Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NETL: Gasification Systems - Integrated Warm Gas Multicontaminant Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Project Number: DE-FC26-05NT42459 Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Project ID: DE-FC26-05NT42459 Objective: The objective is to develop a warm multi-contaminant syngas cleaning system for operation between 300 and 700° F. This project will continue development of the RTI warm syngas cleanup technology suite. Based on the field testing results with real syngas from Eastman Chemical Company's gasifier under DOE Contract DE-AC26-99FT40675, additional technical issues need to be addressed to move the technologies used in warm syngas cleaning further towards commercial deployment especially for chemical/fuels production. These issues range from evaluation of startup and standby options for the more developed desulfurization processes to integration and actual pilot plant testing with real coal-derived syngas for the technologies that were tested at bench scale during Phase I. Development shall continue of the warm gas syngas cleaning technology platform through a combination of lab-scale R&D and larger integrated pilot plant testing with real coal-derived syngas as well as process/systems analysis and simulation for optimization of integration and intensification.

2

EBR-II cover-gas cleanup system upgrade  

SciTech Connect

Technology advances in the past few years have prompted an effort at Argonne National Laboratory to replace existing equipment with high-performance digital computers and color-graphic displays. Improved operation of process systems can be achieved by utilizing state-of-the-art computer technology in the areas of process control and process monitoring. The cover-gas cleanup system (CGCS) at the Experimental Breeder Reactor II (EBR-II) is the first system to be upgraded with high-performance digital equipment. The upgrade consisted of a main control computer, a distributed control computer, a front-end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper describes the main control computer and the operator interface control software. Argonne National Laboratory's EBR-II is a pool-type nuclear reactor demonstration facility that uses liquid sodium as the primary system and secondary system coolant. The primary system tank contains [approximately]330000 [ell] of liquid sodium blanketed with an argon cover gas. Despite this inert atmosphere, the primary system requires a cover-gas monitoring and cleanup system, the CGCS. The CGCS maintains low levels of impurities in the cover gas so that even small levels of impurities can be detected to flag a failed fuel element and to support mass spectrometer analysis to identify a failed fuel element. Impurities can be introduced to the argon cover gas by the failure of fuel element cladding and the subsequent release of gaseous fission products or xenon [open quotes]tag gas[close quotes] placed in the fuel elements for the purpose of signaling a fuel element breach. The CGCS consists of a main cleanup loop and a gas analysis system.

Staffon, J.D.; Carlson, R.B. (Argonne National Lab., Idaho Falls (United States))

1993-01-01T23:59:59.000Z

3

Warm Gas Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Warm Gas Cleanup Warm Gas Cleanup NETL Office of Research and Development Project Number: FWP-2012.03.03 Task 5 Project Description The Environmental Protection Agency (EPA) has established strict regulations for the trace contaminant emissions from integrated gasification combined cycle (IGCC) systems. The Department of Energy (DOE) performance goals for trace contaminant removal were selected to meet or exceed EPA's standard limits for contaminants, as well as to avoid poisoning of: the catalysts utilized in making liquids from fuel gas the electrodes in fuel cells selective catalytic reduction (SCR) catalysts The objective of the NETL's ORD Warm Gas Cleanup project is to assist in achieving both DOE and EPA targets for trace contaminant capture from coal gasification, while preserving the high thermal efficiency of the IGCC system. To achieve this, both lab and pilot-scale research is underway to develop sorbents capable of removing the following contaminants from high temperature syngas (up to 550°F):

4

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove trace elements such as mercury and arsenic, capture the greenhouse gas carbon dioxide (CO2), and extract more than 99.9 percent of the sulfur from the syngas. A novel process to convert the extracted sulfur to a pure elemental sulfur product will also be tested. This project supports DOE's vision of coal power plants with near-zero

5

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove trace elements such as mercury and arsenic, capture the greenhouse gas carbon dioxide (CO2), and extract more than 99.9 percent of the sulfur from the syngas. A novel process to convert the extracted sulfur to a pure elemental sulfur product will also be tested. This project supports DOE's vision of coal power plants with near-zero

6

Hot-gas cleanup system model development. Volume I. Final report  

SciTech Connect

This two-volume report summarizes the state of the art in performance modeling of advanced high-temperature, high-pressure (HTHP) gas cleanup devices. Volume I contains the culmination of the research effort carried over the past 12 months and is a summary of research achievements. Volume II is the user's manual for the computer programs developed under the present research project. In this volume, Section 2 presents background information on pressurized, fluidized-bed combustion concepts, a description of the role of the advanced gas cleanup systems, and a list of advanced gas cleanup systems that are currently in development under DOE sponsorship. Section 3 describes the methodology for the software architecture that forms the basis of the well-disciplined and structured computer programs developed under the present project. Section 4 reviews the fundamental theories that are important in analyzing the cleanup performance of HTHP gas filters. Section 5 discusses the effect of alkali agents in HTHP gas cleanup. Section 6 evaluates the advanced HTHP gas cleanup models based on their mathematical integrity, availability of supporting data, and the likelihood of commercialization. As a result of the evaluation procedure detailed in Section 6, five performance models were chosen to be incorporated into the overall system simulation code, ASPEN. These five models (the electrocyclone, ceramic bag filter, moving granular bed filter, electrostatic granular bed filter, and electrostatic precipitator) are described in Section 7. The method of cost projection for these five models is discussed in Section 8. The supporting data and validation of the computer codes are presented in Section 9, and finally the conclusions and recommendations for the HTHP gas cleanup system model development are given in Section 10. 72 references, 19 figures, 25 tables.

Ushimaru, K.; Bennett, A.; Bekowies, P.J.

1982-11-01T23:59:59.000Z

7

Sorption Mechanisms for Mercury Capture in Warm Post-Gasification Gas Clean-Up Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorption MechaniSMS for Mercury Sorption MechaniSMS for Mercury capture in WarM poSt-GaSification GaS clean-up SySteMS Background Power generation systems employing gasification technology must remove a variety of potential air pollutants, including mercury, from the synthetic gas steam prior to combustion. In general, efforts to remove mercury have focused on removal at lower temperatures (under 300 °F). The ability to remove mercury at warm-gas cleanup conditions (300 °F to 700 °F) or in the hot-gas cleanup range (above 1200 °F) would provide plant operators with greater flexibility to choose the treatment method best suited to conditions at their plant. The University of Arizona is investigating the use of paper waste-derived sorbents (PWDS) for the removal of mercury and other trace metals at temperatures in and

8

Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 2  

SciTech Connect

On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster dsplays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume II covers papers presented at sessions 5 and 6 on system for the production of synthesis gas, and on system for the production of power. All papers have been processed for inclusion in the Energy Data Base.

Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

1987-08-01T23:59:59.000Z

9

Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 1  

SciTech Connect

On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster displays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume I covers information presented at sessions 1 through 4 on systems for the production of Co-products and industrial fuel gas, environmental projects, and components and materials. Individual papers have been processed for the Energy Data Base.

Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

1987-08-01T23:59:59.000Z

10

Reactor water cleanup system  

DOE Patents (OSTI)

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

Gluntz, Douglas M. (San Jose, CA); Taft, William E. (Los Gatos, CA)

1994-01-01T23:59:59.000Z

11

Reactor water cleanup system  

DOE Patents (OSTI)

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

Gluntz, D.M.; Taft, W.E.

1994-12-20T23:59:59.000Z

12

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer  

SciTech Connect

This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

Nexant Inc.

2006-05-01T23:59:59.000Z

13

Zevenhoven & Kilpinen CROSS EFFECTS, TOTAL SYSTEM LAY-OUT 13.6.2001 10-1 Figure 10.1 Typical pulverised coal combustion and gas clean-up system: dry scrubber +  

E-Print Network (OSTI)

pulverised coal combustion and gas clean-up system: dry scrubber + baghouse filter for SO2 and particulate For a conventional pulverised coal-fired power plant a set-up is shown in Figure 10.1, with a gas clean-up system scrubber (pH ~ 6) 60 - 70 7 Re-heater 350 - 400 8 SCR DeNOx 300 - 400 9 Active coke bed 100 - 150 Figure 10

Zevenhoven, Ron

14

PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES  

SciTech Connect

This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97 . Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy / Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

None

1999-05-05T23:59:59.000Z

15

PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES  

SciTech Connect

This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97{reg_sign}. Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy/Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

NONE

1999-05-05T23:59:59.000Z

16

PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES  

SciTech Connect

This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97 . Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy / Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

NONE

1998-11-30T23:59:59.000Z

17

Particulate hot gas stream cleanup technical issues  

SciTech Connect

The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

Pontius, D.H.; Snyder, T.R.

1999-09-30T23:59:59.000Z

18

The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification  

E-Print Network (OSTI)

economic comparison of IGCC power plants with cold gas cleanup and hot gas cleanup units using Indian coals.

Luo, Qian

2012-01-01T23:59:59.000Z

19

Renewable Natural Gas Clean-up Challenges and Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Natural Gas Clean-up Renewable Natural Gas Clean-up p Challenges and Applications Renewable Resource Webinar July 13, 2011 Brian Weeks, Gas Technology Institute 281 235 7993, brian.weeks@gastechnology.org Kristine Wiley, Gas Technology Institute 847 768 0910 kristine wiley@gastechnology org 847 768 0910, kristine.wiley@gastechnology.org 2 Today's Talk Today s Talk >Who is GTI Who is GTI >What is Renewable Natural Gas (RNG) Ch ll f R bl N t l G >Challenges for Renewable Natural Gas >How do we clean up RNG? >Recommendations and Summary 2 - - 3 GTI at a Glance... > Not-for-profit research > Not for profit research, with 65+ year history > Facilities 18 Chi ─ 18 acre campus near Chicago ─ 200,000 ft 2 , 28 specialized labs $60 illi > $60 + million i in revenue

20

Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, April 1--June 30, 1992  

SciTech Connect

This quarterly technical progress report summarizes work completed during the Seventh Quarter of the First Budget Period, April 1 through June 30, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion will include the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source; Hot Gas Cleanup Units to mate to all gas streams. Combustion Gas Turbine; Fuel Cell and associated gas treatment; and Externally Fired Gas Turbine/Water Augmented Gas Turbine. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

Not Available

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

SciTech Connect

To utilize landfill gas for power generation using carbonate fuel cells, the LFG must be cleaned up to remove sulfur and chlorine compounds. This not only benefits the operation of the fuel cell, but also benefits the environment by preventing the emission of these contaminants to the atmosphere. Commercial technologies for gas processing are generally economical in relatively large sizes (3 MMSCFD or larger), and may not achieve the low levels of contaminants required. To address the issue of LFG clean-up for fuel cell application, a process was developed utilizing commercially available technology. A pilot-scale test facility utilizing this process was built at a landfill site in Anoka, Minnesota using the EPRI fuel cell test facility used for coal gas testing. The pilot plant was tested for 1000 hours, processing 970,000 SCF (27,500 Nm{sup 3}) of landfill gas. Testing indicated that the process could achieve the following concentrations of contaminants in the clean gas: Less than 80 ppbv hydrogen sulfide; less than 1 ppm (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv if any individual chlorinated hydrocarbon; and 1.5 ppm (average) Sulfur Dioxide. The paper describes the LFG composition for bulk and trace compounds; evaluation of various methods to clean landfill gas; design of a LFG cleanup system; field test of pilot-scale gas cleanup process; fuel cell testing on simulated landfill gas; single cell testing on landfill gas contaminants and post test analysis; and design and economic analyses of a full scale gas cleanup system.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

22

High-Temperature Gas-Stream Cleanup Test Facility  

SciTech Connect

In support of METC`s hot-gas filter development program, the high- temperature, gas-stream cleanup test facility was designed to: investigate conventional and novel approaches to high-temperature filtration; conduct detailed parametric studies that characterize particulate control devices under well-controlled conditions; and screen new materials for other high-temperature applications, such as heat exchanger tubes. This new facility utilizes a natural gas-fueled combustor to produce high-temperature process gas, and a screw feeder to inject ash, or other fine media, into the gas stream. The vessel that surrounds the particulate control devices has an inside diameter of roughly 0.20 meters (8 inches) and is about 3 meters (10 feet) long. Three commercial-size filter elements can be tested simultaneously, and the facility is capable of operating over a wide range of conditions. Operating temperatures can vary from 540 to 870{degrees}C (1,000 to 1,600 {degrees}F), and the operating pressure can vary from 0 to 400 kPa (0 to 60 psig).

Straub, D.; Chiang, Ta-Kuan, Schultz, J.

1996-12-31T23:59:59.000Z

23

ENGINEERING A NEW MATERIAL FOR HOT GAS CLEANUP  

SciTech Connect

The overall purpose of this project was to develop a superior, regenerable, calcium-based sorbent for desulfurizing hot coal gas with the sorbent being in the form of small pellets made with a layered structure such that each pellet consists of a highly reactive lime core enclosed within a porous protective shell of strong but relatively inert material. The sorbent can be very useful for hot gas cleanup in advanced power generation systems where problems have been encountered with presently available materials. An economical method of preparing the desired material was demonstrated with a laboratory-scale revolving drum pelletizer. Core-in-shell pellets were produced by first pelletizing powdered limestone or other calcium-bearing material to make the pellet cores, and then the cores were coated with a mixture of powdered alumina and limestone to make the shells. The core-in-shell pellets were subsequently calcined at 1373 K (1100 C) to sinter the shell material and convert CaCO{sub 3} to CaO. The resulting product was shown to be highly reactive and a very good sorbent for H{sub 2}S at temperatures in the range of 1113 to 1193 K (840 to 920 C) which corresponds well with the outlet temperatures of some coal gasifiers. The product was also shown to be both strong and attrition resistant, and that it can be regenerated by a cyclic oxidation and reduction process. A preliminary evaluation of the material showed that while it was capable of withstanding repeated sulfidation and regeneration, the reactivity of the sorbent tended to decline with usage due to CaO sintering. Also it was found that the compressive strength of the shell material depends on the relative proportions of alumina and limestone as well as their particle size distributions. Therefore, an extensive study of formulation and preparation conditions was conducted to improve the performance of both the core and shell materials. It was subsequently determined that MgO tends to stabilize the high-temperature reactivity of CaO. Therefore, a sorbent prepared from dolomite withstands the effects of repeated sulfidation and regeneration better than one prepared from limestone. It was also determined that both the compressive strength and attrition resistance of core-in-shell pellets depend on shell thickness and that the compressive strength can be improved by reducing both the particle size and amount of limestone in the shell preparation mixture. A semiempirical model was also found which seems to adequately represent the absorption process. This model can be used for analyzing and predicting sorbent performance, and, therefore, it can provide guidance for any additional development which may be required. In conclusion, the overall objective of developing an economical, reusable, and practical material was largely achieved. The material appears suitable for removing CO{sub 2} from fuel combustion products as well as for desulfurizing hot coal gas.

T.D. Wheelock; L.K. Doraiswamy; K.P. Constant

2003-09-01T23:59:59.000Z

24

Alternative formulations of regenerable flue gas cleanup catalysts  

SciTech Connect

The major source of man-made SO{sub 2} in the atmosphere is the burning of coal for electric power generation. Coal-fired utility plants are also large sources of NO{sub x} pollution. Regenerable flue gas desulfurization/NO{sub x} abatement catalysts provide one mechanism of simultaneously removing SO{sub 2} and NO{sub x} species from flue gases released into the atmosphere. The purpose of this project is to examine routes of optimizing the adsorption efficiency, the adsorption capacity, and the ease of regeneration of regenerable flue gas cleanup catalysts. We are investigating two different mechanisms for accomplishing this goal. The first involves the use of different alkali and alkaline earth metals as promoters for the alumina sorbents to increase the surface basicity of the sorbent and thus adjust the number and distribution of adsorption sites. The second involves investigation of non-aqueous impregnation, as opposed to aqueous impregnation, as a method to obtain an evenly dispersed monolayer of the promoter on the surface.

Mitchell, M.B.; White, M.G.

1991-01-01T23:59:59.000Z

25

Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion Project. Quarterly report, April--June 1996  

SciTech Connect

The objective of this project is to evaluate hot gas particle control technologies using coal-derived as streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed Include the integration of the particulate control devices into coal utilization systems, on-line cleaning, techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing, Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: 1 . Carbonizer/Pressurized Circulating, Fluidized Bed Gas Source; 2. Hot Gas Cleanup Units to mate to all gas streams; 3. Combustion Gas Turbine; 4. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during, this reporting period was continuing, the detailed design of the FW portion of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel is complete and the construction of steel for the coal preparation structure is complete.

NONE

1996-12-31T23:59:59.000Z

26

Supercritical Fluid Extraction as a Cleanup Technique for Gas Chromatographic Analysis of Pesticides in Wool Wax  

Science Journals Connector (OSTI)

Supercritical Fluid Extraction as a Cleanup Technique for Gas Chromatographic Analysis of Pesticides in Wool Wax ... Wool wax is the lipid secreted by the sebaceous glands of sheep and is recovered during the scouring of raw wool. ...

F. William Jones

1997-07-16T23:59:59.000Z

27

Advanced separation technology for flue gas cleanup. Topical report  

SciTech Connect

The objective of this work is to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (1) a novel method for regenerating spent SO{sub 2} scrubbing liquor and (2) novel chemistry for reversible absorption of NO{sub x}. In addition, high efficiency hollow fiber contactors (HFC) are proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system will be designed to remove more than 95% of the SO{sub 2} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO{sub x} and selective catalytic reduction of NO{sub x}. The process will generate only marketable by-products. Our approach is to reduce the capital cost by using high-efficiency hollow fiber devices for absorbing and desorbing the SO{sub 2} and NO{sub x}. We will also introduce new process chemistry to minimize traditionally well-known problems with SO{sub 2} and NO{sub x} absorption and desorption. Our novel chemistry for scrubbing NO{sub x} will consist of water-soluble phthalocyanine compounds invented by SRI as well as polymeric forms of Fe{sup ++} complexes similar to traditional NO{sub x} scrubbing media. The final novelty of our approach is the arrangement of the absorbers in cassette (stackable) form so that the NO{sub x} absorber can be on top of the SO{sub x} absorber. This arrangement is possible only because of the high efficiency of the hollow fiber scrubbing devices, as indicated by our preliminary laboratory data. This arrangement makes it possible for the SO{sub 2} and NO{sub x} scrubbing chambers to be separate without incurring the large ducting and gas pressure drop costs necessary if a second conventional absorber vessel were used. Because we have separate scrubbers, we will have separate liquor loops and simplify the chemical complexity of simultaneous SO{sub 2}/NO{sub x} scrubbing.

Bhown, A.S.; Alvarado, D.; Pakala, N.; Ventura, S. [and others

1995-01-01T23:59:59.000Z

28

Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, January 1--March 31, 1992  

SciTech Connect

This quarterly technical progress report summarizes work completed during the Sixth Quarter of the First Budget Period, January 1 through March 31, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. The major emphasis during this reporting period was expanding the test facility to address system integration issues of hot particulate removal in advanced power generation systems. The conceptual design of the facility was extended to include additional modules for the expansion of the test facility, which is referred to as the Power Systems Development Facility (PSOF). A letter agreement was negotiated between Southern Company Services (SCS) and Foster Wheeler (FW) for the conceptual design of the Advanced Pressurized Fluid-Bed Combustion (APFBC)/Topping Combustor/Gas Turbine System to be added to the facility. The expanded conceptual design also included modifications to the existing conceptual design for the Hot Gas Cleanup Test Facility (HGCTF), facility layout and balance of plant design for the PSOF. Southern Research Institute (SRI) began investigating the sampling requirements for the expanded facility and assisted SCS in contacting Particulate Control Device (PCD) vendors for additional information. SCS also contacted the Electric Power Research Institute (EPRI) and two molten carbonate fuel cell vendors for input on the fuel cell module for the PSDF.

Not Available

1992-12-01T23:59:59.000Z

29

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Warm Gas Multicontaminant Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Description Integrated Gasification Combined Cycle (IGCC) technology offers a means to utilize coal -the most abundant fuel in the United States-to produce a host of products, ranging from electricity to value-added chemicals like transportation fuels and hydrogen, in an efficient, environmentally friendly manner. However, the overall cost (capital, operating,

30

Landfill Gas Cleanup for Carbonate Fuel Cell Power Generation: Final Report  

SciTech Connect

Landfill gas represents a significant fuel resource both in the United States and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

31

ENGINEERING A NEW MATERIAL FOR HOT GAS CLEANUP  

SciTech Connect

The overall objective of this project is the engineering development of a reusable calcium-based sorbent for desulfurizing hot coal gas. A two-step pelletization method has been employed to produce relatively strong, ''core-in-shell,'' spherical pellets. Each pellet consists of a highly reactive core surrounded by a strong, inert, porous shell. A suitable core is composed largely of CaO which reacts with H{sub 2}S to form CaS. Pellet cores have been prepared by pelletizing either pulverized limestone or plaster of Paris, and shells have been made of various materials. The most suitable shell material has been formed from a mixture of alumina and limestone particles. The core-in-shell pellets require treatment at high temperature to convert the core material to CaO and to partially sinter the shell material. Pellet cores derived from plaster of Paris have proved superior to those derived from limestone because they react more rapidly with H{sub 2}S and their reactivity does not seem to decline with repeated loading and regeneration. The rate of reaction of H{sub 2}S with CaO derived from either material is directly proportional to H{sub 2}S concentration. The rate of reaction does not appear to be affected significantly by temperature in the range of 1113 K (840 C) to 1193 K (920 C) but decreases markedly at 1233 K (960 C). The rate is not affected by shell thickness within the range tested, which also provides adequate compressive strength.

T.D. Wheelock; L.K. Doraiswamy; K. Constant

2001-06-30T23:59:59.000Z

32

SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report  

SciTech Connect

The SNRB{trademark} Flue Gas Cleanup Demonstration Project was cooperatively funded by the U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B&W, the Electric Power Research Institute (EPRI), Ohio Edison, Norton Chemical Process Products Company and the 3M Company. The SNRB{trademark} technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. Development of the SNRB{trademark} process at B&W began with pilot testing of high-temperature dry sorbent injection for SO{sub 2} removal in the 1960`s. Integration of NO{sub x} reduction was evaluated in the 1970`s. Pilot work in the 1980`s focused on evaluation of various NO{sub x} reduction catalysts, SO{sub 2} sorbents and integration of the catalyst with the baghouse. This early development work led to the issuance of two US process patents to B&W - No. 4,309,386 and No. 4,793,981. An additional patent application for improvements to the process is pending. The OCDO was instrumental in working with B&W to develop the process to the point where a larger scale demonstration of the technology was feasible. This report represents the completion of Milestone M14 as specified in the Work Plan. B&W tested the SNRB{trademark} pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R. E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B&W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB{trademark} process. The SNRB{trademark} facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993.

NONE

1995-09-01T23:59:59.000Z

33

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

SciTech Connect

Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

Steinfield, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

34

Cleanup and Dismantling of Highly Contaminated Ventilation Systems Using Robotic Tools - 13162  

SciTech Connect

The UP1 plant reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. Following operating incidents in the eighties, the ventilation system of the continuous dissolution line facility was shut down and replaced. Two types of remote controlled tool carriers were developed to perform the decontamination and dismantling operations of the highly contaminated ventilation duct network. The first one, a dedicated small robot, was designed from scratch to retrieve a thick powder deposit within a duct. The robot, managed and confined by two dedicated glove boxes, was equipped for intervention inside the ventilation duct and used for carrying various cleanup and inspection tools. The second type, consisting of robotic tools developed on the base of an industrial platform, was used for the clean-up and dismantling of the ventilation duct system. Depending on the type of work to be performed, on the shape constraints of the rooms and any equipment to be dismantled, different kinds of robotic tools were developed and installed on a Brokk 40 carrier. After more than ten years of ventilation duct D and D operations at the UP1 plant, a lot of experience was acquired about remote operations. The three main important lessons learned in terms of remote controlled operation are: characterizing the initial conditions as much as reasonably possible, performing non-radioactive full scale testing and making it as simple and modular as possible. (authors)

Chambon, Frederic [AREVA FEDERAL SERVICES, Columbia MD (United States)] [AREVA FEDERAL SERVICES, Columbia MD (United States); CIZEL, Jean-Pierre [AREVA BE/NV, Marcoule (France)] [AREVA BE/NV, Marcoule (France); Blanchard, Samuel [CEA DEN/DPAD, Marcoule (France)] [CEA DEN/DPAD, Marcoule (France)

2013-07-01T23:59:59.000Z

35

Factors that affect fracture fluid clean-up and pressure buildup test results in tight gas reservoirs  

E-Print Network (OSTI)

FACTORS THAT AFFECT FRACTURE FLUID CLEAN-UP AND PRESSURE BUILDUP TEST RESULTS IN TIGHT GAS RESERVOIRS A Thesis KEVIN TODD MONTGOMERY Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1990 Major Subject: Petroleum Engineering FACTORS THAT AFFECT FRACTURE FLUID CLEAN-UP AND PRESSURE BUILDUP TEST RESULTS IN TIGHT GAS RESERVOIRS A Thesis KEVIN TODD MONTGOMERY Approved as to style and content by: S...

Montgomery, Kevin Todd

1990-01-01T23:59:59.000Z

36

Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant  

DOE Patents (OSTI)

In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

1982-01-01T23:59:59.000Z

37

NETL: Gasification Systems - Gas Cleaning  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleaning Cleaning Chemicals from Coal Complex Chemicals from Coal Complex (Eastman Company) Novel gas cleaning and conditioning are crucial technologies for achieving near-zero emissions, while meeting gasification system performance and cost targets. DOE's Gasification Systems program supports technology development in the area of gas cleaning and conditioning, including advanced sorbents and solvents, particulate filters, and other novel gas-cleaning approaches that remove and convert gas contaminants into benign and marketable by-products. To avoid the cost and efficiency penalties associated with cooling the gas stream to temperatures at which conventional gas clean-up systems operate, novel processes are being developed that operate at mild to high temperatures and incorporate multi-contaminant control to

38

Alternative formulations of regenerable flue gas cleanup catalysts. Progress report, September 1, 1990--August 31, 1991  

SciTech Connect

The major source of man-made SO{sub 2} in the atmosphere is the burning of coal for electric power generation. Coal-fired utility plants are also large sources of NO{sub x} pollution. Regenerable flue gas desulfurization/NO{sub x} abatement catalysts provide one mechanism of simultaneously removing SO{sub 2} and NO{sub x} species from flue gases released into the atmosphere. The purpose of this project is to examine routes of optimizing the adsorption efficiency, the adsorption capacity, and the ease of regeneration of regenerable flue gas cleanup catalysts. We are investigating two different mechanisms for accomplishing this goal. The first involves the use of different alkali and alkaline earth metals as promoters for the alumina sorbents to increase the surface basicity of the sorbent and thus adjust the number and distribution of adsorption sites. The second involves investigation of non-aqueous impregnation, as opposed to aqueous impregnation, as a method to obtain an evenly dispersed monolayer of the promoter on the surface.

Mitchell, M.B.; White, M.G.

1991-12-31T23:59:59.000Z

39

Commercial demonstration of the NOXSO SO{sub 2}/NO{sub x} removal flue gas cleanup system. Quarterly technical progress report No. 13, March 1, 1994--May 31, 1994  

SciTech Connect

The NOXSO process is a dry, post-combustion flue gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from the flue gas of a coal-fired utility boiler. In the process, the SO{sub 2} is converted to a sulfur by-product and the NO{sub x} is converted to nitrogen and oxygen. It is predicted that the process can economically remove 90% of the acid rain precursor gases from the flue gas stream in a retrofit or new facility. The objective of the NOXSO Demonstration Project is to design, construct, and operate a flue gas treatment system utilizing the NOXSO process. The effectiveness of the process will be demonstrated by achieving significant reductions in emissions of sulfur and nitrogen oxides. In addition, sufficient operating data will be obtained to confirm the process economics and provide a basis to guarantee performance on a commercial scale. The project is presently in the project definition and preliminary design phase. Data obtained during pilot plant testing which was completed on July 30, 1993 is being incorporated in the design of the commercial size plant. A suitable host site to demonstrate the NOXSO process on a commercial scale is presently being sought. Preliminary engineering activities involved evaluating various design options for the major process vessels with the principal focus being on the sorbent heater vessel, which is operated at the highest temperature. Additionally, the impact of the NOXSO system on power plant particulate emissions and opacity was estimated. It is predicted that particulate emissions will decrease slightly while opacity will increase slightly. Neither change will be significant enough to have an impact on emissions compliance. Advertised performance of the proposed adsorber separator is being verified by laboratory testing. Process studies activities included POC equipment inspection and materials evaluations.

NONE

1994-12-31T23:59:59.000Z

40

Thermochemical Gasification of Biomass: Fuel Conversion, Hot Gas Cleanup and Gas Turbine Combustion  

Science Journals Connector (OSTI)

Air-blown fluidized bed biomass gasification integrated with a gas- and steam turbine combined cycle (BIGCC) is a potentially attractive way to convert biomass into electricity and heat with a high efficiency.

J. Andries; W. de Jong; P. D. J. Hoppesteyn

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Glow Discharge Enhanced Chemical Reaction: Application in Ammonia Synthesis and Hydrocarbon Gas Cleanup  

E-Print Network (OSTI)

technologies, such as the selective catalytic reduction (SCR) methods have been studied for the cleaning of diesel engine exhaust. The SCR system, in which ammonia is used as a reducing agent, is thought to be one of the most promising methods for emissions... of methane, it can also include ethane, propane, butane and pentane. The composition of natural gas can vary widely, but Table 1 below outlines the typical makeup of natural gas before it is refined. 3 Table 1. Typical composition of natural gas...

Ming, Pingjia

2014-06-05T23:59:59.000Z

42

SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report  

SciTech Connect

Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

NONE

1995-09-01T23:59:59.000Z

43

Preliminary evaluation of a concept using microwave energy to improve an adsorption-based, natural gas clean-up process  

SciTech Connect

This report describes the results of a preliminary evaluation performed to: (1) determine if microwave energy could be used to regenerate a zeolite adsorbent and (2) to evaluate the feasibility of using microwave energy to improve the desorption phase of a pressure swing adsorption process applied to upgrading natural gas (methane) contaminated with nitrogen. Microwave regeneration was evaluated by comparing the adsorption characteristics of a zeolite preconditioned by heating under vacuum to the characteristics of the same zeolite after various lengths of exposure to microwave energy. The applicability of microwave regeneration to natural gas cleanup was evaluated by measuring the rise in adsorbent temperature resulting from the microwave exposure. Microwave energy consumed by heating the adsorbent is not productive and must therefore be minimal for a process to be economically viable. Exposure of the methane-saturated chabazite for 2 minutes to microwave energy effectively regenerated the adsorbent, but resulted in a 75{degrees}F (42{degrees}C) rise in adsorbent temperature. This temperature rise indicates that the concept is unacceptable for natural gas processing due to excessive energy consumption.

Grimes, R.W.

1992-12-01T23:59:59.000Z

44

Integrated low emissions cleanup system for coal fueled turbines Phase III bench-scale testing and evaluation  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of coal-fired turbine technologies such as Pressurized Fluidized Bed Combustion (PFBC), coal Gasification Combined Cycles (GCC), and Direct Coal-Fired Turbines (DCFT). A major technical development challenge remaining for coal-fired turbine systems is high-temperature gas cleaning to meet environmental emissions standards, as well as to ensure acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, has evaluated an Integrated Low Emissions Cleanup (ILEC) concept that has been configured to meet this technical challenge. This ceramic hot gas filter (HGF), ILEC concept controls particulate emissions, while simultaneously contributing to the control of sulfur and alkali vapor contaminants in high-temperature, high-pressure, fuel gases or combustion gases. This document reports on the results of Phase III of the ILEC evaluation program, the final phase of the program. In Phase III, a bench-scale ILEC facility has been tested to (1) confirm the feasibility of the ILEC concept, and (2) to resolve some major filter cake behavior issues identified in PFBC, HGF applications.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M. [and others

1995-08-01T23:59:59.000Z

45

Landfill gas cleanup for carbonate fuel cell power generation. CRADA final report  

SciTech Connect

The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. The technical effort was conducted by EPRI, consultant David Thimsen, Kaltec of Minnesota, Energy Research Corporation (ERC) and Interpoll Laboratories. The Electric Power Research Institute (EPRI) made available two test skids originally used to test an ERC 30 kW carbonate fuel cell at the Destec Coal Gasification Plan in Plaquemine, LA. EPRI`s carbonate fuel cell pilot plant was installed at the Anoka County Regional Landfill in Ramsey, Minnesota. Additional gas cleaning equipment was installed to evaluate a potentially inexpensive, multi-stage gas cleaning process to remove sulfur and chlorine in the gas to levels acceptable for long-term, economical carbonate fuel cell operation. The pilot plant cleaned approximately 970,000 scf (27,500 Nm{sup 3}) of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations. Less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorined hydrocarbon; and 1.5 ppm sulfur dioxide. These were the detection limits of the analytical procedures employed. It is probable that the actual concentrations are below these analytical limits.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

46

Hanford Cleanup - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleanup About Us Hanford Overview and History Hanford Cleanup Hanford Site Wide Programs Hanford Cleanup Email Email Page | Print Print Page |Text Increase Font Size Decrease Font...

47

Gas stream clean-up filter and method for forming same  

DOE Patents (OSTI)

A gas cleaning filter is formed in-situ within a vessel containing a fluidizable bed of granular material of a relatively large size fraction. A filter membrane provided by a porous metal or ceramic body or such a body supported a perforated screen on one side thereof is coated in-situ with a layer of the granular material from the fluidized bed by serially passing a bed-fluidizing gas stream through the bed of granular material and the membrane. The layer of granular material provides the filtering medium for the combined membrane-granular layer filter. The filter is not blinded by the granular material and provides for the removal of virtually all of the particulates from a process gas stream. The granular material can be at least partially provided by a material capable of chemically reacting with and removing sulfur compounds from the process gas stream. Low level radioactive waste containing organic material may be incinerated in a fluidized bed in communication with the described filter for removing particulates from the gaseous combustion products.

Mei, Joseph S. (Morgantown, WV); DeVault, James (Fairmont, WV); Halow, John S. (Waynesburg, PA)

1993-01-01T23:59:59.000Z

48

Advanced separation technology for flue gas cleanup. Quarterly technical report No. 8, [January--March 1994  

SciTech Connect

During the first quarter of 1994, we continued work on Tasks 2, 3, 4, 5, and 6. We also began work on Task 7. In Task 2, we incorporated 4.5% O{sub 2} into our simulated flue gas stream during this quarter`s NO{sub x}-absorption experiments. We also ran experiments using Cobalt (II)-phthalocyanine as an absorbing agent We observed higher absorption capacities when using this solution with the simulated flue gas containing O{sub 2}. In Task 3, we synthesized a few EDTA polymer analogs. We also began scaled up synthesis of Co(II)-phthalocyanine for use in Task 5. In Task 4, we performed experiments for measuring distribution coefficients (m{sub i}) Of SO{sub 2} between aqueous and organic phases. This was done using the liquor regenerating apparatus described in Task 6. In Task 5, we began working with Co(II)-phthalocyanine in the 301 fiber hollow fiber contactor. We also calculated mass transfer coefficients (K{sub olm}) for these runs, and we observed that the gas side resistance dominates mass transfer. In Task 6, in the liquor regeneration apparatus, we observed 90% recovery of SO{sub 2} by DMA from water used as the scrubbing solution. We also calculated the distribution of coefficients (m{sub i}). In Task 7, we established and began implementing a methodology for completing this task.

