Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Deregulation

2

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Deregulation

3

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Deregulation

4

Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Deregulation of Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel to someone by E-mail Share Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Facebook Tweet about Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Twitter Bookmark Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Google Bookmark Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Delicious Rank Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Digg Find More places to share Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on AddThis.com...

5

Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Deregulation of Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel to someone by E-mail Share Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Facebook Tweet about Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Twitter Bookmark Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Google Bookmark Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Delicious Rank Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Digg Find More places to share Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on AddThis.com...

6

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) and Propane Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on AddThis.com... More in this section... Federal State Advanced Search

7

Natural Gas - CNG & LNG  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Natural Gas Natural gas pump Natural gas, a fossil fuel comprised mostly of methane, is one of the cleanest burning alternative fuels. It can be used in the form of compressed natural gas (CNG) or liquefied natural gas (LNG) to fuel cars and trucks. Dedicated natural gas vehicles are designed to run on natural gas only, while dual-fuel or bi-fuel vehicles can also run on gasoline or diesel. Dual-fuel vehicles allow users to take advantage of the wide-spread availability of gasoline or diesel but use a cleaner, more economical alternative when natural gas is available. Since natural gas is stored in high-pressure fuel tanks, dual-fuel vehicles require two separate fueling systems, which take up passenger/cargo space. Natural gas vehicles are not available on a large scale in the U.S.-only

8

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on AddThis.com...

9

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Fueling Infrastructure Inspection to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on AddThis.com...

10

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Tax to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Tax CNG is taxed at a rate of $0.10 per gallon when used as a motor fuel. CNG

11

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network (OSTI)

VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLESyou first learn about compressed natural gas (CNG) vehicles?VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLES

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

12

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Permit to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Permit Anyone dispensing CNG for use in vehicles must obtain a permit from the

13

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Digg Find More places to share Alternative Fuels Data Center: Compressed

14

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Digg Find More places to share Alternative Fuels Data Center: Compressed

15

Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduced Compressed Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL to someone by E-mail Share Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Facebook Tweet about Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Twitter Bookmark Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Google Bookmark Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Delicious Rank Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Digg Find More places to share Alternative Fuels Data Center: Reduced

16

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Project Loans to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Project Loans

17

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Dealer Permit to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Dealer Permit

18

Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Compressed Natural Gas (CNG) Study to someone by E-mail Share Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Facebook Tweet about Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Twitter Bookmark Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Google Bookmark Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Delicious Rank Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Digg Find More places to share Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Compressed Natural Gas (CNG) Study At the direction of the Alaska Legislature, the Department of

19

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) and Propane Regulatory Authority to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on AddThis.com...

20

Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane and Compressed Propane and Compressed Natural Gas (CNG) Device Fee to someone by E-mail Share Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Facebook Tweet about Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Twitter Bookmark Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Google Bookmark Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Delicious Rank Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Digg Find More places to share Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Gas Natural - CNG y GNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Natural Dispensador de Gas Natural Gas Natural Dispensador de Gas Natural El gas natural, un combustible fósil compuesto básicamente de metano, es uno de los combustibles alternativos menos contaminantes. Puede ser usado como gas natural comprimido (GNC) o como gas natural licuado (GNL) para autos y camiones. Existen vehículos diseñados para funcionar exclusivamente con gas natural. Por otra parte hay vehículos de doble combustible o bi-combustibles que también puede funcionar con gasolina o diesel. Los vehículos de doble combustible permiten que el usuario aproveche la gran disponibilidad de gasolina o diesel, pero use la alternativa menos contaminante y más económica cuando el gas natural esté disponible. Ya que el gas natural es almacenado en depósitos de combustible de alta

22

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Digg Find More places to share Alternative Fuels Data Center: Compressed

23

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Digg Find More places to share Alternative Fuels Data Center: Compressed

24

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dealer License to someone by E-mail Dealer License to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

25

Survey for the development of compressed natural gas systems (CNG) for vehicles.  

E-Print Network (OSTI)

??Compressed Natural Gas (CNG) vehicles have been used internationally by fleets for decades. The use of CNG vehicles results in less petroleum consumption, resulting in (more)

Abulamosha, A.M.

2005-01-01T23:59:59.000Z

26

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Tax and Permit to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Tax and Permit

27

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax to someone by E-mail Tax to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) and Propane Tax Retail sales for CNG and liquefied petroleum gas (propane) used to operate

28

STATEMENT OF CONSIDERATIONS REQUEST BY CONSOLIDATED NATURAL GAS (CNG) (THE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONSOLIDATED NATURAL GAS (CNG) (THE CONSOLIDATED NATURAL GAS (CNG) (THE PARTICIPANT) FOR ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS IN INVENTIONS OF THE PARTICIPANT UNDER DOE-PETC CRADA NO.PC-93-009, W(A)-93-034, CH-0819 - MASTER CRADA FOR PROJECTS DIRECTED TO FUELS COMBUSTION, EVALUATION AND FLOW ANALYSES - PROJECT #1 REDUCING EDDY AFTER BURN (REAB) FOR NITRIC OXIDE REDUCTION AND RELATED TECHNOLOGIES The Department of Energy has delegated authority to the PETC Laboratory Director to enter into CRADAs and, with the concurrence of cognizant Intellectual Property Counsel, to deal with intellectual property matters arising under the CRADA, including waiving of the Government's patent rights thereunder. Participant desires to obtain an advance waiver of the Government's rights in any inventions that may be conceived or

29

L/CNG - Refueling Systems  

INL has developed a LNG/CNG refueling process and method for dispensing liquefied natural gas (LNG), compressed natural gas (CNG) or both on demand. ...

30

Using Gasoline, Diesel, and Compressed Natural Gas (CNG) Vehicles, Characterize the Significance of Lube  

E-Print Network (OSTI)

Using Gasoline, Diesel, and Compressed Natural Gas (CNG) Vehicles, Characterize the Significance from natural gas vehicles will help in the development of PM mitigation technologies. This in turn emissions beyond applicable standards, and that benefit natural gas ratepayers (Public Resources Code 25620

31

CNG: Aiming to be an energy company, not a gas company  

Science Conference Proceedings (OSTI)

Long before regulatory changes in the US paved the way for the union of natural gas and electric utility companies, Consolidated Natural Gas Co. (CNG) embarked on a strategy that would serve the company well in the 1990s. In 1995, CNG began a corporate repositioning to meet mounting competition, switching emphasis from its regulated businesses to the non-regulated side. The goal: to become an energy player, not only in the US but internationally. This paper focuses on the company`s operations, business plans, and management strategies. The paper gives an overview, then discusses production of oil and gas, the growing exploration program and plans for the future.

Wheatley, R.

1997-06-30T23:59:59.000Z

32

WA_1993_034_CONSOLIDATED_NATURAL_GAS_(CNG)_Waiver_of_Domesti...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1993034CONSOLIDATEDNATURALGAS(CNG)WaiverofDomesti.pdf WA1993034CONSOLIDATEDNATURALGAS(CNG)WaiverofDomesti.pdf WA1993034CONSOLIDATEDNATURALGAS(CNG)Waiverof...

33

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network (OSTI)

Infrastructure F. Current California CNG Vehicle UseCharacteristics of CNG Vehicles Review of Previous Studies/RP) Studies of AFVs/CNG Vehicles i. British Columbia, Canada

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

34

Low Quality Natural Gas Sulfur Removal and Recovery CNG Claus Sulfur Recovery Process  

Science Conference Proceedings (OSTI)

Increased use of natural gas (methane) in the domestic energy market will force the development of large non-producing gas reserves now considered to be low quality. Large reserves of low quality natural gas (LQNG) contaminated with hydrogen sulfide (H{sub 2}S), carbon dioxide (CO{sub 2}) and nitrogen (N) are available but not suitable for treatment using current conventional gas treating methods due to economic and environmental constraints. A group of three technologies have been integrated to allow for processing of these LQNG reserves; the Controlled Freeze Zone (CFZ) process for hydrocarbon / acid gas separation; the Triple Point Crystallizer (TPC) process for H{sub 2}S / C0{sub 2} separation and the CNG Claus process for recovery of elemental sulfur from H{sub 2}S. The combined CFZ/TPC/CNG Claus group of processes is one program aimed at developing an alternative gas treating technology which is both economically and environmentally suitable for developing these low quality natural gas reserves. The CFZ/TPC/CNG Claus process is capable of treating low quality natural gas containing >10% C0{sub 2} and measurable levels of H{sub 2}S and N{sub 2} to pipeline specifications. The integrated CFZ / CNG Claus Process or the stand-alone CNG Claus Process has a number of attractive features for treating LQNG. The processes are capable of treating raw gas with a variety of trace contaminant components. The processes can also accommodate large changes in raw gas composition and flow rates. The combined processes are capable of achieving virtually undetectable levels of H{sub 2}S and significantly less than 2% CO in the product methane. The separation processes operate at pressure and deliver a high pressure (ca. 100 psia) acid gas (H{sub 2}S) stream for processing in the CNG Claus unit. This allows for substantial reductions in plant vessel size as compared to conventional Claus / Tail gas treating technologies. A close integration of the components of the CNG Claus process also allow for use of the methane/H{sub 2}S separation unit as a Claus tail gas treating unit by recycling the CNG Claus tail gas stream. This allows for virtually 100 percent sulfur recovery efficiency (virtually zero SO{sub 2} emissions) by recycling the sulfur laden tail gas to extinction. The use of the tail gas recycle scheme also deemphasizes the conventional requirement in Claus units to have high unit conversion efficiency and thereby make the operation much less affected by process upsets and feed gas composition changes. The development of these technologies has been ongoing for many years and both the CFZ and the TPC processes have been demonstrated at large pilot plant scales. On the other hand, prior to this project, the CNG Claus process had not been proven at any scale. Therefore, the primary objective of this portion of the program was to design, build and operate a pilot scale CNG Claus unit and demonstrate the required fundamental reaction chemistry and also demonstrate the viability of a reasonably sized working unit.

Klint, V.W.; Dale, P.R.; Stephenson, C.

1997-10-01T23:59:59.000Z

35

Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at Ft. Bliss, Texas. Interim report  

Science Conference Proceedings (OSTI)

A technology demonstration program of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles was conducted at FL Bliss, Texas to demonstrate the use of CNG as an alternative fuel. The demonstration program at FL Bliss was the first Army initiative with CNG-fueled vehicles under the legislated Alternative Motor Fuels Act. This Department of Energy (DOE)-supported fleet demonstration consisted of 48 General Services Administration (GSA)-owned, Army-leased 1992 dedicated CNG General Motors (GM) 3/4-ton pickup trucks and four 1993 gasoline-powered Chevrolet 3/4-ton pickup trucks.

Alvarez, R.A.; Yost, D.M.

1995-11-01T23:59:59.000Z

36

Compressed Natural Gas (CNG) Transit Bus Experience Survey: April 2009--April 2010  

Science Conference Proceedings (OSTI)

This survey was commissioned by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) to collect and analyze experiential data and information from a cross-section of U.S. transit agencies with varying degrees of compressed natural gas (CNG) bus and station experience. This information will be used to assist DOE and NREL in determining areas of success and areas where further technical or other assistance might be required, and to assist them in focusing on areas judged by the CNG transit community as priority items.

Adams, R.; Horne, D. B.

2010-09-01T23:59:59.000Z

37

Ten Years of Compressed Natural Gas (CNG) Operations at SunLine Transit Agency: April 2003--December 2004  

Science Conference Proceedings (OSTI)

This report focuses on the lesson learned at the SunLine Transit Agency after it converted in 1994 its entire operating transit bus fleet to compressed natural gas (CNG).

Chandler, K.

2006-01-01T23:59:59.000Z

38

Deregulation in Japanese gas industries : significance and problems of gas rate deregulation for large industrial customers  

E-Print Network (OSTI)

In recent years, the circumstances surrounding Japanese City gas industries have been changing drastically. On one hand, as energy suppliers, natural gas which has become major fuel resource for city gas, as public utilities, ...

Inoue, Masayuki

1994-01-01T23:59:59.000Z

39

Comparative analysis of liquefied natural gas (LNG) and compressed natural gas (CNG) used by transit agencies in Texas. Research report  

SciTech Connect

This study is a detailed comparative analysis of liquefied natural gas (LNG) and compressed natural gas (CNG). The study provides data on two alternative fuels used by transit agencies in Texas. First, we examine the `state-of-the- art` in alternative fuels to established a framework for the study. Efforts were made to examine selected characteristics of two types of natural gas demonstrations in terms of the following properties: energy source characteristics, vehicle performance and emissions, operations, maintenance, reliability, safety costs, and fuel availability. Where feasible, two alternative fuels were compared with conventional gasoline and diesel fuel. Environmental considerations relative to fuel distribution and use are analyzed, with a focus on examining flammability an other safety-related issues. The objectives of the study included: (1) assess the state-of-the-art and document relevant findings pertaining to alternative fuels; (2) analyze and synthesize existing databases on two natural gas alternatives: liquefied natural gas (LNG) and compressed natural gas (CNG): and (3) compare two alterative fuels used by transit properties in Texas, and address selected aspects of alternative fuels such as energy source characteristics, vehicle performance and emissions, safety, costs, maintenance and operations, environmental and related issues.

Lede, N.W.

1997-09-01T23:59:59.000Z

40

CNG | OpenEI  

Open Energy Info (EERE)

CNG CNG Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics Level of Review Peer Reviewed

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Deregulating UK Gas and Electricity Markets: How is Competition Working for  

NLE Websites -- All DOE Office Websites (Extended Search)

Deregulating UK Gas and Electricity Markets: How is Competition Working for Deregulating UK Gas and Electricity Markets: How is Competition Working for Residential Consumers? Speaker(s): Catherine Waddams Date: April 15, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Chris Marnay Retail gas and electricity prices were deregulated in the UK in April 2002, following introduction of retail choice for residential consumers between 1996 and 1999. We use information from consumer surveys, including a panel survey over three years, to analyse consumer attitudes and behaviour. In particular we explore how awareness changed, whether those who were actively considering switching in one wave of the survey had actually done so by the next round, whether individuals become willing to switch for smaller price gains as the markets matured, and how expectations

42

Network Connectivity and Price Convergency: Gas Pipeline Deregulation  

E-Print Network (OSTI)

pipeline tariffs and gas prices were regulated (Mulherin,failed, in equMizing gas prices across the geographicallyNetwork Connectivity and Price Convergence: Gas Pipeline

De Vany, Arthur; Walls, W. David

1993-01-01T23:59:59.000Z

43

Soviets' CNG technology promoted in U. S  

SciTech Connect

This paper reports on compressed natural gas which continues to be a major player in the push for alternate motor fuels. A CNG program has been under way for 40 years in the U.S.S.R., and Moscow CNG research and development company Gaztop is soliciting U.S. interest in its natural gas fuel systems and vehicle converters. Elsewhere in U.S. CNH action: Pittsburgh has taken delivery of five CNG buses. The first mass produced CNG pickup truck in the U.S. was unveiled this month in Los Angeles. The nation's first public CNG refueling network opened this month in Texas.

Not Available

1991-11-25T23:59:59.000Z

44

Network Connectivity and Price Convergency: Gas Pipeline Deregulation  

E-Print Network (OSTI)

Oklahoma E1 Paso Transwestern NGPL Tennessee TrunklinePanhandle ANK NGPLNorthern NGPL Tennessee ANR Columbia Tennessee TexasGas

De Vany, Arthur; Walls, W. David

1993-01-01T23:59:59.000Z

45

Deregulating UK Gas and Electricity Markets: How is Competition...  

NLE Websites -- All DOE Office Websites (Extended Search)

markets, the effects of economic regulation on quality of service and the evolution of tariff structures in the gas and electricity markets. Catherine has advised economic...

46

Alternative Fuels Data Center: Filling CNG Fuel Tanks  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Filling CNG Fuel Tanks Filling CNG Fuel Tanks to someone by E-mail Share Alternative Fuels Data Center: Filling CNG Fuel Tanks on Facebook Tweet about Alternative Fuels Data Center: Filling CNG Fuel Tanks on Twitter Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Google Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Delicious Rank Alternative Fuels Data Center: Filling CNG Fuel Tanks on Digg Find More places to share Alternative Fuels Data Center: Filling CNG Fuel Tanks on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Fuel System & Cylinders Fuel Safety Traffic Accident Filling CNG Tanks Laws & Incentives Filling CNG Fuel Tanks Unlike liquid fuel, which consistently holds about the same volume of fuel

47

Vehicle Modeling and Verification of CNG-Powered Transit Buses  

E-Print Network (OSTI)

by Compressed Natural Gas. . . . . . . . .. . 2 Internalbuses powered by compressed natural gas (CNG) engines. ThisBus Powered by Compressed Natural Gas The remainder of the

Hedrick, J. K.; Ni, A.

2004-01-01T23:59:59.000Z

48

Barwood CNG Cab Fleet Study: Final Results  

DOE Green Energy (OSTI)

This report describes a fleet study conducted over a 12-month period to evaluate the operation of dedicated compress natural gas (CNG) Ford Crown Victoria sedans in a taxicab fleet. In the study, we assess the performance and reliability of the vehicles and the cost of operating the CNG vehicles compared to gasoline vehicles. The study results reveal that the CNG vehicles operated by this fleet offer both economic and environmental advantages. The total operating costs of the CNG vehicles were about 25% lower than those of the gasoline vehicles. The CNG vehicles performed as well as the gasoline vehicles, and were just as reliable. Barwood representatives and drivers have come to consider the CNG vehicles an asset to their business and to the air quality of the local community.

Whalen, P.; Kelly, K.; John, M.

1999-05-03T23:59:59.000Z

49

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network (OSTI)

offering larger incentives for natural gas vehicles? -Do youbuy-down incentives were offered. For natural gas vehicle

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

50

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network (OSTI)

2000. Natural Gas Vehicle Coalition, Energy Policy Act ofPolicy Alternative Fuel Vehicles: The Case of Compressed Natural Gas (Natural Gas Vehicles Stall on Way to Market, Forum for Applied Research and Public Policy,

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

51

Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002-September 30, 2004  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Development and Demonstration Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses October 15, 2002 - September 30, 2004 A. Del Toro SunLine Services Group Thousand Palms, California M. Frailey National Renewable Energy Laboratory Golden, Colorado F. Lynch Hydrogen Components Inc. Littleton, Colorado S. Munshi Westport Innovations Inc. Vancouver, British Columbia, Canada S. Wayne West Virginia University Morgantown, West Virginia Technical Report NREL/TP-540-38707 November 2005 Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses October 15, 2002 - September 30, 2004 A. Del Toro SunLine Services Group Thousand Palms, California M. Frailey National Renewable Energy Laboratory Golden, Colorado

52

Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Atlanta Airport Atlanta Airport Converts Shuttles to CNG to someone by E-mail Share Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Facebook Tweet about Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Twitter Bookmark Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Google Bookmark Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Delicious Rank Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Digg Find More places to share Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on AddThis.com... Sept. 9, 2012 Atlanta Airport Converts Shuttles to CNG L earn how an Atlanta company saves money and conserves fuel with compressed natural gas airport shuttles.

53

Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

CNG Fuel System and CNG Fuel System and Cylinder Maintenance to someone by E-mail Share Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Facebook Tweet about Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Twitter Bookmark Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Google Bookmark Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Delicious Rank Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Digg Find More places to share Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety

54

Customer Retention Strategies of Compressed Natural Gas (CNG) in a Developing Country (Pakistan).  

E-Print Network (OSTI)

?? Background:Statistics say that Pakistan is the third largest user of compressed natural gas, its increased demand has encouraged investment in this sector. Number of (more)

Naveed-ur-Rehman, Muhammad

2013-01-01T23:59:59.000Z

55

CNG Delivery Vans  

NLE Websites -- All DOE Office Websites (Extended Search)

company delivers flowers in seven counties. Compared to diesel, the company finds CNG also reduces repair costs and produces a longer engine life. Now they are looking...

56

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

RFG Running Hot Soak Diurnal CNG :Diesel Fuels Emissions RFGwith compressednatural gas (CNG),the hydrocarbontaitpipemethanol, natural gas (CNG),and hydrogen. As noted above,

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

57

Safety and Regulatory Structure for CNG, CNG-Hydrogen Vehicles and Fuels in India  

NLE Websites -- All DOE Office Websites (Extended Search)

CNG,CNG-H2 Vehicles and Fuels CNG,CNG-H2 Vehicles and Fuels in India December 10-11, 2009 Ambrish Mishra Director (Marketing Operations) Oil Industry safety Directorate Ministry of Petroleum and Natural Gas Government Of India email : ambrish.mishra@gov.in OISD 2 1. Refineries: 17 PSU + 3 Private 2. POL Storage (PSU): More than 400 3. LPG storage and Bottling Plant (PSU): 179 4. Others Gas processing Plants of GAIL and ONGC OISD 3 Major Statutory Authorities and Norms 1. Petroleum and Safety Organization (PESO) A) Petroleum rules under Petroleum Act (1934) by MOPN&G B) Various Rules (Gas Cylinder Rules and SMPV etc) under the Explosives Act under Ministry of Commerce and Industry C)To exercise some provision of Environment Act 2. Chief Inspector of Factories of Respective State A) Factories Rules under Factories Act of Ministry of Labour

58

Transportation in Developing Countries: Greenhouse Gas Scenarios for Delhi, India  

E-Print Network (OSTI)

hand, compressed natural gas (CNG) and liquefied petroleumcost of owning and operating CNG and LPG vehicles couldto store the fuels. Each CNG bus, for example, currently

2001-01-01T23:59:59.000Z

59

Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

CNG Refuse Haulers Do CNG Refuse Haulers Do Heavy Lifting in New York to someone by E-mail Share Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Facebook Tweet about Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Twitter Bookmark Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Google Bookmark Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Delicious Rank Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Digg Find More places to share Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on AddThis.com... Nov. 13, 2010 CNG Refuse Haulers Do Heavy Lifting in New York W atch how Smithtown uses compressed natural gas trash haulers to combat the

60

Hustling While You Wait: The Politics of Energy and the Deregulation of Natural Gas, 1938-1993  

E-Print Network (OSTI)

The ability of the state versus societal groups to influence the formulation of policies has long been debated in political sociology. I suggest that historical contingency theory provides insight to resolve this debate. I evaluate the explanatory power of societycentered, state-centered and historically contingent theories of policy formation using the case of deregulation of the natural gas industry. I find that capitalists in the natural gas industry unified in response to capital accumulation crises and mobilized politically to change their institutional arrangements to restore and expand profitability. These changes, in turn, expanded state structures, creating powerful mechanisms for groups in society to leverage the state to obtain favorable policy outcomes. In the natural gas industry, the key state structure was the industrys regulatory body. Once this structure was created, the natural gas industry used it to leverage the state to incorporate deregulation into its national agenda. Thus, instead of increasing state autonomy, the creation and expansion of state structures undermines state autonomy and provides powerful groups in society with the means to control the policy formation process.

Walden, Rachel Nicole

2008-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

UPS CNG Truck Fleet Final Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

® ® ® ® ® ® ® ® Clean Air Natural Gas Vehicle This is a Clean Air Natural Gas Vehicle This is a UPS CNG Truck Fleet UPS CNG Truck Fleet UPS CNG Truck Fleet Final results Final Results Produced for the U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), a DOE national laboratory Alternative Fuel Trucks DOE/NREL Truck Evaluation Project By Kevin Chandler, Battelle Kevin Walkowicz, National Renewable Energy Laboratory Nigel Clark, West Virginia University Acknowledgments This evaluation would not have been possible without the cooperation, support, and responsiveness of the staff at UPS in Hartford and Atlanta. Thanks are due to the following UPS personnel: On-Site Headquarters Tom Robinson Ken Henrie Bill Jacob Rick Rufolo

62

Successful Adoption of CNG and Energing CNG-Hydrogen Program in India  

NLE Websites -- All DOE Office Websites (Extended Search)

Narendra Kumar Pal Narendra Kumar Pal Research Scholar, University of Nevada, Reno Successful Adoption of CNG and Emerging CNG-H 2 Program in India US DOT and DOE Workshop Compressed Natural Gas and Hydrogen Fuels: Lesson Learned for the Safe Development of Vehicles Washington DC, December, 10-11, 2009 Content * Background - CNG Implementation - IPHE - The Planning Commission of India - MP&NG - Hydrogen Corpus Fund - MNRE - National Hydrogen Energy Roadmap * Major Initiatives - Initiatives by MoP&NG - Indian Oil's Initiatives * International Workshop * Infrastructure Setup - IOC R&D Centre, Faridabad - IOC Retail Outlet, Dwarka, New Delhi * Developmental / Demonstration Projects - MNRE's Initiatives - Initiatives by Automobile Sector * Other programs 1. CNG Program Implementation

63

Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety and Regulatory Structure for CNG CNG-H 2 , H 2 Vehicles and Fuels in China Prof. Jinyang Zheng Director of IPE, Zhejiang University Director of Engineering Research...

64

CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...  

NLE Websites -- All DOE Office Websites (Extended Search)

5-192009; 1 Sandia National Laboratories CNG, H 2 , CNG-H 2 Blends - Critical Fuel Properties and Behavior Jay Keller, Sandia National Laboratories Keynote Lecture presented at:...

65

Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Happy Cab Fuels Taxi Happy Cab Fuels Taxi Fleet With CNG to someone by E-mail Share Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG on Facebook Tweet about Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG on Twitter Bookmark Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG on Google Bookmark Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG on Delicious Rank Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG on Digg Find More places to share Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG on AddThis.com... June 15, 2013 Happy Cab Fuels Taxi Fleet With CNG F ind out how a cab company in Omaha, Nebraska, saves money fueling its taxi fleet with compressed natural gas. For information about this project, contact Kansas City Regional Clean

66

Hydrogen, CNG, and HCNG Dispenser System Prototype Report  

DOE Green Energy (OSTI)

The U.S. Department of Energys Advanced Vehicle Testing Activity is currently testing a prototype gaseous fuel dispenser developed by the Electric Transportation Engineering Corporation (ETEC). The dispenser (Figure 1) delivers three types of fuels: 100% hydrogen, 100% compressed natural gas (CNG), and blends of hydrogen and CNG (HCNG) using two independent single nozzles (Figure 2). The nozzle for the 100% hydrogen dispensing is rated at 5,000 psig and used solely for 100% hydrogen fuel. The second nozzle is rated at 3,600 psig and is used for both CNG and HCNG fuels. This nozzle connects to both a CNG supply line and a hydrogen supply line and blends the hydrogen and CNG to supply HCNG levels of 15, 20, 30, and 50% (by volume).

James Francfort

2005-02-01T23:59:59.000Z

67

Hydrogen effects on materials for CNG/H2 blends.  

Science Conference Proceedings (OSTI)

No concerns for Hydrogen-Enriched Compressed Natural gas (HCNG) in steel storage tanks if material strength is CNG) (e.g., CO) may provide extrinsic mechanism for mitigating H{sub 2}-assisted fatigue cracking in steel tanks.

Farese, David (Air Products, USA); Keller, Jay O.; Somerday, Brian P.

2010-09-01T23:59:59.000Z

68

New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results  

DOE Green Energy (OSTI)

This report focuses on the evaluation of compressed natural gas (CNG) and diesel hybrid electric bus propulsion systems in New York City Transit's transit buses.

Chandler, K.; Eberts, E.; Eudy, L.

2006-01-01T23:59:59.000Z

69

Competition and Prices in the Deregulated Gas Pipeline Network: A Multivariate Cointegration Analysis  

E-Print Network (OSTI)

in the long run. For example, gas prices stochastically inin this paper to anMyzenatural gas prices in the deregulatedthat all of the natural gas price series analyzed are I(1).

Walls, W. David

1993-01-01T23:59:59.000Z

70

COMPARISON OF CLEAN DIESEL BUSES TO CNG BUSES  

Science Conference Proceedings (OSTI)

Using previously published data on regulated and unregulated emissions, this paper will compare the environmental performance of current generation transit buses operated on compressed natural gas (CNG) to current generation transit buses operated on ultra low sulfur diesel fuel (ULSD) and incorporating diesel particulate filters (DPF). Unregulated emissions evaluated include toxic compounds associated with adverse health effects (carbonyl, PAH, NPAH, benzene) as well as PM particle count and size distribution. For all regulated and unregulated emissions, both technologies are shown to be comparable. DPF equipped diesel buses and CNG buses have virtually identical levels of PM mass emissions and particle number emissions. DPF-equipped diesel buses have lower HC and CO emissions and lower emissions of toxic substances such as benzene, carbonyls and PAHs than CNG buses. CNG buses have lower NOx emissions than DPF-equipped buses, though CNG bus NOx emissions are shown to be much more variable. In addition, this paper will compare the capital and operating costs of CNG and DPF-equipped buses. The cost comparison is primarily based on the experience of MTA New York City Transit in operating CNG buses since 1995 and DPF-equipped buses fueled with ULSD since 2001. Published data on the experience of other large transit agencies in operating CNG buses is used to validate the NYCT experience. The incremental cost (compared to ''baseline'' diesel) of operating a typical 200-bus depot is shown to be six times higher for CNG buses than for ''clean diesel'' buses. The contributors to this increased cost for CNG buses are almost equally split between increased capital costs for purchase of buses and installation of fueling infrastructure, and increased operating costs for purchase of fuel, bus maintenance, and fuel station maintenance.

Lowell, D.; Parsley, W.; Bush,C; Zupo, D.

2003-08-24T23:59:59.000Z

71

Competition and Prices in the Deregulated Gas Pipeline Network: A Multivariate Cointegration Analysis  

E-Print Network (OSTI)

of spot markets located on NGPLs pipeline system in fiveI-Iouston/Katy Florida Gas NGPL Tennessee Texas EasternNorth Texas--Paahandle ANl~ NGPL Northern Panhandle Eastern

Walls, W. David

1993-01-01T23:59:59.000Z

72

CNG transit fueling station handbook. Final report, October 1993-June 1997  

Science Conference Proceedings (OSTI)

This manual has been complied for use by a Transit Authority Engineer or an Engineering Company who is involved in the design of Compressed Natural Gas (CNG) fueling facilities. It is intended to provide a convenient and comprehensive reference document, to supplement but not replace codes and other reference documents. It is also intended to be used as a basis for the design of a broad range of CNG fueling facilities. The scope is limited to straight CNG and hence Liquefied Natural Gas (LNG) or LNG vaporization to CNG has not been addressed. Similarly, this document does not deal with the facility modifications which may be required to park, service, or fuel CNG buses indoors. Additional information on actual gas fueling is available from the Gas Research Institute.

