Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

L/CNG - Refueling Systems  

INL has developed a LNG/CNG refueling process and method for dispensing liquefied natural gas (LNG), compressed natural gas (CNG) or both on demand. ...

2

Evaluating the Safety of a Natural Gas Home Refueling Appliance (HRA)  

Science Conference Proceedings (OSTI)

A fact sheet summarizing the National Renewable Energy Laboratory safety evaluation of Phill, Fuelmaker Corporation's natural gas home refueling appliance, used to fill CNG vehicles at home.

Not Available

2005-04-01T23:59:59.000Z

3

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network (OSTI)

history of home refueling for automobiles also includes compressed natural gas (CNG) vehicles, battery

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

4

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network (OSTI)

vehicles : the case of compressed natural gas (CNG) vehicleshome refueling for compressed natural gas vehicles, batteryalso includes compressed natural gas (CNG) vehicles, battery

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

5

Natural Gas - CNG & LNG  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Natural Gas Natural gas pump Natural gas, a fossil fuel comprised mostly of methane, is one of the cleanest burning alternative fuels. It can be used in the form of compressed natural gas (CNG) or liquefied natural gas (LNG) to fuel cars and trucks. Dedicated natural gas vehicles are designed to run on natural gas only, while dual-fuel or bi-fuel vehicles can also run on gasoline or diesel. Dual-fuel vehicles allow users to take advantage of the wide-spread availability of gasoline or diesel but use a cleaner, more economical alternative when natural gas is available. Since natural gas is stored in high-pressure fuel tanks, dual-fuel vehicles require two separate fueling systems, which take up passenger/cargo space. Natural gas vehicles are not available on a large scale in the U.S.-only

6

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Deregulation

7

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Deregulation

8

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Deregulation

9

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on AddThis.com...

10

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Fueling Infrastructure Inspection to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on AddThis.com...

11

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Tax to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Tax CNG is taxed at a rate of $0.10 per gallon when used as a motor fuel. CNG

12

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Permit to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Permit Anyone dispensing CNG for use in vehicles must obtain a permit from the

13

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network (OSTI)

VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLESyou first learn about compressed natural gas (CNG) vehicles?VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLES

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

14

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Digg Find More places to share Alternative Fuels Data Center: Compressed

15

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Digg Find More places to share Alternative Fuels Data Center: Compressed

16

Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduced Compressed Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL to someone by E-mail Share Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Facebook Tweet about Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Twitter Bookmark Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Google Bookmark Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Delicious Rank Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Digg Find More places to share Alternative Fuels Data Center: Reduced

17

Determine Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Usage and Refueling Trends to Minimize Greenhouse Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas Emissions Determine Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas Emissions October 7, 2013 - 11:42am Addthis YOU ARE HERE Step 2 Once a Federal agency has identified its most important mobile greenhouse gas (GHG) emission sources overall, it can work with individual sites to determine vehicle usage and refueling trends. Agencies can compare the results of this analysis to internal standards and requirements to identify GHG mitigation opportunities for assets that are underperforming or underutilized. Two examples of this type of analysis focus on: Alternative fuel consumption Vehicle utilization. Figure 1 - An image of a vertical, stacked bar chart titled 'Alternative Fuel Use in AFVs.' The frequency data axis is labeled 'Gallons of Gasoline Equivalent' with a scale of 0-1,400,000 in increments of 200,000. The stacked bar labeled 'CNG Dual Fuel Vehicles' shows CNG from 0-300,000 gallons and Gasoline from 300,000-800,000 gallons. The stacked bar labeled 'E-85 Flex Fuel Vehicles' shows E85 from 0-1,000,000 gallons and Gasoline from 1,000,000-1,250,000 gallons.

18

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Dealer Permit to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Dealer Permit

19

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Project Loans to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Project Loans

20

Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Compressed Natural Gas (CNG) Study to someone by E-mail Share Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Facebook Tweet about Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Twitter Bookmark Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Google Bookmark Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Delicious Rank Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Digg Find More places to share Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Compressed Natural Gas (CNG) Study At the direction of the Alaska Legislature, the Department of

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) and Propane Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on AddThis.com... More in this section... Federal State Advanced Search

22

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) and Propane Regulatory Authority to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on AddThis.com...

23

Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane and Compressed Propane and Compressed Natural Gas (CNG) Device Fee to someone by E-mail Share Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Facebook Tweet about Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Twitter Bookmark Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Google Bookmark Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Delicious Rank Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Digg Find More places to share Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

24

Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Deregulation of Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel to someone by E-mail Share Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Facebook Tweet about Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Twitter Bookmark Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Google Bookmark Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Delicious Rank Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Digg Find More places to share Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on AddThis.com...

25

Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Deregulation of Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel to someone by E-mail Share Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Facebook Tweet about Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Twitter Bookmark Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Google Bookmark Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Delicious Rank Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Digg Find More places to share Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on AddThis.com...

26

Gas Natural - CNG y GNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Natural Dispensador de Gas Natural Gas Natural Dispensador de Gas Natural El gas natural, un combustible fósil compuesto básicamente de metano, es uno de los combustibles alternativos menos contaminantes. Puede ser usado como gas natural comprimido (GNC) o como gas natural licuado (GNL) para autos y camiones. Existen vehículos diseñados para funcionar exclusivamente con gas natural. Por otra parte hay vehículos de doble combustible o bi-combustibles que también puede funcionar con gasolina o diesel. Los vehículos de doble combustible permiten que el usuario aproveche la gran disponibilidad de gasolina o diesel, pero use la alternativa menos contaminante y más económica cuando el gas natural esté disponible. Ya que el gas natural es almacenado en depósitos de combustible de alta

27

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Digg Find More places to share Alternative Fuels Data Center: Compressed

28

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Digg Find More places to share Alternative Fuels Data Center: Compressed

29

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dealer License to someone by E-mail Dealer License to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

30

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network (OSTI)

history of home refueling for automobiles also includes compressed natural gas (CNG) vehicles, battery electric vehicles (BEV), EVS24 International Battery, Hybrid and

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

31

Refueling stations for natural gas vehicles  

DOE Green Energy (OSTI)

The unavailability of natural gas vehicle (NGV) refueling stations constitutes one of the major barriers to the wide spread utilization of natural gas in the transportation market. The purpose of this paper is to review and evaluate the current technical and economic status of compressed natural gas vehicle refueling stations and to identify the components or design features that offer the greatest potential for performance improvements and/or cost reductions. Both fast-fill- and slow-fill-type refueling systems will be discussed. 4 refs., 10 figs., 6 tabs.

Blazek, C.F.; Kinast, J.A.; Biederman, R.T.; Jasionowski, W.

1991-01-01T23:59:59.000Z

32

Survey for the development of compressed natural gas systems (CNG) for vehicles.  

E-Print Network (OSTI)

??Compressed Natural Gas (CNG) vehicles have been used internationally by fleets for decades. The use of CNG vehicles results in less petroleum consumption, resulting in (more)

Abulamosha, A.M.

2005-01-01T23:59:59.000Z

33

Soviets' CNG technology promoted in U. S  

SciTech Connect

This paper reports on compressed natural gas which continues to be a major player in the push for alternate motor fuels. A CNG program has been under way for 40 years in the U.S.S.R., and Moscow CNG research and development company Gaztop is soliciting U.S. interest in its natural gas fuel systems and vehicle converters. Elsewhere in U.S. CNH action: Pittsburgh has taken delivery of five CNG buses. The first mass produced CNG pickup truck in the U.S. was unveiled this month in Los Angeles. The nation's first public CNG refueling network opened this month in Texas.

Not Available

1991-11-25T23:59:59.000Z

34

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Tax and Permit to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Tax and Permit

35

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax to someone by E-mail Tax to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) and Propane Tax Retail sales for CNG and liquefied petroleum gas (propane) used to operate

36

STATEMENT OF CONSIDERATIONS REQUEST BY CONSOLIDATED NATURAL GAS (CNG) (THE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONSOLIDATED NATURAL GAS (CNG) (THE CONSOLIDATED NATURAL GAS (CNG) (THE PARTICIPANT) FOR ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS IN INVENTIONS OF THE PARTICIPANT UNDER DOE-PETC CRADA NO.PC-93-009, W(A)-93-034, CH-0819 - MASTER CRADA FOR PROJECTS DIRECTED TO FUELS COMBUSTION, EVALUATION AND FLOW ANALYSES - PROJECT #1 REDUCING EDDY AFTER BURN (REAB) FOR NITRIC OXIDE REDUCTION AND RELATED TECHNOLOGIES The Department of Energy has delegated authority to the PETC Laboratory Director to enter into CRADAs and, with the concurrence of cognizant Intellectual Property Counsel, to deal with intellectual property matters arising under the CRADA, including waiving of the Government's patent rights thereunder. Participant desires to obtain an advance waiver of the Government's rights in any inventions that may be conceived or

37

Using Gasoline, Diesel, and Compressed Natural Gas (CNG) Vehicles, Characterize the Significance of Lube  

E-Print Network (OSTI)

Using Gasoline, Diesel, and Compressed Natural Gas (CNG) Vehicles, Characterize the Significance from natural gas vehicles will help in the development of PM mitigation technologies. This in turn emissions beyond applicable standards, and that benefit natural gas ratepayers (Public Resources Code 25620

38

CNG: Aiming to be an energy company, not a gas company  

Science Conference Proceedings (OSTI)

Long before regulatory changes in the US paved the way for the union of natural gas and electric utility companies, Consolidated Natural Gas Co. (CNG) embarked on a strategy that would serve the company well in the 1990s. In 1995, CNG began a corporate repositioning to meet mounting competition, switching emphasis from its regulated businesses to the non-regulated side. The goal: to become an energy player, not only in the US but internationally. This paper focuses on the company`s operations, business plans, and management strategies. The paper gives an overview, then discusses production of oil and gas, the growing exploration program and plans for the future.

Wheatley, R.

1997-06-30T23:59:59.000Z

39

WA_1993_034_CONSOLIDATED_NATURAL_GAS_(CNG)_Waiver_of_Domesti...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1993034CONSOLIDATEDNATURALGAS(CNG)WaiverofDomesti.pdf WA1993034CONSOLIDATEDNATURALGAS(CNG)WaiverofDomesti.pdf WA1993034CONSOLIDATEDNATURALGAS(CNG)Waiverof...

40

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network (OSTI)

Infrastructure F. Current California CNG Vehicle UseCharacteristics of CNG Vehicles Review of Previous Studies/RP) Studies of AFVs/CNG Vehicles i. British Columbia, Canada

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Technical evaluation and assessment of CNG/LPG bi-fuel and flex-fuel vehicle viability  

DOE Green Energy (OSTI)

This report compares vehicles using compressed natural gas (CNG), liquefied petroleum gas (LPG), and combinations of the two in bi-fuel or flex-fuel configurations. Evidence shows that environmental and energy advantages can be gained by replacing two-fuel CNG/gasoline vehicles with two-fuel or flex-fuel systems to be economically competitive, it is necessary to develop a universal CNG/LPG pressure-regulator-injector and engine control module to switch from one tank to the other. For flex-fuel CNG/LPG designs, appropriate composition sensors, refueling pumps, fuel tanks, and vaporizers are necessary.

Sinor, J E [Sinor (J.E.) Consultants, Inc., Niwot, CO (United States)

1994-05-01T23:59:59.000Z

42

Low Quality Natural Gas Sulfur Removal and Recovery CNG Claus Sulfur Recovery Process  

Science Conference Proceedings (OSTI)

Increased use of natural gas (methane) in the domestic energy market will force the development of large non-producing gas reserves now considered to be low quality. Large reserves of low quality natural gas (LQNG) contaminated with hydrogen sulfide (H{sub 2}S), carbon dioxide (CO{sub 2}) and nitrogen (N) are available but not suitable for treatment using current conventional gas treating methods due to economic and environmental constraints. A group of three technologies have been integrated to allow for processing of these LQNG reserves; the Controlled Freeze Zone (CFZ) process for hydrocarbon / acid gas separation; the Triple Point Crystallizer (TPC) process for H{sub 2}S / C0{sub 2} separation and the CNG Claus process for recovery of elemental sulfur from H{sub 2}S. The combined CFZ/TPC/CNG Claus group of processes is one program aimed at developing an alternative gas treating technology which is both economically and environmentally suitable for developing these low quality natural gas reserves. The CFZ/TPC/CNG Claus process is capable of treating low quality natural gas containing >10% C0{sub 2} and measurable levels of H{sub 2}S and N{sub 2} to pipeline specifications. The integrated CFZ / CNG Claus Process or the stand-alone CNG Claus Process has a number of attractive features for treating LQNG. The processes are capable of treating raw gas with a variety of trace contaminant components. The processes can also accommodate large changes in raw gas composition and flow rates. The combined processes are capable of achieving virtually undetectable levels of H{sub 2}S and significantly less than 2% CO in the product methane. The separation processes operate at pressure and deliver a high pressure (ca. 100 psia) acid gas (H{sub 2}S) stream for processing in the CNG Claus unit. This allows for substantial reductions in plant vessel size as compared to conventional Claus / Tail gas treating technologies. A close integration of the components of the CNG Claus process also allow for use of the methane/H{sub 2}S separation unit as a Claus tail gas treating unit by recycling the CNG Claus tail gas stream. This allows for virtually 100 percent sulfur recovery efficiency (virtually zero SO{sub 2} emissions) by recycling the sulfur laden tail gas to extinction. The use of the tail gas recycle scheme also deemphasizes the conventional requirement in Claus units to have high unit conversion efficiency and thereby make the operation much less affected by process upsets and feed gas composition changes. The development of these technologies has been ongoing for many years and both the CFZ and the TPC processes have been demonstrated at large pilot plant scales. On the other hand, prior to this project, the CNG Claus process had not been proven at any scale. Therefore, the primary objective of this portion of the program was to design, build and operate a pilot scale CNG Claus unit and demonstrate the required fundamental reaction chemistry and also demonstrate the viability of a reasonably sized working unit.

Klint, V.W.; Dale, P.R.; Stephenson, C.

1997-10-01T23:59:59.000Z

43

Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at Ft. Bliss, Texas. Interim report  

Science Conference Proceedings (OSTI)

A technology demonstration program of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles was conducted at FL Bliss, Texas to demonstrate the use of CNG as an alternative fuel. The demonstration program at FL Bliss was the first Army initiative with CNG-fueled vehicles under the legislated Alternative Motor Fuels Act. This Department of Energy (DOE)-supported fleet demonstration consisted of 48 General Services Administration (GSA)-owned, Army-leased 1992 dedicated CNG General Motors (GM) 3/4-ton pickup trucks and four 1993 gasoline-powered Chevrolet 3/4-ton pickup trucks.

Alvarez, R.A.; Yost, D.M.

1995-11-01T23:59:59.000Z

44

Compressed Natural Gas (CNG) Transit Bus Experience Survey: April 2009--April 2010  

Science Conference Proceedings (OSTI)

This survey was commissioned by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) to collect and analyze experiential data and information from a cross-section of U.S. transit agencies with varying degrees of compressed natural gas (CNG) bus and station experience. This information will be used to assist DOE and NREL in determining areas of success and areas where further technical or other assistance might be required, and to assist them in focusing on areas judged by the CNG transit community as priority items.

Adams, R.; Horne, D. B.

2010-09-01T23:59:59.000Z

45

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network (OSTI)

case of compressed natural gas (CNG) vehicles in Californiacompressed natural gas (CNG) vehicles, battery electricwas a push for the use of CNG vehicles in North America due

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

46

Ten Years of Compressed Natural Gas (CNG) Operations at SunLine Transit Agency: April 2003--December 2004  

Science Conference Proceedings (OSTI)

This report focuses on the lesson learned at the SunLine Transit Agency after it converted in 1994 its entire operating transit bus fleet to compressed natural gas (CNG).

Chandler, K.

2006-01-01T23:59:59.000Z

47

Hydrogen Station Siting and Refueling Analysis Using Geographic Information Systems: A Case Study of Sacramento County  

E-Print Network (OSTI)

Case of Compressed Natural Gas (CNG) Vehicles in CaliforniaCase of Compressed Natural Gas (Cng) Vehicles in Californiaof compressed natural gas (CNG), yet natural gas is viewed

Nicholas, Michael A

2004-01-01T23:59:59.000Z

48

Hydrogen Station Siting and Refueling Analysis Using Geographic Information Systems: A Case Study of Sacramento County  

E-Print Network (OSTI)

Vehicles: The Case of Compressed Natural Gas (CNG) VehiclesVehicles: The Case of Compressed Natural Gas (Cng) Vehiclessimilar to that of compressed natural gas (CNG), yet natural

Nicholas, Michael A

2004-01-01T23:59:59.000Z

49

Comparative analysis of liquefied natural gas (LNG) and compressed natural gas (CNG) used by transit agencies in Texas. Research report  

SciTech Connect

This study is a detailed comparative analysis of liquefied natural gas (LNG) and compressed natural gas (CNG). The study provides data on two alternative fuels used by transit agencies in Texas. First, we examine the `state-of-the- art` in alternative fuels to established a framework for the study. Efforts were made to examine selected characteristics of two types of natural gas demonstrations in terms of the following properties: energy source characteristics, vehicle performance and emissions, operations, maintenance, reliability, safety costs, and fuel availability. Where feasible, two alternative fuels were compared with conventional gasoline and diesel fuel. Environmental considerations relative to fuel distribution and use are analyzed, with a focus on examining flammability an other safety-related issues. The objectives of the study included: (1) assess the state-of-the-art and document relevant findings pertaining to alternative fuels; (2) analyze and synthesize existing databases on two natural gas alternatives: liquefied natural gas (LNG) and compressed natural gas (CNG): and (3) compare two alterative fuels used by transit properties in Texas, and address selected aspects of alternative fuels such as energy source characteristics, vehicle performance and emissions, safety, costs, maintenance and operations, environmental and related issues.

Lede, N.W.

1997-09-01T23:59:59.000Z

50

CNG | OpenEI  

Open Energy Info (EERE)

CNG CNG Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics Level of Review Peer Reviewed

51

Alternative Fuels Data Center: Filling CNG Fuel Tanks  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Filling CNG Fuel Tanks Filling CNG Fuel Tanks to someone by E-mail Share Alternative Fuels Data Center: Filling CNG Fuel Tanks on Facebook Tweet about Alternative Fuels Data Center: Filling CNG Fuel Tanks on Twitter Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Google Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Delicious Rank Alternative Fuels Data Center: Filling CNG Fuel Tanks on Digg Find More places to share Alternative Fuels Data Center: Filling CNG Fuel Tanks on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Fuel System & Cylinders Fuel Safety Traffic Accident Filling CNG Tanks Laws & Incentives Filling CNG Fuel Tanks Unlike liquid fuel, which consistently holds about the same volume of fuel

52

Vehicle Modeling and Verification of CNG-Powered Transit Buses  

E-Print Network (OSTI)

by Compressed Natural Gas. . . . . . . . .. . 2 Internalbuses powered by compressed natural gas (CNG) engines. ThisBus Powered by Compressed Natural Gas The remainder of the

Hedrick, J. K.; Ni, A.

2004-01-01T23:59:59.000Z

53

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network (OSTI)

offering larger incentives for natural gas vehicles? -Do youbuy-down incentives were offered. For natural gas vehicle

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

54

Barwood CNG Cab Fleet Study: Final Results  

DOE Green Energy (OSTI)

This report describes a fleet study conducted over a 12-month period to evaluate the operation of dedicated compress natural gas (CNG) Ford Crown Victoria sedans in a taxicab fleet. In the study, we assess the performance and reliability of the vehicles and the cost of operating the CNG vehicles compared to gasoline vehicles. The study results reveal that the CNG vehicles operated by this fleet offer both economic and environmental advantages. The total operating costs of the CNG vehicles were about 25% lower than those of the gasoline vehicles. The CNG vehicles performed as well as the gasoline vehicles, and were just as reliable. Barwood representatives and drivers have come to consider the CNG vehicles an asset to their business and to the air quality of the local community.

Whalen, P.; Kelly, K.; John, M.

1999-05-03T23:59:59.000Z

55

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network (OSTI)

2000. Natural Gas Vehicle Coalition, Energy Policy Act ofPolicy Alternative Fuel Vehicles: The Case of Compressed Natural Gas (Natural Gas Vehicles Stall on Way to Market, Forum for Applied Research and Public Policy,

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

56

Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002-September 30, 2004  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Development and Demonstration Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses October 15, 2002 - September 30, 2004 A. Del Toro SunLine Services Group Thousand Palms, California M. Frailey National Renewable Energy Laboratory Golden, Colorado F. Lynch Hydrogen Components Inc. Littleton, Colorado S. Munshi Westport Innovations Inc. Vancouver, British Columbia, Canada S. Wayne West Virginia University Morgantown, West Virginia Technical Report NREL/TP-540-38707 November 2005 Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses October 15, 2002 - September 30, 2004 A. Del Toro SunLine Services Group Thousand Palms, California M. Frailey National Renewable Energy Laboratory Golden, Colorado

57

Customer Retention Strategies of Compressed Natural Gas (CNG) in a Developing Country (Pakistan).  

E-Print Network (OSTI)

?? Background:Statistics say that Pakistan is the third largest user of compressed natural gas, its increased demand has encouraged investment in this sector. Number of (more)

Naveed-ur-Rehman, Muhammad

2013-01-01T23:59:59.000Z

58

Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Atlanta Airport Atlanta Airport Converts Shuttles to CNG to someone by E-mail Share Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Facebook Tweet about Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Twitter Bookmark Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Google Bookmark Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Delicious Rank Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Digg Find More places to share Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on AddThis.com... Sept. 9, 2012 Atlanta Airport Converts Shuttles to CNG L earn how an Atlanta company saves money and conserves fuel with compressed natural gas airport shuttles.

59

Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

CNG Fuel System and CNG Fuel System and Cylinder Maintenance to someone by E-mail Share Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Facebook Tweet about Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Twitter Bookmark Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Google Bookmark Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Delicious Rank Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Digg Find More places to share Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety

60

Integrated Hydrogen and Intelligent Transportation Systems Evaluation for the California Department of Transportation  

E-Print Network (OSTI)

= combined heat and power CNG = compressed natural gas CTP =compressed natural gas (CNG), liquefied petroleum gas (LPGfor vehicle refueling and CNG for CNG vehicles, as well as

Lipman, Timothy; Shaheen, Susan

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE Hydrogen Analysis Repository: CASCADE Refueling Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Liss Brief Description: Calculate sizing, fueling, and tradeoff issues for compressed gas fueling stations. Keywords: Natural gas; hydrogen; vehicle; refueling; storage;...

62

CNG Delivery Vans  

NLE Websites -- All DOE Office Websites (Extended Search)

company delivers flowers in seven counties. Compared to diesel, the company finds CNG also reduces repair costs and produces a longer engine life. Now they are looking...

63

NIST Transient Flow Standard for Vehicle Refueling  

Science Conference Proceedings (OSTI)

... Today, hydrogen-fueled demonstration vehicles are refueled from ... However, hydrogen dispenser manufacturers have found ... gas as a vehicle fuel of ...

2012-11-02T23:59:59.000Z

64

Safety and Regulatory Structure for CNG, CNG-Hydrogen Vehicles and Fuels in India  

NLE Websites -- All DOE Office Websites (Extended Search)

CNG,CNG-H2 Vehicles and Fuels CNG,CNG-H2 Vehicles and Fuels in India December 10-11, 2009 Ambrish Mishra Director (Marketing Operations) Oil Industry safety Directorate Ministry of Petroleum and Natural Gas Government Of India email : ambrish.mishra@gov.in OISD 2 1. Refineries: 17 PSU + 3 Private 2. POL Storage (PSU): More than 400 3. LPG storage and Bottling Plant (PSU): 179 4. Others Gas processing Plants of GAIL and ONGC OISD 3 Major Statutory Authorities and Norms 1. Petroleum and Safety Organization (PESO) A) Petroleum rules under Petroleum Act (1934) by MOPN&G B) Various Rules (Gas Cylinder Rules and SMPV etc) under the Explosives Act under Ministry of Commerce and Industry C)To exercise some provision of Environment Act 2. Chief Inspector of Factories of Respective State A) Factories Rules under Factories Act of Ministry of Labour

65

Carlink II: A Commuter Carsharing Pilot Program Final Report  

E-Print Network (OSTI)

Limited Compressed Natural Gas (CNG) Infrastructure: DuringCarLink I, two CNG issues constrained operations:a limited number of CNG refueling sites and slow CNG

Shaheen, Susan; Wipyewski, Kamill; Rodier, Caroline; Novick, Linda; Meyn, Molly Anne; Wright, John

2004-01-01T23:59:59.000Z

66

Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

CNG Refuse Haulers Do CNG Refuse Haulers Do Heavy Lifting in New York to someone by E-mail Share Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Facebook Tweet about Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Twitter Bookmark Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Google Bookmark Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Delicious Rank Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Digg Find More places to share Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on AddThis.com... Nov. 13, 2010 CNG Refuse Haulers Do Heavy Lifting in New York W atch how Smithtown uses compressed natural gas trash haulers to combat the

67

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

RFG Running Hot Soak Diurnal CNG :Diesel Fuels Emissions RFGwith compressednatural gas (CNG),the hydrocarbontaitpipemethanol, natural gas (CNG),and hydrogen. As noted above,

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

68

UPS CNG Truck Fleet Final Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

® ® ® ® ® ® ® ® Clean Air Natural Gas Vehicle This is a Clean Air Natural Gas Vehicle This is a UPS CNG Truck Fleet UPS CNG Truck Fleet UPS CNG Truck Fleet Final results Final Results Produced for the U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), a DOE national laboratory Alternative Fuel Trucks DOE/NREL Truck Evaluation Project By Kevin Chandler, Battelle Kevin Walkowicz, National Renewable Energy Laboratory Nigel Clark, West Virginia University Acknowledgments This evaluation would not have been possible without the cooperation, support, and responsiveness of the staff at UPS in Hartford and Atlanta. Thanks are due to the following UPS personnel: On-Site Headquarters Tom Robinson Ken Henrie Bill Jacob Rick Rufolo

69

Successful Adoption of CNG and Energing CNG-Hydrogen Program in India  

NLE Websites -- All DOE Office Websites (Extended Search)

Narendra Kumar Pal Narendra Kumar Pal Research Scholar, University of Nevada, Reno Successful Adoption of CNG and Emerging CNG-H 2 Program in India US DOT and DOE Workshop Compressed Natural Gas and Hydrogen Fuels: Lesson Learned for the Safe Development of Vehicles Washington DC, December, 10-11, 2009 Content * Background - CNG Implementation - IPHE - The Planning Commission of India - MP&NG - Hydrogen Corpus Fund - MNRE - National Hydrogen Energy Roadmap * Major Initiatives - Initiatives by MoP&NG - Indian Oil's Initiatives * International Workshop * Infrastructure Setup - IOC R&D Centre, Faridabad - IOC Retail Outlet, Dwarka, New Delhi * Developmental / Demonstration Projects - MNRE's Initiatives - Initiatives by Automobile Sector * Other programs 1. CNG Program Implementation

70

Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety and Regulatory Structure for CNG CNG-H 2 , H 2 Vehicles and Fuels in China Prof. Jinyang Zheng Director of IPE, Zhejiang University Director of Engineering Research...

71

CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...  

NLE Websites -- All DOE Office Websites (Extended Search)

5-192009; 1 Sandia National Laboratories CNG, H 2 , CNG-H 2 Blends - Critical Fuel Properties and Behavior Jay Keller, Sandia National Laboratories Keynote Lecture presented at:...

72

Transportation in Developing Countries: Greenhouse Gas Scenarios for Delhi, India  

E-Print Network (OSTI)

hand, compressed natural gas (CNG) and liquefied petroleumcost of owning and operating CNG and LPG vehicles couldto store the fuels. Each CNG bus, for example, currently

2001-01-01T23:59:59.000Z

73

Forecasting new product penetration with flexible substitution patterns  

E-Print Network (OSTI)

among gas, electric, methanol, and CNG vehicles with variouschoices among gas, methanol, CNG, and electric vehicles. 2.compressed natural gas (CNG) vehicles, the cost of refueling

Brownstone, David; Train, Kenneth

1999-01-01T23:59:59.000Z

74

Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Happy Cab Fuels Taxi Happy Cab Fuels Taxi Fleet With CNG to someone by E-mail Share Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG on Facebook Tweet about Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG on Twitter Bookmark Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG on Google Bookmark Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG on Delicious Rank Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG on Digg Find More places to share Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG on AddThis.com... June 15, 2013 Happy Cab Fuels Taxi Fleet With CNG F ind out how a cab company in Omaha, Nebraska, saves money fueling its taxi fleet with compressed natural gas. For information about this project, contact Kansas City Regional Clean

75

Hydrogen, CNG, and HCNG Dispenser System Prototype Report  

DOE Green Energy (OSTI)

The U.S. Department of Energys Advanced Vehicle Testing Activity is currently testing a prototype gaseous fuel dispenser developed by the Electric Transportation Engineering Corporation (ETEC). The dispenser (Figure 1) delivers three types of fuels: 100% hydrogen, 100% compressed natural gas (CNG), and blends of hydrogen and CNG (HCNG) using two independent single nozzles (Figure 2). The nozzle for the 100% hydrogen dispensing is rated at 5,000 psig and used solely for 100% hydrogen fuel. The second nozzle is rated at 3,600 psig and is used for both CNG and HCNG fuels. This nozzle connects to both a CNG supply line and a hydrogen supply line and blends the hydrogen and CNG to supply HCNG levels of 15, 20, 30, and 50% (by volume).

James Francfort

2005-02-01T23:59:59.000Z

76

Hydrogen effects on materials for CNG/H2 blends.  

Science Conference Proceedings (OSTI)

No concerns for Hydrogen-Enriched Compressed Natural gas (HCNG) in steel storage tanks if material strength is CNG) (e.g., CO) may provide extrinsic mechanism for mitigating H{sub 2}-assisted fatigue cracking in steel tanks.

Farese, David (Air Products, USA); Keller, Jay O.; Somerday, Brian P.