Bhown, A.S.; Alvarado, D.; Pakala, N.; Ventura, S. [SRI International, Menlo Park, CA (United States)] [SRI International, Menlo Park, CA (United States); Sirkar, K.K.; Majumdar, S.; Bhaumick, D. [New Jersey Inst. of Tech., Newark, NJ (United States)] [New Jersey Inst. of Tech., Newark, NJ (United States)

1994-03-01T23:59:59.000Z

49

Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases  

DOE Patents (OSTI)

This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

Ayala, Raul E. (Clifton Park, NY)

1993-01-01T23:59:59.000Z

50

Development of an Integrated Multicontaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

an Integrated an Integrated Multicontaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems Background The U.S. has more coal than any other country, and it can be converted through gasification into electricity, liquid fuels, chemicals, or hydrogen. However, for coal gasification to become sufficiently competitive to benefit the U.S. economy and help reduce our dependence on foreign fuels, gasification costs must be reduced

51

NETL: Gasification Systems - Warm Gas Multi-Contaminant Removal System  

NLE Websites -- All DOE Office Websites (Extended Search)

Warm Gas Multi-Contaminant Removal System Warm Gas Multi-Contaminant Removal System Project Number: DE-SC00008243 TDA Research, Inc. is developing a high-capacity, low-cost sorbent that removes anhydrous ammonia (NH3), mercury (Hg), and trace contaminants from coal- and coal/biomass-derived syngas. The clean-up system will be used after the bulk warm gas sulfur removal step, and remove NH3 and Hg in a regenerable manner while irreversibly capturing all other trace metals (e.g., Arsenic, Selenium) reducing their concentrations to sub parts per million (ppm) levels. Current project plans include identifying optimum chemical composition and structure that provide the best sorbent performance for removing trace contaminants, determining the effect of operating parameters, conducting multiple-cycle experiments to test the life of the sorbent for NH3 and Hg removal, and conducting a preliminary design of the sorbent reactor.

52

WIPP Accelerating Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

ACCELERATING CLEANUP: ACCELERATING CLEANUP: PATHS TO CLOSURE CARLSBAD AREA OFFICE JUNE 1998 I. Operations/Field Overview CAO Mission The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of transuranic (TRU) waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to CAO, WIPP site operations, transportation, and other activities associated with the National TRU Program (NTP). The CAO develops and directs implementation of the TRU waste program, and assesses compliance with the program guidance, as well as the commonality of activities and assumptions among all TRU waste sites. NTP Program Management

53

Tank Farm Area Cleanup Decision-Making  

NLE Websites -- All DOE Office Websites (Extended Search)

Area Cleanup Decision-Making Groundwater Vadose Zone Single Shell Tank System Closure (tanks, structures and pipelines) * Washington State Hazardous Waste Management Act (Resource...

54

Hanford Site Cleanup Before Cleanup Began  

NLE Websites -- All DOE Office Websites (Extended Search)

of Cleanup Work Completed (2009) 53 million gallons of waste in 177 underground tanks, 67 of which have leaked in the past * All pumpable liquids removed * Tanks integrity...

55

Results of tritium experiments on ceramic electrolysis cells and palladium diffusers for application to fusion reactor fuel cleanup systems  

SciTech Connect

Tritium tests at the Tritium Systems Test Assembly have demonstrated that ceramic electrolysis cells and palladium alloy diffuser developed in Japan are possible components for a fusion reactor fuel cleanup system. Both components have been successfully operated with tritium for over a year. A failure of the first electrolysis cell was most likely the result of an over voltage on the ceramic. A simple circuit was developed to eliminate this mode of failure. The palladium diffusers tubes exhibited some degradation of mechanical properties as a result of the build up of helium from the tritium decay, after 450 days of operation with tritium, however the effects were not significant enough to affect the performance. New models of the diffuser and electrolysis cell, providing higher flow rates and more tritium compatible designs are currently being tested with tritium. 8 refs., 5 figs.

Carlson, R.V.; Binning, K.E.; Konishi, S.; Yoshida, H.; Naruse, Y.

1987-01-01T23:59:59.000Z

56

Accelerating cleanup: Paths to closure  

SciTech Connect

This report describes the status of Environmental Management`s (EM`s) cleanup program and a direction forward to complete achievement of the 2006 vision. Achieving the 2006 vision results in significant benefits related to accomplishing EM program objectives. As DOE sites accelerate cleanup activities, risks to public health, the environment, and worker safety and health are all reduced. Finding more efficient ways to conduct work can result in making compliance with applicable environmental requirements easier to achieve. Finally, as cleanup activities at sites are completed, the EM program can focus attention and resources on the small number of sites with more complex cleanup challenges. Chapter 1 describes the process by which this report has been developed and what it hopes to accomplish, its relationship to the EM decision-making process, and a general background of the EM mission and program. Chapter 2 describes how the site-by-site projections were constructed, and summarizes, for each of DOE`s 11 Operations/Field Offices, the projected costs and schedules for completing the cleanup mission. Chapter 3 presents summaries of the detailed cleanup projections from three of the 11 Operations/Field Offices: Rocky Flats (Colorado), Richland (Washington), and Savannah River (South Carolina). The remaining eight Operations/Field Office summaries are in Appendix E. Chapter 4 reviews the cost drivers, budgetary constraints, and performance enhancements underlying the detailed analysis of the 353 projects that comprise EM`s accelerated cleanup and closure effort. Chapter 5 describes a management system to support the EM program. Chapter 6 provides responses to the general comments received on the February draft of this document.

NONE

1998-06-01T23:59:59.000Z

57

Advanced coal-fueled gas turbine systems  

SciTech Connect

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

58

Simulation of fracture fluid cleanup and its effect on long-term recovery in tight gas reservoirs  

E-Print Network (OSTI)

technologies, such as large volume fracture treatments, are required before a reasonable profit can be made. Hydraulic fracturing is one of the best methods to stimulate a tight gas well. Most fracture treatments result in 3-6 fold increases in the productivity...

Wang, Yilin

2009-05-15T23:59:59.000Z

59

Gas turbine cooling system  

DOE Patents (OSTI)

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

60

Cleanup Sites | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sites Cleanup Sites The 33,500-acre Oak Ridge Reservation, outlined in red, contains three primary cleanup areas-- the East Tennessee Technology Park, Oak Ridge National...

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Gas hydrate cool storage system  

DOE Patents (OSTI)

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

62

Precision Gas System (PGS) Handbook  

SciTech Connect

This precision gas system (PGS) makes high-accuracy, high-precision measurements of CO2 mixing ratio (ppmv dry air) in air sampled at 2, 4, 25, and 60 m above the ground.

Torn, M

2004-12-01T23:59:59.000Z

63

Cleanup Progress Reports | Department of Energy  

Energy Savers (EERE)

Reports Documents Available for Download January 1, 2014 Cleanup Progress Report - 2013 Oak Ridge's cleanup accomplishments in 2013. January 1, 2013 Cleanup Progress Report - 2012...

64

2014 Congressional Nuclear Cleanup Caucus Briefings | Department...  

Office of Environmental Management (EM)

4 Congressional Nuclear Cleanup Caucus Briefings 2014 Congressional Nuclear Cleanup Caucus Briefings The Congressional Nuclear Cleanup Caucus serves as a way to brief members of...

65

2013 Congressional Nuclear Cleanup Caucus Briefings | Department...  

Office of Environmental Management (EM)

3 Congressional Nuclear Cleanup Caucus Briefings 2013 Congressional Nuclear Cleanup Caucus Briefings The Congressional Nuclear Cleanup Caucus serves as a way to brief members of...

66

NETL: Gasification Systems - Gas Separation  

NLE Websites -- All DOE Office Websites (Extended Search)

Separation Separation Ion-Transport Membrane Oxygen Separation Modules Ion-Transport Membrane Oxygen Separation Modules Gas separation unit operations represent major cost elements in gasification plants. The gas separation technology being supported in the DOE program promises significant reduction in cost of electricity, improved thermal efficiency, and superior environmental performance. Gasification-based energy conversion systems rely on two gas separation processes: (1) separation of oxygen from air for feed to oxygen-blown gasifiers; and (2) post-gasification separation of hydrogen from carbon dioxide following (or along with) the shifting of gas composition when carbon dioxide capture is required or hydrogen is the desired product. Research efforts include development of advanced gas separation

67

Backscatter absorption gas imaging system  

DOE Patents (OSTI)

A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

McRae, Jr., Thomas G. (Livermore, CA)

1985-01-01T23:59:59.000Z

68

Interaction of Fracture Fluid With Formation Rock and Proppant on Fracture Fluid Clean-up and Long-term Gas Recovery in Marcellus Shale Reservoirs.  

E-Print Network (OSTI)

??The exploitation of unconventional gas reservoirs has become an integral part of the North American gas supply. The economic viability of many unconventional gas developments (more)

Yue, Wenting

2012-01-01T23:59:59.000Z

69

Fuel cell gas management system  

DOE Patents (OSTI)

A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

DuBose, Ronald Arthur (Marietta, GA)

2000-01-11T23:59:59.000Z

70

Cleanup Sites | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup Sites Cleanup Sites Cleanup Sites Center Map As the largest environmental cleanup program in the world, EM has been charged with the responsibility of cleaning up 107 sites across the country whose area is equal to the combined area of Rhode Island and Delaware. EM has made substantial progress in nearly every area of nuclear waste cleanup and as of September 2012, completed cleanup at 90 of these sites. The "active" sites continue to have ongoing cleanup projects under EM's purview. Use the interactive map above to see states that still have cleanup activities associated with them. The tooltip in the upper-right corner shows site data for each state, and each marker gives site information as well as links to the site fact sheets here on the EM website and each site's full website.

71

Site Cleanup | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

K-25 cleanup at the East Tenneseee Technology Park. Unlike many EM cleanup sites, Oak Ridge has numerous ongoing missions aside from EM. The success and rate of progress...

72

Biogas Impurities and Cleanup for Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Impurities and Cleanup for Fuel Cells Impurities and Cleanup for Fuel Cells Dennis Papadias and Shabbir Ahmed Argonne National Laboratory Presented at the Biogas and Fuel Cells Workshop Golden, CO June 11-13, 2012 Biogas is the product of anaerobic decomposition of organic waste Municipal solid wastes (MSW)  For every 1 million tons of MSW: - 432,000 cubic feet per day of landfill gas (LFG) for a period of 20 years - 1 MW of electricity 1 Sewage sludge/waste water (WWTP or ADG)  A typical WWTP processes 100 gallons per day (GD) for every person served - 1 cubic foot of digester gas can be produced per 100 gallons of wastewater  100 kW of electricity 1 can be generated from 4.5 MGD of waste water Agricultural waste (i.e. dairy waste)  About 70-100 ft 3 /day of digester gas is produced

73

Debate over waste imperils 3-Mile cleanup  

SciTech Connect

The cleanup is a task of extraordinary proportions. Every step in the cleanup must be taken in a highly sensitive political and regulatory environment. A demineralizer or ion exchange filtration unit was installed in order that the fission products could be removed from the water spilled in the auxiliary and fuel handling buildings. GPU later vented krypton gas. Twice now engineers have made cautions entries into the containment building as part of the effort to size up the job. Cleanup will be costly, requiring many workers. Some wastes will require special packaging in hundreds of containers with shielded overpacks, plus bulky items of hardware and equipment that cannot be easily packaged. There will be the damaged fuel assemblies from the reactor core. Removing the fuel from the reactor may be difficult. A troublesome waste disposal question has to do with the material to be generated in cleaning up the containment building's sump water. GPU's man in charge of clean-up strategy is to collect the wastes in a form that permits maximum flexibility with respect to their stage, packaging, transport, and ultimate disposal. If plans for disposal of all the wastes from the cleanup are to be completed, an early commitment by Pennsylvania and other northeastern states to establish a burial ground for low level waste generated within the region is needed. Also a speedy commitment by NRC, DOE, and Congress to a plan for disposal of the first-stage zeolites is needed. Should there be a failure to cope with the wastes that Three Mile Island cleanup generates, the whole nuclear enterprise may suffer.

Carter, L.J.

1980-10-10T23:59:59.000Z

74

Greenhouse gas emissions in biogas production systems  

E-Print Network (OSTI)

Augustin J et al. Automated gas chromatographic system forof the atmospheric trace gases methane, carbon dioxide, andfuel consumption and of greenhouse gas (GHG) emissions from

Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

2009-01-01T23:59:59.000Z

75

Cleanup at Rocky Flats  

NLE Websites -- All DOE Office Websites (Extended Search)

David L. Clark, Los Alamos National Laboratory David L. Clark, Los Alamos National Laboratory The Rocky Flats Environmental Technology Site (RFETS) is an environmental cleanup site located about 16 miles northwest of downtown Denver (Fig 1). Two decades of routine monitoring have shown that the environment around RFETS is contaminated with actinide elements (U, Pu, Am) from site operations, [1] and RFETS has been designated by the U.S. Environmental Protection Agency (EPA) as a Superfund cleanup site. Until December 1989, the Rocky Flats Plant made components for nuclear weapons using various radioactive and hazardous materials, including plutonium, uranium and beryllium. Nearly 40 years of nuclear weapons production left behind a legacy of contaminated facilities, soils, and ground water. More than 2.5 million people live within a 50 mile radius of the site; 300,000 of those live in the Rocky Flats watershed.

76

Environmental Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Cleanup Environmental Cleanup Environmental Cleanup Learn more about the history, cleanup activities and possible future uses of the Hanford Site, a 586-square-mile government site in southeast Washington State. | Video courtesy of the Energy Department. The Energy Department is committed to a safe, complete cleanup of the environmental legacy of five decades of government-sponsored nuclear weapons development and nuclear energy research. As part of this mission, we safely and cost-effectively transport and dispose of low-level wastes; decommission and decontaminate old facilities; remediate contaminated soil and groundwater; and secure and store nuclear material in stable, secure locations to protect national security. Featured An Update on the Hanford Site and Cleanup Progress

77

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY, OH, VA, WV 1,849 9,350 10,365 Transcontinental Gas Pipeline Co. Northeast, Southeast Southwest AL, GA, LA, MD, MS, NC, NY, SC, TX, VA, GM 2,670 8,466 10,450 Northern Natural Gas Co. Central, Midwest Southwest IA, IL, KS, NE, NM, OK, SD, TX, WI, GM 1,055 7,442 15,874 Texas Eastern Transmission Corp.

78

Gas fired Advanced Turbine System  

SciTech Connect

The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

LeCren, R.T.; White, D.J.

1993-01-01T23:59:59.000Z

79

EIA - Natural Gas Pipeline System - Northeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Northeast Region Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These interstate pipelines deliver natural gas to several intrastate natural gas pipelines and at least 50 local distribution companies in the region. In addition, they also serve large industrial concerns and, increasingly, natural gas fired electric power generation facilities.

80

Idaho Site Advances Recovery Act Cleanup after Inventing Effective  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Advances Recovery Act Cleanup after Inventing Effective Site Advances Recovery Act Cleanup after Inventing Effective Treatment Idaho Site Advances Recovery Act Cleanup after Inventing Effective Treatment For the first time in history, workers at the Idaho site achieved success in the initial cleanup of potentially dangerous sodium in a decommissioned nuclear reactor using an innovative treatment process. The American Recovery and Reinvestment Act invested $70 million in the project, which employs 130 workers. DOE officials cheered the outcome and praised the team that designed and implemented the innovative sodium treatment for which the DOE has filed a provisional patent application. Idaho Site Advances Recovery Act Cleanup after Inventing Effective Treatment More Documents & Publications Experimental Breeder Reactor-II Primary Tank System Wash Water Workshop

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Mercury sorbent delivery system for flue gas  

DOE Patents (OSTI)

The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

Klunder; ,Edgar B. (Bethel Park, PA)

2009-02-24T23:59:59.000Z

82

Cleanup Contractor Achieves 'Elite' Nuclear Material Accountability...  

Energy Savers (EERE)

Cleanup Contractor Achieves 'Elite' Nuclear Material Accountability Status Cleanup Contractor Achieves 'Elite' Nuclear Material Accountability Status September 30, 2014 - 12:00pm...

83

Independent Oversight Inspection, Idaho Cleanup Project - August...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Inspection, Idaho Cleanup Project - August 2007 August 2007 Inspection of Environment, Safety, and Health Programs at the Idaho Cleanup Project This report provides the...

84

NETL: Gasification - Recovery Act: High Temperature Syngas Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Processing Systems Syngas Processing Systems Recovery Act: High Temperature Syngas Cleanup Technology Scale-Up and Demonstration Project Research Triangle Institute Project Number: FE0000489 Project Description Research Triangle Institute (RTI) is designing, building, and testing the Warm Temperature Desulfurization Process (WDP) at pre-commercial scale (50 megawatt electric equivalent [MWe]) to remove more than 99.9 percent of the sulfur from coal-derived synthesis gas (syngas). RTI is integrating this WDP technology with an activated methyl diethanolamine (aMDEA) solvent technology to separate 90% of the carbon dioxide (CO2) from shifted syngas. The Polk Power Station, an integrated gasification combined cycle (IGCC) power plant, will supply approximately 20% of its coal-derived syngas as a slipstream to feed into the pre-commercial scale technologies being scaled-up.

85

Flammable Gas Detection for the D-Zero Gas System  

SciTech Connect

The use of flammable gas and high voltage in detector systems is common in many experiments at Fermilab. To mitigate the hazards associated with these systems, Fermilab Engineering Standard SD-45B (Ref. 1) was adopted. Since this note is meant to be a guide and not a mandatory standard, each experiment is reviewed for compliance with SD-45B by the flammable gas safety subcommittee. Currently, there are only two types of flammable gas in use, ethane (Appendix A) and methane (Appendix B). The worst flammable-gas case is C2H6 (ethane), which has an estimated flow rate that is 73% of the CH4 (methane) flow but a heat of combustion (in kcal/g-mole) that is 173% of that of methane. In the worst case, if ethane were to spew through its restricting orifice into its gas line at 0 psig and then through a catastrophic leak into Room 215 (TRD) or Room 511 (CDC/FDCNTX), the time that would be required to build up a greater than Class 1 inventory (0.4kg H2 equivalent) would be 5.2 hours (Ref. 2). Therefore a worst-case flammable gas leak would have to go undetected for over 5 hours in order to transform a either mixing room to an environment with a Risk Class greater than Class 1. The mixing systems, gas lines, and detectors themselves will be thoroughly leak checked prior to active service. All vessels that are part of the mixing systems will be protected from overpressure by safety valves vented outside the building. Both the input and output of all detector volumes are protected from overpressure in the same way. The volume immediately outside the central tracking detectors is continuously purged by nitrogen from boiloff from the main nitrogen dewar at the site. However, if flammable gas were to build up in the mixing rooms or particular detector areas, no matter how unlikely, flammable gas detectors that are part of the interlock chain of each gas mixing system will shut down the appropriate system. This includes shutting off the output of flammable gas manifolds within the gas shed. Similarly, if a fire were to break out anywhere in the D-ZERO Hall, fire sensors would stop the output of all flammable gas manifolds within the gas shed, by unpowering electrically controlled solenoid valves that are normally closed in the event of a power failure. Fire sensor contacts have not yet been installed.

Spires, L.D.; Foglesong, J.; /Fermilab

1991-02-11T23:59:59.000Z

86

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-01-01T23:59:59.000Z

87

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-12-01T23:59:59.000Z

88

EIA - Natural Gas Pipeline System - Western Region  

U.S. Energy Information Administration (EIA) Indexed Site

Western Region Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving any region (see Table below). Slightly more than half the capacity entering the region is on natural gas pipeline systems that carry natural gas from the Rocky Mountain area and the Permian and San Juan basins. These latter systems enter the region at the New Mexico-Arizona and Nevada-Utah State lines. The rest of the capacity arrives on natural gas pipelines that access Canadian natural gas at the Idaho and Washington State border crossings with British Columbia, Canada.

89

Upper Los Alamos Canyon Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Upper Los Alamos Canyon Cleanup Upper Los Alamos Canyon Cleanup Upper Los Alamos Canyon Cleanup The Upper Los Alamos Canyon Project involves cleaning up hazardous materials left over from some of the Laboratory's earliest activities. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Located along Los Alamos Canyon from 7th Street to the Pajarito Ski Hill, the Upper Los Alamos Canyon Project involves examining sites in present and former Laboratory technical areas to see if any further environmental cleanup actions are needed. If not, the Laboratory can apply to have these sites removed permanently from LANL's Hazardous Waste Permit, meaning that no further actions are needed at those sites. Among the 115 sites included in the Upper LA Canyon Project, 54 have been

90

Environmental Management (EM) Cleanup Projects  

Directives, Delegations, and Requirements

The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and provides guidance on environmental management cleanup projects. Canceled by DOE N 251.105.

2008-09-24T23:59:59.000Z

91

East Tennessee Technology Park Cleanup  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet provides an update on all of the current cleanup projects at the site, and it also lists the major projects that were completed at the East Tennessee Technology Park.

92

Technology Development Advances EM Cleanup  

Energy.gov (U.S. Department of Energy (DOE))

The unique nature of many of EM's remaining facilities will require a strong and responsive engineering and technology program to improve work and public safety, and reduce costs and environmental impacts while completing the cleanup program.

93

Natural gas cleanup: Evaluation of a molecular sieve carbon as a pressure swing adsorbent for the separation of methane/nitrogen mixtures  

SciTech Connect

This report describes the results of a preliminary evaluation to determine the technical feasibility of using a molecular sieve carbon manufactured by the Takeda Chemical Company of Japan in a pressure owing adsorption cycle for upgrading natural gas (methane) contaminated with nitrogen. Adsorption tests were conducted using this adsorbent in two, four, and five-step adsorption cycles. Separation performance was evaluated in terms of product purity, product recovery, and sorbent productivity for all tests. The tests were conducted in a small, single-column adsorption apparatus that held 120 grams of the adsorbent. Test variables included adsorption pressure, pressurization rate, purge rate and volume, feed rate, and flow direction in the steps from which the product was collected. Sorbent regeneration was accomplished by purging the column with the feed gas mixture for all but one test series where a pure methane purge was used. The ratio between the volumes of the pressurization gas and the purge gas streams was found to be an important factor in determining separation performance. Flow rates in the various cycle steps had no significant effect. Countercurrent flow in the blow-down and purge steps improved separation performance. Separation performance appears to improve with increasing adsorption pressure, but because there are a number of interrelated variables that are also effected by pressure, further testing will be needed to verify this. The work demonstrates that a molecular sieve carbon can be used to separate a mixture of methane and nitrogen when used in a pressure swing cycle with regeneration by purge. Further work is needed to increase product purity and product recovery.

Grimes, R.W.

1994-06-01T23:59:59.000Z

94

5 - Combustors in gas turbine systems  

Science Journals Connector (OSTI)

Abstract: This chapter discusses combustion systems in gas turbines. It begins by reviewing basic design principles before discussing developments in technology such as advanced fuel staging and reheat combustion systems. The chapter also covers the impact of different natural gas types on combustor operations, including combustor design for low calorific gases and fuel oils.

P. Flohr; P. Stuttaford

2013-01-01T23:59:59.000Z

95

WIMAX TECHNOLOGY AT HANFORD: UPDATING INFRASTRUCTURE, ACCELERATING CLEANUP  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WIMAX TECHNOLOGY AT HANFORD: UPDATING INFRASTRUCTURE, ACCELERATING WIMAX TECHNOLOGY AT HANFORD: UPDATING INFRASTRUCTURE, ACCELERATING CLEANUP WIMAX TECHNOLOGY AT HANFORD: UPDATING INFRASTRUCTURE, ACCELERATING CLEANUP December 1, 2009 - 12:00pm Addthis Richland, WA - In direct support of Hanford cleanup and the American Reinvestment and Recovery Act (ARRA) accelerated cleanup initiatives, the U.S. Department of Energy (DOE) Richland Operations Office (RL) is teaming with the Site services contractor, Mission Support Alliance, LLC (MSA), CH2M HILL Plateau Remediation Company and Washington River Protection Services Company to implement a WiMAX-based communications infrastructure at Hanford to augment the existing fiber optic and Wi-Fi-based systems. Wi-Fi and WiMAX are both considered last mile technologies that carry signals from telecommunications backbones (in this case hubs or access

96

WIMAX TECHNOLOGY AT HANFORD: UPDATING INFRASTRUCTURE, ACCELERATING CLEANUP  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WIMAX TECHNOLOGY AT HANFORD: UPDATING INFRASTRUCTURE, ACCELERATING WIMAX TECHNOLOGY AT HANFORD: UPDATING INFRASTRUCTURE, ACCELERATING CLEANUP WIMAX TECHNOLOGY AT HANFORD: UPDATING INFRASTRUCTURE, ACCELERATING CLEANUP December 1, 2009 - 12:00pm Addthis Richland, WA - In direct support of Hanford cleanup and the American Reinvestment and Recovery Act (ARRA) accelerated cleanup initiatives, the U.S. Department of Energy (DOE) Richland Operations Office (RL) is teaming with the Site services contractor, Mission Support Alliance, LLC (MSA), CH2M HILL Plateau Remediation Company and Washington River Protection Services Company to implement a WiMAX-based communications infrastructure at Hanford to augment the existing fiber optic and Wi-Fi-based systems. Wi-Fi and WiMAX are both considered last mile technologies that carry signals from telecommunications backbones (in this case hubs or access

97

DOE-Sponsored Syngas Cleanup Demonstration Project Reaches Development Milestone  

Energy.gov (U.S. Department of Energy (DOE))

In a project sponsored by the U.S. Department of Energy (DOE), a demonstration-scale application of RTI Internationals warm synthesis gas (syngas) cleanup process technology has achieved a key operational milestone at Tampa Electric Companys coal gasification plant in Polk County, Fla.

98

Groundwater Cleanup Progresses at Paducah Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup Progresses at Paducah Site Cleanup Progresses at Paducah Site Groundwater Cleanup Progresses at Paducah Site October 30, 2013 - 12:00pm Addthis Workers drill holes for installation of electrodes as part of a heating system to help clean up contamination. Workers drill holes for installation of electrodes as part of a heating system to help clean up contamination. A crane lifts the carbon treatment system into place. This technology treats vapor pumped to the surface by the belowground heating system. A crane lifts the carbon treatment system into place. This technology treats vapor pumped to the surface by the belowground heating system. The belowground heating system operates in front of the C-400 Cleaning Building. The belowground heating system operates in front of the C-400 Cleaning

99

EIA - Natural Gas Pipeline System - Central Region  

U.S. Energy Information Administration (EIA) Indexed Site

Central Region Central Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Central Region Overview | Domestic Gas | Exports | Regional Pipeline Companies & Links Overview Twenty-two interstate and at least thirteen intrastate natural gas pipeline companies (see Table below) operate in the Central Region (Colorado, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming). Twelve interstate natural gas pipeline systems enter the region from the south and east while four enter from the north carrying Canadian supplies. The average utilization rates on those shipping Canadian natural gas tend to be higher than those carrying domestic supplies.

100

Innovative technologies for soil cleanup  

SciTech Connect

These notes provide a broad overview of current developments in innovative technologies for soil cleanup. In this context, soil cleanup technologies include site remediation methods that deal primarily with the vadose zone and with relatively shallow, near-surface contamination of soil or rock materials. This discussion attempts to emphasize approaches that may be able to achieve significant improvements in soil cleanup cost or effectiveness. However, since data for quantitative performance and cost comparisons of new cleanup methods are scarce, preliminary comparisons must be based on the scientific approach used by each method and on the sits-specific technical challenges presented by each sold contamination situation. A large number of technical alternatives that are now in research, development, and testing can be categorized by the scientific phenomena that they employ and by the site contamination situations that they treat. After cataloging a representative selection of these technologies, one of the new technologies, Dynamic Underground Stripping, is discussed in more detail to highlight a promising soil cleanup technology that is now being field tested.

Yow, J.L. Jr.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Natural Gas Annual Respondent Query System  

Gasoline and Diesel Fuel Update (EIA)

loading new table loading new table Home > Natural Gas > Natural Gas Annual Respondent Query System Natural Gas Annual Respondent Query System (EIA-176 Data through 2012) Report: 176 Natural Gas Deliveries 176 Natural Gas Supply Items 176 Natural Gas Other Disposition Items 176 Type of Operations and Sector Items 176 Continuation Text Lines 176 Company List 191 Field Level Storage Data 757 Processing Capacity 176 Custom Report (User-defined) Years: 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 to 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Sort by: Area, Company, Item Company, Area, Item Item, Area, Company Company: Show only Company ID Show only Company Name Show both Company ID, Name 2012 Total

102

Argonne National Lab Cleanup schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Takes Steps to Complete Clean-Up of Argonne by 2003; Takes Steps to Complete Clean-Up of Argonne by 2003; Schedule for Shipping Waste to WIPP is 'Good News' for Illinois CARLSBAD, N.M., May 15, 2000 - The U.S. Department of Energy (DOE) reinforced plans to complete the clean-up of its Argonne National Laboratory-East site in Illinois by 2003 by accelerating its schedule for shipping transuranic waste to DOE's permanent disposal site in New Mexico. Previously, the shipments were not expected to begin before 2003. Under the accelerated schedule, shipments to DOE's Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, are expected to begin in Spring 2001 and be completed by the end of the calendar year. Characterization of the waste currently stored at Argonne will begin this October. This agreement is a major step in honoring Argonne and DOE's commitment to the community to

103

Environmental Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 19, 2010 August 19, 2010 Recovery Act Progress at Idaho National Lab North Wind Services will be constructing several new structures at the INL Radioactive Waste Management Complex -- facilities that will provide important protection from the elements and minimize the spread of contamination during buried waste excavation, retrieval and packaging operations. August 18, 2010 New Contract Helps Portsmouth GDP Cleanup To accelerate the Portsmouth GDP cleanup efforts left over from the Cold War, the Department of Energy made a huge step forward in our nuclear environmental cleanup efforts. August 13, 2010 Geek-Up: K East Reactor Demolition, Retrograde Melting and Cloud Pattern Tracking Recovery Act funds help clean up the Hanford site, retrograde melting (melting as something cools) and how open-cell clouds could help predict

104

Radiological cleanup of Enewetak Atoll  

SciTech Connect

For 8 years, from 1972 until 1980, the United States planned and carried out the radiological cleanup, rehabilitation, and resettlement of Enewetak Atoll in the Marshall Islands. This documentary records, from the perspective of DOD, the background, decisions, actions, and results of this major national and international effort. The documentary is designed: First, to provide a historical document which records with accuracy this major event in the history of Enewetak Atoll, the Marshall Islands, the Trust Territory of the Pacific Islands, Micronesia, the Pacific Basin, and the United States. Second, to provide a definitive record of the radiological contamination of the Atoll. Third, to provide a detailed record of the radiological exposure of the cleanup forces themselves. Fourth, to provide a useful guide for subsequent radiological cleanup efforts elsewhere.

Not Available

1981-01-01T23:59:59.000Z

105

Environmental Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Cleanup Environmental Cleanup Environmental Cleanup August 23, 2013 EM Office of External Affairs Acting Communications Director Dave Borak talks with EM intern Valerie Edwards. | Photo courtesy of the Energy Department. Internships Help Future Energy Leaders Gain Hands-On Experience What's it like interning at the Energy Department? We interviewed one intern to find out. August 6, 2013 Oak Ridge National Laboratory The U.S. Department of Energy's (DOE) Oak Ridge National Laboratory (ORNL) is the nation's largest multi-program science and technology laboratory. ORNL's mission is to deliver scientific discoveries and technical breakthroughs that will accelerate the development and deployment of solutions in clean energy and global security. August 6, 2013 Y-12 National Security Complex

106

High Temperature Syngas Cleanup Technology Scale-up  

NLE Websites -- All DOE Office Websites (Extended Search)

RECOVERY ACT: Scale-Up of RECOVERY ACT: Scale-Up of High-Temperature Syngas Cleanup Technology Background Coal gasification generates a synthesis gas (syngas)-predominantly a mixture of carbon monoxide (CO) and hydrogen (H 2 )-that can be used for chemical production of hydrogen, methanol, substitute natural gas (SNG), and many other industrial chemicals, or for electric power generation. Conventional integrated gasification combined cycle (IGCC) power plants use this syngas as a fuel for a combustion

107

EIA - Natural Gas Pipeline System - Southwest Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southwest Region Southwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southwest Region Overview | Export Transportation | Intrastate | Connection to Gulf of Mexico | Regional Pipeline Companies & Links Overview Most of the major onshore interstate natural gas pipeline companies (see Table below) operating in the Southwest Region (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas) are primarily exporters of the region's natural gas production to other parts of the country and Mexico, while an extensive Gulf of Mexico and intrastate natural gas pipeline network is the main conduit for deliveries within the region. More than 56,000 miles of natural gas pipeline on more than 66 intrastate natural gas pipeline systems (including offshore-to-onshore and offshore Gulf of Mexico pipelines) deliver natural gas to the region's local natural gas distribution companies and municipalities and to the many large industrial and electric power facilities located in the region.

108

Hot gas filter and system assembly  

DOE Patents (OSTI)

A filter element for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system.

Lippert, Thomas Edwin (Murrysville, PA); Palmer, Kathryn Miles (Monroeville, PA); Bruck, Gerald Joseph (Murrysville, PA); Alvin, Mary Anne (Pittsburgh, PA); Smeltzer, Eugene E. (Export, PA); Bachovchin, Dennis Michael (Murrysville, PA)

1999-01-01T23:59:59.000Z

109

Superfund Cleanups and Infant Health  

E-Print Network (OSTI)

We are the first to examine the effect of Superfund cleanups on infant health rather than focusing on proximity to a site. We study singleton births to mothers residing within 5km of a Superfund site between 1989-2003 in ...

Currie, Janet

110

INTEGRATED CRYOGENIC SYSTEM FOR CO 2 SEPARATION AND LNG PRODUCTION FROM LANDFILL GAS  

Science Journals Connector (OSTI)

An integrated cryogenic system to separate carbon dioxide ( CO 2 ) and produce LNG from landfill gas is investigated and designed. The main objective of this design is to eliminate the requirement of a standard CO 2 removal process in the liquefaction system such distillation or (temperature or pressure) swing adsorption and to directly separate carbon dioxide as frost at the liquefying channel of methane. Two identical sets of heat exchangers are installed in parallel and switched alternatively with a time period so that one is in separation?liquefaction mode while the other is in CO 2 clean?up mode. A thermal regeneration scheme is presented for the purpose of saving energy and avoiding the stoppage of LNG production followed by the flow switching. The switching period is determined from results of a combined heat and mass transfer analysis on the CO 2 freeze?out process.