Adams, R.R.; Pennington, M.D.

1997-02-01T23:59:59.000Z

73

CNG in OKC: Improving Efficiency at the Pump and on the Road | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CNG in OKC: Improving Efficiency at the Pump and on the Road CNG in OKC: Improving Efficiency at the Pump and on the Road CNG in OKC: Improving Efficiency at the Pump and on the Road March 8, 2012 - 4:02pm Addthis Andy Mitchell, Public Works Project Manager for the City of Oklahoma City, refills a vehicle at the new fast-fill CNG fueling station located at the city's main maintenance facility. | Courtesy of the City of Oklahoma City. Andy Mitchell, Public Works Project Manager for the City of Oklahoma City, refills a vehicle at the new fast-fill CNG fueling station located at the city's main maintenance facility. | Courtesy of the City of Oklahoma City. Jennifer Holman Project Officer, Golden Field Office What does this mean for me? Switching from gasoline and diesel fuels to compressed natural gas (CNG) can mean significantly lower amounts of carbon dioxide and air

74

Comparison of CNG and LNG technologies for transportation applications  

Science Conference Proceedings (OSTI)

This report provides a head-to-head comparison of compressed natural gas (CNG) and liquefied natural gas (LNG) supplied to heavy-duty vehicles. The comparison includes an assessment of the overall efficiency of the fuel delivery system, the cost of the fuel supply system, the efficiency of use in heavy-duty vehicles, and the environmental impact of each technology. The report concludes that there are applications in which CNG will have the advantage, and applications in which LNG will be preferred.

Sinor, J.E. (Sinor (J.E.) Consultants, Inc., Niwot, CO (United States))

1992-01-01T23:59:59.000Z

75

Ford F250 Dedicated CNG Pickup  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) is encouraging the use of alternative fuels and alternative fuel vehicles (AFVs). To support this activity, DOE has directed the National Renewable Energy Laboratory (NREL) to conduct projects to evaluate the performance and acceptability of light-duty AFVs. In this study, we tested a pair of 1998 Ford F-250 pickups: one dedicated compressed natural gas (CNG) model and a gasoline model as closely matched as possible. Each vehicle was run through a series of tests to evaluate acceleration, fuel economy, braking, and cold-start capabilities, as well as more subjective performance indicators such as handling, climate control, and noise.

Eudy, L.

1999-06-24T23:59:59.000Z

76

Technical evaluation and assessment of CNG/LPG bi-fuel and flex-fuel vehicle viability  

DOE Green Energy (OSTI)

This report compares vehicles using compressed natural gas (CNG), liquefied petroleum gas (LPG), and combinations of the two in bi-fuel or flex-fuel configurations. Evidence shows that environmental and energy advantages can be gained by replacing two-fuel CNG/gasoline vehicles with two-fuel or flex-fuel systems to be economically competitive, it is necessary to develop a universal CNG/LPG pressure-regulator-injector and engine control module to switch from one tank to the other. For flex-fuel CNG/LPG designs, appropriate composition sensors, refueling pumps, fuel tanks, and vaporizers are necessary.

Sinor, J E [Sinor (J.E.) Consultants, Inc., Niwot, CO (United States)

1994-05-01T23:59:59.000Z

77

Transportation in Developing Countries: Greenhouse Gas Scenarios for Shanghai, China  

E-Print Network (OSTI)

engines are re-optimized for CNG and are calculated on amanufacturing the engine), then CNG would produce even moreChina natural gas (CNG). The taxi fleet is currently being

Zhou, Hongchang; Sperling, Daniel

2001-01-01T23:59:59.000Z

78

Accommodating the Green Gas Infrastructure for Road Traffic: A feasibility and conceptual design study of a new distribution system for (Bio-)CNG.  

E-Print Network (OSTI)

??The emergence of green gas is a promising development within the Dutch gas market. Green gas is biogas with natural gas quality and can lead (more)

Van Rooij, R.L.M.M.

2012-01-01T23:59:59.000Z

79

Evaporative Testing Requirements for Dual-Fuel Compressed Natural Gas (CNG)/Gasoline and Liquefied Petroleum Gas (LPG)/Gasoline Vehicles Revision of MAC #99-01 To Allow Subtraction of Methane Emissions from  

E-Print Network (OSTI)

The attached MAC clarifies the Air Resources Board's procedures regarding evaporative emission testing of dual-fuel CNG/gasoline vehicles. This MAC revises and supersedes MAC #99-01 by allowing manufacturers to determine, report, and subtract methane emissions when a dual-fuel CNG/gasoline vehicle is tested for evaporative emissions. A related revision clarifies that for dual-fuel CNG/gasoline medium-duty vehicles, the applicable LEV I evaporative emission standards, which are dependent on the fuel tank capacity of the medium-duty vehicles, are determined solely on the fuel tank capacity of the gasoline fuel system. If you have any questions or comments, please contact Mr. Steven Hada, Air

Alan C. Lloyd, Ph.D.; Arnold Schwarzenegger; All Heavy-duty Vehicle Manufacturers

2004-01-01T23:59:59.000Z

80

When Barriers to Markets Fail: Pipeline Deregulation, Spot Markets, and the Topology of the Natural Gas Market  

E-Print Network (OSTI)

Congress passed the Natural Gas Policy Act in 1978. The Actthe Natural Gas Act." Southern Regu- latory Policyfor natural gas. Introduction Regulatory policies suppressed

De Vany, Arthur; Walls, W. David

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Effect of CNG start - gasoline run on emissions from a 3/4 ton pick-up truck  

SciTech Connect

This paper describes experiments to determine the effect on exhaust emissions of starting on compressed natural gas (CNG) and then switching to gasoline once the catalyst reaches operating temperature. Carbon monoxide, oxides of nitrogen, and detailed exhaust hydrocarbon speciation data were obtained for dedicated CNG, then unleaded gasoline, and finally CNG start - gasoline run using the Federal Test Procedure at 24{degree}C and at -7{degree}C. The results was a reductiopn in emissions from the gasoline baseline, especially at -7{degree}C. It was estimated that CNG start - gasoline run resulted in a 71 percent reduction in potential ozone formation per mile. 3 refs., 6 figs., 11 tabs.

Springer, K.J.; Smith, L.R.; Dickinson, A.G.

1994-10-01T23:59:59.000Z

82

In-Use Performance Comparison of Hybrid Electric, CNG, and Diesel Buses at New York City Transit  

Science Conference Proceedings (OSTI)

The National Renewable Energy Laboratory (NREL) evaluated the performance of diesel, compressed natural gas (CNG), and hybrid electric (equipped with BAE Systems? HybriDrive propulsion system) transit buses at New York City Transit (NYCT). CNG, Gen I and Gen II hybrid electric propulsion systems were compared on fuel economy, maintenance and operating costs per mile, and reliability.

Barnitt, R. A.

2008-06-01T23:59:59.000Z

83

When Barriers to Markets Fail: Pipeline Deregulation, Spot Markets, and the Topology of the Natural Gas Market  

E-Print Network (OSTI)

Growth in Unbundled Natural Gas Transportation Services:Mergers and their Potential Impact on Natural Gas Markets."Natural Gas Monthly, DOE/EIA-0525. \\Vashington, D.C. : U.S.

De Vany, Arthur; Walls, W. David

1992-01-01T23:59:59.000Z

84

Vehicle Modeling and Verification of CNG-Powered Transit Buses  

E-Print Network (OSTI)

Modeling and Verification of CNG-Powered Transit BusesModeling and Verification of CNG-Powered Transit Buses.Modeling and Veri?cation of CNG-Powered Transit Buses J.K.

Hedrick, J. K.; Ni, A.

2004-01-01T23:59:59.000Z

85

Advanced Vehicle Testing Activity: Dodge Ram Wagon Van -- Hydrogen/CNG Operations Summary  

DOE Green Energy (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energys Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Services Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen85% CNG.

Don Karner; Francfort, James Edward

2003-01-01T23:59:59.000Z

86

Advanced Vehicle Testing Activity: Dodge Ram Wagon Van - Hydrogen/CNG Operations Summary - January 2003  

Science Conference Proceedings (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen-85% CNG.

Karner, D.; Francfort, J.E.

2003-01-16T23:59:59.000Z

87

CNG Goes Mainstream  

NLE Websites -- All DOE Office Websites (Extended Search)

Goes Mainstream Goes Mainstream JOHN DAVIS: Time now for Motor News. So, let's head inside to Yolanda Vazquez for what's new this week. VOLANDA VAZQUEZ: Big news on the EV front with a new all-electric SUV from Toyota. The Japanese automaker unveiled the production version of the 2012 Rav 4 EV at the EVS26 symposium in Los Angeles. It was jointly developed with electric car pioneer Tesla Motors who supplied the battery pack and drive system. Like other current EV's, this Rav 4 has a range of about 100 miles, but with more versatility. Toyota expects a price of nearly $50,000 will likely limit sales to about 2,600 Rav4 EV's over the next 3 years. Rising gasoline prices are also renewing interest in another alt-fuel, compressed natural gas. From taxis to refuse and delivery trucks, more and more fleets are

88

Dispersion of CNG following a high-pressure release. Final report, February 1995-March 1996  

Science Conference Proceedings (OSTI)

The research described in the report was designed to evaluate the adequacy of the current convention concerning safeguards against CNG-related fires in transit buildings where CNG powered buses are fueled, stored, or maintained. The convention embraces the belief that precautions need to be taken only at or near the ceiling of the buildings. It is based on the premise that, since CNG is primarily methane and methane is approximately one-half the density of air at ambient temperature and pressure, any natural gas released would immediately rise to the ceiling as a buoyant plume. The experiments described here tested theoretical predictions that challenge this premise. During the tests, infrared imaging was used to track the movement of CNG following release from a high-pressure source close to the floor.

Gaumer, R.L.; Raj, P.K.

1996-05-01T23:59:59.000Z

89

Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050  

E-Print Network (OSTI)

petroleum gases, and compressed natural gas, but their totalNatural Gas (LNG) Compressed Natural Gas (CNG) Liquefied

Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

2008-01-01T23:59:59.000Z

90

SuperShuttle CNG Fleet Start-Up Experience  

DOE Green Energy (OSTI)

The Gas Research Institute (GRI) and the U.S. Department of Energy (DOE), along with several industry partners, are collaborating with SuperShuttle of Denver, Colorado, to evaluate natural gas vans added to the SuperShuttle fleet in 1999. Brand new (1999 model year) dedicated and bi-fuel compressed natural gas (CNG) vans manufactured by Ford Motor Company will be operated side-by-side with several similar gasoline vehicles in normal revenue service. Once the study is complete, DOE's National Renewable Energy Laboratory will analyze and compile the results for release.

Eudy, L.

1999-05-18T23:59:59.000Z

91

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150  

Science Conference Proceedings (OSTI)

Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energys Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

James E. Francfort

2003-11-01T23:59:59.000Z

92

In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety November 6, 2012 - 5:00pm Addthis Natural gas jitneys like this are Atlantic City's main form of public transportation. These vehicles were used to evacuate vulnerable residents during Hurricane Sandy. This vehicle is fueling up at a natural gas station built, owned, and operated by Clean Energy Fuels, who kept the station running despite widespread shortages of gasoline and diesel elsewhere. | Photo courtesy of Clean Energy Natural gas jitneys like this are Atlantic City's main form of public transportation. These vehicles were used to evacuate vulnerable residents during Hurricane Sandy. This vehicle is fueling up at a natural gas station

93

In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety November 6, 2012 - 5:00pm Addthis Natural gas jitneys like this are Atlantic City's main form of public transportation. These vehicles were used to evacuate vulnerable residents during Hurricane Sandy. This vehicle is fueling up at a natural gas station built, owned, and operated by Clean Energy Fuels, who kept the station running despite widespread shortages of gasoline and diesel elsewhere. | Photo courtesy of Clean Energy Natural gas jitneys like this are Atlantic City's main form of public transportation. These vehicles were used to evacuate vulnerable residents during Hurricane Sandy. This vehicle is fueling up at a natural gas station

94

Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002--September 30, 2004  

DOE Green Energy (OSTI)

The report covers literature and laboratory analyses to identify modification requirements of a Cummins Westport B Gas Plus engine for transit buses using a hydrogen/compressed natural fuel blend.

Del Toro, A.; Frailey, M.; Lynch, F.; Munshi, S.; Wayne, S.

2005-11-01T23:59:59.000Z

95

Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at St. Bliss, Texas. Interim report, October 1992--May 1994  

DOE Green Energy (OSTI)

Results are presented from a demonstration program conducted on the comparative evaluations of the combustion of compressed natural gas as an alternative fuel for gasoline. General Motors pick-up trucks were utilized in the study.

Alvarez, R.A.; Yost, D.M.

1995-11-01T23:59:59.000Z

96

Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary  

DOE Green Energy (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energys Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Services Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

Karner, D.; Francfort, James Edward

2003-01-01T23:59:59.000Z

97

Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary  

DOE Green Energy (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energys Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Services Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen50% CNG fuel.

Don Karner; Francfort, James Edward

2003-01-01T23:59:59.000Z

98

Optimization of a CNG series hybrid concept vehicle  

DOE Green Energy (OSTI)

Compressed Natural Gas (CNG) has favorable characteristics as a vehicular fuel, in terms of fuel economy as well as emissions. Using CNG as a fuel in a series hybrid vehicle has the potential of resulting in very high fuel economy (between 26 and 30 km/liter, 60 to 70 mpg) and very low emissions (substantially lower than Federal Tier II or CARB ULEV). This paper uses a vehicle evaluation code and an optimizer to find a set of vehicle parameters that result in optimum vehicle fuel economy. The vehicle evaluation code used in this analysis estimates vehicle power performance, including engine efficiency and power, generator efficiency, energy storage device efficiency and state-of-charge, and motor and transmission efficiencies. Eight vehicle parameters are selected as free variables for the optimization. The optimum vehicle must also meet two perfect requirements: accelerate to 97 km/h in less than 10 s, and climb an infinitely long hill with a 6% slope at 97 km/h with a 272 kg (600 lb.) payload. The optimizer used in this work was originally developed in the magnetic fusion energy program, and has been used to optimize complex systems, such as magnetic and inertial fusion devices, neutron sources, and mil guns. The optimizer consists of two parts: an optimization package for minimizing non-linear functions of many variables subject to several non-linear equality and/or inequality constraints and a programmable shell that allows interactive configuration and execution of the optimizer. The results of the analysis indicate that the CNG series hybrid vehicle has a high efficiency and low emissions. These results emphasize the advantages of CNG as a near-term alternative fuel for vehicles.

Aceves, S.M.; Smith, J.R.; Perkins, L.J.; Haney, S.W.; Flowers, D.L.

1995-09-22T23:59:59.000Z

99

Comparison of CNG and LNG technologies for transportation applications. Final subcontract report, June 1991--December 1991  

Science Conference Proceedings (OSTI)

This report provides a head-to-head comparison of compressed natural gas (CNG) and liquefied natural gas (LNG) supplied to heavy-duty vehicles. The comparison includes an assessment of the overall efficiency of the fuel delivery system, the cost of the fuel supply system, the efficiency of use in heavy-duty vehicles, and the environmental impact of each technology. The report concludes that there are applications in which CNG will have the advantage, and applications in which LNG will be preferred.

Sinor, J.E. [Sinor (J.E.) Consultants, Inc., Niwot, CO (United States)

1992-01-01T23:59:59.000Z

100

Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Smithtown Selects CNG Smithtown Selects CNG to Cut Refuse Collection Costs to someone by E-mail Share Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Facebook Tweet about Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Twitter Bookmark Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Google Bookmark Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Delicious Rank Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Digg Find More places to share Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on AddThis.com... April 7, 2011 Smithtown Selects CNG to Cut Refuse Collection Costs

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Differential impact of immediate total deregulation of wellhead prices of natural gas on minority and low-income homeowners: a general review and a case study in the Washington, DC area  

SciTech Connect

In this study, the authors evaluate the impact of total deregulation of wellhead prices of natural gas on various strata of the residential consuming population, and compare it to the baseline impact of a continuation of the Natural Gas Policy Act of 1978. They found that minority and poverty homeowners will suffer greater relative welfare losses than their white and non-poverty counterparts. They developed quantitative estimates of the extent of these differentials, and offered some policy proposals suggested by these findings. 54 refs., 8 figs., 68 tabs.

Green, R.D.; Gilbert, H.R.

1983-01-01T23:59:59.000Z

102

Transit Users Group Supports Transit Agencies with Natural Gas Buses  

Science Conference Proceedings (OSTI)

Fact sheet describes the benefits of the Transit Users Group, which supports transit groups with compressed natural gas (CNG) buses.

Not Available

2002-04-01T23:59:59.000Z

103

CNG and Hydrogen Tank Safety, R&D, and Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

2.10.2009 | Presented by Joe Wong, P.Eng. CNG & Hydrogen Tank Safety, R&D, and Testing > Powertech Labs Inc. 1 PRESENTATION OBJECTIVES Present experience from CNG in-service...

104

Effect of CNG start-gasoline run on emissions from a 3/4 ton pick-up truck  

Science Conference Proceedings (OSTI)

This paper describes experiments to determine the effect on exhaust emissions of starting on compressed natural gas (CNG) and then switching to gasoline once the catalyst reaches operating temperature. Carbon monoxide, oxides of nitrogen, and detailed exhaust hydrocarbon speciation data were obtained for dedicated CNG, then unleaded gasoline, and finally CNG start-gasoline run using the Federal Test Procedure at 24{degree}C and at -7{degree}C. The result was a reduction in emissions from the gasoline baseline, especially at -7{degree}C. It was estimated that CNG start - gasoline run resulted in a 71 percent reduction in potential ozone formation per mile. 3 refs., 6 figs., 11 tabs.

Springer, K.J.; Smith, L.R.; Dickinson, A.G.

1994-10-01T23:59:59.000Z

105

UPS CNG Truck Fleet Start Up Experience: Alternative Fuel Truck Evaluation Project  

DOE Green Energy (OSTI)

UPS operates 140 Freightliner Custom Chassis compressed natural gas (CNG)-powered vehicles with Cummins B5.9G engines. Fifteen are participating in the Alternative Fuel Truck Evaluation Project being funded by DOE's Office of Transportation Technologies and the Office of Heavy Vehicle Technologies.

Walkowicz, K.

2001-08-14T23:59:59.000Z

106

Low-cost, low-weight CNG cylinder development. Final report  

DOE Green Energy (OSTI)

This program was established to develop and commercialize new high-strength steel-lined, composite hoop-wrapped compressed natural gas (CNG) cylinders for vehicular applications. As much as 70% of the cost of natural gas vehicles can be related to on-board natural gas storage costs. The cost and weight targets for this program represent significant savings in each characteristic when compared to comparable containers available at the initiation of the program. The program objectives were to optimize specific weight and cost goals, yielding CNG cylinders with dimensions that should, allowing for minor modifications, satisfy several vehicle market segments. The optimization process encompassed material, design, and process improvement. In optimizing the CNG cylinder design, due consideration was given to safety aspects relative to national, international, and vehicle manufacturer cylinder standards and requirements. The report details the design and development effort, encompassing plant modifications, material selection, design issues, tooling development, prototype development, and prototype testing. Extenuating circumstances prevented the immediate commercialization of the cylinder designs, though significant progress was made towards improving the cost and performance of CNG cylinders. A new low-cost fiber was successfully employed while the weight target was met and the cost target was missed by less than seven percent.

Richards, Mark E.; Melford, K.; Wong, J.; Gambone, L.

1999-09-01T23:59:59.000Z

107

The role of natural gas as a vehicle transportation fuel.  

E-Print Network (OSTI)

??This thesis analyzes pathways to directly use natural gas, as compressed natural gas (CNG) or liquefied natural gas (LNG), in the transportation sector. The thesis (more)

Murphy, Paul Jarod

2010-01-01T23:59:59.000Z

108

Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003  

Science Conference Proceedings (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

Karner, D.; Francfort, J.E.

2003-01-22T23:59:59.000Z

109

Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003  

Science Conference Proceedings (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.

Karner, D.; Francfort, J.E.

2003-01-22T23:59:59.000Z

110

Deregulation-restructuring: Evidence for individual industries  

SciTech Connect

Several studies have measured the effects of regulation on a particular industry. These studies range widely in sophistication, from simple observation (comparison) of pre-transformation and post-transformation actual industry performance to econometric analysis that attempt to separate the effects of deregulation from other factors in explaining changes in an industry`s performance. The major problem with observation studies is that they are unable to measure the effect of one particular event, such as deregulation, on an industry`s performance. For example, at the same time that the United Kingdom privatized its electric power industry, it also radically restructured the industry to encourage competition and instituted a price-cap mechanism to regulate the prices of transmission, distribution, and bundled retail services. Subsequent to these changes in 1991, real prices for most UK electricity customers have fallen. It is not certain however, which of these factors was most important or even contributed to the decline in price. In any event, one must be cautious in interpreting the results of studies that attempt to measure the effect of deregulation per se for a specific industry. This report highlights major outcomes for five industries undergoing deregulation or major regulatory and restructuring reforms. These include the natural gas, transportation, UK electric power, financial, and telecommunications industries. Particular attention was given to the historical development of events in the telecommunications industry.

Costello, K.W.; Graniere, R.J.

1997-05-01T23:59:59.000Z

111

Dodge B2500 dedicated CNG van  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) is promoting the use of alternative fuels and alternative fuel vehicles (AFVs). To support this activity, DOE has directed the National Renewable Energy Laboratory (NREL) to conduct projects to evaluate the performance and acceptability of light-duty AFVs. The authors tested a 1999 B2500 dedicated CNG Ram Wagon with a 5.2L V8 engine. The vehicle was run through a series of tests explained briefly in this fact sheet.

Eudy, L.

2000-04-19T23:59:59.000Z

112

Hydrogen, CNG, and HHCNG Dispenser System - Prototye Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity Hydrogen, CNG, and HCNG Dispenser System - Prototype Report TECHNICAL REPORT Don Karner Scott...

113

Deregulating the electric utility industry  

E-Print Network (OSTI)

Many functions must be performed in any large electric power system. A specific proposal for a deregulated power system, based on a real-time spot energy marketplace, is presented and analyzed. A central T&D utility acts ...

Bohn, Roger E.

1982-01-01T23:59:59.000Z

114

New antitrust issues in a deregulated environment: access to pipelines  

Science Conference Proceedings (OSTI)

The deregulated environment of the Natural Gas Policy Act, (NGPA) will introduce new antitrust issues, one issue of particular concern and difficulty being access and utilization of gas transmission and distribution facilities. The authors disagree with the tendency to use the bottleneck monopoly/essential facility doctrine to suggest that access is required by the antitrust laws. Current trends in judicial and economic analysis of refusals to deal by monopolists supports the view that nonpredatory denials of access, based on such legitimate business considerations as efficiency and profitability, are appropriate and consistent with both antitrust policy and the competitive purposes of industry deregulation. 80 references.

Mahinka, S.P.; Johnson, J.L.

1983-01-01T23:59:59.000Z

115

Alternative Carriers For Remote Renewable Energy Sources Using Existing Cng  

Open Energy Info (EERE)

Carriers For Remote Renewable Energy Sources Using Existing Cng Carriers For Remote Renewable Energy Sources Using Existing Cng Infrastructure Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Alternative Carriers For Remote Renewable Energy Sources Using Existing Cng Infrastructure Details Activities (0) Areas (0) Regions (0) Abstract: Optimal locations of renewable energy sources are often remote relative to consumers and electricity grids. In contrast, some existing CNG pipelines pass through optimal renewable energy harvesting regions. The growing interest in the possibility of using geothermal energy in central Australia has created a need to assess the economic, technical, and environmental viability of converting remote renewable energy to fuel for transport using existing CNG pipelines, and to compare this alternative

116

An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles  

E-Print Network (OSTI)

World Bank Seminar: Compressed Natural Gas in New Zealand /implementation of compressed natural gas (CNG) as fuel instudy countries Compressed natural gas vehicles were ?rst

Yeh, Sonia

2007-01-01T23:59:59.000Z

117

Safety and Regulatory Structure for CNG/Hydrogen Vehicles and Fuels in the United States  

NLE Websites -- All DOE Office Websites (Extended Search)

CNG/H2 Vehicles and Fuels in the CNG/H2 Vehicles and Fuels in the United States Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for Safe Deployment of Vehicles Workshop December 2009 2 Overview DOT/NHTSA Mission Federal Motor Vehicle Safety Standards (FMVSS) FMVSS covering alternative fuel vehicles Research supporting new/improved FMVSS for alternative fuel vehicles International Harmonization - Global Technical Regulations 3 Mission Statements DOT Mission Statement Serve the United States by ensuring a safe transportation system that furthers our vital national interests and enhances the quality of life of the American people * Safety - Promote the public health and safety by working toward the elimination of transportation-related deaths and injuries NHTSA Mission Statement To reduce deaths, injuries and economic losses resulting from

118

A Life Cycle Comparison of Coal and Natural Gas for Electricity Generation and the Production of Transportation Fuels  

E-Print Network (OSTI)

, compressed natural gas (CNG), criteria emissions, demographic, E85, Energy Commission, environmental justice Category: Natural Gas for School Fleets, CNG Station, LNG or L/CNG Station · Bear Valley Unified School to the wholesale or retail distribution and sales stations. The projects will be assessed in two separate rounds

119

Alternative fuel information: Facts about CNG and LPG conversion  

DOE Green Energy (OSTI)

As new environmental and energy related laws begin to take effect, increasing numbers of alternative fuel vehicles (AFVs) will be required in federal, state, municipal, and private fleets across the country. The National Energy Policy Act of 1992 and the Clean Air Act Amendments of 1990, along with several new state and local laws, will require fleet managers to either purchase original equipment manufacturer (OEM) vehicles, which are produced by automakers, or convert existing vehicles to run on alternative fuels. Because there is a limited availability and selection of OEM vehicles, conversions are seen as a transition to the time when automakers will produce more AFVs for public sale. A converted vehicle is any vehicle that originally was designed to operate on gasoline, and has been altered to run on an alternative fuel such as compressed natural gas (CNG) or propane (liquefied petroleum gas -- LPG), the two most common types of fuel conversions. In the United States, more than 25,000 vehicles already have been converted to COG, and 300,000 have been converted to LPG.

O`Connor, K.

1994-06-01T23:59:59.000Z

120

DEREGULATION SHOCK IN PRODUCT MARKET AND UNEMPLOYMENT  

E-Print Network (OSTI)

DEREGULATION SHOCK IN PRODUCT MARKET AND UNEMPLOYMENT Luisito BERTINELLI Olivier CARDI Partha SEN://www.economie.polytechnique.edu/ mailto:chantal.poujouly@polytechnique.edu hal-00589228,version1-28Apr2011 #12;DEREGULATION SHOCK [2010] analyze the effect of a deregulation shock within a dynamic general equilibrium model with entry

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

CNG and Diesel Transit Bus Emissions in Review  

DOE Green Energy (OSTI)

Over the past three years, the California Air Resources Board (CARB), in collaboration with the University of California and other entities, has investigated the tailpipe emissions from three different latemodel, in-use heavy-duty transit buses in five different configurations. The study has focused on the measurement of regulated emissions (NOX, HC, CO, total PM), other gaseous emissions (CO2, NO2, CH4, NMHC), a number of pollutants of toxic risk significance (aromatics, carbonyls, PAHs, elements), composition (elemental and organic carbon), and the physical characterization (size-segregated number count and mass) of the particles in the exhaust aerosol. Emission samples are also tested in a modified Ames assay. The impact of oxidation catalyst control for both diesel and compressed natural gas (CNG) buses and a passive diesel particulate filter (DPF) were evaluated over multiple driving cycles (idle, 55 mph cruise, CBD, UDDS, NYBC) using a chassis dynamometer. For brevity, only CBD results are discussed in this paper and particle sizing results are omitted. The database of results is large and some findings have been reported already at various forums including last year's DEER conference. The goal of this paper is to offer an overview of the lessons learned and attempt to draw overall conclusions and interpretations based on key findings to date.

Ayala, A. (a); Kado, N. (a,b); Okamoto, R. (a); Gebel, M. (a) Rieger, P. (a); Kobayashi, R. (b); Kuzmicky, P. (b)

2003-08-24T23:59:59.000Z

122

Natural Gas Pipeline and System Expansions, 1997-2000  

U.S. Energy Information Administration (EIA)

complement CNGs planned improvement to its system for Pipeline Companys Express 500 is one such proposal, with flowing gas between Leidy, Pennsylvania, ...

123

/Gas Plant Operators Monthly Petroleum Product Sales Report. As  

U.S. Energy Information Administration (EIA)

sales to refiners and gas plant operators represented on the list. When using this list, ... (CNG Transmission) Dominion Transmission . DCP Midstream Partners.

124

EIA-782A EXCLUSIONARY LIST INSTRUCTIONS /Gas Plant Operators ...  

U.S. Energy Information Administration (EIA)

sales to refiners and gas plant operators represented on the list. When using this list, ... CNG Transmission (Dominion Field Serv.) Coastal Markets Limited .

125

Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

CNG Shuttles Save Fuel CNG Shuttles Save Fuel Costs for R&R Limousine and Bus to someone by E-mail Share Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Facebook Tweet about Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Twitter Bookmark Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Google Bookmark Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Delicious Rank Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Digg Find More places to share Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on AddThis.com... June 1, 2013

126

Overview of DOE ? DOT December 2009 CNG and Hydrogen Fuels Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-DOT CNG-H 2 Workshop Summary and Highlights Antonio Ruiz DOE Vehicular Tank Workshop April 29, 2010 - Sandia National Laboratories, CA 2 CNG-H2 Fuels Workshop Washinton ,DC,...