2010-09-01T23:59:59.000Z

77

COMPARISON OF CLEAN DIESEL BUSES TO CNG BUSES  

Science Conference Proceedings (OSTI)

Using previously published data on regulated and unregulated emissions, this paper will compare the environmental performance of current generation transit buses operated on compressed natural gas (CNG) to current generation transit buses operated on ultra low sulfur diesel fuel (ULSD) and incorporating diesel particulate filters (DPF). Unregulated emissions evaluated include toxic compounds associated with adverse health effects (carbonyl, PAH, NPAH, benzene) as well as PM particle count and size distribution. For all regulated and unregulated emissions, both technologies are shown to be comparable. DPF equipped diesel buses and CNG buses have virtually identical levels of PM mass emissions and particle number emissions. DPF-equipped diesel buses have lower HC and CO emissions and lower emissions of toxic substances such as benzene, carbonyls and PAHs than CNG buses. CNG buses have lower NOx emissions than DPF-equipped buses, though CNG bus NOx emissions are shown to be much more variable. In addition, this paper will compare the capital and operating costs of CNG and DPF-equipped buses. The cost comparison is primarily based on the experience of MTA New York City Transit in operating CNG buses since 1995 and DPF-equipped buses fueled with ULSD since 2001. Published data on the experience of other large transit agencies in operating CNG buses is used to validate the NYCT experience. The incremental cost (compared to ''baseline'' diesel) of operating a typical 200-bus depot is shown to be six times higher for CNG buses than for ''clean diesel'' buses. The contributors to this increased cost for CNG buses are almost equally split between increased capital costs for purchase of buses and installation of fueling infrastructure, and increased operating costs for purchase of fuel, bus maintenance, and fuel station maintenance.

Lowell, D.; Parsley, W.; Bush,C; Zupo, D.

2003-08-24T23:59:59.000Z

78

New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results  

DOE Green Energy (OSTI)

This report focuses on the evaluation of compressed natural gas (CNG) and diesel hybrid electric bus propulsion systems in New York City Transit's transit buses.

Chandler, K.; Eberts, E.; Eudy, L.

2006-01-01T23:59:59.000Z

79

CX-000708: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Technology Laboratory Installation of publicly-accessible compressed natural gas (CNG) refueling infrastructure. The station will allow for CNG vehicles to refuel. Selected...

80

Evaluating the Safety of a Natural Gas Home Refueling Appliance (HRA); Natural Gas Infrastructure Evaluation (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and infrastructure R&D through its FreedomCAR and Vehicle Technologies Program to help the United States reduce its dependence on imported petroleum and to pave the way to a future transportation network based on hydrogen. Natural gas vehicles can also reduce emissions of regulated pollutants compared with vehicles powered by conventional fuels such as gasoline and diesel.

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network (OSTI)

centimeter or cubic centimeters CNG = compressed natural gascompressed natural gas (CNG) refueling stations providessimilar cylinders for storing CNG. In general, the cost of a

Lipman, Timothy Edward

1999-01-01T23:59:59.000Z

82

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network (OSTI)

for vehicle refueling and compressed natural gas (CNG)for CNG vehicles, aswell as CNG/hydrogen blends (City of Las Vegas, 2002). Clean

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

83

An Empirical Study of Alternative Fuel Vehicle Choice by Commercial Fleets: Lessons in Transportation Choices, and Public Agencies' Organization  

E-Print Network (OSTI)

Error gov. Error model model CNG constant Methanol constantcompressed natural gas (CNG) vehicles with over 300 milestime or refueling cost of CNG vehicles? My fuel choice

Crane, Soheila Soltani

1996-01-01T23:59:59.000Z

84

Feasibility study of Northeast Thailand Gas Pipeline Project. Final report. Part 2. Compressed natural gas. Export trade information  

SciTech Connect

The volume is the second part of a three part study submitted to the Petroleum Authority of Thailand. Part II analyzes the potential use of compressed natural gas (CNG) as a transportation fuel for high mileage vehicles traveling the highway system of Thailand. The study provides an initial estimate of buses and trucks that are potential candidates for converting to natural gas vehicles (NGV). CNG technology is briefly reviewed. The types of refueling stations that may be sited along the highway are discussed. The estimated capital investments and typical layouts are presented. The report also discusses the issues involved in implementing a CNG program in Thailand, such as safety, user acceptability and the government's role.

1989-09-01T23:59:59.000Z

85

Compressed natural gas fueled vehicles: The Houston experience  

DOE Green Energy (OSTI)

The report describes the experience of the City of Houston in defining the compressed natural gas fueled vehicle research scope and issues. It details the ways in which the project met initial expectations, and how the project scope, focus, and duration were adjusted in response to unanticipated results. It provides examples of real world successes and failures in efforts to commercialize basic research in adapting a proven technology (natural gas) to a noncommercially proven application (vehicles). Phase one of the demonstration study investigates, develops, documents, and disseminates information regarding the economic, operational, and environmental implications of utilizing compressed natural gas (CNG) in various truck fueling applications. The four (4) truck classes investigated are light duty gasoline trucks, medium duty gasoline trucks, medium duty diesel trucks and heavy duty diesel trucks. The project researches aftermarket CNG conversions for the first three vehicle classes and original equipment manufactured (OEM) CNG vehicles for light duty gasoline and heavy duty diesel classes. In phase two of the demonstration project, critical issues are identified and assessed with respect to implementing use of CNG fueled vehicles in a large vehicle fleet. These issues include defining changes in local, state, and industry CNG fueled vehicle related codes and standards; addressing vehicle fuel storage limitations; using standardized vehicle emission testing procedures and results; and resolving CNG refueling infrastructure implementation issues and related cost factors. The report identifies which CNG vehicle fueling options were tried and failed and which were tried and succeeded, with and without modifications. The conclusions include a caution regarding overly optimistic assessments of CNG vehicle technology at the initiation of the project.

Not Available

1993-12-31T23:59:59.000Z

86

Emissions and performance evaluation of a dedicated compressed natural gas saturn  

Science Conference Proceedings (OSTI)

The use of compressed natural gas (CNG) as a transportation fuel has been identified as one strategy that can help ameliorate some problems, which include a growing dependence on imported oil (and all its ramifications) and the persistent contributions that mobile sources make to urban air pollution, associated with the use of conventional petroleum fuels. The attributes and limitations of CNG as a fuel for spark-ignition engines have been presented by others. The attributes are associated with its high octane rating, low cost relative to other alternative fuels, its availability, the absence of running and diurnal evaporative emissions, and its demonstrated potential for producing extremely low exhaust emissions-particularly if the volatile organic compounds (VOCs) emitted are expressed in terms of reactivity adjusted non-methane organic gases (RANMOG). The limitations associated with the use of CNG include its limited refueling infrastructure, the cost of refueling facilities, the cost of on-board fuel storage tanks, and its relatively low energy density. Because one impediment to CNG use is the cost associated with producing a CNG-powered vehicle, a study was initiated at the University of Tennessee under sponsorship by the Saturn Corporation to determine how a CNG vehicle (specifically, a 1991 Saturn SL1) could be engineered so it could be produced with a minimal impact on the production of the base vehicle. The present study was undertaken to further investigate the emissions reduction potential of the Saturn CNG vehicle. In the previous study the role of exhaust gas recirculation was not thoroughly investigated. Those involved in the study agreed that the NO{sub x} levels could be brought down well below California ULEV levels without increasing either the non-methane organic gases or the CO levels.

Hodgson, J.W.; Taylor, J.D. [Univ. of Tennessee, Knoxville, TN (United States)

1997-07-01T23:59:59.000Z

87

CNG in OKC: Improving Efficiency at the Pump and on the Road | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CNG in OKC: Improving Efficiency at the Pump and on the Road CNG in OKC: Improving Efficiency at the Pump and on the Road CNG in OKC: Improving Efficiency at the Pump and on the Road March 8, 2012 - 4:02pm Addthis Andy Mitchell, Public Works Project Manager for the City of Oklahoma City, refills a vehicle at the new fast-fill CNG fueling station located at the city's main maintenance facility. | Courtesy of the City of Oklahoma City. Andy Mitchell, Public Works Project Manager for the City of Oklahoma City, refills a vehicle at the new fast-fill CNG fueling station located at the city's main maintenance facility. | Courtesy of the City of Oklahoma City. Jennifer Holman Project Officer, Golden Field Office What does this mean for me? Switching from gasoline and diesel fuels to compressed natural gas (CNG) can mean significantly lower amounts of carbon dioxide and air

88

CNG transit fueling station handbook. Final report, October 1993-June 1997  

Science Conference Proceedings (OSTI)

This manual has been complied for use by a Transit Authority Engineer or an Engineering Company who is involved in the design of Compressed Natural Gas (CNG) fueling facilities. It is intended to provide a convenient and comprehensive reference document, to supplement but not replace codes and other reference documents. It is also intended to be used as a basis for the design of a broad range of CNG fueling facilities. The scope is limited to straight CNG and hence Liquefied Natural Gas (LNG) or LNG vaporization to CNG has not been addressed. Similarly, this document does not deal with the facility modifications which may be required to park, service, or fuel CNG buses indoors. Additional information on actual gas fueling is available from the Gas Research Institute.

Adams, R.R.; Pennington, M.D.

1997-02-01T23:59:59.000Z

89

Comparison of CNG and LNG technologies for transportation applications  

Science Conference Proceedings (OSTI)

This report provides a head-to-head comparison of compressed natural gas (CNG) and liquefied natural gas (LNG) supplied to heavy-duty vehicles. The comparison includes an assessment of the overall efficiency of the fuel delivery system, the cost of the fuel supply system, the efficiency of use in heavy-duty vehicles, and the environmental impact of each technology. The report concludes that there are applications in which CNG will have the advantage, and applications in which LNG will be preferred.

Sinor, J.E. (Sinor (J.E.) Consultants, Inc., Niwot, CO (United States))

1992-01-01T23:59:59.000Z

90

Ford F250 Dedicated CNG Pickup  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) is encouraging the use of alternative fuels and alternative fuel vehicles (AFVs). To support this activity, DOE has directed the National Renewable Energy Laboratory (NREL) to conduct projects to evaluate the performance and acceptability of light-duty AFVs. In this study, we tested a pair of 1998 Ford F-250 pickups: one dedicated compressed natural gas (CNG) model and a gasoline model as closely matched as possible. Each vehicle was run through a series of tests to evaluate acceleration, fuel economy, braking, and cold-start capabilities, as well as more subjective performance indicators such as handling, climate control, and noise.

Eudy, L.

1999-06-24T23:59:59.000Z

91

CARLINK-A SMART CARSHARING SYSTEM FIELD TEST REPORT  

E-Print Network (OSTI)

were required at LLNL) CNG refueling (i.e. , demands on fuelLivermore National Laboratory CNG: Compressed natural gasAt LLNL (see first page) b. CNG refueling (see first page)

Shaheen, Susan; Wright, John; Dick, David; Novick, Linda

2000-01-01T23:59:59.000Z

92

Accommodating the Green Gas Infrastructure for Road Traffic: A feasibility and conceptual design study of a new distribution system for (Bio-)CNG.  

E-Print Network (OSTI)

??The emergence of green gas is a promising development within the Dutch gas market. Green gas is biogas with natural gas quality and can lead (more)

Van Rooij, R.L.M.M.

2012-01-01T23:59:59.000Z

93

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network (OSTI)

Costs CNG = compressed natural gas CPUC = California PublicNatural Gas Reformer Reformate Hydrogen H2 Purifier High -pressure hydrogen compressor CompressedNatural gas Air Burner air blower Steam methane reformer (SMR) & pressure shift adsorption reactor (PSA) Compressed

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

94

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network (OSTI)

Costs CNG = compressed natural gas CPUC = California PublicNatural Gas Reformer Reformate Hydrogen H2 Purifier High-pressure hydrogen compressor CompressedNatural gas Air Burner air blower Steam methane reformer (SMR) & pressure shift adsorption reactor (PSA) Compressed

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

95

Evaporative Testing Requirements for Dual-Fuel Compressed Natural Gas (CNG)/Gasoline and Liquefied Petroleum Gas (LPG)/Gasoline Vehicles Revision of MAC #99-01 To Allow Subtraction of Methane Emissions from  

E-Print Network (OSTI)

The attached MAC clarifies the Air Resources Board's procedures regarding evaporative emission testing of dual-fuel CNG/gasoline vehicles. This MAC revises and supersedes MAC #99-01 by allowing manufacturers to determine, report, and subtract methane emissions when a dual-fuel CNG/gasoline vehicle is tested for evaporative emissions. A related revision clarifies that for dual-fuel CNG/gasoline medium-duty vehicles, the applicable LEV I evaporative emission standards, which are dependent on the fuel tank capacity of the medium-duty vehicles, are determined solely on the fuel tank capacity of the gasoline fuel system. If you have any questions or comments, please contact Mr. Steven Hada, Air

Alan C. Lloyd, Ph.D.; Arnold Schwarzenegger; All Heavy-duty Vehicle Manufacturers

2004-01-01T23:59:59.000Z

96

Effect of CNG start - gasoline run on emissions from a 3/4 ton pick-up truck  

SciTech Connect

This paper describes experiments to determine the effect on exhaust emissions of starting on compressed natural gas (CNG) and then switching to gasoline once the catalyst reaches operating temperature. Carbon monoxide, oxides of nitrogen, and detailed exhaust hydrocarbon speciation data were obtained for dedicated CNG, then unleaded gasoline, and finally CNG start - gasoline run using the Federal Test Procedure at 24{degree}C and at -7{degree}C. The results was a reductiopn in emissions from the gasoline baseline, especially at -7{degree}C. It was estimated that CNG start - gasoline run resulted in a 71 percent reduction in potential ozone formation per mile. 3 refs., 6 figs., 11 tabs.

Springer, K.J.; Smith, L.R.; Dickinson, A.G.

1994-10-01T23:59:59.000Z

97

Transportation in Developing Countries: Greenhouse Gas Scenarios for Shanghai, China  

E-Print Network (OSTI)

engines are re-optimized for CNG and are calculated on amanufacturing the engine), then CNG would produce even moreChina natural gas (CNG). The taxi fleet is currently being

Zhou, Hongchang; Sperling, Daniel

2001-01-01T23:59:59.000Z

98

CNG Goes Mainstream  

NLE Websites -- All DOE Office Websites (Extended Search)

Goes Mainstream Goes Mainstream JOHN DAVIS: Time now for Motor News. So, let's head inside to Yolanda Vazquez for what's new this week. VOLANDA VAZQUEZ: Big news on the EV front with a new all-electric SUV from Toyota. The Japanese automaker unveiled the production version of the 2012 Rav 4 EV at the EVS26 symposium in Los Angeles. It was jointly developed with electric car pioneer Tesla Motors who supplied the battery pack and drive system. Like other current EV's, this Rav 4 has a range of about 100 miles, but with more versatility. Toyota expects a price of nearly $50,000 will likely limit sales to about 2,600 Rav4 EV's over the next 3 years. Rising gasoline prices are also renewing interest in another alt-fuel, compressed natural gas. From taxis to refuse and delivery trucks, more and more fleets are

99

Inspection of compressed natural gas cylinders on school buses  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) is sponsoring compressed natural gas (CNF)-powered school bus demonstrations in various locations around the country. Early in 1994, two non-DOE-sponsored CNG pickup trucks equipped with composite-reinforced-aluminum fuel cylinders experienced cylinder ruptures during refueling. As reported by the Gas Research Institute (GRI): ...analysis of the cylinder ruptures on the pickup trucks revealed that they were due to acid-induced stress corrosion cracking (SCC) of the overwrap. The overwrap that GRI refers to is a resin-impregnated fiber that is wrapped around the outside of the gas cylinder for added strength. Because ensuring the safety of the CNG vehicles it sponsors is of paramount concern to DOE, the Department, through the National Renewable Energy Laboratory (NREL), conducted inspections of DOE-sponsored vehicles nationwide. The work had three objectives: inspection, documentation, and education. First, inspectors visited sites where CNG-powered school buses sponsored by DOE are based, and inspected the CNG cylinders for damage. Second, information learned during the inspections was collected for DOE. Third, the inspections found that the education and awareness of site personnel, in terms of cylinder damage detection, needed to be increased.

NONE

1995-07-01T23:59:59.000Z

100

In-Use Performance Comparison of Hybrid Electric, CNG, and Diesel Buses at New York City Transit  

Science Conference Proceedings (OSTI)

The National Renewable Energy Laboratory (NREL) evaluated the performance of diesel, compressed natural gas (CNG), and hybrid electric (equipped with BAE Systems? HybriDrive propulsion system) transit buses at New York City Transit (NYCT). CNG, Gen I and Gen II hybrid electric propulsion systems were compared on fuel economy, maintenance and operating costs per mile, and reliability.

Barnitt, R. A.

2008-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The Importance of Interregional Refueling Availability to the Purchase Decision  

E-Print Network (OSTI)

surveys about refueling availability No experience using aof Interregional Refueling Availability to the Purchasewith refueling availability (pretest only) ? Respondents

Nicholas, Michael A

2009-01-01T23:59:59.000Z

102

Safety Evaluation of the FuelMaker Home Refueling Concept: Final Report  

DOE Green Energy (OSTI)

Report summarizes results of a National Renewable Energy Laboratory safety evaluation of the FuelMaker natural gas vehicle home refueling appliance (HRA, aka Phill).

Waterland, L. R.; Powars, C.; Stickles, P.

2005-02-01T23:59:59.000Z

103

Vehicle Modeling and Verification of CNG-Powered Transit Buses  

E-Print Network (OSTI)

Modeling and Verification of CNG-Powered Transit BusesModeling and Verification of CNG-Powered Transit Buses.Modeling and Veri?cation of CNG-Powered Transit Buses J.K.

Hedrick, J. K.; Ni, A.

2004-01-01T23:59:59.000Z

104

Advanced Vehicle Testing Activity: Dodge Ram Wagon Van -- Hydrogen/CNG Operations Summary  

DOE Green Energy (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energys Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Services Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen85% CNG.

Don Karner; Francfort, James Edward

2003-01-01T23:59:59.000Z

105

Advanced Vehicle Testing Activity: Dodge Ram Wagon Van - Hydrogen/CNG Operations Summary - January 2003  

Science Conference Proceedings (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen-85% CNG.

Karner, D.; Francfort, J.E.

2003-01-16T23:59:59.000Z

106

Reactor refueling containment system  

DOE Patents (OSTI)

A method of refueling a nuclear reactor is disclosed whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced. 2 figs.

Gillett, J.E.; Meuschke, R.E.

1995-05-02T23:59:59.000Z

107

Reactor refueling containment system  

DOE Patents (OSTI)

This report describes a method of refueling a nuclear reactor whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced.

Gillett, J.E.; Meuschke, R.E.

1992-12-31T23:59:59.000Z

108

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CCities AOI 4:Deployment of CNG refuse trucks and shuttle buses and the development of four CNG refueling locations....

109

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IL Jefferson Park CNG Refueling Station, Chicago The objective of this project is the construction of a compressed natural gas (CNG) fueling station to support the deployment of...

110

CX-000781: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Technology Laboratory The project funds the deployment of compressed natural gas (CNG) refuse trucks and shuttle buses and the development of four CNG refueling locations....

111

Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine...  

NLE Websites -- All DOE Office Websites (Extended Search)

a model alternative fuel refueling system, dispensing hydrogen, compressed natural gas (CNG), and hydrogenCNG blends (HCNG). The plant is used daily to fuel vehicles operated in...

112

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Refuse Trucks, Shuttle Buses and Infrastructure Clean Cities AOI 4:Deployment of CNG refuse trucks and shuttle buses and the development of four CNG refueling locations....

113

DOE News Release - DOE Issues Arizona Public Service Alternative...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel refueling system, generating and dispensing hydrogen, compressed natural gas (CNG) and hydrogenCNG blends (HCNG). The plant is used daily to fuel internal combustion...

114

CX-000957: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cities Area of Interest 4: The project funds the deployment of compressed natural gas (CNG) refuse trucks and shuttle buses and the development of four CNG refueling locations....

115

CX-001449: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Technology Laboratory The project funds the deployment of Compressed Natural Gas (CNG) refuse trucks and shuttle buses and the development of four CNG refueling locations....

116

Dispersion of CNG following a high-pressure release. Final report, February 1995-March 1996  

Science Conference Proceedings (OSTI)

The research described in the report was designed to evaluate the adequacy of the current convention concerning safeguards against CNG-related fires in transit buildings where CNG powered buses are fueled, stored, or maintained. The convention embraces the belief that precautions need to be taken only at or near the ceiling of the buildings. It is based on the premise that, since CNG is primarily methane and methane is approximately one-half the density of air at ambient temperature and pressure, any natural gas released would immediately rise to the ceiling as a buoyant plume. The experiments described here tested theoretical predictions that challenge this premise. During the tests, infrared imaging was used to track the movement of CNG following release from a high-pressure source close to the floor.

Gaumer, R.L.; Raj, P.K.

1996-05-01T23:59:59.000Z

117

SuperShuttle CNG Fleet Start-Up Experience  

DOE Green Energy (OSTI)

The Gas Research Institute (GRI) and the U.S. Department of Energy (DOE), along with several industry partners, are collaborating with SuperShuttle of Denver, Colorado, to evaluate natural gas vans added to the SuperShuttle fleet in 1999. Brand new (1999 model year) dedicated and bi-fuel compressed natural gas (CNG) vans manufactured by Ford Motor Company will be operated side-by-side with several similar gasoline vehicles in normal revenue service. Once the study is complete, DOE's National Renewable Energy Laboratory will analyze and compile the results for release.

Eudy, L.

1999-05-18T23:59:59.000Z

118

DOE Hydrogen Analysis Repository: Hydrogen Refueling Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Refueling Infrastructure Cost Analysis Project Summary Full Title: Hydrogen Refueling Infrastructure Cost Analysis Project ID: 273 Principal Investigator: Marc Melaina...

119

Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at St. Bliss, Texas. Interim report, October 1992--May 1994  

DOE Green Energy (OSTI)

Results are presented from a demonstration program conducted on the comparative evaluations of the combustion of compressed natural gas as an alternative fuel for gasoline. General Motors pick-up trucks were utilized in the study.

Alvarez, R.A.; Yost, D.M.

1995-11-01T23:59:59.000Z

120

Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002--September 30, 2004  

DOE Green Energy (OSTI)

The report covers literature and laboratory analyses to identify modification requirements of a Cummins Westport B Gas Plus engine for transit buses using a hydrogen/compressed natural fuel blend.

Del Toro, A.; Frailey, M.; Lynch, F.; Munshi, S.; Wayne, S.

2005-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety November 6, 2012 - 5:00pm Addthis Natural gas jitneys like this are Atlantic City's main form of public transportation. These vehicles were used to evacuate vulnerable residents during Hurricane Sandy. This vehicle is fueling up at a natural gas station built, owned, and operated by Clean Energy Fuels, who kept the station running despite widespread shortages of gasoline and diesel elsewhere. | Photo courtesy of Clean Energy Natural gas jitneys like this are Atlantic City's main form of public transportation. These vehicles were used to evacuate vulnerable residents during Hurricane Sandy. This vehicle is fueling up at a natural gas station

122

In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety November 6, 2012 - 5:00pm Addthis Natural gas jitneys like this are Atlantic City's main form of public transportation. These vehicles were used to evacuate vulnerable residents during Hurricane Sandy. This vehicle is fueling up at a natural gas station built, owned, and operated by Clean Energy Fuels, who kept the station running despite widespread shortages of gasoline and diesel elsewhere. | Photo courtesy of Clean Energy Natural gas jitneys like this are Atlantic City's main form of public transportation. These vehicles were used to evacuate vulnerable residents during Hurricane Sandy. This vehicle is fueling up at a natural gas station

123

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150  

Science Conference Proceedings (OSTI)

Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energys Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

James E. Francfort

2003-11-01T23:59:59.000Z

124

Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary  

DOE Green Energy (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energys Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Services Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

Karner, D.; Francfort, James Edward

2003-01-01T23:59:59.000Z

125

Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary  

DOE Green Energy (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energys Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Services Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen50% CNG fuel.

Don Karner; Francfort, James Edward

2003-01-01T23:59:59.000Z

126

Optimization of a CNG series hybrid concept vehicle  

DOE Green Energy (OSTI)

Compressed Natural Gas (CNG) has favorable characteristics as a vehicular fuel, in terms of fuel economy as well as emissions. Using CNG as a fuel in a series hybrid vehicle has the potential of resulting in very high fuel economy (between 26 and 30 km/liter, 60 to 70 mpg) and very low emissions (substantially lower than Federal Tier II or CARB ULEV). This paper uses a vehicle evaluation code and an optimizer to find a set of vehicle parameters that result in optimum vehicle fuel economy. The vehicle evaluation code used in this analysis estimates vehicle power performance, including engine efficiency and power, generator efficiency, energy storage device efficiency and state-of-charge, and motor and transmission efficiencies. Eight vehicle parameters are selected as free variables for the optimization. The optimum vehicle must also meet two perfect requirements: accelerate to 97 km/h in less than 10 s, and climb an infinitely long hill with a 6% slope at 97 km/h with a 272 kg (600 lb.) payload. The optimizer used in this work was originally developed in the magnetic fusion energy program, and has been used to optimize complex systems, such as magnetic and inertial fusion devices, neutron sources, and mil guns. The optimizer consists of two parts: an optimization package for minimizing non-linear functions of many variables subject to several non-linear equality and/or inequality constraints and a programmable shell that allows interactive configuration and execution of the optimizer. The results of the analysis indicate that the CNG series hybrid vehicle has a high efficiency and low emissions. These results emphasize the advantages of CNG as a near-term alternative fuel for vehicles.

Aceves, S.M.; Smith, J.R.; Perkins, L.J.; Haney, S.W.; Flowers, D.L.

1995-09-22T23:59:59.000Z

127

Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050  

E-Print Network (OSTI)

petroleum gases, and compressed natural gas, but their totalNatural Gas (LNG) Compressed Natural Gas (CNG) Liquefied

Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

2008-01-01T23:59:59.000Z

128

Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Smithtown Selects CNG Smithtown Selects CNG to Cut Refuse Collection Costs to someone by E-mail Share Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Facebook Tweet about Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Twitter Bookmark Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Google Bookmark Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Delicious Rank Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Digg Find More places to share Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on AddThis.com... April 7, 2011 Smithtown Selects CNG to Cut Refuse Collection Costs

129

Comparison of CNG and LNG technologies for transportation applications. Final subcontract report, June 1991--December 1991  

Science Conference Proceedings (OSTI)

This report provides a head-to-head comparison of compressed natural gas (CNG) and liquefied natural gas (LNG) supplied to heavy-duty vehicles. The comparison includes an assessment of the overall efficiency of the fuel delivery system, the cost of the fuel supply system, the efficiency of use in heavy-duty vehicles, and the environmental impact of each technology. The report concludes that there are applications in which CNG will have the advantage, and applications in which LNG will be preferred.

Sinor, J.E. [Sinor (J.E.) Consultants, Inc., Niwot, CO (United States)

1992-01-01T23:59:59.000Z

130

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network (OSTI)

convenience and security similar to home refueling. Theconvenience and security similar to home refueling. This canfreedom, and security of refueling at home to early vehicle

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

131

CNG and Hydrogen Tank Safety, R&D, and Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

2.10.2009 | Presented by Joe Wong, P.Eng. CNG & Hydrogen Tank Safety, R&D, and Testing > Powertech Labs Inc. 1 PRESENTATION OBJECTIVES Present experience from CNG in-service...

132

Carlink - A Smart Carsharing System Field Test Report  

E-Print Network (OSTI)

enjoyed driving the Honda CNG Civics, and reported havingLivermore National Laboratory CNG: Compressed natural gasAt LLNL (see first page) b. CNG refueling (see first page)

Shaheen, Susan; Wright, John; Dick, David; Novick, Linda

2000-01-01T23:59:59.000Z

133

UPS CNG Truck Fleet Start Up Experience: Alternative Fuel Truck Evaluation Project  

DOE Green Energy (OSTI)

UPS operates 140 Freightliner Custom Chassis compressed natural gas (CNG)-powered vehicles with Cummins B5.9G engines. Fifteen are participating in the Alternative Fuel Truck Evaluation Project being funded by DOE's Office of Transportation Technologies and the Office of Heavy Vehicle Technologies.

Walkowicz, K.

2001-08-14T23:59:59.000Z

134

Effect of CNG start-gasoline run on emissions from a 3/4 ton pick-up truck  

Science Conference Proceedings (OSTI)

This paper describes experiments to determine the effect on exhaust emissions of starting on compressed natural gas (CNG) and then switching to gasoline once the catalyst reaches operating temperature. Carbon monoxide, oxides of nitrogen, and detailed exhaust hydrocarbon speciation data were obtained for dedicated CNG, then unleaded gasoline, and finally CNG start-gasoline run using the Federal Test Procedure at 24{degree}C and at -7{degree}C. The result was a reduction in emissions from the gasoline baseline, especially at -7{degree}C. It was estimated that CNG start - gasoline run resulted in a 71 percent reduction in potential ozone formation per mile. 3 refs., 6 figs., 11 tabs.

Springer, K.J.; Smith, L.R.; Dickinson, A.G.

1994-10-01T23:59:59.000Z

135

Low-cost, low-weight CNG cylinder development. Final report  

DOE Green Energy (OSTI)

This program was established to develop and commercialize new high-strength steel-lined, composite hoop-wrapped compressed natural gas (CNG) cylinders for vehicular applications. As much as 70% of the cost of natural gas vehicles can be related to on-board natural gas storage costs. The cost and weight targets for this program represent significant savings in each characteristic when compared to comparable containers available at the initiation of the program. The program objectives were to optimize specific weight and cost goals, yielding CNG cylinders with dimensions that should, allowing for minor modifications, satisfy several vehicle market segments. The optimization process encompassed material, design, and process improvement. In optimizing the CNG cylinder design, due consideration was given to safety aspects relative to national, international, and vehicle manufacturer cylinder standards and requirements. The report details the design and development effort, encompassing plant modifications, material selection, design issues, tooling development, prototype development, and prototype testing. Extenuating circumstances prevented the immediate commercialization of the cylinder designs, though significant progress was made towards improving the cost and performance of CNG cylinders. A new low-cost fiber was successfully employed while the weight target was met and the cost target was missed by less than seven percent.

Richards, Mark E.; Melford, K.; Wong, J.; Gambone, L.

1999-09-01T23:59:59.000Z

136

Transit Users Group Supports Transit Agencies with Natural Gas Buses  

Science Conference Proceedings (OSTI)

Fact sheet describes the benefits of the Transit Users Group, which supports transit groups with compressed natural gas (CNG) buses.

Not Available

2002-04-01T23:59:59.000Z

137

Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003  

Science Conference Proceedings (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

Karner, D.; Francfort, J.E.

