E. Jackson; K.J. Reddy [University of Wyoming, Laramie, WY (United States). Department of Renewable Resources

    2007-09-15T23:59:59.000Z

    Coal bed natural gas (CBNG) produced water is usually disposed into nearby constructed disposal ponds. Geochemistry of produced water, particularly trace elements interacting with a semiarid environment, is not clearly understood. The objective of this study was to collect produced water samples at outfalls and corresponding disposal ponds and monitor pH, iron (Fe), aluminum (Al), chromium (Cr), manganese (Mn), lead (Pb), copper (Cu), zinc (Zn), arsenic (As), boron (B), selenium (Se), molybdenum (Mo), cadmium (Cd), and barium (Ba). Outfalls and corresponding disposal ponds were sampled from five different watersheds including Cheyenne River (CHR), Belle Fourche River (BFR), Little Powder River (LPR), Powder River (PR), and Tongue River (TR) within the Powder River Basin (PRB), Wyoming from 2003 to 2005. Paired tests were conducted between CBNG outfalls and corresponding disposal ponds for each watershed. Results suggest that produced water from CBNG outfalls is chemically different from the produced water from corresponding disposal ponds. Most trace metal concentrations in the produced water increased from outfall to disposal pond except for Ba. In disposal ponds, Ba, As, and B concentrations increased from 2003 to 2005. Geochemical modeling predicted precipitation and dissolution reactions as controlling processes for Al, Cu, and Ba concentrations in CBNG produced water. Adsorption and desorption reactions appear to control As, Mo, and B concentrations in CBNG water in disposal ponds. Overall, results of this study will be important to determine beneficial uses (e.g., irrigation, livestock/wildlife water, and aquatic life) for CBNG produced water in the PRB, Wyoming. 18 refs., 4 figs., 3 tabs.

  10. Hard truths: facing the hard truths about energy. Topic Paper No. 18: Coal to liquids and gas

    SciTech Connect (OSTI)

    NONE

    2007-07-18T23:59:59.000Z

    The report presents the issues associated with and the potential of coal to liquids (CTL) and coal to gas (CTG) technologies. The other important outcome from this report is to view and understand the inputs and assumptions from various publications and the range of production estimates from CTG and CTL technology. The examination of the publications demonstrates a large uncertainty for CTL, due to various assumptions from petroleum price to technological abilities. Key assumptions are left unexamined, such as product transportation, labor, equipment availability, and environmental risk. Overall, the published CTL production estimates are small in the total global petroleum market perspective; even in the most optimistic scenario the volume from CTL amounts to only 20% of the U.S. petroleum market in the Southern States Energy Board (SSEB) report. The National Coal Council (NCC) saw a 10% market share, whereas the various Energy Information Administration (EIA) scenarios saw 0% to 6% of the U.S market share. The NCC and SSEB both mentioned the added benefit of using the CO{sub 2} for enhanced oil recovery (EOR). It begins by introducing the process, giving a detailed technological understanding, and then outlining each issue with each report from coal availability to oil price assumptions. The incremental gains from CTL and other technology areas, such as oil shale, could have a significant impact on U.S. energy cost and foreign dependency. The use of coal allows the added benefit of relying on a resource that is domestically more plentiful than petroleum, but this reliance must be carefully balanced with the economics of developing the resource, since CTL facilities can cost more than $1 billion per 10,000 days of production, which implicates the competitiveness of the U.S. economy within the global economy. 33 refs.

  11. Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using

    E-Print Network [OSTI]

    Ponce, V. Miguel

    Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission and the oil & gas industries. The combustion system used in Solar's products are discussed along- bility for the introduction of new combustion systems for gas turbine products to enhance fuel

  12. TOPIC: Shale Gas Emissions w/David Allen, Energy Institute HOST: Jeff Tester and Todd Cowen

    E-Print Network [OSTI]

    Angenent, Lars T.

    TOPIC: Shale Gas Emissions w/David Allen, Energy Institute HOST: Jeff Tester and Todd Cowen DATE fracturing of shale formations (shale gas) is projected by the Energy Information Administration to become the nation's energy landscape. However, the environmental impacts associated with ``fracking'' for shale gas

  13. Oxy-coal Combustion Studies

    SciTech Connect (OSTI)

    J. Wendt; E. Eddings; J. Lighty; T. Ring; P. Smith; J. Thornock; Y. Jia, W. Morris; J. Pedel; D. Rezeai; L. Wang; J. Zhang; K. Kelly

    2012-01-01T23:59:59.000Z

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol. To these ends, the project has focused on the following: â?¢ The development of reliable Large Eddy Simulations (LES) of oxy-coal flames using the Direct Quadrature Method of Moments (DQMOM) (Subtask 3.1). The simulations were validated for both non-reacting particle-laden jets and oxy-coal flames. â?¢ The modifications of an existing oxy-coal combustor to allow operation with high levels of input oxygen to enable in-situ laser diagnostic measurements as well as the development of strategies for directed oxygen injection (Subtask 3.2). Flame stability was quantified for various burner configurations. One configuration that was explored was to inject all the oxygen as a pure gas within an annular oxygen lance, with burner aerodynamics controlling the subsequent mixing. â?¢ The development of Particle Image Velocimetry (PIV) for identification of velocity fields in turbulent oxy-coal flames in order to provide high-fidelity data for the validation of oxy-coal simulation models (Subtask 3.3). Initial efforts utilized a laboratory diffusion flame, first using gas-fuel and later a pulverized-coal flame to ensure the methodology was properly implemented and that all necessary data and image-processing techniques were fully developed. Success at this stage of development led to application of the diagnostics in a large-scale oxy-fuel combustor (OFC). â?¢ The impact of oxy-coal-fired vs. air-fired environments on SO{sub x} (SO{sub 2}, SO{sub 3}) emissions during coal combustion in a pilot-scale circulating fluidized-bed (CFB) (Subtask 3.4). Profiles of species concentration and temperature were obtained for both conditions, and profiles of temperature over a wide range of O{sub 2} concentration were studied for oxy-firing conditions. The effect of limestone addition on SO{sub 2} and SO{sub 3} emissions were also examined for both air- and oxy- firing conditions. â?¢ The investigation of O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments on SO{sub 2 emissions during coal combustion in a bench-scale single-particle fluidized-bed reactor (Subtask 3.5). Moreover, the sulfation mechanisms of limestone in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments were studied, and a generalized gassolid and diffusion-reaction single-particle model was developed to study the effect of major operating variables. â?¢ The investigation of the effect of oxy-coal combustion on ash formation, particle size distributions (PSD), and size-segregated elemental composition in a drop-tube furnace and the 100 kW OFC (Subtask 3.6). In particular, the effect of coal type and flue gas recycle (FGR, OFC only) was investigated.

  14. Plant power : the cost of using biomass for power generation and potential for decreased greenhouse gas emissions

    E-Print Network [OSTI]

    Cuellar, Amanda Dulcinea

    2012-01-01T23:59:59.000Z

    To date, biomass has not been a large source of power generation in the United States, despite the potential for greenhouse gas (GHG) benefits from displacing coal with carbon neutral biomass. In this thesis, the fuel cycle ...

  15. Carbon sequestration and greenhouse gas emissions in urban turf

    E-Print Network [OSTI]

    Townsend-Small, Amy; Czimczik, Claudia I

    2010-01-01T23:59:59.000Z

    Article Correction to “Carbon sequestration and greenhouseCor- rection to “Carbon sequestration and greenhouse gas1 ] In the paper “Carbon sequestration and greenhouse gas

  16. The quantum mechanics of ion-enhanced field emission and how it influences microscale gas breakdown

    SciTech Connect (OSTI)

    Li, Yingjie [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Go, David B., E-mail: dgo@nd.edu [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2014-09-14T23:59:59.000Z

    The presence of a positive gas ion can enhance cold electron field emission by deforming the potential barrier and increasing the tunneling probability of electrons—a process known as ion-enhanced field emission. In microscale gas discharges, ion-enhanced field emission produces additional emission from the cathode and effectively reduces the voltage required to breakdown a gaseous medium at the microscale (<10??m). In this work, we enhance classic field emission theory by determining the impact of a gaseous ion on electron tunneling and compute the effect of ion-enhanced field emission on the breakdown voltage. We reveal that the current density for ion-enhanced field emission retains the same scaling as vacuum cold field emission and that this leads to deviations from traditional breakdown theory at microscale dimensions.