H. M. Chang; M. J. Chung; S. B. Park

2010-01-01T23:59:59.000Z

111

Cleanup of Nuclear Licensed Facility 57  

SciTech Connect

This summary describes the operations to clean up the equipment of the Nuclear Licensed Facility 57 (NLF 57). Due to the diversity of the research and development work carried out on the reprocessing of spent fuel in it, this installation is emblematic of many of the technical and organizational issues liable to be encountered in the final closure of nuclear facilities. The French atomic energy commission's center at Fontenay aux Roses (CEA-FAR) was created in 1946 to house pile ZOE. Laboratories for fuel cycle research were installed in existing buildings at the site. Work was later concentrated on spent fuel reprocessing, in a pilot workshop referred to as the 'Usine Pu'. In the early sixties, after the dismantling of these first generation facilities, a radiochemistry laboratory dedicated to research and development work on reprocessing was constructed, designated Building 18. During the same decade, more buildings were added: Building 54, storehouses and offices, Building 91, a hall and laboratories for chemical engineering research on natural and depleted uranium. Together, these three building constitute NLF 57. Building 18 architecture featured four similar modules. Each module had three levels: a sub-level consisting of technical galleries and rooms for the liquid effluent tanks, a ground floor and roof space in which the ventilation was installed. Offices, change rooms, four laboratories and a hall were situated on the ground floor. The shielded lines were installed in the laboratories and the halls. Construction of the building took place between 1959 and 1962, and its commissioning began in 1961. The research and development programs performed in NLF 57 related to studies of the reprocessing of spent fuel, including dry methods and the Purex process, techniques for the treatment of waste (vitrification, alpha waste decontamination, etc.) as well as studies and production of transuranic elements for industry and research. In addition to this work, the necessary methods of analysis for monitoring it were also developed. The research and development program finally ended on 30 June 1995. The NLF 57 cleanup program was intended to reduce the nuclear and conventional hazards and minimize the quantities of HLW and MLW during the subsequent dismantling work. To facilitate the organization of the cleanup work, it was divided into categories by type: - treatment and removal of nuclear material, - removal of radioactive sources, - treatment and removal of aqueous liquid waste, - treatment and removal of organic effluents, - treatment and removal of solid waste, - pumping out of the PETRUS tank, - flushing and decontamination of the tanks, - cleanup of Buildings 18 and 91/54. To estimate the cost of the operations and to monitor the progress of the work, an indicator system was put in place based on work units representative of the operation. The values of the work units were periodically updated on the basis of experience feedback. The cleanup progress is now 92% complete (06/12/31): - treatment and removal of nuclear material: 100%, - removal of radioactive sources: 100%, - treatment and removal of aqueous liquid waste: 64%, - treatment and removal of organic effluents: 87%, - treatment and removal of solid waste: 99%, - pumping out of the PETRUS tank: 69%, - flushing and decontamination of tank: 75%, - section cleaning of Buildings 18 and 91/: 90%. The DRSN/SAFAR is the delegated Project Owner for cleanup and dismantling operations. It is also the prime contractor for the cleanup and dismantling operations. SAFAR itself is responsible for operations relating to the CEA activity and those with technical risks (Removal of nuclear materials, Removal of radioactive sources, Pumping out plutonium and transuranic contaminated solvent and Flushing and decontamination of tanks and pipes). All other operations are sub-contracted to specialist companies. The NLF57 cleanup program as executed is capable of attaining activity levels compatible with a future dismantling operation using known and mastered techniques and producing a

Jeanjacques, Michel; Bremond, Marie Pierre; Marchand, Carole; Poyau, Cecile; Viallefont, Cecile; Gautier, Laurent; Masure, Frederic [Commissariat a l'Energie Atomique, Direction de l'Energie Nucleaire, Direction deleguee des Activites Nucleaires de Saclay, Departement des Reacteurs et des Services Nucleaires, Service d'Assainissement de Fontenay Aux Roses: 18, route du Panorama, BP6, 92265 Fontenay aux Roses Cedex (France)

2008-01-15T23:59:59.000Z

112

Reduce Natural Gas Use in Your Industrial Process Heating Systems...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Use in Your Industrial Process Heating Systems Reduce Natural Gas Use in Your Industrial Process Heating Systems This fact sheet describes ten effective ways to save...

113

Hanford Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Groundwater Contamination Areas Shrink as EM Exceeds Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals Hanford Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals June 26, 2013 - 12:00pm Addthis The 200 West Pump and Treat System is Hanford’s largest facility for treating contaminated groundwater. The 200 West Pump and Treat System is Hanford's largest facility for treating contaminated groundwater. A graphic showing the 200 West Pump and Treat plumes and well network. A graphic showing the 200 West Pump and Treat plumes and well network. The 200 West Pump and Treat System is Hanford's largest facility for treating contaminated groundwater. A graphic showing the 200 West Pump and Treat plumes and well network. RICHLAND, Wash. - Workers supporting groundwater cleanup for EM's

114

Comprehensive Environmental Cleanup and Responsibility Act (Montana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comprehensive Environmental Cleanup and Responsibility Act Comprehensive Environmental Cleanup and Responsibility Act (Montana) Comprehensive Environmental Cleanup and Responsibility Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Institutional Fuel Distributor Savings Category Buying & Making Electricity Program Info State Montana Program Type Environmental Regulations Provider Montana Department of Environmental Quality The Comprehensive Environmental Cleanup and Responsibility Act contains general provisions (sections 705-729), along with the Voluntary Cleanup and Redevelopment Act (sections 730-738) and the Controlled Allocation of

115

NEXT GENERATION GAS TURBINE SYSTEMS STUDY  

SciTech Connect

Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

2003-03-01T23:59:59.000Z

116

Environmental Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 11, 2013 February 11, 2013 The Office of Nuclear Energy's mission is to advance nuclear power as a resource that can meet the United State's energy, environmental and national security needs. Office of Nuclear Energy Launches New Website A new website for NE means easier access to information and more up-to-date news for users. Check it out! January 30, 2013 Legacy Management Sites January 15, 2013 Secretary Chu, Governor Gregoire Issue Statement on Hanford Cleanup U.S. Energy Secretary Steven Chu and Governor Chris Gregoire issued a joint statement on the cleanup efforts underway at Hanford. December 21, 2012 The Rocky Flats Plant was first established in 1951 as a nuclear weapons manufacturing facility. Today, almost 4,000 acres make up the Rocky Flats National Wildlife Refuge. Located just 16 miles northwest of Denver, Colorado, the refuge provides a habitat for migratory birds and mammals. | Photo courtesy of the U.S. Department of Energy.

117

Accelerating cleanup: Paths to closure  

SciTech Connect

This document was previously referred to as the Draft 2006 Plan. As part of the DOE`s national strategy, the Richland Operations Office`s Paths to Closure summarizes an integrated path forward for environmental cleanup at the Hanford Site. The Hanford Site underwent a concerted effort between 1994 and 1996 to accelerate the cleanup of the Site. These efforts are reflected in the current Site Baseline. This document describes the current Site Baseline and suggests strategies for further improvements in scope, schedule and cost. The Environmental Management program decided to change the name of the draft strategy and the document describing it in response to a series of stakeholder concerns, including the practicality of achieving widespread cleanup by 2006. Also, EM was concerned that calling the document a plan could be misconstrued to be a proposal by DOE or a decision-making document. The change in name, however, does not diminish the 2006 vision. To that end, Paths to Closure retains a focus on 2006, which serves as a point in time around which objectives and goals are established.

Edwards, C.

1998-06-30T23:59:59.000Z

118

Richland Operations Office Completes Cleanup in Hanford's 300 Area North  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Richland Operations Office Completes Cleanup in Hanford's 300 Richland Operations Office Completes Cleanup in Hanford's 300 Area North Section Richland Operations Office Completes Cleanup in Hanford's 300 Area North Section March 28, 2013 - 12:00pm Addthis An aerial view of Hanford’s 300 Area North Section following completion of cleanup. An aerial view of Hanford's 300 Area North Section following completion of cleanup. Workers demolish the 384 Building, known as the Power House and Heating Plant, in the north portion of the 300 Area. Workers demolish the 384 Building, known as the Power House and Heating Plant, in the north portion of the 300 Area. More than 8,000 feet of pipe — part of the 300 Area’s process sewer system — was removed from the 300-15 Waste Site in the north section. More than 8,000 feet of pipe - part of the 300 Area's process sewer

119

Richland Operations Office Completes Cleanup in Hanford's 300 Area North  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Richland Operations Office Completes Cleanup in Hanford's 300 Richland Operations Office Completes Cleanup in Hanford's 300 Area North Section Richland Operations Office Completes Cleanup in Hanford's 300 Area North Section March 28, 2013 - 12:00pm Addthis An aerial view of Hanford’s 300 Area North Section following completion of cleanup. An aerial view of Hanford's 300 Area North Section following completion of cleanup. Workers demolish the 384 Building, known as the Power House and Heating Plant, in the north portion of the 300 Area. Workers demolish the 384 Building, known as the Power House and Heating Plant, in the north portion of the 300 Area. More than 8,000 feet of pipe — part of the 300 Area’s process sewer system — was removed from the 300-15 Waste Site in the north section. More than 8,000 feet of pipe - part of the 300 Area's process sewer

120

Recovery Act Invests in Cleanup, Preservation of Hanford Site Locomotives,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Invests in Cleanup, Preservation of Hanford Site Invests in Cleanup, Preservation of Hanford Site Locomotives, Railcars Recovery Act Invests in Cleanup, Preservation of Hanford Site Locomotives, Railcars With the help of the American Recovery and Reinvestment Act, the Hanford Site is preserving the history of its locomotives and railcars as workers clean up the legacy of the Cold War. In the recently completed railcar project – a $5.5 million effort funded by the Recovery Act – the Richland Operations Office and its contractors moved two locomotives and two cask cars onto reclaimed track at the B Reactor for permanent public display. Designated a National Historic Landmark in August 2008, the B Reactor is slated to become part of the national park system commemorating the Manhattan Project and is open for

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Mercury cleanup efforts intensify | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury cleanup efforts ... Mercury cleanup efforts ... Mercury cleanup efforts intensify Posted: February 11, 2013 - 3:31pm | Y-12 Report | Volume 9, Issue 2 | 2013 Millions of pounds of mercury were required to support Y-12's post-World War II mission of separating lithium isotopes. Cleaning up the toxic heavy metal poses many challenges, but what Y-12 is learning could help conquer mercury pollution worldwide. There's a reason you won't find mercury in many thermometers these days. Mercury is a heavy metal that occurs in several chemical forms, all of which can produce toxic effects in high enough doses. Mercury was used in the column exchange process, which Y-12 employed to produce lithium-6 from 1953 to 1962. Through process spills, system leaks and surface runoff, some 700,000 pounds of mercury have been lost to the

122

Mid-South Metallurgical Makes Electrical and Natural Gas System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings Mid-South Metallurgical Makes Electrical and Natural Gas...

123

NSTX High Field Side Gas Fueling System  

SciTech Connect

Fueling National Spherical Torus Experiment (NSTX) plasmas with gas injected from the high field side (HFS) has produced earlier, more reliable transitions to the H-mode, longer H-mode durations, higher toroidal rotation, and higher edge electron temperature compared with similar discharges using the low field side (LFS) gas fueling injectors. The HFS gas fueling system consists of a Center Stack midplane injector, and an injector at the inner, upper corner of the Center Stack. The challenging design and installation constraints for the HFS gas system involved placing the control components as close as possible to the machine-vacuum interface, devising a special feed-through flange, traversing through vessel regions whose temperatures during bake-out range from 150 to 350 degrees Centigrade, adapting the gas transport tubing size and route to the small instrumentation wire channels behind the existing graphite plasma facing component tiles on the Center Stack, and providing output orifices shielded from excessive plasma power depositions while concentrating the output flow to facilitate fast camera viewing and analysis. Design, recent performance, and future upgrades will be presented.

H.W. Kugel; M. Anderson; G. Barnes; M. Bell; W. Blanchard; L. Dudek; D. Gates; R. Gernhardt; R. Maingi; D. Mueller; T. Provost; R. Raman; V. Soukhanovskii; J. Winston

2003-10-09T23:59:59.000Z

124

Independent Oversight Assessment, Idaho Cleanup Project Sodium...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bearing Waste Treatment Project - November 2012 November 2012 Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project This...

125

Lab completes record year for environmental cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

now entering the heavy cleanup phase," said Michael Graham, LANL's associate director for environmental programs. "We know where our sites are and have a much better understanding...

126

2014 House Nuclear Cleanup Caucus Oak Ridge  

Office of Environmental Management (EM)

2014 House Nuclear Cleanup Caucus Oak Ridge August 16, 2014 Sue Cange Acting Manager Oak Ridge Office of Environmental Management Oak Ridge Site Specific Advisory Board Annual...

127

Sandia National Laboratories: radioactive waste solution cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

in Fukushima and Worldwide On February 14, 2013, in Energy, Materials Science, Nuclear Energy, Partnership, Research & Capabilities Radiation waste cleanup was in the public eye...

128

Sandia National Laboratories: radiation waste cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

waste cleanup ECIS and UOP (a Honewell Company): CSTs Clean Radioactive Waste in Fukushima and Worldwide On February 14, 2013, in Energy, Materials Science, Nuclear Energy,...

129

Oilfield Flare Gas Electricity Systems (OFFGASES Project)  

SciTech Connect

The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

Rachel Henderson; Robert Fickes

2007-12-31T23:59:59.000Z

130

EIA - Natural Gas Pipeline System - Midwest Region  

Gasoline and Diesel Fuel Update (EIA)

Midwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Pipelines in the Midwest Region...

131

Water-saving liquid-gas conditioning system  

DOE Patents (OSTI)

A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

Martin, Christopher; Zhuang, Ye

2014-01-14T23:59:59.000Z

132

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bynatural gas and simulated landfill gas as a fuel source.

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

133

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2002-07-01T23:59:59.000Z

134

Neural net controlled tag gas sampling system for nuclear reactors  

DOE Patents (OSTI)

A method and system for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod.

Gross, Kenneth C. (Bolingbrook, IL); Laug, Matthew T. (Idaho Fall, ID); Lambert, John D. B. (Wheaton, IL); Herzog, James P. (Downers Grove, IL)

1997-01-01T23:59:59.000Z

135

Power control system for a hot gas engine  

DOE Patents (OSTI)

A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

Berntell, John O. (Staffanstorp, SE)

1986-01-01T23:59:59.000Z

136

Exhaust gas recirculation system for an internal combustion engine  

DOE Patents (OSTI)

An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

Wu, Ko-Jen

2013-05-21T23:59:59.000Z

137

Oil and Gas CDT Quantifying the role of groundwater in hydrocarbon systems using noble gas  

E-Print Network (OSTI)

Oil and Gas CDT Quantifying the role of groundwater in hydrocarbon systems using noble gas isotopes by groundwater (or oil) degassing. Other natural gas fields may have been produced in-situ or migrated as a free expert academics from across the CDT and also experienced oil and gas industry professionals

Henderson, Gideon

138

Cleanup Agreed on for Niagara Landfill  

Science Journals Connector (OSTI)

Cleanup Agreed on for Niagara Landfill ... The U.S., New York state, and Occidental Chemical finally have reached agreement on how to clean up toxic liquid wastes at the Hyde Park landfill in Niagara, N.Y. ... The cleanup program is a multifaceted scheme designed to remove and destroy the most concentrated of the hazardous liquids buried in the landfill. ...

LOIS EMBER

1985-12-16T23:59:59.000Z

139

Oak Ridge National Laboratory Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge National Laboratory Cleanup Oak Ridge National Laboratory Cleanup This fact sheet provides an update on all of the current cleanup projects at the site, and it also lists...

140

EM Tackles Cleanup at Tonopah Test Range | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tackles Cleanup at Tonopah Test Range EM Tackles Cleanup at Tonopah Test Range September 30, 2014 - 12:00pm Addthis Field technicians survey a shaker used in past cleanup...

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Uniform System of Accounts for Gas Utilities (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

This rule establishes a uniform system of accounts and annual report filing requirements for natural gas utilities operating in Maine.

142

Environmental Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 28, 2010 October 28, 2010 Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative WASHINGTON - The White House Council on Environmental Quality and the U.S. Department of Energy hosted a workshop with the Great Lakes Wind Collaborative in Chicago on October 26 - 27, 2010, focused on the siting of offshore wind power in the Great Lakes. The two day workshop brought together wind developers, Federal and state regulators, environmental advocates, and other regional stakeholders to discuss methods for ensuring greater clarity, certainty and coordination of Federal and state decision-making for offshore wind development in the Great Lakes. October 6, 2010 Agreement on New Commitments for Hanford Tank Waste Cleanup Sent to Federal

143

Environmental Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 28, 2009 July 28, 2009 800 to 1000 New Jobs Coming to Piketon Department of Energy to Accelerate Cleanup Work While USEC Further Develops ACP Technology April 22, 2009 Op-Ed by Secretary of Energy Steven Chu and Secretary of Labor Hilda Solis: Building the American Clean Energy Economy To commemorate Earth Day, the op-ed below on green jobs and energy independence by Secretaries Steven Chu and Hilda Solis ran in the following papers yesterday and today: Austin American-Statesman Buffalo News Denver Post Montgomery Advertiser Omaha World Herald Pittsburgh Post-Gazette April 22, 2009 US Department of Energy Promotes Special Earth Week Feature on Energy.gov Simple Steps Will Help Consumers Save Money -- and the Planet March 27, 2009 U.S. and Portugal Sign Agreement for Climate Research Collaboration

144

DOE Awards Small Business Contract to Support Cleanup of New...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Small Business Contract to Support Cleanup of New York West Valley Demonstration Project DOE Awards Small Business Contract to Support Cleanup of New York West Valley Demonstration...

145

Gas Main Sensor and Communications Network System  

SciTech Connect

Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the Northeast Gas Association (NGA), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. This projected was completed in April 2006, and culminated in the installation of more than 2 dozen GasNet nodes in both low- and high-pressure cast-iron and steel mains owned by multiple utilities in the northeastern US. Utilities are currently logging data (off-line) and monitoring data in real time from single and multiple networked sensors over cellular networks and collecting data using wireless bluetooth PDA systems. The system was designed to be modular, using in-pipe sensor-wands capable of measuring, flow, pressure, temperature, water-content and vibration. Internal antennae allowed for the use of the pipe-internals as a waveguide for setting up a sensor network to collect data from multiple nodes simultaneously. Sensor nodes were designed to be installed with low- and no-blow techniques and tools. Using a multi-drop bus technique with a custom protocol, all electronics were designed to be buriable and allow for on-board data-collection (SD-card), wireless relaying and cellular network forwarding. Installation options afforded by the design included direct-burial and external polemounted variants. Power was provided by one or more batteries, direct AC-power (Class I Div.2) and solar-array. The utilities are currently in a data-collection phase and intend to use the collected (and processed) data to make capital improvement decisions, compare it to Stoner model predictions and evaluate the use of such a system for future expansion, technology-improvement and commercialization starting later in 2006.

Hagen Schempf

2006-05-31T23:59:59.000Z

146

Impact of Natural Gas Infrastructure on Electric Power Systems  

E-Print Network (OSTI)

Impact of Natural Gas Infrastructure on Electric Power Systems MOHAMMAD SHAHIDEHPOUR, FELLOW, IEEE of electricity has introduced new risks associated with the security of natural gas infrastructure on a sig the essence of the natural gas infrastructure for sup- plying the ever-increasing number of gas-powered units

Fu, Yong

147

EM Develops Database for Efficient Solutions to Nuclear Cleanup Challenges Across Complex  

Energy.gov (U.S. Department of Energy (DOE))

WASHINGTON, D.C. Many deactivation and decommissioning (D&D) projects across the EM complex require robotic and remote handling systems to protect workers during nuclear cleanup operations.

148

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bygas and simulated landfill gas as a fuel source. This

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

149

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

Journal of Engineering for Gas Turbines and Power, 121:569-operations with natural gas: Fuel composition implications,USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATION

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

150

GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM  

SciTech Connect

Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. A prototype system was built for low-pressure cast-iron mains and tested in a spider- and serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The prototype unit combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-slave architecture to collect data from a distributed spider-arrangement, and in a master-repeater-slave configuration in serial or ladder-network arrangements. It was found that the system was capable of performing all data-sampling and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and valuable data was collected in order to determine how to improve on range and data-quality in the future.

Hagen Schempf, Ph.D.

2003-02-27T23:59:59.000Z

151

GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM  

SciTech Connect

Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. In Phase II of this three-phase program, an improved prototype system was built for low-pressure cast-iron and high-pressure steel (including a no-blow installation system) mains and tested in a serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The experiment was carried out in several open-hole excavations over a multi-day period. The prototype units (3 total) combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-repeater-slave configuration in serial or ladder-network arrangements. It was verified that the system was capable of performing all data-sampling, data-storage and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and the system was demonstrated to run off in-ground battery- and above-ground solar power. The remote datalogger access and storage-card features were demonstrated and used to log and post-process system data. Real-time data-display on an updated Phase-I GUI was used for in-field demonstration and troubleshooting.

Hagen Schempf

2004-09-30T23:59:59.000Z

152

Hot gas path component cooling system  

DOE Patents (OSTI)

A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

2014-02-18T23:59:59.000Z

153

Environmental Cleanup Reports | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Cleanup Reports Environmental Cleanup Reports Environmental Cleanup Reports September 8, 2010 Audit Report: OAS-L-10-10 The Audit of Precious Metals at NNSA Sites August 12, 2010 Audit Letter Report: OAS-RA-L-10-05 Decommissioning and Demolition Activities at Office of Science Sites May 25, 2010 Audit Report: OAS-RA-10-10 Waste Processing and Recovery Act Acceleration Efforts for Contact-Handled Transuranic Waste at the Hanford Site May 3, 2010 Audit Report: OAS-L-10-04 The Interim Treatment of Salt Waste at the Savannah River Site April 23, 2010 Audit Letter Report: OAS-RA-L-10-03 Audit of Moab Mill Tailings Cleanup Project April 9, 2010 Audit Report: OAS-RA-10-07 Management Alert on Environmental Management's Select Strategy for Disposition of Savannah River Site Depleted Uranium Oxides

154

Lab completes record year for environmental cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Record year for environmental cleanup Record year for environmental cleanup Lab completes record year for environmental cleanup Personnel conducted more field investigations and cleanup campaigns than ever and completed a record number of Lab shipments to WIPP. December 16, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

155

Microsoft Word - California_cleanup.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP Completes California Sites Cleanup CARLSBAD, N.M., June 14, 2010 - The U.S. Department of Energy's Carlsbad Field Office (CBFO) has successfully completed its campaign to...

156

From Cleanup to Stewardship | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PEIS Settlement Study. Long-term stewardship was expected to be needed at more than 100 DOE sites after EM completed cleanup of the waste and contamination resulting from nuclear...

157

Y-12 National Security Complex Cleanup  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet provides an update on all of the current cleanup projects at the site, and it also lists the major projects completed at the Y-12 National Security Complex.

158

Federal nuclear waste cleanup plan proposed  

Science Journals Connector (OSTI)

Federal nuclear waste cleanup plan proposed ... The Department of Energy has asked Congress to find $19.5 billion over the next five years to finance initial cleanup of environmental contamination at its nuclear, primarily weapons, facilities. ... DOE estimates that to begin implementing the plan in 1990, it needs considerably more than the $1.3 billion originally requested for defense waste and environmental restoration activities. ...

JANICE LONG

1989-08-07T23:59:59.000Z

159

EIA - Natural Gas Pipeline Network - Network Configuration & System Design  

U.S. Energy Information Administration (EIA) Indexed Site

Network Configuration & System Design Network Configuration & System Design About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Network Configuration and System Design Overview | Transmission/Storage | Design Criteria | Importance of Storage| Overall Pipeline System Configuration Overview A principal requirement of the natural gas transmission system is that it be capable of meeting the peak demand of its shippers who have contracts for firm service. To meet this requirement, the facilities developed by the natural gas transmission industry are a combination of transmission pipelines to bring the gas to the market areas and of underground natural gas storage sites and liquefied natural gas (LNG) peaking facilities located in the market areas.

160

HARVESTING EMSP RESEARCH RESULTS FOR WASTE CLEANUP  

SciTech Connect

The extent of environmental contamination created by the nuclear weapons legacy combined with expensive, ineffective waste cleanup strategies at many U.S. Department of Energy (DOE) sites prompted Congress to pass the FY96 Energy and Water Development Appropriations Act, which directed the DOE to: ''provide sufficient attention and resources to longer-term basic science research, which needs to be done to ultimately reduce cleanup costs'', ''develop a program that takes advantage of laboratory and university expertise, and'' ''seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective.'' In response, the DOE initiated the Environmental Management Science Program (EMSP)-a targeted, long-term research program intended to produce solutions to DOE's most pressing environmental problems. EMSP funds basic research to lower cleanup cost and reduce risk to workers, the public, and the environment; direct the nation's scientific infrastructure towards cleanup of contaminated waste sites; and bridge the gap between fundamental research and technology development activities. EMSP research projects are competitively awarded based on the project's scientific, merit coupled with relevance to addressing DOE site needs. This paper describes selected EMSP research projects with long, mid, and short-term deployment potential and discusses the impacts, focus, and results of the research. Results of EMSP research are intended to accelerate cleanup schedules, reduce cost or risk for current baselines, provide alternatives for contingency planning, or provide solutions to problems where no solutions exist.

Guillen, Donna Post; Nielson, R. Bruce; Phillips, Ann Marie; Lebow, Scott

2003-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EIA - Natural Gas Pipeline System - Links to U.S. Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Links Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Links to U.S. Natural Gas Pipeline Information - The links below will either direct the user to a narrative describing the system, a pipeline system map, a FERC prescribed "Informational Postings" page, or a FERC Tariff Sheet. Pipeline Name Type of System Regions of Operations Acadian Gas Pipeline System Intrastate Southwest Algonquin Gas Transmission Co Interstate Northeast Alliance Pipeline Co Interstate Central, Midwest Anaconda Pipeline System Gathering Gulf of Mexico ANR Pipeline Co Interstate Midwest ANR Storage Co Interstate Midwest Arkansas Oklahoma Gas Co Intrastate Southwest Arkansas Western Pipeline Co Intrastate

162

Rock-physics Models for Gas-hydrate Systems Associated  

E-Print Network (OSTI)

Rock-physics Models for Gas-hydrate Systems Associated with Unconsolidated Marine Sediments Diana associated with unconsolidated marine sediments. The goals are to predict gas-hydrate concentration from intercalated with unconsolidated sediments. We show that the geometrical details of how gas hy- drates

Texas at Austin, University of

163

System and method for producing substitute natural gas from coal  

DOE Patents (OSTI)

The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

Hobbs, Raymond (Avondale, AZ)

2012-08-07T23:59:59.000Z

164

Chapter 7 - Gas Turbine Fuel Systems and Fuels  

Science Journals Connector (OSTI)

Abstract The basics of a gas turbine fuel system are similar for all turbines. The most common fuels are natural gas, LNG (liquid natural gas), and light diesel. With appropriate design changes, the gas turbine has proved to be capable of handling residual oil, pulverized coal, syngas from coal and various low BTU fluids, both liquid and gas, that may be waste streams of petrochemical processes or, for instance, gas from a steel (or other industry) blast furnace. Handling low BTU fuel can be a tricky operation, requiring long test periods and a willingness to trade the savings in fuel costs with the loss of turbine availability during initial prototype full load tests. This chapter covers gas turbine fuel systems and includes a case study (Case 5) on blast furnace gas in a combined cycle power plant (CCPP). All truths are easy to understand once they are discovered, the point is to discover them. Plato

Claire Soares

2015-01-01T23:59:59.000Z

165

Safety of Gas Transmission and Distribution Systems (Maine) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Provider Public Utilities Commission These regulations describe requirements for the participation of natural gas utilities in the Underground Utility Damage Prevention Program,

166

Selective Catalytic Reduction and Exhaust Gas Recirculation Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Catalytic Reduction and Exhaust Gas Recirculation Systems Optimization A patented EGR-SCR approach was shown to readily meet the 2010 EPA requirments for NOx and PM emisisons...

167

Evaluation of a Cyclone and Hot Gas Filter System  

NLE Websites -- All DOE Office Websites (Extended Search)

a Cyclone and a Cyclone and Hot Gas Filter System Description The Wabash River Coal Gasification Plant uses an oxygen-blown E-Gas gasifier technology, owned by ConocoPhillips, which produces fuel gas containing significant amounts of fine particulates. Currently, particulates are cleaned from the fuel gas with metal candle filters. These filters require two costly plant shut-downs per year for cleaning or replacement. During the U.S Department of Energy-supported project

168

Electric, Gas, and Electric/Gas Energy Options for Cold-Air HVAC Systems  

E-Print Network (OSTI)

An important aspect of the design of cost-effective HVAC systems today is (a) sensitivity to the cost impact of the interplay of utility demand charges, time-of-day rates, gas rates, and gas/electric utility incentive programs vis--vis HVAC system...

Meckler, G.

1989-01-01T23:59:59.000Z

169

The National Energy Modeling System: An Overview 2000 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

natural gas transmission and distribution module (NGTDM) of NEMS represents the natural gas market and determines regional market-clearing prices for natural gas supplies and for end-use consumption, given the information passed from other NEMS modules. A transmission and distribution network (Figure 15), composed of nodes and arcs, is used to simulate the interregional flow and pricing of gas in the contiguous United States and Canada in both the peak (December through March) and offpeak (April through November) period. This network is a simplified representation of the physical natural gas pipeline system and establishes the possible interregional flows and associated prices as gas moves from supply sources to end users. natural gas transmission and distribution module (NGTDM) of NEMS represents the natural gas market and determines regional market-clearing prices for natural gas supplies and for end-use consumption, given the information passed from other NEMS modules. A transmission and distribution network (Figure 15), composed of nodes and arcs, is used to simulate the interregional flow and pricing of gas in the contiguous United States and Canada in both the peak (December through March) and offpeak (April through November) period. This network is a simplified representation of the physical natural gas pipeline system and establishes the possible interregional flows and associated prices as gas moves from supply sources to end users. Figure 15. Natural Gas Transmission and Distribution Module Network

170

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

Natural Gas Nitric Oxide/Nitrogen Dioxide Neal Road LandfillThe methane, nitrogen and carbon dioxide concentrations ofmethane, 30% nitrogen and 30% carbon dioxide. The recorded

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

171

Glass melter off-gas system  

DOE Patents (OSTI)

Apparatus and method for melting glass in a glass melter in such a way as to reduce deposition of particulates in the off-gas duct. Deposit accumulation is reduced by achieving an off-gas velocity above approximately 15 meters/second and an off-gas temperature as close as possible to, but not higher than, the glass softening point. Because the deposits are largely water-soluble, those that do form on the interior surface of the duct can be readily removed by injecting water or steam directly into the off-gas duct from its entrance or exit.

Jantzen, Carol M. (Aiken, SC)

1997-01-01T23:59:59.000Z

172

Two-tank working gas storage system for heat engine  

DOE Patents (OSTI)

A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

Hindes, Clyde J. (Troy, NY)

1987-01-01T23:59:59.000Z

173

Process and system for removing impurities from a gas  

DOE Patents (OSTI)

A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

2014-04-15T23:59:59.000Z

174

Idaho Cleanup Contractor Surpasses Significant Safety Milestones |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup Contractor Surpasses Significant Safety Milestones Cleanup Contractor Surpasses Significant Safety Milestones Idaho Cleanup Contractor Surpasses Significant Safety Milestones April 29, 2013 - 12:00pm Addthis CWI employees discuss safety procedures before they remove a spent nuclear fuel shipment from a shipping container. CWI employees discuss safety procedures before they remove a spent nuclear fuel shipment from a shipping container. IDAHO FALLS, Idaho - For the second time in a little over a year, employees with DOE contractor CH2M-WG Idaho (CWI) supporting EM at the Idaho site have achieved 1 million hours without a recordable injury. They also worked more than 1.7 million hours without a lost work-time injury. "Our focus is working with employees to keep each other safe," said CWI Environmental, Safety, and Health Vice President Kevin Daniels. "We

175

Demolition, Groundwater Cleanup Highlight Paducah's 2013 Accomplishments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demolition, Groundwater Cleanup Highlight Paducah's 2013 Demolition, Groundwater Cleanup Highlight Paducah's 2013 Accomplishments Demolition, Groundwater Cleanup Highlight Paducah's 2013 Accomplishments December 24, 2013 - 12:00pm Addthis A high-reach shear removes debris from the tallest structure of the C-340 complex at Paducah. Watch a video of this work here. The 120-foot-high Metals Plant was the tallest building at the Paducah site and encompassed about 1.5 million cubic feet, the volume of a football field roughly three stories tall. Demolition debris filled 28 rail cars and was shipped offsite for disposal. A high-reach shear removes debris from the tallest structure of the C-340 complex at Paducah. Watch a video of this work here. The 120-foot-high Metals Plant was the tallest building at the Paducah site and encompassed

176

Los Alamos National Laboratory names cleanup subcontractors  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleanup subcontractors named Cleanup subcontractors named Los Alamos National Laboratory names cleanup subcontractors The three companies are Los Alamos Technical Associates (LATA), Portage Inc., and ARSEC Environmental, LLC (ARSEC). August 14, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Fred deSousa

177

EIA - Natural Gas Pipeline System - Southeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southeast Region Southeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southeast Region Overview | Transportation to Atlantic & Gulf States | Gulf of Mexico Transportation Corridor | Transportation to the Northern Tier | Regional Pipeline Companies & Links Overview Twenty-three interstate, and at least eight intrastate, natural gas pipeline companies operate within the Southeast Region (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee). Fifteen of the twenty-one interstate natural gas pipelines originate in the Southwest Region and receive most of their supplies from the Gulf of Mexico or from the States of Texas and/or Louisiana.

178

The Energy Transformation Limit Theorem for Gas Flow Systems  

E-Print Network (OSTI)

The limit energy theorem which determines the possibility of transformation the energy flow in power systems in the absence of technical work is investigated and proved for such systems as gas lasers and plasmatrons, chemical gas reactors, vortex tubes, gas-acoustic and other systems, as well as a system of close stars. In the case of the same name ideal gas in the system the maximum ratio of energy conversion effectiveness is linked to the Carnot theorem, which in its turn is connected with the Nernst theorem. However, numerical analyses show that the class of flow energy systems is non-carnot one. The ratio of energy conversion effectiveness depends on the properties of the working medium; a conventional cycle in open-circuit is essentially irreversible. The proved theorem gives a more strongly worded II law of thermodynamics for the selected class of flow energy systems. Implications for astrophysical thermodynamic systems and the theory of a strong shock wave are discussed.

Volov, V T

2011-01-01T23:59:59.000Z

179

Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems  

SciTech Connect

This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

Komar, C.A. (ed.)

1980-01-01T23:59:59.000Z

180

Integrated Energy and Greenhouse Gas Management System  

E-Print Network (OSTI)

With Climate Change legislation on the horizon, the need to integrate energy reduction initiatives with greenhouse gas reduction efforts is critical to manufactures competitiveness and financial strength going forward. MPC has developed...