2003-01-22T23:59:59.000Z

138

Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003  

Science Conference Proceedings (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.

Karner, D.; Francfort, J.E.

2003-01-22T23:59:59.000Z

139

Dodge B2500 dedicated CNG van  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) is promoting the use of alternative fuels and alternative fuel vehicles (AFVs). To support this activity, DOE has directed the National Renewable Energy Laboratory (NREL) to conduct projects to evaluate the performance and acceptability of light-duty AFVs. The authors tested a 1999 B2500 dedicated CNG Ram Wagon with a 5.2L V8 engine. The vehicle was run through a series of tests explained briefly in this fact sheet.

Eudy, L.

2000-04-19T23:59:59.000Z

140

Hydrogen, CNG, and HHCNG Dispenser System - Prototye Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity Hydrogen, CNG, and HCNG Dispenser System - Prototype Report TECHNICAL REPORT Don Karner Scott...

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The role of natural gas as a vehicle transportation fuel.  

E-Print Network (OSTI)

??This thesis analyzes pathways to directly use natural gas, as compressed natural gas (CNG) or liquefied natural gas (LNG), in the transportation sector. The thesis (more)

Murphy, Paul Jarod

2010-01-01T23:59:59.000Z

142

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network (OSTI)

refueling and compressed natural gas (CNG) for CNG vehicles,Natural Gas Reformer Reformate Hydrogen Hydrogen CompressedNatural gas Air Recycled Reformate MCFC or SOFC Fuel Cell Reformate Hydrogen Compressed

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

143

Fuel Cell Technologies Office: Hydrogen Refueling Protocols Webinar (Text  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Refueling Hydrogen Refueling Protocols Webinar (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Refueling Protocols Webinar (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Refueling Protocols Webinar (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Refueling Protocols Webinar (Text Version) on Google Bookmark Fuel Cell Technologies Office: Hydrogen Refueling Protocols Webinar (Text Version) on Delicious Rank Fuel Cell Technologies Office: Hydrogen Refueling Protocols Webinar (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Refueling Protocols Webinar (Text Version) on AddThis.com... Publications Program Publications Technical Publications Educational Publications

144

November 10, 2004: First hydrogen refueling station opens in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10, 2004: First hydrogen refueling station opens in Washington, DC. November 10, 2004: First hydrogen refueling station opens in Washington, DC. November 10, 2004: First hydrogen...

145

DOE Hydrogen Analysis Repository: Consumer Preferences for Refueling...  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumer Preferences for Refueling Availability Project Summary Full Title: Discrete Choice Analysis of Consumer Preferences for Refueling Availability Project ID: 249 Principal...

146

Alternative Carriers For Remote Renewable Energy Sources Using Existing Cng  

Open Energy Info (EERE)

Carriers For Remote Renewable Energy Sources Using Existing Cng Carriers For Remote Renewable Energy Sources Using Existing Cng Infrastructure Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Alternative Carriers For Remote Renewable Energy Sources Using Existing Cng Infrastructure Details Activities (0) Areas (0) Regions (0) Abstract: Optimal locations of renewable energy sources are often remote relative to consumers and electricity grids. In contrast, some existing CNG pipelines pass through optimal renewable energy harvesting regions. The growing interest in the possibility of using geothermal energy in central Australia has created a need to assess the economic, technical, and environmental viability of converting remote renewable energy to fuel for transport using existing CNG pipelines, and to compare this alternative

147

Safety and Regulatory Structure for CNG/Hydrogen Vehicles and Fuels in the United States  

NLE Websites -- All DOE Office Websites (Extended Search)

CNG/H2 Vehicles and Fuels in the CNG/H2 Vehicles and Fuels in the United States Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for Safe Deployment of Vehicles Workshop December 2009 2 Overview DOT/NHTSA Mission Federal Motor Vehicle Safety Standards (FMVSS) FMVSS covering alternative fuel vehicles Research supporting new/improved FMVSS for alternative fuel vehicles International Harmonization - Global Technical Regulations 3 Mission Statements DOT Mission Statement Serve the United States by ensuring a safe transportation system that furthers our vital national interests and enhances the quality of life of the American people * Safety - Promote the public health and safety by working toward the elimination of transportation-related deaths and injuries NHTSA Mission Statement To reduce deaths, injuries and economic losses resulting from

148

Fuel Cell Technologies Office: Refueling Infrastructure for Alternative  

NLE Websites -- All DOE Office Websites (Extended Search)

Refueling Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen to someone by E-mail Share Fuel Cell Technologies Office: Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen on Facebook Tweet about Fuel Cell Technologies Office: Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen on Twitter Bookmark Fuel Cell Technologies Office: Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen on Google Bookmark Fuel Cell Technologies Office: Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen on Delicious Rank Fuel Cell Technologies Office: Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen on Digg

149

Alternative fuel information: Facts about CNG and LPG conversion  

DOE Green Energy (OSTI)

As new environmental and energy related laws begin to take effect, increasing numbers of alternative fuel vehicles (AFVs) will be required in federal, state, municipal, and private fleets across the country. The National Energy Policy Act of 1992 and the Clean Air Act Amendments of 1990, along with several new state and local laws, will require fleet managers to either purchase original equipment manufacturer (OEM) vehicles, which are produced by automakers, or convert existing vehicles to run on alternative fuels. Because there is a limited availability and selection of OEM vehicles, conversions are seen as a transition to the time when automakers will produce more AFVs for public sale. A converted vehicle is any vehicle that originally was designed to operate on gasoline, and has been altered to run on an alternative fuel such as compressed natural gas (CNG) or propane (liquefied petroleum gas -- LPG), the two most common types of fuel conversions. In the United States, more than 25,000 vehicles already have been converted to COG, and 300,000 have been converted to LPG.

O`Connor, K.

1994-06-01T23:59:59.000Z

150

NREL: ReFUEL Laboratory - Chassis Dynamometer  

NLE Websites -- All DOE Office Websites (Extended Search)

a more accurate assessment of the benefits of new fuels and vehicle technologies, and is essential for assessing the performance of heavy hybrid trucks and buses. The ReFUEL...

151

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network (OSTI)

Well-to-wheels analysis of hydrogen based fuel-cell vehicleJP, et al. Distributed Hydrogen Fueling Systems Analysis,Year 2006 UCDITSRR0604 Hydrogen Refueling Station Costs

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2006-01-01T23:59:59.000Z

152

CNG and Diesel Transit Bus Emissions in Review  

DOE Green Energy (OSTI)

Over the past three years, the California Air Resources Board (CARB), in collaboration with the University of California and other entities, has investigated the tailpipe emissions from three different latemodel, in-use heavy-duty transit buses in five different configurations. The study has focused on the measurement of regulated emissions (NOX, HC, CO, total PM), other gaseous emissions (CO2, NO2, CH4, NMHC), a number of pollutants of toxic risk significance (aromatics, carbonyls, PAHs, elements), composition (elemental and organic carbon), and the physical characterization (size-segregated number count and mass) of the particles in the exhaust aerosol. Emission samples are also tested in a modified Ames assay. The impact of oxidation catalyst control for both diesel and compressed natural gas (CNG) buses and a passive diesel particulate filter (DPF) were evaluated over multiple driving cycles (idle, 55 mph cruise, CBD, UDDS, NYBC) using a chassis dynamometer. For brevity, only CBD results are discussed in this paper and particle sizing results are omitted. The database of results is large and some findings have been reported already at various forums including last year's DEER conference. The goal of this paper is to offer an overview of the lessons learned and attempt to draw overall conclusions and interpretations based on key findings to date.

Ayala, A. (a); Kado, N. (a,b); Okamoto, R. (a); Gebel, M. (a) Rieger, P. (a); Kobayashi, R. (b); Kuzmicky, P. (b)

2003-08-24T23:59:59.000Z

153

An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles  

E-Print Network (OSTI)

World Bank Seminar: Compressed Natural Gas in New Zealand /implementation of compressed natural gas (CNG) as fuel instudy countries Compressed natural gas vehicles were ?rst

Yeh, Sonia

2007-01-01T23:59:59.000Z

154

A Life Cycle Comparison of Coal and Natural Gas for Electricity Generation and the Production of Transportation Fuels  

E-Print Network (OSTI)

, compressed natural gas (CNG), criteria emissions, demographic, E85, Energy Commission, environmental justice Category: Natural Gas for School Fleets, CNG Station, LNG or L/CNG Station · Bear Valley Unified School to the wholesale or retail distribution and sales stations. The projects will be assessed in two separate rounds

155

List of Refueling Stations Incentives | Open Energy Information  

Open Energy Info (EERE)

Refueling Stations Incentives Refueling Stations Incentives Jump to: navigation, search The following contains the list of 6 Refueling Stations Incentives. CSV (rows 1 - 6) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Fuel Vehicle Loan Program (Missouri) State Loan Program Missouri Schools Local Government Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations No Alternative Fuel Vehicle and Refueling - Corporate Tax Credit (Colorado) Corporate Tax Credit Colorado Commercial Renewable Fuel Vehicles Refueling Stations No Alternative Fuels Incentive Grant Fund (AFIG) (Pennsylvania) State Grant Program Pennsylvania Commercial Industrial Residential General Public/Consumer Nonprofit Schools Local Government Renewable Transportation Fuels

156

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fuels Project NEPA review for the installation of a compressed natural gas (CNG) refueling station. Digitally signed by David Kirschner DN: cnDavid Kirschner,...

157

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

East Rockway, Nassau Co., NY Renewable Energy Program Install a compressed natural gas (CNG) refueling station at the existing Dept. of Public Works' central garage to facilitate...

158

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

312011 Springfield, MO Compressed Natural Gas Fueling Facility City plans to install a CNG refueling facility at an existing site and to perform vehicle conversions. 06 09 2010...

159

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Michigan Green Fleets Improvementsupgrades to existing compressed natural gas (CNG) refueling station. This CX form is for one location in this project selected under...

160

Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage  

E-Print Network (OSTI)

World Bank Workshop on CNG Vehicles, Washington, DC. GAO,tanks, such as gasoline/CNG vehicles. ARTICLE IN PRESS M.

Melaina, Marc W; Bremson, Joel

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

CNG Shuttles Save Fuel CNG Shuttles Save Fuel Costs for R&R Limousine and Bus to someone by E-mail Share Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Facebook Tweet about Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Twitter Bookmark Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Google Bookmark Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Delicious Rank Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Digg Find More places to share Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on AddThis.com... June 1, 2013

162

Overview of DOE ? DOT December 2009 CNG and Hydrogen Fuels Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-DOT CNG-H 2 Workshop Summary and Highlights Antonio Ruiz DOE Vehicular Tank Workshop April 29, 2010 - Sandia National Laboratories, CA 2 CNG-H2 Fuels Workshop Washinton ,DC,...

163

New York City Transit Hybrid and CNG Transit Buses: Final Evaluation Results  

DOE Green Energy (OSTI)

This report describes the evaluation results for new Orion VII buses at NYCT with CNG propulsion and new hybrid propulsion.

Barnitt, R.; Chandler, K.

2006-11-01T23:59:59.000Z

164

Low-Cost Methane Liquefaction Plant and Vehicle Refueling Station  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) is currently negotiating a collaborative effort with Pacific Gas and Electric (PG&E) that will advance the use of liquefied natural gas (LNG) as a vehicle fuel. We plan to develop and demonstrate a small-scale methane liquefaction plant (production of 5,000 to 10,000 gallons per day) and a low-cost ($150,000) LNG refueling station to supply fuel to LNG-powered transit buses and other heavy-duty vehicles. INEEL will perform the research and development work. PG&E will deploy the new facilities commercially in two demonstration projects, one in northern California, and one in southern California.

B. Wilding; D. Bramwell

1999-01-01T23:59:59.000Z

165

Natural Gas Pipeline and System Expansions, 1997-2000  

U.S. Energy Information Administration (EIA)

complement CNGs planned improvement to its system for Pipeline Companys Express 500 is one such proposal, with flowing gas between Leidy, Pennsylvania, ...

166

/Gas Plant Operators Monthly Petroleum Product Sales Report. As  

U.S. Energy Information Administration (EIA)

sales to refiners and gas plant operators represented on the list. When using this list, ... (CNG Transmission) Dominion Transmission . DCP Midstream Partners.

167

EIA-782A EXCLUSIONARY LIST INSTRUCTIONS /Gas Plant Operators ...  

U.S. Energy Information Administration (EIA)

sales to refiners and gas plant operators represented on the list. When using this list, ... CNG Transmission (Dominion Field Serv.) Coastal Markets Limited .

168

AHTR Refueling Systems and Process Description  

SciTech Connect

The Advanced High-Temperature Reactor (AHTR) is a design concept for a central station-type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently undergoing development by Oak Ridge National Laboratory for the US. Department of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR is approaching a preconceptual level of maturity. An initial integrated layout of its major systems, structures, and components (SSCs), and an initial, high-level sequence of operations necessary for constructing and operating the plant is nearing completion. An overview of the current status of the AHTR concept has been recently published and a report providing a more detailed overview of the AHTR structures and mechanical systems is currently in preparation. This report documents the refueling components and processes envisioned at this early development phase. The report is limited to the refueling aspects of the AHTR and does not include overall reactor or power plant design information. The report, however, does include a description of the materials envisioned for the various components and the instrumentation necessary to control the refueling process. The report begins with an overview of the refueling strategy. Next a mechanical description of the AHTR fuel assemblies and core is provided. The reactor vessel upper assemblies are then described. Following this the refueling path structures and the refueling mechanisms and components are described. The sequence of operations necessary to fuel and defuel the reactor is then discussed. The report concludes with a discussion of the levels of maturity of the various SSCs to provide guidance for future technology developments. The conceptual design information presented in this report is very preliminary in nature. Significant uncertainty remains about several aspects of the process and even the radiation and mechanical performance of plate-type coated-particle fuel.

Varma, Venugopal Koikal [ORNL; Holcomb, David Eugene [ORNL; Bradley, Eric Craig [ORNL; Zaharia, Nathaniel M [ORNL; Cooper, Eliott J [ORNL

2012-07-01T23:59:59.000Z

169

AHTR Refueling Systems and Process Description  

SciTech Connect

The Advanced High-Temperature Reactor (AHTR) is a design concept for a central station-type [1500 MW(e)] Fluoride saltcooled High-temperature Reactor (FHR) that is currently undergoing development by Oak Ridge National Laboratory for the US. Department of Energy, Office of Nuclear Energys Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR is approaching a preconceptual level of maturity. An initial integrated layout of its major systems, structures, and components (SSCs), and an initial, high-level sequence of operations necessary for constructing and operating the plant is nearing completion. An overview of the current status of the AHTR concept has been recently published [1], and a report providing a more detailed overview of the AHTR structures and mechanical systems is currently in preparation. This report documents the refueling components and processes envisioned at this early development phase. The report is limited to the refueling aspects of the AHTR and does not include overall reactor or power plant design information. The report, however, does include a description of the materials envisioned for the various components and the instrumentation necessary to control the refueling process. The report begins with an overview of the refueling strategy. Next a mechanical description of the AHTR fuel assemblies and core is provided. The reactor vessel upper assemblies are then described. Following this the refueling path structures and the refueling mechanisms and components are described. The sequence of operations necessary to fuel and defuel the reactor is then discussed. The report concludes with a discussion of the levels of maturity of the various SSCs to provide guidance for future technology developments. The conceptual design information presented in this report is very preliminary in nature. Significant uncertainty remains about several aspects of the process and even the radiation and mechanical performance of plate-type coated-particle fuel.

Varma, V.K.; Holcomb, D.E.; Bradley, E.C.; Zaharia, N.M.; Cooper, E.J.

2012-07-15T23:59:59.000Z

170

NREL: ReFUEL Laboratory - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Capabilities The Renewable Fuels and Lubricants (ReFUEL) Laboratory is a world-class testing facility dedicated to advanced fuels and vehicles research. The lab features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Combustion Lab. Because the ReFUEL Laboratory is located in Denver, Colorado, it offers the additional capability of testing emissions and vehicle performance at high altitude. It also features an altitude simulation system to mimic results found at lower altitudes, including sea level.

171

Dose Reduction Options for Refueling Tasks  

Science Conference Proceedings (OSTI)

Improved operational practices and successful deployment of several exposure reduction technologies have assisted the industry in meeting current regulatory limits. However, based on an analysis of industry collective and individual exposures, activities directly related to refueling continue to account for a significant, repetitive portion of the total fuel cycle exposure, and to individual exposure for many of the industrys highest dose workers. This severely challenges the industrys ...

2012-12-12T23:59:59.000Z

172

ReFuel America | Open Energy Information  

Open Energy Info (EERE)

ReFuel America ReFuel America Jump to: navigation, search Name ReFuel America Place Charlotte, North Carolina Zip NC 28210 Product A US subsidiary of publicly-listed NewGen Technologies, focused on providing advanced fuels with increased performance and decreased harmful emissions for all petroleum engine use. Coordinates 35.2225°, -80.837539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2225,"lon":-80.837539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

CNG a Natural for Tulsa Public Schools  

DOE Green Energy (OSTI)

This 2-page Clean Cities fact sheet describes the use of natural gas power for Tulsa Public Schools' fleet of buses and cars. It includes information on the history of the program, along with contact information for the local Clean Cities Coordinator and Tulsa Public Schools.

Not Available

2004-04-01T23:59:59.000Z

174

Compressed Natural Gas (CNG) Retail Motor-Fuel Dispenser ...  

Science Conference Proceedings (OSTI)

... Isabel Chavez, Contact Management System Administrator, (301) 975 - 2128. Contact Us. ... Vendor Contact: ANGI Energy 15 Plumb St. ...

2013-02-19T23:59:59.000Z

175

Fuel Cell Technologies Office: Refueling Infrastructure for Alternativ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen On April 2-3, 2008, participants from industry, government agencies, universities, and national...

176

Quantifying Consumer Sensitivity to Hydrogen Refueling Station Coverage (Presentation)  

DOE Green Energy (OSTI)

This presentation by Cory Welch at the 2007 DOE Hydrogen Program Annual Merit Review Meeting focuses on consumer sensitivity to hydrogen refueling station coverage.

Welch, C.

2007-05-17T23:59:59.000Z

177

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network (OSTI)

Battery, Hybrid and Fuel Cell Electric Vehicle SymposiumC.A.R.B. , Battery Electric Vehicles Refueling, Energy UsePlug-in Hybrid Electric Vehicle Charging Infrastructure

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

178

An Endogenous RNA Transcript Antisense to CNG?1 Cation Channel mRNA  

E-Print Network (OSTI)

CNG channels are cyclic nucleotide-gated Ca 2 ?-permeable channels that are suggested to be involved in the activity-dependent alterations of synaptic strength that are thought to underlie information storage in the CNS. In this study, we isolated an endogenous RNA transcript antisense to CNG?1 mRNA. This transcript was capable of down-regulating the expression of sense CNG?1 intheXenopus oocyte expression system. RT-PCR, Northern blot, and in situ hybridization analyses showed that the transcript was coexpressed with CNG?1 mRNA in many regions of human brain, notably in those regions that were involved in long-term potentiation and long-term depression, such as hippocampal CA1 and CA3, dentate gyrus, and cerebellar Purkinje layer. Comparison of expression patterns between adult and fetal cerebral cortex revealed that there were concurrent developmental changes in the expression levels of anti-CNG1 and CNG?1. Treatment of human glioma cell T98 with thyroid hormone T 3 caused a significant increase in anti-CNG1 expression and a parallel decrease in sense CNG?1 expression. These data suggest that the suppression of CNG?1 expression by anti-CNG1 may play an important role in neuronal functions, especially in synaptic plasticity and cortical development. Endogenous antisense RNAmediated regulation may represent a new mechanism through which the activity of ion channels can be regulated in the human CNS.

Chin-hung Cheng; David Tai-wai Yew; Hiu-yee Kwan; Qing Zhou; Yong Liu; Wing-yee Chan; Xiaoqiang Yao; Keith R. Yamamoto

2002-01-01T23:59:59.000Z

179

Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank  

DOE Patents (OSTI)

The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

1993-01-01T23:59:59.000Z

180

Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank  

DOE Patents (OSTI)

The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

Corletti, M.M.; Lau, L.K.; Schulz, T.L.

1993-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Washington Metropolitan Area Transit Authority: Compressed Natural Gas Transit Bus Evaluation  

DOE Green Energy (OSTI)

Evaluates compressed natural gas (CNG) powered transit buses at Washington Metropolitan Area Transit Authority (WMATA), providing a comparison between them and standard diesel transit buses.

Chandler, K.; Eberts, E.; Melendez, M.

2006-04-01T23:59:59.000Z

182

Using Distributed Tri-generation Systems for Neighborhood Hydrogen Refueling  

E-Print Network (OSTI)

Using Distributed Tri-generation Systems for Neighborhood Hydrogen Refueling Xuping Li and Joan: Xuping Li (Xupli@ucdavis.edu), Joan Ogden (jmogden@ucdavis.edu) INTRODUCTION TRI-GENERATION SYSTEM AND NEIGHBORHOOD REFUELING DESCRIPTION METHODS AND DATA CONCLUSIONS An engineering/economic model for H2 tri-generation

California at Davis, University of

183

DOE News Release - DOE Completes Hydrogen/CNG Blended Fuels Performanc...  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2004 DOE Completes HydrogenCNG Blended Fuels Performance and Emissions Vehicle Testing The U.S. Department of Energy, through its Advanced Vehicle Testing Activity, has...

184

Gas Mileage of 2013 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

City 44 Combined 44 Highway 2013 Honda Civic Natural Gas 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2013 Honda Civic Natural Gas 27 City 31 Combined 38 Highway 2013 Honda...

185

Gas Mileage of 2012 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

City 44 Combined 44 Highway 2012 Honda Civic Natural Gas 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2012 Honda Civic Natural Gas View MPG Estimates Shared By Vehicle Owners 27...

186

Gas Mileage of 2002 Vehicles by Chevrolet  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevrolet Cavalier Dual-fuel 4 cyl, 2.2 L, Automatic 4-spd, Regular Gasoline or natural gas Compare 2002 Chevrolet Cavalier Dual-fuel Gas 20 City 23 Combined 28 Highway CNG 18...

187

Gas Mileage of 2004 Vehicles by GMC  

NLE Websites -- All DOE Office Websites (Extended Search)

GMC Savana (cargo) (Bi-fuel) 8 cyl, 6.0 L, Automatic 4-spd, Regular Gasoline or natural gas Compare 2004 GMC Savana (cargo) (Bi-fuel) Gas 11 City 12 Combined 15 Highway CNG 11...

188

Instrumentation and Control Technologies for Refueling the AHTR  

Science Conference Proceedings (OSTI)

The process and mechanisms for refueling the Advanced High-Temperature Reactor (AHTR) are currently undergoing preconceptual design. The instrumentation and controls (I&C) required for the fuel transfer are simultaneously under design as part of this process. Overall, the AHTR's refueling system will consist of a fully automated, optically guided mechanical transfer system with operator intervention only required for exception handling. The refueling system design remains too immature to enable selection of particular instrumentation components. This paper provides an overview of the refueling process for the AHTR, the I&C requirements for the refueling, the current I&C design and technology status, and the envisioned process for developing and validating the required technology.

Holcomb, David Eugene [ORNL; Varma, Venugopal Koikal [ORNL

2012-01-01T23:59:59.000Z

189

Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage  

E-Print Network (OSTI)

the importance of fuel availability to choice of alternativeof adequate refueling availability for AFVs. Referenceslocate/enpol Refueling availability for alternative fuel

Melaina, Marc W; Bremson, Joel

2008-01-01T23:59:59.000Z

190

City and County of Denver: Technical comparison between hythane, CNG and gasoline fueled vehicles  

DOE Green Energy (OSTI)

The City and County of Denver, in cooperation with the Urban Consortium Energy Task Force of Public Technology, Inc. has completed a unique two-year research and development project designed to test and compare the technical merits of three transportation fuels. Comparisons of the tailpipe emissions from Hythane - a new, blended, alternative motor fuel comprised of 85% compressed natural gas (CNG) and 15% hydrogen measured by volume - to the emissions from gasoline and 100% CNG were conducted. This project has been one of the first pioneering studies of a hydrogen blended fuel and, through its success, has prompted eight additional Hythane research projects to date. Phase I of the project provided results from the Federal Test Procedure (FTP) testing of a light duty pick-up truck operating on Hythane. The purpose of this testing was to quantify any decrease in tailpipe emissions and to determine whether Hythane could meet the California Ultra Low Emission Vehicle standard (ULEV) for light duty trucks. During Phase I, FTP analyses were conducted in both Colorado (high altitude testing) and California (sea level testing) on a converted Chevrolet S-10, pick-up truck by Hydrogen Consultants (HCl), the Colorado Department of Health (CDH) and the California Air Resource Board (CARB). Currently, the only other non-electric vehicle which is capable of meeting the ULEV standard is Chrysler`s natural gas vehicle. There was additional interest in the role Hythane could play as a transitional fuel in the introduction of hydrogen. Hydrogen, a renewable energy carrier, may soon be categorized as a ZEV fuel by the South Coast Air Quality Management District. This factor may encourage the use of Hythane as a transportation fuel that not only meets the ULEV standard, but may provide the bridge necessary to the eventual widespread use of hydrogen.

NONE

1996-07-01T23:59:59.000Z

191

The role of natural gas as a vehicle transportation fuel  

E-Print Network (OSTI)

This thesis analyzes pathways to directly use natural gas, as compressed natural gas (CNG) or liquefied natural gas (LNG), in the transportation sector. The thesis focuses on identifying opportunities to reduce market ...

Murphy, Paul Jarod

2010-01-01T23:59:59.000Z

192

An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles  

E-Print Network (OSTI)

579594. IANGV, 1997. Natural Gas Vehicle Industry Positionmarket penetration of natural gas vehicles in Switzerland.of NGVs versus number of natural gas refueling stations in

Yeh, Sonia

2007-01-01T23:59:59.000Z

193

Evaluation of aftermarket CNG conversion kits in light-duty vehicle applications. Final report  

DOE Green Energy (OSTI)

The Institute of Gas Technology (IGT) was contracted by the National Renewable Energy Laboratory (NREL) to evaluate three compressed natural gas (CNG) conversion systems using a 1993 Chevrolet Lumina baseline vehicle. A fourth conversion system was added to the test matrix through funding support from Brooklyn Union. The objective of this project was to measure the Federal Test Procedure (FTP) emissions and fuel economy of the different conversion systems, and to compare the performance to gasoline-fueled operation and each other. Different natural gas compositions were selected to represent the 10th percentile, mean, and 90th percentile compositions distributed in the Continental United States. Testing with these different compositions demonstrated the systems` ability to accommodate the spectrum of gas found in the United States. Each compressed natural gas conversion system was installed and adjusted according to the manufacturer`s instructions. In addition to the FTP testing, an evaluation of the comparative installation times and derivability tests (based on AGA and CRC guidelines) were conducted on each system.

Blazek, C.F.; Rowley, P.F.; Grimes, J.W. [Institute of Gas Technology, Chicago, IL (United States)

1995-07-01T23:59:59.000Z

194

Economic Implications of Natural Gas Vehicle Technology in U.S. Private Automobile Transportation  

E-Print Network (OSTI)

is as a result of the more expensive fuel storage tank required to store natural gas safely and effectively). Because of the relative density of natural gas and size of CNG storage containers, CNG vehicles typically1 Economic Implications of Natural Gas Vehicle Technology in U.S. Private Automobile Transportation

195

Zinc air refuelable battery: alternative zinc fuel morphologies and cell behavior  

DOE Green Energy (OSTI)

Multicell zinc/air batteries have been tested previously in the laboratory and as part of the propulsion system of an electric bus; cut zinc wire was used as the anode material. This battery is refueled by a hydraulic transport of 0.5-1 mm zinc particles into hoppers above each cell. We report an investigation concerning alternative zinc fuel morphologies, and energy losses associated with refueling and with overnight or prolonged standby. Three types of fuel pellets were fabricated, tested and compared with results for cut wire: spheres produced in a fluidized bed electrolysis cell; elongated particles produced by gas-atomization; and pellets produced by chopping 1 mm porous plates made of compacted zinc fines. Relative sizes of the particles and cell gap dimensions are critical. All three types transported within the cell 1553 and showed acceptable discharge characteristics, but a fluidized bed approach appears especially attractive for owner/user recovery operations.

Cooper, J.F.; Krueger, R.

1997-01-01T23:59:59.000Z

196

Qualitative Risk Assessment for an LNG Refueling Station and Review of Relevant Safety Issues  

Science Conference Proceedings (OSTI)

This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural gas (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tank truck deliveries, and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects Analysis, and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of ``best practice`` information throughout the LNG community.

Siu, N.; Herring, J.S.; Cadwallader, L.; Reece, W.; Byers, J.

1998-02-01T23:59:59.000Z

197

SuperShuttle CNG Fleet Evaluation--Final Report  

DOE Green Energy (OSTI)

The mission of the US Department of Energy's Office of Transportation Technologies is to promote the development and deployment of transportation technologies that reduce US dependence on foreign oil, while helping to improve the nation's air quality and promoting US competitiveness. In support of this mission, DOE has directed the National Renewable Energy Laboratory to conduct projects to evaluate the performance and acceptability of alternative fuel vehicles. NREL has undertaken several fleet study projects, which seek to provide objective real-world fleet experiences with AFVs. For this type of study we collect, analyze, and report on operational, cost, emissions, and performance data from AFVs being driven in a fleet application. The primary purpose of such studies is to make real-world information on AFVs available to fleet managers and other potential AFV purchasers. For this project, data was collected from 13 passenger vans operating in the Boulder/Denver, Colorado area. The study vehicles were all 1999 Ford E-350 passenger vans based at SuperShuttle's Boulder location. Five of the vans were dedicated CNG, five were bi-fuel CNG/gasoline, and three were standard gasoline vans that were used for comparison.

Eudy, L.

2000-12-07T23:59:59.000Z

198

Regional Consumer Hydrogen Demand and Optimal Hydrogen Refueling Station Siting  

DOE Green Energy (OSTI)

Using a GIS approach to spatially analyze key attributes affecting hydrogen market transformation, this study proposes hypothetical hydrogen refueling station locations in select subregions to demonstrate a method for determining station locations based on geographic criteria.

Melendez, M.; Milbrandt, A.