  17. HI emission and absorption in nearby, gas-rich galaxies

    E-Print Network [OSTI]

    Reeves, S N; Allison, J R; Koribalski, B S; Curran, S J; Pracy, M B

    2015-01-01T23:59:59.000Z

    We present the results of a targeted search for intervening HI absorption in six nearby, gas-rich galaxies using the Australia Telescope Compact Array (ATCA). The sightlines searched have impact parameters of 10-20 kpc. By targeting nearby galaxies we are also able to map their HI emission, allowing us to directly relate the absorption-line detection rate to the extended HI distribution. The continuum sightlines intersect the HI disk in four of the six galaxies, but no intervening absorption was detected. Of these four galaxies, we find that three of the non-detections are the result of the background source being too faint. In the fourth case we find that the ratio of the spin temperature to the covering factor ($T_{\\mathrm{S}}/f$) must be much higher than expected ($\\gtrsim$5700 K) in order to explain the non-detection. We discuss how the structure of the background continuum sources may have affected the detection rate of HI absorption in our sample, and the possible implications for future surveys. Future...

  18. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Topical report, LNCFS Levels 1 and 3 test results

    SciTech Connect (OSTI)

    Not Available

    1993-08-17T23:59:59.000Z

    This report presents results from the third phase of an Innovative Clean Coal Technology (ICC-1) project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The purpose of this project was to study the NO{sub x} emissions characteristics of ABB Combustion Engineering`s (ABB CE) Low NO{sub x} Concentric Firing System (LNCFS) Levels I, II, and III. These technologies were installed and tested in a stepwise fashion at Gulf Power Company`s Plant Lansing Smith Unit 2. The objective of this report is to provide the results from Phase III. During that phase, Levels I and III of the ABB C-E Services Low NO{sub x} Concentric Firing System were tested. The LNCFS Level III technology includes separated overfire air, close coupled overfire air, clustered coal nozzles, flame attachment coal nozzle tips, and concentric firing. The LNCFS Level I was simulated by closing the separated overfire air nozzles of the LNCFS Level III system. Based upon long-term data, LNCFS Level HI reduced NO{sub x} emissions by 45 percent at full load. LOI levels with LNCFS Level III increased slightly, however, tests showed that LOI levels with LNCFS Level III were highly dependent upon coal fineness. After correcting for leakage air through the separated overfire air system, the simulated LNCFS Level I reduced NO{sub x} emissions by 37 percent. There was no increase in LOI with LNCFS Level I.

  19. A parametric study of the effects of coal seam properties on gas drainage efficiency

    SciTech Connect (OSTI)

    Remmer, O.J.; Ertekin, T.; King, G.R.

    1984-09-01T23:59:59.000Z

    A mathematical model which simulates the flow of methane and water through a coal seam was developed. Partial differential equations governing the flow of methane and brine were derived from mass balances applied to an elemental volume of the reservoir. A two-dimensional cartesian coordinate system was superimposed on the coal seam and was utilized to transform the continuous flow equations to discrete form by application of finite differences.

  20. Desulfurization of a coal model compound by in situ hydrogen generation through water-gas shift

    E-Print Network [OSTI]

    Kumar, Meyyappan

    1982-01-01T23:59:59.000Z

    Statistiacl Analysis Results for Temperature Profile T3 110 10 Statistical Analysis Results for Temperature Profile T4 CHAPTER I INTRODIJCTION The ever developing problem of an energy crisis has led to the search for alternative energy sources. Some... in industry to produce clean burning low sulfur fuel. As there is a growing need for alternative energy sources, coal liquefaction is likely to be commercialized within the next decade. Since coal contains a high percentage of sulfur compounds, there is a...

  1. Saving Fuel, Reducing Emissions

    E-Print Network [OSTI]

    Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

    2009-01-01T23:59:59.000Z

    COMPACT EMISSIONS HEV PHEV marginal power plant is a coalpower uses relatively little coal, but in other cases emissions

  2. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS

    SciTech Connect (OSTI)

    J. Douglas Way; Robert L. McCormick

    2001-06-01T23:59:59.000Z

    Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H{sub 2} separation. These membranes consist of a thin ({approx}10 {micro}m) film of metal deposited on the inner surface of a porous metal or ceramic tube. Based on preliminary results, thin Pd{sub 60}Cu{sub 40} films are expected to exhibit hydrogen flux up to ten times larger than commercial polymer membranes for H{sub 2} separation, and resist poisoning by H{sub 2}S and other sulfur compounds typical of coal gas. Similar Pd-membranes have been operated at temperatures as high as 750 C. The overall objective of the proposed project is to demonstrate the feasibility of using sequential electroless plating to fabricate Pd{sub 60}Cu{sub 40} alloy membranes on porous supports for H{sub 2} separation. These following advantages of these membranes for processing of coal-derived gas will be demonstrated: High H{sub 2} flux; Sulfur tolerant, even at very high total sulfur levels (1000 ppm); Operation at temperatures well above 500 C; and Resistance to embrittlement and degradation by thermal cycling. The proposed research plan is designed to providing a fundamental understanding of: Factors important in membrane fabrication; Optimization of membrane structure and composition; Effect of temperature, pressure, and gas composition on H{sub 2} flux and membrane selectivity; and How this membrane technology can be integrated in coal gasification-fuel cell systems.

  3. Simultaneous removal of H{sub 2}S and NH{sub 3} from coal gas. Final report

    SciTech Connect (OSTI)

    Gangwal, S.K.; Portzer, J.W.

    1998-05-01T23:59:59.000Z

    Hydrogen sulfide (H{sub 2}S) and ammonia (NH{sub 3}) are the primary sulfur and nitrogen contaminants released when coal is gasified. Before coal gas can be utilized in an integrated gasification combined cycle (IGCC) plant to produce electricity, these contaminants need to be removed. The objective of this research was to develop sorbent-catalysts with the ability to simultaneously remove H{sub 2}S and NH{sub 3} from coal gas. Microreactor tests with HART-49, a zinc-based sorbent-catalyst with Ni, Co, and Mo as catalyst additives, showed that this material had the potential to remove 90% NH{sub 3} and reduce H{sub 2}S to <20 ppmv at 1 atm and 550 to 700 C. HART-49 was prepared in attrition-resistant fluidizable form (HART-56) using up to 75 wt% binder. Bench-scale fluidized-bed multicycle tests were conducted with the attrition-resistant sorbent-catalyst, HART-56, at 20 atm and 550 C. The H{sub 2}S and NH{sub 3} removal performance over the first two cycles was good in the presence of 5% steam but deteriorated thereafter when steam level was increased to 15%. The results point to a complex mechanism for simultaneous H{sub 2}S and NH{sub 3} removal, potentially involving both chemisorption and catalytic decomposition of NH{sub 3}. Further research and development is needed to develop a sorbent-catalyst for simultaneous H{sub 2}S and NH{sub 3} removal at IGCC hot-gas cleanup conditions.

  4. Radiological Impact Associated to Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) from Coal-Fired Power Plants Emissions - 13436

    SciTech Connect (OSTI)

    Dinis, Maria de Lurdes; Fiuza, Antonio; Soeiro de Carvalho, Jose; Gois, Joaquim [Geo-Environment and Resources Research Centre (CIGAR), Porto University, Faculty of Engineering - FEUP, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)] [Geo-Environment and Resources Research Centre (CIGAR), Porto University, Faculty of Engineering - FEUP, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Meira Castro, Ana Cristina [School of Engineering Polytechnic of Porto - ISEP, Rua Dr. Antonio Bernardino de Almeida, 431, 4200-072, Porto (Portugal)] [School of Engineering Polytechnic of Porto - ISEP, Rua Dr. Antonio Bernardino de Almeida, 431, 4200-072, Porto (Portugal)