127

New York City Transit Hybrid and CNG Transit Buses: Final Evaluation Results  

DOE Green Energy (OSTI)

This report describes the evaluation results for new Orion VII buses at NYCT with CNG propulsion and new hybrid propulsion.

Barnitt, R.; Chandler, K.

2006-11-01T23:59:59.000Z

128

Transmission planning in deregulated power markets.  

E-Print Network (OSTI)

??Transmission systems in deregulated power systems have largely been left to centralized network operators although various forms of participation by merchant operators have been proposed. (more)

Panambarage Anton Jagath Fonseka.

2008-01-01T23:59:59.000Z

129

Evaluating the Safety of a Natural Gas Home Refueling Appliance (HRA)  

Science Conference Proceedings (OSTI)

A fact sheet summarizing the National Renewable Energy Laboratory safety evaluation of Phill, Fuelmaker Corporation's natural gas home refueling appliance, used to fill CNG vehicles at home.

Not Available

2005-04-01T23:59:59.000Z

130

Washington Metropolitan Area Transit Authority: Compressed Natural Gas Transit Bus Evaluation  

DOE Green Energy (OSTI)

Evaluates compressed natural gas (CNG) powered transit buses at Washington Metropolitan Area Transit Authority (WMATA), providing a comparison between them and standard diesel transit buses.

Chandler, K.; Eberts, E.; Melendez, M.

2006-04-01T23:59:59.000Z

131

Gas Mileage of 2002 Vehicles by Chevrolet  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevrolet Cavalier Dual-fuel 4 cyl, 2.2 L, Automatic 4-spd, Regular Gasoline or natural gas Compare 2002 Chevrolet Cavalier Dual-fuel Gas 20 City 23 Combined 28 Highway CNG 18...

132

Gas Mileage of 2004 Vehicles by GMC  

NLE Websites -- All DOE Office Websites (Extended Search)

GMC Savana (cargo) (Bi-fuel) 8 cyl, 6.0 L, Automatic 4-spd, Regular Gasoline or natural gas Compare 2004 GMC Savana (cargo) (Bi-fuel) Gas 11 City 12 Combined 15 Highway CNG 11...

133

Gas Mileage of 2013 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

City 44 Combined 44 Highway 2013 Honda Civic Natural Gas 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2013 Honda Civic Natural Gas 27 City 31 Combined 38 Highway 2013 Honda...

134

Gas Mileage of 2012 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

City 44 Combined 44 Highway 2012 Honda Civic Natural Gas 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2012 Honda Civic Natural Gas View MPG Estimates Shared By Vehicle Owners 27...

135

The role of natural gas as a vehicle transportation fuel  

E-Print Network (OSTI)

This thesis analyzes pathways to directly use natural gas, as compressed natural gas (CNG) or liquefied natural gas (LNG), in the transportation sector. The thesis focuses on identifying opportunities to reduce market ...

Murphy, Paul Jarod

2010-01-01T23:59:59.000Z

136

Volatile Energy Costs and the Floundering Deregulation of Electricity: A  

NLE Websites -- All DOE Office Websites (Extended Search)

Volatile Energy Costs and the Floundering Deregulation of Electricity: A Volatile Energy Costs and the Floundering Deregulation of Electricity: A Fresh Look at Integrating Supply-Side and Demand-Side Resources Speaker(s): Bill Kelly Robert Redlinger Date: January 19, 2001 - 12:00pm Location: 90-3148 Seminar Host/Point of Contact: Julie Osborn The restructuring of the California electricity industry has not proceeded as intended. A generation capacity shortage, combined with spiraling natural gas costs and a flawed electricity market structure, have led to unprecedented wholesale electricity prices, power outages, and a political and financial crisis for the State. This crisis will not be solved through increasing electricity supply alone. Energy industry observers agree that 1.) energy efficiency, 2.) distributed on-site generation, and 3.) price

137

Customer choice: Purchasing energy in a deregulated market  

SciTech Connect

This book presents the detailed guidance on how to effectively purchase deregulated energy, based on first-hand reports from many of the nation`s most knowledgeable experts. It is designed to provide the kind of practical advice needed by professionals who are responsible for making energy purchasing decisions. The book gives a ten-step program to guide building owners in purchasing decision making, a state-by-state retail competition update, and guidelines for buying electricity and natural gas over the worldwide web. Other topics include contract renegotiation strategies, an assessment of power pools, the role of aggregators in the energy market, real time pricing issues, where cogeneration fits within today`s marketplace, and lessons learned from deregulation experiences in Scandinavia and England.

Thumann, A. [ed.] [comp.

1999-09-01T23:59:59.000Z

138

Economic Implications of Natural Gas Vehicle Technology in U.S. Private Automobile Transportation  

E-Print Network (OSTI)

is as a result of the more expensive fuel storage tank required to store natural gas safely and effectively). Because of the relative density of natural gas and size of CNG storage containers, CNG vehicles typically1 Economic Implications of Natural Gas Vehicle Technology in U.S. Private Automobile Transportation

139

An Endogenous RNA Transcript Antisense to CNG?1 Cation Channel mRNA  

E-Print Network (OSTI)

CNG channels are cyclic nucleotide-gated Ca 2 ?-permeable channels that are suggested to be involved in the activity-dependent alterations of synaptic strength that are thought to underlie information storage in the CNS. In this study, we isolated an endogenous RNA transcript antisense to CNG?1 mRNA. This transcript was capable of down-regulating the expression of sense CNG?1 intheXenopus oocyte expression system. RT-PCR, Northern blot, and in situ hybridization analyses showed that the transcript was coexpressed with CNG?1 mRNA in many regions of human brain, notably in those regions that were involved in long-term potentiation and long-term depression, such as hippocampal CA1 and CA3, dentate gyrus, and cerebellar Purkinje layer. Comparison of expression patterns between adult and fetal cerebral cortex revealed that there were concurrent developmental changes in the expression levels of anti-CNG1 and CNG?1. Treatment of human glioma cell T98 with thyroid hormone T 3 caused a significant increase in anti-CNG1 expression and a parallel decrease in sense CNG?1 expression. These data suggest that the suppression of CNG?1 expression by anti-CNG1 may play an important role in neuronal functions, especially in synaptic plasticity and cortical development. Endogenous antisense RNAmediated regulation may represent a new mechanism through which the activity of ion channels can be regulated in the human CNS.

Chin-hung Cheng; David Tai-wai Yew; Hiu-yee Kwan; Qing Zhou; Yong Liu; Wing-yee Chan; Xiaoqiang Yao; Keith R. Yamamoto

2002-01-01T23:59:59.000Z

140

Compressed Natural Gas (CNG) Retail Motor-Fuel Dispenser ...  

Science Conference Proceedings (OSTI)

... Isabel Chavez, Contact Management System Administrator, (301) 975 - 2128. Contact Us. ... Vendor Contact: ANGI Energy 15 Plumb St. ...

2013-02-19T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

CNG a Natural for Tulsa Public Schools  

DOE Green Energy (OSTI)

This 2-page Clean Cities fact sheet describes the use of natural gas power for Tulsa Public Schools' fleet of buses and cars. It includes information on the history of the program, along with contact information for the local Clean Cities Coordinator and Tulsa Public Schools.

Not Available

2004-04-01T23:59:59.000Z

142

The economic effects of surface transport deregulation  

E-Print Network (OSTI)

Over the past two decades, the deregulation of surface transport at both national and international levels has gathered momentum, particularly within the United States and European Union. The structural and performance ...

Li, Yong, 1974-

2002-01-01T23:59:59.000Z

143

THE EFFECTS OF HYDROGEN ADDITION AND INTAKE-INDUCED SWIRL ON THE CHARACTERISTICS OF NATURAL GAS COMBUSTION IN A SINGLE-CYLINDER SPARK-IGNITED ENGINE.  

E-Print Network (OSTI)

??Compressed natural gas (CNG) is an alternative fuel of interest for internal combustion engines (ICEs) in the mass transit and vocational applications. Increasingly, due to (more)

Corrigan, Melanie

2011-01-01T23:59:59.000Z

144

City and County of Denver: Technical comparison between hythane, CNG and gasoline fueled vehicles  

DOE Green Energy (OSTI)

The City and County of Denver, in cooperation with the Urban Consortium Energy Task Force of Public Technology, Inc. has completed a unique two-year research and development project designed to test and compare the technical merits of three transportation fuels. Comparisons of the tailpipe emissions from Hythane - a new, blended, alternative motor fuel comprised of 85% compressed natural gas (CNG) and 15% hydrogen measured by volume - to the emissions from gasoline and 100% CNG were conducted. This project has been one of the first pioneering studies of a hydrogen blended fuel and, through its success, has prompted eight additional Hythane research projects to date. Phase I of the project provided results from the Federal Test Procedure (FTP) testing of a light duty pick-up truck operating on Hythane. The purpose of this testing was to quantify any decrease in tailpipe emissions and to determine whether Hythane could meet the California Ultra Low Emission Vehicle standard (ULEV) for light duty trucks. During Phase I, FTP analyses were conducted in both Colorado (high altitude testing) and California (sea level testing) on a converted Chevrolet S-10, pick-up truck by Hydrogen Consultants (HCl), the Colorado Department of Health (CDH) and the California Air Resource Board (CARB). Currently, the only other non-electric vehicle which is capable of meeting the ULEV standard is Chrysler`s natural gas vehicle. There was additional interest in the role Hythane could play as a transitional fuel in the introduction of hydrogen. Hydrogen, a renewable energy carrier, may soon be categorized as a ZEV fuel by the South Coast Air Quality Management District. This factor may encourage the use of Hythane as a transportation fuel that not only meets the ULEV standard, but may provide the bridge necessary to the eventual widespread use of hydrogen.

NONE

1996-07-01T23:59:59.000Z

145

DOE News Release - DOE Completes Hydrogen/CNG Blended Fuels Performanc...  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2004 DOE Completes HydrogenCNG Blended Fuels Performance and Emissions Vehicle Testing The U.S. Department of Energy, through its Advanced Vehicle Testing Activity, has...

146

Evaluation of aftermarket CNG conversion kits in light-duty vehicle applications. Final report  

DOE Green Energy (OSTI)

The Institute of Gas Technology (IGT) was contracted by the National Renewable Energy Laboratory (NREL) to evaluate three compressed natural gas (CNG) conversion systems using a 1993 Chevrolet Lumina baseline vehicle. A fourth conversion system was added to the test matrix through funding support from Brooklyn Union. The objective of this project was to measure the Federal Test Procedure (FTP) emissions and fuel economy of the different conversion systems, and to compare the performance to gasoline-fueled operation and each other. Different natural gas compositions were selected to represent the 10th percentile, mean, and 90th percentile compositions distributed in the Continental United States. Testing with these different compositions demonstrated the systems` ability to accommodate the spectrum of gas found in the United States. Each compressed natural gas conversion system was installed and adjusted according to the manufacturer`s instructions. In addition to the FTP testing, an evaluation of the comparative installation times and derivability tests (based on AGA and CRC guidelines) were conducted on each system.

Blazek, C.F.; Rowley, P.F.; Grimes, J.W. [Institute of Gas Technology, Chicago, IL (United States)

1995-07-01T23:59:59.000Z

147

Low-quality natural gas sulfur removal/recovery  

Science Conference Proceedings (OSTI)

Low quality natural gas processing with the integrated CFZ/CNG Claus process is feasible for low quality natural gas containing 10% or more of CO{sub 2}, and any amount of H{sub 2}S. The CNG Claus process requires a minimum CO{sub 2} partial pressure in the feed gas of about 100 psia (15% CO{sub 2} for a 700 psia feed gas) and also can handle any amount of H{sub 2}S. The process is well suited for handling a variety of trace contaminants usually associated with low quality natural gas and Claus sulfur recovery. The integrated process can produce high pressure carbon dioxide at purities required by end use markets, including food grade CO{sub 2}. The ability to economically co-produce high pressure CO{sub 2} as a commodity with significant revenue potential frees process economic viability from total reliance on pipeline gas, and extends the range of process applicability to low quality gases with relatively low methane content. Gases with high acid gas content and high CO{sub 2} to H{sub 2}S ratios can be economically processed by the CFZ/CNG Claus and CNG Claus processes. The large energy requirements for regeneration make chemical solvent processing prohibitive. The cost of Selexol physical solvent processing of the LaBarge gas is significantly greater than the CNG/CNG Claus and CNG Claus processes.

Damon, D.A. [CNG Research Co., Pittsburgh, PA (United States); Siwajek, L.A. [Acrion Technologies, Inc., Cleveland, OH (United States); Klint, B.W. [BOVAR Inc., AB (Canada). Western Research

1993-12-31T23:59:59.000Z

148

Hazard analysis of compressed natural gas fueling systems and fueling procedures used at retail gasoline service stations. Final report  

Science Conference Proceedings (OSTI)

An evaluation of the hazards associated with operations of a typical compressed natural gas (CNG) fueling station is presented. The evaluation includes identification of a typical CNG fueling system; a comparison of the typical system with ANSI/NFPA (American National Standards Institute/National Fire Protection Association) Standard 52, Compressed Natural Gas (CNG) Vehicular Fuel System, requirements; a review of CNG industry safety experience as identified in current literature; hazard identification of potential internal (CNG system-specific causes) and external (interface of co-located causes) events leading to potential accidents; and an analysis of potential accident scenarios as determined from the hazard evaluation. The study considers CNG dispensing equipment and associated equipment, including the compressor station, storate vessels, and fill pressure sensing system.

NONE

1995-04-28T23:59:59.000Z

149

SuperShuttle CNG Fleet Evaluation--Final Report  

DOE Green Energy (OSTI)

The mission of the US Department of Energy's Office of Transportation Technologies is to promote the development and deployment of transportation technologies that reduce US dependence on foreign oil, while helping to improve the nation's air quality and promoting US competitiveness. In support of this mission, DOE has directed the National Renewable Energy Laboratory to conduct projects to evaluate the performance and acceptability of alternative fuel vehicles. NREL has undertaken several fleet study projects, which seek to provide objective real-world fleet experiences with AFVs. For this type of study we collect, analyze, and report on operational, cost, emissions, and performance data from AFVs being driven in a fleet application. The primary purpose of such studies is to make real-world information on AFVs available to fleet managers and other potential AFV purchasers. For this project, data was collected from 13 passenger vans operating in the Boulder/Denver, Colorado area. The study vehicles were all 1999 Ford E-350 passenger vans based at SuperShuttle's Boulder location. Five of the vans were dedicated CNG, five were bi-fuel CNG/gasoline, and three were standard gasoline vans that were used for comparison.

Eudy, L.

2000-12-07T23:59:59.000Z

150

COMPRESSED NATURAL GAS DEMONSTRATION BUS 7. Author{s)  

E-Print Network (OSTI)

A demonstration compressed natural gas (CNG) bus has been operating on The University of Texas at Austin shuttle system since 1992. This CNG vehicle, provided by the Blue Bird Company, was an opportunity for the University to evaluate the effectiveness of a CNG bus for shuttle operations. Three basic operating comparisons were made: 1) fuel consumption, 2) tire wear, and 3) vehicle performance. The bus was equipped with a data logger, Which was downloaded regularly, for trip reports. Tire wear was monitored regularly, and performance tests were conducted at the Natural Gas Vehicle Technology Center. Overall, the data suggest that fuel costs for the CNG bus are comparable to those for University diesel buses. This is a result of the lower fuel price for natural gas. Actual natural gas fuel consumption was higher for the CNG buses than for the diesel buses. Due to weight differences, tire wear was much less on the CNG buses. Finally, after installation of a closed-loop system, the CNG bus out-performed the diesel bus on acceleration, grade climbing ability, and speed.

Cheng-ming Wu; Ron Matthews; Mark Euritt

1994-01-01T23:59:59.000Z

151

Gas Adsorption in Metal Organic Frameworks : an experiment ...  

Science Conference Proceedings (OSTI)

... Liquefied natural gas (LNG) must be cooled to 162 oC. LNG requires only 30 percent of the space of CNG to store the same amount of energy. ...

2009-09-15T23:59:59.000Z

152

STATEMENT OF CONSIDERATIONS REQUEST BY CONSOLIDATED NATURAL GAS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONSOLIDATED NATURAL GAS (CNG) (THE PARTICIPANT) FOR ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS IN INVENTIONS OF THE PARTICIPANT UNDER DOE-PETC CRADA NO.PC-93-009,...

153

Business Case for Compressed Natural Gas in Municipal Fleets  

SciTech Connect

This report describes how NREL used the CNG Vehicle and Infrastructure Cash-Flow Evaluation (VICE) model to establish guidance for fleets making decisions about using compressed natural gas.

Johnson, C.

2010-06-01T23:59:59.000Z

154

CNG Exports by Truck out of the U.S. Form | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PDF Version of CNG Exports by Truck out of the U.S. Form More Documents & Publications LNG Exports by Truck out of the U.S. Form LNG Imports by Truck into the U.S. Form Complete...

155

UPS CNG Truck Fleet Final Results: Alternative Fuel Truck Evaluation Project (Brochure)  

Science Conference Proceedings (OSTI)

This report provides transportation professionals with quantitative, unbiased information on the cost, maintenance, operational and emissions characteristics of CNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

Not Available

2002-08-01T23:59:59.000Z

156

Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles  

Science Conference Proceedings (OSTI)

The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

Staunton, R.H.; Thomas, J.F.

1998-12-01T23:59:59.000Z

157

Electricity market clearing price forecasting under a deregulated electricity market .  

E-Print Network (OSTI)

??Under deregulated electric market, electricity price is no longer set by the monopoly utility company rather it responds to the market and operating conditions. Offering (more)

Yan, Xing

2009-01-01T23:59:59.000Z

158

LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS  

DOE Green Energy (OSTI)

This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

VANDOR,D.

1999-03-01T23:59:59.000Z

159

Relations between Temperature and Residential Natural Gas Consumption in the Central and Eastern United States  

Science Conference Proceedings (OSTI)

The increased U.S. natural gas price volatility since the mid-to-late-1980s deregulation generally is attributed to the deregulated market being more sensitive to temperature-related residential demand. This study therefore quantifies relations ...

Reed P. Timmer; Peter J. Lamb

2007-11-01T23:59:59.000Z

160

cleanenergyfuels.com Natural Gas Solutions  

E-Print Network (OSTI)

tanks #12;36 cleanenergyfuels.com Natural Gas Truck Tanks Storage Capacity and Weight Impact LNG Tanks1 cleanenergyfuels.com Natural Gas Solutions for Transportation December 7, 2012 #12;2 cleanenergyfuels.com Compressed Natural Gas (CNG) Taxis Airport Vehicles Transit Buses Leading Provider of Natural

Minnesota, University of

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Determination of combustion products from alternative fuels - part 1. LPG and CNG combustion products  

SciTech Connect

This paper describes efforts underway to identify volatile organic exhaust species generated by a light-duty vehicle operating over the Federal Test Procedure (FTP) on CNG and LPG, and to compare them to exhaust constituents generated from the same vehicle operating on a fuel blended to meet California Phase 2 specifications. The exhaust species from this vehicle were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without the vehicle`s catalytic converter in place to determine the influence of the vehicle`s catalyst on species formation. Speciation data showed greater than 87 percent of all LPG and greater than 95 percent of all CNG hydrocarbon exhaust constituents to be composed of C{sub 1} to C{sub 3} compounds. In addition, toxic emissions from the combustion of CNG and LPG were as low as 10 percent of those generated by combustion of gasoline. A comparison of ozone forming potential of the three fuels was made based on the Maximum Incremental Reactivity scale used by the California Air Resources Board. Post-catalyst results from stoichiometric operation indicated that LPG and CNG produced 63 percent and 88 percent less potential ozone than reformulated gasoline, respectively. On average over all equivalence ratios, CNG and LPG exhaust constituents were approximately 65 percent less reactive than those from reformulated gasoline. 4 refs., 3 figs., 14 tabs.

Whitney, K.A.; Bailey, B.K.

1994-10-01T23:59:59.000Z

162

Analysis of the University of Texas at Austin compressed natural gas demonstration bus. Interim research report  

Science Conference Proceedings (OSTI)

A demonstration compressed natural gas (CNG) bus has been operating on The University of Texas at Austin shuttle system since 1992. This CNG vehicle, provided by the Blue Bird Company, was an opportunity for the University to evaluate the effectiveness of a CNG bus for shuttle operations. Three basic operating comparisons were made: (1) fuel consumption, (2) tire wear, and (3) vehicle performance. The bus was equipped with a data logger, which was downloaded regularly, for trip reports. Tire wear was monitored regularly, and performance tests were conducted at the Natural Gas Vehicle Technology Center. Overall, the data suggest that fuel costs for the CNG bus are comparable to those for University diesel buses. This is a result of the lower fuel price for natural gas. Actual natural gas fuel consumption was higher for the CNG buses than for the diesel buses. Due to weight differences, tire wear was much less on the CNG buses. Finally, after installation of a closed-loop system, the CNG bus out-performed the diesel bus on acceleration, grade climbing ability, and speed.

Wu, C.M.; Matthews, R.; Euritt, M.

1994-06-01T23:59:59.000Z

163

Dealing with failed deregulation: what would price c. Watts do?  

SciTech Connect

There has been much thought given to ways that might fix deregulated markets, and there is still no agreement on the correct fix. The once-pseudonymous Price C. Watts thinks it is time to think seriously about ways to reregulate where deregulation has failed. Here are some steps to get us there. (author)

Rothkopf, Michael H.

2007-08-15T23:59:59.000Z

164

Electrical Deregulation - Planning for Success in Texas Schools  

E-Print Network (OSTI)

Beginning January 1, 2002, Texas' electric industry is opening to customer choice, giving consumers the power to choose the company that provides their electricity. Under electrical deregulation in Texas, there are three separate players. The Retail Electric Provider (REP) markets power to the consumer (public) and serves as the customer point of contact. The Power Generation Company generates the electricity and is already deregulated. The transmission and distribution utilities (wires) remain regulated by the Public Utility Commission of Texas (PUCT). As of the writing of this abstract in October 2001, REP's indicate that only about 15% of Texas ISD's have taken any action. Ready or not pricing and purchasing methods of electricity in Texas will change. This paper discusses major deregulation issues in Texas Schools (e.g. procurement process, contracts, workloads, uncertainty. etc.). The before and after scenarios of deregulation are compared. Texas Schools, to be prepared for success, need to understand their energy usage and patterns, district characteristics, deregulation options and pricing, and terms/conditions. This paper provides Texas Schools with specific homework, electrical deregulation options, procurement process, and RFP guidelines. Owning the fine print is as essential as terms and conditions and may be as important as the price. Examples will be included. The decision making process for all size school districts will be discussed. The experience of the authors in assisting Texas school districts in this process will be shared. After deregulation, homework will also be addressed.

McClure, J. D.; Schreppler, S.; Bristow, G.

2002-01-01T23:59:59.000Z

165

Compressed natural gas fueled vehicles: The Houston experience  

DOE Green Energy (OSTI)

The report describes the experience of the City of Houston in defining the compressed natural gas fueled vehicle research scope and issues. It details the ways in which the project met initial expectations, and how the project scope, focus, and duration were adjusted in response to unanticipated results. It provides examples of real world successes and failures in efforts to commercialize basic research in adapting a proven technology (natural gas) to a noncommercially proven application (vehicles). Phase one of the demonstration study investigates, develops, documents, and disseminates information regarding the economic, operational, and environmental implications of utilizing compressed natural gas (CNG) in various truck fueling applications. The four (4) truck classes investigated are light duty gasoline trucks, medium duty gasoline trucks, medium duty diesel trucks and heavy duty diesel trucks. The project researches aftermarket CNG conversions for the first three vehicle classes and original equipment manufactured (OEM) CNG vehicles for light duty gasoline and heavy duty diesel classes. In phase two of the demonstration project, critical issues are identified and assessed with respect to implementing use of CNG fueled vehicles in a large vehicle fleet. These issues include defining changes in local, state, and industry CNG fueled vehicle related codes and standards; addressing vehicle fuel storage limitations; using standardized vehicle emission testing procedures and results; and resolving CNG refueling infrastructure implementation issues and related cost factors. The report identifies which CNG vehicle fueling options were tried and failed and which were tried and succeeded, with and without modifications. The conclusions include a caution regarding overly optimistic assessments of CNG vehicle technology at the initiation of the project.

Not Available

1993-12-31T23:59:59.000Z

166

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

= methanol, CNG = compressed natural gas, LNG = liquefiedvehicles; CNG = compressed natural gas; LPG = liquefieddiesel, CNG = compressed natural gas, LNG = liquefied

Delucchi, Mark

2005-01-01T23:59:59.000Z

167

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

= methanol, CNG = compressed natural gas, LNG = liquefiedvehicles; CNG = compressed natural gas; LPG = liquefieddiesel, CNG = compressed natural gas, LNG = liquefied

Delucchi, Mark

2005-01-01T23:59:59.000Z

168

Business Case for CNG in Municipal Fleets (Presentation)  

Science Conference Proceedings (OSTI)

Presentation about compressed natural gas in municipal fleets, assessing investment profitability, the VICE model, base-case scenarios, and pressing questions for fleet owners.

Johnson, C.

2010-07-27T23:59:59.000Z

169

Networks, deregulation, and risk : the politics of critical infrastructure protection  

E-Print Network (OSTI)

Applications in the Electric Power Industry. ?Proceedings ofCorporate Liberalism and Electric Power System Planning inReform in the U.S. Electric Power Sector. ? Deregulation of

Ellis, Ryan Nelson

2011-01-01T23:59:59.000Z

170

California Electric Deregulation: What have we learned, and what...  

NLE Websites -- All DOE Office Websites (Extended Search)

California Electric Deregulation: What have we learned, and what lies ahead? Speaker(s): P. Greg Conlon Date: October 29, 1998 - 12:00pm Location: 90-3148 Seminar HostPoint of...

171

Industrial Powerhouse Optimization in the Deregulated Electricity Marketplace  

E-Print Network (OSTI)

The State of Delaware deregulated the retail sale of electricity in 2002, enabling buyers to procure power on a real-time price schedule and sell excess generated power to the grid. This initiative has prompted industrial sites, especially those with on-site generation capability, to evaluate the benefits and risks of the deregulated market. Deregulation can offer significant potential savings to industrial customers. However, with this opportunity comes exposure to turbulent fluctuations in electricity prices, which can sometimes reach $1,000/MW-hr. If a customer is unprepared for high electricity prices, an entire year of electricity cost savings can quickly be erased. This paper describes how one industrial site evaluated the risks and benefits of electricity deregulation and implemented real-time optimization of the electricity make-buy decision.

Hughes, P. D.; Bailey, W. F.

2003-05-01T23:59:59.000Z

172

Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder  

NLE Websites -- All DOE Office Websites (Extended Search)

Defect Analysis of Vehicle Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder A China Paper on Type 4 Cylinder, translated and presented by J. P. Hsu, PhD, Smart Chemistry Reason for Defect Analysis of CNG Composite Cylinder * Safety Issue - Four explosion accidents of auto used CNG composite material cylinders resulting huge personnel and vehicles loss. * Low Compliance Rate - Inspect 12119 Auto used CNG composite cylinders and only 3868 are qualified with compliance rate of 32%. Plastic CNG Composite Cylinder Process Fitting Internal Plastic Liner External Composite Layer Metal Fitting HDPE Cylinder Liner * HDPE has a high density, great stiffness, good anti-permeability and high melting point, but poor environmental stress cracking Resistance (ESCR). * The defects of cylinder liner quality can be

173

Compressed natural gas fuel may be the future for Phoenix  

Science Conference Proceedings (OSTI)

It's the law: the future must include cleaner air, and alternative fuels for vehicular engines is one way to achieve it. In Phoenix, a city beset by moderate air quality problems, equipment managers of the Public Works Department's (PWD) fleet say their future seems to be with compressed natural gas (CNG). CNG fuels a pair of refuse packer trucks that have been operating for a year with few, if any, problems. The object of buying and running them, was to see if one can run an alternate fuels vehicle on a regular route. Can the trucks adapt, can the drivers adapt So far the answer is yes. The trucks are among an assortment of municipal vehicles running on CNG and propane. CNG makes sense for Phoenix because it's modestly priced and readily available locally.

Berg, T.

1994-08-01T23:59:59.000Z

174

Comparative Deregulation of Far Eastern Telecommunications Markets: Economic Incentives and International Competitive Strategies  

E-Print Network (OSTI)

The deregulation of telecommunications has taken a major step with the WTO agreements in February of

Davidson, Jacob

175

Network Connectivity and Price Convergency: Gas Pipeline Deregulation  

E-Print Network (OSTI)

1 and length 2 between the vertices of the pipeline networkor.i length twopaths. By 1988, most of the pipelines werepipelines, the number of vertices connected by at l~ast one path of length

De Vany, Arthur; Walls, W. David

1993-01-01T23:59:59.000Z

176

New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

New York City Transit Hybrid New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results K. Chandler and E. Eberts Battelle L. Eudy National Renewable Energy Laboratory Technical Report NREL/TP-540-38843 January 2006 New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results K. Chandler and E. Eberts Battelle L. Eudy National Renewable Energy Laboratory Prepared under Task No. FC06.3000 Technical Report NREL/TP-540-38843 January 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

177

Integrated Hydrogen and Intelligent Transportation Systems Evaluation for the California Department of Transportation  

E-Print Network (OSTI)

= combined heat and power CNG = compressed natural gas CTP =compressed natural gas (CNG), liquefied petroleum gas (LPGfor vehicle refueling and CNG for CNG vehicles, as well as

Lipman, Timothy; Shaheen, Susan

2005-01-01T23:59:59.000Z

178

Impact of Electricity Deregulation on Industrial Assessment Strategies  

E-Print Network (OSTI)

This paper explores many of the changes in typical industrial assessment recommendations, which have resulted from deregulation of the electric and gas industries. While anticipating that energy efficiency would almost always be a good idea, changes in rate structures and indeed the very nature of how energy is purchased can put some energy efficiency technologies outside of normal economically acceptable ranges. A major focus will be changes in and the elimination of time-of-use rates for electricity. An entire generation of DSM'ers (people working in "Demand-Side Management") worked under the principle that there was economic benefit to load leveling. Time-of-use rates are changing throughout the country and in many cases disappearing. Bulk purchase of electricity has even resulted in cases where, with minimum consumption requirements, industrial plants need to find ways to increase their electrical use to avoid penalties. Energy storage devices including thermal energy storage must be re-examined in terms of this new paradigm. There are applications where they are advisable, but for different reasons then demand management. Another area of particular interest is fuel selection, multiply fuel capability, and contracting. An industrial assessment at two neighboring plants can result in entirely different recommendations based on how energy is purchased and billed. In many cases, an industrial plant may be better off spending resources on energy purchasing agents as opposed to anything like an energy efficiency project. Onsite generation of power and the changing rationales for its adoption has also experienced big changes. Energy security is becoming a strong motivation for industrial plants, options are increased, and third party funding is also starting to appear. Intermediate solutions like gas driven compressors bring these two areas together and leave industrial clients with more options but often more confusion than ever before. Finally, the paper discusses some of the new challenges facing an industrial assessment team in terms of information gathering. It is becoming necessary to examine many possible energy purchase options and each has ramifications on energy efficiency projects. Use of the Internet, computer tools and other information sources is presented.