2008-04-01T23:59:59.000Z

199

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network (OSTI)

to the natural gas reformer station. Station 4: On-sitereforming of natural gas at the station b. MeOH 100 (case 3)cost of natural gas at the station is much lower (roughly

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2006-01-01T23:59:59.000Z

200

Hydrogen refueling station costs in Shanghai  

E-Print Network (OSTI)

to the natural gas reformer station. Station 4. On-siteSMR 300) use natural gas at the station; Case 3 (MeOH 100)reforming of natural gas at the station. 100 (case 3) =

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

THE EFFECTS OF HYDROGEN ADDITION AND INTAKE-INDUCED SWIRL ON THE CHARACTERISTICS OF NATURAL GAS COMBUSTION IN A SINGLE-CYLINDER SPARK-IGNITED ENGINE.  

E-Print Network (OSTI)

??Compressed natural gas (CNG) is an alternative fuel of interest for internal combustion engines (ICEs) in the mass transit and vocational applications. Increasingly, due to (more)

Corrigan, Melanie

2011-01-01T23:59:59.000Z

202

Minimizing or eliminating refueling of nuclear reactor  

DOE Patents (OSTI)

Demand for refueling of a liquid metal fast nuclear reactor having a life of 30 years is eliminated or reduced to intervals of at least 10 years by operating the reactor at a low linear-power density, typically 2.5 kw/ft of fuel rod, rather than 7.5 or 15 kw/ft, which is the prior art practice. So that power of the same magnitude as for prior art reactors is produced, the volume of the core is increased. In addition, the height of the core and it diameter are dimensioned so that the ratio of the height to the diameter approximates 1 to the extent practicable considering the requirement of control and that the pressure drop in the coolant shall not be excessive. The surface area of a cylinder of given volume is a minimum if the ratio of the height to the diameter is 1. By minimizing the surface area, the leakage of neutrons is reduced. By reducing the linear-power density, increasing core volume, reducing fissile enrichment and optimizing core geometry, internal-core breeding of fissionable fuel is substantially enhanced. As a result, core operational life, limited by control worth requirements and fuel burnup capability, is extended up to 30 years of continuous power operation.

Doncals, Richard A. (Washington, PA); Paik, Nam-Chin (Pittsburgh, PA); Andre, Sandra V. (Hempfield Township, Westmoreland County, PA); Porter, Charles A. (Rostraver Township, Westmoreland County, PA); Rathbun, Roy W. (Greensburg, PA); Schwallie, Ambrose L. (Greensburg, PA); Petras, Diane S. (Penn Township, Westmoreland County, PA)

1989-01-01T23:59:59.000Z

203

Low-quality natural gas sulfur removal/recovery  

Science Conference Proceedings (OSTI)

Low quality natural gas processing with the integrated CFZ/CNG Claus process is feasible for low quality natural gas containing 10% or more of CO{sub 2}, and any amount of H{sub 2}S. The CNG Claus process requires a minimum CO{sub 2} partial pressure in the feed gas of about 100 psia (15% CO{sub 2} for a 700 psia feed gas) and also can handle any amount of H{sub 2}S. The process is well suited for handling a variety of trace contaminants usually associated with low quality natural gas and Claus sulfur recovery. The integrated process can produce high pressure carbon dioxide at purities required by end use markets, including food grade CO{sub 2}. The ability to economically co-produce high pressure CO{sub 2} as a commodity with significant revenue potential frees process economic viability from total reliance on pipeline gas, and extends the range of process applicability to low quality gases with relatively low methane content. Gases with high acid gas content and high CO{sub 2} to H{sub 2}S ratios can be economically processed by the CFZ/CNG Claus and CNG Claus processes. The large energy requirements for regeneration make chemical solvent processing prohibitive. The cost of Selexol physical solvent processing of the LaBarge gas is significantly greater than the CNG/CNG Claus and CNG Claus processes.

Damon, D.A. [CNG Research Co., Pittsburgh, PA (United States); Siwajek, L.A. [Acrion Technologies, Inc., Cleveland, OH (United States); Klint, B.W. [BOVAR Inc., AB (Canada). Western Research

1993-12-31T23:59:59.000Z

204

UPS CNG Truck Fleet Final Results: Alternative Fuel Truck Evaluation Project (Brochure)  

Science Conference Proceedings (OSTI)

This report provides transportation professionals with quantitative, unbiased information on the cost, maintenance, operational and emissions characteristics of CNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

Not Available

2002-08-01T23:59:59.000Z

205

CNG Exports by Truck out of the U.S. Form | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PDF Version of CNG Exports by Truck out of the U.S. Form More Documents & Publications LNG Exports by Truck out of the U.S. Form LNG Imports by Truck into the U.S. Form Complete...

206

Hazard analysis of compressed natural gas fueling systems and fueling procedures used at retail gasoline service stations. Final report  

Science Conference Proceedings (OSTI)

An evaluation of the hazards associated with operations of a typical compressed natural gas (CNG) fueling station is presented. The evaluation includes identification of a typical CNG fueling system; a comparison of the typical system with ANSI/NFPA (American National Standards Institute/National Fire Protection Association) Standard 52, Compressed Natural Gas (CNG) Vehicular Fuel System, requirements; a review of CNG industry safety experience as identified in current literature; hazard identification of potential internal (CNG system-specific causes) and external (interface of co-located causes) events leading to potential accidents; and an analysis of potential accident scenarios as determined from the hazard evaluation. The study considers CNG dispensing equipment and associated equipment, including the compressor station, storate vessels, and fill pressure sensing system.

NONE

1995-04-28T23:59:59.000Z

207

Hydrogen-Enhanced Natural Gas Vehicle Program  

Science Conference Proceedings (OSTI)

The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

Hyde, Dan; Collier, Kirk

2009-01-22T23:59:59.000Z

208

Operating Manual for GREET: Version 1.7  

E-Print Network (OSTI)

to CNG) 17) Non-North American flared gas to compressed natural gas (NNA FG to CNG) 18) North American (NNA NG) to compressed hydrogen at refueling stations 35) Non-North American flared gas to gaseous% gasoline by volume ED10 mixture of 10% ethanol and 90% diesel by volume FCV fuel cell vehicle FG flared gas

Argonne National Laboratory

209

Testing of a refuelable zinc/air bus battery  

DOE Green Energy (OSTI)

We report tests of a refuelable zinc/air battery of modular, bipolar-cell design, intended for fleet electric busses and vans. The stack consists of twelve 250-cm{sup 2} cells built of two units: (1) a copper-clad glass-reinforced epoxy board supporting anode and cathode current collectors, and (2) polymer frame providing for air- and electrolyte distribution and zinc fuel storage. The stack was refueled in 4 min. by a hydraulic transfer of zinc particles entrained in solution flow.

Cooper, J.F.; Fleming, D.; Koopman, R.; Hargrove, D.; Maimoni, A.; Peterman, K.

1995-02-22T23:59:59.000Z

210

Maintain HCUs on-line, shorten refueling outages  

SciTech Connect

This article examines how removing maintenance of hydraulic control units from the outage scope lets the outage focus available resources on critical-path items, saving significant time and money and enhancing capacity factors. Because of their cost impact, refueling outages are a prime focus of efforts to improve the competitive operation of nuclear powerplants. An approach drawing wide interest is reducing the outage work scope by performing on-line key tasks normally consigned to refueling outages. applying this approach to maintenance of hydraulic control units (HCUs) on boiling-water reactors (BWRs) can be extremely fruitful.

Bell, T.

1996-09-01T23:59:59.000Z

211

The Technical and Economic Feasibility of Home and Neighborhood Refueling for Hydrogen Vehicles  

E-Print Network (OSTI)

This study focuses on simulation and detailed analyses of home and neighborhood refueling tri-generation for Fuel Cell Vehicles (FCV) can be facilitated by a home refueling/ tri-generation system

California at Davis, University of

212

Optimization of compression and storage requirements at hydrogen refueling stations.  

SciTech Connect

The transition to hydrogen-powered vehicles requires detailed technical and economic analyses of all aspects of hydrogen infrastructure, including refueling stations. The cost of such stations is a major contributor to the delivered cost of hydrogen. Hydrogen refueling stations require not only dispensers to transfer fuel onto a vehicle, but also an array of such ancillary equipment as a cascade charging system, storage vessels, compressors and/or pumps/evaporators. This paper provides detailed information on design requirements for gaseous and liquid hydrogen refueling stations and their associated capital and operating costs, which in turn impact hydrogen selling price at various levels of hydrogen demand. It summarizes an engineering economics approach which captures the effect of variations in station size, seasonal, daily and hourly demand, and alternative dispensing rates and pressures on station cost. Tradeoffs in the capacity of refueling station compressors, storage vessels, and the cascade charging system result in many possible configurations for the station. Total costs can be minimized by optimizing that configuration. Using a methodology to iterate among the costs of compression, storage and cascade charging, it was found that the optimum hourly capacity of the compressor is approximately twice the station's average hourly demand, and the optimum capacity of the cascade charging system is approximately 15% of the station's average daily demand. Further, for an hourly demand profile typical of today's gasoline stations, onsite hydrogen storage equivalent to at least 1/3 of the station's average daily demand is needed to accommodate peak demand.

Elgowainy, A.; Mintz, M.; Kelly, B.; Hooks, M.; Paster, M. (Energy Systems); (Nexant, Inc.); (TIAX LLC)

2008-01-01T23:59:59.000Z

213

Going Bunkers: The Joint Route Selection and Refueling Problem  

Science Conference Proceedings (OSTI)

Managing shipping vessel profitability is a central problem in marine transportation. We consider two commonly used types of vessels---liners (ships whose routes are fixed in advance) and trampers (ships for which future route ... Keywords: maritime transportation, refueling, routing, shipping, stochastic prices

Omar Besbes; Sergei Savin

2009-10-01T23:59:59.000Z

214

COMPRESSED NATURAL GAS DEMONSTRATION BUS 7. Author{s)  

E-Print Network (OSTI)

A demonstration compressed natural gas (CNG) bus has been operating on The University of Texas at Austin shuttle system since 1992. This CNG vehicle, provided by the Blue Bird Company, was an opportunity for the University to evaluate the effectiveness of a CNG bus for shuttle operations. Three basic operating comparisons were made: 1) fuel consumption, 2) tire wear, and 3) vehicle performance. The bus was equipped with a data logger, Which was downloaded regularly, for trip reports. Tire wear was monitored regularly, and performance tests were conducted at the Natural Gas Vehicle Technology Center. Overall, the data suggest that fuel costs for the CNG bus are comparable to those for University diesel buses. This is a result of the lower fuel price for natural gas. Actual natural gas fuel consumption was higher for the CNG buses than for the diesel buses. Due to weight differences, tire wear was much less on the CNG buses. Finally, after installation of a closed-loop system, the CNG bus out-performed the diesel bus on acceleration, grade climbing ability, and speed.

Cheng-ming Wu; Ron Matthews; Mark Euritt

1994-01-01T23:59:59.000Z

215

Determination of combustion products from alternative fuels - part 1. LPG and CNG combustion products  

SciTech Connect

This paper describes efforts underway to identify volatile organic exhaust species generated by a light-duty vehicle operating over the Federal Test Procedure (FTP) on CNG and LPG, and to compare them to exhaust constituents generated from the same vehicle operating on a fuel blended to meet California Phase 2 specifications. The exhaust species from this vehicle were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without the vehicle`s catalytic converter in place to determine the influence of the vehicle`s catalyst on species formation. Speciation data showed greater than 87 percent of all LPG and greater than 95 percent of all CNG hydrocarbon exhaust constituents to be composed of C{sub 1} to C{sub 3} compounds. In addition, toxic emissions from the combustion of CNG and LPG were as low as 10 percent of those generated by combustion of gasoline. A comparison of ozone forming potential of the three fuels was made based on the Maximum Incremental Reactivity scale used by the California Air Resources Board. Post-catalyst results from stoichiometric operation indicated that LPG and CNG produced 63 percent and 88 percent less potential ozone than reformulated gasoline, respectively. On average over all equivalence ratios, CNG and LPG exhaust constituents were approximately 65 percent less reactive than those from reformulated gasoline. 4 refs., 3 figs., 14 tabs.

Whitney, K.A.; Bailey, B.K.

1994-10-01T23:59:59.000Z

216

STATEMENT OF CONSIDERATIONS REQUEST BY CONSOLIDATED NATURAL GAS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONSOLIDATED NATURAL GAS (CNG) (THE PARTICIPANT) FOR ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS IN INVENTIONS OF THE PARTICIPANT UNDER DOE-PETC CRADA NO.PC-93-009,...

217

Gas Adsorption in Metal Organic Frameworks : an experiment ...  

Science Conference Proceedings (OSTI)

... Liquefied natural gas (LNG) must be cooled to 162 oC. LNG requires only 30 percent of the space of CNG to store the same amount of energy. ...

2009-09-15T23:59:59.000Z

218

Business Case for Compressed Natural Gas in Municipal Fleets  

SciTech Connect

This report describes how NREL used the CNG Vehicle and Infrastructure Cash-Flow Evaluation (VICE) model to establish guidance for fleets making decisions about using compressed natural gas.

Johnson, C.

2010-06-01T23:59:59.000Z

219

Vehicle Technologies Office: Fact #782: June 3, 2013 Number of Refueling  

NLE Websites -- All DOE Office Websites (Extended Search)

2: June 3, 2013 2: June 3, 2013 Number of Refueling Stations Continues to Shrink to someone by E-mail Share Vehicle Technologies Office: Fact #782: June 3, 2013 Number of Refueling Stations Continues to Shrink on Facebook Tweet about Vehicle Technologies Office: Fact #782: June 3, 2013 Number of Refueling Stations Continues to Shrink on Twitter Bookmark Vehicle Technologies Office: Fact #782: June 3, 2013 Number of Refueling Stations Continues to Shrink on Google Bookmark Vehicle Technologies Office: Fact #782: June 3, 2013 Number of Refueling Stations Continues to Shrink on Delicious Rank Vehicle Technologies Office: Fact #782: June 3, 2013 Number of Refueling Stations Continues to Shrink on Digg Find More places to share Vehicle Technologies Office: Fact #782: June 3, 2013 Number of Refueling Stations Continues to Shrink on

220

Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles  

Science Conference Proceedings (OSTI)

The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

Staunton, R.H.; Thomas, J.F.

1998-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Coalition Michigan Green Fleets Upgrade to existing compressed natural gas (CNG) refueling station in Grand Rapids, MI. This CX form is for 1 location in this project...

222

Renewable Fuels and Lubricants (ReFUEL) Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

Not Available

2012-03-01T23:59:59.000Z

223

NREL: Vehicles and Fuels Research - ReFUEL Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development focuses on overcoming barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass, and improving vehicle efficiency. Using biofuels and improving vehicle efficiency reduces our dependence on imported petroleum and enhances our national energy security. The ReFUEL Laboratory houses the following specialized equipment: Heavy-duty chassis dynamometer with a simulation capability of 8,000 to 80,000 lbs for vehicle performance and emissions research Heavy-duty (up to 600 hp) and light-duty (up to 75 hp) engine

224

REACTOR REFUELING - INTERIM DECAY STORAGE (FFTF)  

SciTech Connect

The IDS facility is located between the CLEM rails and within the FFTF containment building. It is located in a rectangular steel-lined concrete cell which lies entirely below the 550 ft floor level with the top flush with the 550 ft floor level. The BLTC rails within containment traverse the IDS cover (H-4-38001). The facility consists of a rotatable storage basket submerged in liquid sodium which is contained in a stainless steel tank. The storage positions within the basket are arranged so that it is not physically possible to achieve a critical array. The primary vessel is enclosed in a secondary guard tank of such size and arrangement that, should a leak develop in the primary tank, the sodium level would not fall below the top of the fueled section of the stored core components or test assemblies. The atmosphere outside the primary vessel, but within the concrete cell, is nitrogen which also serves as a heat transfer medium to control the cell temperature. To provide space for the storage of test assemblies such as the OTA and CLIRA, 10 storage tubes (each approximately 43-1/4 ft long) are included near the center of the basket. This arrangement requires that the center of the primary vessel be quite deep. In this region, the primary vessel extends downward to elevation 501 ft 6 inches while the guard tank reaches 500 ft 4 inches. The floor of the cell is at 499 ft a inches which is 51 ft below the operating room floor. Storage positions are provided for 112 core components in the upper section of the storage basket. These positions are arranged in four circles, all of which are concentric with the test element array and the storage basket. The primary vessel and the guard tank are shaped to provide the necessary space with a minimum of excess volume. Both these vessels have a relatively small cylindrical lower section connected to a larger upper cylinder by a conical transition. The primary vessel is supported from a top flange by a vessel support structure. The guard tank is supported by a skirt which rests on a ledge at elevation 527 ft 2 inches. The skirt is an extension of the upper cylinder of the guard tank. The storage basket is supported by a gear-driven, mechanically indexed, ball bearing that rests on the bearing support, which in turn rests on the vessel support structure. The interior of the primary vessel above the sodium level is blanketed with argon at 6 inches of water gage pressure. The vessel is designed to allow the pressure to be increased to 3 psig to assist drainage of the sodium from the vessel. The structure which supports the primary vessel also serves as the cover to the IDS cell. The support structure rests on a shelf cast into the cell wall at the 544 ft 6 inch level. In addition to supporting the primary vessel and the storage basket bearing, this structure also provides support for the top shield which is a 16 inch thick by 15 ft 10 inch diameter laminated steel assembly, which in turn supports the impact absorber neutron shield, and the BLTC tracks where they cross the IDS. Storage position access ports are provided on the centerline of the IDS facility between the BLTC rails. Basket rotation and indexing allows any storage position to be located in alignment with its proper access port. Double buffered seals are provided for the removable plugs and removable lids for all components and access ports where necessary to seal between the vessel cover gas and the FFTF containment atmosphere. Buffering gas for these seals is argon. Capability of a 10 cfm argon purge rate is provided although normal argon flow into the cover gas cavity will be less than 1 cfm. Argon cover gas exits through a vapor trap located in the southwest corner of the support structure and then to the Cell Atmosphere Processing System. Vessel overpressure protection is provided by rupture discs on the inlet and outlet argon piping. Rupture discs vent to the IDS cell. Biological shielding is provided to maintain the radiation contribution in the operating area below 0.2 mrem/h. The primary gamma shield directly above

MCFADDEN NR; OMBERG RP

1990-06-18T23:59:59.000Z

225

LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS  

DOE Green Energy (OSTI)

This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

VANDOR,D.

1999-03-01T23:59:59.000Z

226

Business Case for CNG in Municipal Fleets (Presentation)  

Science Conference Proceedings (OSTI)

Presentation about compressed natural gas in municipal fleets, assessing investment profitability, the VICE model, base-case scenarios, and pressing questions for fleet owners.

Johnson, C.

2010-07-27T23:59:59.000Z

227

Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility  

DOE Green Energy (OSTI)

Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

Edward F. Kiczek

2007-08-31T23:59:59.000Z

228

Refueling Simulation Strategy of a CANDU Reactor Based on Optimum Zone Controller Water Levels  

SciTech Connect

An optimum refueling simulation method was developed for application to a Canada deuterium uranium 713-MW(electric) (CANDU-6) reactor. The objective of the optimization was to maintain the operating range of the zone controller unit (ZCU) water level so that the reference zone power distribution is reproduced following the refueling operation. The zone controller level on the refueling operation was estimated by the generalized perturbation method, which provides sensitivities of the zone power to an individual refueling operation and the zone controller level. By constructing a system equation of the zone power, the zone controller level was obtained, which was used to find the most suitable combination of the refueling channels. The 250-full-power-day refueling simulations showed that the channel and bundle powers are well controlled below the license limits when the ZCU water level remains in the typical operating range.

Choi, Hangbok; Kim, Do Heon [Korea Atomic Energy Research Institute (Korea, Republic of)

2005-09-15T23:59:59.000Z

229

cleanenergyfuels.com Natural Gas Solutions  

E-Print Network (OSTI)

tanks #12;36 cleanenergyfuels.com Natural Gas Truck Tanks Storage Capacity and Weight Impact LNG Tanks1 cleanenergyfuels.com Natural Gas Solutions for Transportation December 7, 2012 #12;2 cleanenergyfuels.com Compressed Natural Gas (CNG) Taxis Airport Vehicles Transit Buses Leading Provider of Natural

Minnesota, University of

230

Analysis of the University of Texas at Austin compressed natural gas demonstration bus. Interim research report  

Science Conference Proceedings (OSTI)

A demonstration compressed natural gas (CNG) bus has been operating on The University of Texas at Austin shuttle system since 1992. This CNG vehicle, provided by the Blue Bird Company, was an opportunity for the University to evaluate the effectiveness of a CNG bus for shuttle operations. Three basic operating comparisons were made: (1) fuel consumption, (2) tire wear, and (3) vehicle performance. The bus was equipped with a data logger, which was downloaded regularly, for trip reports. Tire wear was monitored regularly, and performance tests were conducted at the Natural Gas Vehicle Technology Center. Overall, the data suggest that fuel costs for the CNG bus are comparable to those for University diesel buses. This is a result of the lower fuel price for natural gas. Actual natural gas fuel consumption was higher for the CNG buses than for the diesel buses. Due to weight differences, tire wear was much less on the CNG buses. Finally, after installation of a closed-loop system, the CNG bus out-performed the diesel bus on acceleration, grade climbing ability, and speed.

Wu, C.M.; Matthews, R.; Euritt, M.

1994-06-01T23:59:59.000Z

231

Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression  

NLE Websites -- All DOE Office Websites (Extended Search)

Pdc - Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression Over 185 Compressors in the Worlds 220+ Hydrogen Energy Facilities Diaphragm Compressor Technology: Benefits of Technology: - Highest duty cycle of all current technologies - Lowest power consumption of the technologies - Lowest cooling requirements Challenges: - High(er) capital cost amongst the technologies - Currently - If not run properly, susceptible to maintenance problems. - Compressor likes to "run often". Cost Constraints of All Technologies General Cost Issues Currently Facing Compressor Manufacturers: Low Volume. Take Away: Buy More, Save More. Lack of clear codes and standards for industry. Take Away: Standardize, Standardize, Standardize Cost Constraints of All Technologies

232

Optimal Refueling Pattern Search for a CANDU Reactor Using a Genetic Algorithm  

Science Conference Proceedings (OSTI)

This paper presents the results from the application of genetic algorithms to a refueling optimization of a Canada deuterium uranium (CANDU) reactor. This work aims at making a mathematical model of the refueling optimization problem including the objective function and constraints and developing a method based on genetic algorithms to solve the problem. The model of the optimization problem and the proposed method comply with the key features of the refueling strategy of the CANDU reactor which adopts an on-power refueling operation. In this study, a genetic algorithm combined with an elitism strategy was used to automatically search for the refueling patterns. The objective of the optimization was to maximize the discharge burn-up of the refueling bundles, minimize the maximum channel power, or minimize the maximum change in the zone controller unit (ZCU) water levels. A combination of these objectives was also investigated. The constraints include the discharge burn-up, maximum channel power, maximum bundle power, channel power peaking factor and the ZCU water level. A refueling pattern that represents the refueling rate and channels was coded by a one-dimensional binary chromosome, which is a string of binary numbers 0 and 1. A computer program was developed in FORTRAN 90 running on an HP 9000 workstation to conduct the search for the optimal refueling patterns for a CANDU reactor at the equilibrium state. The results showed that it was possible to apply genetic algorithms to automatically search for the refueling channels of the CANDU reactor. The optimal refueling patterns were compared with the solutions obtained from the AUTOREFUEL program and the results were consistent with each other. (authors)

Quang Binh, DO; Gyuhong, ROH; Hangbok, CHOI [Korea Atomic Energy Research Institute, Dukjindong 150, Yusong, Daejeon, 305-353 (Korea, Republic of)

2006-07-01T23:59:59.000Z

233

Outage dose reduction achievements during shorter refueling outages  

SciTech Connect

Achievement of dose reduction goals has been demonstrated at the Limerick Generating Station during the past three refueling outages in 1995-96. Shorter refueling outages were accomplished by carefully selecting outage work and thoroughly planning the work. Limerick Unit 1 completed its outage in 35 d; Unit 2 in 23 d in 1995; Unit 1 completed its outage in 24 d in 1996. The four previous outages at Unit I had taken from 100 to 127 days. European plants were visited by plant supervisors to develop improved management approaches to optimizing outage performance from work planning to work implement. Cofrentes in Spain and KKL Leibstadt in Switzerland were visited in 1994 because of their similar design and outage durations consistently below 35 d. This paper describes the radiation protection practices observed at European plants and implemented at Limerick to achieve efficiency of work practices and adequacy of radiological controls. Specific radiation protection initiatives discussed include electronic dosimetry system, break areas, wash sinks, scrub suits, zone mapping and self-monitoring. Outage achievements in 1995 and 1996 has assured Limerick continued BWR industry leadership as the lowest annual person-rem BWRs in the U.S..

Harris, W.O.; Taylor, S. [Limerick Generating Station, Sanatoga, PA (United States)

1996-06-01T23:59:59.000Z

234

New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

New York City Transit Hybrid New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results K. Chandler and E. Eberts Battelle L. Eudy National Renewable Energy Laboratory Technical Report NREL/TP-540-38843 January 2006 New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results K. Chandler and E. Eberts Battelle L. Eudy National Renewable Energy Laboratory Prepared under Task No. FC06.3000 Technical Report NREL/TP-540-38843 January 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

235

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

= methanol, CNG = compressed natural gas, LNG = liquefiedvehicles; CNG = compressed natural gas; LPG = liquefieddiesel, CNG = compressed natural gas, LNG = liquefied

Delucchi, Mark

2005-01-01T23:59:59.000Z

236

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

= methanol, CNG = compressed natural gas, LNG = liquefiedvehicles; CNG = compressed natural gas; LPG = liquefieddiesel, CNG = compressed natural gas, LNG = liquefied

Delucchi, Mark

2005-01-01T23:59:59.000Z

237

Compressed natural gas fuel may be the future for Phoenix  

Science Conference Proceedings (OSTI)

It's the law: the future must include cleaner air, and alternative fuels for vehicular engines is one way to achieve it. In Phoenix, a city beset by moderate air quality problems, equipment managers of the Public Works Department's (PWD) fleet say their future seems to be with compressed natural gas (CNG). CNG fuels a pair of refuse packer trucks that have been operating for a year with few, if any, problems. The object of buying and running them, was to see if one can run an alternate fuels vehicle on a regular route. Can the trucks adapt, can the drivers adapt So far the answer is yes. The trucks are among an assortment of municipal vehicles running on CNG and propane. CNG makes sense for Phoenix because it's modestly priced and readily available locally.

Berg, T.

1994-08-01T23:59:59.000Z

238

Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder  

NLE Websites -- All DOE Office Websites (Extended Search)

Defect Analysis of Vehicle Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder A China Paper on Type 4 Cylinder, translated and presented by J. P. Hsu, PhD, Smart Chemistry Reason for Defect Analysis of CNG Composite Cylinder * Safety Issue - Four explosion accidents of auto used CNG composite material cylinders resulting huge personnel and vehicles loss. * Low Compliance Rate - Inspect 12119 Auto used CNG composite cylinders and only 3868 are qualified with compliance rate of 32%. Plastic CNG Composite Cylinder Process Fitting Internal Plastic Liner External Composite Layer Metal Fitting HDPE Cylinder Liner * HDPE has a high density, great stiffness, good anti-permeability and high melting point, but poor environmental stress cracking Resistance (ESCR). * The defects of cylinder liner quality can be

239

NREL: ReFUEL Laboratory - Engine Dynamometer Test Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Engine Dynamometer Test Cells Engine Dynamometer Test Cells The ReFUEL Laboratory features two engine dynamometer test cells-one for heavy-duty engines and another for light-duty engines. Heavy-Duty Engine Dynamometer Test Cell Capabilities Photo of heavy-duty engine dynamometer test cell in laboratory setting. Heavy-duty engines are certified as meeting emission regulations by the manufacturer using an engine dynamometer. These protocols, known as the Heavy-Duty Federal Test Procedures (HD-FTP), are highly standardized, and results can be readily compared between laboratories. Because the heavy-duty engine dynamometer test cell performs the HD-FTP on engines up to 600 hp, advanced fuels can be evaluated in a way that is meaningful to the engine-research community. In addition to testing a wide

240

NREL: ReFUEL Laboratory - Working with Us  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with Us Working with Us Interaction with industrial, academic, and government partners is key to moving advanced vehicle and fuel technologies into the marketplace and the U.S. economy. The Renewable Fuels and Lubricants (ReFUEL) Laboratory is available to members of the research community interested in testing advanced fuels, prototype engines, and hybrid powertrains. There are a variety of ways to get involved with NREL's advanced vehicle and fuels research activities: Work collaboratively with NREL through one of our technology partnership agreements. We can assist you in selecting the agreement most suitable for your research project. Gain access to NREL's expertise and specialized research facilities through a work-for-others agreement. In addition, NREL's patented transportation technologies are available for

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network (OSTI)

connected to the homes natural gas supply, and dispensingvehicles A compressor, natural gas supply, and dispensing

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

242

Refueling and density control in the ZT-40M reversed field pinch  

DOE Green Energy (OSTI)

The effects of pellet injection and gas puff refueling have been studied in the ZT-40M Reversed Field Pinch. Multiple deuterium pellets (less than or equal to 6 x 10/sup 19/D atoms/pellet) with velocities ranging from 300 to 700 m/sec have been injected into plasmas with n-bar/sub e/ approx.1 to 5 X 10/sup 19/m/sup -3/, I/sub phi/ approx.100 to 250 kA, T/sub e/(0) approx.150 to 300 eV and discharge durations of less than or equal to 20 msec. Photographs and an array D/sub ..cap alpha../ detectors show substantial deflection of the pellet trajectory in both the poloidal and toroidal planes, due to asymmetric ablation of the pellet by electrons streaming along field lines. To compensate for the poloidal deflection, the injector was moved up +14 cm off-axis, allowing the pellets to curve down to the midplane. In this fashion, central peaking of the pellet density deposition profile can be obtained. Both electron and ion temperatures fall in response to the density rise, such that ..beta../sub theta/(..beta../sub theta/ identical to n-bar/sub e/(T/sub e/(0) + T/sub i/)/(B/sub theta/(a))/sup 2/) remains roughly constant. Energy confinement is momentarily degraded, and typically a decrease in F (F identical to B/sub phi/(a)/(B/sub phi/)) is seen as magnetic energy is converted to plasma energy when the pellet ablates. As a result of pellet injection at I/sub phi/ = 150 kA we observe T/sub e/(0) ..cap alpha.. n-bar/sub e//sup -.9 +- .1/, while the helicity based resistivity eta/sub k/ transiently varies as n-bar/sub e//sup .7 +- .1/. While the achievement of center-peaked density profiles is possible with pellet injection, gas puffing at rates strong enough to show a 50% increase in n-bar/sub e/ over a period of 10 msec (approx.150 torr-litres/sec) leads to hollow density profiles. The refueling requirements for parameters expected in the next generation RFPs (ZTH, RFX) can be extrapolated from these data using modified tokamak pellet ablation codes.