    2013-07-01T23:59:59.000Z

    Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased human exposure to naturally occurring radioactive materials. A methodology was developed to assess the radiological impact due to natural radiation background. The developed research was applied to a specific case study, the Sines coal-fired power plant, located in the southwest coastline of Portugal. Gamma radiation measurements were carried out with two different instruments: a sodium iodide scintillation detector counter (SPP2 NF, Saphymo) and a gamma ray spectrometer with energy discrimination (Falcon 5000, Canberra). Two circular survey areas were defined within 20 km of the power plant. Forty relevant measurements points were established within the sampling area: 15 urban and 25 suburban locations. Additionally, ten more measurements points were defined, mostly at the 20-km area. The registered gamma radiation varies from 20 to 98.33 counts per seconds (c.p.s.) corresponding to an external gamma exposure rate variable between 87.70 and 431.19 nGy/h. The highest values were measured at locations near the power plant and those located in an area within the 6 and 20 km from the stacks. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (Pb-212, Pb-2142, Ra-226, Th-232, Ac-228, Th-234, Pa-234, U- 235, etc.). According to the results, an influence from the stacks emissions has been identified both qualitatively and quantitatively. The developed methodology accomplished the lack of data in what concerns to radiation rate in the vicinity of Sines coal-fired power plant and consequently the resulting exposure to the nearby population. (authors)

  5. Federal, state and utility roles in reducing new building greenhouse gas emissions

    SciTech Connect (OSTI)

    Johnson, J.A.; Shankle, D. [Pacific Northwest Lab., Richland, WA (United States); Boulin, J. [USDOE, Washington, DC (United States)

    1995-03-01T23:59:59.000Z

    This paper will explore the role of implementation of building energy codes and standards in reducing US greenhouse gas emissions. It will discuss the role of utilities in supporting the US Department of Energy (DOE) and the Environmental Protection Agency in improving the efficiency of new buildings. The paper will summarize Federal policies and programs that improve code compliance and increase overall greenhouse gas emission reductions. Finally, the paper will discuss the role of code compliance and the energy and greenhouse gas emission reductions that have been realized from various Federal, State and utility programs that enhance compliance.

  6. Greenhouse Gas Emissions from Building and Operating Electric

    E-Print Network [OSTI]

    Kammen, Daniel M.

    (GWE) associated with construction and operation of comparable hydroelectric, wind, solar, coal, and land use. The results indicate that a wind farm and a hydroelectric plant in an arid zone (such, solar, and wind power plants do not need fuel inputs for operation, fossil-fueled power plants

  7. 4th Annual Clean Coal

    E-Print Network [OSTI]

    Ferriter John P

    Proceedings he emphasis of the Fourth Clean Coal Technology Conference wm the marketability of clean coal projects both domestically and abroad. The success rate of clean coal projects in the U.S. for coalfired electricity generation is a beacon to foreign governments that are working toward effectively using advanced NO, and SO2 technology to substantially reduce flue-gas emissions for a cleaner environment. There is a continuing dialogue between U.S. Government, North American private industry, and the electricity producing governmental ministries and the private sector abroad. The international community was well represented at this conference. The Administration is determined to move promising, near-term technologies from the public to the private sector a ~ well a8 into the international marketplace.

  8. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    SciTech Connect (OSTI)

    Larry G. Felix; P. Vann Bush; Stephen Niksa

    2003-04-30T23:59:59.000Z

    In full-scale boilers, the effect of biomass cofiring on NO{sub x} and unburned carbon (UBC) emissions has been found to be site-specific. Few sets of field data are comparable and no consistent database of information exists upon which cofiring fuel choice or injection system design can be based to assure that NOX emissions will be minimized and UBC be reduced. This report presents the results of a comprehensive project that generated an extensive set of pilot-scale test data that were used to validate a new predictive model for the cofiring of biomass and coal. All testing was performed at the 3.6 MMBtu/hr (1.75 MW{sub t}) Southern Company Services/Southern Research Institute Combustion Research Facility where a variety of burner configurations, coals, biomasses, and biomass injection schemes were utilized to generate a database of consistent, scalable, experimental results (422 separate test conditions). This database was then used to validate a new model for predicting NO{sub x} and UBC emissions from the cofiring of biomass and coal. This model is based on an Advanced Post-Processing (APP) technique that generates an equivalent network of idealized reactor elements from a conventional CFD simulation. The APP reactor network is a computational environment that allows for the incorporation of all relevant chemical reaction mechanisms and provides a new tool to quantify NOx and UBC emissions for any cofired combination of coal and biomass.

  9. What are the likely roles of fossil fuels in the next 15, 50, and 100 years, with or without active controls on greenhouse gas emissions

    SciTech Connect (OSTI)

    Kane, R.L. (USDOE Assistant Secretary for Fossil Energy, Washington, DC (USA)); South, D.W. (Argonne National Lab., IL (USA))

    1990-01-01T23:59:59.000Z

    Since the industrial revolution, the production and utilization of fossil fuels have been an engine driving economic and industrial development in many countries worldwide. However, future reliance on fossil fuels has been questioned due to emerging concerns about greenhouse gas (GHG) emissions, particularly carbon dioxide (CO{sub 2}), and its potential contribution to global climate change (GCC). While substantial uncertainties exist regarding the ability to accurately predict climate change and the role of various greenhouse gases, some scientists and policymakers have called for immediate action. As a result, there have been many proposals and worldwide initiatives to address the perceived problem. In many of these proposals, the premise is that CO{sub 2} emissions constitute the principal problem, and, correspondingly, that fossil-fuel combustion must be curtailed to resolve this problem. This paper demonstrates that the worldwide fossil fuel resource base and infrastructure are extensive and thus, will continue to be relied on in developed and developing countries. Furthermore, in the electric generating sector (the focus of this paper), numerous clean coal technologies (CCTs) are currently being demonstrated (or are under development) that have higher conversion efficiencies, and thus lower CO{sub 2} emission rates than conventional coal-based technologies. As these technologies are deployed in new power plant or repowering applications to meet electrical load growth, CO{sub 2} (and other GHG) emission levels per unit of electricity generated will be lower than that produced by conventional fossil-fuel technologies. 37 refs., 14 figs., 11 tabs.

  10. Regional GHG Emissions O tlook Greenhouse Gas and the Regional

    E-Print Network [OSTI]

    Information Administration Annual Energy Outlook for 2013 (AEO2013) along with the modeled curve Outlook with No Federal CO2 Regulatory Cost 70 Annual CO2 Emission from Power System 30 40 50 60 Million25 GHG Emission Outlook with a Federal CO2 Regulatory Cost 70 Annual CO2 Emission from Power System

  11. INTRODUCTION Greenhouse Gas Emissions in an Urban Environment

    E-Print Network [OSTI]

    Hall, Sharon J.

    . Emissions of CO2, N2O, and CH4 in periodically flooded patch types during Winter 2013. We sampled three: How are emissions of CO2, CH4, and N2O distributed across the urban landscape? Q2: Are aquatic, and CH4 fluxes during Winter 2013 (Figs. 1 & 2). · Generally, CO2 emissions were highest within all patch

  12. MULTIPHASE REACTOR MODELING FOR ZINC CHLORIDE CATALYZED COAL LIQUEFACTION

    E-Print Network [OSTI]

    Joyce, Peter James

    2011-01-01T23:59:59.000Z

    Hydrogen Requirement for Coal Slurry Reactor, G. Gas-LiquidFlow of Gas-Liquid and Gas-Coal Slurry Mixtures in Verticalper unit volume of melt coal slurry can be expressed in

  13. The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power Plants

    E-Print Network [OSTI]

    regulations for coal plants New concerns about nuclear power after Fukushima · Recent studies also show emissions · Most CCS cost studies have focused on coal-based power plants; relatively few on NGCC with CCS1 The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power

  14. Samson Sherman President Obama's Energy Plan & Natural Gas

    E-Print Network [OSTI]

    Toohey, Darin W.

    Samson Sherman President Obama's Energy Plan & Natural Gas The Plan On March 30, President Obama" but includes wind, solar, nuclear, natural gas, and coal plants that can capture and store CO2 emissions period. Natural Gas Natural gas is considered the cleanest of all fossil fuels. Mostly comprised

  15. Gas Permeability of Fractured Sandstone/Coal Samples under Variable Confining Pressure

    E-Print Network [OSTI]

    Liu, Weiqun; Li, Yushou; Wang, Bo

    2010-01-01T23:59:59.000Z

    argillite under con?nement: gas and water testing. Phys.Gascoyne, M. , Wuschke, D.M. : Gas migration through water-fractured rock: results of a gas injection test. J.

  16. The Impact of the Clean Air Act Amendments of 1990 on Electric Utilities and Coal Mines: Evidence from the Stock Market

    E-Print Network [OSTI]

    Kahn, Shulamit; Knittel, Christopher R.

    2003-01-01T23:59:59.000Z

    administration would back clean-coal technology developmentwould pursue clean-coal technology rather than emissions

  17. Coal systems analysis

    SciTech Connect (OSTI)

    Warwick, P.D. (ed.)