Kasten, D. J.; Muller, M. R.; Pavlovic, F.

2002-04-01T23:59:59.000Z

179

REQUEST FOR PROPOSALS LIQUEFIED NATURAL GAS VEHICLE  

E-Print Network (OSTI)

fueled truck fleet of more than 100 refuse hauling vehicles and plans to add more will include exhaust from on-road vehicles and from materials handling equipment, dust from refuse renewable natural gas. CR&R plans to add 100 CNG/LNG vehicles to its fleet over the next

180

Understanding electricity market reforms and the case of Philippine deregulation  

Science Conference Proceedings (OSTI)

The experience of the Philippines offers lessons that should be relevant to any country seeking to deregulate its power industry. Regardless of structure, consumers must face the real price of electricity production and delivery that is closer to marginal cost. Politically motivated prices merely shift the burden from ratepayers to taxpayers. And any reform should work within a reasonable timetable. (author)

Santiago, Andrea; Roxas, Fernando

2010-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Natural Gas Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Vehicle and Infrastructure Codes and Standards Citations Natural Gas Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. natural gas vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at www.afdc.energy.gov/afdc/codes_standards_basics.html. Find natural gas vehicle and infrastructure codes and standards in these categories: * Fire Code Requirements * General CNG Requirements and Equipment Qualifications * CNG Engine Fuel Systems * CNG Compression, Gas Processing, Storage, and Dispensing Systems

182

International Conference on Gas Hydrates May 19-23, 2002, Yokohama  

E-Print Network (OSTI)

established liquefied natural gas technology is only considered feasible in large-scale development. About 80 volume by about 600-times. Large-scale CNG technology suitable for stranded gas is under development technology is being developed in Norway for associated and non-associated natural gas applications

Gudmundsson, Jon Steinar

183

Integrated Hydrogen and Intelligent Transportation Systems Evaluation for the California Department of Transportation  

E-Print Network (OSTI)

heat and power CNG = compressed natural gas CTP = Californiathat dispense compressed natural gas (CNG), liquefied

Lipman, Timothy; Shaheen, Susan

2005-01-01T23:59:59.000Z

184

Safety analysis of natural gas vehicles transiting highway tunnel  

Science Conference Proceedings (OSTI)

A safety analysis was performed to assess the relative hazard of compressed natural gas (CNG) fueled vehicles traveling on various tunnels and bridges in New York City. The study considered those hazards arising from the release of fuel from CNG vehicles ranging in size from a passenger sedan to a full size 53 passenger bus. The approach used was to compare the fuel hazard of CNG vehicles to the fuel hazard of gasoline vehicles. The risk was assessed by estimating the frequency of occurrence and the severity of the hazard. The methodology was a combination of analyzing accident data, performing a diffusion analysis of the gas released in the tunnel and determining the consequences of ignition. Diffusion analysis was performed using the TEMPEST code for various accident scenarios resulting in CNG release inside the Holland Tunnel. The study concluded that the overall hazard of CNG vehicles transiting a ventilated tunnel is less than the hazard from a comparable gasoline fueled vehicle. 134 refs., 23 figs., 24 tabs.

Shaaban, S.H.; Zuzovsky, M.; Anigstein, R.

1989-01-01T23:59:59.000Z

185

Feasibility study of Northeast Thailand Gas Pipeline Project. Final report. Part 2. Compressed natural gas. Export trade information  

SciTech Connect

The volume is the second part of a three part study submitted to the Petroleum Authority of Thailand. Part II analyzes the potential use of compressed natural gas (CNG) as a transportation fuel for high mileage vehicles traveling the highway system of Thailand. The study provides an initial estimate of buses and trucks that are potential candidates for converting to natural gas vehicles (NGV). CNG technology is briefly reviewed. The types of refueling stations that may be sited along the highway are discussed. The estimated capital investments and typical layouts are presented. The report also discusses the issues involved in implementing a CNG program in Thailand, such as safety, user acceptability and the government's role.

1989-09-01T23:59:59.000Z

186

Business Case for Compressed Natural Gas in Municipal Fleets | Open Energy  

Open Energy Info (EERE)

Business Case for Compressed Natural Gas in Municipal Fleets Business Case for Compressed Natural Gas in Municipal Fleets Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Business Case for Compressed Natural Gas in Municipal Fleets Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Fuels & Efficiency Topics: Analysis Tools, Best Practices Website: www.afdc.energy.gov/afdc/pdfs/47919.pdf This report describes how the compressed natural gas (CNG) Vehicle and Infrastructure Cash-Flow Evaluation (VICE) model can be used to establish guidance for fleets making decisions about using CNG. The model assists fleets and businesses in evaluating the profitability of potential CNG projects by demonstrating the relationship between project profitability and fleet operating parameters.

187

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

14, 2012 | Release Date: Mar. 15, 14, 2012 | Release Date: Mar. 15, 2012 | Next Release: Mar. 22, 2012 Previous Issues Week: 12/29/2013 (View Archive) JUMP TO: In The News | Overview | Prices | Storage In the News: Alternative Transportation Fuels Infrastructure Increases from Mid-2000s Levels. Natural gas vehicles can run on either compressed natural gas (CNG) or liquefied natural gas (LNG). LNG and CNG fueling infrastructure has grown over the past several years, and recently, companies in the private sector have announced plans to invest in infrastructure and new technology. Currently, the vast majority of vehicles that use natural gas are powered by CNG, and over 900 of these fueling stations exist in the United States, with more than 50 percent restricted to private access only. The state with

188

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network (OSTI)

carbon dioxide emissions and subsequent potential effect on climate change, they do have significant advantages over traditional gasoline fueled vehicles, all other factors

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

189

Gas, Mister, not gasoline  

SciTech Connect

A prototype rechargeable CNG commuter car with an LP-gas standby reserve avoids the need for area fueling stations while providing an emergency range-extending technique through its LPG system. Operating on a household power line, the charging compressor fills each tank to 1000 psig at an electric cost of less than 7 cents/100 CF of compressed gas. The four fuel tanks weigh only 120 lb and give the small Opel GT car a range of 75 miles. A 10-gal LPG tank adds 300 miles to this range.

Axworthy, R.T.

1982-10-01T23:59:59.000Z

190

Low pressure storage of natural gas on activated carbon  

DOE Green Energy (OSTI)

The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

Wegrzyn, J.; Wiesmann, H.; Lee, T.

1992-12-31T23:59:59.000Z

191

Low pressure storage of natural gas on activated carbon  

DOE Green Energy (OSTI)

The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

Wegrzyn, J.; Wiesmann, H.; Lee, T.

1992-01-01T23:59:59.000Z

192

U. S. gas market adapting to commoditization; electricity likely to follow similar course  

SciTech Connect

With the final implementation of Federal Energy Regulatory Commission Order 636 in 1994, the US natural gas industry fully entered the third phase of an evolution from regulation to deregulation and, finally, commoditization. Now, the only major segment of the natural gas industry left to fully deregulate is that of local distribution companies behind the city gate with smaller customers. A model for that type of deregulation exists in Canada, where in the Province of Ontario homeowners can choose from whom to buy gas. Other industries, such as long-distance telephone service and airlines, have recently gone through his evolution. The effect of commoditization is similar to that of Order 636, which unbundled the transportation and sales services of US interstate gas transmission pipelines. Commoditization has unbundled the risks inherent to the gas industry. The paper discusses deregulation, increased risks, risk management steps, financial instruments, and electricity deregulation.

Pruner, D. (KCS Energy Risk Management Inc., Edison, NJ (United States))

1995-03-13T23:59:59.000Z

193

Natural gas as a vehicle fuel. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the development, use, and potential of compressed natural gas (CNG) and liquid natural gas (LNG) to fuel vehicles. Topics include systems descriptions and evaluations, and economic and environmental considerations. Field evaluations and technology demonstrations are discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-05-01T23:59:59.000Z

194

Carlink II: A Commuter Carsharing Pilot Program Final Report  

E-Print Network (OSTI)

Limited Compressed Natural Gas (CNG) Infrastructure: DuringCarLink I, two CNG issues constrained operations:a limited number of CNG refueling sites and slow CNG

Shaheen, Susan; Wipyewski, Kamill; Rodier, Caroline; Novick, Linda; Meyn, Molly Anne; Wright, John

2004-01-01T23:59:59.000Z

195

Transportation Energy Futures  

E-Print Network (OSTI)

fiberglass-wrapped aluminum cylinders; CNG 15%thermalefficienc) advantage for CNG LGN:weight penalty for CNG.LNGoxides; NG,natural gas; CNG, compressed LNG, NG; liquefied

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

196

State Energy Program Helping Arkansans Convert to Compressed Natural Gas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Energy Program Helping Arkansans Convert to Compressed State Energy Program Helping Arkansans Convert to Compressed Natural Gas State Energy Program Helping Arkansans Convert to Compressed Natural Gas January 25, 2012 - 4:30pm Addthis The Arkansas Energy Office recently launched a Compressed Natural Gas Conversion Rebate Program, which provides incentives for fleets and individuals to purchase and/or convert their Arkansas-licensed vehicles to compressed natural gas (CNG). | All Rights Reserved. The Arkansas Energy Office recently launched a Compressed Natural Gas Conversion Rebate Program, which provides incentives for fleets and individuals to purchase and/or convert their Arkansas-licensed vehicles to compressed natural gas (CNG). | All Rights Reserved. Grayson Bryant Project Officer -- State Energy Program

197

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

198

Cogeneration: Where will it fit in the deregulated market?  

SciTech Connect

Cogeneration due to potentially high efficiency can be very competitive in a deregulated market. Cogeneration can achieve extremely high levels of thermal efficiency, much higher than the most advanced and sophisticated combined cycle power plants generating only electric power. Thermal efficiency is one of the key factors in determining the power plant economics and feasibility. High efficiency means a lesser amount of fuel is used to generate the same amount of energy. In turn, burning a lesser amount of fuel means that fewer pollutants will be emitted. The paper first describes cogeneration plants, then discusses the importance of thermal load availability, cogeneration and distributed generation and other issues affecting cogeneration.

Fridman, M. [Armstrong Service, Cerritos, CA (United States)

1998-07-01T23:59:59.000Z

199

Market Structure and Competition: A Cross-Market Analysis of U.S. Electricity Deregulation  

E-Print Network (OSTI)

s Deregulated Wholesale Electricity Market. AmericanCompetition Policy in the U.S. Electricity Industry. Electricity Restructuring: Choices and Challenges. J. Gri?en

Bushnell, James; Mansur, Erin T.; Saravia, Celeste

2004-01-01T23:59:59.000Z

200

Operational and Planning Aspects of Distribution Systems in Deregulated Electricity Markets.  

E-Print Network (OSTI)

??In the current era of deregulated electricity markets, the power distribution systems have attained a very important and crucial role in the industry. A distribution (more)

Algarni, Ayed

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Emissions and performance evaluation of a dedicated compressed natural gas saturn  

Science Conference Proceedings (OSTI)

The use of compressed natural gas (CNG) as a transportation fuel has been identified as one strategy that can help ameliorate some problems, which include a growing dependence on imported oil (and all its ramifications) and the persistent contributions that mobile sources make to urban air pollution, associated with the use of conventional petroleum fuels. The attributes and limitations of CNG as a fuel for spark-ignition engines have been presented by others. The attributes are associated with its high octane rating, low cost relative to other alternative fuels, its availability, the absence of running and diurnal evaporative emissions, and its demonstrated potential for producing extremely low exhaust emissions-particularly if the volatile organic compounds (VOCs) emitted are expressed in terms of reactivity adjusted non-methane organic gases (RANMOG). The limitations associated with the use of CNG include its limited refueling infrastructure, the cost of refueling facilities, the cost of on-board fuel storage tanks, and its relatively low energy density. Because one impediment to CNG use is the cost associated with producing a CNG-powered vehicle, a study was initiated at the University of Tennessee under sponsorship by the Saturn Corporation to determine how a CNG vehicle (specifically, a 1991 Saturn SL1) could be engineered so it could be produced with a minimal impact on the production of the base vehicle. The present study was undertaken to further investigate the emissions reduction potential of the Saturn CNG vehicle. In the previous study the role of exhaust gas recirculation was not thoroughly investigated. Those involved in the study agreed that the NO{sub x} levels could be brought down well below California ULEV levels without increasing either the non-methane organic gases or the CO levels.

Hodgson, J.W.; Taylor, J.D. [Univ. of Tennessee, Knoxville, TN (United States)

1997-07-01T23:59:59.000Z

202

Inspection of compressed natural gas cylinders on school buses  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) is sponsoring compressed natural gas (CNF)-powered school bus demonstrations in various locations around the country. Early in 1994, two non-DOE-sponsored CNG pickup trucks equipped with composite-reinforced-aluminum fuel cylinders experienced cylinder ruptures during refueling. As reported by the Gas Research Institute (GRI): ...analysis of the cylinder ruptures on the pickup trucks revealed that they were due to acid-induced stress corrosion cracking (SCC) of the overwrap. The overwrap that GRI refers to is a resin-impregnated fiber that is wrapped around the outside of the gas cylinder for added strength. Because ensuring the safety of the CNG vehicles it sponsors is of paramount concern to DOE, the Department, through the National Renewable Energy Laboratory (NREL), conducted inspections of DOE-sponsored vehicles nationwide. The work had three objectives: inspection, documentation, and education. First, inspectors visited sites where CNG-powered school buses sponsored by DOE are based, and inspected the CNG cylinders for damage. Second, information learned during the inspections was collected for DOE. Third, the inspections found that the education and awareness of site personnel, in terms of cylinder damage detection, needed to be increased.

NONE

1995-07-01T23:59:59.000Z

203

Balanced Transport and Sustainable Urbanism: Enhancing Mobility and Accessibility through Institutional, Demand Management, and Land-Use Initiatives  

E-Print Network (OSTI)

compressed natural gas (CNG) buses found in cities likesustainable technologies. CNG conversions means many urban

Cervero, Robert

2006-01-01T23:59:59.000Z

204

BMC Pharmacology BioMed Central Poster presentation Blockade of CNG channels abrogates urethral relaxation induced by soluble guanylate cyclase activation  

E-Print Network (OSTI)

2009 Triguero et al; licensee BioMed Central Ltd. In the present study, we have characterized the presence and distribution of cGMP-gated cationic channels (CNG) in the rat urethra as well as its putative role in the mediation of the nitrergic relaxation. Previous studies have shown the inhibition of the sheep urethral nitrergic relaxations by the CNG's inhibitor L-cis-diltiazem [1]. Also in the rat urethra, L-cis-diltiazem (50 ?M) inhibited nitrergic relaxations elicited by electrical field stimulation (EFS) of arginine-vasopresin (AVP)-precontracted urethral preparations (Figure 1A). Immunofluorescence studies were performed to analyze the distribution of CNG immunoreactivity (-ir) in sections of the urethral wall. As can be seen in Figure 2, a strong CNG-ir was present in a subpopulation of vimentin-ir

Domingo Triguero; Maria Sancho; Marta Garca-flores; ngeles Garca

2009-01-01T23:59:59.000Z

205

Modeling and Computation of Signal Transduction of Olfactory Cilia with Non-Uniform CNG and Cl and Cl(Ca) Channels Distributions.  

E-Print Network (OSTI)

??Olfactory cilia are the first components for signal transduction in the sensory system. The cilia contain two ion channel types cyclic-nucleotide-gated (CNG) and Ca2+2-gated Cl- (more)

Badamdorj, Dorjsuren

2006-01-01T23:59:59.000Z

206

Hydrogen Station Siting and Refueling Analysis Using Geographic Information Systems: A Case Study of Sacramento County  

E-Print Network (OSTI)

Case of Compressed Natural Gas (CNG) Vehicles in CaliforniaCase of Compressed Natural Gas (Cng) Vehicles in Californiaof compressed natural gas (CNG), yet natural gas is viewed

Nicholas, Michael A

2004-01-01T23:59:59.000Z

207

Gas Mileage of 1999 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1999 Ford Crown Victoria CNG 8 cyl, 4.6 L, Automatic 4-spd, CNG Compare 1999 Ford Crown Victoria CNG View MPG...

208

Gas Mileage of 2002 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

Shared By Vehicle Owners 15 City 18 Combined 23 Highway 2002 Ford Crown Victoria CNG 8 cyl, 4.6 L, Automatic 4-spd, CNG Compare 2002 Ford Crown Victoria CNG View MPG...

209

Gas Mileage of 2004 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

Shared By Vehicle Owners 15 City 18 Combined 23 Highway 2004 Ford Crown Victoria CNG 8 cyl, 4.6 L, Automatic 4-spd, CNG Compare 2004 Ford Crown Victoria CNG View MPG...

210

Gas Mileage of 2010 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 29 Highway 2010 Honda Civic CNG 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2010 Honda Civic CNG View MPG Estimates...

211

Gas Mileage of 2011 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

Highway 2011 Honda Civic CNG 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2011 Honda Civic CNG 24 City 28 Combined 36 Highway 2011 Honda Civic Hybrid 4 cyl, 1.3 L, Automatic...

212

Gas Mileage of 2008 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

Highway 2008 Honda Civic CNG 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2008 Honda Civic CNG View MPG Estimates Shared By Vehicle Owners 24 City 28 Combined 36 Highway 2008 Honda...

213

Gas Mileage of 2009 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 29 Highway 2009 Honda Civic CNG 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2009 Honda Civic CNG View MPG Estimates...

214

Gas Mileage of 2006 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

MPG Estimates Shared By Vehicle Owners 20 City 23 Combined 29 Highway 2006 Honda Civic CNG 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2006 Honda Civic CNG View MPG Estimates...

215

Gas Mileage of 2007 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

MPG Estimates Shared By Vehicle Owners 20 City 23 Combined 29 Highway 2007 Honda Civic CNG 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2007 Honda Civic CNG View MPG Estimates...

216

Price strategies in dynamic duopolistic markets with deregulated electricity supplies using mixed strategies  

Science Conference Proceedings (OSTI)

While effective competition can force service providers to seek economically efficient methods to reduce costs, the deregulated electricity supply industry still allows some generators to exercise market power at particular locations, thereby preventing ... Keywords: deregulated electricity supplies, mixed strategies, price strategies

Jose B. Cruz, Jr.; Xiaohuan Tan

2005-10-01T23:59:59.000Z

217

Utility deregulation and business ethics: More openness through gaming/simulation  

Science Conference Proceedings (OSTI)

Deregulation in the utilities industry is putting pressure on the utility companies to operate more efficiently. This efficiency drive seems to have had an impact on commitment to established safety procedures and ethical standards. Analyzing three ... Keywords: corporate accident, deregulation, ethical standard, gaming/simulation, learning by doing, openness, utilities industry

Shigehisa Tsuchiya

2005-03-01T23:59:59.000Z

218

A multistage model for distribution expansion planning with distributed generation in a deregulated electricity market  

Science Conference Proceedings (OSTI)

Distribution systems management is becoming an increasingly complicated issue due to the introduction of new technologies, new energy trading strategies and a new deregulated environment. In the new deregulated energy market and considering the incentives ... Keywords: GAMS-MATLAB interface, distributed generation (DG), distribution company (DISCO), investment payback time, microturbine, social welfare

S. Porkar; A. Abbaspour-Tehrani-Fard; P. Poure; S. Saadate

2010-06-01T23:59:59.000Z

219

Price strategies in dynamic duopolistic markets with deregulated electricity supplies using mixed strategies  

Science Conference Proceedings (OSTI)

While effective competition can force service providers to seek economically efficient methods to reduce costs, the deregulated electricity supply industry still allows some generators to exercise market power at particular locations, thereby preventing ... Keywords: Deregulated electricity supplies, Mixed strategies, Price strategies

Jose B. Cruz, Jr.; Xiaohuan Tan

2005-10-01T23:59:59.000Z

220

Rail deregulation eyed for impact on coal rates  

SciTech Connect

Captive shippers who depend on a single line to move their coal supplies want protection written into any railroad deregulation legislation. Debate over this issue is expected to be heated. The Interstate Commerce Commission (ICC), meanwhile, is looking more favorably at the problems of utilities and accepts a compromise measure that sets a rate hike level which would trigger an ICC investigation. Debate in Congressional Committees will focus on the lack of competition in coal shipment and the impact this will have on the customers of coal-fired power plants. Long-term agreements are suggested as a way to limit regulation and allow the Federal government to focus on helping the railroads become more efficient. The legislative action was prompted by an ICC decision to roll back railroad freight rates paid by two utilities and a steel company. (DCK)

Not Available

1980-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Economic analysis of low-pressure natural-gas-vehicle storage technology. Task 3 topical report, March 1989-April 1990  

SciTech Connect

The economic analysis concludes that, under the assumptions of the base case, a low pressure adsorbed natural gas (ANG) system for vehicle fuel storage is a viable and competitive alternative to compressed natural gas (CNG) storage systems. ANG systems offer the ability to reduce compressor capital and operating costs, and eliminate costs associated with periodic recertification of CNG storage cylinders. The only cost element to realize and increase due to ANG is the vehicle fuel storage apparatus. Specifically, the cost for purchasing adsorbent carbon becomes the most significant additional expenditure.

Biederman, R.T.; Blazek, C.F.

1990-04-01T23:59:59.000Z

222

Forecasting new product penetration with flexible substitution patterns  

E-Print Network (OSTI)

among gas, electric, methanol, and CNG vehicles with variouschoices among gas, methanol, CNG, and electric vehicles. 2.compressed natural gas (CNG) vehicles, the cost of refueling

Brownstone, David; Train, Kenneth

1999-01-01T23:59:59.000Z

223

Carlink - A Smart Carsharing System Field Test Report  

E-Print Network (OSTI)

Laboratory CNG: Compressed natural gas STRENGTHS ANDof 12 Honda Civic compressed natural gas (CNG) vehicles. 4were fueled by compressed natural gas (CNG). During the

Shaheen, Susan; Wright, John; Dick, David; Novick, Linda

2000-01-01T23:59:59.000Z

224

Transportation Energy Futures  

E-Print Network (OSTI)

to those of compressed natural gas (CNG). simplicity, thispressurized tanks for compressed natural gas (CNG)storage,oxides; NG,natural gas; CNG, compressed LNG, NG; liquefied

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

225

Dynamics in Behavioral Adaptation to a Transportation Innovation: A Case Study of Carlink-A Smart Carsharing System  

E-Print Network (OSTI)

are fueled with compressed natural gas (CNG). 5. What isCarLink fleet. Compressed natural gas (CNG) vehicles woulddeployed with 12 compressed natural gas (CNG) Honda Civic

Shaheen, Susan A.

1999-01-01T23:59:59.000Z

226

Ventura/Lompoc Smart Card Demonstration Evaluation: Final Report Volume 1 Technical Performance, User Response, and Institutional Analysis  

E-Print Network (OSTI)

of APCs in Compressed Natural Gas (CNG) buses, which haveinstrument nine new compressed natural gas (CNG) vehicless use of a large compressed natural gas (CNG) compressor

Giuliano, Genevieve; Moore, II, James E.; Golob, Jacqueline

1999-01-01T23:59:59.000Z

227

CARLINK-A SMART CARSHARING SYSTEM FIELD TEST REPORT  

E-Print Network (OSTI)

Laboratory CNG: Compressed natural gas STRENGTHS ANDof 12 Honda Civic compressed natural gas (CNG) vehicles. 4were fueled by compressed natural gas (CNG). During the

Shaheen, Susan; Wright, John; Dick, David; Novick, Linda

2000-01-01T23:59:59.000Z

228

Hydrogen Station Siting and Refueling Analysis Using Geographic Information Systems: A Case Study of Sacramento County  

E-Print Network (OSTI)

Vehicles: The Case of Compressed Natural Gas (CNG) VehiclesVehicles: The Case of Compressed Natural Gas (Cng) Vehiclessimilar to that of compressed natural gas (CNG), yet natural

Nicholas, Michael A

2004-01-01T23:59:59.000Z

229

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

n.a. n.a. CNG = compressed natural gas; LNG = ;liquefiedgases; CNG = compressed natural gas; Exh. = exhausthydrogen CNG = compressed natural gas CO = carbon monoxide

Delucchi, Mark

2003-01-01T23:59:59.000Z

230

Dynamics in Behavioral Adaptation to a Transportation Innovation: A Case Study of CarlinkA Smart Carsharing System  

E-Print Network (OSTI)

are fueled with compressed natural gas (CNG). 5. What isCarLink fleet. Compressed natural gas (CNG) vehicles woulddeployed with 12 compressed natural gas (CNG) Honda Civic

Shaheen, Susan

2004-01-01T23:59:59.000Z

231

Deregulation, Consolidation, and Efficiency: Evidence from U.S. Nuclear Power  

E-Print Network (OSTI)

Beginning in the late 1990s electricity markets in many U.S. states were deregulated and almost half of the nations 103 nuclear power reactors were sold to independent power producers. Deregulation has been accompanied by substantial market consolidation and today the three largest companies control one-third of U.S. nuclear capacity. We find that deregulation and consolidation are associated with a 10 percent increase in operating efficiency, achieved primarily by reducing the duration of reactor outages. At average wholesale prices this increased efficiency is worth $2.5 billion annually and implies an annual decrease of 35 million metric tons of carbon dioxide emissions.

Lucas W. Davis; Catherine Wolfram; Jel D

2011-01-01T23:59:59.000Z

232

Six Manufacturers to Offer Natural-Gas-Powered Trucks in 1996  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

ix truck manufacturers will offer ix truck manufacturers will offer natural-gas-powered versions of their medium- and heavy-duty trucks in 1996, according to the Gas Research Institute (GRI). The trucks will be the first fully dedicated natural gas vehicles (NGVs) offered in U.S. medium- and heavy-duty markets by original equipment manufacturers (OEMs). Four manufacturers will design trucks to operate on liquefied natural gas (LNG), and one manufacturer will design trucks to run on compressed natural gas (CNG). These manufacturers will join Volvo GM Heavy Truck Corporation, which has announced plans to manufacture an NGV refuse hauler, the Xpeditor. The refuse hauler will be available in LNG and CNG versions. "The availability of OEM- produced trucks is a significant development for GRI and the gas

233

Price-elastic demand in deregulated electricity markets  

SciTech Connect

The degree to which any deregulated market functions efficiently often depends on the ability of market agents to respond quickly to fluctuating conditions. Many restructured electricity markets, however, experience high prices caused by supply shortages and little demand-side response. We examine the implications for market operations when a risk-averse retailer's end-use consumers are allowed to perceive real-time variations in the electricity spot price. Using a market-equilibrium model, we find that price elasticity both increases the retailers revenue risk exposure and decreases the spot price. Since the latter induces the retailer to reduce forward electricity purchases, while the former has the opposite effect, the overall impact of price responsive demand on the relative magnitudes of its risk exposure and end-user price elasticity. Nevertheless, price elasticity decreases cumulative electricity consumption. By extending the analysis to allow for early settlement of demand, we find that forward stage end-user price responsiveness decreases the electricity forward price relative to the case with price-elastic demand only in real time. Moreover, we find that only if forward stage end-user demand is price elastic will the equilibrium electricity forward price be reduced.

Siddiqui, Afzal S.

2003-05-01T23:59:59.000Z

234

Price-elastic demand in deregulated electricity markets  

SciTech Connect

The degree to which any deregulated market functions efficiently often depends on the ability of market agents to respond quickly to fluctuating conditions. Many restructured electricity markets, however, experience high prices caused by supply shortages and little demand-side response. We examine the implications for market operations when a risk-averse retailer's end-use consumers are allowed to perceive real-time variations in the electricity spot price. Using a market-equilibrium model, we find that price elasticity both increases the retailers revenue risk exposure and decreases the spot price. Since the latter induces the retailer to reduce forward electricity purchases, while the former has the opposite effect, the overall impact of price responsive demand on the relative magnitudes of its risk exposure and end-user price elasticity. Nevertheless, price elasticity decreases cumulative electricity consumption. By extending the analysis to allow for early settlement of demand, we find that forward stage end-user price responsiveness decreases the electricity forward price relative to the case with price-elastic demand only in real time. Moreover, we find that only if forward stage end-user demand is price elastic will the equilibrium electricity forward price be reduced.

Siddiqui, Afzal S.

2003-05-01T23:59:59.000Z

235

Development of a Liquid to Compressed Natural Gas (LCNG) Fueling Station. Final Report  

DOE Green Energy (OSTI)

The program objective was the development of equipment and processes to produce compressed natural gas (CNG) from liquified natural gas (LNG) for heavy duty vehicular applications. The interest for this technology is a result of the increased use of alternative fuels for the reduction of emissions and dependency of foreign energy. Technology of the type developed under this program is critical for establishing natural gas as an economical alternative fuel.