Wurden, G.A.; Weber, P.G.; Watt, R.G.; Munson, C.P.; Cayton, T.E.; Buechl, K.

1987-01-01T23:59:59.000Z

243

Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings  

DOE Green Energy (OSTI)

DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

Melaina, M. W.; McQueen, S.; Brinch, J.

2008-07-01T23:59:59.000Z

244

Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen  

E-Print Network (OSTI)

Glory Days of the Gas Station. Bull?nch Press, Boston.M.K. , 1993. The American Gas Station. Motorbooks Interna-History of Americas Gas Stations. Macmillan Publishing Co,

Melaina, Marc W

2007-01-01T23:59:59.000Z

245

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network (OSTI)

carbon dioxide emissions and subsequent potential effect on climate change, they do have significant advantages over traditional gasoline fueled vehicles, all other factors

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

246

REQUEST FOR PROPOSALS LIQUEFIED NATURAL GAS VEHICLE  

E-Print Network (OSTI)

fueled truck fleet of more than 100 refuse hauling vehicles and plans to add more will include exhaust from on-road vehicles and from materials handling equipment, dust from refuse renewable natural gas. CR&R plans to add 100 CNG/LNG vehicles to its fleet over the next

247

Natural Gas Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Vehicle and Infrastructure Codes and Standards Citations Natural Gas Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. natural gas vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at www.afdc.energy.gov/afdc/codes_standards_basics.html. Find natural gas vehicle and infrastructure codes and standards in these categories: * Fire Code Requirements * General CNG Requirements and Equipment Qualifications * CNG Engine Fuel Systems * CNG Compression, Gas Processing, Storage, and Dispensing Systems

248

International Conference on Gas Hydrates May 19-23, 2002, Yokohama  

E-Print Network (OSTI)

established liquefied natural gas technology is only considered feasible in large-scale development. About 80 volume by about 600-times. Large-scale CNG technology suitable for stranded gas is under development technology is being developed in Norway for associated and non-associated natural gas applications

Gudmundsson, Jon Steinar

249

Safety analysis of natural gas vehicles transiting highway tunnel  

Science Conference Proceedings (OSTI)

A safety analysis was performed to assess the relative hazard of compressed natural gas (CNG) fueled vehicles traveling on various tunnels and bridges in New York City. The study considered those hazards arising from the release of fuel from CNG vehicles ranging in size from a passenger sedan to a full size 53 passenger bus. The approach used was to compare the fuel hazard of CNG vehicles to the fuel hazard of gasoline vehicles. The risk was assessed by estimating the frequency of occurrence and the severity of the hazard. The methodology was a combination of analyzing accident data, performing a diffusion analysis of the gas released in the tunnel and determining the consequences of ignition. Diffusion analysis was performed using the TEMPEST code for various accident scenarios resulting in CNG release inside the Holland Tunnel. The study concluded that the overall hazard of CNG vehicles transiting a ventilated tunnel is less than the hazard from a comparable gasoline fueled vehicle. 134 refs., 23 figs., 24 tabs.

Shaaban, S.H.; Zuzovsky, M.; Anigstein, R.

1989-01-01T23:59:59.000Z

250

Integrated Hydrogen and Intelligent Transportation Systems Evaluation for the California Department of Transportation  

E-Print Network (OSTI)

heat and power CNG = compressed natural gas CTP = Californiathat dispense compressed natural gas (CNG), liquefied

Lipman, Timothy; Shaheen, Susan

2005-01-01T23:59:59.000Z

251

Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

Refueling Infrastructure for Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Workshop Proceedings M.W. Melaina National Renewable Energy Laboratory S. McQueen and J. Brinch Energetics Incorporated Sacramento, California April 3, 2008 Proceedings NREL/BK-560-43669 July 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Workshop Proceedings M.W. Melaina National Renewable Energy Laboratory S. McQueen and J. Brinch Energetics Incorporated Sacramento, California April 3, 2008 Prepared under Task No. H278.2350 Proceedings NREL/BK-560-43669 July 2008 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393

252

U.S. DEPARTMENT OF ENERGY - NETL CATEGORICAL EXCLUSION (CX) DESIGNATIO...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trucks, Shuttle Buses and Infrastructure The project funds the deployment of 277 various CNG vehicles and the development of 4 unique CNG refueling locations. ADMINISTRATIVE...

253

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

14, 2012 | Release Date: Mar. 15, 14, 2012 | Release Date: Mar. 15, 2012 | Next Release: Mar. 22, 2012 Previous Issues Week: 12/29/2013 (View Archive) JUMP TO: In The News | Overview | Prices | Storage In the News: Alternative Transportation Fuels Infrastructure Increases from Mid-2000s Levels. Natural gas vehicles can run on either compressed natural gas (CNG) or liquefied natural gas (LNG). LNG and CNG fueling infrastructure has grown over the past several years, and recently, companies in the private sector have announced plans to invest in infrastructure and new technology. Currently, the vast majority of vehicles that use natural gas are powered by CNG, and over 900 of these fueling stations exist in the United States, with more than 50 percent restricted to private access only. The state with

254

Business Case for Compressed Natural Gas in Municipal Fleets | Open Energy  

Open Energy Info (EERE)

Business Case for Compressed Natural Gas in Municipal Fleets Business Case for Compressed Natural Gas in Municipal Fleets Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Business Case for Compressed Natural Gas in Municipal Fleets Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Fuels & Efficiency Topics: Analysis Tools, Best Practices Website: www.afdc.energy.gov/afdc/pdfs/47919.pdf This report describes how the compressed natural gas (CNG) Vehicle and Infrastructure Cash-Flow Evaluation (VICE) model can be used to establish guidance for fleets making decisions about using CNG. The model assists fleets and businesses in evaluating the profitability of potential CNG projects by demonstrating the relationship between project profitability and fleet operating parameters.

255

Nuclear Safety Risk Management in Refueling Outage of Qinshan Nuclear Power Plant  

SciTech Connect

The NPP is used to planning maintenance, in-service inspection, surveillance test, fuel handling and design modification in the refueling outage; the operator response capability will be reduced plus some of the plant systems out of service or loss of power at this time. Based on 8 times refueling outage experiences of the Qinshan NPP, this article provide some good practice and lesson learned for the nuclear safety risk management focus at four safety function areas of Residual Heat Removal Capability, Inventory Control, Power availability and Reactivity control. (authors)

Meijing Wu; Guozhang Shen [Qinshan Nuclear power company (China)

2006-07-01T23:59:59.000Z

256

REFUEL: an EU road map for biofuels , E. Deurwaarder and S. Lensink, ECN policy Studies, the Netherlands  

E-Print Network (OSTI)

REFUEL: an EU road map for biofuels M. Londo1 , E. Deurwaarder and S. Lensink, ECN policy Studies), Poland K. Könighofer, Joanneum Research, Austria Abstract A successful mid-term development of biofuels calls for a robust road map. REFUEL assesses inter alia least-cost biofuel chain options, their benefits

257

Gas, Mister, not gasoline  

SciTech Connect

A prototype rechargeable CNG commuter car with an LP-gas standby reserve avoids the need for area fueling stations while providing an emergency range-extending technique through its LPG system. Operating on a household power line, the charging compressor fills each tank to 1000 psig at an electric cost of less than 7 cents/100 CF of compressed gas. The four fuel tanks weigh only 120 lb and give the small Opel GT car a range of 75 miles. A 10-gal LPG tank adds 300 miles to this range.

Axworthy, R.T.

1982-10-01T23:59:59.000Z

258

Low pressure storage of natural gas on activated carbon  

DOE Green Energy (OSTI)

The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

Wegrzyn, J.; Wiesmann, H.; Lee, T.

1992-12-31T23:59:59.000Z

259

Low pressure storage of natural gas on activated carbon  

DOE Green Energy (OSTI)

The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

Wegrzyn, J.; Wiesmann, H.; Lee, T.

1992-01-01T23:59:59.000Z

260

BMC Pharmacology BioMed Central Poster presentation Blockade of CNG channels abrogates urethral relaxation induced by soluble guanylate cyclase activation  

E-Print Network (OSTI)

2009 Triguero et al; licensee BioMed Central Ltd. In the present study, we have characterized the presence and distribution of cGMP-gated cationic channels (CNG) in the rat urethra as well as its putative role in the mediation of the nitrergic relaxation. Previous studies have shown the inhibition of the sheep urethral nitrergic relaxations by the CNG's inhibitor L-cis-diltiazem [1]. Also in the rat urethra, L-cis-diltiazem (50 ?M) inhibited nitrergic relaxations elicited by electrical field stimulation (EFS) of arginine-vasopresin (AVP)-precontracted urethral preparations (Figure 1A). Immunofluorescence studies were performed to analyze the distribution of CNG immunoreactivity (-ir) in sections of the urethral wall. As can be seen in Figure 2, a strong CNG-ir was present in a subpopulation of vimentin-ir

Domingo Triguero; Maria Sancho; Marta Garca-flores; ngeles Garca

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Modeling and Computation of Signal Transduction of Olfactory Cilia with Non-Uniform CNG and Cl and Cl(Ca) Channels Distributions.  

E-Print Network (OSTI)

??Olfactory cilia are the first components for signal transduction in the sensory system. The cilia contain two ion channel types cyclic-nucleotide-gated (CNG) and Ca2+2-gated Cl- (more)

Badamdorj, Dorjsuren

2006-01-01T23:59:59.000Z

262

Nuclear Maintenance Applications Center: Effective Refueling Outage Preparation and Execution Guidance--Revision to 1014480  

Science Conference Proceedings (OSTI)

This report provides updated, current guidance to assist outage managers and teams during preparation and execution phases of a nuclear refueling outage. Included is guidance on how the outage activities support long-range and strategic plans developed by the site or fleet of units.

2011-12-13T23:59:59.000Z

263

Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen  

E-Print Network (OSTI)

IN PRESS M.W. Melaina / Energy Policy 35 (2007) 49194934from natural gas for vehicles. Energy Policy 30, 613619.GAO, 2000. Energy Policy Act of 1992: Limited Progress in

Melaina, Marc W

2007-01-01T23:59:59.000Z

264

Autonomous aerial refueling of UAVS utilizing a vision based navigation system  

E-Print Network (OSTI)

The major technological obstacle to be overcome for practical and reliable autonomous probe-and-drogue aerial refueling is obtaining accurate relative position and attitude measurements during the docking phase. An integrated controller-sensor-navigation system for this task must be robust and possess good disturbance rejection properties. Previous attempts to solve this problem have used video servoing with pattern recognition algorithms and the differential Global Positioning System. This thesis seeks to determine the feasibility of autonomous aerial refueling by developing a robust docking controller and integrating it with the relative position and attitude measurements from a novel Vision-based Navigation (VisNav) sensor. VisNav accurately determines the line of sight vector between a positioning sensing diode and a target configured with multiple light emitting diode beacons. A study is conducted to determine the best number and placement of the beacons on the drogue and the best location to mount the sensor on an Unmanned Air Vehicle (UAV). Optimal Nonzero Set Point and optimal Command Generator Tracker controllers are developed and used to simulate six degree-of-freedom docking maneuvers using dynamical system models of a UAV and a refueling drogue. Test cases for stationary and moving drogues in atmospheric turbulence are evaluated in terms of docking position errors, control effort, control rate, and quadratic cost. Simulation results demonstrate that a Proportional Integral Filter Command Generator Tracker controller, coupled with the VisNav sensor and navigation system, provides a viable candidate solution to the autonomous aerial refueling problem. The beacon lights can be placed in the location of lights currently on the drogue, and the sensor can be placed at the base of the refueling probe on the UAV.

Kimmett, Jennifer Jones

2002-01-01T23:59:59.000Z

265

Transportation Energy Futures  

E-Print Network (OSTI)

fiberglass-wrapped aluminum cylinders; CNG 15%thermalefficienc) advantage for CNG LGN:weight penalty for CNG.LNGoxides; NG,natural gas; CNG, compressed LNG, NG; liquefied

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

266

Natural gas as a vehicle fuel. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the development, use, and potential of compressed natural gas (CNG) and liquid natural gas (LNG) to fuel vehicles. Topics include systems descriptions and evaluations, and economic and environmental considerations. Field evaluations and technology demonstrations are discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-05-01T23:59:59.000Z

267

Demonstration of zinc/air fuel battery to enhance the range and mission of fleet electric vehicles: Preliminary results in the refueling of a multicell module  

DOE Green Energy (OSTI)

We report progress in an effort to develop and demonstrate a refuelable zinc/air battery for fleet electric vehicle applications. A refuelable module consisting of twelve bipolar cells with internal flow system has been refueled at rates of nearly 4 cells per minute refueling time of 10 minutes for a 15 kW, 55 kWh battery. The module is refueled by entrainment of 0.5-mm particles in rapidly flowing electrolyte, which delivers the particles into hoppers above each cell in a parallel-flow hydraulic circuit. The concept of user-recovery is presented as an alternative to centralized service infrastructure during market entry.

Cooper, J.F.; Fleming, D.; Keene, L.; Maimoni, A.; Peterman, K.; Koopman, R.

1994-08-08T23:59:59.000Z

268

State Energy Program Helping Arkansans Convert to Compressed Natural Gas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Energy Program Helping Arkansans Convert to Compressed State Energy Program Helping Arkansans Convert to Compressed Natural Gas State Energy Program Helping Arkansans Convert to Compressed Natural Gas January 25, 2012 - 4:30pm Addthis The Arkansas Energy Office recently launched a Compressed Natural Gas Conversion Rebate Program, which provides incentives for fleets and individuals to purchase and/or convert their Arkansas-licensed vehicles to compressed natural gas (CNG). | All Rights Reserved. The Arkansas Energy Office recently launched a Compressed Natural Gas Conversion Rebate Program, which provides incentives for fleets and individuals to purchase and/or convert their Arkansas-licensed vehicles to compressed natural gas (CNG). | All Rights Reserved. Grayson Bryant Project Officer -- State Energy Program

269

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

270

Core and Refueling Design Studies for the Advanced High Temperature Reactor  

SciTech Connect

The Advanced High Temperature Reactor (AHTR) is a design concept for a central generating station type [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. This report presents the current status of ongoing design studies of the core, in-vessel structures, and refueling options for the AHTR. The AHTR design remains at the notional level of maturity as important material, structural, neutronic, and hydraulic issues remain to be addressed. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. An illustration of the current AHTR core, reactor vessel, and nearby structures is shown in Fig. ES1. The AHTR core design concept is based upon 252 hexagonal, plate fuel assemblies configured to form a roughly cylindrical core. The core has a fueled height of 5.5 m with 25 cm of reflector above and below the core. The fuel assembly hexagons are {approx}45 cm across the flats. Each fuel assembly contains 18 plates that are 23.9 cm wide and 2.55 cm thick. The reactor vessel has an exterior diameter of 10.48 m and a height of 17.7 m. A row of replaceable graphite reflector prismatic blocks surrounds the core radially. A more complete reactor configuration description is provided in Section 2 of this report. The AHTR core design space exploration was performed under a set of constraints. Only low enrichment (<20%) uranium fuel was considered. The coated particle fuel and matrix materials were derived from those being developed and demonstrated under the Department of Energy Office of Nuclear Energy (DOE-NE) advanced gas reactor program. The coated particle volumetric packing fraction was restricted to at most 40%. The pressure drop across the core was restricted to no more than 1.5 atm during normal operation to minimize the upward force on the core. Also, the flow velocity in the core was restricted to 3 m/s to minimize erosion of the fuel plates. Section 3.1.1 of this report discusses the design restrictions in more detail.

Holcomb, David Eugene [ORNL; Ilas, Dan [ORNL; Varma, Venugopal Koikal [ORNL; Cisneros, Anselmo T [ORNL; Kelly, Ryan P [ORNL; Gehin, Jess C [ORNL

2011-09-01T23:59:59.000Z

271

Balanced Transport and Sustainable Urbanism: Enhancing Mobility and Accessibility through Institutional, Demand Management, and Land-Use Initiatives  

E-Print Network (OSTI)

compressed natural gas (CNG) buses found in cities likesustainable technologies. CNG conversions means many urban

Cervero, Robert

2006-01-01T23:59:59.000Z

272

COMPARATIVE STUDY ON EXHAUST EMISSIONS FROM DIESEL- AND CNG-POWERED URBAN BUSES  

DOE Green Energy (OSTI)

Couple years ago, ADEME engaged programs dedicated to the urban buses exhaust emissions studies. The measures associated with the reduction of atmospheric and noise pollution has particular importance in the sector of urban buses. In many cases, they illustrate the city's environmental image and contribute to reinforcing the attractiveness of public transport. France's fleet in service, presently put at about 14,000 units, consumes about 2 per cent of the total energy of city transport. It causes about 2 per cent of the HC emissions and from 4 to 6 per cent of the NOx emissions and particles. These vehicles typically have a long life span (about 15 years) and are relatively expensive to buy, about 150.000 euros per unit. Several technical solutions were evaluated to quantify, on a real condition cycle for buses, on one hand pollutants emissions, fuel consumption and on the other hand reliability, cost in real existing fleet. This paper presents main preliminary results on urban buses exhaust emission on two different cases: - existing Diesel buses, with fuel modifications (Diesel with low sulphur content), Diesel with water emulsion and bio-Diesel (30% oil ester in standard Diesel fuel); renovating CNG powered Euro II buses fleet, over representative driving cycles, set up by ADEME and partners. On these cycles, pollutants (regulated and unregulated) were measured as well as fuel consumption, at the beginning of a program and one year after to quantify reliability and increase/decrease of pollutants emissions. At the same time, some after-treatment technologies were tested under real conditions and several vehicles. Information such as fuel consumption, lubricant analysis, problem on the technology were following during a one year program. On the overall level, it is the combination of various action, pollution-reduction and renewal that will make it possible to meet the technological challenge of reducing emissions and fuel consumption by urban bus networks.

COROLLER, P; PLASSAT, G

2003-08-24T23:59:59.000Z

273

Renewable Fuels and Lubricants (ReFUEL) Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. The Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to

274

Interim qualitative risk assessment for an LNG refueling station and review of relevant safety issues  

SciTech Connect

This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tanker truck delivers and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects analysis and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of best practice information throughout the LNG community.

Siu, N.; Herring, S.; Cadwallader, L.; Reece, W.; Byers, J.

1997-07-01T23:59:59.000Z

275

A Dynamic household Alternative-fuel Vehicle Demand Model Using Stated and Revealed Transaction Information  

E-Print Network (OSTI)

non-electric vehicles, non-CNG vehicles, vehicle size, andrelated to ability to refuel EV or CNG vehicles at home.type vehicles: gasoline, CNG, methanol and EV. In the Wave-1

Sheng, Hongyan

1999-01-01T23:59:59.000Z

276

Gas Mileage of 2010 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 29 Highway 2010 Honda Civic CNG 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2010 Honda Civic CNG View MPG Estimates...

277

Gas Mileage of 2011 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

Highway 2011 Honda Civic CNG 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2011 Honda Civic CNG 24 City 28 Combined 36 Highway 2011 Honda Civic Hybrid 4 cyl, 1.3 L, Automatic...

278

Gas Mileage of 2008 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

Highway 2008 Honda Civic CNG 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2008 Honda Civic CNG View MPG Estimates Shared By Vehicle Owners 24 City 28 Combined 36 Highway 2008 Honda...

279

Gas Mileage of 2009 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 29 Highway 2009 Honda Civic CNG 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2009 Honda Civic CNG View MPG Estimates...

280

Gas Mileage of 2006 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

MPG Estimates Shared By Vehicle Owners 20 City 23 Combined 29 Highway 2006 Honda Civic CNG 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2006 Honda Civic CNG View MPG Estimates...

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Gas Mileage of 2007 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

MPG Estimates Shared By Vehicle Owners 20 City 23 Combined 29 Highway 2007 Honda Civic CNG 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2007 Honda Civic CNG View MPG Estimates...

282

Gas Mileage of 1999 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1999 Ford Crown Victoria CNG 8 cyl, 4.6 L, Automatic 4-spd, CNG Compare 1999 Ford Crown Victoria CNG View MPG...

283

Gas Mileage of 2002 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

Shared By Vehicle Owners 15 City 18 Combined 23 Highway 2002 Ford Crown Victoria CNG 8 cyl, 4.6 L, Automatic 4-spd, CNG Compare 2002 Ford Crown Victoria CNG View MPG...

284

Gas Mileage of 2004 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

Shared By Vehicle Owners 15 City 18 Combined 23 Highway 2004 Ford Crown Victoria CNG 8 cyl, 4.6 L, Automatic 4-spd, CNG Compare 2004 Ford Crown Victoria CNG View MPG...

285

Economic and technical analysis of distributed utility benefits for hydrogen refueling stations. Final report  

SciTech Connect

This report presents the potential economic benefits of operating hydrogen refueling stations to accomplish two objectives: supply pressurized hydrogen for vehicles, and supply distributed utility generation, transmission and distribution peaking energy and capacity to the utility. The study determined under what circumstances using a hydrogen-fueled generator as a distributed utility generation source, co-located with the hydrogen refueling station components (electrolyzer and storage), would result in cost savings to the station owner, and hence lower hydrogen production costs. The systems studied include a refueling station (including such components as an electrolyzer, storage, hydrogen dispensers, and compressors) plus on-site hydrogen fueled electricity generation units (e.g., fuel cells or combustion engines). The operational strategy is to use off-peak electricity in the electrolyzer to fill hydrogen storage, and to dispatch the electricity generation about one hour per day to meet the utility`s local and system peaks. The utility was assumed to be willing to pay for such service up to its avoided generation, fuel, transmission and distribution costs.

Iannucci, J.J.; Eyer, J.M.; Horgan, S.A.; Schoenung, S.M. [Distributed Utility Associates, Livermore, CA (United States)]|[Longitude 122 West, Inc., Menlo Park, CA (United States)

1998-04-01T23:59:59.000Z

286

Operating experience with a liquid-hydrogen fueled Buick and refueling system  

DOE Green Energy (OSTI)

An investigation of liquid-hydrogen storage and refueling systems for vehicular applications was made in a recently completed project. The vehicle used in the project was a 1979 Buick Century sedan with a 3.8-L displacement turbocharged V6 engine and an automatic transmission. The vehicle had a fuel economy for driving in the high altitude Los Alamos area that was equivalent to 2.4 km/L of liquid hydrogen or 8.9 km/L of gasoline on an equivalent energy basis. About 22% less energy was required using hydrogen rather than gasoline to go a given distance based on the Environmental Protection Agency estimate of 7.2 km/L of gasoline for this vehicle. At the end of the project the engine had been operated for 138 h and the car driven 3633 km during the 17 months that the vehicle was operated on hydrogen . Two types of onboard liquid-hydrogen storage tanks were tested in the vehicle: the first was an aluminum Dewar with a liquid-hydrogen capacity of 110 L; the second was a Dewar with an aluminum outer vessel, two copper vapor-cooled thermal radiation shields, and a stainless steel inner vessel with a liquid-hydrogen capacity of 155 L. The Buick had an unrefueled range of about 274 km with the first liquid-hydrogen tank and about 362 km with the second. The Buick was fueled at least 65 times involving a minimum of 8.1 kL of liquid hydrogen using various liquid-hydrogen storage Dewars at Los Alamos and a semiautomatic refueling station. A refueling time of nine minutes was achieved, and liquid hydrogen losses during refueling were measured. The project has demonstrated that liquid-hydrogen storage onboard a vehicle, and its refueling, can be accomplished over an extended period without any major difficulties; nevertheless, appropriate testing is still needed to quantitatively address the question of safety for liquid-hydrogen storage onboard a vehicle.

Stewart, W.F.

1982-01-01T23:59:59.000Z

287

Economic analysis of low-pressure natural-gas-vehicle storage technology. Task 3 topical report, March 1989-April 1990  

SciTech Connect

The economic analysis concludes that, under the assumptions of the base case, a low pressure adsorbed natural gas (ANG) system for vehicle fuel storage is a viable and competitive alternative to compressed natural gas (CNG) storage systems. ANG systems offer the ability to reduce compressor capital and operating costs, and eliminate costs associated with periodic recertification of CNG storage cylinders. The only cost element to realize and increase due to ANG is the vehicle fuel storage apparatus. Specifically, the cost for purchasing adsorbent carbon becomes the most significant additional expenditure.

Biederman, R.T.; Blazek, C.F.

1990-04-01T23:59:59.000Z

288

Carlink - A Smart Carsharing System Field Test Report  

E-Print Network (OSTI)

Laboratory CNG: Compressed natural gas STRENGTHS ANDof 12 Honda Civic compressed natural gas (CNG) vehicles. 4were fueled by compressed natural gas (CNG). During the

Shaheen, Susan; Wright, John; Dick, David; Novick, Linda

2000-01-01T23:59:59.000Z

289

Transportation Energy Futures  

E-Print Network (OSTI)

to those of compressed natural gas (CNG). simplicity, thispressurized tanks for compressed natural gas (CNG)storage,oxides; NG,natural gas; CNG, compressed LNG, NG; liquefied

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

290

Dynamics in Behavioral Adaptation to a Transportation Innovation: A Case Study of Carlink-A Smart Carsharing System  

E-Print Network (OSTI)

are fueled with compressed natural gas (CNG). 5. What isCarLink fleet. Compressed natural gas (CNG) vehicles woulddeployed with 12 compressed natural gas (CNG) Honda Civic

Shaheen, Susan A.

1999-01-01T23:59:59.000Z

291

Ventura/Lompoc Smart Card Demonstration Evaluation: Final Report Volume 1 Technical Performance, User Response, and Institutional Analysis  

E-Print Network (OSTI)

of APCs in Compressed Natural Gas (CNG) buses, which haveinstrument nine new compressed natural gas (CNG) vehicless use of a large compressed natural gas (CNG) compressor

Giuliano, Genevieve; Moore, II, James E.; Golob, Jacqueline

1999-01-01T23:59:59.000Z

292

CARLINK-A SMART CARSHARING SYSTEM FIELD TEST REPORT  

E-Print Network (OSTI)

Laboratory CNG: Compressed natural gas STRENGTHS ANDof 12 Honda Civic compressed natural gas (CNG) vehicles. 4were fueled by compressed natural gas (CNG). During the

Shaheen, Susan; Wright, John; Dick, David; Novick, Linda

2000-01-01T23:59:59.000Z

293

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

n.a. n.a. CNG = compressed natural gas; LNG = ;liquefiedgases; CNG = compressed natural gas; Exh. = exhausthydrogen CNG = compressed natural gas CO = carbon monoxide

Delucchi, Mark

2003-01-01T23:59:59.000Z

294

Dynamics in Behavioral Adaptation to a Transportation Innovation: A Case Study of CarlinkA Smart Carsharing System  

E-Print Network (OSTI)

are fueled with compressed natural gas (CNG). 5. What isCarLink fleet. Compressed natural gas (CNG) vehicles woulddeployed with 12 compressed natural gas (CNG) Honda Civic

Shaheen, Susan

2004-01-01T23:59:59.000Z

295

Six Manufacturers to Offer Natural-Gas-Powered Trucks in 1996  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

ix truck manufacturers will offer ix truck manufacturers will offer natural-gas-powered versions of their medium- and heavy-duty trucks in 1996, according to the Gas Research Institute (GRI). The trucks will be the first fully dedicated natural gas vehicles (NGVs) offered in U.S. medium- and heavy-duty markets by original equipment manufacturers (OEMs). Four manufacturers will design trucks to operate on liquefied natural gas (LNG), and one manufacturer will design trucks to run on compressed natural gas (CNG). These manufacturers will join Volvo GM Heavy Truck Corporation, which has announced plans to manufacture an NGV refuse hauler, the Xpeditor. The refuse hauler will be available in LNG and CNG versions. "The availability of OEM- produced trucks is a significant development for GRI and the gas

296

Natural Gas Vehicle Cylinder Safety, Training and Inspection Project  

DOE Green Energy (OSTI)

Under the auspices of the National Energy Technology Laboratory and the US Department of Energy, the Clean Vehicle Education Foundation conducted a three-year program to increase the understanding of the safe and proper use and maintenance of vehicular compressed natural gas (CNG) fuel systems. High-pressure fuel systems require periodic inspection and maintenance to insure safe and proper operation. The project addressed the needs of CNG fuel containers (cylinders) and associated high-pressure fuel system components related to existing law, codes and standards (C&S), available training and inspection programs, and assured coordination among vehicle users, public safety officials, fueling station operators and training providers. The program included a public and industry awareness campaign, establishment and administration of a cylinder inspector certification training scholarship program, evaluation of current safety training and testing practices, monitoring and investigation of CNG vehicle incidents, evaluation of a cylinder recertification program and the migration of CNG vehicle safety knowledge to the nascent hydrogen vehicle community.

Hank Seiff

2008-12-31T23:59:59.000Z

297

Development of a Liquid to Compressed Natural Gas (LCNG) Fueling Station. Final Report  

DOE Green Energy (OSTI)

The program objective was the development of equipment and processes to produce compressed natural gas (CNG) from liquified natural gas (LNG) for heavy duty vehicular applications. The interest for this technology is a result of the increased use of alternative fuels for the reduction of emissions and dependency of foreign energy. Technology of the type developed under this program is critical for establishing natural gas as an economical alternative fuel.

Moore, J. A.