    2005-07-01T23:59:59.000Z

    This collection of papers provides an introduction to the concept of coal systems analysis and contains examples of how coal systems analysis can be used to understand, characterize, and evaluate coal and coal gas resources. Chapter are: Coal systems analysis: A new approach to the understanding of coal formation, coal quality and environmental considerations, and coal as a source rock for hydrocarbons by Peter D. Warwick. Appalachian coal assessment: Defining the coal systems of the Appalachian Basin by Robert C. Milici. Subtle structural influences on coal thickness and distribution: Examples from the Lower Broas-Stockton coal (Middle Pennsylvanian), Eastern Kentucky Coal Field, USA by Stephen F. Greb, Cortland F. Eble, and J.C. Hower. Palynology in coal systems analysis The key to floras, climate, and stratigraphy of coal-forming environments by Douglas J. Nichols. A comparison of late Paleocene and late Eocene lignite depositional systems using palynology, upper Wilcox and upper Jackson Groups, east-central Texas by Jennifer M.K. O'Keefe, Recep H. Sancay, Anne L. Raymond, and Thomas E. Yancey. New insights on the hydrocarbon system of the Fruitland Formation coal beds, northern San Juan Basin, Colorado and New Mexico, USA by W.C. Riese, William L. Pelzmann, and Glen T. Snyder.

  18. Engineering development of advanced coal-fired low-emissions boiler system. Phase II subsystem test design and plan - an addendum to the Phase II RD & T Plan

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    Shortly after the year 2000 it is expected that new generating plants will be needed to meet the growing demand for electricity and to replace the aging plants that are nearing the end of their useful service life. The plants of the future will need to be extremely clean, highly efficient and economical. Continuing concerns over acid rain, air toxics, global climate changes, ozone depletion and solid waste disposal are expected to further then regulations. In the late 1980`s it was commonly believed that coal-fired power plants of the future would incorporate either some form of Integrated Gasification Combined Cycle (IGCC) or first generation Pressurized Fluidized Bed Combustion (PFBS) technologies. However, recent advances In emission control techniques at reduced costs and auxiliary power requirements coupled with significant improvements In steam turbine and cycle design have clearly indicated that pulverized coal technology can continue to be competitive In both cost and performance. In recognition of the competitive potential for advanced pulverized coal-fired systems with other emerging advanced coal-fired technologies, DOE`s Pittsburgh Energy Technology Center (PETC) began a research and development initiative In late 1990 named, Combustion 2000, with the intention of preserving and expanding coal as a principal fuel In the Generation of electrical power. The project was designed for two stages of commercialization, the nearer-term Low Emission Boiler System (LEBS) program, and for the future, the High Performance Power System (HIPPS) program. B&W is participating In the LEBS program.

  19. Improving Energy Efficiency and Reducing Greenhouse Gas Emissions in BPs PTA Manufacturing Plants

    E-Print Network [OSTI]

    Clark, F.

    2008-01-01T23:59:59.000Z

    Improving Energy Efficiency and Reducing Greenhouse Gas Emissions in BPs PTA Manufacturing Plants Fred Clark Energy/GHG Advisor BP Aromatics & Acetyls Naperville, Illinois BP is the world?s leading producer of purified terephthalic acid...

  20. Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions 

    E-Print Network [OSTI]

    Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

    1985-01-01T23:59:59.000Z

    Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NOx emissions while also generating electricity at an attractive heat rate. Design considerations and system costs are presented....

  1. Development and assessment of a soot emissions model for aircraft gas turbine engines

    E-Print Network [OSTI]

    Martini, Bastien

    2008-01-01T23:59:59.000Z

    Assessing candidate policies designed to address the impact of aviation on the environment requires a simplified method to estimate pollutant emissions for current and future aircraft gas turbine engines under different ...

  2. Carbon Prices and Automobile Greenhouse Gas Emissions: The Extensive and Intensive Margins

    E-Print Network [OSTI]

    Knittel, Christopher Roland

    The transportation sector accounts for nearly one third of the United States' greenhouse gas emissions. While over the past number of decades, policy makers have avoided directly pricing the externalities from vehicles, ...

  3. A methodology for assessing MIT's energy used and greenhouse gas emissions

    E-Print Network [OSTI]

    Groode, Tiffany Amber, 1979-

    2004-01-01T23:59:59.000Z

    (cont.) actions can be made to decrease losses and therefore increase plant efficiencies. As production efficiencies are maximized, fuel use and thus emissions are minimized. From fiscal year 1998 to 2003, the gas turbine ...

  4. A Strategy for a Global Observing System for Verification of National Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Prinn, Ronald G.

    With the risks of climate change becoming increasingly evident, there is growing discussion regarding international treaties and national regulations to lower greenhouse gas (GHG) emissions. Enforcement of such agreements ...

  5. Measuring Conventional and Alternative Exhaust Emissions from a Gas Turbine Engine

    E-Print Network [OSTI]

    Johnson, Jeremiah Andrew

    2012-12-31T23:59:59.000Z

    with food production, should not use fresh water supplies, and should have neutral greenhouse gas emissions after a life cycle analysis (LCA) [7,8]. Biofuels derived from algal biomass feedstocks are generating considerable interest around the world...

  6. Firing microfine coal with a low NOx, RSFC burner in an industrial boiler designed for oil and gas

    SciTech Connect (OSTI)

    Thornhock, D.E.; Patel, R.; Borio, R.W. [Combustion Engineering, Inc., Windsor, CT (United States). ABB Power Plant Labs.; Miller, B.G.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center

    1996-12-31T23:59:59.000Z

    ABB Power Plant Laboratories (ABB-PPL) working under a US Department of Energy-Pittsburgh Energy Technology Center (DOE-PETC) contract has carried out tests with the Radially Stratified Flame Core (RSFC) burner which was licensed from the Massachusetts Institute of Technology who developed and patented the RSFC burner. Tests were carried out in a small industrial boiler, designed for oil and natural gas, located at the Energy and Fuels Research Center of Penn State University who was working as a subcontractor to ABB-PPL. The paper presents results from the long-term testing task in the DOE-PETC program with particular attention being paid to the challenges faced in maintaining high combustion efficiencies while achieving low NOx in a small industrial boiler designed for firing oil or natural gas. The paper will also address the issue of ash management when firing coal in a boiler designed for fuels having essentially no ash.

  7. Use of fluidized bed coal combustion techniques to study efficiency, emission reduction, boiler effects, and waste utilization. Annual report, January 1-June 30, 1985

    SciTech Connect (OSTI)

    Hesketh, H.E.; Rajan, S.

    1985-09-01T23:59:59.000Z

    The acquisition of thermodynamic and operating data on a wide variety of waste coals in a laboratory-scale atmospheric fluidized bed combustor (AFBC) unit is reported. The coals tested include: (1) low and medium heating value gob pile wastes, with ash content as high as 60%; (2) pelletized gob waste fines; (3) various cuts taken from beneficiation plant rejects with low heating values and high ash content; and (4) a partially devolatilized char produced from a caking Illinois coal. These waste coals could be successfully burned in the bench-scale unit with the exception of the high ash content beneficiation plant reject with a low heating value of 1700 Btu/lb. Some of the waste coals exhibited better combustion characteristics than others. The results obtained and the recommendations for improving the combustion and emission characteristics of the waste coals are discussed. Shakedown tests have been completed with the 1-ft diameter, 1 MBtu/h pilot-scale AFBC unit, and the results are reported. 1 ref., 15 figs., 8 tabs.

  8. Development of advanced, dry, SO{sub x}/NO{sub x} emission control technologies for high-sulfur coal. Final report, April 1, 1993--December 31, 1994

    SciTech Connect (OSTI)

    Amrhein, G.T.

    1994-12-23T23:59:59.000Z

    Dry Scrubbing is a common commercial process that has been limited to low- and medium-sulfur coal applications because high-sulfur coal requires more reagent than can be efficiently injected into the process. Babcock & Wilcox has made several advances that extend dry scrubbing technologies to higher sulfur coals by allowing deposit-free operation at low scrubber exit temperatures. This not only increases the amount of reagent that can be injected into the scrubber, but also increases SO{sub 2} removal efficiency and sorbent utilization. The objectives of this project were to demonstrate, at pilot scale, that advanced, dry-scrubbing-based technologies can attain the performance levels specified by the 1990 Clean Air Act Amendments for SO{sub 2} and NO{sub x} emissions while burning high-sulfur coal, and that these technologies are economically competitive with wet scrubber systems. The use of these technologies by utilities in and around Ohio, on new or retrofit applications, will ensure the future of markets for high-sulfur coal by creating cost effective options to coal switching.