Moore, J. A.

1999-06-30T23:59:59.000Z

236

Experimental Analysis of Algorithms for Bilateral-Contract Clearing Mechanisms Arising in Deregulated Power Industry  

Science Conference Proceedings (OSTI)

We consider the bilateral contract satisfaction problem arising from electrical power networks due to the proposed deregulation of the electric utility industry in the USA. Given a network and a (multi)set of pairs of vertices (contracts) with associated ...

Chris Barrett; Doug Cook; Gregory Hicks; Vance Faber; Achla Marathe; Madhav V. Marathe; Aravind Srinivasan; Yoram J. Sussmann; Heidi Thornquist

2001-08-01T23:59:59.000Z

237

CRISIS? WHAT CRISIS?: An Academic Debate on the Role of Deregulation...  

NLE Websites -- All DOE Office Websites (Extended Search)

CRISIS? WHAT CRISIS?: An Academic Debate on the Role of Deregulation in the California Energy Drama Speaker(s): Robert Van Buskirk Date: February 22, 2001 - 12:00pm Location: Bldg...

238

Policy alternatives for the U.S. commuter airline industry after four years of airline deregulation  

E-Print Network (OSTI)

Beginning with the passage of the Airline Deregulation Act of 1978, the dramatic changes in the passenger commuter airline segment of the U.S. aviation industry are identified and evaluated. The results of this evaluation ...

Molloy, James F.

1983-01-01T23:59:59.000Z

239

Concentration in U.S. air transportation : an analysis of origin-destination markets since deregulation  

E-Print Network (OSTI)

The thesis examined the effects on competition of deregulation in the airline industry by analyzing changes in concentration over the ten-year period 1979-1989 in two sets of origin-destination city-pair markets: the top ...

Van Acker, Jan

1991-01-01T23:59:59.000Z

240

COMPARATIVE STUDY ON EXHAUST EMISSIONS FROM DIESEL- AND CNG-POWERED URBAN BUSES  

DOE Green Energy (OSTI)

Couple years ago, ADEME engaged programs dedicated to the urban buses exhaust emissions studies. The measures associated with the reduction of atmospheric and noise pollution has particular importance in the sector of urban buses. In many cases, they illustrate the city's environmental image and contribute to reinforcing the attractiveness of public transport. France's fleet in service, presently put at about 14,000 units, consumes about 2 per cent of the total energy of city transport. It causes about 2 per cent of the HC emissions and from 4 to 6 per cent of the NOx emissions and particles. These vehicles typically have a long life span (about 15 years) and are relatively expensive to buy, about 150.000 euros per unit. Several technical solutions were evaluated to quantify, on a real condition cycle for buses, on one hand pollutants emissions, fuel consumption and on the other hand reliability, cost in real existing fleet. This paper presents main preliminary results on urban buses exhaust emission on two different cases: - existing Diesel buses, with fuel modifications (Diesel with low sulphur content), Diesel with water emulsion and bio-Diesel (30% oil ester in standard Diesel fuel); renovating CNG powered Euro II buses fleet, over representative driving cycles, set up by ADEME and partners. On these cycles, pollutants (regulated and unregulated) were measured as well as fuel consumption, at the beginning of a program and one year after to quantify reliability and increase/decrease of pollutants emissions. At the same time, some after-treatment technologies were tested under real conditions and several vehicles. Information such as fuel consumption, lubricant analysis, problem on the technology were following during a one year program. On the overall level, it is the combination of various action, pollution-reduction and renewal that will make it possible to meet the technological challenge of reducing emissions and fuel consumption by urban bus networks.

COROLLER, P; PLASSAT, G

2003-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Natural Gas Vehicle Cylinder Safety, Training and Inspection Project  

DOE Green Energy (OSTI)

Under the auspices of the National Energy Technology Laboratory and the US Department of Energy, the Clean Vehicle Education Foundation conducted a three-year program to increase the understanding of the safe and proper use and maintenance of vehicular compressed natural gas (CNG) fuel systems. High-pressure fuel systems require periodic inspection and maintenance to insure safe and proper operation. The project addressed the needs of CNG fuel containers (cylinders) and associated high-pressure fuel system components related to existing law, codes and standards (C&S), available training and inspection programs, and assured coordination among vehicle users, public safety officials, fueling station operators and training providers. The program included a public and industry awareness campaign, establishment and administration of a cylinder inspector certification training scholarship program, evaluation of current safety training and testing practices, monitoring and investigation of CNG vehicle incidents, evaluation of a cylinder recertification program and the migration of CNG vehicle safety knowledge to the nascent hydrogen vehicle community.

Hank Seiff

2008-12-31T23:59:59.000Z

242

An assessment of the impact of deregulation on the relative price of electricity in Illinois  

Science Conference Proceedings (OSTI)

Though it's commonly thought that electricity deregulation has, by and large, failed to deliver its anticipated results, consumers in Illinois have benefited from deregulation when compared to what has happened to rates over the past several years in bordering states. This conclusion is supported by a comparison of nominal and real rates paid by different customer classes, theoretical predictions, and consideration of fuel cost impacts and capacity expansions. (author)

Carlson, J. Lon; Loomis, David

2008-07-15T23:59:59.000Z

243

A Primer on Electric Utilities, Deregulation, and Restructuring...  

NLE Websites -- All DOE Office Websites (Extended Search)

reciprocating engines, steam turbines, and gas turbines. Hydropower plants direct water flow against turbine blades attached to one end of a generator rotor. When the water turns...

244

Volatile Energy Costs and the Floundering Deregulation of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

A generation capacity shortage, combined with spiraling natural gas costs and a flawed electricity market structure, have led to unprecedented wholesale electricity prices,...

245

Technical comparison between Hythane, GNG and gasoline fueled vehicles. [Hythane = 85 vol% natural gas, 15 vol% H[sub 2  

DOE Green Energy (OSTI)

This interim report documents progress on this 2-year Alternative Fuel project, scheduled to end early 1993. Hythane is 85 vol% compressed natural gas (CNG) and 15 vol% hydrogen; it has the potential to meet or exceed the California Ultra-Low Emission Vehicle (ULEV) standard. Three USA trucks (3/4 ton pickup) were operated on single fuel (unleaded gasoline, CNG, Hythane) in Denver. The report includes emission testing, fueling facility, hazard and operability study, and a framework for a national hythane strategy.

Not Available

1992-05-01T23:59:59.000Z

246

On-Road Development of John Deere 6081 Natural Gas Engine: Final Technical Report, July 1999 - January 2001  

Science Conference Proceedings (OSTI)

Report that discusses John Deere's field development of a heavy-duty natural gas engine. As part of the field development project, Waste Management of Orange County, California refitted four existing trash packers with John Deere's prototype spark ignited 280-hp 8.1 L CNG engines. This report describes the project and also contains information about engine performance, emissions, and driveability.

McCaw, D. L.; Horrell, W. A. (Deere and Company)

2001-09-24T23:59:59.000Z

247

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network (OSTI)

case of compressed natural gas (CNG) vehicles in Californiacompressed natural gas (CNG) vehicles, battery electricwas a push for the use of CNG vehicles in North America due

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

248

Analysis on various pricing scenarios in a deregulated electricity market  

E-Print Network (OSTI)

The electricity pricing structure in Texas has changed after deregulation (January 2002). The Energy Systems Laboratory has served as a technical consultant on electricity purchases to several universities in the Texas A&M University System since 2001. In the fiscal year of 2006 Stephen F. Austin State University joined with the TAMU campuses and agencies, and there are now 183 accounts in the Electric Reliability Council of Texas (ERCOT) North, Northeast, South, West, and Houston areas of Texas. From the 183 accounts, 9 Interval Data Recorder (IDR) accounts consume 92% of the total load. The objective of this research is to find the most economic price structure to purchase electricity for the Texas A&M System and Stephen F. Austin University by analyzing various pricing scenarios: the spot market, forward contracts, take or pay contracts and on/off season (tiered) contracts. The analysis was based on the 9 IDR accounts. The prices for the spot market were given by ERCOT and the other prices by Sempra. The energy charges were calculated every 15 minute using the real historical consumption of each facility and the aggregated load of all facilities. The result for the analysis was given for each institution separately, as well as for the aggregated load of all facilities. The results of the analysis showed that the tiered price was the most economical structure to purchase electricity for each individual university and for the total aggregated load of all 9 IDR accounts. From March 1, 2005 to February 28, 2006, purchasing electricity on the tiered price would have cost $13,810,560. The forward contract, that is, purchasing electricity on a fixed rate, was the next cheapest with an energy cost of $14,266,870 from March 1, 2005 to February 28, 2006, 3% higher than purchasing electricity at the tiered price. The most expensive method to purchase electricity would have been the spot market. Its energy costs would have been approximately $18,171,610, 36% and 31% higher, respectively, than purchasing electricity at the tiered price and the fixed rate.

Afanador Delgado, Catalina

2006-08-01T23:59:59.000Z

249

Environmental implications of alternative-fueled automobiles: Air quality and greenhouse gas tradeoffs  

Science Conference Proceedings (OSTI)

The authors analyze alternative fuel-powerstrain options for internal combustion engine automobiles. Fuel/engine efficiency, energy use, pollutant discharges, and greenhouse gas emissions are estimated for spark and compression ignited, direct injected (DI), and indirect injected (II) engines fueled by conventional and reformulated gasoline, reformulated diesel, compressed natural gas (CNG), and alcohols. Since comparisons of fuels and technologies in dissimilar vehicles are misleading, the authors hold emissions level, range, vehicle size class, and style constant. At present, CNG vehicles have the best exhaust emissions performance while DI diesels have the worst. Compared to a conventional gasoline fueled II automobile, greenhouse gases could be reduced by 40% by a DI CNG automobile and by 25% by a DI diesel. Gasoline- and diesel-fueled automobiles are able to attain long ranges with little weight or fuel economy penalty. CNG vehicles have the highest penalty for increasing range, due to their heavy fuel storage systems, but are the most attractive for a 160-km range. DI engines, particularly diesels, may not be able to meet strict emissions standards, at least not without lowering efficiency.

MaClean, H.L.; Lave, L.B.

2000-01-15T23:59:59.000Z

250

Secretary Chu Announces Best Buy, Johnson Controls, Pacific Gas...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

As of 2012, the company operates four CNG fueling stations and more than 100 CNG refuse-collection and support vehicles. Veolia joined the partnership in December...

251

Alternative Fuels Data Center: Natural Gas Fuel Safety  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Fuel Natural Gas Fuel Safety to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Safety on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Safety on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Safety on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Safety on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Fuel System & Cylinders Fuel Safety Traffic Accident Filling CNG Tanks Laws & Incentives Natural Gas Fuel Safety

252

Alternative Fuels Data Center: Natural Gas Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Stations on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Natural Gas Fueling Stations Photo of a compressed natural gas fueling station. Hundreds of compressed natural gas (CNG) fueling stations are available in

253

Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Vehicles Natural Gas Vehicles Safety Regulations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Vehicles Safety Regulations Vehicles converted to operate on compressed natural gas (CNG), liquefied

254

Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas and Natural Gas and Propane Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Fuel Tax Any individual using or selling compressed natural gas (CNG), liquefied

255

Attention as the Mediator Between Top Management Team Characteristics and Strategic Change: The Case of Airline Deregulation  

Science Conference Proceedings (OSTI)

We integrate the upper-echelons perspective with the attention-based view of the firm by examining the role of attentional orientation of top management teams (TMTs). In the context of airline deregulation, we find that deregulation caused a shift in ... Keywords: airline industry, executive compensation, managerial attention, organizational demography, strategic change, top management team

Theresa S. Cho; Donald C. Hambrick

2006-07-01T23:59:59.000Z

256

Current trends in transmission system planning needed in competitive and deregulated environment using artificial intelligence  

Science Conference Proceedings (OSTI)

This paper picturesquely depicts the changing trends and values under new circumstances which are developed in the sector of electric power system i.e. generation side and partly on the way in transmission and distribution network. A very clear advocacy ... Keywords: competitive, congestion, deregulation, market dynamic, monitoring, restructuring

Aamir Mahboob Ilahi; Suhail Aftab Qureshi

2006-05-01T23:59:59.000Z

257

Consumption Strategies and Tariff Coordination for Cooperative Consumers in a Deregulated Electricity Market  

Science Conference Proceedings (OSTI)

As the trend in electricity markets is strongly towards deregulation, new players, new rules and new behaviors will continue to emerge. One of the new phenomena that are developing on the demand side is the purchase by a coalition of agents. When it ...

Juha Mntysaari; Pierre-Olivier Pineau

1999-01-01T23:59:59.000Z

258

EXPERIMENTAL TESTS OF DEREGULATED MARKETS FOR ELECTRIC POWER: MARKET POWER AND SELF COMMITMENT  

E-Print Network (OSTI)

, there is no obligation in a competitive market to submit accurate information. An offer to sell real energy may competitive market would make it difficult to raise profits by submitting false information. AchievingEXPERIMENTAL TESTS OF DEREGULATED MARKETS FOR ELECTRIC POWER: MARKET POWER AND SELF COMMITMENT 1

259

Abstract--With the deregulation and restructuring of utility industry, many substation automation applications are being  

E-Print Network (OSTI)

Control and Data Acquisition (SCADA) and Energy Management System (EMS) applications of substation environment of substation automation project. It provides data to a number of application including automated1 Abstract--With the deregulation and restructuring of utility industry, many substation automation

260

TRANSPORTATION CONDITIONS AND ACCESS TO SERVICES IN A CONTEXT OF URBAN SPRAWL AND DEREGULATION  

E-Print Network (OSTI)

TRANSPORTATION CONDITIONS AND ACCESS TO SERVICES IN A CONTEXT OF URBAN SPRAWL AND DEREGULATION Transports Ecole Nationale des Travaux Publics de l'Etat Rue Maurice Audin 69518 Vaulx-en-Velin cedex France corresponding author. e-mail: pochet@entpe.fr #12;#12;1 TRANSPORTATION CONDITIONS AND ACCESS TO SERVICES

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Impacts of deregulation and competitive entry on telecommunication networks: long distance telephone service  

Science Conference Proceedings (OSTI)

Over the past thirty years, the long distance telephone sector has been revolutionised by a series of technical and regulatory developments. In 1996, Congress passed the Telecommunications Act 1996, which substantially deregulated the telecommunications ... Keywords: economic regulation, long distance service, regression models, telecommunications

K. H. Tiedemann

2008-08-01T23:59:59.000Z

262

A new model for multi-objective load curtailment applied on deregulated environment  

Science Conference Proceedings (OSTI)

In the deregulated environment, transmission congestion is one major problem that needs to be handled in power system operation. This paper aims to alleviate congestion using the multi-objective load curtailment (MOLC) approach. The proposed MOLC approach ... Keywords: cost of load curtailment, fitting coefficient, multi-objective load curtailment, primal dual interior point method, security margin, voltage instability indicator

Sige Liu; Xiaoxin Zhou; Mingtian Fan; Haozhong Cheng

2009-05-01T23:59:59.000Z

263

liquefied natural gas LNG | OpenEI  

Open Energy Info (EERE)

liquefied natural gas LNG liquefied natural gas LNG Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics

264

compressed natural gas | OpenEI  

Open Energy Info (EERE)

compressed natural gas compressed natural gas Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (3 years ago) Date Updated December 13th, 2010 (3 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics

265

Is Methanol the Transportation Fuel of the Future?  

E-Print Network (OSTI)

Richards, and L. Aruoux, "CNG Market DevelopmentStudy," Pub.with compressed natural gas (CNG). Weconclude that methanolrelative to methanol and CNG. ) )ASCENDANCE OF METHANOL

Sperling, Daniel; DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

266

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network (OSTI)

centimeter or cubic centimeters CNG = compressed natural gascompressed natural gas (CNG) refueling stations providessimilar cylinders for storing CNG. In general, the cost of a

Lipman, Timothy Edward

1999-01-01T23:59:59.000Z

267

A Framework for Testing Innovative Transportation Solutions: A Case Study of CarlinkA Commuter Carsharing Program  

E-Print Network (OSTI)

with compressed natural gas (CNG) Honda Civics, smartcards,startup delays, and limited CNG infrastructure (3). Thesmartcards alone. Limited CNG Infrastructure: During CarLink

Shaheen, Susan; Novick, Linda

2004-01-01T23:59:59.000Z

268

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network (OSTI)

for vehicle refueling and compressed natural gas (CNG)for CNG vehicles, aswell as CNG/hydrogen blends (City of Las Vegas, 2002). Clean

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

269

A Framework for Testing Innovative Transportation Solutions: A Case Study of CarLink--A Commuter Carhsaring Program  

E-Print Network (OSTI)

with compressed natural gas (CNG) Honda Civics, smartcards,startup delays, and limited CNG infrastructure (3). Thesmartcards alone. Limited CNG Infrastructure: During CarLink

Shaheen, Susan

2004-01-01T23:59:59.000Z

270

Building Out Alternative Fuel Retail Infrastructure: Government Fleet Spillovers in E85  

E-Print Network (OSTI)

with compressed natural gas (CNG). Vehicles that are capablecapable of burning pure CNG as well. Thus, some hydrogenof Energy, there were 778 CNG stations nationwide at the end

Corts, Kenneth S.

2009-01-01T23:59:59.000Z

271

The Design and Development of the University of California, Davis FutureCar  

E-Print Network (OSTI)

compressednatural gas (CNG),diesel, and reformulatedcomparedto RFG. The advantages of CNG very low emissions andinfrastructure required to provide CNG vehicles does not yet

1997-01-01T23:59:59.000Z

272

Life-Cycle Water Impacts of U.S. Transportation Fuels  

E-Print Network (OSTI)

compressed natural gas (CNG) and electricity also maintain asuch as electricity, CNG, and hydrogen require completelyThe remaining fuels are CNG and electricity, both of which

Scown, Corinne Donahue

2010-01-01T23:59:59.000Z

273

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

Compressed Natural Gas (CNG), synthetic diesel, methanol,FCX Fuels Gasoline, Diesel, CNG, FT diesel, methanol, H2,H2, electricity Gasoline, diesel, CNG, biogas, LPG, ethanol,

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

274

A Study of Adaptive and Optimizing Behavior for Electric Vehicles Based on Interactive Simulation Games and Revealed Behavior of Electric Vehicle Owners  

E-Print Network (OSTI)

compressednatural gas vehicles (CNG) having ranges of 50 to200 miles. A few hundred CNG ownersare experienced with slowctric, hydrogen,methanol,CNG, ethanol. Theprimary reason for

Turrentine, Thomas; Lee-Gosselin, Martin; Kurani, Kenneth; Sperling, Daniel

1992-01-01T23:59:59.000Z

275

An Empirical Study of Alternative Fuel Vehicle Choice by Commercial Fleets: Lessons in Transportation Choices, and Public Agencies' Organization  

E-Print Network (OSTI)

Error gov. Error model model CNG constant Methanol constantcompressed natural gas (CNG) vehicles with over 300 milestime or refueling cost of CNG vehicles? My fuel choice

Crane, Soheila Soltani

1996-01-01T23:59:59.000Z

276

Canadian natural gas: Review of 1997 and outlook to 2005  

Science Conference Proceedings (OSTI)

This review provides summaries of North American gas industry trends, including supply, demand, storage, gas flows, prices, transportation capacities, and Canadian gas export volumes, export prices, and revenues. Forecasts of North American demand, supply, gas flows, pipeline capacity, prices, and sales are provided to 2005. The focus of the review is on regional natural gas markets, with detail on the drivers of gas consumption by sector for each region in Canada and the United States. A regulatory analysis section updates developments in Canadian and US pipeline regulation, electric power deregulation and its effect on gas as a power source, and gas distribution.

Not Available

1998-01-01T23:59:59.000Z

277

Economics of natural gas upgrading  

SciTech Connect

Natural gas could be an important alternative energy source in meeting some of the market demand presently met by liquid products from crude oil. This study was initiated to analyze three energy markets to determine if greater use could be made of natural gas or natural gas derived products and if those products could be provided on an economically competitive basis. The three markets targeted for possible increases in gas use were motor fuels, power generation, and the chemical feedstocks market. The economics of processes to convert natural gas to transportation fuels, chemical products, and power were analyzed. The economic analysis was accomplished by drawing on a variety of detailed economic studies, updating them and bringing the results to a common basis. The processes analyzed included production of methanol, MTBE, higher alcohols, gasoline, CNG, and LNG for the transportation market. Production and use of methanol and ammonia in the chemical feedstock market and use of natural gas for power generation were also assessed. Use of both high and low quality gas as a process feed stream was evaluated. The analysis also explored the impact of various gas price growth rates and process facility locations, including remote gas areas. In assessing the transportation fuels market the analysis examined production and use of both conventional and new alternative motor fuels.

Hackworth, J.H.; Koch, R.W.

1995-07-01T23:59:59.000Z

278

Gas Turbine Upgrades for Enhancing Operational Flexibility  

Science Conference Proceedings (OSTI)

Over the last several years, gas turbines owners have had to adapt their operating profiles to adjust to an ever changing environment that has included a dramatic run-up in gas prices, the halt (or collapse) of deregulation efforts in regions of the United States, the bankruptcy or near bankruptcy of industry giants, and an overall squeeze in profitability. In recent years, these externalities have been further exacerbated by the push for renewable portfolio standards (RPS), which mandate how much energy...

2009-01-09T23:59:59.000Z

279

South Asia Urban Air Quality Management Briefing Note No. 2 International Experience with CNG Vehicles  

E-Print Network (OSTI)

Natural gas vehicles (NGVs) are much cleaner than vehicles fueled by conventional diesel, especially with respect to the emissions of fine particulate matter which is the pollutant of interest in South Asia. Many cities around the world have mounted NGV programs with varying degree of success. How can NGV programs be made viable and sustainable in the long run? Natural gas (NG) is a clean-burning alternative fuel with a significant potential for reducing harmful emissions, especially those of fine particles, from vehicles. Vehicular particulate emissions in turn are a concern, because they are small (small particles are especially harmful to health) and numerous, and occur near ground level where people live and work. In response, some have argued for mandating NG as an automotive fuel, most notably in Delhi. This note discusses where NG vehicle 1 programs have been successful, where have they failed and why.

unknown authors

2000-01-01T23:59:59.000Z

280

Railroad Consolidation and Market Power: Challenges to a Deregulating Electric Utility Industry  

Science Conference Proceedings (OSTI)

The railroad industry is shrinking into a handful of mega-carriers, a development of great importance to the electric utility industry, which depends on railroads for most shipments of coal. As the electric utilities face deregulation, the impact of railroad market power on the delivered price of coal is a critical competitive issue. This report examines the motivations for railroad consolidation and assesses the likely business strategies of the five major coal hauling railroads.

1997-03-08T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Changing the Numbers: UK Directory Enquiries Deregulation and the Failure of Choice  

E-Print Network (OSTI)

competition so as to improve quality and lower costs. Unfortu- nately the results did not match expectations. Proliferation of numbers led to consumer confusion and high price firms with no discernible quality advantages but which employed heavy advertising... times, been behind many of the efforts to deregulate and liberalize a variety of markets especially in the areas of telecommunications, physical utilities (water, electricity etc) and transportation. However, free competition by leading to a...

Pollock, Rufus

282

in the Era of Deregulation With Focus on Electrical Measurements for Transmission and Distribution  

E-Print Network (OSTI)

NIST invites your comments on this assessment of the measurement needs of the U.S. electric-power industry as that industry undergoes major changes during deregulation and seeks to adopt new technology. NIST regularly reassesses the needs of U.S. industries for measurement support in order to keep NISTs programs focused on the highest priority requirements. Comments should be sent to:

Gerald J. Fitzpatrick; James K. Olthoff; Ronald M. Powell; James K. Olthoff; Gerald J. Fitzpatrick; James K. Olthoff; Ronald M. Powell

1997-01-01T23:59:59.000Z

283

Asset Management Technology Update: Strategic Asset Management Solutions for a Deregulated/Re-Regulated Industry  

Science Conference Proceedings (OSTI)

Over the past five to ten years, U.S. electric power companies have faced many challenges brought on by such changes as deregulation, restructuring, and in some instances, re-regulation. Industry CEOs and CFOs must meet a myriad of regulatory and safety requirements while, at the same time, meeting shareholder expectations and customer demands for reliable electrical energy at affordable rates. In this new business environment, business operations are on center stage. Power producers, regulated and non-r...

2004-03-09T23:59:59.000Z

284

Impact of Compressed Natural Gas Fueled Buses on Street Pavements 6. Performing Organization Code 7. Author(s)  

E-Print Network (OSTI)

Federal Clean Air Act Amendments of 1990 (CAAA) and the Energy Policy Act of 1992 (EPACT), together with other state regulations have encouraged or mandated transit systems to use alternative fuels to power bus fleets. Among such fuels, compressed natural gas (CNG) is attractive, although it must be stored in robust, heavy pressurized cylinders, capable of withstanding pressures up to 5,000 psi. Such systems are typically heavier than conventional diesel storage tanks. As a result, this raises gross vehicle weight, sometimes significantly, which then increases the consumption of the pavement over which CNG buses operate. Capital Metro, the Austin, Texas transit authority, is currently evaluating a number of CNG fueled buses. As part of the U.S. DOT Region Six University Transportation Centers Program (UTCP), a study was instigated into the scale of incremental pavement consumption associated with the operation of these buses. The study suggests that replacing current vehicles with CNG powered models utilizing aluminum storage tanks would raise average network equivalent single rehabilitation costs across the network of over four percent. Finally, it recommends that full cost study be undertaken with evaluation of the adoption of

Dingyi Yang; Robert Harrison

1995-01-01T23:59:59.000Z

285

Natural Gas 1998 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Northeast project involved CNGs plan to lease salt through 2003 (Figure 12). If all were implemented as

286

Diesel and CNG Transit Bus Emissions Characterization By Two Chassis Dynamometer Laboratories: Results and Issues  

DOE Green Energy (OSTI)

Emissions of six 32 passenger transit buses were characterized using one of the West Virginia University (WVU) Transportable Heavy Duty Emissions Testing Laboratories, and the fixed base chassis dynamometer at the Colorado Institute for Fuels and High Altitude Engine Research (CIFHAER). Three of the buses were powered with 1997 ISB 5.9 liter Cummins diesel engines, and three were powered with the 1997 5.9 liter Cummins natural gas (NG) counterpart. The NG engines were LEV certified. Objectives were to contrast the emissions performance of the diesel and NG units, and to compare results from the two laboratories. Both laboratories found that oxides of nitrogen and particulate matter (PM) emissions were substantially lower for the natural gas buses than for the diesel buses. It was observed that by varying the rapidity of pedal movement during accelerations in the Central Business District cycle (CBD), CO and PM emissions from the diesel buses could be varied by a factor of three or more. The driving styles may be characterized as aggressive and non-aggressive, but both styles followed the CBD speed command acceptably. PM emissions were far higher for the aggressive driving style. For the NG fueled vehicles driving style had a similar, although smaller, effect on NO{sub x}. It is evident that driver habits may cause substantial deviation in emissions for the CBD cycle. When the CO emissions are used as a surrogate for driver aggression, a regression analysis shows that NO{sub x} and PM emissions from the two laboratories agree closely for equivalent driving style. Implications of driver habit for emissions inventories and regulations are briefly considered.

Nigel N. Clark, Mridul Gautam; Byron L. Rapp; Donald W. Lyons; Michael S. Graboski; Robert L. McCormick; Teresa L. Alleman; Paul Norton

1999-05-03T23:59:59.000Z

287

An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles  

E-Print Network (OSTI)

Kathuria, V. , 2004. Impact of CNG on vehicular pollution inin Delhi: before and after CNG as fuel. EnvironmentalS.A.K. , 2004. Development of CNG infrastructure in India

Yeh, Sonia

2007-01-01T23:59:59.000Z

288

Gas Mileage Tips - Driving More Efficiently  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving More Efficiently Driving More Efficiently Personalize Fuel Prices Select the fuel type and enter your fuel price to personalize savings estimates. Regular Midgrade Premium Diesel E85 CNG LPG $ 3.33 /gal Save My Prices Use Default Prices Click "Save My Prices" to apply your prices to other pages, or click "Use Default Prices" use national average prices. Drive Sensibly frustrated driver Aggressive driving (speeding, rapid acceleration and braking) wastes gas. It can lower your gas mileage by 33% at highway speeds and by 5% around town. Sensible driving is also safer for you and others, so you may save more than gas money. Fuel Economy Benefit: 5%-33% Equivalent Gasoline Savings: $0.17-$1.10/gallon Observe the Speed Limit (New Information) Graph showing MPG decreases rapidly at speeds above 50 mph

289

Natural gas: major issues still unresolved  

Science Conference Proceedings (OSTI)

According to statistics gathered from the US Department of Energy, the American Gas Association, and the Process Gas Consumers Group, total US gas consumption and production declined in 1983 for the fourth consecutive year, although increases of 3.4% and 6.6%, respectively, are expected for 1984. This turnaround is contingent on the effects of a strong economic recovery and normal winter weather overriding those of higher gas prices. In today's competitive market, gas demand will be closely tied to the gas pricing issue. A.G.A projects a moderation in both wellhead and consumer prices from 1983 to 1992. Regarding price deregulation, A.G.A. recommends a limited approach designed to moderate consumer gas prices while the PGC Group approves of total deregulation via a three-step process. Controversy over gas purchase contracts is also considerable among all sectors of the gas industry; meaningful action by the Federal Energy Regulatory Commission in this area would be of substantial benefit to all gas consumers.