1999-06-30T23:59:59.000Z

298

A refuelable zinc/air battery for fleet electric vehicle propulsion  

SciTech Connect

We report the development and on-vehicle testing of an engineering prototype zinc/air battery. The battery is refueled by periodic exchange of spent electrolyte for zinc particles entrained in fresh electrolyte. The technology is intended to provide a capability for nearly continuous vehicle operation, using the fleet s home base for 10 minute refuelings and zinc recycling instead of commercial infrastructure. In the battery, the zinc fuel particles are stored in hoppers, from which they are gravity fed into individual cells and completely consumed during discharge. A six-celled (7V) engineering prototype battery was combined with a 6 V lead/acid battery to form a parallel hybrid unit, which was tested in series with the 216 V battery of an electric shuttle bus over a 75 mile circuit. The battery has an energy density of 140 Wh/kg and a mass density of 1.5 kg/L. Cost, energy efficiency, and alternative hybrid configurations are discussed.

Cooper, J.F.; Fleming, D.; Hargrove, D.; Koopman, R.; Peterman, K.

1995-04-20T23:59:59.000Z

299

Power system simulation and optimization models for planning nuclear refueling cycles  

SciTech Connect

From Operation Research Society of America; San Diego, California, USA (12 Nov 1973). The mid-range system being modeled may include a mix of fossil, nuclear, hydro, pumped-storage, and peaking units. For any predetermined nuclear refueling schedule, the program (ORSIM) determines an approximately optical plan of operation for the system. This includes the determination of a maintenance schedule for the non-nuclear units and a schedule of energy delivery for each plant in the system. The criterion of optimality is the minimization of the total discounted operating cost of the system over the specified study period. Over this period, the model computes the expected station load factors, the loss of load probability and unserved energy for the system, and the production costs of operating so as to meet the forecasted loads on the system. The code takes account of variations and growth in demand over the planning horizon, occurrence of unit forced outages, planned shutdowns for nuclear refuelings, maintenance scheduling, allocations of fixed hydro and nuclear energies, and interactions between nuclear unit reloadings and fuel costs. 13 references. (auth)

Turnage, J.C.; Bennett, L.L.; Joy, D.S.; Prince, B.E.

1973-10-01T23:59:59.000Z

300

Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure  

SciTech Connect

Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

Greene, David L [ORNL; Duleep, Gopal [HD Systems

2013-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Technical comparison between Hythane, GNG and gasoline fueled vehicles. [Hythane = 85 vol% natural gas, 15 vol% H[sub 2  

DOE Green Energy (OSTI)

This interim report documents progress on this 2-year Alternative Fuel project, scheduled to end early 1993. Hythane is 85 vol% compressed natural gas (CNG) and 15 vol% hydrogen; it has the potential to meet or exceed the California Ultra-Low Emission Vehicle (ULEV) standard. Three USA trucks (3/4 ton pickup) were operated on single fuel (unleaded gasoline, CNG, Hythane) in Denver. The report includes emission testing, fueling facility, hazard and operability study, and a framework for a national hythane strategy.

Not Available

1992-05-01T23:59:59.000Z

302

On-Road Development of John Deere 6081 Natural Gas Engine: Final Technical Report, July 1999 - January 2001  

Science Conference Proceedings (OSTI)

Report that discusses John Deere's field development of a heavy-duty natural gas engine. As part of the field development project, Waste Management of Orange County, California refitted four existing trash packers with John Deere's prototype spark ignited 280-hp 8.1 L CNG engines. This report describes the project and also contains information about engine performance, emissions, and driveability.

McCaw, D. L.; Horrell, W. A. (Deere and Company)

2001-09-24T23:59:59.000Z

303

Hydrogen Vehicles and Fueling Infrastructure in China  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Vehicles and Fueling Infrastructure in China Hydrogen Vehicles and Fueling Infrastructure in China Prof. Jinyang Zheng Director of IPE, Zhejiang University Director of Engineering Research Center for High Pressure Process Equipment and Safety, Ministry of Education Vice Director of China National Safety Committee of Pressure Vessels Vice President of CMES-P.R. China China Representative of ISO/TC197 and ISO/TC58 U.S. Department of Transportation and U. S. Department of Energy Workshop: Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Development of Vehicles,Dec.10-11,2009, Washington Safety and Regulatory Structure for CNG,CNG-H2,H2 Vehicles and Fuels in China Content Hydrogen Production CNG Refueling Station Hydrogen Refueling Station Shanxi HCNG Project U.S. Department of Transportation and U. S. Department of Energy Workshop: Compressed Natural Gas and

304

Home and Neighborhood Refueling as a New Paradigm for Hydrogen Vehicles Xuping Li and Dr. Joan Ogden  

E-Print Network (OSTI)

will not be achieved until hydrogen takes a substantial market share as an energy carrier for vehicles. The analysis an appealing hydrogen pathway, especially during the early stage of market penetration. Additionally, home REFUELING METHODOLOGY SUMMARY REFFERENCES Overall, this project aims at informing private and public

California at Davis, University of

305

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network (OSTI)

costs (energy + demand) Natural gas Contingency Installationcosts (energy + demand) Natural gas Contingency InstallationNatural gas ($/MMBtu) Electricity ($/kWh) Demand charge ($/

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

306

Technical Options For Distributed Hydrogen Refueling Stations in a Market Driven Situation  

E-Print Network (OSTI)

French electricity and natural gas prices, we actually loseis adimensional, the natural gas price and electricity priceline, the needed natural gas/electricity price ratio needed

Simonnet, Antoine

2005-01-01T23:59:59.000Z

307

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network (OSTI)

480 kg/day natural gas reformation station. The table belowReciprocating gas compressor Electrolyzer Station: Thisfor reformer-type stations (natural gas), however, is more

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

308

Reducing Duration of Refueling Outage by Optimizing Core Design and Shuffling Sequence  

SciTech Connect

Reducing the duration of refueling outage is possible by optimizing the core design and the shuffling sequence. For both options software tools have been developed that have been applied to the three most recent cycles of the Borssele plant in the Netherlands. Applicability of the shuffling sequence optimization to boiling water reactors has been demonstrated by a comparison to a recent shuffle plan used in the Hatch plant located in the United States. Their uses have shown that both core design and shuffling sequence optimization can be exploited to reduce the time needed for reloading a core with an in-core shuffling scheme. Ex-core shuffling schemes for pressurized water reactors can still have substantial benefit from a core design using a minimized number of insert shuffles.

Wakker, P.H.; Verhagen, F.C.M.; Bloois, J.T. van; Sutton, W.R. III

2005-07-15T23:59:59.000Z

309

Secretary Chu Announces Best Buy, Johnson Controls, Pacific Gas...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

As of 2012, the company operates four CNG fueling stations and more than 100 CNG refuse-collection and support vehicles. Veolia joined the partnership in December...

310

Environmental implications of alternative-fueled automobiles: Air quality and greenhouse gas tradeoffs  

Science Conference Proceedings (OSTI)

The authors analyze alternative fuel-powerstrain options for internal combustion engine automobiles. Fuel/engine efficiency, energy use, pollutant discharges, and greenhouse gas emissions are estimated for spark and compression ignited, direct injected (DI), and indirect injected (II) engines fueled by conventional and reformulated gasoline, reformulated diesel, compressed natural gas (CNG), and alcohols. Since comparisons of fuels and technologies in dissimilar vehicles are misleading, the authors hold emissions level, range, vehicle size class, and style constant. At present, CNG vehicles have the best exhaust emissions performance while DI diesels have the worst. Compared to a conventional gasoline fueled II automobile, greenhouse gases could be reduced by 40% by a DI CNG automobile and by 25% by a DI diesel. Gasoline- and diesel-fueled automobiles are able to attain long ranges with little weight or fuel economy penalty. CNG vehicles have the highest penalty for increasing range, due to their heavy fuel storage systems, but are the most attractive for a 160-km range. DI engines, particularly diesels, may not be able to meet strict emissions standards, at least not without lowering efficiency.

MaClean, H.L.; Lave, L.B.

2000-01-15T23:59:59.000Z

311

South Asia Urban Air Quality Management Briefing Note No. 2 International Experience with CNG Vehicles  

E-Print Network (OSTI)

Natural gas vehicles (NGVs) are much cleaner than vehicles fueled by conventional diesel, especially with respect to the emissions of fine particulate matter which is the pollutant of interest in South Asia. Many cities around the world have mounted NGV programs with varying degree of success. How can NGV programs be made viable and sustainable in the long run? Natural gas (NG) is a clean-burning alternative fuel with a significant potential for reducing harmful emissions, especially those of fine particles, from vehicles. Vehicular particulate emissions in turn are a concern, because they are small (small particles are especially harmful to health) and numerous, and occur near ground level where people live and work. In response, some have argued for mandating NG as an automotive fuel, most notably in Delhi. This note discusses where NG vehicle 1 programs have been successful, where have they failed and why.

unknown authors

2000-01-01T23:59:59.000Z

312

Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas and Natural Gas and Propane Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Fuel Tax Any individual using or selling compressed natural gas (CNG), liquefied

313

Alternative Fuels Data Center: Natural Gas Fuel Safety  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Fuel Natural Gas Fuel Safety to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Safety on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Safety on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Safety on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Safety on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Fuel System & Cylinders Fuel Safety Traffic Accident Filling CNG Tanks Laws & Incentives Natural Gas Fuel Safety

314

Alternative Fuels Data Center: Natural Gas Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Stations on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Natural Gas Fueling Stations Photo of a compressed natural gas fueling station. Hundreds of compressed natural gas (CNG) fueling stations are available in

315

Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Vehicles Natural Gas Vehicles Safety Regulations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Vehicles Safety Regulations Vehicles converted to operate on compressed natural gas (CNG), liquefied

316

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network (OSTI)

Storage Dispenser Delivery and Installation Cost Hydrogen Cost Natural GasNatural Gas Cost ($/MMBTU, HHV) Electricity Cost ($/kWh) Production Volume StorageNatural Gas Reformer Reformate Hydrogen H2 Purifier High -pressure hydrogen compressor Compressed hydrogen storage

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

317

Diesel and CNG Transit Bus Emissions Characterization By Two Chassis Dynamometer Laboratories: Results and Issues  

DOE Green Energy (OSTI)

Emissions of six 32 passenger transit buses were characterized using one of the West Virginia University (WVU) Transportable Heavy Duty Emissions Testing Laboratories, and the fixed base chassis dynamometer at the Colorado Institute for Fuels and High Altitude Engine Research (CIFHAER). Three of the buses were powered with 1997 ISB 5.9 liter Cummins diesel engines, and three were powered with the 1997 5.9 liter Cummins natural gas (NG) counterpart. The NG engines were LEV certified. Objectives were to contrast the emissions performance of the diesel and NG units, and to compare results from the two laboratories. Both laboratories found that oxides of nitrogen and particulate matter (PM) emissions were substantially lower for the natural gas buses than for the diesel buses. It was observed that by varying the rapidity of pedal movement during accelerations in the Central Business District cycle (CBD), CO and PM emissions from the diesel buses could be varied by a factor of three or more. The driving styles may be characterized as aggressive and non-aggressive, but both styles followed the CBD speed command acceptably. PM emissions were far higher for the aggressive driving style. For the NG fueled vehicles driving style had a similar, although smaller, effect on NO{sub x}. It is evident that driver habits may cause substantial deviation in emissions for the CBD cycle. When the CO emissions are used as a surrogate for driver aggression, a regression analysis shows that NO{sub x} and PM emissions from the two laboratories agree closely for equivalent driving style. Implications of driver habit for emissions inventories and regulations are briefly considered.

Nigel N. Clark, Mridul Gautam; Byron L. Rapp; Donald W. Lyons; Michael S. Graboski; Robert L. McCormick; Teresa L. Alleman; Paul Norton

1999-05-03T23:59:59.000Z

318

Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage  

E-Print Network (OSTI)

the case of natural gas vehicles. Energy Policy 35, 5865from natural gas for vehicles. Energy Policy 30, 613619.

Melaina, Marc W; Bremson, Joel

2008-01-01T23:59:59.000Z

319

Technical Options For Distributed Hydrogen Refueling Stations in a Market Driven Situation  

E-Print Network (OSTI)

according to French electricity prices, that is around aThe natural gas and electricity prices have been extractedneeded natural gas/electricity price ratio needed so that

Simonnet, Antoine

2005-01-01T23:59:59.000Z

320

Effective Personnel Exposure Control in Shortened Refueling Outages: Final Report: Review of Remote Monitoring Systems in Radiation Protection Applications  

Science Conference Proceedings (OSTI)

Remote monitoring technology (RMT) significantly enhances worker protection and reduces worker radiation exposure, particularly during shortened refueling outages. This report provides a brief description of the hardware and features of remote monitoring systems, then focuses on nuclear plant experiences in applying such systems for enhanced radiation protection. It also discusses EPRI's RMT research program and formation of the RMT Working Group to support research in this area. Such information will gr...

2003-12-02T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Vehicle Technologies Office: Natural Gas Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Research Natural Gas Research Natural gas offers tremendous opportunities for reducing the use of petroleum in transportation. Medium and heavy-duty fleets, which have significant potential to use natural gas, currently consume more than a third of the petroleum in transportation in the U.S. Natural gas is an excellent fit for a wide range of heavy-duty applications, especially transit buses, refuse haulers, and Class 8 long-haul or delivery trucks. In addition, natural gas can be a very good choice for light-duty vehicle fleets with central refueling. See the Alternative Fuels Data Center for a description of the uses and benefits of natural gas vehicles or its Laws and Incentives database for information on tax incentives. The Vehicle Technologies Office (VTO) supports the development of natural gas engines and research into renewable natural gas production.

322

Is Methanol the Transportation Fuel of the Future?  

E-Print Network (OSTI)

Richards, and L. Aruoux, "CNG Market DevelopmentStudy," Pub.with compressed natural gas (CNG). Weconclude that methanolrelative to methanol and CNG. ) )ASCENDANCE OF METHANOL

Sperling, Daniel; DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

323

A Framework for Testing Innovative Transportation Solutions: A Case Study of CarlinkA Commuter Carsharing Program  

E-Print Network (OSTI)

with compressed natural gas (CNG) Honda Civics, smartcards,startup delays, and limited CNG infrastructure (3). Thesmartcards alone. Limited CNG Infrastructure: During CarLink

Shaheen, Susan; Novick, Linda

2004-01-01T23:59:59.000Z

324

A Framework for Testing Innovative Transportation Solutions: A Case Study of CarLink--A Commuter Carhsaring Program  

E-Print Network (OSTI)

with compressed natural gas (CNG) Honda Civics, smartcards,startup delays, and limited CNG infrastructure (3). Thesmartcards alone. Limited CNG Infrastructure: During CarLink

Shaheen, Susan

2004-01-01T23:59:59.000Z

325

Building Out Alternative Fuel Retail Infrastructure: Government Fleet Spillovers in E85  

E-Print Network (OSTI)

with compressed natural gas (CNG). Vehicles that are capablecapable of burning pure CNG as well. Thus, some hydrogenof Energy, there were 778 CNG stations nationwide at the end

Corts, Kenneth S.

2009-01-01T23:59:59.000Z

326

The Design and Development of the University of California, Davis FutureCar  

E-Print Network (OSTI)

compressednatural gas (CNG),diesel, and reformulatedcomparedto RFG. The advantages of CNG very low emissions andinfrastructure required to provide CNG vehicles does not yet

1997-01-01T23:59:59.000Z

327

Life-Cycle Water Impacts of U.S. Transportation Fuels  

E-Print Network (OSTI)

compressed natural gas (CNG) and electricity also maintain asuch as electricity, CNG, and hydrogen require completelyThe remaining fuels are CNG and electricity, both of which

Scown, Corinne Donahue

2010-01-01T23:59:59.000Z

328

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

Compressed Natural Gas (CNG), synthetic diesel, methanol,FCX Fuels Gasoline, Diesel, CNG, FT diesel, methanol, H2,H2, electricity Gasoline, diesel, CNG, biogas, LPG, ethanol,

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

329

A Study of Adaptive and Optimizing Behavior for Electric Vehicles Based on Interactive Simulation Games and Revealed Behavior of Electric Vehicle Owners  

E-Print Network (OSTI)

compressednatural gas vehicles (CNG) having ranges of 50 to200 miles. A few hundred CNG ownersare experienced with slowctric, hydrogen,methanol,CNG, ethanol. Theprimary reason for

Turrentine, Thomas; Lee-Gosselin, Martin; Kurani, Kenneth; Sperling, Daniel

1992-01-01T23:59:59.000Z

330

Key Issues for the control of refueling outage duration and costs in PWR Nuclear Power Plants  

SciTech Connect

For several years, EDF, within the framework of the CIDEM1 project and in collaboration with some German Utilities, has undertaken a detailed review of the operating experience both of its own NPP and of foreign units, in order to improve the performances of future units under design, particularly the French-German European Pressurized Reactor (EPR) project. This review made it possible to identify the key issues allowing to decrease the duration of refueling and maintenance outages. These key issues can be classified in 3 categories Design, Maintenance and Logistic Support, Outage Management. Most of the key issues in the design field and some in the logistic support field have been studied and could be integrated into the design of any future PWR unit, as for the EPR project. Some of them could also be adapted to current plants, provided they are feasible and profitable. The organization must be tailored to each country, utility or period: it widely depends on the power production environment, particularly in a deregulation context. (author)

Degrave, Claude [Electricite de France, EDF-SEPTEN, 12-14 avenue Dutrievoz 69628 Villeurbanne Cedex (France)

2002-07-01T23:59:59.000Z

331

liquefied natural gas LNG | OpenEI  

Open Energy Info (EERE)

liquefied natural gas LNG liquefied natural gas LNG Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics

332

compressed natural gas | OpenEI  

Open Energy Info (EERE)

compressed natural gas compressed natural gas Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (3 years ago) Date Updated December 13th, 2010 (3 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics

333

Economics of natural gas upgrading  

SciTech Connect

Natural gas could be an important alternative energy source in meeting some of the market demand presently met by liquid products from crude oil. This study was initiated to analyze three energy markets to determine if greater use could be made of natural gas or natural gas derived products and if those products could be provided on an economically competitive basis. The three markets targeted for possible increases in gas use were motor fuels, power generation, and the chemical feedstocks market. The economics of processes to convert natural gas to transportation fuels, chemical products, and power were analyzed. The economic analysis was accomplished by drawing on a variety of detailed economic studies, updating them and bringing the results to a common basis. The processes analyzed included production of methanol, MTBE, higher alcohols, gasoline, CNG, and LNG for the transportation market. Production and use of methanol and ammonia in the chemical feedstock market and use of natural gas for power generation were also assessed. Use of both high and low quality gas as a process feed stream was evaluated. The analysis also explored the impact of various gas price growth rates and process facility locations, including remote gas areas. In assessing the transportation fuels market the analysis examined production and use of both conventional and new alternative motor fuels.

Hackworth, J.H.; Koch, R.W.

1995-07-01T23:59:59.000Z

334

Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment  

Science Conference Proceedings (OSTI)

Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

McCoy, G.A.; Kerstetter, J.; Lyons, J.K. [and others

1993-06-01T23:59:59.000Z

335

Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage  

E-Print Network (OSTI)

case of natural gas vehicles. Energy Policy 35, 58655875.gas for vehicles. Energy Policy 30, 613619. Fracchia,DC. GAO, 2000. Energy Policy Act of 1992: Limited Progress

Melaina, Marc W; Bremson, Joel

2008-01-01T23:59:59.000Z

336

Impact of Compressed Natural Gas Fueled Buses on Street Pavements 6. Performing Organization Code 7. Author(s)  

E-Print Network (OSTI)

Federal Clean Air Act Amendments of 1990 (CAAA) and the Energy Policy Act of 1992 (EPACT), together with other state regulations have encouraged or mandated transit systems to use alternative fuels to power bus fleets. Among such fuels, compressed natural gas (CNG) is attractive, although it must be stored in robust, heavy pressurized cylinders, capable of withstanding pressures up to 5,000 psi. Such systems are typically heavier than conventional diesel storage tanks. As a result, this raises gross vehicle weight, sometimes significantly, which then increases the consumption of the pavement over which CNG buses operate. Capital Metro, the Austin, Texas transit authority, is currently evaluating a number of CNG fueled buses. As part of the U.S. DOT Region Six University Transportation Centers Program (UTCP), a study was instigated into the scale of incremental pavement consumption associated with the operation of these buses. The study suggests that replacing current vehicles with CNG powered models utilizing aluminum storage tanks would raise average network equivalent single rehabilitation costs across the network of over four percent. Finally, it recommends that full cost study be undertaken with evaluation of the adoption of

Dingyi Yang; Robert Harrison

1995-01-01T23:59:59.000Z

337

Natural Gas 1998 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Northeast project involved CNGs plan to lease salt through 2003 (Figure 12). If all were implemented as

338

An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles  

E-Print Network (OSTI)

Kathuria, V. , 2004. Impact of CNG on vehicular pollution inin Delhi: before and after CNG as fuel. EnvironmentalS.A.K. , 2004. Development of CNG infrastructure in India

Yeh, Sonia

2007-01-01T23:59:59.000Z

339

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARRA 2009 Teresa Jones 2009 East Rockaway, New York Renewable Energy Program Install CNG refueling station equipment above ground at existing Public Works facility (existing...

340

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the "Wisconsin Clean Transportation Program". The action involves installation of a CNG refueling equipment including a compressor, storage and vehicle dispenser. Installation...

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the development of unique alternative fuel refueling locations.- Nassau County-Hempstead CNG TASKS ONLY 12 02 2010 Michael Scarpino Digitally signed by Michael Scarpino DN:...

342

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1209 - 1213 Omaha, NE Midwest Region Alternative Fuels Project NEPA Approval for 1 CNG Vehicle Refueling Appliance to be installed in Omaha, NE. Grant funded by Solicitation...

343

U.S. DEPARTMENT OF ENERGY - NETL CATEGORICAL EXCLUSION (CX) DESIGNATIO...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

fuel vehicles and the development of 15 unique refueling locations(3 electric charging,8 CNG,and 4 propane) ADMIN PROJ MANAGEMENT TASKS ONLY NO CONSTRUCTION Scarpinm Digitally...

344

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and the development of unique alternative fuel refueling locations.- Downer's Grove CNG TASKS ONLY. 01 27 2011 Michael Scarpino Digitally signed by Michael Scarpino DN:...

345

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CHICAGO AREA ALTERNATIVE FUELS DEPLOYMENT PROJECT The action involves installation of a CNG refueling equipment including a compressor, storage and vehicle dispenser. Installation...

346

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6126 Parallel, Kansas City, KS Midwest Region Alternative Fuels Project Install CNG Fast and Slow Fill Refueling Infrastructure and Electric Recharging Infrastructure. Grant ID:...

347

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and the development of unique alternative fuel refueling locations.- Town of Fairfield CNG Fueling TASKS ONLY 05 05 2010 Michael Scarpino Digitally signed by Michael Scarpino DN:...

348

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

development of unique alternative fuel refueling locations.- Nassau County-Hicksville CNG TASKS ONLY 12 02 2010 Michael Scarpino Digitally signed by Michael Scarpino DN:...

349

U.S. DEPARTMENT OF ENERGY - NETL CATEGORICAL EXCLUSION (CX) DESIGNATIO...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the deployment of 116 various alternative fuel vehicles and the development of 5 unique CNG refueling locations. ADMINISTRATIVE PROJECT MANAGEMENT TASKS ONLY NO CONSTRUCTION...

350

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act - Clean Energy Coalition Michigan Green Fleets Improvementsupgrades to existing CNG refueling facility. This CX form is for one location in this project selected under...

351

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1209 - 1213 Omaha, NE Midwest Region Alternative Fuels Project NEPA approval for one CNG Vehicle Refueling Appliance (VRA) to be installed at Metropolitan Community College in...

352

U.S. DEPARTMENT OF ENERGY - NETL CATEGORICAL EXCLUSION (CX) DESIGNATIO...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the deployment of 183 various alternative fuel vehicles and the development of 9 unique CNG refueling locations. ADMINISTRATIVE PROJECT MANAGEMENT TASKS ONLY NO CONSTRUCTION...

353

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and the development of unique alternative fuel refueling locations.- Village of Minoa CNG TASKS ONLY Michael Scarpino Digitally signed by Michael Scarpino DN: cnMichael...

354

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and the development of unique alternative fuel refueling locations.- Doreen's Pizza CNG TASKS ONLY. 01 27 2011 Michael Scarpino Digitally signed by Michael Scarpino DN:...

355

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

vehicles and the development of unique alternative fuel refueling locations.- Yellow Cab CNG Fueling TASKS ONLY 05 04 2010 Michael Scarpino Digitally signed by Michael Scarpino DN:...

356

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Clean Energy Coalition Michigan Green Fleets Improvements andor upgrades to existing CNG refueling station in Detroit, MI. This CX form is for one location in this project...

357

U.S. Department of Energy Categorical Exclusion Determination...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

proposes to perform energy retrofits to municipal buildings and garages, installation of CNG refueling station and street light energy evaluation and retrofits. B5.1 - Actions to...

358

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and the development of unique alternative fuel refueling locations.- DuPage County CNG TASKS ONLY. 01 27 2011 Michael Scarpino Digitally signed by Michael Scarpino DN:...

359

U.S. Department of Energy Categorical Exclusion Determination...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

retrofits to municipal buildings and garages, installation of CNG refueling station and street light energy evaluation and retrofits. B5.1 - Actions to conserve energy or water...

360

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

development of alternative fuel refueling locations.- CX for National Grid No Syracuse CNG Site ONLY 04 28 2010 Michael Scarpino Digitally signed by Michael Scarpino DN:...

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the development of unique alt. fuel refueling locations.- DuPage Forest Preserve CNG & LPG TASKS ONLY. 2 17 2011 Michael Scarpino Digitally signed by Michael Scarpino DN:...

362

Determining the Lowest-Cost Hydrogen Delivery Mode  

E-Print Network (OSTI)

for compressed gas truck stations compared to pipelineLH 2 Trucks Gas Pipelines Refueling station a RefuelingPlant Compressed Gas Trucks Refueling station a (compressor,

Yang, Christopher; Ogden, Joan M

2008-01-01T23:59:59.000Z

363

Gas Mileage Tips - Driving More Efficiently  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving More Efficiently Driving More Efficiently Personalize Fuel Prices Select the fuel type and enter your fuel price to personalize savings estimates. Regular Midgrade Premium Diesel E85 CNG LPG $ 3.33 /gal Save My Prices Use Default Prices Click "Save My Prices" to apply your prices to other pages, or click "Use Default Prices" use national average prices. Drive Sensibly frustrated driver Aggressive driving (speeding, rapid acceleration and braking) wastes gas. It can lower your gas mileage by 33% at highway speeds and by 5% around town. Sensible driving is also safer for you and others, so you may save more than gas money. Fuel Economy Benefit: 5%-33% Equivalent Gasoline Savings: $0.17-$1.10/gallon Observe the Speed Limit (New Information) Graph showing MPG decreases rapidly at speeds above 50 mph

364

A Transactions Choice Model for Forecasting Demand for Alternative-Fuel Vehicles  

E-Print Network (OSTI)

compressednatural gas (CNG), methanol, and electric (EV).avallabday for ded;cated CNG vehicle Service s~atlon avada~CNOStatmn Wagon (dummy) CNG*Van(dummy) CNG-~Utlhty(dummy)

Brownstone, David; Bunch, David S; Golob, Thomas F; Ren, Weiping

1996-01-01T23:59:59.000Z

365

A Transaction Choice Model for Forecasting Demand for Alternative-Fuel Vehicles  

E-Print Network (OSTI)

compressednatural gas (CNG), methanol, and electric (EV).avallabday for ded;cated CNG vehicle Service s~atlon avada~CNOStatmn Wagon (dummy) CNG*Van(dummy) CNG-~Utlhty(dummy)

Brownstone, David; Bunch, David S.; Golob, Thomas F.; Ren, Weiping

1996-01-01T23:59:59.000Z

366

Energy Systems and Population Health  

E-Print Network (OSTI)

Precursors Reduction (%) CNG vs EPA94 diesel bus Particulateto compressed natural gas (CNG)), and extended life-span of0.6% of the annual costs of CNG buses, for 2.6% for the CNG

2004-01-01T23:59:59.000Z

367

Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends  

Science Conference Proceedings (OSTI)

Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.

Kirby S. Chapman; Amar Patil

2007-06-30T23:59:59.000Z

368

Development of an ultra-safe, ultra-low emissions natural gas-fueled bus. Phase 1: Systems design -- Final report  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) contracted with Southwest Research Institute (SwRI) to develop an ultra-safe, ultra-low emissions natural gas-fueled school bus. To develop the bus, SwRI teamed with Blue Bird, Incorporated, a school bus manufacturer, Deere Power Systems Group, an engine manufacturer, and CNG Cylinder Company, a supplier of compressed natural gas storage and handling systems. The primary focus of work for Phase 1 was the design of the component systems, i.e. vehicle, engine, and fuel storage systems. The bus chassis prototype is expected to be completed by the middle of July, 1995. A complete prototype vehicle body and chassis should be delivered to SwRI by the beginning of December, 1995. This prototype vehicle will include the new compressed natural gas cylinders and associated fuel storage system hardware which has been designed by CNG Cylinder Company.

Kubesh, J. [Southwest Research Inst., San Antonio, TX (United States)

1995-05-01T23:59:59.000Z

369

Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Santa Fe Metro Fleet Santa Fe Metro Fleet Runs on Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas on Google Bookmark Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas on Delicious Rank Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas on AddThis.com... June 8, 2010 Santa Fe Metro Fleet Runs on Natural Gas " CNG buses are reliable, have cleaner-burning engines, offer increased oil life, and have lower fuel costs than diesel.

370

Analysis of Cost-Effective Off-Board Hydrogen Storage and Refueling Stations  

DOE Green Energy (OSTI)

This report highlights design and component selection considerations for compressed gas hydrogen fueling stations operating at 5000 psig or 350 bar. The primary focus is on options for compression and storage in terms of practical equipment options as well as various system configurations and how they influence delivery performance and station economics.