Spates, C. N.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Spark gap switch system with condensable dielectric gas  

DOE Patents (OSTI)

A spark gap switch system is disclosed which is capable of operating at a high pulse rate comprising an insulated switch housing having a purging gas entrance port and a gas exit port, a pair of spaced apart electrodes each having one end thereof within the housing and defining a spark gap therebetween, an easily condensable and preferably low molecular weight insulating gas flowing through the switch housing from the housing, a heat exchanger/condenser for condensing the insulating gas after it exits from the housing, a pump for recirculating the condensed insulating gas as a liquid back to the housing, and a heater exchanger/evaporator to vaporize at least a portion of the condensed insulating gas back into a vapor prior to flowing the insulating gas back into the housing.

Thayer, III, William J. (Kent, WA)

1991-01-01T23:59:59.000Z

182

Questions remain on funding for cleanup of Oak Ridge Reservation...  

Office of Environmental Management (EM)

Questions remain on funding for cleanup of Oak Ridge Reservation Questions remain on funding for cleanup of Oak Ridge Reservation March 18, 2013 - 12:00pm Addthis There is great...

183

EM's Cleanup Mission: 16 Sites in 11 States Remaining  

Energy.gov (U.S. Department of Energy (DOE))

At the end of fiscal year 2013, EM completed cleanup and closed 90 sites in 28 states. This included cleanup and closure of 85 smaller sites and five major nuclear sites: Rocky Flats, Fernald, Mound, Pinellas, and Weldon Spring.

184

Reformate Cleanup: The Case for Microchannel Architecture  

E-Print Network (OSTI)

Reformate Cleanup: The Case for Microchannel Architecture DOE Hydrogen and Fuel Cells 2003 Annual for MicrochannelMicrochannel ArchitectureArchitecture DOE Hydrogen and Fuel CellsDOE Hydrogen and Fuel Cells 2003, controls Integrated reformer/fuel cell demonstration at ~2 kWeFY 2002 WGS/PROX catalyst studies

185

Voluntary Protection Program Onsite Review, Idaho Cleanup Project- October 2010  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation to determine whether Idaho Cleanup Project is continuing to perform at a level deserving DOE-VPP Star recognition.

186

Enterprise Assessments Review, Idaho Cleanup Project- September 2014  

Energy.gov (U.S. Department of Energy (DOE))

Review of the Idaho Cleanup Project Integrated Waste Treatment Unit Federal Readiness Assessment at the Idaho Site

187

Starter systems designed for efficient air/gas comsumption  

SciTech Connect

This paper examines engine starting systems designed by Pow-R-Quik. Pow-R-Quik's most recent product line includes several models that are designed to start most diesel and natural gas engines. Pow-R-Quick also offers air starting systems for a wide range of gas turbine applications. The model DS16, air or gas starter, is designed for engines with a displacement up to 500 cid diesel and up to 1000 cid natural gas. The DS60 model is also an air or gas operated starter with specially designed heavy duty bearings for maximum performance. To prove out starter durability and performance, Pow-R-Quik has installed three fully instrumented diesel engine test cells. The number of starts that can be achieved ranges from zero to 99,000. The system can be set to regulate the air for low or high pressure starts, control the lubricant, etc.

Not Available

1985-05-01T23:59:59.000Z

188

8 - Turbogenerators in gas turbine systems  

Science Journals Connector (OSTI)

Abstract: The functioning of turbogenerators is explained as the final link between the turbine and the grid. Basic physical laws are given, and principles to calculate the performance and application of generators to gas turbines are derived. It is shown how generators developed with the progress of gas turbines. Modern designs are described and latest test results of generators are reported. Finally, an outlook is given about the future trends in technology and products. The chapter utilizes the authors in-house experience, and describes also achievements of other manufacturers.

B. Gellert

2013-01-01T23:59:59.000Z

189

Energy, Greenhouse Gas, and Cost Reductions for Municipal Recycling Systems  

Science Journals Connector (OSTI)

Energy, Greenhouse Gas, and Cost Reductions for Municipal Recycling Systems ... An evaluation of the energy, greenhouse gas, and costs savings associated with logistics and infrastructure improvements to a curbside recycling program is presented. ... MSW recycling has been found to be costly for most municipalities compared to landfill disposal. ...

Mikhail Chester; Elliot Martin; Nakul Sathaye

2008-02-08T23:59:59.000Z

190

Operating the LCLS Gas Attenuator and Gas Detector System with Apertures of 6mm Diameter  

SciTech Connect

The possibility of increasing the apertures of the LCLS gas attenuator/gas detector system is considered. It is shown that increase of the apertures from 3 to 6 mm, together with 4-fold reduction of the operation pressure does not adversely affect the vacuum conditions upstream or downstream. No change of the pump speed and the lengths of the differential pumping cells is required. One minor modification is the use of 1.5 cm long tubular apertures in the end cells of the differential pumping system. Reduction of the pressure does not affect performance of the gas attenuator/gas detector system at the FEL energies below, roughly, 2 keV. Some minor performance degradation occurs at higher energies.

Ryutov, D.D.; Bionta, R.M.; Hau-Riege, S.P.; Kishiyama, K.I.; Roeben, M.D.; Shen, S.; /LLNL, Livermore; Stefan, P.M.; /SLAC; ,

2010-11-17T23:59:59.000Z

191

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents (OSTI)

A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

1995-01-01T23:59:59.000Z

192

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents (OSTI)

A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

Viscovich, P.W.; Bannister, R.L.

1995-07-11T23:59:59.000Z

193

Method for nonlinear optimization for gas tagging and other systems  

DOE Patents (OSTI)

A method and system are disclosed for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established. 6 figs.

Chen, T.; Gross, K.C.; Wegerich, S.

1998-01-06T23:59:59.000Z

194

Method for nonlinear optimization for gas tagging and other systems  

DOE Patents (OSTI)

A method and system for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established.

Chen, Ting (Chicago, IL); Gross, Kenny C. (Bolingbrook, IL); Wegerich, Stephan (Glendale Heights, IL)

1998-01-01T23:59:59.000Z

195

Oil-cleanup method questioned  

Science Journals Connector (OSTI)

...were designed with efficiency, not safety...pre-vention systems. For efficiency, the Soviets often...before the Senate Energy and Natural Resources...economies to reduce energy subsidies. In...size of an Olympic swimming pool. The "magic...

R Stone

1992-07-17T23:59:59.000Z

196

Gas-Insulated Substation Performance in Brazilian System  

Science Journals Connector (OSTI)

This work is based on a report developed in the Working Group 2303 of CIGR-Brazil [1], about gas-insulated substations performance in the Brazilian electric system from...

H. J. A. Martins; V. R. Fernandes; R. S. Jacobsen

1991-01-01T23:59:59.000Z

197

New Applications of an Expanded Gas Chromatography/Computer System  

Science Journals Connector (OSTI)

......in routine gas analyses. Instrument modifications...Applications include analyses of reactor feed, product...detectors. System reliability bas also been good...catalyst life study reactor for almost two...sample injection/analysis/cal- culation......

J. G. W. Price; J. C. Scott; L. O. Wheeler

1971-12-01T23:59:59.000Z

198

A Natural-Gas-Fired Thermoelectric Power Generation System  

Science Journals Connector (OSTI)

This paper presents a combustion-driven thermoelectric power generation system that uses PbSnTe-based thermoelectric modules. The modules were integrated into a gas-fired furnace with a special burner design. The...

K. Qiu; A.C.S. Hayden

2009-07-01T23:59:59.000Z

199

Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System  

SciTech Connect

The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

2005-06-01T23:59:59.000Z

200

Power systems development facility. Quarterly technical progress report, July 1--September 30, 1993  

SciTech Connect

This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, July 1 through September 30, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. Hot Gas Cleanup Units to mate to all gas streams; Combustion Gas Turbine; and Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility.

Not Available

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Cleanup Progresses at the Office of River Protection | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup Progresses at the Office of River Protection Cleanup Progresses at the Office of River Protection Cleanup Progresses at the Office of River Protection December 24, 2013 - 12:00pm Addthis The concrete “core” is removed from Tank C-105 after workers cut a 55-inch hole in the tank dome. The concrete "core" is removed from Tank C-105 after workers cut a 55-inch hole in the tank dome. A composite image of dozens of individual-frame photos taken inside Tank C-110 provides a rare panoramic view of its interior. Portions of the tank floor and the Foldtrack waste-retrieval system are clearly visible. A composite image of dozens of individual-frame photos taken inside Tank C-110 provides a rare panoramic view of its interior. Portions of the tank floor and the Foldtrack waste-retrieval system are clearly visible.

202

Cleanup Progresses at the Office of River Protection | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup Progresses at the Office of River Protection Cleanup Progresses at the Office of River Protection Cleanup Progresses at the Office of River Protection December 24, 2013 - 12:00pm Addthis The concrete “core” is removed from Tank C-105 after workers cut a 55-inch hole in the tank dome. The concrete "core" is removed from Tank C-105 after workers cut a 55-inch hole in the tank dome. A composite image of dozens of individual-frame photos taken inside Tank C-110 provides a rare panoramic view of its interior. Portions of the tank floor and the Foldtrack waste-retrieval system are clearly visible. A composite image of dozens of individual-frame photos taken inside Tank C-110 provides a rare panoramic view of its interior. Portions of the tank floor and the Foldtrack waste-retrieval system are clearly visible.

203

Chapter 7 - Test Cell Cooling Water and Exhaust Gas Systems  

Science Journals Connector (OSTI)

Part 1 considers the thermodynamics of water cooling systems, water quality, typical cooling water circuits, and engine coolant control units. Also covered are the commissioning cooling circuits, thermal shock, and chilled water systems. Part 2 covers the design of test cell exhaust systems, exhaust silencers, exhaust gas volume flow, exhaust silencers, and exhaust cowls. Part 3 briefly covers the testing of turbochargers.

A.J. Martyr; M.A. Plint

2012-01-01T23:59:59.000Z

204

Stimulus Funding Will Accelerate Cleanup In Idaho  

NLE Websites -- All DOE Office Websites (Extended Search)

STIMULUS FUNDING WILL STIMULUS FUNDING WILL ACCELERATE CLEANUP IN IDAHO Funding from the American Recovery and Reinvestment Act will do more than sustain employment at the U.S. Department of Energy's Idaho Site - it will accelerate cleanup. Click here to see larger image Inside the retrieval enclosure at Accelerated Retrieval Project-III Click on image to enlarge The Office of Environmental Management received $6 billon in additional funding under the "stimulus bill" passed earlier this year by Congress and signed by President Obama. The Idaho Site will receive $468 million of the EM funding. The funding will be used at DOE's Idaho Site to: Decontaminate and decommission buildings that have no useful mission. Accelerate removal of buried radioactive waste, which will be

205

Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D Initiative...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Natural Gas Systems Manufacturing R&D Initiative Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D Initiative The following fact sheet outlines one of the...

206

PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM  

SciTech Connect

Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

W.L. Lundberg; G.A. Israelson; R.R. Moritz (Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

2000-02-01T23:59:59.000Z

207

Environmental Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 10, 2011 May 10, 2011 Improved cookstove in village of Santa Cruz de Lanchi, installed through Peru's national cookstove program. | Photo credit: Ranyee Chiang, DOE Department of Energy Planning Cookstoves Research, Releases Biomass Technical Meeting Summary As awareness builds for clean-burning cookstoves in the developing world, the Department of Energy is working with other government agencies and NGOs to make stoves cleaner, more efficient and more affordable. March 16, 2011 Ener-G-Rotors' 5kW prototype system | courtesy of Ener-G-Rotors Turning Waste Heat into Power: Ener-G-Rotors and the Entrepreneurial Mentorship Program If you've ever driven by an industrial plant, you've probably noticed big white plumes rising from the tops of the facilities. While it might

208

On-Board Hydrogen Gas Production System For Stirling Engines  

DOE Patents (OSTI)

A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

Johansson, Lennart N. (Ann Arbor, MI)

2004-06-29T23:59:59.000Z

209

Southwest Plume Cleanup at Paducah Site to Start by Summer 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Plume Cleanup at Paducah Site to Start by Summer 2013 Southwest Plume Cleanup at Paducah Site to Start by Summer 2013 Southwest Plume Cleanup at Paducah Site to Start by Summer 2013 April 1, 2012 - 12:00pm Addthis Deep soil mixing at the Paducah site will involve a large-diameter auger like this one. Deep soil mixing at the Paducah site will involve a large-diameter auger like this one. Senior Advisor for Environmental Management David Huizenga (right) and Paducah Site Lead Reinhard Knerr look at a three-dimensional model of the Paducah site’s groundwater system. University of Kentucky College of Design students assembled the model for the Paducah Gaseous Diffusion Plant Citizens Advisory Board. The model was displayed at the April 18 Site-Specific Advisory Board Chairs Meeting in Paducah, where Huizenga spoke before taking his first tour of the Paducah site.

210

Southwest Plume Cleanup at Paducah Site to Start by Summer 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Plume Cleanup at Paducah Site to Start by Summer 2013 Southwest Plume Cleanup at Paducah Site to Start by Summer 2013 Southwest Plume Cleanup at Paducah Site to Start by Summer 2013 April 1, 2012 - 12:00pm Addthis Deep soil mixing at the Paducah site will involve a large-diameter auger like this one. Deep soil mixing at the Paducah site will involve a large-diameter auger like this one. Senior Advisor for Environmental Management David Huizenga (right) and Paducah Site Lead Reinhard Knerr look at a three-dimensional model of the Paducah site’s groundwater system. University of Kentucky College of Design students assembled the model for the Paducah Gaseous Diffusion Plant Citizens Advisory Board. The model was displayed at the April 18 Site-Specific Advisory Board Chairs Meeting in Paducah, where Huizenga spoke before taking his first tour of the Paducah site.

211

Tips: Natural Gas and Oil Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas and Oil Heating Systems Natural Gas and Oil Heating Systems Tips: Natural Gas and Oil Heating Systems May 30, 2012 - 5:41pm Addthis Install a new energy-efficient furnace to save money over the long term. Install a new energy-efficient furnace to save money over the long term. If you plan to buy a new heating system, ask your local utility or state energy office about the latest technologies on the market. For example, many newer models have designs for burners and heat exchangers that are more efficient during operation and cut heat loss when the equipment is off. Consider a sealed-combustion furnace -- they are safer and more efficient. Long-Term Savings Tip Install a new energy-efficient furnace to save money over the long term. Look for the ENERGY STAR® and EnergyGuide labels to compare efficiency and

212

Slag processing system for direct coal-fired gas turbines  

DOE Patents (OSTI)

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

213

Opto-Electronics in Large Array Gas Detector Systems  

E-Print Network (OSTI)

Large array gas detector systems are used in particle and nuclear physics experiments involving high-energy nucleon-nucleon and heavy-ion collisions. We have observed that in large array gas detector systems the momentary discharges inside the detector cells result in slowdown of High Voltage conditioning and possible hindrances in signal processing. We have explored the opto-electronic devices like the opto-coupler, optical fibre and signal processing circuit, which provide successful monitoring procedures and preventive measures to overcome the challenges produced in such complex detector systems.

Majumdar, M R D; Nayak, T K; Das, Debasish; Nayak, Tapan K.

2005-01-01T23:59:59.000Z

214

Odorization system upgrades gas utility`s pipelines  

SciTech Connect

Mountain Fuel Supply Co., a subsidiary of Questar Corp., salt Lake City, is a natural gas holding company with $1.6 billion in assets. From 1929 to 1984, Mountain Fuel Supply Co. owned and operated many natural gas wells, gathering systems, and transmission pipelines to serve its Utah and Wyoming customers. Gas is odorized at convenient points on the transmission lines and at each downstream location where unodorized gas entered the system. Since 40 to 60% of the gas delivered to the company`s customers passes through Coalville Station, it was vital that a reliable, state-of-the-art odorant station be constructed at this site. Construction began during the summer of 1994 and the system came on line Sept. 1, 1994. The station odorized 435 MMcfd with 330 lbs. of odorant during last winter`s peak day, a mild winter. Mountain Fuel is subject to Department of Transportation (DOT) codes which mandate that gas be readily detectable at one fifth the lower explosive limit (LEL), or about 1% gas in air. However, the company strives to maintain a readily detectable odor at 0.25% of gas in air as measured by odormeter tests throughout the distribution system. Experience has shown that maintaining an odorant injection rate of 0.75 lbs/MMcf provides adequate odor levels. A blend of odorant consisting of 50% tertiary butyl mercaptan (TBM) and 50% tetrahydrothiophene (THT) was used for many years by Questar Pipeline. Presently, it is used at all Mountain Fuel stations. This paper reviews the design and operation of this odorization station.

Niebergall, B. [Mountain Fuel Supply, Salt Lake City, UT (United States)

1995-07-01T23:59:59.000Z

215

Development of a Natural Gas-to-Hydrogen Fueling System  

E-Print Network (OSTI)

compressors Reliable & cost effective hydrogen fueling system #12;9 Accomplishments > Comprehensive subsystem> Development of a Natural Gas-to- Hydrogen Fueling System DOE Hydrogen & Fuel Cell Merit Review integrator, fuel processing subsystem ­ FuelMaker Corporation > Maker of high-quality high

216

Proper design hikes gas-lift system efficiency  

SciTech Connect

Proper design of gas-lift pumping systems, used for pumping corrosive or erosive fluids, involves the correct selection of submergence ratio, flow regime, pipe diameter, and physical properties of the fluid. Correlations for maximum lifting efficiency on a friction-free basis vs. submergence ratio have been developed based on experimental data. The Oshinowo and Charles flow map for vertical upward flow has been chosen for determining the two-phase flow regimes. For large-diameter gas-lifting systems, the effects of fluid physical properties on the maximum lifting efficiency become diminished. Gas-lift pumping systems are widely used in the process industry as well as in oil and gas production. In an ethylene dichloride/vinyl chloride monomer (EDC/VCM) plant, quench column bottoms are recirculated back to the column by gas lift of the EDC/VCM stream from the EDC pyrolysis furnace. Gas lift is utilized instead of pumps to alleviate the plugging and erosion problems caused by the presence of coke/tar particulates. Other process applications include those where pumps suffer severe corrosion from the fluids pumped.

Tsai, T.C.

1986-06-30T23:59:59.000Z

217

DOE Completes TRU Waste Cleanup at Bettis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRU Waste Cleanup at Bettis TRU Waste Cleanup at Bettis DOE Completes TRU Waste Cleanup at Bettis September 23, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. - The U.S. Department of Energy (DOE) has successfully completed cleanup of all Cold War legacy transuranic (TRU) waste at the Bettis Atomic Power Laboratory (BAPL) near Pittsburgh, Pa., permanently disposing of it at the Waste Isolation Pilot Plant (WIPP). BAPL is the 20th site to be completely cleaned of legacy TRU waste. This milestone was achieved using approximately $640,000 of a $172 million investment from the American Recovery and Reinvestment Act to expedite legacy waste cleanup activities across the DOE complex. This summer, TRU waste cleanup was also completed at the Nuclear Radiation Development, LLC,

218

Manhattan Project Truck Unearthed in Recovery Act Cleanup | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manhattan Project Truck Unearthed in Recovery Act Cleanup Manhattan Project Truck Unearthed in Recovery Act Cleanup Manhattan Project Truck Unearthed in Recovery Act Cleanup A Los Alamos National Laboratory (LANL) excavation crew working on an American Recovery and Reinvestment Act cleanup project has uncovered the remnants of a 1940s military truck buried in a Manhattan Project landfill. The truck was unearthed inside a sealed building where digging is taking place at Material Disposal Area B (MDA-B), the Lab's first hazardous and radioactive waste landfill. MDA-B was used from 1944 to 1948. Manhattan Project Truck Unearthed in Recovery Act Cleanup More Documents & Publications Los Alamos Lab Completes Excavation of Waste Disposal Site Used in the 1940s Protecting Recovery Act Cleanup Site During Massive Wildfire

219

Recovery Act Investment Accelerates Cleanup Work at DOE's Paducah Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investment Accelerates Cleanup Work at DOE's Paducah Investment Accelerates Cleanup Work at DOE's Paducah Site Recovery Act Investment Accelerates Cleanup Work at DOE's Paducah Site July 15, 2011 - 12:00pm Addthis UF6 piping deactivation The black inlet hose is attached to a negative air machine that allows Feed Plant cleanup workers to safely deactivate uranium hexafluoride (UF6) piping, seen at right of the lift supporting the crew. UF6 piping deactivation The black inlet hose is attached to a negative air machine that allows Feed Plant cleanup workers to safely deactivate uranium hexafluoride (UF6) piping, seen at right of the lift supporting the crew. Heavy equipment demo Heavy equipment demolishes the last part of the eastern third of the Feed Plant at the Paducah Site. Cleanup continues to prepare the remaining part of the complex, backgroundfor demolition later.

220

Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security  

E-Print Network (OSTI)

Approved for public release; distribution is unlimited. Lexington Massachusetts This page intentionally left blank. EXECUTIVE SUMMARY Concern about energy security on domestic Department of Defense installations has led to the possibility of using natural gas-fired electricity generators to provide power in the event of electric grid failures. As natural gas is an increasingly base-load fuel for electricity generation in the United States, the electricity generation system has become increasingly dependent on the operation of the natural gas system. However, as the natural gas system is also partly dependent on electricity for its ability to deliver natural gas from the well-head to the consumer, the question arises of whether, in the event of an electric grid failure, the natural gas would continue to flow. As the natural gas transmission system largely uses natural gas from the pipelines as a source of power, once the gas has been extracted from the ground, the system is less dependent on the electric grid. However, some of the drilling rigs, processing units, and pipeline compressors do depend on electric power, making the vulnerability to the system to a disruption in the national electricity supply network vary depending on the cause, breadth, and geographic location of the disruption. This is due to the large numbers of players in the natural gas production and

N. Judson; N. Judson

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Solid fuel combustion system for gas turbine engine  

DOE Patents (OSTI)

A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

1993-01-01T23:59:59.000Z

222

Feed gas contaminant control in ion transport membrane systems  

DOE Patents (OSTI)

Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

Carolan, Michael Francis (Allentown, PA); Minford, Eric (Laurys Station, PA); Waldron, William Emil (Whitehall, PA)

2009-07-07T23:59:59.000Z

223

Oversight Reports - Idaho Cleanup Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Sodium Bearing Waste Treatment Project - November 2012 Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project...

224

ORNL research reveals new challenges for mercury cleanup | ornl...  

NLE Websites -- All DOE Office Websites (Extended Search)

Jennifer Brouner Communications 865.241.0709 ORNL research reveals new challenges for mercury cleanup ORNL researchers are learning more about the microbial processes that convert...

225

ORISE: Supporting ARRA funded cleanup activities in Oak Ridge...  

NLE Websites -- All DOE Office Websites (Extended Search)

ORISE supporting Oak Ridge reservation cleanup activities through recovery funding ORISE technician performs an environmental scan Disposing of old and contaminated buildings, and...

226

Public Understanding of Cleanup Levels Discussion Public Involvement...  

NLE Websites -- All DOE Office Websites (Extended Search)

Discussion Public Involvement Committee Meeting - Hanford Advisory Board Wednesday, October 31, 2012 - Red Lion Hanford House, Richland Page 1 of 4 Cleanup Levels One of the...

227

Cleanup Contractor Achieves Elite Nuclear Material Accountability Status  

Energy.gov (U.S. Department of Energy (DOE))

PADUCAH, Ky. EMs cleanup contractor at the Paducah site has received national acclaim for timeliness of reporting and promptness in reconciling nuclear material inventories.

228

Progress toward Biomass and Coal-Derived Syngas Warm Cleanup...  

NLE Websites -- All DOE Office Websites (Extended Search)

Progress toward Biomass and Coal-Derived Syngas Warm Cleanup: Proof-of-Concept Process Demonstration of Multicontaminant Removal Progress toward Biomass and Coal-Derived Syngas...

229

FY14 Guidelines for Brownfields Cleanup Grants | Open Energy...  

Open Energy Info (EERE)

Abstract These guidelines provide instruction on obtaining a brownfields cleanup grant. Author EPA Published EPA, 2014 DOI Not Provided Check for DOI availability: http:...

230

Probing Fukushima with cosmic rays should help speed cleanup...  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Fukushima with cosmic rays Probing Fukushima with cosmic rays should help speed cleanup of damaged plant The initiative could reduce the time required to clean up the...

231

Peer Reviewed: Hard Times for Innovative Cleanup Technology  

Science Journals Connector (OSTI)

Peer Reviewed: Hard Times for Innovative Cleanup Technology ... What can be done to remove market barriers to new groundwater and soil remediation technologies? ...

Jacqueline A. MacDonald

2011-06-08T23:59:59.000Z

232

EM Launches First-Ever Interactive Timeline on Cleanup's History...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

waste and related topics in Phoenix this week. Featuring photos and videos, EM's Web-based chronicle, accessible here, captures hundreds of critical cleanup...

233

New Applications of an Expanded Gas Chromatography/Computer System  

Science Journals Connector (OSTI)

......System by J. G. W. Price, J. C. Scott and L...Farrar, Gerald F., Oil Gas J. 68, 83 (1970...Wilson, W. 0., and Price, J. G. W. P., J...a 300 watt nichrome heating element and a two inch...to 20% of the purchase price. Conclusions It bas been......

J. G. W. Price; J. C. Scott; L. O. Wheeler

1971-12-01T23:59:59.000Z

234

Copyright 1997 Carnegie Mellon University Gas Identification System using  

E-Print Network (OSTI)

Copyright © 1997 Carnegie Mellon University Gas Identification System using Graded Temperature are observed. Emphasis is on identification, since quantitation of identified mixtures is straightforward by the sensor bulk is decreased. Thus if an SnO2 sensor is ramped through an appropriate temperature range

Siegel, Mel

235

FRW Cosmological model with Modified Chaplygin Gas and Dynamical System  

E-Print Network (OSTI)

The Friedmann-Robertson-Walker(FRW) model with dynamical Dark Energy(DE) in the form of modified Chaplygin gas(MCG) has been investigated. The evolution equations are reduced to an autonomous system on the two dimensional phase plane and it can be interpreted as the motion of the particle in an one dimensional potential.

Nairwita Mazumder; Ritabrata Biswas; Subenoy Chakraborty

2011-06-23T23:59:59.000Z

236

Slag processing system for direct coal-fired gas turbines  

DOE Patents (OSTI)

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

237

Structure and Parameters Optimization of Organic Rankine Cycle System for Natural Gas Compressor Exhaust Gas Energy Recovery  

Science Journals Connector (OSTI)

In the paper, the structure and working principle of free piston based organic rankine cycle (ORC) exhaust gas energy recovery system...

Yongqiang Han; Zhongchang Liu; Yun Xu

2013-01-01T23:59:59.000Z

238

Solar gas turbine systems: Design, cost and perspectives  

Science Journals Connector (OSTI)

The combination of high solar shares with high conversion efficiencies is one of the major advantages of solar gas turbine systems compared to other solar-fossil hybrid power plants. Pressurized air receivers are used in solar tower plants to heat the compressed air in the gas turbine to temperatures up to 1000C. Therefore solar shares in the design case of 40% up to 90% can be realized and annual solar shares up to 30% can be achieved in base load. Using modern gas turbine systems in recuperation or combined cycle mode leads to conversion efficiencies of the solar heat from around 40% up to more than 50%. This is an important step towards cost reduction of solar thermal power. Together with the advantages of hybrid power plantsvariable solar share, fully dispatchable power, 24h operation without storagesolar gas turbine systems are expected to have a high potential for market introduction in the mid term view. In this paper the design and performance assessment of several prototype plants in the power levels of 1MW, 5MW and 15MW are presented. Advanced software tools are used for design optimization and performance prediction of the solar tower gas turbine power plants. Detailed cost assumptions for the solarized gas turbine, the solar tower plant and further equipment as well as for operation and maintenance are presented. Intensive performance and economic analysis of the prototype plants for different locations and capacity factors are shown. The cost reduction potential through automation and remote operation is revealed.

Peter Schwarzbzl; Reiner Buck; Chemi Sugarmen; Arik Ring; Ma Jess Marcos Crespo; Peter Altwegg; Juan Enrile

2006-01-01T23:59:59.000Z

239

This fact sheet describes the environmental cleanup activities the U.S. Departme  

Office of Legacy Management (LM)

environmental cleanup activities the U.S. Department of Energy Grand Junction Projects Office is environmental cleanup activities the U.S. Department of Energy Grand Junction Projects Office is conducting at the Monticello Mill Tailings Site in Monticello, Utah. These activities are being performed in accordance with Federal and State environmental laws. Background The original Monticello mill was built in 1942 to provide an additional supply of vanadium during World War II. Vanadium, an element used to strengthen steel, and uranium were milled intermittently until 1960. Mill tailings are sand-like material that remains after uranium has been extracted from the ore. Tailings contain naturally occurring materials that radioactively decay to radium and produce radon, a radioactive gas. If inhaled over a long period of time, particularly in enclosed areas,

240

Gas Composition and Oxygen Supply in the Root Environment of Substrates in Closed Hydroponic Systems  

E-Print Network (OSTI)

299 Gas Composition and Oxygen Supply in the Root Environment of Substrates in Closed Hydroponic Abstract The objective of this study was to get more information about the root zone, mainly the gas and ethylene, a gas sampling system was used to get gas samples from the root zone. CO2 gas samples of 20 ml

Lieth, J. Heinrich

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Systems for delivering liquified natural gas to an engine  

DOE Patents (OSTI)

A fuel delivery system includes a fuel tank configured to receive liquid natural gas. A first conduit extends from a vapor holding portion of the fuel tank to an economizer valve. A second conduit extends from a liquid holding portion of the fuel tank to the economizer valve. Fluid coupled to the economizer valve is a vaporizer which is heated by coolant from the engine and is positioned below the fuel tank. The economizer valve selectively withdraws either liquid natural gas or vaporized natural gas from the fuel tank depending on the pressure within the vapor holding portion of the fuel tank. A delivery conduit extends from the vaporizer to the engine. A return conduit having a check valve formed therein extends from the delivery conduit to the vapor holding portion of the fuel tank for pressurizing the fuel tank.

Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); O'Brien, James E. (Idaho Falls, ID); Siahpush, Ali S. (Idaho Falls, ID); Brown, Kevin B. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

242

Final Rocky Flats Cleanup Agreement, July 19, 1996 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Flats Cleanup Agreement Rocky Flats Cleanup Agreement State Colorado Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA/RCRA Scope Summary Establish the regulatory framework for achieving the ultimate cleanup of the Rocky Flats Site. Parties DOE; US EPA; The State of Colorado Date 7/19/1996 SCOPE * Establish the regulatory framework for achieving the ultimate cleanup of the Rocky Flats Site. * Ensure that the environmental impacts associated with activities at the Site will continue to be investigated and that appropriate response actions are taken. * Establish a procedural framework and schedule for developing, implementing, and monitoring appropriate response actions at the site. * Coordinate all of DOE's cleanup obligations under CERCLA, RCRA, and the Colorado

243

Secretary Chu Highlights Recovery Act Cleanup Progress | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Highlights Recovery Act Cleanup Progress Highlights Recovery Act Cleanup Progress Secretary Chu Highlights Recovery Act Cleanup Progress March 23, 2010 - 12:00am Addthis OAK RIDGE, TENN. - Energy Secretary Steven Chu announced today that the Department's Environmental Management program has spent more than $1.5 billion in American Recovery and Reinvestment Act funds on cleanup projects around the country - 25 percent of the program's total - creating an estimated 14,400 jobs since the start of the Recovery Act. "Because of the Recovery Act, programs around the country have been able to expand, hire and continue our important cleanup work," said Secretary Chu. "These investments have played a key role in helping local economies recover, creating jobs and supporting small businesses in dozens of

244

Lab receives an additional $19 million for environmental cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab receives an additional $19 million for environmental cleanup Lab receives an additional $19 million for environmental cleanup Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Lab receives an additional $19 million for environmental cleanup Lab also selects local businesses for five-year contracts June 1, 2013 Governor Susana Martinez visited the Lab in May to urge additional funding for cleanup Governor Susana Martinez visited the Lab in May to urge additional funding for cleanup Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Thanks to support from New Mexico Senators Tom Udall and Martin Heinrich, Representatives Ben Ray Lujan and Steve Pearce and Governor Susana Martinez, the Lab has received an additional $19 million for environmental

245

DOE Surpasses Cleanup Target Ahead of Schedule | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surpasses Cleanup Target Ahead of Schedule Surpasses Cleanup Target Ahead of Schedule DOE Surpasses Cleanup Target Ahead of Schedule May 12, 2011 - 12:00am Addthis WASHINGTON, D.C. - The U.S. Department of Energy announced today it has surpassed one of the Obama Administration's High Priority Performance Goals five months ahead of schedule in its effort to clean up the legacy of the Cold War. Through a $6 billion American Recovery and Reinvestment Act investment, the Department's cleanup footprint has been reduced by 45 percent, from 931 square miles to 516 square miles. By achieving this reduction, the Department is on track to reduce its overall cleanup footprint by approximately 90 percent by 2015. Footprint reduction lowers costs associated with site surveillance and maintenance and helps protect the

246

The Application of NEPA to CERCLA Cleanups | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Application of NEPA to CERCLA Cleanups The Application of NEPA to CERCLA Cleanups The Application of NEPA to CERCLA Cleanups On March 31, 1994, officials from the Departrnent of Energy (DOE), the Environmental Protection Agency (EPA), and the Council on Environmental Quality (CEQ) met with then Acting Assistant Attorney General Lois Schiffer and other representatives of the Department of Justice (DOJ) to discuss the issue of the relationship of the National Environmental Policy Act (NEPA) to the cleanup of federal facilities under the CERCLA Superfund program. The meeting focused on proposals for addressing problems that have arisen from DOE's attempts to integrate the procedural and analytical approaches of NEPA into the CERCLA cleanup process. This document describes what was discussed at the meeting and the consensus reached there.