Not Available

1984-01-01T23:59:59.000Z

290

The Natural Gas Market Model: Equations and data sources  

SciTech Connect

In 1981, EIA began a major study of the impact of natural gas deregulation. Through 1981, the major product of that study was the August 1981 EIA analysis paper entitled ''Analysis of Economic Effects of Accelerated Deregulation of Natural Gas Prices.'' That paper will be referred to as the ''Deregulation Study'' below. The Natural Gas Market Model (NGMM) was the primary model used to produce the forecasts discussed in the Deregulation Study. A modified version of NGMM has been used in the initial runs of the EIA Extended Short-term Forecasting System (ESFS), which is still under development. The purpose of this paper is to provide a comprehensive description of what NGMM is, and of the inputs used with NGMM for the Deregulation Study. The Deregulation Study, and the many documentation reports it cites, contain much information about the substantive studies which led up to the forecasts; however, it does not provide enough detail on how these studies were brought together to permit either a replication or an in-depth evaluation of the forecasts. EIA standards require that models be documented in enough detail to permit replication. This report attempts to fill that gap in documentation, on the basis of a line-by-line audit of the model code, interviews with the model developers, and a replication of the model in the user-oriented system Troll. The report mentions the mechanics of how the solutions are obtained, but not in complete detail. 2 figs., 6 tabs.

Werbos, P.J.

1981-11-01T23:59:59.000Z

291

Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends  

Science Conference Proceedings (OSTI)

Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.

Kirby S. Chapman; Amar Patil

2007-06-30T23:59:59.000Z

292

Development of an ultra-safe, ultra-low emissions natural gas-fueled bus. Phase 1: Systems design -- Final report  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) contracted with Southwest Research Institute (SwRI) to develop an ultra-safe, ultra-low emissions natural gas-fueled school bus. To develop the bus, SwRI teamed with Blue Bird, Incorporated, a school bus manufacturer, Deere Power Systems Group, an engine manufacturer, and CNG Cylinder Company, a supplier of compressed natural gas storage and handling systems. The primary focus of work for Phase 1 was the design of the component systems, i.e. vehicle, engine, and fuel storage systems. The bus chassis prototype is expected to be completed by the middle of July, 1995. A complete prototype vehicle body and chassis should be delivered to SwRI by the beginning of December, 1995. This prototype vehicle will include the new compressed natural gas cylinders and associated fuel storage system hardware which has been designed by CNG Cylinder Company.

Kubesh, J. [Southwest Research Inst., San Antonio, TX (United States)

1995-05-01T23:59:59.000Z

293

A Transactions Choice Model for Forecasting Demand for Alternative-Fuel Vehicles  

E-Print Network (OSTI)

compressednatural gas (CNG), methanol, and electric (EV).avallabday for ded;cated CNG vehicle Service s~atlon avada~CNOStatmn Wagon (dummy) CNG*Van(dummy) CNG-~Utlhty(dummy)

Brownstone, David; Bunch, David S; Golob, Thomas F; Ren, Weiping

1996-01-01T23:59:59.000Z

294

A Transaction Choice Model for Forecasting Demand for Alternative-Fuel Vehicles  

E-Print Network (OSTI)

compressednatural gas (CNG), methanol, and electric (EV).avallabday for ded;cated CNG vehicle Service s~atlon avada~CNOStatmn Wagon (dummy) CNG*Van(dummy) CNG-~Utlhty(dummy)

Brownstone, David; Bunch, David S.; Golob, Thomas F.; Ren, Weiping

1996-01-01T23:59:59.000Z

295

Energy Systems and Population Health  

E-Print Network (OSTI)

Precursors Reduction (%) CNG vs EPA94 diesel bus Particulateto compressed natural gas (CNG)), and extended life-span of0.6% of the annual costs of CNG buses, for 2.6% for the CNG

2004-01-01T23:59:59.000Z

296

Long-term Contracting in a Deregulated Electricity Industry: Simulation Results from a Hydro Management Model  

E-Print Network (OSTI)

The deregulation of electricity industry has introduced long-term contracting as a tool for hedging risk and strategy. A vital consideration for market participants is the relationship between behaviour in the spot market, and decisions taken in the contract market. We have developed a reservoir management model which integrates a Cournot spot market model into a Dual Dynamic Programming framework. Simulations using this model show that the market outcomes depend strongly upon the level of contracting undertaken by both competitors. We develop hypotheses for the dynamics involved, and present results from the simulation model reinforcing these. 1.

Stephen Batstone; Tristram Scott

1998-01-01T23:59:59.000Z

297

Determining market power in deregulated generation markets by measuring price-cost margins  

Science Conference Proceedings (OSTI)

In this article. the author considers one of the more prominent examples of the SFE type by Aleksandr Rudkevich, Max Duckworth, and Richard Rosen (RDR). The conclusion of their paper, that fewer than 30 competitive firms (or, equivalently, an HHI over 333) likely constitute an impermissibly concentrated market, is a startling one, since it is unlikely that any deregulated electricity market will have this many competitors. In examining the source of the RDR conclusion in some detail and seeing where it goes awry, the author thinks it is possible to glean principles that can guide regulators to draw more sensible conclusions about the number of competitors required in these markets.

Falk, J.

1998-07-01T23:59:59.000Z

298

Natural gas decontrol: a Northwest industrial perspective  

SciTech Connect

Natural gas prices have increased dramatically since Congress passed the Natural Gas Policy Act in 1978. This report looks at the effects of higher gas prices on three states in the Pacific Northwest: Washington, Oregon, and Idaho, where natural gas is an important fuel for many homeowners and local industries. The incentive to switch to oil increases as gas prices become less competitive. The region will continue to rely on imports of gas from Canada, but the logistical advantage of Canadian gas has recently been offset by government export and pricing policies. A model of interregional trade flows analyzes eight different scenarios to indicate net shifts in regional income associated with gas deregulation and the competitive effects in comparison with an earlier analysis of the Northeast. Data from the model runs appear in the appendix. 5 figures, 3 tables.

Lee, H.; Bender, S.; Kalt, J.

1983-01-01T23:59:59.000Z

299

Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Santa Fe Metro Fleet Santa Fe Metro Fleet Runs on Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas on Google Bookmark Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas on Delicious Rank Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas on AddThis.com... June 8, 2010 Santa Fe Metro Fleet Runs on Natural Gas " CNG buses are reliable, have cleaner-burning engines, offer increased oil life, and have lower fuel costs than diesel.

300

Market structure and the price of electricity: An ex ante analysis of the deregulated Swedish electricity market  

Science Conference Proceedings (OSTI)

Following new legislation the Swedish electricity market is about to be deregulated. The new system is designed to ensure competition in production and supply. The main motive for deregulation is to increase competition and thus achieve lower market prices. A possible threat to this outcome is the high degree of concentration on the seller side that characterizes the Swedish electricity market. In this paper we show that given the current structure of firms on the supply side, deregulation is not a sufficient condition for lower equilibrium prices in the electricity market. We use a numerical model to explore the quantitative relation between the Cournot-equilibrium price, the number of firms, and the size distribution of firms in the Swedish electricity market. We compute equilibrium electricity prices and a welfare measure in order to quantify the effect of asymmetric market concentration on competition. 3 refs., 1 fig., 6 tabs.

Andersson, B.; Bergman, L. [Stockholm School of Economics (Sweden)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Natural Gas Competition and Regulation Act of 1998 (Georgia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Natural Gas Competition and Regulation Act of 1998 (Georgia) The Natural Gas Competition and Regulation Act of 1998 (Georgia) The Natural Gas Competition and Regulation Act of 1998 (Georgia) < Back Eligibility Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Investor-Owned Utility Low-Income Residential Municipal/Public Utility Residential Rural Electric Cooperative Utility Program Info State Georgia Program Type Generating Facility Rate-Making Industry Recruitment/Support The Natural Gas Competition and Deregulation Act's stated intent and purposes are to: promote competition; protect the consumer during and after the transition to competition; maintain and encourage safe and reliable service; deregulate those components of the industry subject to actual competition; continue to regulate those services subject to monopoly power;

302

liquefied petroleum gas | OpenEI  

Open Energy Info (EERE)

3 3 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142288523 Varnish cache server liquefied petroleum gas Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol

303

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network (OSTI)

gasoline. CNG is compressed natural gas. BTL is biomass-gasoline. CNG is compressed natural gas. BTL is biomass-Petroleum Gas (LPG) Compressed Natural Gas(CNG) Liquefied

2007-01-01T23:59:59.000Z

304

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network (OSTI)

gasoline. CNG is compressed natural gas. BTL is biomass-gasoline. CNG is compressed natural gas. BTL is biomass-Petroleum Gas (LPG) Compressed Natural Gas(CNG) Liquefied

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

305

Price risk management: Electric power vs. natural gas  

Science Conference Proceedings (OSTI)

As deregulation continues, will electricity resemble gas as a commodity, when it comes to futures markets and forward deals? Overall, yes; the signs are there. But differences will remain-in volatility, the prominence of regional factors, and the importance of shortrun engineering fundamentals. This article examines these differences and concludes that engineering and economic analyses will prove more important in the future in assessing risk in the electric power commodity market than in the gas industry.

Rose, J.; Mann, C. [ICF Kaiser International, Inc., Fairfax, VA (United States)

1996-02-01T23:59:59.000Z

306

Gas royalty - Vela, Middleton, and Weatherford  

SciTech Connect

The evolution of gas royalties is evident in this review of oil and gas cases dating from 1926. The author describes the decisions and changes in the gas royalty clause over the years in order to determine the intent of the parties in setting the measure of the royalty payment on gas production under Texas law. The Foster, Vela, and Middleton cases were the major vehicles for the legal development. The author also examines subsequent cases involving the market value of price-regulated gas and court decisions on royalty determination in other jurisdictions. Producers need to take protective steps in anticipation of early deregulation of gas prices to make sure there is no exposure to claims of market value in excess of contract proceeds. Corrective measures include contract amendments or negotiations with both the gas purchaser and the royalty owners to secure a lease amendment.

Harmon, F.G.

1983-01-01T23:59:59.000Z

307

Clean air program: Design guidelines for bus transit systems using liquefied petroleum gas (LPG) as an alternative fuel. Final report, July 1995-April 1996  

Science Conference Proceedings (OSTI)

The Federal Transit Administration (FTA) has initiated the development of `Design Guidelines for Bus Transit Systems Using Alternative Fuels.` This report provides design guidelines for the safe uses of Liquefied Petroleum Gas (LPG). It forms a part of the series of individual monographs being published by the FTA on (the guidelines for the safe use of) Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes for the subject fuel the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

Raj, P.K.; Hathaway, W.T.; Kangas, R.

1996-09-01T23:59:59.000Z

308

Determine Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Usage and Refueling Trends to Minimize Greenhouse Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas Emissions Determine Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas Emissions October 7, 2013 - 11:42am Addthis YOU ARE HERE Step 2 Once a Federal agency has identified its most important mobile greenhouse gas (GHG) emission sources overall, it can work with individual sites to determine vehicle usage and refueling trends. Agencies can compare the results of this analysis to internal standards and requirements to identify GHG mitigation opportunities for assets that are underperforming or underutilized. Two examples of this type of analysis focus on: Alternative fuel consumption Vehicle utilization. Figure 1 - An image of a vertical, stacked bar chart titled 'Alternative Fuel Use in AFVs.' The frequency data axis is labeled 'Gallons of Gasoline Equivalent' with a scale of 0-1,400,000 in increments of 200,000. The stacked bar labeled 'CNG Dual Fuel Vehicles' shows CNG from 0-300,000 gallons and Gasoline from 300,000-800,000 gallons. The stacked bar labeled 'E-85 Flex Fuel Vehicles' shows E85 from 0-1,000,000 gallons and Gasoline from 1,000,000-1,250,000 gallons.

309

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network (OSTI)

vehicles : the case of compressed natural gas (CNG) vehicleshome refueling for compressed natural gas vehicles, batteryalso includes compressed natural gas (CNG) vehicles, battery

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

310

Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles  

E-Print Network (OSTI)

electric, methanol, and compressed natural gas vehicles withinclude electric, compressed natural gas (CNG), and methanoltypes: gasoline, compressed natural gas (CNG), methanol, and

Brownstone, David; Bunch, David S; Train, Kenneth

1999-01-01T23:59:59.000Z

311

Modeling hydro power plants in deregulated electricity markets : integration and application of EMCAS and VALORAGUA.  

Science Conference Proceedings (OSTI)

In this paper, we present details of integrating an agent-based model, Electricity Market Complex Adaptive System (EMCAS) with a hydro-thermal coordination model, VALORAGUA. EMCAS provides a framework for simulating deregulated markets with flexible regulatory structure along with bidding strategies for supply offers and demand bids. VALORAGUA provides longer-term operation plans by optimizing hydro and thermal power plant operation for the entire year. In addition, EMCAS uses the price forecasts and weekly hydro schedules from VALORAGUA to provide intra-week hydro plant optimization for hourly supply offers. The integrated model is then applied to the Iberian electricity market which includes about 111 thermal plants and 38 hydro power plants. We then analyze the impact of hydro plant supply offers on the market prices and ways to minimize the Gencospsila exposure to price risk.

Thimmapuram, P.; Veselka, T.; Koritarov, V.; Vilela, S.; Pereira, R.; Silva, R. (Decision and Information Sciences); (Rede Electrica Nacional, S.A.); (Energias de Portugal)

2008-01-01T23:59:59.000Z

312

Control requirements for cogen and microgen plants in a deregulated electricity industry  

SciTech Connect

The deregulation of the electricity production and distribution industry provides opportunities and concerns to the end-users as well as to the electricity producing companies. The end-user objective is to get a reliable source of electrical energy at the lowest rate possible. On the other hand, the primary objective of the three providing companies--generation, transmission, and local distribution--is to profit while satisfying their customers' needs. These three companies may compete for the same customer, and new competitors may enter the arena. The existing technology of the cogeneration plant and the emergence of the microgenerating plant will be used by all the providers and by the end-users to achieve their objectives. The purpose of this paper is to introduce the concept of operation of the microgenerating plant, to identify the requirements of each interested player, and to introduce control strategies.

Shavit, G.

2000-07-01T23:59:59.000Z

313

Case Study: Lessons Learned From Converting Electric Chillers to Steam Chillers in a Electric Deregulated Market.  

E-Print Network (OSTI)

This paper will examine an example of converting two electric centrifugal chillers, which needed to be replaced, to use steam turbine driven centrifugal chillers at a large commercial office building consisting of approximately 700,000 square feet in Center City Philadelphia. The existing 2,000 ton plant was replaced by 2,400 tons of cooling, in the 1997 time frame along with new cooling towers, and the required auxiliaries for the new plant. The paper will look at the impact of steam cooling on the facility's electric load profile both prior to the conversion, as well as after the conversion. This is of particular interest due to the fact that Pennsylvania is deregulated for electric service. One of the benefits in deciding to do the conversion was that a flatter load profile due to steam cooling should allow better electric pricing from energy suppliers.

Wohl, J.

2001-05-01T23:59:59.000Z

314

Measuring Potential Efficiency Gains from Deregulation of Electricity Generation: A Bayesian Author(s): Andrew N. Kleit and Dek Tecrell  

E-Print Network (OSTI)

. Given the highly seasonal and time-specific demand for electricity, achieving the optimal scale may and Electricity Demand: Allowing for Selection Bias in Experimental Data," Rand Journal of Economics 28(0) (1997Measuring Potential Efficiency Gains from Deregulation of Electricity Generation: A Bayesian

Najjar, Raymond

315

Integrated Computing, Communication, and Distributed Control of Deregulated Electric Power Systems  

SciTech Connect

Restructuring of the electricity market has affected all aspects of the power industry from generation to transmission, distribution, and consumption. Transmission circuits, in particular, are stressed often exceeding their stability limits because of the difficulty in building new transmission lines due to environmental concerns and financial risk. Deregulation has resulted in the need for tighter control strategies to maintain reliability even in the event of considerable structural changes, such as loss of a large generating unit or a transmission line, and changes in loading conditions due to the continuously varying power consumption. Our research efforts under the DOE EPSCoR Grant focused on Integrated Computing, Communication and Distributed Control of Deregulated Electric Power Systems. This research is applicable to operating and controlling modern electric energy systems. The controls developed by APERC provide for a more efficient, economical, reliable, and secure operation of these systems. Under this program, we developed distributed control algorithms suitable for large-scale geographically dispersed power systems and also economic tools to evaluate their effectiveness and impact on power markets. Progress was made in the development of distributed intelligent control agents for reliable and automated operation of integrated electric power systems. The methodologies employed combine information technology, control and communication, agent technology, and power systems engineering in the development of intelligent control agents for reliable and automated operation of integrated electric power systems. In the event of scheduled load changes or unforeseen disturbances, the power system is expected to minimize the effects and costs of disturbances and to maintain critical infrastructure operational.

Bajura, Richard; Feliachi, Ali

2008-09-24T23:59:59.000Z

316

The implications of deregulation for biomass and renewable energy in California  

SciTech Connect

California has been leading the nation down the path of electric utility deregulation, beginning with the April 1994, California Public Utilities Commission`s (CPUC) Blue Book restructuring proposal. The road for renewable energy producers has been particularly rocky, leaving the future of renewable energy production very much in doubt. The original CPUC proposal provided for competition among generating sources on the basis of price alone, without regard for environmental considerations. The California legislature took up electric utility deregulation legislation during 1996, culminating in AB 1890, California`s landmark restructuring legislation, which was passed unanimously by the Senate and Assembly, and signed into law by the governor on September 28, 1996. AB 1890 assigned to the California Energy Commission (CEC) the task of determining how to allocate the renewables transition funds between existing and new renewable generating sources, and among the various renewable energy technologies that are available for deployment in California. The California Environmental Protection Agency (Cal/EPA) was assigned the task of reporting to the legislature about the specific benefits provided by biomass energy production in California, and about policies that could shift some of the cost of biomass energy production away from the electric ratepayer, on to beneficiaries of the environmental benefits of biomass energy production. This study describes the development of the CEC and Cal/EPA reports to the California legislature, and provides an analysis of the major issues that were encountered during the course of their development. The study concludes with a consideration of the future prospects for biomass and renewable energy production in the state.

Morris, G. [Future Resources Associates, Inc., Berkeley, CA (United States)

1998-07-01T23:59:59.000Z

317

Don`t overlook natural gas cooling equipment  

Science Conference Proceedings (OSTI)

If one thought the confusion surrounding chiller specification and operation ended with the availability of CFC-free refrigerant alternatives, think again. Plant engineers involved in the selection and installation of cooling equipment are facing yet another complicated task, this time thanks to deregulation of the electric utility industry. Still in its early stages, deregulation is a process that could take up to a decade. However, deregulation is also bringing about changing pricing structures. Electric power costs may not always be low for everyone. For plants paying $0.02/kwh for electricity, an electric-powered chiller is a must. But those paying $0.35 or $0.40/kwh, even for a few hours, cannot afford NOT to consider something besides an electric-motor-driven chiller. Among the most viable, yet often overlooked, options available is natural gas cooling. Gas cooling equipment gives industrial users the flexibility to choose either gas or electricity to drive their cooling systems. Natural gas cooling is defined here as the use of absorption cooling systems and engine-driven chillers, as alternatives to electric-driven equipment, to deliver chilled water in a conventional manner. Desiccant systems can also be gas fired and are used primarily for providing dry air for process control. Because of their specialized applications, desiccant cooling is not covered in this article.

Katzel, J.

1997-03-01T23:59:59.000Z

318

Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas and Liquefied Petroleum Gas Conversions: Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Robert C. Motta Kenneth J. Kelly William W. Warnock Executive Summary The National Renewable Energy Laboratory (NREL) contracted with conversion companies in six states to convert approximately 900 light-duty Federal fleet vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas (LPG). The contracts were initiated in order to help the Federal government meet the vehicle acquisition requirements of the Energy Policy Act of 1992 (EPACT) during a period of limited

319

Ruling on Liquefied Natural Gas (LNG) Tax Rate Sparks Debate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

IRS Ruling IRS Ruling On August 7, 1995, the Federal Register reported the Internal Revenue Service (IRS) ruling that liquefied natural gas (LNG) is a liquid fuel and will thus be taxed as a "special motor fuel," effective October 1, 1995. This definition covers all liquids that substitute for gasoline and diesel. The ruling refuted the claim of petitioners, such as the Natural Gas Vehicle (NGV) Coalition, that LNG is the same as compressed natural gas (CNG) and should be taxed at the equivalent excise tax rate. The IRS also rejected the Coalition's proposal that the NGV tax rate be expressed as gasoline gallon equivalent (GGE) rather than in thousand cubic feet (mcf) as provided in the Internal Revenue Code, but stated that no restrictions exist on taxpayers engaged in fuel sales based on

320

Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Natural Gas and Hydrogen Fuels Workshop Compressed Natural Gas and Hydrogen Fuels Workshop Fuel experts from China, India, and the United States shared lessons learned about deploying CNG- and hydrogen-fueled vehicles in public transit fleets and the consumer sector at the Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles workshop. The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) hosted the workshop on December 10-11, 2009. Here you'll find information about the workshop's focus, agenda and notes, and presentations. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Focus of the Workshop The workshop aimed to: Compare fuel properties-including blends-industries, and applications (e.g., product specifications, tanks, reliability, safety procedures, risk mitigation, and dispensing)

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Bumpy Road to Hydrogen  

E-Print Network (OSTI)

gases (LPG) and compressed natural gas (CNG) have persistedbenefits from compressed natural gas, ethanol, methanol,

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

322

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction of processing plant for landfill gas (LFG) to compressed natural gas (CNG) and a CNG dispensing station at the Seminole Road Landfill. Steven Richardson...

323

Consumption strategies and tariff coordination for cooperative consumers in a deregulated electricity market  

E-Print Network (OSTI)

As the trend in electricity markets is strongly towards deregulation, new players, new rules and new behaviors will continue to emerge. One of the new phenomena that are developing on the demand side is the purchase by a coalition of agents. When it is worth, a coalition will be constituted. One of the energy needs, especially important in Nordic countries such as Finland, is electrical space heating. We consider here the consumption strategies of individual electricity buyers within a coalition. The decision problem each consumer faces is to find the optimal use of his space heating system with respect to change in electricity price and to his tolerance to indoor temperature variation. A mathematical model for this problem is defined. Physical parameters of example houses were gathered from an experimental field test conducted in Helsinki during the winter 1996. The coalition buys in the market at marginal cost. However, as marginal cost pricing may not always fulfill metering and communication needs of the members of the coalition, we consider Time-Of-Use (TOU) pricing within the coalition. Different groups of consumer behaviour are constructed to simulate this coalition. Optimal marginal tariff is used as a reference point to estimate the nearest TOU tariff within the coalition.

Raimo P. Hmlinen; Juha Mntysaari; Jukka Ruusunen; Pierre-olivier Pineau

1999-01-01T23:59:59.000Z

324

Deregulation Provides Incentive to Conserve - New Meters at LCRA Offer a Closer Look at Facility Costs  

E-Print Network (OSTI)

Prior to Texas' electric utility deregulation, the Lower Colorado River Authority's (LCRA's) facilities and plant station service energy use was considered a cost of business - power consumed and never sold. Preparation for competition under Senate Bill 7 meant meters had to be placed at all of LCRA's generation facilities; electric bills followed for the first time in 2001. Plant managers now must include the metered cost for station service in their operating budgets. This change provided an important incentive to conserve. Senate Bill 5 set goals to reduce energy use by political entities such as LCRA. LCRA's in-house energy auditor had previously performed energy audits for LCRA's wholesale customers whose retail customers needed help to improve energy efficiency. LCRA energy services developed experience in contracting to install interval data recorder meters for its customers. Now this department is helping facility managers monitor their own energy use as they begin paying bills for the first time. Impacts of metering; case studies of plant and administrative facilities that requested audits; and implementation of recommended measures follow.

Roberts, M.; Knutsen, T.

2003-01-01T23:59:59.000Z

325

The implications of deregulation for biomass and renewable energy in California. Revision  

SciTech Connect

The California legislature took up electric utility deregulation legislation during 1996, culminating in AB 1890, California`s landmark restructuring legislation. The legislation created a transition funding program for renewables. No permanent program for the support of renewable energy production extending beyond the end of the transition period (2002) is included in AB 1890. AB 1890 assigned to the California Energy Commission (CEC) the task of determining how to allocate the renewables transition funds between existing and new renewable generating sources, and among the various renewable energy technologies that are available for deployment in California. The California Environmental Protection Agency (Cal/EPA) was assigned the task of reporting to the legislature about the specific benefits provided by biomass energy production in California, and about policies that could shift some of the cost of biomass energy production away from the electric ratepayer, on to beneficiaries of the environmental benefits of biomass energy production. This study describes the development of the CEC and Cal/EPA reports to the California legislature, and provides an analysis of the major issues that were encountered during the course of their development. The study concludes with a consideration of the future prospects for biomass and renewable energy production in the state.

Morris, G. [Future Resources Associates, Inc., Berkeley, CA (United States)

1998-08-01T23:59:59.000Z

326

ELECTRICITY TRANSMISSION IN DEREGULATED MARKETS; CONFERENCE AT CARNEGIE MELLON UNIVERSITY, PITTSBURGH PA USA DECEMBER 2004 1 A criticality approach to monitoring cascading  

E-Print Network (OSTI)

ELECTRICITY TRANSMISSION IN DEREGULATED MARKETS; CONFERENCE AT CARNEGIE MELLON UNIVERSITY the risk of cascading failure of electric power transmission systems as overall loading is increased failure is the usual mechanism for large blackouts of electric power transmission systems. For example

Dobson, Ian

327

Evaluation of three catalysts formulated for methane oxidation on a cng-fueled pickup truck. Technical report  

Science Conference Proceedings (OSTI)

The report describes the exhaust emission results obtained from the evaluation of three specialized methane catalytic converters supplied by three different catalysts manufacturers. The catalytic converters were evaluated using a compressed natural gas-fueled Dodge Dakota pickup truck. The report includes a description of the catalytic converters, the test vehicle, test facilities and test procedures.

Piotrowski, G.K.; Schaefer, R.M.

1993-12-01T23:59:59.000Z

328

When Barriers to Markets Fail: Pipeline Deregulation, Spot Markets, and the Topology of the Natural Gas Market  

E-Print Network (OSTI)

Paso Trnnkline Panhandle NGPL Tennessee Northern West TexasNorth Texas South Texas Louisiana Oklahoma El Paso NGPLNGPL NGPL Tennessee NGPL Network 3 NGPL Tennessee Trunkline

De Vany, Arthur; Walls, W. David

1992-01-01T23:59:59.000Z

329

Transportation and its Infrastructure  

E-Print Network (OSTI)

York City Transit Hybrid and CNG Buses: Interim EvaluationECMT, 2007). Natural Gas (CNG / LNG / GTL) Natural gas,It may be stored in compressed (CNG) or liquefied (LNG) form

2007-01-01T23:59:59.000Z

330

Framework for Bus Rapid Transit Development and Deployment Planning  

E-Print Network (OSTI)

ATSAC AVL BOCC BRT Caltrans CBD CNG DGPS EIS FTA GPS ITE ITScompressed natural gas (CNG) diesel-electric hybrids,compressed natural gas (CNG) buses. The buses have a special

Miller, Mark A.; Yin, Yafeng; Balvanyos, Tunde; Ceder, Avishai

2004-01-01T23:59:59.000Z

331

Transportation Technologies: Implications for Planning  

E-Print Network (OSTI)

mixes, natural gas (methane, CNG/LNG), and electric power (gas: a fuel in compressed (CNG) or liquefied (LNG) form.The CNG form, more common in the transportation sector, is

Deakin, Elizabeth; Kim, Songju

2001-01-01T23:59:59.000Z

332

Lifecycle Analyses of Biofuels  

E-Print Network (OSTI)

sulfur) ICEV, natural gas (CNG) ICEV, LPG (P95/BU5) ICEV,Methanol Ethanol Methane (CNG, LNG) Propane (LPG) Hydrogen (M85 (wood) Natural gas CNG (wood) Note: percentage changes

Delucchi, Mark

2006-01-01T23:59:59.000Z

333

Contract No. DE-AC36-99-GO10337Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses  

E-Print Network (OSTI)

Contract No. DE-AC36-99-GO10337NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

A. Del Toro; M. Frailey; F. Lynch; S. Munshi; S. Wayne; A. Del Toro; M. Frailey; F. Lynch; S. Munshi; S. Wayne

2005-01-01T23:59:59.000Z

334

Gas Mileage of 2012 Vehicles by VPG  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 VPG MV-1 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2012 VPG MV-1 13 City 15 Combined 18 Highway 2012 VPG MV-1 CNG 8 cyl, 4.6 L, Automatic 4-spd, CNG Compare 2012...

335

Gas Mileage of 2011 Vehicles by VPG  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 VPG MV-1 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2011 VPG MV-1 13 City 15 Combined 18 Highway 2011 VPG MV-1 CNG 8 cyl, 4.6 L, Automatic 4-spd, CNG Compare 2011...

336

Market Structure and Competition: A Cross-Market Analysis of U.S. Electricity Deregulation  

E-Print Network (OSTI)

oil, natural gas, hydroelectric, The ISOs also procureslimited units (i.e. , hydroelectric units) present a di?The production cost of hydroelectric units do not re?ect a

Bushnell, James; Mansur, Erin T.; Saravia, Celeste

2004-01-01T23:59:59.000Z

337

CEC-500-2010-FS-XXX Natural Gas Engine and  

E-Print Network (OSTI)

. to develop and optimize a sparkignited CNG Powered Refuse Truck Photo Credit: Cummings Westport, Inc. 11.9 liter CNG engine suitable for refuse and other vocational Class 8 applications. The engine conventional CNG engine to a more efficient and higher performance engine, and integrate it into a refuse

338

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reformulated Gasoline Corn Ethanol Sugarcane Ethanol CNG Hydrogen (from Nat. Gas) Electricity (Calif. Mix) Ethanol (Forest Waste) Landfill CNG Total Carbon Intensity 95.85...

339

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CCities AOI 4:Deployment of CNG refuse trucks and shuttle buses and the development of four CNG refueling locations....