  9. Electrochemical, Structural and Surface Characterization of Nickel/Zirconia Solid Oxide Fuel Cell Anodes in Coal Gas Containing Antimony

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Thomsen, Edwin C.; Nachimuthu, Ponnusamy; Edwards, Danny J.

    2011-02-27T23:59:59.000Z

    The interaction of antimony with the nickel-zirconia solid oxide fuel cell (SOFC) anode has been investigated. Tests with both anode-supported and electrolyte-supported button cells were performed at 700 and 800oC in synthetic coal gas containing 10 ppb to 9 ppm antimony. Minor performance loss was observed immediately after Sb introduction to coal gas resulting in ca. 5 % power output drop. While no further degradation was observed during the following several hundred hours of testing, cells abruptly and irreversibly failed after 800-1500 hours depending on Sb concentration and test temperature. Antimony was found to interact strongly with nickel and result in extensive alteration phase formation, consistent with expectations based on thermodynamic properties. Nickel antimonide phases, NiSb and Ni5Sb2, were partially coalesced into large grains and eventually affected electronic percolation through the anode support. Initial degradation was attributed to diffusion of antimony to the active anode/electrolyte interface to form an adsorption layer.

  10. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report No. 5, October 1, 1992--December 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    Two base case flow sheets have now been prepared. In the first, which was originally presented in TPR4, a Texaco gasifier is used. Natural gas is also burned in sufficient quantity to increase the hydrogen to carbon monoxide ratio of the synthesis gas to the required value of 1. 1 for alcohol synthesis. Acid gas clean up and sulfur removal are accomplished using the Rectisol process followed by the Claus and Beavon processes. About 10% of the synthesis gas is sent to a power generation unit in order to produce electric power, with the remaining 90% used for alcohol synthesis. For this process, the estimated installed cost is $474.2 mm. The estimated annual operating costs are $64.5 MM. At a price of alcohol fuels in the vicinity of $1. 00/gal, the pay back period for construction of this plant is about four years. The details of this case, called Base Case 1, are presented in Appendix 1. The second base case, called Base Case 2, also has a detailed description and explanation in Appendix 1. In Base Case 2, a Lurgi Gasifier is used. The motivation for using a Lurgi Gasifier is that it runs at a lower temperature and pressure and, therefore, produces by-products such as coal liquids which can be sold. Based upon the economics of joint production, discussed in Technical Progress Report 4, this is a necessity. Since synthesis gas from natural gas is always less expensive to produce than from coal, then alcohol fuels will always be less expensive to produce from natural gas than from coal. Therefore, the only way to make coal- derived alcohol fuels economically competitive is to decrease the cost of production of coal-derived synthesis gas. one method for accomplishing this is to sell the by-products from the gasification step. The details of this strategy are discussed in Appendix 3.

  11. CHBE 484: Term Report Greenhouse Gas Emissions Analysis

    E-Print Network [OSTI]

    Wan Joyce Ying Torrio Louie April 18th 2008 #12;ii Summary: This report analyzes the CO2 emissions and 53.0 g/CO2 respectively. It is determined that the emissions for 2007 were 83646.07 tonnes CO2.01%) will increase the carbon emissions from 85962.15 tonnes CO2 to a total of 123796.74 tonnes CO2. Thus 95428

  12. Abatement of Air Pollution: Greenhouse Gas Emissions Offset Projects...

    Broader source: Energy.gov (indexed) [DOE]

    Projects that either capture and destroy landfill methane, avoid sulfur hexafluoride emissions, sequester carbon through afforestation, provide end-use energy efficiency, or avoid...

  13. The Greenhouse Gas Protocol Initiative: Allocation of Emissions...

    Open Energy Info (EERE)

    plant. The user should also input the assumed efficiency of steam and electricity combustion (defaults are provided in the tool). Outputs include: The tool outputs the emissions...

  14. The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased...

    Open Energy Info (EERE)

    within a community. Separate calculators are available for emissions from stationary combustion, transport or mobile sources, refrigeration and air conditioning equipment, and...

  15. The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigerati...

    Open Energy Info (EERE)

    within a community. Separate calculators are available for emissions from stationary combustion, transport or mobile sources, purchased electricity, and several industrial sectors....

  16. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    emissions associated with petroleum products production werefactors for the production of petroleum products wereemissions due to the production of petroleum products among

  17. Ethiopia-National Greenhouse Gas Emissions Baseline Scenarios...

    Open Energy Info (EERE)

    UNEP Risoe Centre on Energy Environment and Sustainable Development URC Sector Climate, Energy, Land Topics Baseline projection, Low emission development planning, -LEDS,...

  18. Assessing the fuel Use and greenhouse gas emissions of future light-duty vehicles in Japan

    E-Print Network [OSTI]

    Nishimura, Eriko

    2011-01-01T23:59:59.000Z

    Reducing greenhouse gas (GHG) emissions is of great concern in Japan, as well as elsewhere, such as in the U.S. and EU. More than 20% of GHG emissions in Japan come from the transportation sector, and a more than 70% ...

  19. Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California

    E-Print Network [OSTI]

    Leifer, Ira; Kamerling, Marc J.; Luyendyk, Bruce P.; Wilson, Douglas S.

    2010-01-01T23:59:59.000Z

    Oil Point, California. Mar Petrol Geol 22:569–578 Whelan J,S transect of the Gulf of Mexico. Mar Petrol Geol 22:479–497of gas origin: Mar Petrol Geol 26:333–344 Finkbeiner T,

  20. Coal reburning for cyclone boiler NO sub x control demonstration

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Babcock Wilcox engineering studies followed by pilot-scale testing has developed/confirmed the potential of utilizing gas, oil or coal reburning as a viable NO{sub x} reduction technology. To date, two US sponsored programs promote natural gas/oil as a reburning fuel because it was believed that gas/oil will provide significantly higher combustion efficiency than using coal at the reburn zone. Although B W has shown that gas/oil reburning will play a role in reducing NO{sub x} emissions from cyclone boilers, B W coal reburning research has also shown that coal as a reburning fuel performs nearly as well as gas/oil without deleterious effects on combustion efficiency. This means that boilers using reburning for NO, control can maintain 100% coal usage instead of switching to 20% gas/oil for reburning. As a result of the B W performed coal reburning research, the technology has advanced to the point which it is now ready for demonstration on a commercial scale.

  1. Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals

    SciTech Connect (OSTI)

    Sun, Xiaolei; Rink, Nancy

    2011-04-30T23:59:59.000Z

    This report presents the results of the research and development conducted on an Advanced Hydrogasification Process (AHP) conceived and developed by Arizona Public Service Company (APS) under U.S. Department of Energy (DOE) contract: DE-FC26-06NT42759 for Substitute Natural Gas (SNG) production from western coal. A double-wall (i.e., a hydrogasification contained within a pressure shell) down-flow hydrogasification reactor was designed, engineered, constructed, commissioned and operated by APS, Phoenix, AZ. The reactor is ASME-certified under Section VIII with a rating of 1150 pounds per square inch gage (psig) maximum allowable working pressure at 1950 degrees Fahrenheit ({degrees}F). The reaction zone had a 1.75 inch inner diameter and 13 feet length. The initial testing of a sub-bituminous coal demonstrated ~ 50% carbon conversion and ~10% methane yield in the product gas under 1625{degrees}F, 1000 psig pressure, with a 11 seconds (s) residence time, and 0.4 hydrogen-to-coal mass ratio. Liquid by-products mainly contained Benzene, Toluene, Xylene (BTX) and tar. Char collected from the bottom of the reactor had 9000-British thermal units per pound (Btu/lb) heating value. A three-dimensional (3D) computational fluid dynamic model simulation of the hydrodynamics around the reactor head was utilized to design the nozzles for injecting the hydrogen into the gasifier to optimize gas-solid mixing to achieve improved carbon conversion. The report also presents the evaluation of using algae for carbon dioxide (CO{sub 2}) management and biofuel production. Nannochloropsis, Selenastrum and Scenedesmus were determined to be the best algae strains for the project purpose and were studied in an outdoor system which included a 6-meter (6M) radius cultivator with a total surface area of 113 square meters (m{sup 2}) and a total culture volume between 10,000 to 15,000 liters (L); a CO{sub 2} on-demand feeding system; an on-line data collection system for temperature, pH, Photosynthetically Activate Radiation (PAR) and dissolved oxygen (DO); and a ~2 gallons per minute (gpm) algae culture dewatering system. Among the three algae strains, Scenedesmus showed the most tolerance to temperature and irradiance conditions in Phoenix and the best self-settling characteristics. Experimental findings and operational strategies determined through these tests guided the operation of the algae cultivation system for the scale-up study. Effect of power plant flue gas, especially heavy metals, on algae growth and biomass adsorption were evaluated as well.