Ted Barnes; William Liss

2008-11-14T23:59:59.000Z

371

Hydrogen Refueling System Based on Autothermal Cyclic Reforming Ravi V. Kumar, George N. Kastanas, Shawn Barge,  

E-Print Network (OSTI)

for the production of hydrogen or syngas from many fuels, including natural gas, diesel fuel, coal, and renewable hydrogen generating and dispensing system is shown in Figure 2. The hydrogen-rich syngas generated the water. The syngas is purified in a Pressure Swing Adsorption (PSA) system. The PSA delivers high purity

372

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network (OSTI)

gasoline. CNG is compressed natural gas. BTL is biomass-gasoline. CNG is compressed natural gas. BTL is biomass-Petroleum Gas (LPG) Compressed Natural Gas(CNG) Liquefied

2007-01-01T23:59:59.000Z

373

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network (OSTI)

gasoline. CNG is compressed natural gas. BTL is biomass-gasoline. CNG is compressed natural gas. BTL is biomass-Petroleum Gas (LPG) Compressed Natural Gas(CNG) Liquefied

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

374

liquefied petroleum gas | OpenEI  

Open Energy Info (EERE)

3 3 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142288523 Varnish cache server liquefied petroleum gas Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol

375

Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles  

E-Print Network (OSTI)

electric, methanol, and compressed natural gas vehicles withinclude electric, compressed natural gas (CNG), and methanoltypes: gasoline, compressed natural gas (CNG), methanol, and

Brownstone, David; Bunch, David S; Train, Kenneth

1999-01-01T23:59:59.000Z

376

Evaluation of three catalysts formulated for methane oxidation on a cng-fueled pickup truck. Technical report  

Science Conference Proceedings (OSTI)

The report describes the exhaust emission results obtained from the evaluation of three specialized methane catalytic converters supplied by three different catalysts manufacturers. The catalytic converters were evaluated using a compressed natural gas-fueled Dodge Dakota pickup truck. The report includes a description of the catalytic converters, the test vehicle, test facilities and test procedures.

Piotrowski, G.K.; Schaefer, R.M.

1993-12-01T23:59:59.000Z

377

Clean air program: Design guidelines for bus transit systems using liquefied petroleum gas (LPG) as an alternative fuel. Final report, July 1995-April 1996  

Science Conference Proceedings (OSTI)

The Federal Transit Administration (FTA) has initiated the development of `Design Guidelines for Bus Transit Systems Using Alternative Fuels.` This report provides design guidelines for the safe uses of Liquefied Petroleum Gas (LPG). It forms a part of the series of individual monographs being published by the FTA on (the guidelines for the safe use of) Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes for the subject fuel the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

Raj, P.K.; Hathaway, W.T.; Kangas, R.

1996-09-01T23:59:59.000Z

378

Contract No. DE-AC36-99-GO10337Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses  

E-Print Network (OSTI)

Contract No. DE-AC36-99-GO10337NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

A. Del Toro; M. Frailey; F. Lynch; S. Munshi; S. Wayne; A. Del Toro; M. Frailey; F. Lynch; S. Munshi; S. Wayne

2005-01-01T23:59:59.000Z

379

Unitized Design for Home Refueling Appliance for Hydrogen Generation to 5,000 psi - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Timothy Norman (Primary Contact), Monjid Hamdan Giner, Inc. (formerly Giner Electrochemical Systems, LLC) 89 Rumford Avenue Newton, MA 02466 Phone: (781) 529-0556 Email: tnorman@ginerinc.com DOE Manager HQ: Eric L. Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Contract Number: DE-SC0001486 Project Start Date: August 15, 2010 Project End Date: August 14, 2012 Fiscal Year (FY) 2012 Objectives Detail design and demonstrate subsystems for a unitized * electrolyzer system for residential refueling at 5,000 psi to meet DOE targets for a home refueling appliance (HRA) Fabricate and demonstrate unitized 5,000 psi system * Identify and team with commercialization partner(s) * Technical Barriers

380

Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas and Liquefied Petroleum Gas Conversions: Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Robert C. Motta Kenneth J. Kelly William W. Warnock Executive Summary The National Renewable Energy Laboratory (NREL) contracted with conversion companies in six states to convert approximately 900 light-duty Federal fleet vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas (LPG). The contracts were initiated in order to help the Federal government meet the vehicle acquisition requirements of the Energy Policy Act of 1992 (EPACT) during a period of limited

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Htfiffi m'* Effects of Alternative Fuels on Vehicle Emissions  

E-Print Network (OSTI)

| Issue 1 | Winter 2013 17 16 16 TransForum In order for CNG to take hold, many more stations will need the country will have to be increased. There are roughly 500 publicly available CNG refueling stations automotive industry leaders test and analyze CNG vehicles. In particular, Argonne's Greenhouse Gases

382

STATE OF CALIFORNIA NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network (OSTI)

$500,000 $0 58.1% Did Not Pass 2 Universal Waste Systems, Inc. CNG Refueling Station for Refuse trucks Infrastructure Project $470,600 $0 $ 470,600 89.7% Cancelled Awardee 19 SCAQMD Ontario 76 CNG Infrastructure Alternative Fuel CNG Station $195,600 $0 $195,600 81.9% Cancelled Awardee 18 South Coast Air Quality

383

CALIFORNIA ALTERNATIVE FUELS MARKET ASSESSMENT  

E-Print Network (OSTI)

Not Pass 2 Universal Waste Systems, Inc. CNG Refueling Station for Refuse trucks with Public Access $200 Infrastructure Project $470,600 $470,600 89.7% Awardee 19 SCAQMD Ontario 76 CNG Infrastructure Installation $300 Alternative Fuel CNG Station $195,600 $195,600 81.9% Awardee 18 South Coast Air Quality Management District

384

1. Report No. SWUTC/12/476660-00021-1  

E-Print Network (OSTI)

$500,000 $0 58.1% Did Not Pass 2 Universal Waste Systems, Inc. CNG Refueling Station for Refuse trucks Infrastructure Project $470,600 $0 $ 470,600 89.7% Cancelled Awardee 19 SCAQMD Ontario 76 CNG Infrastructure Alternative Fuel CNG Station $195,600 $0 $195,600 81.9% Cancelled Awardee 18 South Coast Air Quality

385

ITEM NO. SUPPLIES/SERVICES QUANTITY UNIT UNIT PRICE AMOUNT NAME OF OFFEROR OR CONTRACTOR  

E-Print Network (OSTI)

Not Pass 2 Universal Waste Systems, Inc. CNG Refueling Station for Refuse trucks with Public Access $200 Infrastructure Project $470,600 $470,600 89.7% Awardee 19 SCAQMD Ontario 76 CNG Infrastructure Installation $300 Alternative Fuel CNG Station $195,600 $195,600 81.9% Awardee 18 South Coast Air Quality Management District

386

The Bumpy Road to Hydrogen  

E-Print Network (OSTI)

gases (LPG) and compressed natural gas (CNG) have persistedbenefits from compressed natural gas, ethanol, methanol,

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

387

Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Natural Gas and Hydrogen Fuels Workshop Compressed Natural Gas and Hydrogen Fuels Workshop Fuel experts from China, India, and the United States shared lessons learned about deploying CNG- and hydrogen-fueled vehicles in public transit fleets and the consumer sector at the Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles workshop. The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) hosted the workshop on December 10-11, 2009. Here you'll find information about the workshop's focus, agenda and notes, and presentations. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Focus of the Workshop The workshop aimed to: Compare fuel properties-including blends-industries, and applications (e.g., product specifications, tanks, reliability, safety procedures, risk mitigation, and dispensing)

388

Ruling on Liquefied Natural Gas (LNG) Tax Rate Sparks Debate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

IRS Ruling IRS Ruling On August 7, 1995, the Federal Register reported the Internal Revenue Service (IRS) ruling that liquefied natural gas (LNG) is a liquid fuel and will thus be taxed as a "special motor fuel," effective October 1, 1995. This definition covers all liquids that substitute for gasoline and diesel. The ruling refuted the claim of petitioners, such as the Natural Gas Vehicle (NGV) Coalition, that LNG is the same as compressed natural gas (CNG) and should be taxed at the equivalent excise tax rate. The IRS also rejected the Coalition's proposal that the NGV tax rate be expressed as gasoline gallon equivalent (GGE) rather than in thousand cubic feet (mcf) as provided in the Internal Revenue Code, but stated that no restrictions exist on taxpayers engaged in fuel sales based on

389

Eliminating the effects of greenhouse gases  

Science Conference Proceedings (OSTI)

From 1993 to 1997, more than $600 million will be invested in about 190 new landfill gas energy projects, 75% of which will generate 400 megawatts of electric power. Most of the others will pump methane (CH{sub 4}) directly into natural gas transmission lines or be used to power steam generators. U.S. landfills now produce about 40 million tons of landfill gas per year, and half that tonnage is CH{sub 4}, an alternate fuel. By the year 2000, 90% of all federal and state fleet vehicles must be powered by alternate fuels. Twenty-million tons of CH{sub 4}, converted to compressed natural gas (CNG) at municipal and private landfill refueling stations, could power 8 million natural gas vehicles (NGV). In addition to conserving 8 billion gallons of gasoline per year that would help to reduce this nation`s trade unbalance, the clean-burning CNG would also reduce airborne pollutants.

Straitz, J.F. III [NAO Inc., Philadelphia, PA (United States)

1996-11-01T23:59:59.000Z

390

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction of processing plant for landfill gas (LFG) to compressed natural gas (CNG) and a CNG dispensing station at the Seminole Road Landfill. Steven Richardson...

391

Transportation and its Infrastructure  

E-Print Network (OSTI)

York City Transit Hybrid and CNG Buses: Interim EvaluationECMT, 2007). Natural Gas (CNG / LNG / GTL) Natural gas,It may be stored in compressed (CNG) or liquefied (LNG) form

2007-01-01T23:59:59.000Z

392

Framework for Bus Rapid Transit Development and Deployment Planning  

E-Print Network (OSTI)

ATSAC AVL BOCC BRT Caltrans CBD CNG DGPS EIS FTA GPS ITE ITScompressed natural gas (CNG) diesel-electric hybrids,compressed natural gas (CNG) buses. The buses have a special

Miller, Mark A.; Yin, Yafeng; Balvanyos, Tunde; Ceder, Avishai

2004-01-01T23:59:59.000Z

393

Transportation Technologies: Implications for Planning  

E-Print Network (OSTI)

mixes, natural gas (methane, CNG/LNG), and electric power (gas: a fuel in compressed (CNG) or liquefied (LNG) form.The CNG form, more common in the transportation sector, is

Deakin, Elizabeth; Kim, Songju

2001-01-01T23:59:59.000Z

394

Lifecycle Analyses of Biofuels  

E-Print Network (OSTI)

sulfur) ICEV, natural gas (CNG) ICEV, LPG (P95/BU5) ICEV,Methanol Ethanol Methane (CNG, LNG) Propane (LPG) Hydrogen (M85 (wood) Natural gas CNG (wood) Note: percentage changes

Delucchi, Mark

2006-01-01T23:59:59.000Z

395

Gaseous fueled vehicles: A role for natural gas and hydrogen  

SciTech Connect

The commercialization of gaseous hydrogen fueled vehicles requires both the development of hydrogen fueled vehicles and the establishment of a hydrogen fueling infrastructure. These requirements create a classic chicken and egg scenario in that manufacturers will not build and consumers will not buy vehicles without an adequate refueling infrastructure and potential refueling station operators will not invest the needed capital without an adequate market to serve. One solution to this dilemma is to create a bridging strategy whereby hydrogen is introduced gradually via another carrier. The only contending alternative fuel that can act as a bridge to hydrogen fueled vehicles is natural gas. To explore this possibility, IGT is conducting emission tests on its dedicated natural gas vehicle (NGV) test platform to determine what, if any, effects small quantities of hydrogen have on emissions and performance. Furthermore, IGT is actively developing an adsorbent based low-pressure natural gas storage system for NGV applications. This system has also shown promise as a storage media for hydrogen. A discussion of our research results in this area will be presented. Finally, a review of IGT's testing facility will be presented to indicate our capabilities in conducted natural gas/hydrogen vehicle (NGHV) research. 3 refs., 10 figs.

Blazek, C.F.; Jasionowski, W.J.

1991-01-01T23:59:59.000Z

396

Gaseous fueled vehicles: A role for natural gas and hydrogen  

DOE Green Energy (OSTI)

The commercialization of gaseous hydrogen fueled vehicles requires both the development of hydrogen fueled vehicles and the establishment of a hydrogen fueling infrastructure. These requirements create a classic chicken and egg scenario in that manufacturers will not build and consumers will not buy vehicles without an adequate refueling infrastructure and potential refueling station operators will not invest the needed capital without an adequate market to serve. One solution to this dilemma is to create a bridging strategy whereby hydrogen is introduced gradually via another carrier. The only contending alternative fuel that can act as a bridge to hydrogen fueled vehicles is natural gas. To explore this possibility, IGT is conducting emission tests on its dedicated natural gas vehicle (NGV) test platform to determine what, if any, effects small quantities of hydrogen have on emissions and performance. Furthermore, IGT is actively developing an adsorbent based low-pressure natural gas storage system for NGV applications. This system has also shown promise as a storage media for hydrogen. A discussion of our research results in this area will be presented. Finally, a review of IGT's testing facility will be presented to indicate our capabilities in conducted natural gas/hydrogen vehicle (NGHV) research. 3 refs., 10 figs.

Blazek, C.F.; Jasionowski, W.J.

1991-01-01T23:59:59.000Z

397

Liquefied Natural Gas for Trucks and Buses  

DOE Green Energy (OSTI)

Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

James Wegrzyn; Michael Gurevich

2000-06-19T23:59:59.000Z

398

Rapidly refuelable fuel cell  

DOE Patents (OSTI)

This invention is directed to a metal-air fuel cell where the consumable metal anode is movably positioned in the cell and an expandable enclosure, or bladder, is used to press the anode into contact with separating spacers between the cell electrodes. The bladder may be depressurized to allow replacement of the anode when consumed.

Joy, Richard W. (Santa Clara, CA)

1983-01-01T23:59:59.000Z

399

Gas Mileage of 2012 Vehicles by VPG  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 VPG MV-1 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2012 VPG MV-1 13 City 15 Combined 18 Highway 2012 VPG MV-1 CNG 8 cyl, 4.6 L, Automatic 4-spd, CNG Compare 2012...

400

Gas Mileage of 2011 Vehicles by VPG  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 VPG MV-1 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2011 VPG MV-1 13 City 15 Combined 18 Highway 2011 VPG MV-1 CNG 8 cyl, 4.6 L, Automatic 4-spd, CNG Compare 2011...

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Denver SuperShuttle CNG Fleet Evaluation; Evaluacion de la flotilla de GNC de la empresa SuperShuttle de Denver  

DOE Green Energy (OSTI)

A description of a joint effort between Denver SuperShuttle, the Gas Research Institute (GRI) and DOE that evaluated two types of bi-fuel and compressed natural gas.

LaRocque, T.

2001-10-01T23:59:59.000Z

402

CEC-500-2010-FS-XXX Natural Gas Engine and  

E-Print Network (OSTI)

. to develop and optimize a sparkignited CNG Powered Refuse Truck Photo Credit: Cummings Westport, Inc. 11.9 liter CNG engine suitable for refuse and other vocational Class 8 applications. The engine conventional CNG engine to a more efficient and higher performance engine, and integrate it into a refuse

403

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kirschner Mission, Kansas Midwest Region Alternative Fuels Project: Black Hills Energy CNG Infrastructure Installation of a natural gas compressor system and CNG fueling station....

404

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(QGC) PMCPVT 2011 101011 - 123111 Kay Kelly Kaysville, UT Compressed Natural Gas (CNG)Infrastructure Development (New Station) The project will provide public CNG fueling...

405

Transportation Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

over 2.5 million miles per year. By replacing these buses with compressed natural gas (CNG) alternatives and funding the construction of additional CNG infrastructure, DOE will...

406

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PMCPVT 2010 Kay Kelly 10012009 - 12312013 Ogden, UT Compressed Natural Gas (CNG)Infrastructure Development Project will provide public CNG fueling infrastructure by...

407

FEG2006_BODY_FINAL_05_18_06_FINAL.pmd  

NLE Websites -- All DOE Office Websites (Extended Search)

range and fuel economy values for vehicles that operate on compressed natural gas (CNG). CNG fuel is normally dispensed in "equivalent gallons," where one equivalent gallon...

408

International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

challenges in harmonizing test protocols and requirements for compressed natural gas (CNG), hydrogen, and CNG-hydrogen (HCNG) blend pressure vessels and to define next steps for...

409

Pooled Cars  

E-Print Network (OSTI)

by compressed natural gas (CNG). ? A C C E S NU M B ER 15, Ffee, which includes a tank of CNG fuel, insurance, and

Shaheen, Susan

1999-01-01T23:59:59.000Z

410

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PMCPVTD 2012 7112 - 93012 Kay Kelly (GO) Moab City, UT Compressed Natural Gas (CNG)Infrastructure Development (New Station) Installation of public CNG infrastructure...

411

Alternative Fuels Data Center: Seattle's Waste Haulers are Going...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

truck, with sign that reads propelled by natural gas. Project at a Glance Fleet Type: Refuse collection Fuel: CNG, biodiesel Infrastructure: CNG public station Motivation:...

412

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reformulated Gasoline Corn Ethanol Sugarcane Ethanol CNG Hydrogen (from Nat. Gas) Electricity (Calif. Mix) Ethanol (Forest Waste) Landfill CNG Total Carbon Intensity 95.85...

413

Hydrogen Station & ICE Vehicle Operations and Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

psi (total both tanks) Boost Compressor Main Compressor CNG Output Pilot Plant - CNG Substation Street Service Low Pressure Natural Gas High Pressure Storage (3 levels) Pilot Plant...

414

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

24-35 (1990). G. Barker, CNG Consultant, Norwalk CompanyEconomic Evaluation of CNG Fleet Conversion and Operation,"and has found that dragging a CNG (compressed natural gas)

Delucchi, Mark

1992-01-01T23:59:59.000Z

415

Reducing Greenhouse Emissions and Fuel Consumption  

E-Print Network (OSTI)

Compressed natural gas (CNG) vehicles offer similar emissionsimilar GHG emission levels as CNG vehicles and diesel vehiBRT buses . The 40-foot CNG buses used in a BRT system

Shaheen, Susan; Lipman, Timothy

2007-01-01T23:59:59.000Z

416

AVCEM: Advanced-Vehicle Cost and Energy Use Model  

E-Print Network (OSTI)

compressed natural-gas (CNG) ICEVs; liquefied natural-in fuel storage (e.g. , CNG tankage), powertrain, emissionor alcohol, high-pressure CNG tanks, low-pressure LPG tanks,

Delucchi, Mark

2005-01-01T23:59:59.000Z

417

Dynamics in Behavioral Adaptation to a Transportation Innovation: A Case Study of Carlink-A Smart Carsharing System  

E-Print Network (OSTI)

vehicles are fueled with compressed natural gas (CNG). 5.What is CNG? (33.9%) 6. What happens if you need more gasis the efficiency of the CNG Civics? (25.1%) 9. How long can

Shaheen, Susan A.

1999-01-01T23:59:59.000Z

418

Demonstration of Automated Heavy-Duty Vehicles  

E-Print Network (OSTI)

by compressed natural gas (CNG) in spark-ignition engines,buses are powered by a CNG spark-ignition engine, providedno matter whether it is a CNG or a diesel engine [4, 5].

2006-01-01T23:59:59.000Z

419

Dynamics in Behavioral Adaptation to a Transportation Innovation: A Case Study of CarlinkA Smart Carsharing System  

E-Print Network (OSTI)

vehicles are fueled with compressed natural gas (CNG). 5.What is CNG? (33.9%) 6. What happens if you need more gasis the efficiency of the CNG Civics? (25.1%) 9. How long can

Shaheen, Susan

2004-01-01T23:59:59.000Z

420

Adaptive Transit: Enhancing Suburban Transit Services  

E-Print Network (OSTI)

an the push to introduce CNG (compressednatural gas) buses.Adelaide has the largest CNG fleet in Australia- 110 of theplus bus fleet are currently CNG bu~ vehicles, with plans to

Cervero, Robert; Beutler, John

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The Rapid Rise of Middle-Class Vehicle Ownership in Mumbai  

E-Print Network (OSTI)

used Compressed Natural Gas (CNG); in the Thane region, 69%in Greater Mumbai 89% used CNG, 5% used petrol, 3% used35% used diesel, 12% used CNG and 1% used LPG. In the bus

Shirgaokar, Manish

2012-01-01T23:59:59.000Z

422

Results of the 2008-09 Campus Travel Survey  

E-Print Network (OSTI)

on compressed natural gas (CNG) rather than diesel fuel forconsumed 235,300 gallons of CNG and 17,600 gallons of dieselper gallon of diesel and CNG, respectively, 10 then Unitrans

Lovejoy, Kristin; Handy, Susan L; Contreras, Cliff

2009-01-01T23:59:59.000Z

423

Pursuing Development and Protecting the Environment: Dilemma of the Developing World  

E-Print Network (OSTI)

of compressed natural gas (CNG) as a vehicular fuel. Whileare very few stations that dispense CNG, and the number ofvehicles equipped to use CNG is also minimal. This policy

Persadie, Natalie; Ramlogan, Rajendra

2005-01-01T23:59:59.000Z

424

AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM  

E-Print Network (OSTI)

compressed natural-gas (CNG) ICEVs; liquefied natural-in fuel storage (e.g. , CNG tankage), powertrain, emissionor alcohol, high-pressure CNG tanks, low-pressure LPG tanks,

Delucchi, Mark

2005-01-01T23:59:59.000Z

425

Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles  

DOE Green Energy (OSTI)

This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the best-case'' results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author's experience with fuel delivery systems for light-duty vehicles.

Willson, B. (Colorado State Univ., Fort Collins, CO (United States))

1992-09-01T23:59:59.000Z

426

Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles  

DOE Green Energy (OSTI)

This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the ``best-case`` results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author`s experience with fuel delivery systems for light-duty vehicles.

Willson, B. [Colorado State Univ., Fort Collins, CO (United States)

1992-09-01T23:59:59.000Z

427

Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles  

SciTech Connect

This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the best-case'' results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author's experience with fuel delivery systems for light-duty vehicles.

Willson, B. (Colorado State Univ., Fort Collins, CO (United States))

1992-09-01T23:59:59.000Z

428

Contract 98, Appendix F self-assessment report for Fiscal Year 2003  

E-Print Network (OSTI)

natural gas (CNG) vehicles at Berkeley Lab. Apply for all rebates, grants, and other financial incentives

Albert Editor, Rich

2003-01-01T23:59:59.000Z

429

Alternative fueled vehicle fleet safety experience. Summary report. Report for September 1994-March 1995  

SciTech Connect

The study was initiated to gather information on the safety performance of alternative fueled vehicles from fleet operators experienced in the day to day operation of these vehicles. Eight fleets and one compressed natural gas (CNG) vehicle converter were visited during the course of the study. The types of fleets visited consisted of these with vehicles fueled with CNG, liquefied natural gas (LNG), liquefied petroleum gas (LPG), and electric vehicles (EVs). Three CNG fleets, two LNG fleets, one EV fleet, and two LPG fleets were visitied in addition to one CNG converter. Items discussed with the fleet operators included fuel system performance in the crash environment as well as safety related problems encountered during the refueling operation and when maintaining the vehicles. The fleets visited have experienced no accidents where the fuel system has been jeopardized and no injury to personnel that can be attributed to the alternative fuel system. However, the accident experience of the fleets visited is very limited. Many of the problems with alternative fueled vehicles experienced in the past have been corrected by advances in the state of the art and improvements in system components. Improvements continue to be made.

Morris, J.B.

1995-03-01T23:59:59.000Z

430

Alternative fueled vehicle fleet safety experience. Final report, September 1994-March 1995  

SciTech Connect

The study was initiated to gather information on the safety performance of alternative fueled vehicles from fleet operators experienced in the day to day operation of these vehicles. Eight fleets and one compressed natural gas (CNG) vehicle converter were visitied during the course of the study. The types of fleets visited consisted of these with vehicles fueled with CNG, liquefied natural gas (LNG), liquefied petroleum gas (LPG), and electric vehicles (EVs). Three CNG fleets, two LNG fleets, one EV fleet, and two LPG fleets were visitied in addition to one CNG converter. Items discussed with the fleet operators included fuel system performance in the crash environment as well as safety related problems encountered during the refueling operation and when maintaining the vehicles. The fleets visited have experienced no accidents where the fuel system has been jeopardized and no injury to personnel that can be attributed to the alternative fuel system. However, the accident experience of the fleets visited is very limited. Many of the problems with alternative fueled vehicles experienced in the past have been corrected by advances in the state of the art and improvements in system components. Improvements continue to be made.

Morris, J.B.

1995-03-01T23:59:59.000Z

431

Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

AGENDA AGENDA U. S. Department of Transportation and U.S. Department of Energy Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles December 10-11, 2009 - Washington, DC A workshop to promote exchange of information among experts on compressed natural gas and hydrogen fuels for vehicles and to share lessons learned from deployment of these vehicles in public transit, fleets, and consumer transportation throughout the world. Workshop Objectives: * To coordinate lessons learned by identifying similarities and critical differences between compressed natural gas and hydrogen properties, including CNG-H2 blends, and their industries and applications (e.g., product specifications, tanks, reliability, safety procedures, risk mitigation, and dispensing)

432

The DOE/NREL Next Generation Natural Gas Vehicle Program - An Overview  

DOE Green Energy (OSTI)

This paper summarizes the Next Generation Natural Gas Vehicle (NG-NGV) Program that is led by the U.S. Department Of Energy's (DOE's) Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of this program is to develop and implement one Class 3-6 compressed natural gas (CNG) prototype vehicle and one Class 7-8 liquefied natural gas (LNG) prototype vehicle in the 2004 to 2007 timeframe. OHVT intends for these vehicles to have 0.5 g/bhp-hr or lower emissions of oxides of nitrogen (NOx) by 2004 and 0.2 g/bhp-hr or lower NOx by 2007. These vehicles will also have particulate matter (PM) emissions of 0.01 g/bhp-hr or lower by 2004. In addition to ambitious emissions goals, these vehicles will target life-cycle economics that are compatible with their conventionally fueled counterparts.

Kevin Walkowicz; Denny Stephens; Kevin Stork

2001-05-14T23:59:59.000Z

433

Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.  

SciTech Connect

Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

2010-06-30T23:59:59.000Z

434

Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.  

SciTech Connect

Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

2010-06-30T23:59:59.000Z

435

Clean Cities: Natural Gas Vehicle Technology Forum 2008 Meeting...  

NLE Websites -- All DOE Office Websites (Extended Search)

Baytech CNG Heavy-Duty Vehicles and Engines Richard Turner, Baytech Corporation Biogas for Transportation Jon Lear, Ruby Mountain, Inc. Biogas to LNG John A. Barclay,...

436

Transportation in Developing Countries: Greenhouse Gas Scenarios for Shanghai, China  

E-Print Network (OSTI)

Diesel Car CNG Car Electric Car Diesel Bus Gasoline Bus CNGstroke) Electric Motor Scooter Gasoline Minicar Gasoline Careasier to park than cars. Several electric scooter companies

Zhou, Hongchang; Sperling, Daniel

2001-01-01T23:59:59.000Z

437

Natural gas buses: Separating myth from fact (Clean Cities alternative fuel information series fact sheet)  

DOE Green Energy (OSTI)

Increasing numbers of transit agencies across North America are making the choice to convert their bus fleets to compressed natural gas (CNG), and even more are seriously considering it. Natural gas buses now account for at least 20{percent} of all new bus orders. However, it becomes difficult for fleet operators to fairly evaluate the potential benefits of an alternative fuel program if they are confronted with misinformation or poor comparisons based on false assumptions. This fact sheet addresses some of the most common misconceptions that seem to work their way into anecdotal stories, media reports, and even some poorly researched white papers and feasibility studies. It is an expanded version of information that was presented on behalf of the U.S. Department of Energy at the South Coast Air Basin Alternative Fuel and Electric Transit Bus Workshop in Diamond Bar, California, on March 15, 2000.

Parish, R.

2000-04-27T23:59:59.000Z

438

Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

RESEARCH & DEVELOPMENT RESEARCH & DEVELOPMENT Science Arizona Public Service Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine Vehicle Testing Alternative Fuel Pilot Plant The Arizona Public Service Alternative Fuel Pilot Plant is a model alternative fuel refueling system, dispensing hydrogen, compressed natural gas (CNG), and hydrogen/ CNG blends (HCNG). The plant is used daily to fuel vehicles operated in Arizona Public Service's fleet. Hydrogen Subsystem The plant's hydrogen system consists of production, compression, storage, and dispensing. The hydrogen produced is suitable for use in fuel cell-powered vehicles, for which the minimum hydrogen purity goal is 99.999%. Hydrogen is produced using an electrolysis process that separates water into hydrogen and oxygen. At present, the hydrogen is

439

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5318 L St, Omaha, NE Midwest Region Alternative Fuels Project Install New CNG Refueling Infrastructure. Grant ID: DE-PS26-09NT01236-04 04 01 2010 Kay L. Kelly Digitally signed by...

440

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NE Midwest Region Alternative Fuels Project Retrofit of Existing Property to Install CNG Refueling Infrastructure. Grant ID: DE-PS26-09NT01236-04 04 01 2010 Kay L. Kelly...

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alternative Fuel News Volume 2 Number 2  

NLE Websites -- All DOE Office Websites (Extended Search)

www.afdc.doe.govrefuel. The AFDC lists refueling site locations for CNG, E85, M85, LPG, LNG, and EV charging stations located throughout the United States. The information is...

442

A utility assessment of the Modular High-Temperature Gas-Cooled Reactor (MHTGR)  

SciTech Connect

A team of electric utility representatives conducted an in-depth, independent evaluation of the current Modular High Temperature Gas-Cooled Reactor (MHTGR) design. The emphasis was on the fuel design with respect to safety, the licensability of the proposed containment concept, refueling operations and equipment, spent fuel storage capacity, staffing projections, and the economic competitiveness. Specific comments and recommendations are provided as a contribution towards enhancing the MHTGR design, licensability and acceptance from a utility's view. Individual sections have been indexed separately for inclusion on the data base.