340

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IL Jefferson Park CNG Refueling Station, Chicago The objective of this project is the construction of a compressed natural gas (CNG) fueling station to support the deployment of...

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kirschner Mission, Kansas Midwest Region Alternative Fuels Project: Black Hills Energy CNG Infrastructure Installation of a natural gas compressor system and CNG fueling station....

342

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(QGC) PMCPVT 2011 101011 - 123111 Kay Kelly Kaysville, UT Compressed Natural Gas (CNG)Infrastructure Development (New Station) The project will provide public CNG fueling...

343

Transportation Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

over 2.5 million miles per year. By replacing these buses with compressed natural gas (CNG) alternatives and funding the construction of additional CNG infrastructure, DOE will...

344

CX-000781: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Technology Laboratory The project funds the deployment of compressed natural gas (CNG) refuse trucks and shuttle buses and the development of four CNG refueling locations....

345

Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine...  

NLE Websites -- All DOE Office Websites (Extended Search)

a model alternative fuel refueling system, dispensing hydrogen, compressed natural gas (CNG), and hydrogenCNG blends (HCNG). The plant is used daily to fuel vehicles operated in...

346

CX-000708: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Technology Laboratory Installation of publicly-accessible compressed natural gas (CNG) refueling infrastructure. The station will allow for CNG vehicles to refuel. Selected...

347

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PMCPVT 2010 Kay Kelly 10012009 - 12312013 Ogden, UT Compressed Natural Gas (CNG)Infrastructure Development Project will provide public CNG fueling infrastructure by...

348

FEG2006_BODY_FINAL_05_18_06_FINAL.pmd  

NLE Websites -- All DOE Office Websites (Extended Search)

range and fuel economy values for vehicles that operate on compressed natural gas (CNG). CNG fuel is normally dispensed in "equivalent gallons," where one equivalent gallon...

349

International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

challenges in harmonizing test protocols and requirements for compressed natural gas (CNG), hydrogen, and CNG-hydrogen (HCNG) blend pressure vessels and to define next steps for...

350

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Refuse Trucks, Shuttle Buses and Infrastructure Clean Cities AOI 4:Deployment of CNG refuse trucks and shuttle buses and the development of four CNG refueling locations....

351

Pooled Cars  

E-Print Network (OSTI)

by compressed natural gas (CNG). ? A C C E S NU M B ER 15, Ffee, which includes a tank of CNG fuel, insurance, and

Shaheen, Susan

1999-01-01T23:59:59.000Z

352

DOE News Release - DOE Issues Arizona Public Service Alternative...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel refueling system, generating and dispensing hydrogen, compressed natural gas (CNG) and hydrogenCNG blends (HCNG). The plant is used daily to fuel internal combustion...

353

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PMCPVTD 2012 7112 - 93012 Kay Kelly (GO) Moab City, UT Compressed Natural Gas (CNG)Infrastructure Development (New Station) Installation of public CNG infrastructure...

354

CX-000957: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cities Area of Interest 4: The project funds the deployment of compressed natural gas (CNG) refuse trucks and shuttle buses and the development of four CNG refueling locations....

355

CX-001449: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Technology Laboratory The project funds the deployment of Compressed Natural Gas (CNG) refuse trucks and shuttle buses and the development of four CNG refueling locations....

356

Alternative Fuels Data Center: Seattle's Waste Haulers are Going...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

truck, with sign that reads propelled by natural gas. Project at a Glance Fleet Type: Refuse collection Fuel: CNG, biodiesel Infrastructure: CNG public station Motivation:...

357

Hydrogen Station & ICE Vehicle Operations and Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

psi (total both tanks) Boost Compressor Main Compressor CNG Output Pilot Plant - CNG Substation Street Service Low Pressure Natural Gas High Pressure Storage (3 levels) Pilot Plant...

358

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

24-35 (1990). G. Barker, CNG Consultant, Norwalk CompanyEconomic Evaluation of CNG Fleet Conversion and Operation,"and has found that dragging a CNG (compressed natural gas)

Delucchi, Mark

1992-01-01T23:59:59.000Z

359

Reducing Greenhouse Emissions and Fuel Consumption  

E-Print Network (OSTI)

Compressed natural gas (CNG) vehicles offer similar emissionsimilar GHG emission levels as CNG vehicles and diesel vehiBRT buses . The 40-foot CNG buses used in a BRT system

Shaheen, Susan; Lipman, Timothy

2007-01-01T23:59:59.000Z

360

CARLINK-A SMART CARSHARING SYSTEM FIELD TEST REPORT  

E-Print Network (OSTI)

were required at LLNL) CNG refueling (i.e. , demands on fuelLivermore National Laboratory CNG: Compressed natural gasAt LLNL (see first page) b. CNG refueling (see first page)

Shaheen, Susan; Wright, John; Dick, David; Novick, Linda

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

AVCEM: Advanced-Vehicle Cost and Energy Use Model  

E-Print Network (OSTI)

compressed natural-gas (CNG) ICEVs; liquefied natural-in fuel storage (e.g. , CNG tankage), powertrain, emissionor alcohol, high-pressure CNG tanks, low-pressure LPG tanks,

Delucchi, Mark

2005-01-01T23:59:59.000Z

362

Dynamics in Behavioral Adaptation to a Transportation Innovation: A Case Study of Carlink-A Smart Carsharing System  

E-Print Network (OSTI)

vehicles are fueled with compressed natural gas (CNG). 5.What is CNG? (33.9%) 6. What happens if you need more gasis the efficiency of the CNG Civics? (25.1%) 9. How long can

Shaheen, Susan A.

1999-01-01T23:59:59.000Z

363

Demonstration of Automated Heavy-Duty Vehicles  

E-Print Network (OSTI)

by compressed natural gas (CNG) in spark-ignition engines,buses are powered by a CNG spark-ignition engine, providedno matter whether it is a CNG or a diesel engine [4, 5].

2006-01-01T23:59:59.000Z

364

Dynamics in Behavioral Adaptation to a Transportation Innovation: A Case Study of CarlinkA Smart Carsharing System  

E-Print Network (OSTI)

vehicles are fueled with compressed natural gas (CNG). 5.What is CNG? (33.9%) 6. What happens if you need more gasis the efficiency of the CNG Civics? (25.1%) 9. How long can

Shaheen, Susan

2004-01-01T23:59:59.000Z

365

Carlink - A Smart Carsharing System Field Test Report  

E-Print Network (OSTI)

enjoyed driving the Honda CNG Civics, and reported havingLivermore National Laboratory CNG: Compressed natural gasAt LLNL (see first page) b. CNG refueling (see first page)

Shaheen, Susan; Wright, John; Dick, David; Novick, Linda

2000-01-01T23:59:59.000Z

366

Adaptive Transit: Enhancing Suburban Transit Services  

E-Print Network (OSTI)

an the push to introduce CNG (compressednatural gas) buses.Adelaide has the largest CNG fleet in Australia- 110 of theplus bus fleet are currently CNG bu~ vehicles, with plans to

Cervero, Robert; Beutler, John

2000-01-01T23:59:59.000Z

367

The Rapid Rise of Middle-Class Vehicle Ownership in Mumbai  

E-Print Network (OSTI)

used Compressed Natural Gas (CNG); in the Thane region, 69%in Greater Mumbai 89% used CNG, 5% used petrol, 3% used35% used diesel, 12% used CNG and 1% used LPG. In the bus

Shirgaokar, Manish

2012-01-01T23:59:59.000Z

368

Results of the 2008-09 Campus Travel Survey  

E-Print Network (OSTI)

on compressed natural gas (CNG) rather than diesel fuel forconsumed 235,300 gallons of CNG and 17,600 gallons of dieselper gallon of diesel and CNG, respectively, 10 then Unitrans

Lovejoy, Kristin; Handy, Susan L; Contreras, Cliff

2009-01-01T23:59:59.000Z

369

Pursuing Development and Protecting the Environment: Dilemma of the Developing World  

E-Print Network (OSTI)

of compressed natural gas (CNG) as a vehicular fuel. Whileare very few stations that dispense CNG, and the number ofvehicles equipped to use CNG is also minimal. This policy

Persadie, Natalie; Ramlogan, Rajendra

2005-01-01T23:59:59.000Z

370

AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM  

E-Print Network (OSTI)

compressed natural-gas (CNG) ICEVs; liquefied natural-in fuel storage (e.g. , CNG tankage), powertrain, emissionor alcohol, high-pressure CNG tanks, low-pressure LPG tanks,

Delucchi, Mark

2005-01-01T23:59:59.000Z

371

Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles  

DOE Green Energy (OSTI)

This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the best-case'' results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author's experience with fuel delivery systems for light-duty vehicles.

Willson, B. (Colorado State Univ., Fort Collins, CO (United States))

1992-09-01T23:59:59.000Z

372

Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles  

DOE Green Energy (OSTI)

This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the ``best-case`` results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author`s experience with fuel delivery systems for light-duty vehicles.

Willson, B. [Colorado State Univ., Fort Collins, CO (United States)

1992-09-01T23:59:59.000Z

373

Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles  

SciTech Connect

This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the best-case'' results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author's experience with fuel delivery systems for light-duty vehicles.

Willson, B. (Colorado State Univ., Fort Collins, CO (United States))

1992-09-01T23:59:59.000Z

374

Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

AGENDA AGENDA U. S. Department of Transportation and U.S. Department of Energy Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles December 10-11, 2009 - Washington, DC A workshop to promote exchange of information among experts on compressed natural gas and hydrogen fuels for vehicles and to share lessons learned from deployment of these vehicles in public transit, fleets, and consumer transportation throughout the world. Workshop Objectives: * To coordinate lessons learned by identifying similarities and critical differences between compressed natural gas and hydrogen properties, including CNG-H2 blends, and their industries and applications (e.g., product specifications, tanks, reliability, safety procedures, risk mitigation, and dispensing)

375

The DOE/NREL Next Generation Natural Gas Vehicle Program - An Overview  

DOE Green Energy (OSTI)

This paper summarizes the Next Generation Natural Gas Vehicle (NG-NGV) Program that is led by the U.S. Department Of Energy's (DOE's) Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of this program is to develop and implement one Class 3-6 compressed natural gas (CNG) prototype vehicle and one Class 7-8 liquefied natural gas (LNG) prototype vehicle in the 2004 to 2007 timeframe. OHVT intends for these vehicles to have 0.5 g/bhp-hr or lower emissions of oxides of nitrogen (NOx) by 2004 and 0.2 g/bhp-hr or lower NOx by 2007. These vehicles will also have particulate matter (PM) emissions of 0.01 g/bhp-hr or lower by 2004. In addition to ambitious emissions goals, these vehicles will target life-cycle economics that are compatible with their conventionally fueled counterparts.

Kevin Walkowicz; Denny Stephens; Kevin Stork

2001-05-14T23:59:59.000Z

376

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network (OSTI)

history of home refueling for automobiles also includes compressed natural gas (CNG) vehicles, battery

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

377

Contract 98, Appendix F self-assessment report for Fiscal Year 2003  

E-Print Network (OSTI)

natural gas (CNG) vehicles at Berkeley Lab. Apply for all rebates, grants, and other financial incentives

Albert Editor, Rich

2003-01-01T23:59:59.000Z

378

Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.  

SciTech Connect

Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

2010-06-30T23:59:59.000Z

379

Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.  

SciTech Connect

Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

2010-06-30T23:59:59.000Z

380

Sanderson, P., Memisevic, R., & Wong, B.-L. W. (2004). Analysing cognitive work of hydroelectricity generation in a dynamic deregulated market. Paper to be published in Proceedings of the 48th  

E-Print Network (OSTI)

electrical generation in the developed world is now conducted within deregulated energy markets, providing. The market component of the work domain analysis appears not to be readily amendable to breakdown); (Vicente, 1999) for hydroelectricity generation in a deregulated market in a way that usefully informs

Queensland, University of

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Clean Cities: Natural Gas Vehicle Technology Forum 2008 Meeting...  

NLE Websites -- All DOE Office Websites (Extended Search)

Baytech CNG Heavy-Duty Vehicles and Engines Richard Turner, Baytech Corporation Biogas for Transportation Jon Lear, Ruby Mountain, Inc. Biogas to LNG John A. Barclay,...

382

Transportation in Developing Countries: Greenhouse Gas Scenarios for Shanghai, China  

E-Print Network (OSTI)

Diesel Car CNG Car Electric Car Diesel Bus Gasoline Bus CNGstroke) Electric Motor Scooter Gasoline Minicar Gasoline Careasier to park than cars. Several electric scooter companies

Zhou, Hongchang; Sperling, Daniel

2001-01-01T23:59:59.000Z

383

Denver SuperShuttle CNG Fleet Evaluation; Evaluacion de la flotilla de GNC de la empresa SuperShuttle de Denver  

DOE Green Energy (OSTI)

A description of a joint effort between Denver SuperShuttle, the Gas Research Institute (GRI) and DOE that evaluated two types of bi-fuel and compressed natural gas.

LaRocque, T.

2001-10-01T23:59:59.000Z

384

Choices Among Alternative Risk Management Strategies: Evidence from the Natural Gas  

E-Print Network (OSTI)

This paper examines risk management strategies for natural gas firms that face multiple risks (e.g., price and volume risk) and have a variety of financial and non-financial tools available to manage those risks. Natural gas firms' risk exposures to price and volume risk were changing significantly during the sample period due to a unique series of regulatory changes, including price deregulation. Natural gas firms used a combination of gas storage, cash holdings, line-ofbusiness and geographic diversification to hedge increasing volume risk and changing exposure to price risk. The firms extensively use commodity derivatives when available. Holding cash and storing gas are complementary strategies that are used by similar types of firms. While the use of derivatives and storing gas are related, firms appear to use derivatives to manage price risk and gas storage to manage volume risk. Finally, the various strategies are effective. Natural gas pipeline firms that pursue financial or operational hedging activities have smaller and less variable sensitivities to price changes than firms that do not, especially post-deregulation.

Christopher C. Gczy; Bernadette A. Minton; Catherine Schrand

2000-01-01T23:59:59.000Z

385

Impact of Natural Gas Price Decontrol on Gas Supply, Demand and Prices  

E-Print Network (OSTI)

Major analysis completed recently by the gas transmission and distribution industry concludes that available supplies of gas energy will fall into the range of 23-31 trillion cubic feet (Tcf) by the year 2000, as conventional gas production is increasingly supplemented by supplies from coal gasification, Alaska, unconventional sources, LNG, Canada, and Mexico. At the same time, however, gas demand is characterized by price-induced conservation in all markets, together with continuing gas demand constraints and financial burdens imposed by Government regulators at all levels. With these restrictions and burdens eased, the gas industry can rebuild its marketing acumen and capacity. Thus, gas demand may likely increase in both the traditional heating and industrial fuel and feedstock applications, as well as such new non-traditional uses as cogeneration, natural gas vehicles and select gas use with coal. With regard to impending gas price decontrol, analyses conducted by the American Gas Association (A.G.A.), as well as studies by the U.S. Department of Energy and other groups, concur in the important finding that natural gas will be able to compete with alternate fuels in the energy marketplace after decontrol, as long as indefinite price escalators and other rigidities in gas purchase contracts can be defused so as to enable the market system to operate successfully. A.G.A.'s analysis, indeed, concluded that gas prices are rising rapidly enough under the existing law between now and 1985, so that concerns of a sudden price increase after deregulation in that year may be somewhat overstated, as long as the indefinite price escalators are defused.

Schlesinger, B.

1982-01-01T23:59:59.000Z

386

Natural gas buses: Separating myth from fact (Clean Cities alternative fuel information series fact sheet)  

DOE Green Energy (OSTI)

Increasing numbers of transit agencies across North America are making the choice to convert their bus fleets to compressed natural gas (CNG), and even more are seriously considering it. Natural gas buses now account for at least 20{percent} of all new bus orders. However, it becomes difficult for fleet operators to fairly evaluate the potential benefits of an alternative fuel program if they are confronted with misinformation or poor comparisons based on false assumptions. This fact sheet addresses some of the most common misconceptions that seem to work their way into anecdotal stories, media reports, and even some poorly researched white papers and feasibility studies. It is an expanded version of information that was presented on behalf of the U.S. Department of Energy at the South Coast Air Basin Alternative Fuel and Electric Transit Bus Workshop in Diamond Bar, California, on March 15, 2000.

Parish, R.

2000-04-27T23:59:59.000Z

387

Analysis of the market and product costs for coal-derived high Btu gas  

Science Conference Proceedings (OSTI)

DOE analyzed the market potential and economics of coal-derived high-Btu gas using supply and demand projections that reflect the effects of natural gas deregulation, recent large oil-price rises, and new or pending legislation designed to reduce oil imports. The results indicate that an increasingly large market for supplemental gas should open up by 1990 and that SNG from advanced technology will probably be as cheap as gas imports over a wide range of assumptions. Although several studies suggest that a considerable market for intermediate-Btu gas will also exist, the potential supplemental gas demand is large enough to support both intermediate - and high-Btu gas from coal. Advanced SNG-production technology will be particularly important for processing the US's abundant, moderately to highly caking Eastern coals, which current technology cannot handle economically.

Not Available

1980-12-01T23:59:59.000Z

388

Converting LPG caverns to natural-gas storage permits fast response to market  

Science Conference Proceedings (OSTI)

Deregulation of Canada`s natural-gas industry in the late 1980s led to a very competitive North American natural-gas storage market. TransGas Ltd., Regina, Sask., began looking for method for developing cost-effective storage while at the same time responding to new market-development opportunities and incentives. Conversion of existing LPG-storage salt caverns to natural-gas storage is one method of providing new storage. To supply SaskEnergy Inc., the province`s local distribution company, and Saskatchewan customers, TransGas previously had developed solution-mined salt storage caverns from start to finish. Two Regina North case histories illustrate TransGas` experiences with conversion of LPG salt caverns to gas storage. This paper provides the testing procedures for the various caverns, cross-sectional diagrams of each cavern, and outlines for cavern conversion. It also lists storage capacities of these caverns.

Crossley, N.G. [TransGas Ltd., Regina, Saskatchewan (Canada)

1996-02-19T23:59:59.000Z

389

NEXT GENERATION GAS TURBINE SYSTEMS STUDY  

SciTech Connect

Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

2003-03-01T23:59:59.000Z

390

NEXT GENERATION GAS TURBINE SYSTEMS STUDY  

DOE Green Energy (OSTI)

Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

2003-03-01T23:59:59.000Z

391

Hydrogen-Enhanced Natural Gas Vehicle Program  

Science Conference Proceedings (OSTI)

The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

Hyde, Dan; Collier, Kirk

2009-01-22T23:59:59.000Z

392

Economic Feasibility of Converting Landfill Gas to Natural Gas for Use as a Transportation Fuel in Refuse Trucks  

E-Print Network (OSTI)

Approximately 136,000 refuse trucks were in operation in the United States in 2007. These trucks burn approximately 1.2 billion gallons of diesel fuel a year, releasing almost 27 billion pounds of greenhouse gases. In addition to contributing to global climate change, diesel-fueled refuse trucks are one of the most concentrated sources of health-threatening air pollution in most cities. The landfills that they ultimately place their waste in are the second largest source of human-related methane emissions in the United States, accounting for approximately 23 percent of these emissions in 2007. At the same time, methane emissions from landfills represent a lost opportunity to capture and use a significant energy resource. Many landfill-gas-to-energy (LFGTE) projects are underway in an attempt to curb emissions and make better use of this energy. The methane that is extracted from these landfills can be converted into a transportation fuel, sold as a pipeline-quality natural gas, operate turbines for electricity, or be flared. The unique relationship that occurs between refuse trucks' constant visits to the landfill and the ability of the landfill itself to produce a transportation fuel creates an ability to accomplish emissions reduction in two sectors with the implementation of using landfill gas to fuel refuse trucks. Landfill owners and operators are very reluctant to invest in large capital LFGTE projects without knowing their long-term feasibility. The costs and benefits associated with each LFGTE project have been presented in such a way that owners/operators can make informed decisions based on economics while also implementing clean energy technology. Owners/operators benefit from larger economic returns, and the citizens of the surrounding cities benefit from better air quality. This research focused on six scenarios: converting landfill gas (LFG) to liquefied natural gas (LNG) for use as a transportation fuel, converting LFG to compressed natural gas (CNG) for use as a transportation fuel, converting LFG to pipeline-quality natural gas, converting LFG to electricity, flaring LFG, and doing nothing. For the test case of a 280-acre landfill, the option of converting LFG to CNG for use as a transportation fuel provided the best benefit-cost ratio at 5.63. Other significant benefit-cost findings involved the LFG-to-LNG option, providing a 5.51 benefit-cost ratio. Currently, the most commonly used LFGTE option of converting LFG to electricity provides only a 1.35 benefit-cost ratio while flaring which is the most common mitigation strategy provides a 1.21, further providing evidence that converting LFG to LNG/CNG for use as a transportation fuel provides greater economic benefits than the most common LFGTE option or mitigation strategy.

Sprague, Stephen M.

2009-12-01T23:59:59.000Z

393

Technology and market assessment of gas-fueled vehicles in New York State. Volume III. Institutional barriers and market assessment. Final report  

SciTech Connect

Volume III deals primarily with the institutional barriers and market forces affecting the potential conversion of vehicles in New York State (NYS) to gaseous fuels. The results of a market research survey are presented along wth the current supply conditions for fuels in NYS. The indigenous resources of gaseous fuels in NYS are identified and quantified. The potential number of vehicles in NYS that are favorable candidates for conversion are estimated, and the effect of these potential gaseous-fueled vehicles on NYS gaseous fuels supplies is presented. The market research survey found that fleet managers appear to be more aware of the specifics of LPG vehicles relative to CNG vehicles. In those fleets with some LPG or CNG vehicles, a tentativeness to further conversion was detected. Many fleet managers are deferring conversion plans due to uncertain conversion costs and future fuel prices. The need for fleet manager education about gaseous fuel vehicle (GFV) operation and economics was identified. NYS currently has an excess supply of natural gas and could support a significant GFV population. However, the pipeline system serving NYS may not be able to serve a growing GFV population without curtailment in the future if natural gas demands in other sectors increase. LPG supply in NYS is dependent primarily on how much LPG can be imported into NYS. A widespread distribution system (pipeline and truck transport) exists in NYS and could likely support a signficant LPG vehicle population. It is estimated that about 35% of the passenger cars and 43% of the trucks in NYS are potential candidates for conversion to CNG. For LPG, about 36% and 46% of passenger cars and trucks are potential candidates. Applying a gross economic screen results in an estimated potential liquid fuel displacement of 1.3 billion gallons in 1990. 20 figs., 63 tabs.

1983-08-01T23:59:59.000Z

394

Compressed natural gas and liquefied petroleum gas conversions: The National Renewable Energy Laboratory`s experience  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) contracted with conversion companies in six states to convert approximately 900 light-duty Federal fleet vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas (LPG). The contracts were initiated in order to help the Federal government meet the vehicle acquisition requirements of the Energy Policy Act of 1992 (EPACT) during a period of limited original equipment manufacturer (OEM) model availability. Approximately 90% of all conversions were performed on compact of full-size vans and pickups, and 90% of the conversions were to bi-fuel operation. With a positive response from the fleet managers, this program helped the Federal government meet the vehicle acquisition requirements of EPACT for fiscal years 1993 and 1994, despite limited OEM model availability. The conversions also helped to establish the infrastructure needed to support further growth in the use of alternative fuel vehicles. In conclusion, the program has been successful in helping the Federal government meet the vehicle acquisition requirements of EPACT, establishing infrastructure, increasing the displacement of imported oil, and evaluating the emissions performance of converted vehicles. With the relatively widespread availability of OEM vehicles in the 1996 model year, the program is now being phased out.

Motta, R.C.; Kelly, K.J.; Warnock, W.W.

1996-04-01T23:59:59.000Z

395

Integrating Small Scale Distributed Generation into a Deregulated Market: Control Strategies and Price Feedback  

E-Print Network (OSTI)

Small scale power generating technologies, such as gas turbines, small hydro turbines, photovoltaics, wind turbines and fuel cells, are gradually replacing conventional generating technologies, for various applications, in the electric power system. The industry restructuring process in the United States is exposing the power sector to market forces, which is creating competitive structures for generation and alternative regulatory structures for the transmission and distribution systems. The potentially conflicting economic and technical demands of the new, independent generators introduce a set of significant uncertainties. What balance between market forces and centralized control will be found to coordinate distribution system operations? How will the siting of numerous small scale generators in distribution feeders impact the technical operations and control of the distribution system? Who will provide ancillary services (such as voltage support and spinning reserves) in the new competitive environment? This project investigates both the engineering and market integration of distributed generators into the distribution system. On the technical side, this project investigates the frequency performance of a distribution system that has multiple small scale generators. Using IEEE sample distribution systems and new dynamic generator models, this project develops general methods for

Judith Cardell; Marija Ili?; Richard D. Tabors

1997-01-01T23:59:59.000Z

396

Research on Site Selection for Urban Compressed Natural Gas Station  

Science Conference Proceedings (OSTI)

By using basic principle of Quality Function Deployment (QFD) methodology, this article tries to make the site selection for urban CNG station as a design of new product, firstly Considers the requirements of different participants systematically, secondly ... Keywords: CNG station, location planning, Quality Function Deployment (QFD), House of Quality (HOQ)

Liang Tao; Li Qingsong; Zhang Xuejin

2010-05-01T23:59:59.000Z

397

The impact of natural gas imports on air pollutant emissions in Mexico  

SciTech Connect

This paper analyzes the impact that natural gas imports could have on fuel emissions in northern Mexico. The authors discuss the problem created in the 1980s when a shift from natural gas to residual oil in industrial processes increased emissions of air pollutants significantly. The benefits of substituting leaded for unleaded gasoline in the 1990s are discussed also. In July 1992 the Mexican government announced for the first time since oil nationalization that private companies in Mexico are allowed to directly import natural gas. The transportation of natural gas, however, remains reserved only for Pemex, the national oil company. This opens the possibility of reducing the burning of high-sulfur residual oil in both the industrial and the energy production sectors in Mexico, particularly in the northern region where only 6.7% of the of the country`s natural gas is produced. Natural gas imports have also opened the possibility of using compressed natural gas (CNG) in vehicles in northern Mexico. 15 refs., 13 figs., 3 tabs.

Bustani, A.; Cobas, E. [Center for Environmental Quality, Monterrey (Mexico)

1993-12-31T23:59:59.000Z

398

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

GHG fuels such as compressed natural gas, low-GHG ethanol,LPG) Methane Compressed natural gas (CNG) Ethanol production

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

399

A Framework for Testing Innovative Transportation Solutions: A Case Study of CarLink--A Commuter Carhsaring Program  

E-Print Network (OSTI)

Dublin/Pleasanton Compressed natural gas Honda Civics Up todrive clinic with compressed natural gas (CNG) Honda Civics,

Shaheen, Susan

2004-01-01T23:59:59.000Z

400

Carlink II: Research Approach and Early Findings  

E-Print Network (OSTI)

LLNL donated the compressed natural gas (CNG) fuel for thisDublin/Pleasanton Compressed natural gas Honda Civics Up to

Shaheen, Susan

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions  

E-Print Network (OSTI)

fuels such as Compressed Natural Gas (CNG) and Liquefiedand 1% share for compressed natural gas cars. 14 The vehicle

G. Fridley, David

2010-01-01T23:59:59.000Z

402

Transportation Technologies: Implications for Planning  

E-Print Network (OSTI)

Clean Air Program: Compressed Natural Gas Safety in Transitmay be higher. Natural gas: a fuel in compressed (CNG) or

Deakin, Elizabeth; Kim, Songju

2001-01-01T23:59:59.000Z

403

Research Approach and Early Findings  

E-Print Network (OSTI)

LLNL donated the compressed natural gas (CNG) fuel for thisDublin/Pleasanton Compressed natural gas Honda Civics Up to

Shaheen, Susan A.; Wright, John

2001-01-01T23:59:59.000Z

404

A Framework for Testing Innovative Transportation Solutions: A Case Study of CarlinkA Commuter Carsharing Program  

E-Print Network (OSTI)

Dublin/Pleasanton Compressed natural gas Honda Civics Up todrive clinic with compressed natural gas (CNG) Honda Civics,

Shaheen, Susan; Novick, Linda

2004-01-01T23:59:59.000Z

405

How Competitive Market Dynamics Affect Coal, Nuclear and Gas Generation and Fuel Use -- A 10-Year Look Ahead  

Science Conference Proceedings (OSTI)

This report, the fourth in a series by EPRI and GRI addressing power industry deregulation, examines how restructuring is unleashing a new wave of merchant gas-fired plants. This phenomenon can lead to substantial regional changes in generation and fuel use, energy prices, and profitability-changes that have eluded analysts to date. Focusing on several regions in depth, this report breaks new ground in understanding the effects of turbulent, competitive market dynamics.

1999-05-22T23:59:59.000Z

406

Combustion Turbine Combined Cycle Technology Developments, Reliability Issues, and Related Market Conditions: EPRI Gas Turbine Exper ience and Intelligence Report  

Science Conference Proceedings (OSTI)

Deregulating power generation markets worldwide present both business opportunities and challenges for combustion turbine (CT) plant owners, operators, and project developers. The "EPRI Gas Turbine Experience and Intelligence Report" (GTE&IR) provides concise, well-organized, up-to-date technical, strategic, and business information for combustion turbine (CT) power producers. This technical report assembles all of the content from the most recent three years of GTE&IR (seven editions) into a single docu...