  2. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS

    SciTech Connect (OSTI)

    J. Douglas Way

    2003-01-01T23:59:59.000Z

    For hydrogen from coal gasification to be used economically, processing approaches that produce a high purity gas must be developed. Palladium and its alloys, nickel, platinum and the metals in Groups 3 to 5 of the Periodic Table are all permeable to hydrogen. Hydrogen permeable metal membranes made of palladium and its alloys are the most widely studied due to their high hydrogen permeability, chemical compatibility with many hydrocarbon containing gas streams, and infinite hydrogen selectivity. Our Pd composite membranes have demonstrated stable operation at 450 C for over 70 days. Coal derived synthesis gas will contain up to 15000 ppm H{sub 2}S as well as CO, CO{sub 2}, N{sub 2} and other gases. Highly selectivity membranes are necessary to reduce the H{sub 2}S concentration to acceptable levels for solid oxide and other fuel cell systems. Pure Pd-membranes are poisoned by sulfur, and suffer from mechanical problems caused by thermal cycling and hydrogen embrittlement. Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H{sub 2} separation. These membranes consist of a thin ({le} 5 {micro}m) film of metal deposited on the inner surface of a porous metal or ceramic tube. With support from this DOE Grant, we have fabricated thin, high flux Pd-Cu alloy composite membranes using a sequential electroless plating approach. Thin, Pd{sub 60}Cu{sub 40} films exhibit a hydrogen flux more than ten times larger than commercial polymer membranes for H{sub 2} separation, resist poisoning by H{sub 2}S and other sulfur compounds typical of coal gas, and exceed the DOE Fossil Energy target hydrogen flux of 80 ml/cm{sup 2} {center_dot} min = 0.6 mol/m{sup 2} {center_dot} s for a feed pressure of 40 psig. Similar Pd-membranes have been operated at temperatures as high as 750 C. We have developed practical electroless plating procedures for fabrication of thin Pd-Cu composite membranes at any scale.

  3. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that helps to clarify inconsistent and conflicting life cycle GHG emission estimates in the published literature and provide more precise estimates of life cycle GHG emissions from PV systems.

  4. Title of Dissertation: STUDY OF OPTICAL PROPERTIES AND CURRENT EMISSION PROCESSES OF GAS

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Dissertation: STUDY OF OPTICAL PROPERTIES AND CURRENT EMISSION PROCESSES OF GAS PHASE FIELD IONIZATION SOURCES Xuefeng Liu, Doctor of Philosophy, 2004 Dissertation Directed By). This dissertation explores the properties of the gas field ionization source with the goal of providing a resource

  5. Computer Aided Design of Advanced Turbine Airfoil Alloys for Industrial Gas Turbines in Coal Fired Environments

    SciTech Connect (OSTI)

    G.E. Fuchs

    2007-12-31T23:59:59.000Z

    Recent initiatives for fuel flexibility, increased efficiency and decreased emissions in power generating industrial gas turbines (IGT's), have highlighted the need for the development of techniques to produce large single crystal or columnar grained, directionally solidified Ni-base superalloy turbine blades and vanes. In order to address the technical difficulties of producing large single crystal components, a program has been initiated to, using computational materials science, better understand how alloy composition in potential IGT alloys and solidification conditions during processing, effect castability, defect formation and environmental resistance. This program will help to identify potential routes for the development of high strength, corrosion resistant airfoil/vane alloys, which would be a benefit to all IGT's, including small IGT's and even aerospace gas turbines. During the first year, collaboration with Siemens Power Corporation (SPC), Rolls-Royce, Howmet and Solar Turbines has identified and evaluated about 50 alloy compositions that are of interest for this potential application. In addition, alloy modifications to an existing alloy (CMSX-4) were also evaluated. Collaborating with SPC and using computational software at SPC to evaluate about 50 alloy compositions identified 5 candidate alloys for experimental evaluation. The results obtained from the experimentally determined phase transformation temperatures did not compare well to the calculated values in many cases. The effects of small additions of boundary strengtheners (i.e., C, B and N) to CMSX-4 were also examined. The calculated phase transformation temperatures were somewhat closer to the experimentally determined values than for the 5 candidate alloys, discussed above. The calculated partitioning coefficients were similar for all of the CMSX-4 alloys, similar to the experimentally determined segregation behavior. In general, it appears that computational materials science has become a useful tool to help reduce the number of iterations necessary to perform laboratory experiments or alloy development. However, we clearly are not able to rely solely on computational techniques in the development of high temperature materials for IGT applications. A significant amount of experimentation will continue to be required.

  6. Control of Sulfur Dioxide Emissions from Pulverized Coal-Fired Boilers by Dry Removal with Lime and Limestone Sorbants 

    E-Print Network [OSTI]

    Schwartz, M. H.

    1979-01-01T23:59:59.000Z

    pulverized coal-fired boiler equipment. These are: (1) coal cleaning to remove pyritic sulfur, (2) conventional wet, nonregenerable scrubbing with alkaline slurry and solution processes, and (3) dry processes which involve direct introduction of lime...

  7. Accidental Gas Emission From Shallow Pressurized Aquifers At...

    Open Energy Info (EERE)

    gas pressurized aquifers confined underneath impermeable layers, within both the volcanic rock pile and the underlying Pleistocene loose sediments. Degassing mostly occurs in...

  8. EIA - Greenhouse Gas Emissions - High-GWP gases

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual2 EIA372.5.

  9. EIA - Greenhouse Gas Emissions - Table-Figure Notes and Sources

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual23.A1. Notes

  10. DOE Strengthens Public Registry to Track Greenhouse Gas Emissions |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »DepartmentLaboratory | DepartmentCoal

  11. X-ray photoelectron emission spectromicroscopic analysis of arborescent lycopsid cell wall composition and Carboniferous coal ball preservation

    E-Print Network [OSTI]

    Boyce, C. Kevin

    composition and Carboniferous coal ball preservation C. Kevin Boyce a, , Mike Abrecht b , Dong Zhou b , P that were canopy dominants of many Pennsylvanian coal swamp forests. Its periderm or bark--the single greatest biomass contributor to many Late Paleozoic coals--is found to have a greater aliphatic content

  12. TRP0033 - PCI Coal Combustion Behavior and Residual Coal Char Carryover in the Blast Furnace of 3 American Steel Companies during Pulverized Coal Injection (PCI) at High Rates

    SciTech Connect (OSTI)

    Veena Sahajwalla; Sushil Gupta

    2005-04-15T23:59:59.000Z

    Combustion behavior of pulverized coals (PC), gasification and thermal annealing of cokes were investigated under controlled environments. Physical and chemical properties of PCI, coke and carbon residues of blast furnace dust/sludge samples were characterized. The strong influence of carbon structure and minerals on PCI reactivity was demonstrated. A technique to characterize char carryover in off gas emissions was established.

  13. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01T23:59:59.000Z

    covers coal bed methane, tight gas reservoirs, shale gas,coal bed methane (CBM). Tight gas refers to gas that is dispersed in sand or silt reservoirs

  14. Healy clean coal project

    SciTech Connect (OSTI)

    Not Available

    1992-08-01T23:59:59.000Z

    The objective of the Healy Clean Coal Project is to demonstrate the integration of an advanced combustor and a heat recovery system with both high and low temperature emission control processes. Resulting emission levels of SO[sub 2], NO[sub x], and particulates are expected to be significantly better than the federal New source Performance standards. During this past quarter, engineering and design continued on the boiler, combustion flue gas desulfurization (FGD), and turbine/generator systems. Balance of plant equipment procurement specifications continue to be prepared. Construction activities commenced as the access road construction got under way. Temporary ash pond construction and drilling of the supply well will be completed during the next quarter.