Bliss, H.E.; Grier, C.A. (Commonwealth Edison Co., Chicago, IL (USA)); Crews, M.R. (Duke Engineering and Services, Inc., Charlotte, NC (USA)); Fernandez, R.T.; Heard, J.W.; Hinkle, W.D. (Yankee Atomic Electric Co., Framingham, MA (USA)); Pschirer, D.M.; Sharpe, R.O. (Duke Power Co., Charlotte, NC (USA))

1991-01-01T23:59:59.000Z

443

Technology and market assessment of gas-fueled vehicles in New York State. Volume III. Institutional barriers and market assessment. Final report  

SciTech Connect

Volume III deals primarily with the institutional barriers and market forces affecting the potential conversion of vehicles in New York State (NYS) to gaseous fuels. The results of a market research survey are presented along wth the current supply conditions for fuels in NYS. The indigenous resources of gaseous fuels in NYS are identified and quantified. The potential number of vehicles in NYS that are favorable candidates for conversion are estimated, and the effect of these potential gaseous-fueled vehicles on NYS gaseous fuels supplies is presented. The market research survey found that fleet managers appear to be more aware of the specifics of LPG vehicles relative to CNG vehicles. In those fleets with some LPG or CNG vehicles, a tentativeness to further conversion was detected. Many fleet managers are deferring conversion plans due to uncertain conversion costs and future fuel prices. The need for fleet manager education about gaseous fuel vehicle (GFV) operation and economics was identified. NYS currently has an excess supply of natural gas and could support a significant GFV population. However, the pipeline system serving NYS may not be able to serve a growing GFV population without curtailment in the future if natural gas demands in other sectors increase. LPG supply in NYS is dependent primarily on how much LPG can be imported into NYS. A widespread distribution system (pipeline and truck transport) exists in NYS and could likely support a signficant LPG vehicle population. It is estimated that about 35% of the passenger cars and 43% of the trucks in NYS are potential candidates for conversion to CNG. For LPG, about 36% and 46% of passenger cars and trucks are potential candidates. Applying a gross economic screen results in an estimated potential liquid fuel displacement of 1.3 billion gallons in 1990. 20 figs., 63 tabs.

1983-08-01T23:59:59.000Z

444

Economic Feasibility of Converting Landfill Gas to Natural Gas for Use as a Transportation Fuel in Refuse Trucks  

E-Print Network (OSTI)

Approximately 136,000 refuse trucks were in operation in the United States in 2007. These trucks burn approximately 1.2 billion gallons of diesel fuel a year, releasing almost 27 billion pounds of greenhouse gases. In addition to contributing to global climate change, diesel-fueled refuse trucks are one of the most concentrated sources of health-threatening air pollution in most cities. The landfills that they ultimately place their waste in are the second largest source of human-related methane emissions in the United States, accounting for approximately 23 percent of these emissions in 2007. At the same time, methane emissions from landfills represent a lost opportunity to capture and use a significant energy resource. Many landfill-gas-to-energy (LFGTE) projects are underway in an attempt to curb emissions and make better use of this energy. The methane that is extracted from these landfills can be converted into a transportation fuel, sold as a pipeline-quality natural gas, operate turbines for electricity, or be flared. The unique relationship that occurs between refuse trucks' constant visits to the landfill and the ability of the landfill itself to produce a transportation fuel creates an ability to accomplish emissions reduction in two sectors with the implementation of using landfill gas to fuel refuse trucks. Landfill owners and operators are very reluctant to invest in large capital LFGTE projects without knowing their long-term feasibility. The costs and benefits associated with each LFGTE project have been presented in such a way that owners/operators can make informed decisions based on economics while also implementing clean energy technology. Owners/operators benefit from larger economic returns, and the citizens of the surrounding cities benefit from better air quality. This research focused on six scenarios: converting landfill gas (LFG) to liquefied natural gas (LNG) for use as a transportation fuel, converting LFG to compressed natural gas (CNG) for use as a transportation fuel, converting LFG to pipeline-quality natural gas, converting LFG to electricity, flaring LFG, and doing nothing. For the test case of a 280-acre landfill, the option of converting LFG to CNG for use as a transportation fuel provided the best benefit-cost ratio at 5.63. Other significant benefit-cost findings involved the LFG-to-LNG option, providing a 5.51 benefit-cost ratio. Currently, the most commonly used LFGTE option of converting LFG to electricity provides only a 1.35 benefit-cost ratio while flaring which is the most common mitigation strategy provides a 1.21, further providing evidence that converting LFG to LNG/CNG for use as a transportation fuel provides greater economic benefits than the most common LFGTE option or mitigation strategy.

Sprague, Stephen M.

2009-12-01T23:59:59.000Z

445

Research on Site Selection for Urban Compressed Natural Gas Station  

Science Conference Proceedings (OSTI)

By using basic principle of Quality Function Deployment (QFD) methodology, this article tries to make the site selection for urban CNG station as a design of new product, firstly Considers the requirements of different participants systematically, secondly ... Keywords: CNG station, location planning, Quality Function Deployment (QFD), House of Quality (HOQ)

Liang Tao; Li Qingsong; Zhang Xuejin

2010-05-01T23:59:59.000Z

446

A Dynamic Forecasting System for Vehicle Markets with Clean-Fuel Vehicles  

E-Print Network (OSTI)

of at-home refueling (compressed natural gas vehscles), themodel- gasoline, compressed natural gas, and electricity -

Bunch, David S; Brownstone, David; Golob, Thomas F

1995-01-01T23:59:59.000Z

447

Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon  

SciTech Connect

In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

Not Available

1981-01-01T23:59:59.000Z

448

Compressed natural gas and liquefied petroleum gas conversions: The National Renewable Energy Laboratory`s experience  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) contracted with conversion companies in six states to convert approximately 900 light-duty Federal fleet vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas (LPG). The contracts were initiated in order to help the Federal government meet the vehicle acquisition requirements of the Energy Policy Act of 1992 (EPACT) during a period of limited original equipment manufacturer (OEM) model availability. Approximately 90% of all conversions were performed on compact of full-size vans and pickups, and 90% of the conversions were to bi-fuel operation. With a positive response from the fleet managers, this program helped the Federal government meet the vehicle acquisition requirements of EPACT for fiscal years 1993 and 1994, despite limited OEM model availability. The conversions also helped to establish the infrastructure needed to support further growth in the use of alternative fuel vehicles. In conclusion, the program has been successful in helping the Federal government meet the vehicle acquisition requirements of EPACT, establishing infrastructure, increasing the displacement of imported oil, and evaluating the emissions performance of converted vehicles. With the relatively widespread availability of OEM vehicles in the 1996 model year, the program is now being phased out.

Motta, R.C.; Kelly, K.J.; Warnock, W.W.

1996-04-01T23:59:59.000Z

449

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

GHG fuels such as compressed natural gas, low-GHG ethanol,LPG) Methane Compressed natural gas (CNG) Ethanol production

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

450

A Framework for Testing Innovative Transportation Solutions: A Case Study of CarLink--A Commuter Carhsaring Program  

E-Print Network (OSTI)

Dublin/Pleasanton Compressed natural gas Honda Civics Up todrive clinic with compressed natural gas (CNG) Honda Civics,

Shaheen, Susan

2004-01-01T23:59:59.000Z

451

Carlink II: Research Approach and Early Findings  

E-Print Network (OSTI)

LLNL donated the compressed natural gas (CNG) fuel for thisDublin/Pleasanton Compressed natural gas Honda Civics Up to

Shaheen, Susan

2004-01-01T23:59:59.000Z

452

What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions  

E-Print Network (OSTI)

fuels such as Compressed Natural Gas (CNG) and Liquefiedand 1% share for compressed natural gas cars. 14 The vehicle

G. Fridley, David

2010-01-01T23:59:59.000Z

453

Transportation Technologies: Implications for Planning  

E-Print Network (OSTI)

Clean Air Program: Compressed Natural Gas Safety in Transitmay be higher. Natural gas: a fuel in compressed (CNG) or

Deakin, Elizabeth; Kim, Songju

2001-01-01T23:59:59.000Z

454

Research Approach and Early Findings  

E-Print Network (OSTI)

LLNL donated the compressed natural gas (CNG) fuel for thisDublin/Pleasanton Compressed natural gas Honda Civics Up to

Shaheen, Susan A.; Wright, John

2001-01-01T23:59:59.000Z

455

A Framework for Testing Innovative Transportation Solutions: A Case Study of CarlinkA Commuter Carsharing Program  

E-Print Network (OSTI)

Dublin/Pleasanton Compressed natural gas Honda Civics Up todrive clinic with compressed natural gas (CNG) Honda Civics,

Shaheen, Susan; Novick, Linda

2004-01-01T23:59:59.000Z

456

The impact of natural gas imports on air pollutant emissions in Mexico  

SciTech Connect

This paper analyzes the impact that natural gas imports could have on fuel emissions in northern Mexico. The authors discuss the problem created in the 1980s when a shift from natural gas to residual oil in industrial processes increased emissions of air pollutants significantly. The benefits of substituting leaded for unleaded gasoline in the 1990s are discussed also. In July 1992 the Mexican government announced for the first time since oil nationalization that private companies in Mexico are allowed to directly import natural gas. The transportation of natural gas, however, remains reserved only for Pemex, the national oil company. This opens the possibility of reducing the burning of high-sulfur residual oil in both the industrial and the energy production sectors in Mexico, particularly in the northern region where only 6.7% of the of the country`s natural gas is produced. Natural gas imports have also opened the possibility of using compressed natural gas (CNG) in vehicles in northern Mexico. 15 refs., 13 figs., 3 tabs.

Bustani, A.; Cobas, E. [Center for Environmental Quality, Monterrey (Mexico)

1993-12-31T23:59:59.000Z

457

Natural Gas as a Fuel Option for Heavy Vehicles  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE), Office of Heavy Vehicle Technologies (OHVT) is promoting the use of natural gas as a fuel option in the transportation energy sector through its natural gas vehicle program [1]. The goal of this program is to eliminate the technical and cost barriers associated with displacing imported petroleum. This is achieved by supporting research and development in technologies that reduce manufacturing costs, reduce emissions, and improve vehicle performance and consumer acceptance for natural gas fueled vehicles. In collaboration with Brookhaven National Laboratory, projects are currently being pursued in (1) liquefied natural gas production from unconventional sources, (2) onboard natural gas storage (adsorbent, compressed, and liquefied), (3) natural gas delivery systems for both onboard the vehicle and the refueling station, and (4) regional and enduse strategies. This paper will provide an overview of these projects highlighting their achievements and current status. In addition, it will discuss how the individual technologies developed are being integrated into an overall program strategic plan.

James E. Wegrzyn; Wai Lin Litzke; Michael Gurevich

1999-04-26T23:59:59.000Z

458

Final report for the Advanced Natural Gas Vehicle Project  

DOE Green Energy (OSTI)

The project objective was to develop the technologies necessary to prototype a dedicated compressed natural gas (CNG) powered, mid-size automobile with operational capabilities comparable to gasoline automobiles. A system approach was used to design and develop the engine, gas storage system and vehicle packaging. The 2.4-liter DOHC engine was optimized for natural gas operation with high-compression pistons, hardened exhaust valves, a methane-specific catalytic converter and multi-point gaseous injection. The chassis was repackaging to increase space for fuel storage with a custom-designed, cast-aluminum, semi-trailing arm rear suspension system, a revised flat trunk sheet-metal floorpan and by equipping the car with run-flat tires. An Integrated Storage system (ISS) was developed using all-composite, small-diameter cylinders encapsulated within a high-strength fiberglass shell with impact-absorbing foam. The prototypes achieved the target goals of a city/highway driving range of 300 miles, ample trunk capacity, gasoline vehicle performance and ultra low exhaust emissions.

John Wozniak

1999-02-16T23:59:59.000Z

459

Low-quality natural gas sulfur removal/recovery: Task 2. Topical report, September 30, 1992--August 29, 1993  

Science Conference Proceedings (OSTI)

The primary purpose of this Task 2 Report is to present conceptual designs developed to treat a large portion of proven domestic natural gas reserves which are low quality. The conceptual designs separate hydrogen sulfide and large amounts of carbon dioxide (>20%) from methane, convert hydrogen sulfide to elemental sulfur, produce a substantial portion of the carbon dioxide as EOR or food grade CO{sub 2}, and vent residual CO{sub 2} virtually free of contaminating sulfur containing compounds. A secondary purpose of this Task 2 Report is to review existing gas treatment technology and identify existing commercial technologies currently used to treat large volumes of low quality natural gas with high acid content. Section II of this report defines low quality gas and describes the motivation for seeking technology to develop low quality gas reserves. The target low quality gas to be treated with the proposed technology is identified, and barriers to the production of this gas are reviewed. Section III provides a description of the Controlled Freeze Zone (CFG)-CNG technologies, their features, and perceived advantages. The three conceptual process designs prepared under Task 2 are presented in Section IV along with the design basis and process economics. Section V presents an overview of existing gas treatment technologies, organized into acid gas removal technology and sulfur recovery technology.

Cook, W.J.; Neyman, M.; Brown, W. [Acrion Technologies, Inc., Cleveland, OH (United States); Klint, B.W.; Kuehn, L.; O`Connell, J.; Paskall, H.; Dale, P. [Bovar, Inc., Calgary, Alberta (Canada)

1993-08-01T23:59:59.000Z

460

ANL/ESD/10-3 Well-to-Wheels Analysis of Landfill Gas-Based  

E-Print Network (OSTI)

68.6% Did Not Pass 2 Universal Waste Systems 3CNG Refuse Trucks $380,000 $0 68.6% Did Not Pass 30 $3,000,000 $0 75.6% Finalist 19 Robertson's Ready Mix Company CNG Concrete Mixers $4,000,000 $0 75 Electric CNG Micro-Turbine Transit Bus Demonstration Project $2,441,729 $0 57.9% Did Not Pass 13 AHL

Argonne National Laboratory

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report  

DOE Green Energy (OSTI)

This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energys Advanced Vehicle Testing Activity.

Francfort; Donald Karner; Roberta Brayer

2006-09-01T23:59:59.000Z

462

NRRI92-8 NATURAL GAS VEHICLES AND THE ROLE OF STATE PUBLIC SERVICE COMMISSIONS  

E-Print Network (OSTI)

funding provided by participating member commissions of the National Association of Regulatory Utility Commissioners (NARUC). The views and opinions of the authors do not necessarily state or reflect the views, opinions, or policies of the NRRI, the NARUC, or NARUC member commissions. EXECUTIVE SUM:MARY Transportation accounted for about 36 percent of the total net energy consumed in the United States in 1991 with petroleum the overwhelming choice (96 percent) among the various types of fuel. In recent years, the use of petroleum in transportation alone has exceeded domestic petroleum production. Transportation is also a major contributor to the increase in urban air pollution and greenhouse gases. Consequently, the development of vehicles powered by fuels other than petroleum is viewed as a promising approach in enhancing energy security and environmental protection. The focus of this study is to identify state regulatory actions that are conducive to the extensive use of natural gas as a vehicular fuel. This study concludes that natural gas refueling stations should not be regulated as a public utility, that a local distribution company should be allowed to participate in the refueling market only under strict state

Daniel J. Duann; Youssef Hegazy

1992-01-01T23:59:59.000Z

463

Ruslands Gas.  

E-Print Network (OSTI)

??This paper is about Russian natural gas and the possibility for Russia to use its reserves of natural gas politically towards the European Union to (more)

Elkjr, Jonas Bondegaard

2009-01-01T23:59:59.000Z

464

Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1. Volume 5: Analysis of core damage frequency from seismic events for plant operational state 5 during a refueling outage  

SciTech Connect

In 1989 the US Nuclear Regulatory Commission (NRC) initiated an extensive program to examine carefully the potential risks during low-power and shutdown operations. The program included two parallel projects, one at Sandia National Laboratories studying a boiling water reactor (Grand Gulf), and the other at Brookhaven National Laboratory studying a pressurized water reactor (Surry Unit 1). Both the Sandia and Brookhaven projects have examined only accidents initiated by internal plant faults---so-called ``internal initiators.`` This project, which has explored the likelihood of seismic-initiated core damage accidents during refueling outage conditions, is complementary to the internal-initiator analyses at Brookhaven and Sandia. This report covers the seismic analysis at Grand Gulf. All of the many systems modeling assumptions, component non-seismic failure rates, and human effort rates that were used in the internal-initiator study at Grand Gulf have been adopted here, so that the results of the study can be as comparable as possible. Both the Sandia study and this study examine only one shutdown plant operating state (POS) at Grand Gulf, namely POS 5 representing cold shutdown during a refueling outage. This analysis has been limited to work analogous to a level-1 seismic PRA, in which estimates have been developed for the core-damage frequency from seismic events during POS 5. The results of the analysis are that the core-damage frequency for earthquake-initiated accidents during refueling outages in POS 5 is found to be quite low in absolute terms, less than 10{sup {minus}7}/year.

Budnitz, R.J. [Future Resources Associates, Inc., Berkeley, CA (United States); Davis, P.R. [PRD Consulting (United States); Ravindra, M.K.; Tong, W.H. [EQE International, Inc., Irvine, CA (United States)

1994-08-01T23:59:59.000Z

465

Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1. Analysis of core damage frequency from internal events for plant operational state 5 during a refueling outage. Internal events appendices K to M  

Science Conference Proceedings (OSTI)

This report provides supporting documentation for various tasks associated with the performance of the probabilistic risk assessment for Plant Operational State 5 (approximately Cold Shutdown as defined by Grand Gulf Technical Specifications) during a refueling outage at Grand Gulf, Unit 1 as documented in Volume 2, Part 1 of NUREG/CR-6143. The report contains the following appendices: K - HEP Locator Files; L - Supporting Information for the Plant Damage State Analysis; M - Summary of Results from the Coarse Screening Analysis - Phase 1A.

Forester, J.; Yakle, J.; Walsh, B. [Science Applications International Corp., Albuquerque, NM (United States); Darby, J. [Science and Engineering Associates, Inc., Albuquerque, NM (United States); Whitehead, D.; Staple, B.; Brown, T. [Sandia National Labs., Albuquerque, NM (United States)

1994-07-01T23:59:59.000Z

466

Alternative Fuels in Trucking Volume 5, Number 4  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

N N atural gas costs less to pro- duce than gasoline and diesel fuel. However, it must be delivered to the market area and compressed or liquefied before being put into the vehicle fuel tank, steps that add significant cost. Whether the natural gas at the vehicle fuel tank retains a price advantage over gasoline or diesel fuel depends on many factors. A few of the most important are: * Distance from the wellhead to the market area * The gas volumes over which the costs of compression or liquefac- tion are spread * The numbers of vehicles being fueled at a given refueling site. Vehicles using natural gas also cost more than comparable gasoline and diesel vehicles because the fuel tanks are inherently more expensive, whether the gas is compressed (CNG) or liquefied (LNG). At this

467

Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle  

DOE Green Energy (OSTI)

This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less reliable vehicle with a lower availability than a conventional heavy vehicle. Experience with heavy HEVs to date supports this observation. The key safety concern for the electric drive system is the higher voltages and currents that are required in the electric drive system. Faults that could expose personnel to these electric hazards must be considered, addressed, and minimized. The key issue for the CNG-fueled ICE is containment of the high-pressure natural gas. Events that can result in a release of natural gas with the possibility of subsequent ignition are of concern. These safety issues are discussed. The heavy HEV has the potential to have a safety record that is comparable to that of the conventional vehicle, but adequate attention to detail will be required.

Nelson, S.C.

2002-11-14T23:59:59.000Z

468

Workshop Notes from "Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles" Workshop, December 10-11, 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

S. Department of Energy and S. Department of Energy and U.S. Department of Transportation Workshop Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles Workshop Notes December 10-11, 2009 The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) hosted a workshop to exchange information among experts from China, India, and the U.S. on compressed natural gas (CNG) and hydrogen (H 2 ) fuels for vehicles and to share lessons learned from deployment of these vehicles in public transit, fleets, and consumer transportation throughout the world. The workshop had five major objectives, and the success of the workshop in addressing these objectives is summarized below. 1. Coordinate lessons learned by identifying similarities and critical

469

Gas Mileage of 2001 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Ford Vehicles 1 Ford Vehicles EPA MPG MODEL City Comb Hwy 2001 Ford Crown Victoria 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2001 Ford Crown Victoria View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 2001 Ford Crown Victoria CNG 8 cyl, 4.6 L, Automatic 4-spd, CNG Compare 2001 Ford Crown Victoria CNG 14 City 16 Combined 21 Highway 2001 Ford Crown Victoria Police 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2001 Ford Crown Victoria Police 14 City 17 Combined 21 Highway 2001 Ford E150 Club Wagon 6 cyl, 4.2 L, Automatic 4-spd, Regular Gasoline Compare 2001 Ford E150 Club Wagon 13 City 14 Combined 18 Highway 2001 Ford E150 Club Wagon 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2001 Ford E150 Club Wagon 13 City 15 Combined 18

470

Gas Mileage of 2003 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Ford Vehicles 3 Ford Vehicles EPA MPG MODEL City Comb Hwy 2003 Ford Crown Victoria 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2003 Ford Crown Victoria View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 2003 Ford Crown Victoria CNG 8 cyl, 4.6 L, Automatic 4-spd, CNG Compare 2003 Ford Crown Victoria CNG 12 City 14 Combined 17 Highway 2003 Ford Crown Victoria Police 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2003 Ford Crown Victoria Police View MPG Estimates Shared By Vehicle Owners 14 City 16 Combined 20 Highway 2003 Ford E150 Club Wagon 6 cyl, 4.2 L, Automatic 4-spd, Regular Gasoline Compare 2003 Ford E150 Club Wagon 12 City 14 Combined 16 Highway 2003 Ford E150 Club Wagon 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2003 Ford E150 Club Wagon 13

471

DOE Hydrogen and Fuel Cells Program Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

2024 Date: September 19, 2012 2024 Date: September 19, 2012 Title: Hydrogen Production Cost Using Low-Cost Natural Gas Originator: Sara Dillich, Todd Ramsden & Marc Melaina Approved by: Sunita Satyapal Date: September 24, 2012 Item: Hydrogen produced and dispensed in distributed facilities at high-volume refueling stations using current technology and DOE's Annual Energy Outlook (AEO) 2009 projected prices for industrial natural gas result in a hydrogen levelized cost of $4.49 per gallon-gasoline-equivalent (gge) (untaxed) including compression, storage and dispensing costs. The hydrogen production portion of this cost is $2.03/gge. In comparison, current analyses using low-cost natural gas with a price of $2.00 per MMBtu can decrease the hydrogen levelized cost to $3.68 per gge (untaxed) including

472

Gas purification  

SciTech Connect

Natural gas having a high carbon dioxide content is contacted with sea water in an absorber at or near the bottom of the ocean to produce a purified natural gas.

Cook, C.F.; Hays, G.E.

1982-03-30T23:59:59.000Z

473

Natural Gas  

U.S. Energy Information Administration (EIA)

Natural Gas. Under the baseline winter weather scenario, EIA expects end-of-October working gas inventories will total 3,830 billion cubic feet (Bcf) and end March ...

474

Gas Mileage of 1998 Vehicles by Quantum Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Quantum Technologies Vehicles EPA MPG MODEL City Comb Hwy 1998 Quantum Technologies Chevrolet Cavalier 4 cyl, 2.2 L, Automatic 3-spd, CNG Compare 1998 Quantum Technologies...

475

Gas Week  

Reports and Publications (EIA)

Presented by: Guy F. Caruso, EIA AdministratorPresented to: Gas WeekHouston, TexasSeptember 24, 2003

Information Center

2003-09-24T23:59:59.000Z

476

Proceedings of Power Systems 03: Distributed Generation and Advanced Metering 2002 Wichita State University  

E-Print Network (OSTI)

Pressure Natural Gas CNG Compressed Natural Gas L/HHV Low /High Heating Value SCFM Standard Cubic Feet per-connected modes of operation with minimal electronics. · Ability to operate on a variety of fuels (LPNG, CNG

477

The driving forces on the Swedish compressed natural gas market and the impact on OKQ8's strategy; The driving forces on the Swedish compressed natural gas market and the impact on OKQ8's strategy.  

E-Print Network (OSTI)

?? This paper aims to examine how the driving forces of the Swedish CNG market have impacted OKQ8s strategies. This has been conducted through the (more)

Malmstrm, Martin

2010-01-01T23:59:59.000Z

478

U.S. DEPARTMENT OF ENERGY - NETL CATEGORICAL EXCLUSION (CX) DESIGNATION FORM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DE-EE0002554 DE-EE0002554 Utah Clean Cities Coalition EE DE-EE0002554 PMC / PVT Division 2010 Neil Kirschner 12/2009 - 12/2013 5567 S. 320 West, Murray, UT Utah All Inclusive Statewide Alt Fuels Transportation & Education Outreach Project Installation of publicly-accessible compressed natural gas (CNG) refueling infrastructure. The station will allow for CNG vehicles to refuel. Selected under Clean Cities FOA DE-PS26-09NT01236,AOI#4 NMK Signature.jpg Digitally signed by Neil Kirschner DN: cn=Neil Kirschner, o=US DOE / NETL, ou, email=Neil.Kirschner@netl.doe.gov, c=US Reason: I attest to the accuracy and integrity of this document Date: 2009.12.22 18:36:05 -05'00' 12 22 2009 john ganz Digitally signed by john ganz DN: cn=john ganz, o=NETL- DOE, ou=140 OPFC, email=john.ganz@netl.doe.gov, c=US

479

Microsoft Word - 201306_Fuels_Industry_Newsletter_June_2013.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

large- and small-scale liquefied natural gas (LNG), compressed natural gas (CNG) and gas-to- liquids (GTL). 2. Refining gas and petrochemicals. 3. Developing offshore...

480

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "gas cng refueling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

482

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

483

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

484

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

485

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

486

Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

487

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

488

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

489

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

490

1  

NLE Websites -- All DOE Office Websites (Extended Search)

Performed By: Advanced Resources International, Inc. with Cooperative Research Partners: CNG Transmission Corporation Columbia Gas Transmission Corporation Consumers Energy Company...

491

Geophys. J. Int. (2011) 185, 157166 doi: 10.1111/j.1365-246X.2011.04929.x GJIGeomagnetism,rockmagnetismandpalaeomagnetism  

E-Print Network (OSTI)

, a diesel bus with a particle trap, and a bus fueled with compressed natural gas (CNG). Researchers video

492

FEG2005_BODY_Updates.pmd  

NLE Websites -- All DOE Office Websites (Extended Search)

Transmission AWD ... All Wheel Drive City ... MPG on City Test Procedure CNG ... Compressed Natural Gas Conv ... Convertible Convsn ... Conversion D...

493

Maintenance Sheet for 2013 Honda Civic CNG  

NLE Websites -- All DOE Office Websites (Extended Search)

5CE002486 Date Mileage Description Cost 212013 7,892 Changed oil and filter and rotated tires 79.32 3292013 15,816 Changed oil and filter and rotated tires 70.68 5302013...

494

Maintenance Sheet for 2013 Honda Civic CNG  

NLE Websites -- All DOE Office Websites (Extended Search)

0CE002590 Date Mileage Description Cost 1252013 7,925 Changed oil and filter and rotated tires 79.32 3252013 15,641 Changed oil and filter and rotated tires 70.68 5212013...

495

Maintenance Sheet for 2013 Honda Civic CNG  

NLE Websites -- All DOE Office Websites (Extended Search)

7CE000612 Date Mileage Description Cost 1172013 6,327 Changed oil and filter and rotated tires 79.32 362013 15,159 Changed oil and filter and rotated tires 70.68 572013...

496

UPS CNG Truck Fleet Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

in this report could easily be used to recalculate the fuel cost based on other fuel prices. Engine Oil Consumption and Cost Engine oil consumption is mea- sured by recording...

497

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DE-EE0000088 DE-EE0000088 New Jersey Clean Cities Coalition EE/VT DE-EE0000088 PVT ARRA Erin Russell-Story 12/15/09 to 12/14/13 ACUA:6700 Delilah Rd, Egg Harbor Twp, NJ New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CCities AOI #4: The project funds the deployment of CNG refuse trucks and shuttle buses and the development of four CNG refueling locations.- ACUA CNG FUELING DEVELOPMENT TASKS ONLY 02 18 2010 Erin Russell-Story Digitally signed by Erin Russell-Story DN: cn=Erin Russell-Story, c=US, o=NETL, ou=Clean Cities, email=erin.russell-story@netl.doe.gov Date: 2010.02.18 11:55:48 -05'00' 03 31 2010 john ganz Digitally signed by john ganz DN: cn=john ganz, o=NETL- DOE, ou=140 OPFC, email=john.ganz@netl.doe.gov, c=US Date: 2010.03.31 14:26:25

498

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0088 0088 New Jersey Clean Cities Coalition EE/VT DE-EE0000088 PVT 2010 Erin Russell-Story 12/15/09 to 12/14/13 CJW:500 Breunig Ave, Trenton NJ 08608 New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CCities AOI #4: The project funds the deployment of CNG refuse trucks and shuttle buses and the development of four CNG refueling locations.- CENTRAL JERSEY WASTE CNG FUELING DEVELOPMENT TASKS ONLY 02 16 2010 Erin Russell-Story Digitally signed by Erin Russell-Story DN: cn=Erin Russell-Story, c=US, o=NETL, ou=Clean Cities, email=erin.russell-story@netl.doe.gov Date: 2010.02.16 09:41:06 -05'00' 03 01 2010 john ganz Digitally signed by john ganz DN: cn=john ganz, o=NETL- DOE, ou=140 OPFC, email=john.ganz@netl.doe.gov, c=US Date: 2010.03.01 15:57:30 -05'

499

Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Analysis of core damage frequency from internal events for Plant Operational State 5 during a refueling outage. Volume 2, Part 3: Internal Events Appendices I and J  

SciTech Connect

This report provides supporting documentation for various tasks associated with the performance of the probablistic risk assessment for Plant Operational State 5 during a refueling outage at Grand Gulf, Unit 1 as documented in Volume 2, Part 1 of NUREG/CR-6143.

Yakle, J. [Science Applications International Corp., Albuquerque, NM (United States); Darby, J. [Science and Engineering Associates, Inc., Albuquerque, NM (United States); Whitehead, D.; Staple, B. [Sandia National Labs., Albuquerque, NM (United States)

1994-06-01T23:59:59.000Z

500

www.transportation.anl.gov Argonne Hosts Chinese-American Olympics Planning Group  

E-Print Network (OSTI)

gas (CNG) can reduce greenhouse gas (GHG) emissions (g-CO2 equivalent/ mile) by ~21%. Converting NG on CNG or liquefied natural gas (LNG). Current ICEs will need to be modified for use with NG, however for the use of NG in transportation: 1. CNG NGV hybrid: 28% efficiency, 250-mile range; 2. NG H2 FCV

Kemner, Ken