2001-12-04T23:59:59.000Z

407

Low-quality natural gas sulfur removal/recovery: Task 2. Topical report, September 30, 1992--August 29, 1993  

Science Conference Proceedings (OSTI)

The primary purpose of this Task 2 Report is to present conceptual designs developed to treat a large portion of proven domestic natural gas reserves which are low quality. The conceptual designs separate hydrogen sulfide and large amounts of carbon dioxide (>20%) from methane, convert hydrogen sulfide to elemental sulfur, produce a substantial portion of the carbon dioxide as EOR or food grade CO{sub 2}, and vent residual CO{sub 2} virtually free of contaminating sulfur containing compounds. A secondary purpose of this Task 2 Report is to review existing gas treatment technology and identify existing commercial technologies currently used to treat large volumes of low quality natural gas with high acid content. Section II of this report defines low quality gas and describes the motivation for seeking technology to develop low quality gas reserves. The target low quality gas to be treated with the proposed technology is identified, and barriers to the production of this gas are reviewed. Section III provides a description of the Controlled Freeze Zone (CFG)-CNG technologies, their features, and perceived advantages. The three conceptual process designs prepared under Task 2 are presented in Section IV along with the design basis and process economics. Section V presents an overview of existing gas treatment technologies, organized into acid gas removal technology and sulfur recovery technology.

Cook, W.J.; Neyman, M.; Brown, W. [Acrion Technologies, Inc., Cleveland, OH (United States); Klint, B.W.; Kuehn, L.; O`Connell, J.; Paskall, H.; Dale, P. [Bovar, Inc., Calgary, Alberta (Canada)

1993-08-01T23:59:59.000Z

408

Final report for the Advanced Natural Gas Vehicle Project  

DOE Green Energy (OSTI)

The project objective was to develop the technologies necessary to prototype a dedicated compressed natural gas (CNG) powered, mid-size automobile with operational capabilities comparable to gasoline automobiles. A system approach was used to design and develop the engine, gas storage system and vehicle packaging. The 2.4-liter DOHC engine was optimized for natural gas operation with high-compression pistons, hardened exhaust valves, a methane-specific catalytic converter and multi-point gaseous injection. The chassis was repackaging to increase space for fuel storage with a custom-designed, cast-aluminum, semi-trailing arm rear suspension system, a revised flat trunk sheet-metal floorpan and by equipping the car with run-flat tires. An Integrated Storage system (ISS) was developed using all-composite, small-diameter cylinders encapsulated within a high-strength fiberglass shell with impact-absorbing foam. The prototypes achieved the target goals of a city/highway driving range of 300 miles, ample trunk capacity, gasoline vehicle performance and ultra low exhaust emissions.

John Wozniak

1999-02-16T23:59:59.000Z

409

Ruslands Gas.  

E-Print Network (OSTI)

??This paper is about Russian natural gas and the possibility for Russia to use its reserves of natural gas politically towards the European Union to (more)

Elkjr, Jonas Bondegaard

2009-01-01T23:59:59.000Z

410

Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report  

DOE Green Energy (OSTI)

This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energys Advanced Vehicle Testing Activity.

Francfort; Donald Karner; Roberta Brayer

2006-09-01T23:59:59.000Z

411

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network (OSTI)

refueling and compressed natural gas (CNG) for CNG vehicles,Natural Gas Reformer Reformate Hydrogen Hydrogen CompressedNatural gas Air Recycled Reformate MCFC or SOFC Fuel Cell Reformate Hydrogen Compressed

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

412

ANL/ESD/10-3 Well-to-Wheels Analysis of Landfill Gas-Based  

E-Print Network (OSTI)

68.6% Did Not Pass 2 Universal Waste Systems 3CNG Refuse Trucks $380,000 $0 68.6% Did Not Pass 30 $3,000,000 $0 75.6% Finalist 19 Robertson's Ready Mix Company CNG Concrete Mixers $4,000,000 $0 75 Electric CNG Micro-Turbine Transit Bus Demonstration Project $2,441,729 $0 57.9% Did Not Pass 13 AHL

Argonne National Laboratory

413

Medium-Term Risk Management for a Gas-Fired Power Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Medium-Term Risk Management for a Gas-Fired Power Plant Medium-Term Risk Management for a Gas-Fired Power Plant Speaker(s): Afzal Siddiqui Date: October 11, 2012 - 12:00pm Location: 90-1099 Seminar Host/Point of Contact: Chris Marnay Electricity sectors in many countries have been deregulated with the aim of introducing competition. However, as a result, electricity prices have become highly volatile. Stochastic programming provides an appropriate method to characterise the uncertainty and to derive decisions while taking risk management into account. We consider the medium-term risk management problem of a UK gas-fired power plant that faces stochastic electricity and gas prices. In particular, the power plant makes daily decisions about electricity sales to and gas purchases from spot markets over a monthly

414

S. 2217: a bill to provide fair incentives for the domestic production of oil and gas. Introduced in the Senate of the United States, Ninety-Ninth Congress, Second Session, March 20, 1986  

Science Conference Proceedings (OSTI)

The Oil and Gas Deregulation and Incentive Act of 1986 (S. 2217) seeks to counteract the decline in oil and gas exploration and production and its economic impact on the industry as well as the country by retaining tax incentives in the current tax reform effort. Title II addresses banks and bank holding companies experiencing economic difficulties because of the current depression in the petroleum industry. Title III repeals the Windfall Profit Tax and amends the assessment period for tax purposes. Title IV deregulates the natural gas and repeals sections of the Powerplant and Industrial Fuel Use Act of 1978 to provide further incentives and remove regulatory barriers. The final Title addresses the plugging of stripper wells and the leasing of mineral lands.

Not Available

1986-01-01T23:59:59.000Z

415

Integrated resource planning for local gas distribution companies: A critical review of regulatory policy issues  

SciTech Connect

According to the report, public utility commissions (PUCs) are increasingly adopting, or considering the adoption of integrated resource planning (IRP) for local gas distribution companies (LDCs). The Energy Policy Act of 1992 (EPAct) requires PUCs to consider IRP for gas LDCs. This study has two major objectives: (1) to help PUCs develop appropriate regulatory approaches with regard to IRP for gas LDCs; and (2) to help PUCs respond to the EPAct directive. The study finds that it is appropriate for PUCs to pursue energy efficiency within the traditional regulatory framework of minimizing private costs of energy production and delivery; and PUCs should play a limited role in addressing environmental externalities. The study also finds that in promoting energy efficiency, PUCs should pursue policies that are incentive-based, procompetitive, and sensitive to rate impacts. The study evaluates a number of traditional and nontraditional ratemaking mechanisms on the basis of cost minimization, energy efficiency, competitiveness, and other criteria. The mechanisms evaluated include direct recovery of DSM expenses, lost revenue adjustments for DSM options, revenue decoupling mechanisms, sharing of DSM cost savings, performance-based rate of return for DSM, provision of DSM as a separate service, deregulation of DSM service, price caps, and deregulation of the noncore gas market. The study concludes with general recommendations for regulatory approaches and ratemaking mechanisms that PUCs may wish to consider in advancing IRP objectives.

Harunuzzaman, M.; Islam, M.

1994-08-01T23:59:59.000Z

416

Gas purification  

SciTech Connect

Natural gas having a high carbon dioxide content is contacted with sea water in an absorber at or near the bottom of the ocean to produce a purified natural gas.

Cook, C.F.; Hays, G.E.

1982-03-30T23:59:59.000Z

417

Natural Gas  

U.S. Energy Information Administration (EIA)

Natural Gas. Under the baseline winter weather scenario, EIA expects end-of-October working gas inventories will total 3,830 billion cubic feet (Bcf) and end March ...

418

Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle  

DOE Green Energy (OSTI)

This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less reliable vehicle with a lower availability than a conventional heavy vehicle. Experience with heavy HEVs to date supports this observation. The key safety concern for the electric drive system is the higher voltages and currents that are required in the electric drive system. Faults that could expose personnel to these electric hazards must be considered, addressed, and minimized. The key issue for the CNG-fueled ICE is containment of the high-pressure natural gas. Events that can result in a release of natural gas with the possibility of subsequent ignition are of concern. These safety issues are discussed. The heavy HEV has the potential to have a safety record that is comparable to that of the conventional vehicle, but adequate attention to detail will be required.

Nelson, S.C.

2002-11-14T23:59:59.000Z

419

Workshop Notes from "Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles" Workshop, December 10-11, 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

S. Department of Energy and S. Department of Energy and U.S. Department of Transportation Workshop Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles Workshop Notes December 10-11, 2009 The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) hosted a workshop to exchange information among experts from China, India, and the U.S. on compressed natural gas (CNG) and hydrogen (H 2 ) fuels for vehicles and to share lessons learned from deployment of these vehicles in public transit, fleets, and consumer transportation throughout the world. The workshop had five major objectives, and the success of the workshop in addressing these objectives is summarized below. 1. Coordinate lessons learned by identifying similarities and critical

420

Gas Week  

Reports and Publications (EIA)

Presented by: Guy F. Caruso, EIA AdministratorPresented to: Gas WeekHouston, TexasSeptember 24, 2003

Information Center

2003-09-24T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The Natural Gas Competition and Regulation Act of 1998 | Open Energy  

Open Energy Info (EERE)

Competition and Regulation Act of 1998 Competition and Regulation Act of 1998 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Georgia Applies to States or Provinces Georgia Name The Natural Gas Competition and Regulation Act of 1998 (Georgia) Policy Category Other Policy Policy Type Generating Facility Rate-Making, Industry Recruitment/Support Affected Technologies Natural Gas Active Policy Yes Implementing Sector State/Province Program Administrator Georgia Public Service Commission Primary Website http://searuc.org/gas/ngdereg.asp Applicable Jurisdiction Statewide Information Source http://www.legis.ga.gov/Legislation/20012002/6491.pdf Summary The Natural Gas Competition and Deregulation Act's stated intent and

422

Natural Gas: From Shortages to Abundance in the U.S.  

E-Print Network (OSTI)

The recent dramatic and largely unanticipated growth in the current and expected future production of shale gas, and the related developments in the production of shale oil, have dramatically changed the energy future of the U.S. and potentially of the world compared to what experts were forecasting only a few years ago. These changes would not have been realized as quickly and efficiently absent deregulation of the wellhead price of natural gas, unbundling of gas supplies from pipeline transportation services, the associated development of efficient liquid markets for natural gas, and reforms to the licensing and regulation of prices for gas pipelines charge to move gas from where it is produced to where it is consumed. This economic platform supported the integration of technological advances in vertical drilling, downhole telemetry, horizontal drilling, monitoring and control of deep drilling equipment, and hydraulic fracturing to exploit economically shale gas deposits that were identified long ago, but considered to be uneconomical until recently. I. Natural Gas Wellhead Price and Pipeline Regulation Federal regulation of the natural gas industry began with the Natural Gas Act of 1938 (NGA). The NGA gave the Federal Power Commission (FPC), later the Federal Energy Regulatory Commission (FERC), the authority to license the construction and expansion of new interstate natural gas pipelines, to ensure that they are operated safely, and to regulate the prices 1

Paul L. Joskow

2012-01-01T23:59:59.000Z

423

Gas Mileage of 2001 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Ford Vehicles 1 Ford Vehicles EPA MPG MODEL City Comb Hwy 2001 Ford Crown Victoria 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2001 Ford Crown Victoria View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 2001 Ford Crown Victoria CNG 8 cyl, 4.6 L, Automatic 4-spd, CNG Compare 2001 Ford Crown Victoria CNG 14 City 16 Combined 21 Highway 2001 Ford Crown Victoria Police 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2001 Ford Crown Victoria Police 14 City 17 Combined 21 Highway 2001 Ford E150 Club Wagon 6 cyl, 4.2 L, Automatic 4-spd, Regular Gasoline Compare 2001 Ford E150 Club Wagon 13 City 14 Combined 18 Highway 2001 Ford E150 Club Wagon 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2001 Ford E150 Club Wagon 13 City 15 Combined 18

424

Gas Mileage of 2003 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Ford Vehicles 3 Ford Vehicles EPA MPG MODEL City Comb Hwy 2003 Ford Crown Victoria 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2003 Ford Crown Victoria View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 2003 Ford Crown Victoria CNG 8 cyl, 4.6 L, Automatic 4-spd, CNG Compare 2003 Ford Crown Victoria CNG 12 City 14 Combined 17 Highway 2003 Ford Crown Victoria Police 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2003 Ford Crown Victoria Police View MPG Estimates Shared By Vehicle Owners 14 City 16 Combined 20 Highway 2003 Ford E150 Club Wagon 6 cyl, 4.2 L, Automatic 4-spd, Regular Gasoline Compare 2003 Ford E150 Club Wagon 12 City 14 Combined 16 Highway 2003 Ford E150 Club Wagon 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2003 Ford E150 Club Wagon 13

425

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

426

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

427

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

428

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

429

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

430

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

431

Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

432

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

433

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

434

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

435

Proceedings of Power Systems 03: Distributed Generation and Advanced Metering 2002 Wichita State University  

E-Print Network (OSTI)

Pressure Natural Gas CNG Compressed Natural Gas L/HHV Low /High Heating Value SCFM Standard Cubic Feet per-connected modes of operation with minimal electronics. · Ability to operate on a variety of fuels (LPNG, CNG

436

Microsoft Word - 201306_Fuels_Industry_Newsletter_June_2013.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

large- and small-scale liquefied natural gas (LNG), compressed natural gas (CNG) and gas-to- liquids (GTL). 2. Refining gas and petrochemicals. 3. Developing offshore...

437

Gas Mileage of 1998 Vehicles by Quantum Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Quantum Technologies Vehicles EPA MPG MODEL City Comb Hwy 1998 Quantum Technologies Chevrolet Cavalier 4 cyl, 2.2 L, Automatic 3-spd, CNG Compare 1998 Quantum Technologies...

438

The driving forces on the Swedish compressed natural gas market and the impact on OKQ8's strategy; The driving forces on the Swedish compressed natural gas market and the impact on OKQ8's strategy.  

E-Print Network (OSTI)

?? This paper aims to examine how the driving forces of the Swedish CNG market have impacted OKQ8s strategies. This has been conducted through the (more)

Malmstrm, Martin

2010-01-01T23:59:59.000Z

439

1  

NLE Websites -- All DOE Office Websites (Extended Search)

Performed By: Advanced Resources International, Inc. with Cooperative Research Partners: CNG Transmission Corporation Columbia Gas Transmission Corporation Consumers Energy Company...

440

Geophys. J. Int. (2011) 185, 157166 doi: 10.1111/j.1365-246X.2011.04929.x GJIGeomagnetism,rockmagnetismandpalaeomagnetism  

E-Print Network (OSTI)

, a diesel bus with a particle trap, and a bus fueled with compressed natural gas (CNG). Researchers video

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

FEG2005_BODY_Updates.pmd  

NLE Websites -- All DOE Office Websites (Extended Search)

Transmission AWD ... All Wheel Drive City ... MPG on City Test Procedure CNG ... Compressed Natural Gas Conv ... Convertible Convsn ... Conversion D...

442

Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department supports research and policy options to ensure environmentally sustainable domestic and global supplies of oil and natural gas.

443

Gas separating  

DOE Patents (OSTI)

Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

Gollan, A.

1988-03-29T23:59:59.000Z

444

Missouri Natural Gas Number of Gas and Gas Condensate ...  

U.S. Energy Information Administration (EIA)

Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

445

www.transportation.anl.gov Argonne Hosts Chinese-American Olympics Planning Group  

E-Print Network (OSTI)

gas (CNG) can reduce greenhouse gas (GHG) emissions (g-CO2 equivalent/ mile) by ~21%. Converting NG on CNG or liquefied natural gas (LNG). Current ICEs will need to be modified for use with NG, however for the use of NG in transportation: 1. CNG NGV hybrid: 28% efficiency, 250-mile range; 2. NG H2 FCV

Kemner, Ken

446

STAFF REPORT LOCALIZED HEALTH IMPACTS REPORT  

E-Print Network (OSTI)

of these synergies, the 300 refuse trucks currently operating on LNG could be readily converted to operate on CNG, H2 gas (CNG) can reduce greenhouse gas (GHG) emissions (g-CO2 equivalent/ mile) by ~21%. Converting NG on CNG or liquefied natural gas (LNG). Current ICEs will need to be modified for use with NG, however

447

San Francisco Building Code Amendments to the  

E-Print Network (OSTI)

of these synergies, the 300 refuse trucks currently operating on LNG could be readily converted to operate on CNG, H2 gas (CNG) can reduce greenhouse gas (GHG) emissions (g-CO2 equivalent/ mile) by ~21%. Converting NG on CNG or liquefied natural gas (LNG). Current ICEs will need to be modified for use with NG, however

448

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

449

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

450

Purvin and Gertz; Asia Pacific natural gas demand to take off  

Science Conference Proceedings (OSTI)

This paper reports on growing Asia Pacific gas demand through 2010 that will dramatically increase competition for imports and indigenous regional supplies, a Houston consulting firm says. Deregulation of Asia Pacific energy markets, increased environmental awareness, and greater emphasis on economics of interfuel competition are among major factors expected to affect Asia Pacific gas markets for the next two decades, says a study by Purvin and Gertz Inc. (P and G). Aside from government mandated constraints, future gas prices in each country studied generally will be related to costs of fuels with which gas competes in each end use sector, P and G says. With regional gas demand expected in 2010 to reach 9.2 tcf, P and G advises Asia Pacific consumers in all sectors to begin negotiating now for long term supplies. P and G says more than 50% of new regional gas demand through 2000 will come from increased gas usage in power generation. Most new thermal power generating plants planned in Asia Pacific countries will be either gas or coal fired. but other end use sectors also will play significant roles in future demand growth. P and G predicts liquefied natural gas demand through the end of the century will increase by 4.2%/year. During 2000-2010, Asia Pacific LNG demand will grow by about 3%/year. Regional LNG demand in 2010 will reach 80 million tons of oil equivalent (TOE), increasing from 67 million TOE in 2000 and 45 million TOE in 1990.

Not Available

1991-11-04T23:59:59.000Z

451

OpenEI - hydrogen  

Open Energy Info (EERE)

biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Tue, 14 Dec 2010...

452

OpenEI - ethanol  

Open Energy Info (EERE)

biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Tue, 14 Dec 2010...

453

Fuel Efficient Vehicle Tax Incentives Information Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Credits AFVs include vehicles using compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), hydrogen, or any liquid at least 85% methanol by...

454

Para Vehculos Eficientes en Consumo de Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

incluyen vehculos que utilizan gas natural comprimido (CNG), gas natural lquido (LNG), gas lquido de petrleo (LPG), hidrgeno, o cualquier otro lquido de por lo...

455

Federal Tax Credits for Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

of the following alternative fuels: Compressed natural gas (CNG) Liquefied natural gas (LNG) Liquefied petroleum gas (LPG) Hydrogen Any liquid at least 85% methanol by volume...

456

Clean-Burning Motor Fuel or Electric Vehicle Personal Credit...  

Open Energy Info (EERE)

compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), methanol, and electricity. These credits expire January 2009. (Reference...

457

Clean-Burning Motor Fuel or Electric Vehicle Corporate Credit...  

Open Energy Info (EERE)

compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), methanol, and electricity. These credits expire January 2009. (Reference...

458

Carlink II: A Commuter Carsharing Pilot Program Final Report  

E-Print Network (OSTI)

Dublin/Pleasanton Compressed natural gas Honda Civics Up toalone. Limited Compressed Natural Gas (CNG) Infrastructure:Dublin/Pleasanton Compressed natural gas Honda Civics Up to

Shaheen, Susan; Wipyewski, Kamill; Rodier, Caroline; Novick, Linda; Meyn, Molly Anne; Wright, John

2004-01-01T23:59:59.000Z

459

Reducing Greenhouse Emissions and Fuel Consumption  

E-Print Network (OSTI)

ethanol, methanol, compressed natural gas, liquefied propaneelectric vehicle CNGV: compressed natural gas vehicle Dl CIgasoline vehicles. Compressed natural gas (CNG) vehicles

Shaheen, Susan; Lipman, Timothy

2007-01-01T23:59:59.000Z

460

Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels  

E-Print Network (OSTI)

van bus no CNG = compressed natural gas; LPG = liquefiedcylinders for compressed natural gas). We also have added ae.g. , cylinders for compressed natural gas). The parameters

Delucchi, Mark

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Forecasting new product penetration with flexible substitution patterns  

E-Print Network (OSTI)

fuel types (gasoline, compressed natural gas, methanol, andfor electric and compressed natural gas (CNG) vehicles, thezero otherwise 1 for compressed natural gas vehicle, zero

Brownstone, David; Train, Kenneth

1999-01-01T23:59:59.000Z

462

Hydrogen Bus Technology Validation Program  

E-Print Network (OSTI)

hydrogen with compressed natural gas before dispensing theindustry. Both compressed natural gas, CNG, and hydrogen arenatural gas reformers or water electrolysers. The hydrogen must be compressed

Burke, Andy; McCaffrey, Zach; Miller, Marshall; Collier, Kirk; Mulligan, Neal

2005-01-01T23:59:59.000Z

463

Transportation Energy Futures  

E-Print Network (OSTI)

for compressed natural gas (CNG)storage, additional fueldensity storage performanceof adsorptents for natural gas,natural vs. gas vehicles: a comparisonof resource supply, performance, emissions, fuel storage,

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

464

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

465

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

466

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

467

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

468

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

469

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

470

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

471

Natural gas  

E-Print Network (OSTI)

www.eia.gov Over time the electricity mix gradually shifts to lower-carbon options, led by growth in natural gas and renewable generation U.S. electricity net generation trillion kilowatthours 6

Adam Sieminski Administrator; Adam Sieminski Usnic; Adam Sieminski Usnic

2013-01-01T23:59:59.000Z

472

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

473

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

474

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

475

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

476

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

477

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

478

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

479

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

480

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

Note: This page contains sample records for the topic "gas cng deregulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Variance Analysis of Wind and Natural Gas Generation under Different Market Structures: Some Observations  

DOE Green Energy (OSTI)

Does large scale penetration of renewable generation such as wind and solar power pose economic and operational burdens on the electricity system? A number of studies have pointed to the potential benefits of renewable generation as a hedge against the volatility and potential escalation of fossil fuel prices. Research also suggests that the lack of correlation of renewable energy costs with fossil fuel prices means that adding large amounts of wind or solar generation may also reduce the volatility of system-wide electricity costs. Such variance reduction of system costs may be of significant value to consumers due to risk aversion. The analysis in this report recognizes that the potential value of risk mitigation associated with wind generation and natural gas generation may depend on whether one considers the consumer's perspective or the investor's perspective and whether the market is regulated or deregulated. We analyze the risk and return trade-offs for wind and natural gas generation for deregulated markets based on hourly prices and load over a 10-year period using historical data in the PJM Interconnection (PJM) from 1999 to 2008. Similar analysis is then simulated and evaluated for regulated markets under certain assumptions.

Bush, B.; Jenkin, T.; Lipowicz, D.; Arent, D. J.; Cooke, R.

2012-01-01T23:59:59.000Z

482

CX-002891: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(LFG) to compressed natural gas (CNG) and a CNG dispensing station at the existing Seminole Road Landfill. LFG is currently flared to the atmosphere. DOCUMENT(S) AVAILABLE FOR...

483

Advanced Vehicle Testing Activity: Hydrogen Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

blends in real time and delivers 15, 20, 30 and 50% hydrogen and compressed natural gas (CNG), can be found in Hydrogen, CNG, and HCNG Dispenser System - Prototype Report (PDF 409...

484

DOE News Release - DOE completes 1 million miles of hybrid electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

on 100 percent hydrogen, and various blends of hydrogen and compressed natural gas (CNG). The use of hybrid electric vehicles and hydrogen and hydrogenCNG fuels reduces the...

485

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IL Grenshaw Ave CNG Fueling Station, Chicago The objective of this project is the construction of a compressed natural gas (CNG) fueling station to support the deployment of light...

486

Students gear up for sustainability now and in the future | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities Coalition, helped organize a grand opening of a compressed natural gas (CNG) station in the area as part of the CNG Green Across America Road Trip. To view a...

487

Categorical Exclusion Determinations: Office of Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Energy Program American Recovery and Reinvestment Act - City of Owasso - Compressed Natural Gas (CNG) Fueling Infrastructure and CNG Vehicles CX(s) Applied: B5.1 Date: 0602...

488

STAFF REPORT LOCALIZED HEALTH IMPACTS REPORT  

E-Print Network (OSTI)

, compressed natural gas (CNG), criteria emissions, demographic, E85, Energy Commission, environmental justice Category: Natural Gas for School Fleets, CNG Station, LNG or L/CNG Station · Bear Valley Unified School to the wholesale or retail distribution and sales stations. The projects will be assessed in two separate rounds

489

Questions and Answers For PON-10-604  

E-Print Network (OSTI)

, compressed natural gas (CNG), criteria emissions, demographic, E85, Energy Commission, environmental justice Category: Natural Gas for School Fleets, CNG Station, LNG or L/CNG Station · Bear Valley Unified School to the wholesale or retail distribution and sales stations. The projects will be assessed in two separate rounds

490

Automotive Australia 2020 The Automotive Australia 2020 project would like to thank the following workshop participants.  

E-Print Network (OSTI)

, compressed natural gas (CNG), criteria emissions, demographic, E85, Energy Commission, environmental justice Category: Natural Gas for School Fleets, CNG Station, LNG or L/CNG Station · Bear Valley Unified School to the wholesale or retail distribution and sales stations. The projects will be assessed in two separate rounds

491

Fuel Cell Transit Bus Coordination and Evaluation Plan California Fuel Cell Transit Evaluation Team  

E-Print Network (OSTI)

, compressed natural gas (CNG), criteria emissions, demographic, E85, Energy Commission, environmental justice Category: Natural Gas for School Fleets, CNG Station, LNG or L/CNG Station · Bear Valley Unified School to the wholesale or retail distribution and sales stations. The projects will be assessed in two separate rounds

492

Gas Delivered  

Gasoline and Diesel Fuel Update (EIA)

. Average . Average Price of Natural Gas Delivered to Residential Consumers, 1980-1996 Figure 1980 1982 1984 1986 1988 1990 1992 1994 1996 0 2 4 6 8 10 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Feet Dollars per Thousand Cubic Meters Nominal Dollars Constant Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 1995 dollars using the chain-type price indexes for Gross Domestic Product (1992 = 1.0) as published by the U. S. Department of Commerce, Bureau of Economic Analysis. Residential: Prices in this publication for the residential sector cover nearly all of the volumes of gas delivered. Commercial and Industrial: Prices for the commercial and industrial sectors are often associated with

493

GAS TURBINES  

E-Print Network (OSTI)

In the age of volatile and ever increasing natural gas fuel prices, strict new emission regulations and technological advancements, modern IGCC plants are the answer to growing market demands for efficient and environmentally friendly power generation. IGCC technology allows the use of low cost opportunity fuels, such as coal, of which there is a more than a 200-year supply in the U.S., and refinery residues, such as petroleum coke and residual oil. Future IGCC plants are expected to be more efficient and have a potential to be a lower cost solution to future CO2 and mercury regulations compared to the direct coal fired steam plants. Siemens has more than 300,000 hours of successful IGCC plant operational experience on a variety of heavy duty gas turbine models in Europe and the U.S. The gas turbines involved range from SGT5-2000E to SGT6-3000E (former designations are shown on Table 1). Future IGCC applications will extend this experience to the SGT5-4000F and SGT6-4000F/5000F/6000G gas turbines. In the currently operating Siemens 60 Hz fleet, the SGT6-5000F gas turbine has the most operating engines and the most cumulative operating hours. Over the years, advancements have increased its performance and decreased its emissions and life cycle costs without impacting reliability. Development has been initiated to verify its readiness for future IGCC application including syngas combustion system testing. Similar efforts are planned for the SGT6-6000G and SGT5-4000F/SGT6-4000F models. This paper discusses the extensive development programs that have been carried out to demonstrate that target emissions and engine operability can be achieved on syngas operation in advanced F-class 50 Hz and 60 Hz gas turbine based IGCC applications.

Power For L; Satish Gadde; Jianfan Wu; Anil Gulati; Gerry Mcquiggan; Berthold Koestlin; Bernd Prade

2006-01-01T23:59:59.000Z

494

Gas laser  

SciTech Connect

According to the invention, the gas laser comprises a housing which accommodates two electrodes. One of the electrodes is sectional and has a ballast resistor connected to each section. One of the electrodes is so secured in the housing that it is possible to vary the spacing between the electrodes in the direction of the flow of a gas mixture passed through an active zone between the electrodes where the laser effect is produced. The invention provides for a maximum efficiency of the laser under different operating conditions.

Kosyrev, F. K.; Leonov, A. P.; Pekh, A. K.; Timofeev, V. A.

1980-08-12T23:59:59.000Z

495

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 15:

496

Mississippi Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's:

497

Argonne Transportation Technology R&D Center - Alternative and Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Natural Gas compressed natural gas logo CNG vehicles in North America use this diamond symbol. bus running on compressed natural gas Example of CNG-powered bus eTech Roush Silverado vehicle running on hydrogen-methane gas eTec/Roush H2 Silverado Hydrogen/Natural Gas Blends The target of Argonne's investigations is to identify the difference in combustion behavior, efficiency, engine performance and emissions of compressed natural gas (CNG) blends as compared to pure hydrogen operation. Previous Research Previous work has addressed pure CNG as well as pure hydrogen operation. Testing of CNG-hydrogen blends has been limited to CNG-rich blends and blends of 50%-50% CNG-H2. In order to investigate actual vehicle behavior using this fuel, there is a need to test hydrogen-rich blends in a research

498

Alternative Fuels Data Center: Public Access to State Compressed Natural  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Public Access to State Public Access to State Compressed Natural Gas (CNG) Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on Google Bookmark Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on Delicious Rank Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on

499

Maintenance Sheet for 2013 Honda Civic CNG  

NLE Websites -- All DOE Office Websites (Extended Search)

5CE002486 Date Mileage Description Cost 212013 7,892 Changed oil and filter and rotated tires 79.32 3292013 15,816 Changed oil and filter and rotated tires 70.68 5302013...

500

Maintenance Sheet for 2013 Honda Civic CNG  

NLE Websites -- All DOE Office Websites (Extended Search)

0CE002590 Date Mileage Description Cost 1252013 7,925 Changed oil and filter and rotated tires 79.32 3252013 15,641 Changed oil and filter and rotated tires 70.68 5212013...