247

DOE Surpasses Cleanup Target Ahead of Schedule: Recovery Act Investment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Surpasses Cleanup Target Ahead of Schedule: Recovery Act DOE Surpasses Cleanup Target Ahead of Schedule: Recovery Act Investment Saves Money, Trains Workers, Creates Jobs DOE Surpasses Cleanup Target Ahead of Schedule: Recovery Act Investment Saves Money, Trains Workers, Creates Jobs May 12, 2011 - 12:00pm Addthis Media Contact (202) 586-4940 WASHINGTON, D.C. - The U.S. Department of Energy announced today it has surpassed one of the Obama Administration's High Priority Performance Goals five months ahead of schedule in its effort to clean up the legacy of the Cold War. Through a $6 billion American Recovery and Reinvestment Act investment, the Department's cleanup footprint has been reduced by 45 percent, from 931 square miles to 516 square miles. By achieving this reduction, the Department is on track to reduce its overall cleanup footprint by

248

IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER June 29, 2011 - 12:00pm Addthis Media Contact Brad Bugger (208) 526-0833 Idaho Falls, ID - The Department of Energy Idaho Operations Office today announced that James Cooper has been named deputy manager of its highly-successful Idaho Cleanup Project, which oversees the environmental cleanup and waste management mission at DOE's Idaho site. Cooper has more than 30 years of experience in commercial and government engineering and management, including an eight month stint as acting Deputy Manager for EM. He has extensive experience in business management associated with program planning, development and administration. His experience includes all project phases from conceptual planning, cost and

249

EM's December Newsletter Recaps Cold War Cleanup Accomplishments in 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM's December Newsletter Recaps Cold War Cleanup Accomplishments EM's December Newsletter Recaps Cold War Cleanup Accomplishments in 2013 EM's December Newsletter Recaps Cold War Cleanup Accomplishments in 2013 December 24, 2013 - 12:00pm Addthis WASHINGTON, D.C. - On Dec. 19, EM completed demolition of the 4.8 million-square-foot Building K-25 at Oak Ridge, a milestone that capped a busy and successful 2013 for the Cold War cleanup program. The demolition was one of EM's most significant achievements this year, and it is captured in this newsletter issue along with dozens of other notable accomplishments across the EM complex. Read about EM's productive year, including cleanup of buildings and waste sites along the Columbia River in Washington state, progress in the disposition of transuranic waste at Idaho and other sites and preparations for a major demolition at the West Valley

250

EM, UCOR Quickly Reconcile Oak Ridge Cleanup Contract | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM, UCOR Quickly Reconcile Oak Ridge Cleanup Contract EM, UCOR Quickly Reconcile Oak Ridge Cleanup Contract EM, UCOR Quickly Reconcile Oak Ridge Cleanup Contract July 12, 2012 - 12:00pm Addthis DOE and UCOR employees held an event today celebrating the recent contract reconciliation. DOE and UCOR employees held an event today celebrating the recent contract reconciliation. OAK RIDGE, Tenn. - At a ceremony today, Oak Ridge's Environmental Management (EM) program and its prime contractor, URS | CH2M Oak Ridge, LLC (UCOR) celebrated the completion of the site's reconciled cleanup contract. The newly aligned contract accurately specifies the projects and activities that the site's cleanup contractor will perform. "The speedy completion of this process is a testament to DOE and UCOR contract teams and managers," said Sue Cange, acting manager of the Oak

251

The Application of NEPA to CERCLA Cleanups | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Application of NEPA to CERCLA Cleanups The Application of NEPA to CERCLA Cleanups The Application of NEPA to CERCLA Cleanups On March 31, 1994, officials from the Departrnent of Energy (DOE), the Environmental Protection Agency (EPA), and the Council on Environmental Quality (CEQ) met with then Acting Assistant Attorney General Lois Schiffer and other representatives of the Department of Justice (DOJ) to discuss the issue of the relationship of the National Environmental Policy Act (NEPA) to the cleanup of federal facilities under the CERCLA Superfund program. The meeting focused on proposals for addressing problems that have arisen from DOE's attempts to integrate the procedural and analytical approaches of NEPA into the CERCLA cleanup process. This document describes what was discussed at the meeting and the consensus reached there.

252

Colorado and the Accelerated Cleanup at Rocky Flats  

SciTech Connect

When the Rocky Flats closure project was declared complete in October 2005, it was the largest environmental cleanup to date. Even more impressive, it was ahead of schedule and well under budget. Several factors combined to produce this success including a performance-based contract with financial incentives, development and application of innovative technologies, and a regulator-backed accelerated approach to the cleanup process. The factor in this success in which the State of Colorado had the largest role was in developing and enforcing the Rocky Flats Cleanup Agreement. In compliance with this agreement, cleanup was accomplished by means of multiple interim actions that led to a comprehensive final decision at the end. A key element that allowed the accelerated cleanup was constant consultation among DOE, its contractor, and the regulators plus collaboration with stakeholders. (authors)

Spreng, C. [Public Health and Environment, Colorado Dept., Denver, CO (United States)

2007-07-01T23:59:59.000Z

253

Test and evaluation of a solar powered gas turbine system  

Science Journals Connector (OSTI)

This paper describes the test and the results of a first prototype solar powered gas turbine system, installed during 2002 in the CESA-1 tower facility at Plataforma Solar de Almera (PSA) in Spain. The main goals of the project were to develop a solar receiver cluster able to provide pressurized air of 1000C and solve the problems arising from the coupling of the receivers with a conventional gas turbine to demonstrate the operability of the system. The test set-up consists of the heliostat field of the CESA-1 facility providing the concentrated solar power, a pressurized solar receiver cluster of three modules of 400kWth each which convert the solar power into heat, and a modified helicopter engine (OST3) with a generator coupled to the grid. The first test phase at PSA started in December 2002 with the goal to reach a temperature level of 800C at the combustor air inlet by the integration of solar energy. This objective was achieved by the end of this test phase in March 2003, and the system could be operated at 230kWe power to grid without major problems. In the second test phase from June 2003 to August 2003 the temperature level was increased to almost 1000C. The paper describes the system configuration, the component efficiencies and the operation experiences of the first 100h of solar operation of this very successful first test of a solar operated Brayton gas turbine system.

Peter Heller; Markus Pfnder; Thorsten Denk; Felix Tellez; Antonio Valverde; Jess Fernandez; Arik Ring

2006-01-01T23:59:59.000Z

254

Saudis map $450 million gulf spill cleanup  

SciTech Connect

This paper reports on Saudi Arabia which has earmarked about $450 million to clean up Persian Gulf beaches polluted by history's worst oil spills, created during the Persian Gulf crisis. Details of the proposed cleanup measures were outlined by Saudi environmental officials at a seminar on the environment in Dubai, OPEC News Agency reported. The seminar was sponsored by the Gulf Area Oil Companies Mutual Aid Organization, an environmental cooperative agency set up by Persian Gulf governments. Meantime, a Saudi government report has outlined early efforts designed to contain the massive oil spills that hit the Saudi coast before oil could contaminate water intakes at the huge desalination plants serving Riyadh and cooling water facilities at Al Jubail.

Not Available

1991-11-18T23:59:59.000Z

255

Thermal chemical recuperation method and system for use with gas turbine systems  

DOE Patents (OSTI)

A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

Yang, W.C.; Newby, R.A.; Bannister, R.L.

1999-04-27T23:59:59.000Z

256

Cover and startup gas supply system for solid oxide fuel cell generator  

DOE Patents (OSTI)

A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.

Singh, Prabhakar (Export, PA); George, Raymond A. (Pittsburgh, PA)

1999-01-01T23:59:59.000Z

257

Cover and startup gas supply system for solid oxide fuel cell generator  

DOE Patents (OSTI)

A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.

Singh, P.; George, R.A.

1999-07-27T23:59:59.000Z

258

Hazardous Sites Cleanup Act (Pennsylvania) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Sites Cleanup Act (Pennsylvania) Hazardous Sites Cleanup Act (Pennsylvania) Hazardous Sites Cleanup Act (Pennsylvania) < Back Eligibility Agricultural Construction Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Pennsylvania Program Type Environmental Regulations Grant Program Provider Department of Environmental Protection This Act tasks the Pennsylvania Department of Environmental Protection with regulating hazardous waste. The department is charged with siting, review, permitting and development of hazardous waste treatment and disposal facilities in order to protect public health and safety, foster economic growth and protect the environment. Pennsylvania law establishes a fund to provide to the Department the

259

3rd Generation SCR System Using Solid Ammonia Storage and Direct Gas Dosing  

Energy.gov (U.S. Department of Energy (DOE))

SCR system provides direct ammonia gas dosing for optimal SCR performance with simplified and flexible exhaust layout.

260

A Glove Box Enclosed Gas-Tungsten Arc Welding System  

SciTech Connect

This report describes an inert atmosphere enclosed gas-tungsten arc welding system which has been assembled in support of the MC2730, MC2730A and MC 3500 Radioisotope Thermoelectric Generator (RTG) Enhanced Surveillance Program. One goal of this program is to fabricate welds with microstructures and impurity levels which are similar to production heat source welds previously produced at Los Alamos National Laboratory and the Mound Facility. These welds will subsequently be used for high temperature creep testing as part of the overall component lifetime assessment. In order to maximize the utility of the welding system, means for local control of the arc atmosphere have been incorporated and a wide range of welding environments can easily be evaluated. The gas-tungsten arc welding system used in the assembly is computer controlled, includes two-axis and rotary motion, and can be operated in either continuous or pulsed modes. The system can therefore be used for detailed research studies of welding impurity effects, development of prototype weld schedules, or to mimic a significant range of production-like welding conditions. Fixturing for fabrication of high temperature creep test samples have been designed and constructed, and weld schedules for grip-tab and test welds have been developed. The microstructure of these welds have been evaluated and are consistent with those used during RTG production.

Reevr, E, M; Robino, C.V.

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

SRS Recovery Act Completes Major Lower Three Runs Project Cleanup |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRS Recovery Act Completes Major Lower Three Runs Project Cleanup SRS Recovery Act Completes Major Lower Three Runs Project Cleanup SRS Recovery Act Completes Major Lower Three Runs Project Cleanup American Recovery and Reinvestment Act can now claim that 85 percent of the Savannah River Site (SRS) has been cleaned up with the recent completion of the Lower Three Runs (stream) Project. Twenty miles long, Lower Three Runs leaves the main body of the 310-square mile site and runs through parts of Barnwell and Allendale Counties until it flows into the Savannah River. Government property on both sides of the stream acts as a buffer as it runs through privately-owned property. Completing this project reduces the site's footprint by another 10 percent. SRS Recovery Act Completes Major Lower Three Runs Project Cleanup More Documents & Publications

262

EM Leads Successful Workshop Supporting Fukushima Cleanup | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Successful Workshop Supporting Fukushima Cleanup Successful Workshop Supporting Fukushima Cleanup EM Leads Successful Workshop Supporting Fukushima Cleanup August 8, 2013 - 12:00pm Addthis TOKYO - An EM-led U.S. delegation conducted its third workshop last month to provide expertise to Japanese officials leading the cleanup of the Fukushima Daiichi Nuclear Power Plant site and surrounding area, this time addressing priorities identified by Japan's government agencies. At the request of the Japanese Ministry of Environment (MOE) and Ministry of Economy, Trade and Industry (METI), the delegation's technical experts discussed their experience related to the behavior of radioactive cesium in the environment and other topics. The delegation included representatives from Savannah River, Pacific Northwest, Lawrence Berkeley, Lawrence

263

F Reactor Area Cleanup Complete | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

F Reactor Area Cleanup Complete F Reactor Area Cleanup Complete F Reactor Area Cleanup Complete September 19, 2012 - 12:00pm Addthis Media Contact Cameron Hardy, DOE Cameron.Hardy@rl.doe.gov 509-376-5365 RICHLAND, Wash. - U.S. Department of Energy (DOE) contractors have cleaned up the F Reactor Area, the first reactor area at the Hanford Site in southeastern Washington state to be fully remediated. While six of Hanford's nine plutonium production reactors have been sealed up, or cocooned, the F Reactor Area is the first to have all of its associated buildings and waste sites cleaned up in addition to having its reactor sealed up. "The cleanup of the F Reactor Area shows the tremendous progress workers are making along Hanford's River Corridor," said Dave Huizenga, Senior Advisor for the DOE Office of Environmental Management. "The River

264

SRS Recovery Act Completes Major Lower Three Runs Project Cleanup |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRS Recovery Act Completes Major Lower Three Runs Project Cleanup SRS Recovery Act Completes Major Lower Three Runs Project Cleanup SRS Recovery Act Completes Major Lower Three Runs Project Cleanup American Recovery and Reinvestment Act can now claim that 85 percent of the Savannah River Site (SRS) has been cleaned up with the recent completion of the Lower Three Runs (stream) Project. Twenty miles long, Lower Three Runs leaves the main body of the 310-square mile site and runs through parts of Barnwell and Allendale Counties until it flows into the Savannah River. Government property on both sides of the stream acts as a buffer as it runs through privately-owned property. Completing this project reduces the site's footprint by another 10 percent. SRS Recovery Act Completes Major Lower Three Runs Project Cleanup More Documents & Publications

265

Independent Oversight Activity Report, Idaho Cleanup Project - November  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Activity Report, Idaho Cleanup Project - Independent Oversight Activity Report, Idaho Cleanup Project - November 2013 Independent Oversight Activity Report, Idaho Cleanup Project - November 2013 November 2013 Pre-restart Visit to the Integrated Waste Treatment Unit by the Defense Nuclear Facilities Safety Board [HIAR-ICP-2013-11-19] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from November 19-22, 2013, at the Integrated Waste Treatment Unit facility of the Idaho Cleanup Project. The activity consisted of the HSS Site Lead touring the newly modified IWTU facility to observe the many process and equipment modifications that have been made since the facility was shut down. In addition, the Site Lead

266

Idaho Site Completes Cleanup Milestone Ahead of Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

News Media Contact: News Media Contact: Erik Simpson (208) 360-0426 For Immediate Release Date: June 23, 2010 Idaho Site Completes Cleanup Milestone Ahead of Schedule Idaho Falls, ID � The Department of Energy�s Idaho Operations Office, through the efforts of its cleanup contractor, CH2M-WG Idaho (CWI), recently reached a key cleanup milestone three weeks ahead of schedule by completing the transfer of nearly 6.6 metric tons of spent nuclear fuel from wet to dry storage. �The transfer of spent nuclear fuel from wet to dry storage represents a major contract milestone completion by CWI, a five year endeavor,� said Jim Cooper, DOE-ID Acting Deputy Manager for the Idaho Cleanup Project. �Completion of this campaign places the spent fuel in a safer configuration for the environment, complies with DOE�s commitment to the

267

Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Progress:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Progress: Recovery Act Funding Allows Demolition of Power Houses Ahead of Schedule Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Progress: Recovery Act Funding Allows Demolition of Power Houses Ahead of Schedule March 4, 2011 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE (509) 376-5365 Cameron.Hardy@rl.doe.gov Andre Armstrong, CHPRC (509) 376-6773 andre_l_armstrong@rl.g RICHLAND, WASH. - Today's safe and successful explosive demolition at Hanford's 200 Area by U.S. Department of Energy (DOE) contractor CH2M HILL Plateau Remediation Company (CHPRC) is the latest reminder of progress being made on cleanup as a result of American Recovery and Reinvestment Act investments. "Recovery Act funds allowed us to accelerate the schedule for removing

268

New Contract Helps Portsmouth GDP Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contract Helps Portsmouth GDP Cleanup Contract Helps Portsmouth GDP Cleanup New Contract Helps Portsmouth GDP Cleanup August 18, 2010 - 10:47am Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs Last week, we took a closer look at the dismantling of the final W62 warhead, a major milestone in the nation's efforts to reduce the amount of nuclear weapons in its stockpile. But after five decades of nuclear weapons production, the Cold War didn't just create a stockpile -- it left 1.5 million cubic meters of solid waste and 88 million gallons of liquid waste. This waste requires treatment and permanent safe storage in gaseous diffusion plants, like the Portsmouth Gaseous Diffusion Plant (GDP) in south-central Ohio. This week, the Department of Energy accelerated Portsmouth GDP cleanup

269

DOE Idaho site reaches 20-year cleanup milestone  

NLE Websites -- All DOE Office Websites (Extended Search)

IDAHO FALLS, IDAHO, 83403 IDAHO FALLS, IDAHO, 83403 Media Contact: Brad Bugger (208) 526-0833 For Immediate Release: January 19, 2012 DOE Idaho site reaches 20-year cleanup milestone IDAHO FALLS, ID- In two decades of Superfund cleanup work, the U.S. Department of Energy's Idaho site has removed hundreds of thousands of cubic yards of radioactive and hazardously contaminated soils, excavated radioactive waste buried since the 1950s, removed three nuclear reactors and hundreds of buildings, completely closed three major nuclear facilities and removed thousands of unexploded ordnance shells and fragments. Last month marked the 20-year anniversary of the signing and implementation of a cleanup agreement between DOE, the U.S. Environmental Protection Agency and the state of Idaho. In two decades, the cleanup agreement known

270

EM's Indefinite Delivery/Indefinite Quantity Cleanup Contracts |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM's Indefinite Delivery/Indefinite Quantity Cleanup Contracts EM's Indefinite Delivery/Indefinite Quantity Cleanup Contracts EM's Indefinite Delivery/Indefinite Quantity Cleanup Contracts The Office of Environmental Management (EM) has 23 Indefinite Delivery/Indefinite Quantity (IDIQ) contracts to provide cleanup services at EM sites across the United States. The scope of work of the IDIQ contracts includes: environmental remediation deactivation, decommissioning, demolition and removal of contaminated facilities waste management regulatory compliance These nationwide, multiple-award IDIQ contracts allow EM sites to place timely, competitive and cost-effective task orders for environmental services with either large or small businesses, as determined by the complexity of the requirements. Twelve of the IDIQ contracts were awarded

271

Protecting Recovery Act Cleanup Site During Massive Wildfire | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protecting Recovery Act Cleanup Site During Massive Wildfire Protecting Recovery Act Cleanup Site During Massive Wildfire Protecting Recovery Act Cleanup Site During Massive Wildfire Effective safety procedures in place at Los Alamos National Laboratory would have provided protections in the event that the raging Las Conchas fire had spread to the site of an American Recovery and Reinvestment Act project. "Our procedures not only placed the waste excavation site, Materials Disposal Area B (MDA-B), into a safe posture so it was well protected during the fire, but also allowed us to resume work quickly," said Project Director Al Chaloupka. Protecting Recovery Act Cleanup Site During Massive Wildfire More Documents & Publications Los Alamos Lab Completes Excavation of Waste Disposal Site Used in the 1940s

272

Independent Oversight Activity Report, Idaho Cleanup Project - November  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activity Report, Idaho Cleanup Project - Activity Report, Idaho Cleanup Project - November 2013 Independent Oversight Activity Report, Idaho Cleanup Project - November 2013 November 2013 Pre-restart Visit to the Integrated Waste Treatment Unit by the Defense Nuclear Facilities Safety Board [HIAR-ICP-2013-11-19] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from November 19-22, 2013, at the Integrated Waste Treatment Unit facility of the Idaho Cleanup Project. The activity consisted of the HSS Site Lead touring the newly modified IWTU facility to observe the many process and equipment modifications that have been made since the facility was shut down. In addition, the Site Lead

273

Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Progress:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Progress: Recovery Act Funding Allows Demolition of Power Houses Ahead of Schedule Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Progress: Recovery Act Funding Allows Demolition of Power Houses Ahead of Schedule March 4, 2011 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE (509) 376-5365 Cameron.Hardy@rl.doe.gov Andre Armstrong, CHPRC (509) 376-6773 andre_l_armstrong@rl.g RICHLAND, WASH. - Today's safe and successful explosive demolition at Hanford's 200 Area by U.S. Department of Energy (DOE) contractor CH2M HILL Plateau Remediation Company (CHPRC) is the latest reminder of progress being made on cleanup as a result of American Recovery and Reinvestment Act investments. "Recovery Act funds allowed us to accelerate the schedule for removing

274

Independent Oversight Assessment, Idaho Cleanup Project Sodium Bearing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Cleanup Project Sodium Idaho Cleanup Project Sodium Bearing Waste Treatment Project - November 2012 Independent Oversight Assessment, Idaho Cleanup Project Sodium Bearing Waste Treatment Project - November 2012 November 2012 Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent assessment of nuclear safety culture at the DOE Sodium Bearing Waste Treatment Project (SBWTP). The primary objective of the evaluation was to provide information regarding the status of the safety culture at SBWTP. The data collection phase of the assessment occurred in April and May 2012. SBWTP is one of DOE's largest nuclear

275

Secretary Chu, Governor Gregoire Issue Statement on Hanford Cleanup |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu, Governor Gregoire Issue Statement on Hanford Cleanup Chu, Governor Gregoire Issue Statement on Hanford Cleanup Secretary Chu, Governor Gregoire Issue Statement on Hanford Cleanup January 15, 2013 - 7:35pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- U.S. Energy Secretary Steven Chu and Governor Chris Gregoire issued the following joint statement on the cleanup efforts underway at Hanford: "Over the past several months, the Department of Energy and the State of Washington have worked together closely to ensure the Waste Treatment Plant is on a stable path to resolving the technical issues, completing construction, and beginning to treat waste in the coming years. "Based on insight gathered from a number leading scientific experts, the Department is now confident construction activities at the High-Level Waste

276

EM SSAB Contributes Community Views to Clean-up Decisions  

Energy.gov (U.S. Department of Energy (DOE))

EM has made public participation a fundamental component of its cleanup mission and has found that the EM SSAB, which draws upon diverse community viewpoints to provide advice and recommendations,...

277

PPPL's Earth Week features Colloquium on NYC green plan, cleanup...  

NLE Websites -- All DOE Office Websites (Extended Search)

clean up the area outside PPPL's Lyman Spitzer Building during the Earth Day cleanup at PPPL on April 22. From left to right: Virginia Finley, Julia Toth, Bill Davis, Glenn...

278

Wendy Cain named portfolio federal project director for ETTP cleanup  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energys Oak Ridge Office of Environmental Management has named Wendy Cain as its new portfolio federal project director for cleanup of the East Tennessee Technology Park.

279

IMPORTANT CLEANUP PROJECT TO RESUME AT IDAHO NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

(208) 334-2100 For Immediate Release: June 27, 2013 IMPORTANT CLEANUP PROJECT TO RESUME AT IDAHO NATIONAL LABORATORY (IDAHO FALLS) - Governor C.L. "Butch" Otter joined U.S....

280

2012 Congressional Nuclear Cleanup Caucus Briefings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Congressional Nuclear Cleanup Caucus Briefings 2 Congressional Nuclear Cleanup Caucus Briefings 2012 Congressional Nuclear Cleanup Caucus Briefings The Congressional Nuclear Cleanup Caucus serves as a way to brief members of Congress and their staff on EM headquarters and site activities, including budget, safety and project progress. 02/16/2012 - FY 2013 Budget Overview 03/07/2012 - Richland Operations Office, WA 03/21/2012 - Oak Ridge, TN 03/22/2012 - Portsmouth/Paducah Project Office, OH-KY 03/27/2012 - Safety Overview with Deputy Assistant Secretary for Safety & Security Program, Matthew Moury 03/28/2012 - Idaho Operations Office, ID 04/18/2012 - Savannah River Site, SC 04/19/2012 - Office of River Protection, WA More Documents & Publications Assistant Secretary Triay's FY 2012 EM Budget Rollout Presentation

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EM SSAB Contributes Community Views to Clean-up Decisions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contributes Community Views to Clean-up Decisions Contributes Community Views to Clean-up Decisions 2011 Local Board Contributions The Environmental Management Site-Specific Advisory Board (EM SSAB) has a unique mandate to provide input regarding the cleanup of nuclear legacy sites to the Department of Energy's Office of Environmental Management (EM). Chartered under the Federal Advisory Committee Act, the EM SSAB today comprises eight local boards, located in Hanford, WA; Idaho Falls, ID: Los Alamos, NM; the Nevada National Security Site; Oak Ridge, TN; Paducah, KY; Portsmouth, OH; and the Savannah River Site, SC. EM has made public participation a fundamental component of its cleanup mission and has found that the EM SSAB, which draws upon diverse community

282

DOE Selects Contractor for California Energy Technology Engineering Center Cleanup  

Energy.gov (U.S. Department of Energy (DOE))

Cincinnati - The Department of Energy (DOE) today awarded a competitive $25.7 million task order for cleanup activities at the Energy Technology Engineering Center (ETEC) to North Wind of Idaho Falls, Idaho.

283

The best use of biomass? Greenhouse gas lifecycle analysis of predicted pyrolysis biochar systems.  

E-Print Network (OSTI)

??Life cycle analysis is carried out for 11 predicted configurations of pyrolysis biochar systems to determine greenhouse gas balance, using an original spreadsheet model. System (more)

Hammond, James A R

2009-01-01T23:59:59.000Z

284

Systems acceptance and operability testing for rotary mode core sampling in flammable gas tanks  

SciTech Connect

This document provides instructions for the system acceptance and operability testing of the rotary mode core sampling system, modified for use in flammable gas tanks.

Corbett, J.E., Westinghouse Hanford

1996-07-29T23:59:59.000Z

285

ENHANCED CONTROL OF MERCURY BY WET FLUE GAS DESULFURIZATION SYSTEMS  

SciTech Connect

The U.S. Department of Energy and EPRI co-funded this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project has investigated catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems, and to future FGD installations. Field tests were conducted to determine whether candidate catalyst materials remain active towards mercury oxidation after extended flue gas exposure. Catalyst life will have a large impact on the cost effectiveness of this potential process. A mobile catalyst test unit was used to test the activity of four different catalyst materials for a period of up to six months each at three utility sites. Catalyst testing was completed at the first site, which fires Texas lignite, in December 1998; at the second test site, which fires a Powder River Basin subbituminous coal, in November 1999; and at the third site, which fires a medium- to high-sulfur bituminous coal, in January 2001. Results of testing at each of the three sites were reported in previous technical notes. At Site 1, catalysts were tested only as powders dispersed in sand bed reactors. At Sites 2 and 3, catalysts were tested in two forms, including powders dispersed in sand and in commercially available forms such as extruded pellets and coated honeycomb structures. This final report summarizes and presents results from all three sites, for the various catalyst forms tested. Field testing was supported by laboratory tests to screen catalysts for activity at specific flue gas compositions, to investigate catalyst deactivation mechanisms and methods for regenerating spent catalysts. Laboratory results are also summarized and discussed in this report.

Unknown

2001-06-01T23:59:59.000Z

286

Comparative controller design for a marine gas turbine propulsion system  

SciTech Connect

Controller design for marine gas turbine systems should consider three measures of performance: transient control, steady-state accuracy, and disturbance rejection. This paper presents and compares two common types of controller design in terms of these measures. The goal of the controllers was shaft speed control. To meet this goal, a classical proportional-plus-integral controller was designed and compared to a modern linear quadratic regulator design. The controllers' performances were evaluated with respect to the three measures mentioned above, with disturbances being input as oscillations in shaft torque due to seaway cycling.

Smith, D.L.; Stammetti, V.A. (Naval Postgraduate School, Monterey, CA (USA). Dept. of Mechanical Engineering)

1990-04-01T23:59:59.000Z

287

A Path to Reduce Methane Emissions from Gas Systems | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ernest Moniz Secretary of Energy The United States is now the world's largest producer of natural gas. This natural gas revolution is driving economic growth across the country,...

288

A Wood-Fired Gas Turbine Plant  

E-Print Network (OSTI)

-fired turbine, it probably seems that a wood gasification system must be involved. This is a proven and accepted method of producing gas to drive this type of power unit, but the fuel produced is a dirty fuel containing large amounts of me' ~ "'1 re, tars..., and other undesirable impurities that make it unsuitable for use as a fuel until a rather expensive cleanup process and residual waste disposal can take place. However, Aerospace Research felt that there must be a way to improve on the wood gasification...

Powell, S. H.; Hamrick, J. T.

289

A gas-cooled reactor surface power system  

Science Journals Connector (OSTI)

A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed depending on the number of astronauts level of scientific activity and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

Ronald J. Lipinski; Steven A. Wright; Roger X. Lenard; Gary A. Harms

1999-01-01T23:59:59.000Z

290

GLOBAL OPTIMIZATION OF MULTIPHASE FLOW NETWORKS IN OIL AND GAS PRODUCTION SYSTEMS  

E-Print Network (OSTI)

1 GLOBAL OPTIMIZATION OF MULTIPHASE FLOW NETWORKS IN OIL AND GAS PRODUCTION SYSTEMS MSc. Hans in an oil production system is developed. Each well may be manipulated by injecting lift gas and adjusting in the maximum oil flow rate, water flow rate, liquid flow rate, and gas flow rate. The wells may also

Johansen, Tor Arne

291

On-line microdialysis sample cleanup for electrospray ionization mass spectrometry of nucleic acid samples  

SciTech Connect

A major limitation of electrospray ionization mass spectrometry (ESI-MS) for oligonucleotide analysis arises due to sodium adduction, a problem that increases with molecular weight. Sodium adduction can preclude useful measurements when limited sample sizes prevent off-line cleanup. A novel and generally useful on-line microdialysis technique is described for the rapid (nearly 1-5 min) DNA sample cleanup for ESI-MS. Mass spectra of oligonucleotides of different size and sequence showing no significant sodium adduct peaks were obtained using the on-line microdialysis system with sodium chloride concentrations as high as 250 mM. Signal-to-noise ratios were also greatly enhanced compared to direct infusion of the original samples. By using ammonium acetate as the dialysis buffer, it was also found that the noncovalent association of double-stranded oligonucleotides could be preserved during the microdialysis process, allowing analysis by ESI-MS. 33 refs., 6 figs.

Liu, C.; Wu, Q.; Harms, A.C.; Smith, R.D. [Pacific Northwest National Lab., Richland, WA (United States)] [Pacific Northwest National Lab., Richland, WA (United States)

1996-09-15T23:59:59.000Z

292

System Modeling of Gas Engine Driven Heat Pump  

SciTech Connect

To improve the system performance of the GHP, modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated by using ORNL Modulating Heat Pump Design Software, which is used to predict steady-state heating and cooling performance of variable-speed vapor compression air-to-air heat pumps for a wide range of operational variables. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using desiccant system regenerated by waste heat from engine, the SHR can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% in rated operating conditions.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Shen, Bo [ORNL] [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

2012-01-01T23:59:59.000Z

293

Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine  

DOE Patents (OSTI)

A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

2014-05-13T23:59:59.000Z

294

NETL: Gasification Systems - Advanced Acid Gas Separation Technology for  

NLE Websites -- All DOE Office Websites (Extended Search)

Feed Systems Feed Systems Advanced Acid Gas Separation Technology for the Utilization of Low-Rank Coals Project Number: DE-FE0007759 Refinery offgas PSA at Air Products' facility in Baytown, TX Refinery offgas PSA at Air Products' facility in Baytown, TX. Air Products, in collaboration with the University of North Dakota Energy and Environmental Research Center (EERC), is testing its Sour Pressure Swing Adsorption (Sour PSA) process that separates syngas into an hydrogen-rich stream and second stream comprising of sulfur compounds(primarily hydrogen sulfide)carbon dioxide (CO2), and other impurities. The adsorbent technology testing that has been performed to date utilized syngas streams derived from higher rank coals and petcoke. Using data from experiments based on petcoke-derived syngas, replacing the

295

Study of Multi-scale Transport Phenomena in Tight Gas and Shale Gas Reservoir Systems  

E-Print Network (OSTI)

. These challenges have impeded efficient economic development of shale resources. New fundamental insights and tools are needed to improve the state of shale gas development. Few attempts have been made to model the compositional behavior of fluids in shale gas...

Freeman, Craig Matthew

2013-11-25T23:59:59.000Z

296

Security analysis of the interaction between the UK gas and electricity transmission systems  

E-Print Network (OSTI)

Natural gas has become the UKs foremost primary energy source, providing some 39% of our energy needs. The National Transmission System (NTS) has developed from its humble beginnings when natural gas was first discovered ...

Whiteford, James Raymond George

2012-06-25T23:59:59.000Z

297

System definition and analysis gas-fired industrial advanced turbine systems  

SciTech Connect

The objective is to define and analyze an engine system based on the gas fuel Advanced Turbine from Task 3. Using the cycle results of Task 3, a technical effort was started for Task 6 which would establish the definition of the engine flowpath and the key engine component systems. The key engine systems are: gas turbine engine overall flowpath; booster (low pressure compressor); intercooler; high pressure compressor; combustor; high pressure turbine; low pressure turbine and materials; engine system packaging; and power plant configurations. The design objective is to use the GE90 engine as the platform for the GE Industrial Advanced Turbine System. This objective sets the bounds for the engine flowpath and component systems.

Holloway, G.M.

1997-05-01T23:59:59.000Z

298

Active-to-Passive Environmental Cleanup Transition Strategies - 13220  

SciTech Connect

The Savannah River Site uses a graded approach to environmental cleanup. The selection of groundwater and vadose zone remediation technologies for a specific contamination area is based on the size, contaminant type, contaminant concentration, and configuration of the plume. These attributes are the result of the nature and mass of the source of contamination and the subsurface characteristics in the area of the plume. Many large plumes consist of several zones that are most efficiently addressed with separate complementary corrective action/remedial technologies. The highest concentrations of contaminants are found in the source zone. The most robust, high mass removal technologies are often best suited for remediation of the source zone. In the primary plume zone, active remedies, such as pump-and-treat, may be necessary to remove contaminants and exert hydraulic control of the plume. In the dilute fringe zone, contaminants are generally lower in concentration and can often be treated with passive techniques. A key determination in achieving an acceptable and cost-effective end state for a given waste unit is when to transition from an active treatment system to a more passive or natural approach (e.g., monitored natural attenuation or enhanced attenuation). This paper will discuss the considerations for such a transition as well as provide examples of successful transitions at the Savannah River Site. (authors)

Gaughan, Thomas F. [Savannah River Nuclear Solutions, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, Savannah River Site, Aiken, SC 29808 (United States); Aylward, Robert S.; Denham, Miles E.; Looney, Brian B. [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States); Whitaker, Wade C. [Department of Energy - Savannah River, Savannah River Site, Aiken, SC 29808 (United States)] [Department of Energy - Savannah River, Savannah River Site, Aiken, SC 29808 (United States); Mills, Gary L. [Savannah River Ecology Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River Ecology Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

299

Advanced Materials for Mercury 50 Gas Turbine Combustion System  

SciTech Connect

Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70,

Price, Jeffrey

2008-09-30T23:59:59.000Z

300

EIA - The National Energy Modeling System: An Overview 2003-Oil and Gas  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module The National Energy Modeling System: An Overview 2003 Oil and Gas Supply Module The oil and gas supply module (OGSM) consists of a series of process submodules that project the availability of: Domestic crude oil production and dry natural gas production from onshore, offshore, and Alaskan reservoirs Imported pipeline–quality gas from Mexico and Canada Imported liquefied natural gas. Figure 12. Oil and Gas Supply Module Regions. Need help, contact the National Energy Information Center at 202-202-586-8800. Figure 13. Oil and Gas Suppply Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Oil and Gas Supply Module Table. Need help, contact the National Energy Information Center at 202-586-8800.

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Idaho Site's Cold War Cleanup Takes Center Stage in Publication |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site's Cold War Cleanup Takes Center Stage in Publication Site's Cold War Cleanup Takes Center Stage in Publication Idaho Site's Cold War Cleanup Takes Center Stage in Publication January 22, 2013 - 12:00pm Addthis The Society of American Military Engineers focuses on the Idaho site’s environmental cleanup in the latest issue of its publication, The Military Engineer. This photo of the Engineering Test Reactor, which was decommissioned and demolished at the Idaho site, is featured in the story. The Society of American Military Engineers focuses on the Idaho site's environmental cleanup in the latest issue of its publication, The Military Engineer. This photo of the Engineering Test Reactor, which was decommissioned and demolished at the Idaho site, is featured in the story. The Society of American Military Engineers highlights this Idaho site photo on the cover of the latest issue of its publication, The Military Engineer. In the photo, work is under way to move spent nuclear fuel from wet storage to the safer, more permanent alternative of dry storage.