  15. Greenhouse Gas emissions from California Geothermal Power Plants

    SciTech Connect (OSTI)

    Sullivan, John

    2014-03-14T23:59:59.000Z

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  16. Greenhouse Gas emissions from California Geothermal Power Plants

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  17. The Natural Gas Vehicle Challenge `92: Exhaust emissions testing and results

    SciTech Connect (OSTI)

    Rimkus, W.A.; Larsen, R.P. [Argonne National Lab., IL (United States); Zammit, M.G. [Johnson Matthey, Wayne, PA (United States); Davies, J.G.; Salmon, G.S. [General Motors of Canada Ltd., Toronto, ON (Canada); Bruetsch, R.I. [US Environmental Protection Agency (United States)

    1992-11-01T23:59:59.000Z

    The Natural Gas Vehicle (NGV) Challenge `92, was organized by Argonne National Laboratory. The main sponsors were the US Department of Energy the Energy, Mines, and Resources -- Canada, and the Society of Automotive Engineers. It resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck donated by General Motors, teams of college and university student engineers worked to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine. out and tailpipe emissions of regulated exhaust constituents. Nine of the student modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors contributing to good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

  18. Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

    SciTech Connect (OSTI)

    Barnitt, R. A.; Chernich, D.; Burnitzki, M.; Oshinuga, A.; Miyasato, M.; Lucht, E.; van der Merwe, D.; Schaberg, P.

    2010-05-01T23:59:59.000Z

    A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimes almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.

  19. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    E-Print Network [OSTI]

    Kahrl, Fredrich James

    2011-01-01T23:59:59.000Z

    respectively), the share of coal generation would shift from30. Shares of Coal and Non-Coal Generation, 2009 and Low andits heavy reliance on coal-fired generation, which, in most

  20. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, April 1983-June 1983

    SciTech Connect (OSTI)

    Wiltsee, Jr., G. A.

    1983-01-01T23:59:59.000Z

    Progress reports are presented for the following tasks: (1) gasification wastewater treatment and reuse; (2) fine coal cleaning; (3) coal-water slurry preparation; (4) low-rank coal liquefaction; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization; (8) combustion research and ash fowling; (9) fluidized-bed combustion of low-rank coals; (10) ash and slag characterization; (11) organic structure of coal; (12) distribution of inorganics in low-rank coals; (13) physical properties and moisture of low-rank coals; (14) supercritical solvent extraction; and (15) pyrolysis and devolatilization.

  1. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    SciTech Connect (OSTI)

    DeLuchi, M.A. [Argonne National Lab., IL (United States); [Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

    1993-11-01T23:59:59.000Z

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  2. Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California

    E-Print Network [OSTI]

    , such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three

  3. European Greenhouse Gas Emissions Trading: A System in Transition*

    E-Print Network [OSTI]

    methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model, Yu and ecosystem impacts, and analysis of mitigation strategies, need to be based on realistic evaluation

  4. Comparing the effects of greenhouse gas emissions on global warming

    E-Print Network [OSTI]

    Eckaus, Richard S.

    1990-01-01T23:59:59.000Z

    Policies dealing with global warming require a measure of the effects of the emissions of greenhouse gases that create different magnitudes of instantaneous radiative forcing and have different lifetimes. The Global Warming ...

  5. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    SciTech Connect (OSTI)

    Wang, M. Q.

    1998-12-16T23:59:59.000Z

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  6. Combustion properties of coal-char blends: NO{sub x} emission characteristics. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect (OSTI)

    Rostam-Abadi, M.; Khan, L.; Khan, S. [Illinois State Geological Survey, Champaign, IL (United States); Smoot, L.D.; Germane, G.J.; Eatough, C.N. [Brigham Young Univ., Provo, UT (United States). Advanced Combustion Engineering Research Center

    1993-09-01T23:59:59.000Z

    Tests under pulverized coal combustion conditions suggest that NO{sub x} formed during release of volatile matter far exceed NO{sub x} formed during combustion of the resulting char. This is attributed to char/NO{sub x} interactions by both direct reduction of NO{sub x} by carbon and char-catalyzed reduction by CO. This implies combustion of char not only produces substantially lower NO{sub x} but the presence of char in the flame during initial stages of combustion may potentially provide catalytic activity for reduction of NO{sub x} produced from volatile nitrogen. The goal of the project is to determine if the concept of NO{sub x} reduction by char/NO{sub x} interactions, while maintaining a high combustion efficiency by co-firing coal with char, is a technically feasible way to reduce NO{sub x}, emissions. The project will provide important combustion data required to establish the feasibility of utilizing chars in industrial combustion applications and the advantages of burning coal-char blends in reducing NO{sub x} and SO{sub 2} emissions. During the reporting period, 19 runs were made with a continuous feed charring oven (CFCO) to produce 237 pounds of char(about 16%vm) required for preparing coal-char blends.

  7. Trace Gas Emissions Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Collections under the broad heading of Trace Gas Emissions are organized as Fossil-Fuel CO2 Emissions, Land-Use CO2 Emissions, Soil CO2 Emissions, and Methane.

  8. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Fourth quarterly technical progress report, [October--December, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    This quarterly report discusses the technical progress of a U. S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NOx control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NOx concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. During this quarter, tests of the LNCFS Level III system were conducted to determine the effect that fuel fineness has on NOx emissions and unburned carbon levels. Results showed that changing the fineness of the fuel has almost no effect on NOx emissions; however, unburned carbon levels can be reduced significantly by increasing fuel fineness.

  9. GAS EXCITATION IN ULIRGs: MAPS OF DIAGNOSTIC EMISSION-LINE RATIOS IN SPACE AND VELOCITY

    SciTech Connect (OSTI)

    Soto, Kurt T.; Martin, Crystal L. [Physics Department, University of California, Santa Barbara, CA 93106-9530 (United States)

    2012-11-15T23:59:59.000Z

    Emission-line spectra extracted at multiple locations across 39 ultraluminous infrared galaxies have been compiled into a spectrophotometric atlas. Line profiles of H{alpha}, [N II], [S II], [O I], H{beta}, and [O III] are resolved and fit jointly with common velocity components. Diagnostic ratios of these line fluxes are presented in a series of plots, showing how the Doppler shift, line width, gas excitation, and surface brightness change with velocity at fixed position and also with distance from the nucleus. One general characteristic of these spectra is the presence of shocked gas extending many kiloparsecs from the nucleus. In some systems, the rotation curves of the emitting gas indicate motions that suggest gas disks, which are most frequent at early merger stages. At these early merger stages, the emission line ratios indicate the presence of shocked gas, which may be triggered by the merger event. We also report the general characteristics of the integrated spectra.

  10. Demonstration of natural gas reburn for NO{sub x} emissions reduction at Ohio Edison Company`s cyclone-fired Niles Plant Unit Number 1

    SciTech Connect (OSTI)

    Borio, R.W.; Lewis, R.D.; Koucky, R.W. [ABB Power Plant Labs., Windsor, CT (United States)] [ABB Power Plant Labs., Windsor, CT (United States); Lookman, A.A. [Energy Systems Associates, Pittsburgh, PA (United States)] [Energy Systems Associates, Pittsburgh, PA (United States); Manos, M.G.; Corfman, D.W.; Waddingham, A.L. [Ohio Edison, Akron, OH (United States)] [Ohio Edison, Akron, OH (United States); Johnson, S.A. [Quinapoxet Engineering Solutions, Inc., Windham, NH (United States)] [Quinapoxet Engineering Solutions, Inc., Windham, NH (United States)

    1996-04-01T23:59:59.000Z

    Electric utility power plants account for about one-third of the NO{sub x} and two-thirds of the SO{sub 2} emissions in the US cyclone-fired boilers, while representing about 9% of the US coal-fired generating capacity, emit about 14% of the NO{sub x} produced by coal-fired utility boilers. Given this background, the Environmental Protection Agency, the Gas Research Institute, the Electric Power Research Institute, the Pittsburgh Energy Technology Center, and the Ohio Coal Development Office sponsored a program led by ABB Combustion Engineering, Inc. (ABB-CE) to demonstrate reburning on a cyclone-fired boiler. Ohio Edison provided Unit No. 1 at their Niles Station for the reburn demonstration along with financial assistance. The Niles Unit No. 1 reburn system was started up in September 1990. This reburn program was the first full-scale reburn system demonstration in the US. This report describes work performed during the program. The work included a review of reburn technology, aerodynamic flow model testing of reburn system design concepts, design and construction of the reburn system, parametric performance testing, long-term load dispatch testing, and boiler tube wall thickness monitoring. The report also contains a description of the Niles No. 1 host unit, a discussion of conclusions and recommendations derived from the program, tabulation of data from parametric and long-term tests, and appendices which contain additional tabulated test results.