302

Idaho Site's Cold War Cleanup Takes Center Stage in Publication |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Site's Cold War Cleanup Takes Center Stage in Publication Idaho Site's Cold War Cleanup Takes Center Stage in Publication Idaho Site's Cold War Cleanup Takes Center Stage in Publication January 22, 2013 - 12:00pm Addthis The Society of American Military Engineers focuses on the Idaho site’s environmental cleanup in the latest issue of its publication, The Military Engineer. This photo of the Engineering Test Reactor, which was decommissioned and demolished at the Idaho site, is featured in the story. The Society of American Military Engineers focuses on the Idaho site's environmental cleanup in the latest issue of its publication, The Military Engineer. This photo of the Engineering Test Reactor, which was decommissioned and demolished at the Idaho site, is featured in the story. The Society of American Military Engineers highlights this Idaho site photo on the cover of the latest issue of its publication, The Military Engineer. In the photo, work is under way to move spent nuclear fuel from wet storage to the safer, more permanent alternative of dry storage.

303

Fuel Cell/Gas Turbine System Performance Studies  

Office of Scientific and Technical Information (OSTI)

METC/C-97/7278 METC/C-97/7278 Title: Fuel Cell/Gas Turbine System Performance STudies Authors: George T. Lee (METC) Frederick A. Sudhoff (METC) Conference: Fuel Cells '96 Review Meeting Conference Location: Morgantown, West Virginia Conference Dates: August 20-21, 1996 Conference Sponsor: U.S. DOE, Morgantown Energy Technology Center Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

304

Backscatter absorption gas imaging systems and light sources therefore  

DOE Patents (OSTI)

The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

Kulp, Thomas Jan (Livermore, CA); Kliner, Dahv A. V. (San Ramon, CA); Sommers, Ricky (Oakley, CA); Goers, Uta-Barbara (Campbell, NY); Armstrong, Karla M. (Livermore, CA)

2006-12-19T23:59:59.000Z

305

[Gas cooled fuel cell systems technology development program  

SciTech Connect

Objective is the development of a gas-cooled phosphoric acid fuel cell for electric utility power plant application. Primary objectives are to: demonstrate performance endurance in 10-cell stacks at 70 psia, 190 C, and 267 mA/cm[sup 2]; improve cell degradation rate to less than 8 mV/1000 hours; develop cost effective criteria, processes, and design configurations for stack components; design multiple stack unit and a single 100 kW fuel cell stack; design a 375 kW fuel cell module and demonstrate average cell beginning-of-use performance; manufacture four 375-kW fuel cell modules and establish characteristics of 1.5 MW pilot power plant. The work is broken into program management, systems engineering, fuel cell development and test, facilities development.

Not Available

1988-03-01T23:59:59.000Z

306

ABSORBING GAS AROUND THE WASP-12 PLANETARY SYSTEM  

SciTech Connect

Near-UV observations of the planet host star WASP-12 uncovered the apparent absence of the normally conspicuous core emission of the Mg II h and k resonance lines. This anomaly could be due either to (1) a lack of stellar activity, which would be unprecedented for a solar-like star of the imputed age of WASP-12 or (2) extrinsic absorption, from the intervening interstellar medium (ISM) or from material within the WASP-12 system itself, presumably ablated from the extreme hot Jupiter WASP-12 b. HIRES archival spectra of the Ca II H and K lines of WASP-12 show broad depressions in the line cores, deeper than those of other inactive and similarly distant stars and similar to WASP-12's Mg II h and k line profiles. We took high-resolution ESPaDOnS and FIES spectra of three early-type stars within 20' of WASP-12 and at similar distances, which show the ISM column is insufficient to produce the broad Ca II depression observed in WASP-12. The EBHIS H I column density map supports and strengthens this conclusion. Extrinsic absorption by material local to the WASP-12 system is therefore the most likely cause of the line core anomalies. Gas escaping from the heavily irradiated planet could form a stable and thick circumstellar disk/cloud. The anomalously low stellar activity index ( log R{sup '}{sub HK}) of WASP-12 is evidently a direct consequence of the extra core absorption, so similar HK index deficiencies might signal the presence of translucent circumstellar gas around other stars hosting evaporating planets.

Fossati, L.; Floeer, L. [Argelander-Institut fuer Astronomie der Universitaet Bonn, Auf dem Huegel 71, D-53121, Bonn (Germany); Ayres, T. R. [Center for Astrophysics and Space Astronomy, University of Colorado, 593 UCB, Boulder, CO 80309-0593 (United States); Haswell, C. A. [Department of Physics and Astronomy, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Bohlender, D. [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Kochukhov, O., E-mail: lfossati@astro.uni-bonn.de, E-mail: lfloeer@astro.uni-bonn.de, E-mail: Thomas.Ayres@colorado.edu, E-mail: C.A.Haswell@open.ac.uk, E-mail: david.bohlender@nrc-cnrc.gc.ca, E-mail: oleg.kochukhov@physics.uu.se [Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala (Sweden)

2013-04-01T23:59:59.000Z

307

It's a Gas Robert D. Pike Literate Software Systems  

E-Print Network (OSTI)

It's a Gas Robert D. Pike 1 16 19 22 27 33 41 46 49 67 71 76 79 2 34 52 59 3 35 60 4 31 61 5 28 53. Cholesterol drugs 8. Acidic gas 11. Roundabouts 16. Fertilizer gas 17. Just like 18. It's called a "tall" at Starbucks 19. Excited 20. Caught 21. Hues 22. Deep sleep cycles 23. Law suit goal sometimes 26. Unfixed gas

Pike, Robert D.

308

Advisory Board Meets to Discuss EM Cleanup's Future | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advisory Board Meets to Discuss EM Cleanup's Future Advisory Board Meets to Discuss EM Cleanup's Future Advisory Board Meets to Discuss EM Cleanup's Future December 6, 2012 - 12:00pm Addthis EM Principal Deputy Assistant Secretary Tracy Mustin, second from right, speaks with members of the Environmental Management Advisory Board this week as EM Deputy Assistant Secretary, Safety, Security and Quality Programs, Matthew Moury, second from left, listens. EM Principal Deputy Assistant Secretary Tracy Mustin, second from right, speaks with members of the Environmental Management Advisory Board this week as EM Deputy Assistant Secretary, Safety, Security and Quality Programs, Matthew Moury, second from left, listens. WASHINGTON, D.C. - EM Principal Deputy Assistant Secretary Tracy Mustin this week sought guidance from the Environmental Management Advisory Board

309

Oak Ridge Moves Forward in Mercury Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup March 28, 2013 - 12:00pm Addthis Workers recently removed five large mercury-contaminated tanks from Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. OAK RIDGE, Tenn. - Oak Ridge's EM program is making significant progress to reduce environmental mercury releases from the Y-12 National Security Complex. Mercury is one of the greatest environmental concerns facing the Oak Ridge

310

Surface and Soil Cleanup at Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface and Soil Projects Surface and Soil Projects placeholder Aerial view of capped landfills A major part of the overall site cleanup involved addressing contaminated soils, underground tanks, and waste storage areas. All of the major soil projects have now been completed, with the exception of some soils that will need to be cleaned up during the decommissioning of the Brookhaven Graphite Research Reactor and High Flux Beam Reactor. Following are a list of major surface and soil cleanup projects that have been completed since 1994: Three out-of-service 100,000 gallon aboveground waste tanks were removed and disposed of at a licensed off-site disposal facility. Sixteen underground storage tanks (USTs) were removed between 1988 and 2005 under the cleanup program. The project included the removal, transportation, and disposal of the tanks and approximately 4,000 cubic yards of soil and debris.

311

DOE Achieves Second TRU Waste Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Achieves Second TRU Waste Cleanup Achieves Second TRU Waste Cleanup DOE Achieves Second TRU Waste Cleanup October 6, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. -The U.S. Department of Energy has successfully removed all legacy contact-handled transuranic (TRU) waste from the Argonne National Laboratory (ANL), near Chicago, Illinois. In September, all legacy TRU waste was removed from the Bettis Atomic Power Laboratory (BAPL), near Pittsburgh, Pennsylvania. Maintained by the DOE, ANL is the country's first science and engineering research national laboratory. This milestone was supported by $83,000 provided to the National Transuranic Waste Program as part of a $172 million American Recovery and Reinvestment Act investment to expedite legacy TRU waste disposal activities across the DOE complex.

312

Moab Uranium Mill Tailings Cleanup Project Steps into Spotlight at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uranium Mill Tailings Cleanup Project Steps into Spotlight at Uranium Mill Tailings Cleanup Project Steps into Spotlight at International Meeting in Vienna Moab Uranium Mill Tailings Cleanup Project Steps into Spotlight at International Meeting in Vienna October 22, 2012 - 12:00pm Addthis Moab Federal Project Director Donald Metzler presents at the Uranium Mining Remediation Exchange Group meeting in Germany in September 2011. Moab Federal Project Director Donald Metzler presents at the Uranium Mining Remediation Exchange Group meeting in Germany in September 2011. Moab Federal Project Director Donald Metzler Moab Federal Project Director Donald Metzler Moab Federal Project Director Donald Metzler presents at the Uranium Mining Remediation Exchange Group meeting in Germany in September 2011. Moab Federal Project Director Donald Metzler

313

Exemplary Hurricane Damage Cleanup Earns Petroleum Reserve Coveted  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exemplary Hurricane Damage Cleanup Earns Petroleum Reserve Coveted Exemplary Hurricane Damage Cleanup Earns Petroleum Reserve Coveted Environmental Award Exemplary Hurricane Damage Cleanup Earns Petroleum Reserve Coveted Environmental Award April 22, 2010 - 1:00pm Addthis Washington, DC - An exceptional waste management project at a Texas Strategic Petroleum Reserve (SPR) site following Hurricane Ike in 2008 has won a DOE Environmental Sustainability (EStar) Award for Waste/Pollution Prevention. The award recognizes the SPR Storm Recovery Debris Waste Management Project at the Big Hill storage complex near Beaumont, Texas, which was heavily impacted by Hurricane Ike in September 2008. Selected annually by an independent panel of judges, EStar awards recognize environmental sustainability projects and programs that reduce risks and impacts, protect

314

Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Obtains Patent for Nuclear Reactor Sodium Cleanup Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment March 28, 2013 - 12:00pm Addthis CWI engineers Jeff Jones, David Tolman, right, and Kirk Dooley (seated) developed a treatment to safely dissolve a bicarbonate crust and treat and remove the sodium in the Experimental Breeder Reactor-II at the Idaho site. CWI engineers Jeff Jones, David Tolman, right, and Kirk Dooley (seated) developed a treatment to safely dissolve a bicarbonate crust and treat and remove the sodium in the Experimental Breeder Reactor-II at the Idaho site. Piping in the east boiler basement of the sodium processing building was color coded for easy identification. Orange indicates sodium and green identifies cooling water.

315

Hanford Achieves a Cleanup First | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Achieves a Cleanup First Achieves a Cleanup First Hanford Achieves a Cleanup First September 1, 2012 - 12:00pm Addthis F Reactor during operations in 1956. F Reactor during operations in 1956. F Reactor Area in July 2012. F Reactor Area in July 2012. A worker cuts and drains pipe at a waste site in F Area. The pipe contained sodium dichromate, which was used as an anti-corrosion agent. A worker cuts and drains pipe at a waste site in F Area. The pipe contained sodium dichromate, which was used as an anti-corrosion agent. An excavator scoops out a section of river outfall pipeline at an F Area waste site. The pipeline was used to discharge effluent into the Columbia River. An excavator scoops out a section of river outfall pipeline at an F Area waste site. The pipeline was used to discharge effluent into the Columbia

316

Massive Soil Cleanup Effort Concludes at Hanford - Recovery Act Funding  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massive Soil Cleanup Effort Concludes at Hanford - Recovery Act Massive Soil Cleanup Effort Concludes at Hanford - Recovery Act Funding Pays for Safe Disposal of 20,000 Truckloads of Soil Massive Soil Cleanup Effort Concludes at Hanford - Recovery Act Funding Pays for Safe Disposal of 20,000 Truckloads of Soil August 11, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong, CH2M HILL Andre_L_Armstrong@rl.gov 509-376-6773 Geoff Tyree, DOE Geoffrey.Tyree@rl.doe.gov 509-376-4171 RICHLAND, Wash. - U.S. Department of Energy contractor CH2M HILL Plateau Remediation Company removed nearly half a million tons of contaminated soil over the last two years using American Recovery and Reinvestment Act funding at the Hanford Site in southeast Washington State. Workers shipped more than 20,000 truckloads of contaminated soil excavated

317

Report for EM-Initiated Program Supporting Cleanup is Available |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report for EM-Initiated Program Supporting Cleanup is Available Report for EM-Initiated Program Supporting Cleanup is Available Report for EM-Initiated Program Supporting Cleanup is Available September 4, 2013 - 12:00pm Addthis An Akuna-generated figure of the Savannah River F-Basin site showing the distribution of surface structures, well, contaminate plume and lithofacies. An Akuna-generated figure of the Savannah River F-Basin site showing the distribution of surface structures, well, contaminate plume and lithofacies. Modeled spatial distribution of technicium-99 after the releases from the BC cribs on the Hanford Central Plateau using VisIt software. Modeled spatial distribution of technicium-99 after the releases from the BC cribs on the Hanford Central Plateau using VisIt software. An Akuna-generated figure of the Savannah River F-Basin site showing the distribution of surface structures, well, contaminate plume and lithofacies.

318

EM Delegation Tours UK Cleanup Program's Sellafield Site | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Delegation Tours UK Cleanup Program's Sellafield Site EM Delegation Tours UK Cleanup Program's Sellafield Site EM Delegation Tours UK Cleanup Program's Sellafield Site May 13, 2013 - 12:00pm Addthis Front row, left to right, NuVision Engineering Vice President Laurie Judd, EM Lead International Affairs Specialist Ana Han, EM Associate Principal Deputy Assistant Secretary Alice Williams and United Kingdom Nuclear Decommissioning Authority (NDA) Head of International Relations John Mathieson; back row, left to right, NDA Sellafield Site Deputy Head Graham Jonsson and EM Deputy Assistant Secretary for Tank Waste and Nuclear Material Management Ken Picha. Front row, left to right, NuVision Engineering Vice President Laurie Judd, EM Lead International Affairs Specialist Ana Han, EM Associate Principal Deputy Assistant Secretary Alice Williams and United Kingdom Nuclear

319

DOE Achieves Second TRU Waste Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Achieves Second TRU Waste Cleanup Achieves Second TRU Waste Cleanup DOE Achieves Second TRU Waste Cleanup October 6, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. -The U.S. Department of Energy has successfully removed all legacy contact-handled transuranic (TRU) waste from the Argonne National Laboratory (ANL), near Chicago, Illinois. In September, all legacy TRU waste was removed from the Bettis Atomic Power Laboratory (BAPL), near Pittsburgh, Pennsylvania. Maintained by the DOE, ANL is the country's first science and engineering research national laboratory. This milestone was supported by $83,000 provided to the National Transuranic Waste Program as part of a $172 million American Recovery and Reinvestment Act investment to expedite legacy TRU waste disposal activities across the DOE complex.

320

Paducah Site Undergoing Steady Groundwater Cleanup with Variety of Methods  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Undergoing Steady Groundwater Cleanup with Variety of Site Undergoing Steady Groundwater Cleanup with Variety of Methods Paducah Site Undergoing Steady Groundwater Cleanup with Variety of Methods June 1, 2012 - 12:00pm Addthis The yellow outline depicts an area southeast of the C-400 Cleaning Building, background, where electrical resistance heating will be used to remove trichloroethene (TCE) down to 60 feet below ground. Electrodes will heat the chemical into a vapor that can be pumped to the surface and treated in the white structure, center. The yellow outline depicts an area southeast of the C-400 Cleaning Building, background, where electrical resistance heating will be used to remove trichloroethene (TCE) down to 60 feet below ground. Electrodes will heat the chemical into a vapor that can be pumped to the surface and

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EM Delegation Tours UK Cleanup Program's Sellafield Site | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tours UK Cleanup Program's Sellafield Site Tours UK Cleanup Program's Sellafield Site EM Delegation Tours UK Cleanup Program's Sellafield Site May 13, 2013 - 12:00pm Addthis Front row, left to right, NuVision Engineering Vice President Laurie Judd, EM Lead International Affairs Specialist Ana Han, EM Associate Principal Deputy Assistant Secretary Alice Williams and United Kingdom Nuclear Decommissioning Authority (NDA) Head of International Relations John Mathieson; back row, left to right, NDA Sellafield Site Deputy Head Graham Jonsson and EM Deputy Assistant Secretary for Tank Waste and Nuclear Material Management Ken Picha. Front row, left to right, NuVision Engineering Vice President Laurie Judd, EM Lead International Affairs Specialist Ana Han, EM Associate Principal Deputy Assistant Secretary Alice Williams and United Kingdom Nuclear

322

Summer Fellow Explores EM's Cold War Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summer Fellow Explores EM's Cold War Cleanup Summer Fellow Explores EM's Cold War Cleanup Summer Fellow Explores EM's Cold War Cleanup November 26, 2013 - 12:00pm Addthis Maine Maritime Academy senior Jared Woods learned about nuclear waste management issues at EM. Maine Maritime Academy senior Jared Woods learned about nuclear waste management issues at EM. WASHINGTON, D.C. - Jared Woods graduates from the Maine Maritime Academy (MMA) next month with the experience of an adventurous summer as a fellow in the DOE Scholars Program, an opportunity to explore the agency's careers and learn about its mission and operations. Assigned to EM's Washington, D.C. headquarters, Woods gained knowledge about nuclear safety and waste treatment under the guidance of EM Office of Safety Management Director Todd Lapointe, who graduated from MMA in 1987.

323

Implications of the KONVERGENCE Model for Difficult Cleanup Decisions  

SciTech Connect

AbstractSome cleanup decisions, such as cleanup of intractable contaminated sites or disposal of spent nuclear fuel, have proven difficult to make. Such decisions face high resistance to agreement from stakeholders possibly because they do not trust the decision makers, view the consequences of being wrong as too high, etc. Our projects goal is to improve sciencebased cleanup decision-making. This includes diagnosing intractable situations, as a step to identifying a path toward sustainable solutions. Companion papers describe the underlying philosophy of the KONVERGENCE Model for Sustainable Decisions,1 and the overall framework and process steps.2 Where knowledge, values, and resources converge (the K, V, and R in KONVERGENCE), you will find a sustainable decision a decision that works over time. For intractable cases, serious consideration of the adaptable class of alternatives is warranted if properly implemented and packaged.

Piet, Steven James; Dakins, Maxine Ellen; Gibson, Patrick Lavern; Joe, Jeffrey Clark; Kerr, Thomas A; Nitschke, Robert Leon

2002-08-04T23:59:59.000Z

324

Highly Radioactive Sludge Removal Complete: Historic Cleanup Effort Reduces  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Highly Radioactive Sludge Removal Complete: Historic Cleanup Effort Highly Radioactive Sludge Removal Complete: Historic Cleanup Effort Reduces the Risk along the Columbia River Highly Radioactive Sludge Removal Complete: Historic Cleanup Effort Reduces the Risk along the Columbia River September 13, 2012 - 12:00pm Addthis Media Contacts Cameron Salony, DOE Cameron.Salony@rl.doe.gov 509-376-0402 Dee Millikin, CH2M HILL Plateau Remediation Company Dee_Millikin@rl.gov 509-376-1297 RICHLAND, WASH. - The U.S. Department of Energy (DOE) and contractor CH2M HILL Plateau Remediation Company (CH2M HILL) announced today the removal of the first phase of highly radioactive sludge from under water storage in the K West Basin about 400 yards away from the Columbia River. "This is a major step forward in protecting the river and a historic

325

Highly Radioactive Sludge Removal Complete: Historic Cleanup Effort Reduces  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Highly Radioactive Sludge Removal Complete: Historic Cleanup Effort Highly Radioactive Sludge Removal Complete: Historic Cleanup Effort Reduces the Risk along the Columbia River Highly Radioactive Sludge Removal Complete: Historic Cleanup Effort Reduces the Risk along the Columbia River September 13, 2012 - 12:00pm Addthis Media Contacts Cameron Salony, DOE Cameron.Salony@rl.doe.gov 509-376-0402 Dee Millikin, CH2M HILL Plateau Remediation Company Dee_Millikin@rl.gov 509-376-1297 RICHLAND, WASH. - The U.S. Department of Energy (DOE) and contractor CH2M HILL Plateau Remediation Company (CH2M HILL) announced today the removal of the first phase of highly radioactive sludge from under water storage in the K West Basin about 400 yards away from the Columbia River. "This is a major step forward in protecting the river and a historic

326

Summer Fellow Explores EM's Cold War Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summer Fellow Explores EM's Cold War Cleanup Summer Fellow Explores EM's Cold War Cleanup Summer Fellow Explores EM's Cold War Cleanup November 26, 2013 - 12:00pm Addthis Maine Maritime Academy senior Jared Woods learned about nuclear waste management issues at EM. Maine Maritime Academy senior Jared Woods learned about nuclear waste management issues at EM. WASHINGTON, D.C. - Jared Woods graduates from the Maine Maritime Academy (MMA) next month with the experience of an adventurous summer as a fellow in the DOE Scholars Program, an opportunity to explore the agency's careers and learn about its mission and operations. Assigned to EM's Washington, D.C. headquarters, Woods gained knowledge about nuclear safety and waste treatment under the guidance of EM Office of Safety Management Director Todd Lapointe, who graduated from MMA in 1987.

327

Oak Ridge Moves Forward in Mercury Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moves Forward in Mercury Cleanup Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup March 28, 2013 - 12:00pm Addthis Workers recently removed five large mercury-contaminated tanks from Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. OAK RIDGE, Tenn. - Oak Ridge's EM program is making significant progress to reduce environmental mercury releases from the Y-12 National Security Complex. Mercury is one of the greatest environmental concerns facing the Oak Ridge

328

Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment March 28, 2013 - 12:00pm Addthis CWI engineers Jeff Jones, David Tolman, right, and Kirk Dooley (seated) developed a treatment to safely dissolve a bicarbonate crust and treat and remove the sodium in the Experimental Breeder Reactor-II at the Idaho site. CWI engineers Jeff Jones, David Tolman, right, and Kirk Dooley (seated) developed a treatment to safely dissolve a bicarbonate crust and treat and remove the sodium in the Experimental Breeder Reactor-II at the Idaho site. Piping in the east boiler basement of the sodium processing building was color coded for easy identification. Orange indicates sodium and green identifies cooling water.

329

Auxiliary ECR heating system for the gas dynamic trap  

SciTech Connect

Physics aspects of a new system for electron cyclotron resonance heating (ECRH) at the magnetic mirror device Gas Dynamic Trap (GDT, Budker Institute, Novosibirsk) are discussed. This system based on two 400 kW/54.5 GHz gyrotrons is aimed at increasing the electron temperature up to the range 250-350 eV for improved energy confinement of hot ions. The key physical issue of the GDT magnetic field topology is that conventional ECRH geometries are not accessible. The proposed solution is based on a peculiar effect of radiation trapping in inhomogeneous magnetized plasma. Under specific conditions, oblique launch of gyrotron radiation results in generation of right-hand-polarized (R) electromagnetic waves propagating with high N{sub Double-Vertical-Line Double-Vertical-Line} in the vicinity of the cyclotron resonance layer, which leads to effective single-pass absorption of the injected microwave power. In the present paper, we investigate numerically an optimized ECRH scenario based on the proposed mechanism of wave propagation and discuss the design of the ECRH system, which is currently under construction at the Budker Institute.

Shalashov, A. G.; Gospodchikov, E. D.; Smolyakova, O. B.; Malygin, V. I. [Institute of Applied Physics of the Russian Academy of Sciences, Ulyanova St. 46, 603950 Nizhny Novgorod (Russian Federation); Bagryansky, P. A. [Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Prospect 11, 630090 Novosibirsk (Russian Federation); Thumm, M. [Institut fuer Hochfrequenztechnik und Elektronik, Karlsruhe Institut fuer Technologie, Engesserstrasse 5, 76131 Karlsruhe (Germany)

2012-05-15T23:59:59.000Z

330

EIA - The National Energy Modeling System: An Overview 2003-Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module The National Energy Modeling System: An Overview 2003 Natural Gas Transmission and Distribution Module Figure 15. Natural Gas Transmission and Distribution Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Figure 16. Natural Gas Transmission and distribution Module Network. Need help, contact the National Energy Information Center at 202-586-8800. Natural Gas Transmission and distribution Module Table. Need help, contact the National Energy Information Center at 202-586-8800. The natural gas transmission and distribution module (NGTDM) of NEMS represents the natural gas market and determines regional market–clearing prices for natural gas supplies and for end–use consumption, given the

331

Role of Background in the CERCLA Cleanup Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Background in the CERCLA Cleanup Program Background in the CERCLA Cleanup Program U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Office of Emergency and Remedial Response April 26, 2002 OSWER 9285.6-07P OSWER 9285.6-07P page 2 of 13 Table of Contents Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 3 of 13 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 4 of 13 Definitions of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 5 of 13 Consideration of Background in Risk Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . Page 6 of 13 Consideration of Background in Risk Management . . . . . . . . . . . . . . . . . . . . . . . . . Page 7 of 13 Consideration of Background in Risk Communication . . . . . . . . . . . . . . . . . . . . . . . Page 8 of 13 Hypothetical Case Examples .

332

The National Energy Modeling System: An Overview 1998 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

NATURAL GAS TRANSMISSION AND DISTRIBUTION MODULE NATURAL GAS TRANSMISSION AND DISTRIBUTION MODULE blueball.gif (205 bytes) Annual Flow Submodule blueball.gif (205 bytes) Capacity Expansion Submodule blueball.gif (205 bytes) Pipeline Tariff Submodule blueball.gif (205 bytes) Distributor Tariff Submodule The natural gas transmission and distribution module (NGTDM) is the component of NEMS that represents the natural gas market. The NGTDM models the natural gas transmission and distribution network in the lower 48 States, which links suppliers (including importers) and consumers of natural gas. The module determines regional market-clearing prices for natural gas supplies (including border prices) and end-use consumption. The NGTDM has four primary submodules: the annual flow submodule, the capacity expansion submodule, the pipeline tariff submodule, and the

333

Investigation of greenhouse gas reduction strategies by industries : an enterprise systems architecting approach  

E-Print Network (OSTI)

This thesis explores an enterprise systems architecting approach to investigate the greenhouse gas reduction strategies followed by industries, especially for automotive industry and Information Technology industry. The ...

Tanthullu Athmaram, Kumaresh Babu

2012-01-01T23:59:59.000Z

334

E-Print Network 3.0 - application systems gas Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Institute of Technology Collection: Engineering 39 Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using Summary:...

335

Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High Enthalpy, Extensional Geothermal Systems  

Energy.gov (U.S. Department of Energy (DOE))

Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High Enthalpy, Extensional Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

336

Computer-based gas accounting system at the TETs-26 Mosenergo cogeneration station  

Science Journals Connector (OSTI)

Experience gained from the introduction and operation of microprocessor systems for metering gas consumption and its heating value at Mosenergos cogeneration stations is considered.

A. V. Zakharenkov; V. N. Degterev; V. V. Usanov; A. A. Shkurin

2006-10-01T23:59:59.000Z

337

,"U.S. Intrastate Natural Gas Pipeline Systems"  

U.S. Energy Information Administration (EIA) Indexed Site

Intrastate Natural Gas Pipeline Systems" Intrastate Natural Gas Pipeline Systems" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Intratstate Natural Gas Pipelines By Region",1,"Periodic",2007 ,"Release Date:","application/vnd.ms-excel" ,"Next Release Date:","application/vnd.ms-excel" ,"Source:","Energy Information Administration" ,"Excel File Name:","PipeIntra.xls" ,"Available from Web Page:","http://www.eia.doe.gov/pub/oil_gas/natural_gas/analysis_publications/ngpipeline/intrastate.html" ,"For Help, Contact:","infoctr@eia.doe.gov"

338

HERA-B Gas Systems The gas mixture, the gas volume of the corresponding detector and the required gas flow are given. All detectors are operating at nominal  

E-Print Network (OSTI)

stations in external gas hut 6 nonflammable pressure reducer stations CF4, Xe, CO2, Ar/CF4, reserve, reserve 3 flammable pressure reducer stations C2H6O, CH4, Ar/CH4 2 stations for cool liquids Ar, N2 4 gas stations without recyling ITR, high pt inner, high pt outer, Muon pixel 4 gas stations with gas recyling

339

[Advanced Gas Turbine Systems Research]. Technical Quarterly Progress Report  

SciTech Connect

Major Accomplishments by Advanced Gas Turbine Systems Research (AGTSR) during this reporting period are highlighted below and amplified in later sections of this report: AGTSR distributed 50 proposals from the 98RFP to the IRB for review, evaluation and rank-ordering during the summer; AGTSR conducted a detailed program review at DOE-FETC on July 24; AGTSR organized the 1998 IRB proposal review meeting at SCIES on September 15-16; AGTSR consolidated all the IRB proposal scores and rank-orderings to facilitate the 98RFP proposal deliberations; AGTSR submitted meeting minutes and proposal short-list recommendation to the IRB and DOE for the 98RFP solicitation; AGTSR reviewed two gas turbine related proposals as part of the CU RFP State Project for renovating the central energy facility; AGTSR reviewed and cleared research papers with the IRB from the University of Pittsburgh, Wisconsin, and Minnesota; AGTSR assisted GTA in obtaining university stakeholder support of the ATS program from California, Pennsylvania, and Colorado; AGTSR assisted GTA in distributing alert notices on potential ATS budget cuts to over 150 AGTSR performing university members; AGTSR submitted proceedings booklet and organizational information pertaining to the OAI hybrid gas turbine workshop to DOE-FETC; For DOE-FETC, AGTSR updated the university consortium poster to include new members and research highlights; For DOE-FETC, the general AGTSR Fact Sheet was updated to include new awards, workshops, educational activity and select accomplishments from the research projects; For DOE-FETC, AGTSR prepared three fact sheets highlighting university research supported in combustion, aero-heat transfer, and materials; For DOE-FETC, AGTSR submitted pictures on materials research for inclusion in the ATS technology brochure; For DOE-FETC, AGTSR submitted a post-2000 roadmap showing potential technology paths AGTSR could pursue in the next decade; AGTSR distributed the ninth newsletter UPDATE to DOE, the IRB: and two interested partners involved in ATS; AGTSR submitted information on its RFP's, workshops, and educational activities for the 1999 ASMWIGTI technology report for worldwide distribution; AGTSR coordinated university poster session titles and format with Conference Management Associates (CMA) for the 98 ATS Annual; and AGTSR submitted 2-page abstract to CMA for the 98 ATS Review titled: ''AGTSR: A Virtual National Lab''.

NONE

1998-09-30T23:59:59.000Z

340

9 - Hybrid fuel cell gas turbine (FC/GT) combined cycle systems  

Science Journals Connector (OSTI)

Abstract: Hybrid fuel cell gas turbine systems consisting of high-temperature fuel cells (HTFCs) integrated into cycles with gas turbines can significantly increase fuel-to-electricity conversion efficiency and lower emissions of greenhouse gases and criteria pollutants from the electric power sector. In addition, the separated anode and cathode compartments of the fuel cell can enable CO2 separation and sequestration for some cycle configurations. Hybrid fuel cell gas turbine technology has the potential to operate on natural gas, digester gas, landfill gas, and coal and biomass syngas. HTFC technologies are emerging with high reliability and durability, which should enable them to be integrated with gas turbine technology to produce modern hybrid power systems. Advanced thermodynamic and dynamic simulation capabilities have been developed and demonstrated to enable future system integration and control.

J. Brouwer

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Advanced coal-fueled industrial cogeneration gas turbine system  

SciTech Connect

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

342

Site Transition Process upon Completion of the Cleanup Mission: Fact Sheet  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Process upon Completion of the Cleanup Mission: Process upon Completion of the Cleanup Mission: Fact Sheet (September 2013) Site Transition Process upon Completion of the Cleanup Mission: Fact Sheet (September 2013) DOE's internal site transition process for Cleanup to long-term stewardship, post-cleanup, and post-closure has been established in transition guidance for sites that will transfer to a Landlord Program Secretarial Office or to Legacy Management for long-term stewardship. Site Transition Process upon Completion of the Cleanup Mission: Fact Sheet (September 2013) More Documents & Publications Site Transition Summary: Cleanup Completion to Long-Term Stewardship at Department of Energy On-going Mission Sites Site Transition Process Upon Cleanup Completion EM SSAB Conference Calls - January 27, 2011

343

UK Nuclear Cleanup and Research Experts Visit DOE to Expand Collaborat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UK Nuclear Cleanup and Research Experts Visit DOE to Expand Collaboration UK Nuclear Cleanup and Research Experts Visit DOE to Expand Collaboration September 30, 2014 - 12:00pm...

344

Microsoft Word - DOE News Release-DOE Completes Cleanup at New...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Completes Cleanup at New York, California Sites Recovery Act funds accelerate cleanup; support job creation and footprint reduction WASHINGTON, D.C. - Last month, the U.S....

345

Recovery Cleanup Project at Y-12 Leaves Alpha 5 with an Empty...  

National Nuclear Security Administration (NNSA)

Office NPO News Releases Recovery Cleanup Project at Y-12 Leaves Alpha ... Recovery Cleanup Project at Y-12 Leaves Alpha 5 with an Empty Feeling applicationmsword icon R-10-21...

346

Technical papers presented at a DOE meeting on criteria for cleanup of transuranium elements in soil  

SciTech Connect

Transuranium element soil contamination cleanup experience gained from nuclear weapons accidents and cleanup at Eniwetok Atoll was reviewed. Presentations have been individually abstracted for inclusion in the data base. (ACR)

Not Available

1984-09-01T23:59:59.000Z

347

Feed gas contaminant removal in ion transport membrane systems  

DOE Patents (OSTI)

Method for gas purification comprising (a) obtaining a feed gas stream containing one or more contaminants selected from the group consisting of volatile metal oxy-hydroxides, volatile metal oxides, and volatile silicon hydroxide; (b) contacting the feed gas stream with a reactive solid material in a guard bed and reacting at least a portion of the contaminants with the reactive solid material to form a solid reaction product in the guard bed; and (c) withdrawing from the guard bed a purified gas stream.

Carolan, Michael Francis (Allentown, PA); Miller, Christopher Francis (Macungie, PA)

2008-09-16T23:59:59.000Z

348

Idaho Governor Praises DOE, Contractor Effort for Resuming Critical Cleanup  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Governor Praises DOE, Contractor Effort for Resuming Critical Governor Praises DOE, Contractor Effort for Resuming Critical Cleanup Project Idaho Governor Praises DOE, Contractor Effort for Resuming Critical Cleanup Project July 30, 2013 - 12:00pm Addthis Idaho Governor C.L. “Butch” Otter discusses the importance of completing the cleanup mission at the Idaho site. Idaho Governor C.L. "Butch" Otter discusses the importance of completing the cleanup mission at the Idaho site. An exterior view of the recently constructed Accelerated Retrieval Project-VIII facility. An exterior view of the recently constructed Accelerated Retrieval Project-VIII facility. The Accelerated Retrieval Project-VIII building spans a 1.72-acre footprint. More than 2 million pounds of structural steel went into building. The eastern and largest portion of the structure is 250 feet long by 290 feet wide and 70 feet tall. The one-of-a-kind design consists of a center column-supported space frame connecting each side of the facility’s roof trusses.

349

Cleanup Verification Package for the 118-F-6 Burial Ground  

SciTech Connect

This cleanup verification package documents completion of remedial action for the 118-F-6 Burial Ground located in the 100-FR-2 Operable Unit of the 100-F Area on the Hanford Site. The trenches received waste from the 100-F Experimental Animal Farm, including animal manure, animal carcasses, laboratory waste, plastic, cardboard, metal, and concrete debris as well as a railroad tank car.

H. M. Sulloway

2008-10-02T23:59:59.000Z

350

Cleanup Verification Package for the 300 VTS Waste Site  

SciTech Connect

This cleanup verification package documents completion of remedial action for the 300 Area Vitrification Test Site, also known as the 300 VTS site. The site was used by Pacific Northwest National Laboratory as a field demonstration site for in situ vitrification of soils containing simulated waste.

S. W. Clark and T. H. Mitchell

2006-03-13T23:59:59.000Z

351

LOVE CANAL CLEANUP: EPA revamps plan, safety decision  

Science Journals Connector (OSTI)

LOVE CANAL CLEANUP: EPA revamps plan, safety decision ... EPA's announcement of a revised plan for handling the remaining contamination at Love Canal was prompted by a contractor's finding of "significant migration of chemicals beyond the proposed wall location," and by a close review of a recent Office of Technology Assessment study. ...

1983-10-03T23:59:59.000Z

352

NUCLEAR ARMS COMPLEX: Huge problems beset cleanup, redesign  

Science Journals Connector (OSTI)

NUCLEAR ARMS COMPLEX: Huge problems beset cleanup, redesign ... Two documents issued during the past week and a half paint a dismaying picture of the horrendous legacy of the Department of Energy's nuclear weapons complex and the massive task that lies ahead. ...

1991-02-18T23:59:59.000Z

353

Cleanup at Los Alamos National Laboratory - the challenges - 9493  

SciTech Connect

This paper provides an overview of environmental cleanup at the Los Alamos National Laboratory (LANL) and some of the unique aspects and challenges. Cleanup of the 65-year old Department of Energy Laboratory is being conducted under a RCRA Consent Order with the State of New Mexico. This agreement is one of the most recent cleanup agreements signed in the DOE complex and was based on lessons learned at other DOE sites. A number of attributes create unique challenges for LANL cleanup -- the proximity to the community and pueblos, the site's topography and geology, and the nature of LANL's on-going missions. This overview paper will set the stage for other papers in this session, including papers that present: Plans to retrieve buried waste at Material Disposal Area B, across the street from oen of Los Alamos' commercial districts and the local newspaper; Progress to date and joint plans with WIPP for disposal of the remaining inventory of legacy transuranic waste; Reviews of both groundwater and surface water contamination and the factors complicating both characterization and remediation; Optimizing the disposal of low-level radioactive waste from ongoing LANL missions; A stakeholder environmental data transparency project (RACER), with full public access to all available information on contamination at LANL, and A description of the approach to waste processing cost recovery from the programs that generate hazardous and radioactive waste at LANL.

Stiger, Susan G [Los Alamos National Laboratory; Hargis, Kenneth M [Los Alamos National Laboratory; Graham, Michael J [Los Alamos National Laboratory; Rael, George J [NNSL/LASO

2008-01-01T23:59:59.000Z

354

Enewetak fact book (a resume of pre-cleanup information)  

SciTech Connect

The book contains a group of short treatises on the precleanup condition of the islands in Enewetak Atoll. Their purpose was to provide brief guidance to the radiological history and radiological condition of the islands for use in cleanup of the atoll. (ACR)

Bliss, W. (comp.)

1982-09-01T23:59:59.000Z

355

Idaho Governor Praises DOE, Contractor Effort for Resuming Critical Cleanup  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Governor Praises DOE, Contractor Effort for Resuming Critical Idaho Governor Praises DOE, Contractor Effort for Resuming Critical Cleanup Project Idaho Governor Praises DOE, Contractor Effort for Resuming Critical Cleanup Project July 30, 2013 - 12:00pm Addthis Idaho Governor C.L. “Butch” Otter discusses the importance of completing the cleanup mission at the Idaho site. Idaho Governor C.L. "Butch" Otter discusses the importance of completing the cleanup mission at the Idaho site. An exterior view of the recently constructed Accelerated Retrieval Project-VIII facility. An exterior view of the recently constructed Accelerated Retrieval Project-VIII facility. The Accelerated Retrieval Project-VIII building spans a 1.72-acre footprint. More than 2 million pounds of structural steel went into building. The eastern and largest portion of the structure is 250 feet long by 290 feet wide and 70 feet tall. The one-of-a-kind design consists of a center column-supported space frame connecting each side of the facility’s roof trusses.

356

Influence of steam injection and hot gas bypass on the performance and operation of a combined heat and power system using a recuperative cycle gas turbine  

Science Journals Connector (OSTI)

The influence of steam injection and hot gas bypass on the performance and operation of ... power (CHP) system using a recuperative cycle gas turbine was investigated. A full off-design analysis ... in steam gene...

Soo Young Kang; Jeong Ho Kim; Tong Seop Kim

2013-08-01T23:59:59.000Z

357

Formation of ordered gas-solid structures via solidification in metal-hydrogen systems  

SciTech Connect

This work contains theoretical discussions concerning the large amount of previously published experimental data related to gas eutectic transformations in metal-hydrogen systems. Theories of pore nucleation and growth in these gas-solid materials will be presented and related to observed morphologies and structures. This work is intended to be helpful to theorists that work with metal-hydrogen systems, and experimentalists engaged in manufacturing technology development of these ordered gas-solid structures.

Shapovalov, V.I. [State Metallurgical Academy of Ukraine (Ukraine); [Sandia National Labs., Albuquerque, NM (United States)

1998-12-31T23:59:59.000Z

358

Workers at Hanford Site Achieve Recovery Act Legacy Cleanup Goals Ahead of Schedule  

Energy.gov (U.S. Department of Energy (DOE))

The Hanford Site recently surpassed American Recovery and Reinvestment Act goals to accelerate the cleanup of legacy waste and fuels.

359

Design and Experimental Study of the Steam Mining System for Natural Gas Hydrates  

Science Journals Connector (OSTI)

Figure 3. Schematic diagram of the SMSGH: (1) water tank, (2) water pump, (3) water treatment system, (4) soft water tank, (5) small pump, (6) electricity steam generator, (7) steam control valve, (8) orifice device, (9) dual-wall drill pipe, (10) non-productive layer bushing, (11) floral tube in the mined bed, (12) submersible pump, (13) air pump, (14) water tank, (15) gasliquid separator, (16) cartridge gas filter, (17) gas flow meter, (18) gas storage tank, and (19) ignition device. ... The working principle of the gas collection system is as follows: The obtained natural gas spills from the layer of earth through the floral tube in the mined bed (11) and will generate a high flow rate with the vapor and water mixture using the pump function of the air pump (13). ... Hydrates continuously generated natural gas. ...

You-hong Sun; Rui Jia; Wei Guo; Yong-qin Zhang; You-hai Zhu; Bing Li; Kuan Li

2012-11-06T23:59:59.000Z

360

Innovative coke oven gas cleaning system for retrofit applications  

SciTech Connect

Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This project combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE is providing cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct an Environmental Monitoring Plan (EMP) for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. This report is the third quarterly status report of the EMP. It covers the Environmental Monitoring Plan activities for the full year of 1991 from January 1, 1991 through December 31, 1991, including the forth quarter. See Sections 2, 3 and 4 for status reports of the Project Installation and Commissioning, the Environmental Monitoring activities and the Compliance Monitoring results for the period. Section 5 contains a list of Compliance Reports submitted to regulatory agencies during the period. The EMP describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) document the extent of compliance of monitoring activities, i.e. those monitoring required to meet permit requirements, (2) confirm the specific impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base for the assessment of the environmental performance of the technology demonstrated by the project.

Not Available

1992-10-16T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Modeling of Multilayer Composite Fabrics for Gas Turbine Engine Containment Systems  

E-Print Network (OSTI)

Modeling of Multilayer Composite Fabrics for Gas Turbine Engine Containment Systems J. Sharda1 ; C of multilayer composite fabrics used in a gas turbine engine containment system is developed. Specifically: Tensile strength; Stress analysis; Stress strain relations; Fabrics; Composite materials; Finite element

Mobasher, Barzin

362

Low-cost multispectral vegetation imaging system for detecting leaking CO2 gas  

E-Print Network (OSTI)

Low-cost multispectral vegetation imaging system for detecting leaking CO2 gas Justin A. Hogan,1 sequestration sites for possible leaks of the CO2 gas from underground reservoirs, a low-cost multispectral are then flagged for closer inspection with in-situ CO2 sensors. The system is entirely self

Shaw, Joseph A.

363

Cleanup under Airlock of an Old Uranium Foundry - 13273  

SciTech Connect

Since 2004, AREVA's subsidiary SICN has been conducting the cleanup and dismantling of an old uranium foundry located in the town of Annecy (France). The first operations consisted in the removal of the foundry's production equipment, producing more than 300 metric tons (MT) of waste. The second step consisted in performing the radiological characterization of the 1,600 m{sup 2} (17,200 ft{sup 2}) building, including underground trenches and galleries. The building was precisely inventoried, based on operations records and direct measurements. All sub-surfaces, which needed to be cleaned up were characterized, and a determination of the contamination migration was established, in particular with trenches and galleries. The wall thicknesses to be treated were empirically justified, knowing that the maximal migration depth inside concrete is 5 mm for a liquid transfer vector. All singularities such as cracks, anchoring points, etc. were spotted for a complete and systematic treatment. Building structures not laying directly on the soil, such as floor slabs, were not cleaned up but directly deconstructed and disposed of as waste. The facility was located within the town of Annecy. Therefore, in order to avoid the risk of dusts dispersion and public exposure during the building deconstruction and the soil treatment, a third of the building's surface was confined in a sliding airlock built from a metal structure capable of resisting to wind and snow, which are frequent in this area. This particular structure provided a static confinement over the half of the building which was covered and a dynamic confinement using a ventilation and high efficiency air filtration system, sized to provide 2.5 air changes per hour. The enclosure and its metallic structure is 33 m long (108 feet), 25 m wide (82 feet), and 13 m high (42 feet), for a volume of 10,000 m{sup 3} (353,000 ft{sup 3}). It was made up of a double skin envelope, allowing the recycling of its structure and outside envelope. After cleaning up and dismantling the first portion of the building, the enclosure was repositioned on the second and the last third of the building, by sliding it on support pads. Almost 7,000 m{sup 2} of concrete surface has been treated with no dust dispersion outside the enclosure. After treatment, all the remaining surfaces were controlled by an independent entity to verify their acceptability with regards to residual contamination (less than 0.4 Bq/cm{sup 2} (24 DPM) for alpha contamination and less than 1 Bq/g of total uranium). Approximately 1,900 MT of equipment and waste were generated in batches of 1m{sup 3}, in order to be staged on site, and then characterized and packaged in 20 foot containers for shipment to the final ANDRA repository. The package certification included the verification of the physical and chemical characteristics and the radiological characteristics (mass activity, dose rate, and residual outside surface contamination). Finally, after cleanup and dismantling of the foundry, a concrete slab was poured on the free surface as a clean base for implementation of new activities. (authors)

Thuillier, Daniel; Houee, Jean-Marie [AREVA D and D BU, Paris La Defense (France)] [AREVA D and D BU, Paris La Defense (France); Chambon, Frederic [AREVA FEDERAL SERVICES, Columbia MD (United States)] [AREVA FEDERAL SERVICES, Columbia MD (United States)

2013-07-01T23:59:59.000Z

364

System design for disposal of tritium at TFTR  

SciTech Connect

The Tokamak Fusion Test Reactor (TFTR) has cleanup systems which convert tritium gas to the oxide form and absorb it on molecular sieve beds. These beds are regenerated by transferring their moisture content to disposable sieve beds. Preparing this sieve for disposal can be awkward and hazardous. Monitoring the tritium and moisture content of the disposable sieve is not straightforward. Modifications to the regeneration system at the TFTR are being made to address these concerns and others relating to maintainability.

Tuohy, J.M.; Cherdack, R.; Lacy, N.H.

1988-09-01T23:59:59.000Z

365

Development of a Small-Scale Natural Gas Liquefier. Final Report  

SciTech Connect

This final report describes the progress during the contract period March 1, 1998 through April 30, 2003, on the design, development, and testing of a novel mixed-refrigerant-based 1000 gal/day natural gas liquefier, together with the associated gas cleanup equipment. Based on the work, it is concluded that a cost-effective 1000 gal/day liquefaction system is technically and economically feasible. A unit based on the same developed technology, with 5000 gal/day capacity, would have much improved economics.

Kountz, K.; Kriha, K.; Liss, W.; Perry, M.; Richards, M.; Zuckerman, D.

2003-04-30T23:59:59.000Z

366

Feed gas contaminant removal in ion transport membrane systems  

SciTech Connect

An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

Underwood, Richard Paul (Allentown, PA); Makitka, III, Alexander (Hatfield, PA); Carolan, Michael Francis (Allentown, PA)

2012-04-03T23:59:59.000Z

367

System design and performance of a spiral groove gas seal for hydrogen service  

SciTech Connect

In the past, typical seal designs for low molecular weight gases, such as hydrogen, incorporated high pressure oil seal systems. Technology of the seventies and eighties produced a new concept - the spiral groove gas seal. This paper discusses the problems related to oil seal systems, as well as the design, application and performance of a dry gas seal. It also discusses the limitations encountered with the start-up and operation of a dry gas seal in a high pressure, oil-soluble mixture of light hydrocarbons. Results show how the spiral groove gas seal can handle adverse demands without seal failure.

Pecht, G.G.; Carter, D. (John Crane, Inc., Morton Grove, IL (USA) Marathon Petroleum Co., Robinson, IL (USA))

1990-09-01T23:59:59.000Z

368

Glass melter off-gas system pluggages: Cause, significance, and remediation  

SciTech Connect

Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF) where the glass will be poured into stainless steel canisters for eventual disposal in a geologic repository. Experimental glass melters used to develop the vitrification process for immobilization of the waste have experienced problems with pluggage of the off-gas line with solid deposits. Off-gas deposits from the DWPF 1/2 Scale Glass Melter (SGM) and the 1/10th scale Integrated DWPF Melter System (IDMS) were determined to be mixtures of alkali rich chlorides, sulfates, borates, and fluorides with entrained Fe{sub 2}O{sub 3}, spinel, and frit particles. The distribution and location of the alkali deposits throughout the off-gas system indicate that the deposits form by vapor-phase transport and condensation. Condensation of the alkali-rich phases cement the entrained particulates causing off-gas system pluggages. The identification of vapor phase transport as the operational mechanism causing off-gas system pluggage indicates that deposition can be effectively eliminated by increasing the off-gas velocity. Scale glass melter operating experience indicates that a velocity of >50 fps is necessary in order to transport the volatile species to the quencher to prevent having condensation occur in the off-gas line. Hotter off-gas line temperatures would retain the alkali compounds as vapors so that they would remain volatile until they reach the quencher. However, hotter off-gas temperatures can only be achieved by using less air/steam flow at the off-gas entrance, e.g. at the off-gas film cooler (OGFC). This would result in lower off-gas velocities. Maintaining a high velocity is, therefore, considered to be a more important criterion for controlling off-gas pluggage than temperature control. 40 refs., 16 figs., 5 tabs.

Jantzen, C.M.

1991-03-01T23:59:59.000Z

369

Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas  

Open Energy Info (EERE)

Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas Monitoring Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas Monitoring Details Activities (6) Areas (1) Regions (0) Abstract: Hidden geothermal systems are those systems above which hydrothermal surface features (e.g., hot springs, fumaroles, elevated ground temperatures, hydrothermal alteration) are lacking. Emissions of moderate to low solubility gases (e.g., CO2, CH4, He) may be one of the primary near-surface signals from these systems. Detection of anomalous gas emissions related to hidden geothermal systems may therefore be an important tool to discover new geothermal resources. This study investigates the potential for CO2 detection and monitoring in the

370

Natural Gas Utilities Options Analysis for the Hydrogen Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

6 January 2005 6 January 2005 Oak Ridge National Laboratory Oak Ridge, TN Mark E. Richards Manager, Advanced Energy Systems 2 Gas Technology Institute > GTI is an independent non-profit R&D organization > GTI focuses on energy & environmental issues - Specialize on natural gas & hydrogen > Our main facility is an 18- acre campus near Chicago - Over 350,000 ft 2 GTI's Main Research Facility GTI's Energy & Environmental Technology Center 3 GTI RD&D Organization Robert Stokes Vice-President Research & Deployment Hydrogen Fuel Processing Low-Temperature Fuel Cells High-Temperature Fuel Cells Vehicle Fuel Infrastructure Gerry Runte Executive Director Hydrogen Energy Systems Gasification & Hot Gas Cleanup Process Engineering Thermal Waste Stabilization

371

A Portable Expert System for Gas Turbine Maintenance  

E-Print Network (OSTI)

Combustion turbines for electric power generation and industrial applications have steadily increased in size, efficiency and prominence. The newest class of gas turbine-generators coming into service will deliver 150 megawatts, with turbine inlet...

Quentin, G. H.

372

Performance Assessment of a Recuperative Helium Gas Turbine System  

Science Journals Connector (OSTI)

Helium is considered an ideal working fluid for closed cycle gas turbines powered by the heat of nuclear reactors or solar concentrators. Energetic and exergetic based thermodynamic analyses ... applied to an act...

Rami Salah El-Emam; Ibrahim Dincer

2014-01-01T23:59:59.000Z

373

Method for eliminating gas blocking in electrokinetic pumping systems  

DOE Patents (OSTI)

A method for eliminating gas bubble blockage of current flow during operation of an electrokinetic pump. By making use of the ability to modify the surface charge on the porous dielectric medium used in electrokinetic pumps, it becomes possible to place electrodes away from the pressurized region of the electrokinetic pump. While gas is still generated at the electrodes they are situated such that the generated gas can escape into a larger buffer reservoir and not into the high pressure region of the pump where the gas bubbles can interrupt current flow. Various combinations of porous dielectric materials and ionic conductors can be used to create pumps that have desirable electrical, material handling, and flow attributes.

Arnold, Don W. (Livermore, CA); Paul, Phillip H. (Livermore, CA); Schoeniger, Joseph S. (Oakland, CA)

2001-09-11T23:59:59.000Z

374

Gas mixing system for imaging of nanomaterials under dynamic environments by environmental transmission electron microscopy  

SciTech Connect

A gas mixing manifold system that is capable of delivering a stable pressure stream of a desired composition of gases into an environmental transmission electron microscope has been developed. The system is designed to provide a stable imaging environment upon changes of either the composition of the gas mixture or upon switching from one gas to another. The design of the system is described and the response of the pressure inside the microscope, the sample temperature, and sample drift in response to flow and composition changes of the system are reported.

Akatay, M. Cem [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)] [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Zvinevich, Yury; Ribeiro, Fabio H., E-mail: fabio@purdue.edu, E-mail: estach@bnl.gov [Forney Hall of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Baumann, Philipp [Computer Sciences, University of Applied Sciences of Northeastern Switzerland, 4132 Muttenz, Switzerland and Department of Physics, Yeshiva University, New York, New York 10016 (United States)] [Computer Sciences, University of Applied Sciences of Northeastern Switzerland, 4132 Muttenz, Switzerland and Department of Physics, Yeshiva University, New York, New York 10016 (United States); Stach, Eric A., E-mail: fabio@purdue.edu, E-mail: estach@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973 (United States)

2014-03-15T23:59:59.000Z

375

Energy Department Expands Gas Gouging Reporting System to Include 1-800  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expands Gas Gouging Reporting System to Include Expands Gas Gouging Reporting System to Include 1-800 Number: 1-800-244-3301 Energy Department Expands Gas Gouging Reporting System to Include 1-800 Number: 1-800-244-3301 September 6, 2005 - 9:50am Addthis Washington, DC - Energy Secretary Samuel W. Bodman announced today that the Department of Energy has expanded its gas gouging reporting system to include a toll-free telephone hotline. The hotline is available to American consumers starting today. "While we've largely seen the best of American generosity and unity throughout the recovery effort, we recognize that there are some bad actors that may try to take advantage of the situation. Consumers are our first line of defense in guarding against gas price gouging. I can assure you, our Administration - from the President down - takes this issue very

376

High temperature alkali corrosion of ceramics in coal gas  

SciTech Connect

High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and high efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, zirconia, and fireclay glass. The study consists of identification of the alkali reaction products (phase equilibria) and the kinetics of the alkali reactions as a function of temperature and time.

Pickrell, G.R.; Sun, T.; Brown, J.J.

1992-05-27T23:59:59.000Z

377

Anode shroud for off-gas capture and removal from electrolytic oxide reduction system  

DOE Patents (OSTI)

An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies and an anode shroud for each of the anode assemblies. The anode shroud may be used to dilute, cool, and/or remove off-gas from the electrolytic oxide reduction system. The anode shroud may include a body portion having a tapered upper section that includes an apex. The body portion may have an inner wall that defines an off-gas collection cavity. A chimney structure may extend from the apex of the upper section and be connected to the off-gas collection cavity of the body portion. The chimney structure may include an inner tube within an outer tube. Accordingly, a sweep gas/cooling gas may be supplied down the annular space between the inner and outer tubes, while the off-gas may be removed through an exit path defined by the inner tube.

Bailey, James L.; Barnes, Laurel A.; Wiedmeyer, Stanley G.; Williamson, Mark A.; Willit, James L.

2014-07-08T23:59:59.000Z

378

Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Gasification Technologies contacts Gary J. stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Jenny tennant Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4830 jenny.tennant@netl.doe.gov Howard Meyer Principal Project Manager Gas Technology Institute 1700 South Mount Prospect Road Des Plaines, IL 60018 847-768-0955 howard.meyer@gastechnology.org Development of an IntegrateD multI-ContamInant removal proCess applIeD to Warm syngas Cleanup Description The U.S. has more coal than any other country, and through gasification this coal can be converted into electricity, liquid fuels, chemicals or hydrogen. However,

379

Stack Characterization System for Inspection of Contaminated Off-Gas Stacks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stack Characterization System for Inspection of Contaminated Stack Characterization System for Inspection of Contaminated Off-Gas Stacks Stack Characterization System for Inspection of Contaminated Off-Gas Stacks The stack characterization system (SCS) is a tele-operated remote system that collects samples and data to characterize the quantitative and qualitative levels of contamination inside off-gas stacks protecting workers from the physical, radiological and chemical hazards of deteriorating contaminated stacks. Stack Characterization System for Inspection of Contaminated Off-Gas Stacks More Documents & Publications Uranium Downblending and Disposition Project Technology Readiness Assessment Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - November 2013 EA-1488: Environmental Assessment for the U-233 Disposition, Medical

380

Stack Characterization System for Inspection of Contaminated Off-Gas Stacks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stack Characterization System for Inspection of Contaminated Stack Characterization System for Inspection of Contaminated Off-Gas Stacks Stack Characterization System for Inspection of Contaminated Off-Gas Stacks The stack characterization system (SCS) is a tele-operated remote system that collects samples and data to characterize the quantitative and qualitative levels of contamination inside off-gas stacks protecting workers from the physical, radiological and chemical hazards of deteriorating contaminated stacks. Stack Characterization System for Inspection of Contaminated Off-Gas Stacks More Documents & Publications Uranium Downblending and Disposition Project Technology Readiness Assessment EA-1488: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment October 3, 2011 - 12:00pm Addthis DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment CARLSBAD, N.M. - The Waste Isolation Pilot Plant (WIPP) received its

382

DOE Completes Cleanup at New York, California Sites - Recovery Act funds  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes Cleanup at New York, California Sites - Recovery Act Completes Cleanup at New York, California Sites - Recovery Act funds accelerate cleanup; support job creation and footprint reduction DOE Completes Cleanup at New York, California Sites - Recovery Act funds accelerate cleanup; support job creation and footprint reduction July 1, 2011 - 12:00pm Addthis Media Contact 202-586-4940 WASHINGTON, D.C. - Last month, the U.S. Department of Energy completed the cleanup of Cold War legacy waste at the Nuclear Radiation Development, LLC (NRD) site near Grand Island, New York, and at the Lawrence Berkeley National Laboratory in Berkeley, California. The two locations became the 18th and 19th sites to be completely cleaned of legacy waste. This milestone was achieved as part of a $172 million investment from the American Recovery and Reinvestment Act to expedite legacy waste cleanup

383

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES October 1, 2010 - 12:00pm Addthis RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES Carlsbad, NM - The recent completion of transuranic (TRU) waste cleanup at Vallecitos Nuclear Center (VNC) and Lawrence Livermore National Laboratory (LLNL) Site 300 in California brings the total number of sites cleared of TRU waste to 17. "Recovery Act funding has made this possible," Carlsbad Field Office (CBFO) Recovery Act Federal Project Director Casey Gadbury said of the VNC and LLNL cleanups funded with about $1.6 million in Recovery Act funds. "The cleanup of these and other small-quantity sites has been and will be accelerated because of the available Recovery Act funds."

384

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES October 1, 2010 - 12:00pm Addthis RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES Carlsbad, NM - The recent completion of transuranic (TRU) waste cleanup at Vallecitos Nuclear Center (VNC) and Lawrence Livermore National Laboratory (LLNL) Site 300 in California brings the total number of sites cleared of TRU waste to 17. "Recovery Act funding has made this possible," Carlsbad Field Office (CBFO) Recovery Act Federal Project Director Casey Gadbury said of the VNC and LLNL cleanups funded with about $1.6 million in Recovery Act funds. "The cleanup of these and other small-quantity sites has been and will be accelerated because of the available Recovery Act funds."

385

DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment October 3, 2011 - 12:00pm Addthis DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment CARLSBAD, N.M. - The Waste Isolation Pilot Plant (WIPP) received its

386

EM Updates Congress on Nuclear Cleanup Progress in 18th Annual Caucus |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Updates Congress on Nuclear Cleanup Progress in 18th Annual EM Updates Congress on Nuclear Cleanup Progress in 18th Annual Caucus EM Updates Congress on Nuclear Cleanup Progress in 18th Annual Caucus March 1, 2012 - 12:00pm Addthis WASHINGTON, D.C. - EM and its cleanup contractors present briefings each year to the U.S. House Nuclear Cleanup Caucus on remediation operations at its major sites across the DOE complex. The briefings are organized by Rep. Doc Hastings (R-Wash.), who chairs the bipartisan caucus. For nearly two decades, the briefings have offered members of Congress and their staff, news media and other interested individuals insight into the progress of cleanup of the environmental legacy of the Cold War. EM site managers and their contractor counterparts provide updates on cleanup accomplishments, safety performance, budget scopes, cost savings and plans

387

Autonomous gas chromatograph system for Thermal Enhanced Vapor Extraction System (TEVES) proof of concept demonstration  

SciTech Connect

An autonomous gas chromatograph system was designed and built to support the Thermal Enhanced Vapor Extraction System (TEVES) demonstration. TEVES is a remediation demonstration that seeks to enhance an existing technology (vacuum extraction) by adding a new technology (soil heating). A pilot scale unit was set up at one of the organic waste disposal pits at the Sandia National Laboratories Chemical Waste Landfill (CWL) in Tech Area 3. The responsibility for engineering a major part of the process instrumentation for TEVES belonged to the Manufacturing Control Subsystems Department. The primary mission of the one-of-a-kind hardware/software system is to perform on-site gas sampling and analysis to quantify a variety of volatile organic compounds (VOCs) from various sources during TEVES operations. The secondary mission is to monitor a variety of TEVES process physical parameters such as extraction manifold temperature, pressure, humidity, and flow rate, and various subsurface pressures. The system began operation in September 1994 and was still in use on follow-on projects when this report was published.

Peter, F.J.; Laguna, G.R. [Sandia National Labs., Albuquerque, NM (United States). Manufacturing Control Subsystems Dept.

1996-09-01T23:59:59.000Z

388

EM Risk and Cleanup Decision Making Presentation by Mark Gilbertson  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AND CLEANUP DECISION MAKING AND CLEANUP DECISION MAKING www.em.doe.gov 1 Mark Gilbertson Deputy Assistant Secretary for Site Restoration Office of Environmental Management May 31, 2012 Presented to Environmental Management Advisory Board Topics * How we got to where we are * Existing environment and health risk www.em.doe.gov 2 * Existing environment and health risk analysis to support decision-making * Considerations going forward The Past Five Years * FY2008 budget assumed ~$6 billion escalated for inflation over the following four years * Re-baselined the program and in some cases renegotiated milestones and contracts to align with the budget profile * Milestones were negotiated in good faith (~40 agreements/~200 major milestones/year) * Recognition that approximately 50% of the EM budget is "min safe"

389

Treatment Resin Reduces Costs, Materials in Hanford Groundwater Cleanup -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Treatment Resin Reduces Costs, Materials in Hanford Groundwater Treatment Resin Reduces Costs, Materials in Hanford Groundwater Cleanup - Efficiency delivered more than $6 million in cost savings, $3 million in annual savings Treatment Resin Reduces Costs, Materials in Hanford Groundwater Cleanup - Efficiency delivered more than $6 million in cost savings, $3 million in annual savings June 4, 2013 - 12:00pm Addthis Media Contacts Geoff Tyree, DOE Geoffrey.Tyree@rl.doe.gov (509) 376-4171 Dee Millikin, CHPRC Dee_Millikin@rl.gov (509) 376-1297 RICHLAND, Wash. - U.S. Department of Energy (DOE) contractor CH2M HILL Plateau Remediation Company is using a treatment material that has delivered more than $6 million in cost savings to date and is delivering more than $3 million in annual cost savings and efficiencies in treatment

390

DOE Awards Technical Assistance Contract for Moab Mill Tailings Cleanup |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Assistance Contract for Moab Mill Tailings Technical Assistance Contract for Moab Mill Tailings Cleanup DOE Awards Technical Assistance Contract for Moab Mill Tailings Cleanup May 31, 2012 - 12:00pm Addthis Media Contact Bill Taylor bill.taylor@srs.gov 803-952-8564 Cincinnati-The U.S. Department of Energy (DOE) today announced the award of an $18 million small disadvantaged business contract with S&K Aerospace, LLC, of St. Ignatius, Montana to continue to provide technical assistance services for the Moab Uranium Mill Tailings Remedial Action (UMTRA) Project in Moab, Utah. The basic contract is for three years with two one-year options to extend, for a total of up to five years. S&K Aerospace, LLC, a tribal organization 8(a) small business, will assist in the Department's removal of uranium tailings at the former Atlas

391

New Groundwater Treatment Facility Begins Operation: Boost in Cleanup  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Groundwater Treatment Facility Begins Operation: Boost in New Groundwater Treatment Facility Begins Operation: Boost in Cleanup Accelerated by Recovery Act Funding New Groundwater Treatment Facility Begins Operation: Boost in Cleanup Accelerated by Recovery Act Funding January 19, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong, CH2M HILL (509)376-6773 Andre_L_Armstrong@rl.gov Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) is boosting its capacity for treating groundwater to remove chromium near the Columbia River by 40 percent with the recent completion of a new treatment facility. Contractor CH2M HILL Plateau Remediation Company (CH2M HILL) finished building and started operating the new 100-DX groundwater treatment facility in December. The facility is located near the D and DR Reactors on

392

Idaho Site Advances Recovery Act Cleanup after Inventing Effective Treatment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 14, 2011 April 14, 2011 IDAHO FALLS, Idaho - For the first time in history, workers at the Idaho site achieved success in the initial cleanup of potentially dangerous sodium in a de- commissioned nuclear reactor using an innovative treatment process. The Ameri- can Recovery and Reinvestment Act invested $70 million in the project, which employs 130 workers. DOE officials cheered the outcome and praised the team that designed and imple- mented the innovative sodium treatment for which the DOE has filed a provisional patent application. "We're proud of our team for creating a unique solution to safely rid the Experi- mental Breeder Reactor-II of this highly reactive sodium before we demolish it," DOE Idaho Cleanup Project Assistant Manager Jim Cooper said. "Our workers

393

DOE Announces Strategic Engineering and Technology Roadmap for Cleanup of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Engineering and Technology Roadmap for Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era Nuclear Waste DOE Announces Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era Nuclear Waste March 18, 2008 - 10:52am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today released an Engineering and Technology Roadmap (Roadmap), which details initiatives aimed at reducing the technical risks and uncertainties associated with cleaning up Cold War era nuclear waste over the next ten years. The Roadmap also outlines strategies to minimize such risks and proposes how these strategies would be implemented, furthering the Department's goal of protecting the environment by providing a responsible resolution to the environmental legacy of nuclear weapons production.

394

Flight Testing of an Advanced Airborne Natural Gas Leak Detection System  

SciTech Connect

ITT Industries Space Systems Division (Space Systems) has developed an airborne natural gas leak detection system designed to detect, image, quantify, and precisely locate leaks from natural gas transmission pipelines. This system is called the Airborne Natural Gas Emission Lidar (ANGEL) system. The ANGEL system uses a highly sensitive differential absorption Lidar technology to remotely detect pipeline leaks. The ANGEL System is operated from a fixed wing aircraft and includes automatic scanning, pointing system, and pilot guidance systems. During a pipeline inspection, the ANGEL system aircraft flies at an elevation of 1000 feet above the ground at speeds of between 100 and 150 mph. Under this contract with DOE/NETL, Space Systems was funded to integrate the ANGEL sensor into a test aircraft and conduct a series of flight tests over a variety of test targets including simulated natural gas pipeline leaks. Following early tests in upstate New York in the summer of 2004, the ANGEL system was deployed to Casper, Wyoming to participate in a set of DOE-sponsored field tests at the Rocky Mountain Oilfield Testing Center (RMOTC). At RMOTC the Space Systems team completed integration of the system and flew an operational system for the first time. The ANGEL system flew 2 missions/day for the duration for the 5-day test. Over the course of the week the ANGEL System detected leaks ranging from 100 to 5,000 scfh.

Dawn Lenz; Raymond T. Lines; Darryl Murdock; Jeffrey Owen; Steven Stearns; Michael Stoogenke

2005-10-01T23:59:59.000Z

395

Cleanup Verification Package for the 618-8 Burial Ground  

SciTech Connect

This cleanup verification package documents completion of remedial action for the 618-8 Burial Ground, also referred to as the Solid Waste Burial Ground No. 8, 318-8, and the Early Solid Waste Burial Ground. During its period of operation, the 618-8 site is speculated to have been used to bury uranium-contaminated waste derived from fuel manufacturing, and construction debris from the remodeling of the 313 Building.