  11. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

    1991-01-01T23:59:59.000Z

    The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro's estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

  12. Capture and Use of Coal Mine Ventilation Air Methane

    SciTech Connect (OSTI)

    Deborah Kosmack

    2008-10-31T23:59:59.000Z

    CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

  13. Engineering development of advanced coal-fired low-emission boiler systems. Quarterly technical progress report, January 1--March 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-04-28T23:59:59.000Z

    This project is concerned with the development of an a coal-fired low-emission boiler system. During march, separate kick-off meetings were held with PSI Powerserve, Raytheon and B&W`s Environmental Equipment Division to begin work on Phase I Task 5, the Commercial Plant Design. In addition, a meeting was held with MIT to discuss and review work completed and schedule work remaining on the project.

  14. China Energy and Emissions Paths to 2030

    E-Print Network [OSTI]

    Fridley, David

    2012-01-01T23:59:59.000Z

    Tech Petroleum Natural Gas Coal Primary Energy Demand (Mtce)significant decline in coal primary energy demand under Maxone billion tonnes coal equivalent energy exists beyond the

  15. Transportation and Greenhouse Gas Emissions Trading. Final Technical Report

    SciTech Connect (OSTI)

    Steve Winkelman; Tim Hargrave; Christine Vanderlan

    1999-10-01T23:59:59.000Z

    The authors conclude in this report that an upstream system would ensure complete regulatory coverage of transportation sector emissions in an efficient and feasible manner, and as such represents a key component of a national least-cost GHG emissions abatement strategy. The broad coverage provided by an upstream system recommends this approach over vehicle-maker based approaches, which would not cover emissions from heavy-duty vehicles and the aviation, marine and off-road sub-sectors. The on-road fleet approach unfairly and inefficiently burdens vehicle manufacturers with responsibility for emissions that they cannot control. A new vehicles approach would exclude emissions from vehicles on the road prior to program inception. The hybrid approach faces significant technical and political complications, and it is not clear that the approach would actually change behavior among vehicle makers and users, which is its main purpose. They also note that a trading system would fail to encourage many land use and infrastructure measures that affect VMT growth and GHG emissions. They recommend that this market failure be addressed by complementing the trading system with a program specifically targeting land use- and infrastructure-related activities. A key issue that must be addressed in designing a national GHG control strategy is whether or not it is necessary to guarantee GHG reductions from the transport sector. Neither an upstream system nor a downstream approach would do so, since both would direct capital to the least-cost abatement opportunities wherever they were found. They review two reasons why it may be desirable to force transportation sector reductions: first, that the long-term response to climate change will require reductions in all sectors; and second, the many ancillary benefits associated with transportation-related, and especially VMT-related, emissions reduction activities. If policy makers find it desirable to establish transportation-specific policies, they recommend (in addition to the land use policies mentioned above), that they combine an upstream trading system with a carbon efficiency standard similar to the current CAFE standard. Under this approach a fuel price signal would be complemented by incentives for manufacturers to produce more carbon efficient vehicles. To prevent vehicle manufacturers from being forced to pay more than other sectors for reducing GHG emissions, they recommend that the vehicle makers be allowed to pay a cash penalty equal to the market price of allowances in lieu of meeting carbon efficiency requirements.

  16. Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 11, April 1995--June 1995

    SciTech Connect (OSTI)

    NONE

    1995-08-30T23:59:59.000Z

    The Pittsburgh Energy Technology Center of the U.S. Department of Energy (DOE) has contracted with Combustion Engineering, Inc. (ABB CE) to perform work on the {open_quotes}Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems{close_quotes} Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis and Phases II and III on a cost-share basis. The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: (1) NO{sub x} emissions not greater than one-third NSPS. (2) SO{sub x} emissions not greater than one-third NSPS. (3) Particulate emissions not greater than one-half NSPS. The specific secondary objectives are: (1) Improved ash disposability and reduced waste generation. (2) Reduced air toxics emissions. (3) Increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a Commercial Generation Unit. The work in Phase I covered a 24-month period and included system analysis, RD&T Plan formulation, component definition, and preliminary Commercial Generating Unit (CGU) design. Phase II will cover a 15-month period and will include preliminary Proof-of-Concept Test Facility (POCTF) design and subsystem testing. Phase III will cover a 9-month period and will produce a revised CGU design and a revised POCTF design, cost estimate and a test plan. Phase IV, the final Phase, will cover a 36-month period and will include POCTF detailed design, construction, testing, and evaluation.

  17. Observation of CH4 and other Non-CO2 Green House Gas Emissions from California

    SciTech Connect (OSTI)

    Fischer, Marc L.; Zhao, Chuanfeng; Riley, William J.; Andrews, Arlyn C.

    2009-01-09T23:59:59.000Z

    In 2006, California passed the landmark assembly bill AB-32 to reduce California's emissions of greenhouse gases (GHGs) that contribute to global climate change. AB-32 commits California to reduce total GHG emissions to 1990 levels by 2020, a reduction of 25 percent from current levels. To verify that GHG emission reductions are actually taking place, it will be necessary to measure emissions. We describe atmospheric inverse model estimates of GHG emissions obtained from the California Greenhouse Gas Emissions Measurement (CALGEM) project. In collaboration with NOAA, we are measuring the dominant long-lived GHGs at two tall-towers in central California. Here, we present estimates of CH{sub 4} emissions obtained by statistical comparison of measured and predicted atmospheric mixing ratios. The predicted mixing ratios are calculated using spatially resolved a priori CH{sub 4} emissions and surface footprints, that provide a proportional relationship between the surface emissions and the mixing ratio signal at tower locations. The footprints are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. Integral to the inverse estimates, we perform a quantitative analysis of errors in atmospheric transport and other factors to provide quantitative uncertainties in estimated emissions. Regressions of modeled and measured mixing ratios suggest that total CH{sub 4} emissions are within 25% of the inventory estimates. A Bayesian source sector analysis obtains posterior scaling factors for CH{sub 4} emissions, indicating that emissions from several of the sources (e.g., landfills, natural gas use, petroleum production, crops, and wetlands) are roughly consistent with inventory estimates, but livestock emissions are significantly higher than the inventory. A Bayesian 'region' analysis is used to identify spatial variations in CH{sub 4} emissions from 13 sub-regions within California. Although, only regions near the tower are significantly constrained by the tower measurements, CH{sub 4} emissions from the south Central Valley appear to be underestimated in a manner consistent with the under-prediction of livestock emissions. Finally, we describe a pseudo-experiment using predicted CH{sub 4} signals to explore the uncertainty reductions that might be obtained if additional measurements were made by a future network of tall-tower stations spread over California. These results show that it should be possible to provide high-accuracy estimates of surface CH{sub 4} emissions for multiple regions as a means to verify future emissions reductions.

  18. Organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends

    E-Print Network [OSTI]

    Kar, Kenneth

    The organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends have been assessed under warmed-up and cold idle conditions. The speciated emissions show that the ...

  19. Design of generic coal conversion facilities: Production of oxygenates from synthesis gas---A technology review

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    This report concentrates on the production of oxygenates from coal via gasification and indirect liquefaction. At the present the majority of oxygenate synthesis programs are at laboratory scale. Exceptions include commercial and demonstration scale plants for methanol and higher alcohols production, and ethers such as MTBE. Research and development work has concentrated on elucidating the fundamental transport and kinetic limitations governing various reactor configurations. But of equal or greater importance has been investigations into the optimal catalyst composition and process conditions for the production of various oxygenates.

  20. REDUCING GREENHOUSE GAS EMISSIONS FROM DEFORESTATION IN DEVELOPING

    E-Print Network [OSTI]

    Watson, Andrew

    mitigation effort post-2012. Reducing GHG emissions from Deforestation and Degradation (REDD)2 in developing of Environment of Mexico1 Esteve Corbera and Katrina Brown Tyndall Centre for Climate Change Research, UK School of Mexico or the Mexican Government. #12;ABSTRACT This paper provides a critical perspective to the debate