M. J. Appel

2006-08-10T23:59:59.000Z

396

Superfund Chief Outlines Strategy On Hazardous Waste Cleanups  

Science Journals Connector (OSTI)

William N. Hedeman Jr. has been director of the Environmental Protection Agency's Office of Emergency & Remedial Response, also known as the Superfund office, for four years. ... Given this interest, we think that at least 40% and probably closer to 50% of the cleanup of sites in the short term will be assumed by them, not only in terms of constructing the remedy but also in terms of doing the remedial investigation and feasibility studies (RI/FS) and designs leading to that remedy. ...

1985-06-03T23:59:59.000Z

397

An Advanced Diagnostic and Prognostic System for Gas Turbine Generator Sets with Experimental Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagnostic and Prognostic System for Gas Diagnostic and Prognostic System for Gas Turbine Generator Sets with Experimental Validation Clemson University John R. Wagner, Ph.D., P.E. SCIES Project 03-01-SR108 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (07/01/2003, 36 Month Duration) $319,479 Total Contract Value ($319,479 DOE) Clemson Presentation 10-19-2005 J.W. Gas Turbine Need * The Reliability, Availability, and Maintainability (RAM) technical area within High Efficiency Engines and Turbines (HEET) Program encompasses the design of gas turbine health management systems * The introduction of real-time diagnostic and prognostic capabilities on gas turbines can provide increased reliability, safety, and efficiency

398

Rocky Flats Cleanup Agreement implementation successes and challenges  

SciTech Connect

On July 19, 1996 the US Department of Energy (DOE), State of Colorado (CDPHE), and US Environmental Protection Agency (EPA) entered into an agreement called the Rocky Flats Cleanup Agreement (RFCA) for the cleanup and closure of the Rocky Flats Environmental Technology Site (RFETS or Rocky Flats). Major elements of the agreement include: an Integrated Site-Wide Baseline; up to twelve significant enforceable milestones per year; agreed upon soil and water action levels and standards for cleanup; open space as the likely foreseeable land use; the plutonium and TRU waste removed by 2015; streamlined regulatory process; agreement with the Defense Nuclear Facilities Safety Board (DNFSB) to coordinate activities; and a risk reduction focus. Successful implementation of RFCA requires a substantial effort by the parties to change their way of thinking about RFETS and meet the deliverables and commitments. Substantial progress toward Site closure through the implementation of RFCA has been accomplished in the short time since the signing, yet much remains to be done. Much can be learned from the Rocky Flats experience by other facilities in similar situations.

Shelton, D.C.

1997-02-01T23:59:59.000Z

399

Clean-up of Nuclear Licensed Facility 57  

SciTech Connect

Available in abstract form only. Full text of publication follows: In the early sixties a radiochemistry laboratory dedicated to Research and Development was built at the French Atomic Energy Commission's centre at Fontenay aux Roses (CEA-FAR); it was named Building 18. More buildings were added during the decade: Building 54, storehouses and offices and Building 91, a hall and laboratories for chemical engineering research into natural and depleted uranium. These three buildings together constitute NLF57. Construction work took place between 1959 and 1962 and the buildings entered operation in 1961. The research and development programs performed in NLF57 involved spent fuel reprocessing studies, waste treatment processes and studies and production of transuranic elements with the related analytical methods development. The research and development program ended on 30 June 1995. The NLF57 clean-up program was launched to reduce the nuclear and conventional hazards and minimise HLW and MLW production during the dismantling work. The clean-up work was divided into categories by type to facilitate its organisation: treatment and removal of nuclear material, removal of radioactive sources, treatment and removal of organic and aqueous effluents, treatment and removal of solid waste, pumping out of the PETRUS tank, flushing and decontamination of the tanks and clean-up of buildings. (authors)

Jeanjacques, Michel; Bremond, Marie Pierre; Marchand, Carole; Poyau, Cecile; Viallefont, Cecile; Gautier, Laurent; Masure, Frederic [CEA, DANS-DRSN-SAFAR (France)

2007-07-01T23:59:59.000Z

400

Innovative Telemetry System Will Help Tap Hard-to-Reach Natural Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Telemetry System Will Help Tap Hard-to-Reach Natural Gas Innovative Telemetry System Will Help Tap Hard-to-Reach Natural Gas Resources Innovative Telemetry System Will Help Tap Hard-to-Reach Natural Gas Resources November 2, 2010 - 1:00pm Addthis Washington, DC - The commercialization of an innovative telemetry communications system developed through a U.S. Department of Energy research program will help U.S. producers tap previously hard-to-reach natural gas resources deep underground, resulting in access to additional supplies that will help enhance national energy security. The patented, proprietary Sharewell L.P. EM-MWD electromagnetic (EM) telemetry system was initially developed by the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL) and E-Spectrum Technologies of San Antonio, Texas, under a four-year, cost-shared

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

EIS-0139: Trans-Alaska Gas System Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes the Yukon Pacific Corporation (YPC) proposed construction of the Trans-Alaska Gas System (TAGS) a 796.5 mile long 36-inch diameter pipeline to transport High Pressured Natural Gas between Prudhoe Bay and a Tidewater terminal and LNG Plant near Anderson Bay, AK.

402

Ion transport membrane module and vessel system with directed internal gas flow  

DOE Patents (OSTI)

An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

Holmes, Michael Jerome (Thompson, ND); Ohrn, Theodore R. (Alliance, OH); Chen, Christopher Ming-Poh (Allentown, PA)

2010-02-09T23:59:59.000Z

403

Analysis of Membrane and Adsorbent Processes for Warm Syngas Cleanup in Integrated Gasification Combined-Cycle Power with CO2 Capture and Sequestration  

Science Journals Connector (OSTI)

Analysis of Membrane and Adsorbent Processes for Warm Syngas Cleanup in Integrated Gasification Combined-Cycle Power with CO2 Capture and Sequestration ... The clean syngas is diluted with N2 from the ASU and enters the gas turbine burner. ... The amount of N2 diluent to be added is determined by the requirement of maintaining the appropriate lower heating value of the syngas feeding into the gas turbine burner to achieve sufficiently low NOx emissions (1535 ppmv at 15% O2)(36) and to keep the temperature of the gas low enough to avoid blade failure. ...

David J. Couling; Kshitij Prakash; William H. Green

2011-08-11T23:59:59.000Z

404

Techno-Economic Evaluation of Using Different Air Inlet Cooling Systems in Gas Compressor Station  

Science Journals Connector (OSTI)

Abstract The purpose of this paper is to review the state of the art in applications for reducing the gas turbine intake air temperature and examine the merits from integration of the different air-cooling methods for 25 MW gas turbine based pipeline gas station . Four different intake air cooling methods have been applied in two pipeline gas stations. The calculations were performed on a yearly basis of operation. The case study is related to Dehshir and Kashan pipeline gas stations in Iran Gas Trunk line 8. The simulation has been performed in Thermoflex Software. Also, the Matlab code has been developed for thermodynamic simulation and exergoeconomic analysis of different scenarios. Finally, the thermodynamic, economics and exergoeconomic parameters for integration of the different cooling systems were calculated and compared.

V. Mazhari; S. Khamis Abadi; H. Ghalami; M.H. Khoshgoftar Manesh; M. Amidpour

2012-01-01T23:59:59.000Z

405

Accelerating Cleanup: Focus on 2006. Discussion draft  

SciTech Connect

This executive summary addresses the activities associated with the National Transuranic (TRU) Program managed by the Carlsbad Area Office (CAO). The CAO programmatically reports to the Assistant Secretary for Environmental Management and receives administrative support through the Albuquerque Operations Office. The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant for site disposal of TRU waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to the CAO, the Waste Isolation Pilot Plant (WIPP) site operations, and other activities associated with the National TRU Program. The CAO develops and directs implementation of the program, while the DOE Headquarters establishes policy and guidelines. The CAO assesses compliance with the program guidance, as well as the commonality of activities and assumptions among all the sites. Since the development of the February 28, 1997, database used to develop this Discussion Draft, the opening of the WIPP facility for receipt of Contact Handled waste has been delayed from November 1997 to May 1998. This slippage is significant enough to require a change in the milestones and volumes included in the documents to be reviewed by our stakeholders. Changes have been incorporated into this Discussion Draft and its supporting Project Baseline Summaries (PBSs).

None

1997-06-01T23:59:59.000Z

406

ADVANCED EXERGY ANALYSIS APPLIED TO THE GAS-TURBINE BASED CO-GENERATION SYSTEM.  

E-Print Network (OSTI)

??The thesis focuses on the evaluation and improvement of a gas-turbine based co-generation system, from an exergetic point of view. A conventional exergy analysis has (more)

AZZARELLI, GIUSEPPE

2008-01-01T23:59:59.000Z

407

Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative  

Energy Savers (EERE)

Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative 1 of 1 Summary: DOE will launch a collaborative effort with industry to evaluate and scope high- impact...

408

Reliability analysis of urban gas transmission and distribution system based on FMEA and correlation operator  

Science Journals Connector (OSTI)

In order to improve the safety management of urban gas transmission and distribution system, failure mode and effects analysis (FMEA) was used to construct the reliability analysis ... the risk priority number (R...

Su Li; Weiguo Zhou

2014-12-01T23:59:59.000Z

409

Demonstration Systems of Cooking Gas Produced by Crop Straw Gasifier for Villages  

Science Journals Connector (OSTI)

Several demonstration systems were designed, built, tested and put into use in order to develop a new way of producing cooking gas from crop straw for villages by biomass gasification technology. A type of crop s...

L. Sun; Z. Z. Gu; D. Y. Guo; M. Xu

1997-01-01T23:59:59.000Z

410

Effect of Cooling Flow on the Operation of a Hot Rotor-Gas Foil Bearing System  

E-Print Network (OSTI)

Gas foil bearings (GFBs) operating at high temperature rely on thermal management procedures that supply needed cooling flow streams to keep the bearing and rotor from overheating. Poor thermal management not only makes systems inefficient...

Ryu, Keun

2012-02-14T23:59:59.000Z

411

Methane adsorption comparison of different thermal maturity kerogens in shale gas system  

Science Journals Connector (OSTI)

To determine the effect of thermal maturity on the methane sorption in shale gas system, two different thermal maturity kerogens of type II isolated from Barnett shale of Fort Worth Basin were used to...

Haiyan Hu

2014-12-01T23:59:59.000Z

412

A Management Tool for Analyzing CHP Natural Gas Liquids Recovery System  

E-Print Network (OSTI)

The objective of this research is to develop a management tool for analyzing combined heat and power (CHP) natural gas liquids (NGL) recovery systems. The methodology is developed around the central ideas of product recovery, possible recovery...

Olsen, C.; Kozman, T. A.; Lee, J.

2008-01-01T23:59:59.000Z

413

Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon  

SciTech Connect

In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

None

1981-01-01T23:59:59.000Z

414

DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems  

Energy.gov (U.S. Department of Energy (DOE))

DOE announced a series of actions, partnerships, and stakeholder commitments to help modernize the nations natural gas transmission and distribution systems and reduce methane emissions. As part of these DOE actions, AMO will lead a collaborative effort with industry to evaluate and scope high-impact manufacturing R&D to improve natural gas systems efficiency and leak reduction. The goal of this effort is to establish an advanced manufacturing initiative.

415

Simulating the Effect of Water on the Fracture System of Shale Gas Wells  

E-Print Network (OSTI)

SIMULATING THE EFFECT OF WATER ON THE FRACTURE SYSTEM OF SHALE GAS WELLS A Thesis by HASSAN HASAN H. HAMAM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2010 Major Subject: Petroleum Engineering SIMULATING THE EFFECT OF WATER ON THE FRACTURE SYSTEM OF SHALE GAS WELLS A Thesis by HASSAN HASAN H. HAMAM Submitted to the Office of Graduate...

Hamam, Hassan Hasan H.

2011-10-21T23:59:59.000Z

416

Hot-Gas Filter Testing with a Transport Reactor Gasifier  

SciTech Connect

Today, coal supplies over 55% of the electricity consumed in the United States and will continue to do so well into the next century. One of the technologies being developed for advanced electric power generation is an integrated gasification combined cycle (IGCC) system that converts coal to a combustible gas, cleans the gas of pollutants, and combusts the gas in a gas turbine to generate electricity. The hot exhaust from the gas turbine is used to produce steam to generate more electricity from a steam turbine cycle. The utilization of advanced hot-gas particulate and sulfur control technologies together with the combined power generation cycles make IGCC one of the cleanest and most efficient ways available to generate electric power from coal. One of the strategic objectives for U.S. Department of Energy (DOE) IGCC research and development program is to develop and demonstrate advanced gasifiers and second-generation IGCC systems. Another objective is to develop advanced hot-gas cleanup and trace contaminant control technologies. One of the more recent gasification concepts to be investigated is that of the transport reactor gasifier, which functions as a circulating fluid-bed gasifier while operating in the pneumatic transport regime of solid particle flow. This gasifier concept provides excellent solid-gas contacting of relatively small particles to promote high gasification rates and also provides the highest coal throughput per unit cross-sectional area of any other gasifier, thereby reducing capital cost of the gasification island.

Swanson, M.L.; Hajicek, D.R.

2002-09-18T23:59:59.000Z

417

Operating Experience Review of the INL HTE Gas Monitoring System  

SciTech Connect

This paper describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored at hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and unwanted alarms are described. The calibration session time durations are described. Some simple statistics are given for the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

L. C. Cadwallader; K. G. DeWall

2010-06-01T23:59:59.000Z

418

Development of a topping combustor for advanced concept pressurized fluidized-bed combustion systems  

SciTech Connect

A project team consisting of Foster Wheeler Development Corporation, Westinghouse Electric Corporation, Gilbert/Commonwealth and the Institute of Gas Technology, are developing a Second Generation Pressurized Fluidized Bed System. Foster Wheeler is developing a carbonizer (a partial gasifier) and a pressurized fluidized bed combustor. Both these units operate at a nominal 1600{degrees}F (870{degrees}C) for optimal sulfur capture. Since this temperature is well below the current combustion turbine combustor outlet operating temperature of 2350{degrees}F (1290{degrees}C), to reach commercialization, a topping combustor and hot gas cleanup (HGCU) equipment must be developed. Westinghouse`s efforts are focused on the development of the high temperature gas cleanup equipment and the topping combustor. This paper concentrates on the design and test of the topping combustor, which must use a low heating value syngas from the carbonizer at approximately 1600{degrees}F and 150 to 210 psi.

Domeracki, W.F.; Dowdy, T.E.; Bachovchin, D.

1995-11-01T23:59:59.000Z

419

Microfabricated BTU monitoring device for system-wide natural gas monitoring.  

SciTech Connect

The natural gas industry seeks inexpensive sensors and instrumentation to rapidly measure gas heating value in widely distributed locations. For gas pipelines, this will improve gas quality during transfer and blending, and will expedite accurate financial accounting. Industrial endusers will benefit through continuous feedback of physical gas properties to improve combustion efficiency during use. To meet this need, Sandia has developed a natural gas heating value monitoring instrument using existing and modified microfabricated components. The instrument consists of a silicon micro-fabricated gas chromatography column in conjunction with a catalytic micro-calorimeter sensor. A reference thermal conductivity sensor provides diagnostics and surety. This combination allows for continuous calorimetric determination with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This system will find application at remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. Microfabrication techniques will allow the analytical components to be manufactured in production quantities at a low per-unit cost.

Einfeld, Wayne; Manginell, Ronald Paul; Robinson, Alex Lockwood; Moorman, Matthew Wallace

2005-11-01T23:59:59.000Z

420

CONSTRUCTION OF KEY CLEANUP PROJECT GAINS GOOD GROUND AT SRS | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONSTRUCTION OF KEY CLEANUP PROJECT GAINS GOOD GROUND AT SRS CONSTRUCTION OF KEY CLEANUP PROJECT GAINS GOOD GROUND AT SRS CONSTRUCTION OF KEY CLEANUP PROJECT GAINS GOOD GROUND AT SRS June 1, 2010 - 12:00pm Addthis CONSTRUCTION OF KEY CLEANUP PROJECT GAINS GOOD GROUND AT SRS Aiken, SC - Construction of a key cleanup facility at the Savannah River Site (SRS) is gaining some serious ground given the remarkable building progress since Fall 2009. Construction and operation of the Salt Waste Processing Facility (SWPF) is among the U.S. Department of Energy's (DOE) highest cleanup priorities. When operational, SWPF will treat millions of gallons of salt waste currently stored in 49 underground tanks at SRS by removing radioactive constituents for vitrification at the nearby Defense Waste Processing Facility. Disposition of the salt waste inventory is a

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

GRR/Elements/18-FD-a.16 - Post-Construction Completion: Review of Cleanup  

Open Energy Info (EERE)

Construction Completion: Review of Cleanup Construction Completion: Review of Cleanup Effort to Determine Mitigation Effect < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 18-FD-a.16 - Post-Construction Completion: Review of Cleanup Effort to Determine Mitigation Effect After final cleanup is achieved, the EPA ensures that Superfund response actions provide for the long-term protection of human health and the environment. Logic Chain No Parents \V/ GRR/Elements/18-FD-a.16 - Post-Construction Completion: Review of Cleanup Effort to Determine Mitigation Effect (this page) \V/ No Dependents Under Development Add.png Add an Element Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/18-FD-a.16_-_Post-Construction_Completion:_Review_of_Cleanup_Effort_to_Determine_Mitigation_Effect&oldid=453770

422

CONSTRUCTION OF KEY CLEANUP PROJECT GAINS GOOD GROUND AT SRS | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONSTRUCTION OF KEY CLEANUP PROJECT GAINS GOOD GROUND AT SRS CONSTRUCTION OF KEY CLEANUP PROJECT GAINS GOOD GROUND AT SRS CONSTRUCTION OF KEY CLEANUP PROJECT GAINS GOOD GROUND AT SRS June 1, 2010 - 12:00pm Addthis CONSTRUCTION OF KEY CLEANUP PROJECT GAINS GOOD GROUND AT SRS Aiken, SC - Construction of a key cleanup facility at the Savannah River Site (SRS) is gaining some serious ground given the remarkable building progress since Fall 2009. Construction and operation of the Salt Waste Processing Facility (SWPF) is among the U.S. Department of Energy's (DOE) highest cleanup priorities. When operational, SWPF will treat millions of gallons of salt waste currently stored in 49 underground tanks at SRS by removing radioactive constituents for vitrification at the nearby Defense Waste Processing Facility. Disposition of the salt waste inventory is a

423

DOE Completes Cleanup at New York, California Sites | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup at New York, California Sites Cleanup at New York, California Sites DOE Completes Cleanup at New York, California Sites July 1, 2011 - 12:00am Addthis WASHINGTON, D.C. - Last month, the U.S. Department of Energy completed the cleanup of Cold War legacy waste at the Nuclear Radiation Development, LLC (NRD) site near Grand Island, New York, and at the Lawrence Berkeley National Laboratory in Berkeley, California. The two locations became the 18th and 19th sites to be completely cleaned of legacy waste. This milestone was achieved as part of a $172 million investment from the American Recovery and Reinvestment Act to expedite legacy waste cleanup activities across the DOE complex. "Cleanup of these two sites represents important and continued progress in the Department of Energy's commitment to reducing the nation's nuclear

424

Recovery Act Workers Accomplish Cleanup of Second Cold War Coal Ash Basin |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accomplish Cleanup of Second Cold War Coal Ash Accomplish Cleanup of Second Cold War Coal Ash Basin Recovery Act Workers Accomplish Cleanup of Second Cold War Coal Ash Basin American Recovery and Reinvestment Act workers recently cleaned up a second basin containing coal ash residues from Cold War operations at the Savannah River Site (SRS). About $24 million from the Recovery Act funded the environmental restoration project, allowing SRS to complete the project at least five years ahead of schedule. The work is part of a larger Recovery Act cleanup of the P Area scheduled for completion by the end of September 2011. Recovery Act Workers Accomplish Cleanup of Second Cold War Coal Ash Basin More Documents & Publications Recovery Act Workers Complete Environmental Cleanup of Coal Ash Basin Recovery Act Workers Add Time Capsule Before Sealing Reactor for Hundreds

425

DOE Certifies Rocky Flats Cleanup "Complete" | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Certifies Rocky Flats Cleanup "Complete" Certifies Rocky Flats Cleanup "Complete" DOE Certifies Rocky Flats Cleanup "Complete" December 8, 2005 - 4:45pm Addthis Golden, CO - Deputy Secretary of Energy Clay Sell announced today that the environmental cleanup of the former Rocky Flats site has been certified complete by the U.S. Department of Energy. Certification marks the final step in the DOE's successful effort to clean up and eventually turn over the former weapons production site for use as a National Wildlife Refuge. "With today's announcement, the cleanup chapter of Rocky Flats' history is closed, while another equally important chapter is just being opened," said Deputy Secretary Sell. "This successful cleanup represents a triumph of determination and spirit of cooperation that stands as an example for

426

Second Site-Wide Five-Year Review of Cleanup at DOE's Idaho Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site-Wide Five-Year Review of Cleanup at DOE's Idaho Site Site-Wide Five-Year Review of Cleanup at DOE's Idaho Site Completed; Report Now Available Online Second Site-Wide Five-Year Review of Cleanup at DOE's Idaho Site Completed; Report Now Available Online February 3, 2011 - 12:00pm Addthis Media Contact Danielle Miller (DOE-ID) 208-526-5709 An Idaho Cleanup Project team has completed work on the site-wide five-year review of cleanup at the U.S. Department of Energy's (DOE) Idaho site. "This report verifies that the performance of cleanup actions at the Idaho Site continues to be protective of human health and the environment," said Nicole Hernandez, DOE's project manager for the five-year review. "The findings in the report demonstrate a strong collaborative effort by CH2M-WG Idaho (CWI), DOE, the Environmental

427

Upper limit on the gas density in the Beta-Pictoris system: On the effect of gas drag on the dust dynamics  

E-Print Network (OSTI)

We investigate in this paper the effect of gas drag on the dynamics of the dust particles in the edge-on Beta-Pictoris disc in order to derive an upper limit on the mass of gas in this system. Our study is motivated by the large uncertainties on the amount of gas in the Beta-Pictoris disc currently found in the literature. The dust particles are assumed to originate from a colliding annulus of planetesimals peaked around 100AU from the central star as proposed by Augereau et al.(2001). We consider the various gas densities that have been inferred from independent observing techniques and we discuss their impact on the dust dynamics and on the disc profile in scattered light along the midplane. We show that the observed scattered light profile of the disc cannot be properly reproduced if hydrogen gas number density at 117AU exceeds 10**4 cm**-3. This corresponds to an upper limit on the total gas mass of about 0.4 Mearth assuming the gas density profile inferred by Brandeker et al.(2004) and thus to a gas to dust mass ratio smaller than 1. Our approach therefore provides an independent diagnostic for a gas depletion in the Beta-Pictoris system relative to the dust disc. Such an approach could also be used to constrain the gas content of recently identified systems like the edge-on disc around AUmic.

P. Thebault; J. -C Augereau

2005-02-22T23:59:59.000Z

428

Thyroid nodularity and cancer among Chernobyl cleanup workers from Estonia  

SciTech Connect

Thyroid examinations, including palpation, ultrasound and, selectively, fine-needle aspiration biopsy, were conducted on nearly 2,000 Chernobyl cleanup workers from Estonia to evaluate the occurrence of thyroid cancer and nodular thyroid disease among men with protracted exposure to ionizing radiation. The examinations were conducted in four cities in Estonia during March-April 1995, 9 years after the reactor accident. The study population was selected from a predefined cohort of 4,833 cleanup workers from Estonia under surveillance for cancer incidence. These men had been sent to Chernobyl between 1986 and 1991 to entomb the damaged reactor, remove radioactive debris and perform related cleanup activities. A total of 2,997 men were invited for thyroid screening and 1,984 (66%) were examined. Estimates of radiation dose from external sources were obtained from military or other institutional records, and details about service dates and types of work performed while at Chernobyl were obtained from a self-administered questionnaire. Blood samples were collected for assay of chromosomal translocations in circulating lymphocytes and loss of expression of the glycophorin A (GPA) gene in erythrocytes. The primary outcome measure was the presence or absence of thyroid nodules as determined by the ultrasound examination. Of the screened workers, 1,247 (63%) were sent to Chernobyl in 1986, including 603 (30%) sent in April or May, soon after the accident. Workers served at Chernobyl for an average of 3 months. The average age was 32 years at the time of arrival at Chernobyl and 40 years at the time of thyroid examination. The mean documented radiation dose from external sources was 10.8 cGy. Biological indicators of exposure showed low correlations with documented dose, but did not indicate that the mean dose for the population was higher than the average documented dose. 47 refs., 1 fig., 9 tabs.

Inskip, P.D.; Boice, J.D. Jr. [National Cancer Inst., Rockville, MD (United States); Tekkel, M. [Univ. of New Mexico, Albuquerque, NM (United States)] [and others

1997-02-01T23:59:59.000Z

429

Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine cycle  

E-Print Network (OSTI)

Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine steam process for exhaust gas heat recovery from a spark-ignition (SI) engine, from a prototyping of a practical supervi- sion and control system for a pilot Rankine steam process for exhaust gas heat recovery

Paris-Sud XI, Université de

430

Engineering task plan for flammable gas atmosphere mobile color video camera systems  

SciTech Connect

This Engineering Task Plan (ETP) describes the design, fabrication, assembly, and testing of the mobile video camera systems. The color video camera systems will be used to observe and record the activities within the vapor space of a tank on a limited exposure basis. The units will be fully mobile and designed for operation in the single-shell flammable gas producing tanks. The objective of this tank is to provide two mobile camera systems for use in flammable gas producing single-shell tanks (SSTs) for the Flammable Gas Tank Safety Program. The camera systems will provide observation, video recording, and monitoring of the activities that occur in the vapor space of applied tanks. The camera systems will be designed to be totally mobile, capable of deployment up to 6.1 meters into a 4 inch (minimum) riser.

Kohlman, E.H.

1995-01-25T23:59:59.000Z

431

Cleanup Verification Package for the 118-F-1 Burial Ground  

SciTech Connect

This cleanup verification package documents completion of remedial action for the 118-F-1 Burial Ground on the Hanford Site. This burial ground is a combination of two locations formerly called Minor Construction Burial Ground No. 2 and Solid Waste Burial Ground No. 2. This waste site received radioactive equipment and other miscellaneous waste from 105-F Reactor operations, including dummy elements and irradiated process tubing; gun barrel tips, steel sleeves, and metal chips removed from the reactor; filter boxes containing reactor graphite chips; and miscellaneous construction solid waste.

E. J. Farris and H. M. Sulloway

2008-01-10T23:59:59.000Z

432

FUSRAP - 45 DOE cleanup projects across the country  

SciTech Connect

The Formerly Utilized Sites Remedial Action Program (FUSRAP) is a U.S. Department of Energy (DOE) program designed to address radiological contamination exceeding acceptable cleanup standards at 45 sites throughout the United States. The DOE and its predecessor agencies, the Manhattan Engineer District (MED) and the Atomic Energy Commission (AEC), used many of these sites for processing and storing uranium and thorium ores as part of the nation`s early nuclear production activities. While some of the sites are owned by the federal government, most of the sites were, and are, privately owned.

Price, L.K. [Dept. of Energy, Oak Ridge, TN (United States); Harbert, R.R.; Palau, G.L.

1994-12-31T23:59:59.000Z

433

Reverse osmosis reverses conventional wisdom with Superfund cleanup success  

SciTech Connect

Although widely recognized as the most efficient means of water purification, reverse osmosis has not been considered effective for remediating hazardous wastewater. Scaling and fouling, which can cause overruns and downtime, and require membrane replacement, have inhibited success in high-volume wastewater applications. Despite this background, a reverse osmosis technology developed in Europe recently was used successfully to treat large volumes of contaminated water at a major Superfund site in Texas. The technology's success there may increase the chances for reverse osmosis to find wider use in future cleanups and other waste treatment applications.

Collins, M. (French Ltd. Task Group, Crosby, TX (United States)); Miller, K. (Rochem Environmental Inc., Houston, TX (United States))

1994-09-01T23:59:59.000Z

434

Cleanup Verification Package for the 116-K-2 Effluent Trench  

SciTech Connect

This cleanup verification package documents completion of remedial action for the 116-K-2 effluent trench, also referred to as the 116-K-2 mile-long trench and the 116-K-2 site. During its period of operation, the 116-K-2 site was used to dispose of cooling water effluent from the 105-KE and 105-KW Reactors by percolation into the soil. This site also received mixed liquid wastes from the 105-KW and 105-KE fuel storage basins, reactor floor drains, and miscellaneous decontamination activities.

J. M. Capron

2006-04-04T23:59:59.000Z

435

Petroleum cleanup in the United States: A historical review and comparison of state programs.  

E-Print Network (OSTI)

??Cleanup of leaking underground storage tank (LUST) sites has been a priority for the United States of America (USA) for more than 20 years due (more)

Terwilliger, Timothy A

2006-01-01T23:59:59.000Z

436

LANL selects local small business for post-Recovery Act cleanup...  

NLE Websites -- All DOE Office Websites (Extended Search)

up where the Recovery Act leaves off," said Michael Graham, LANL's associate director for Environmental Programs. "The Recovery Act was a huge boost to our cleanup efforts, and...

437

NETL: Gasification - Recovery Act: High Temperature Syngas Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Background and Project Benefits Program Background and Project Benefits Gasification is used to convert a solid feedstock, such as coal, petcoke, or biomass, into a gaseous form, referred to as synthesis gas or syngas, which is primarily hydrogen and carbon monoxide. With gasification-based technologies, pollutants can be captured and disposed of or converted to useful products. Gasification can generate clean power by adding steam to the syngas in a water-gas-shift reactor to convert the carbon monoxide to carbon dioxide (CO2) and to produce additional hydrogen. The hydrogen and CO2 are separated-the hydrogen is used to make power and the CO2 is sent to storage, converted to useful products or used for EOR. In addition to efficiently producing electric power, a wide range of transportation fuels and chemicals can be produced from the cleaned syngas, thereby providing the flexibility needed to capitalize on the changing economic market. As a result, gasification provides a flexible technology option for using domestically available resources while meeting future environmental emission standards. Polygeneration plants that produce multiple products are uniquely possible with gasification technologies. The Gasification Systems program is developing technologies in three key areas to reduce the cost and increase the efficiency of producing syngas: (1) Feed Systems, (2) Gasifier Optimization and Plant Supporting Systems, and (3) Syngas Processing Systems.

438

Experimental studies on the P-T stability conditions and influencing factors of gas hydrate in different systems  

Science Journals Connector (OSTI)

The P-T stability conditions of gas hydrate in different systems (i.e., solution, silica sand, and marine sediment) were studied using...P-T stability conditions of gas hydrate were investigated. The results show...

ChangLing Liu; YuGuang Ye; ShiCai Sun; Qiang Chen

2013-04-01T23:59:59.000Z

439

Development of a dry low-NOx gas turbine combustor for a natural-gas fueled 2MW co-generation system  

SciTech Connect

A dry low-NOx gas turbine combustor has been developed for natural-gas fueled co-generation systems in the power range of 1--4MW. The combustor. called the Double Swirler Combustor, uses the lean premixed combustion to reduce NOx emission. The combustor is characterized by two staged lean premixed combustion with two coaxial annular burners and a simple fuel control system without the complex variable geometry. Substantially low NOx level has been achieved to meet the strict NOx regulation to co-generation systems in Japan. High combustion efficiency has been obtained for a wide operating range. In 1994, Tokyo Gas and Ishikawajima-Harima Heavy Industries initiated a collaborative program to develop a natural-gas fueled low NOx gas turbine engine for new 2MW class co-generation system, named IM270. The Double Swirler Combustor, originally developed by Tokyo Gas, was introduced into the natural gas fueled version of the IM270. Engine test of the first production unit was successfully conducted to confirm substantially low NOx level of less than 15 ppm (O{sub 2} = 16%) with the output power of more than 2MW. Test for the durability and the reliability of the system is being conducted at Tokyo Gas Negishi LNG Terminal in Kanagawa, Japan and successful results have been so far obtained.

Mori, Masaaki; Sato, Hiroshi

1998-07-01T23:59:59.000Z

440

Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report  

SciTech Connect

The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

None

1980-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1  

SciTech Connect

The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. Subsequent chapters of this report provide: an overview of NGTDM; a description of the interface between the NEMS and NGTDM; an overview of the solution methodology of the NGTDM; the solution methodology for the Annual Flow Module; the solution methodology for the Distributor Tariff Module; the solution methodology for the Capacity Expansion Module; the solution methodology for the Pipeline Tariff Module; and a description of model assumptions, inputs, and outputs.

NONE

1998-01-01T23:59:59.000Z

442

Cogeneration system with low NO sub x combustion of fuel gas  

SciTech Connect

This patent describes a cogeneration system for the production of electricity and refrigeration with low NO{sub x} combustion of fuel gas supplied at a high pressure. It comprises a heat exchanger to heat the fuel gas at high pressure; a turbo-expander connected to receive and expand the heated fuel gas from the heat exchanger; a centrifugal compressor driven by the turbo-expander the compressor being the refrigerant compressor of a refrigeration system; a porous fiber burner connected to receive the expanded fuel gas from the turbo-expander together with the requisite combustion air; a high-pressure steam boiler heated by the combustion of the expanded fuel gas on the outer surface of the porous fiber burner, the boiler being connected to pass the resulting flue gas with low NO{sub x} content through the heat exchanger to heat the fuel gas at high pressure; a steam turbine connected to receive and expand highpressure steam from the boiler and to return expanded and condensed steam to the boiler; and an electric generator driven by the steam turbine.

Garbo, P.W.

1991-06-25T23:59:59.000Z

443

Efficient gas stream cooling in Second-Generation PFBC plants  

SciTech Connect

The coal-fueled Advanced or Second-Generation Pressurized Fluidized Bed Combustor concept (APFBC) is an efficient combined cycle in which coal is carbonized (partially gasified) to fuel a gas turbine, gas turbine exhaust heats feedwater for the steam cycle, and carbonizer char is used to generate steam for a steam turbine while heating combustion air for the gas turbine. The system can be described as an energy cascade in which chemical energy in solid coal is converted to gaseous form and flows to the gas turbine followed by the steam turbine, where it is converted to electrical power. Likewise, chemical energy in the char flows to both turbines generating electrical power in parallel. The fuel gas and vitiated air (PFBC exhaust) streams must be cleaned of entrained particulates by high-temperature equipment representing significant extensions of current technology. The energy recovery in the APFBC cycle allows these streams to be cooled to lower temperatures without significantly reducing the efficiency of the plant. Cooling these streams would allow the use of lower-temperature gas cleanup equipment that more closely approaches commercially available equipment, reducing cost and technological risk, and providing an earlier path to commercialization. This paper describes the performance effects of cooling the two hottest APFBC process gas streams: carbonizer fuel gas and vitiated air. Each cooling variation is described in terms of energy utilization, cycle efficiency, and cost implications.

White, J.S.; Horazak, D.A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States)

1994-07-01T23:59:59.000Z

444

Systems approach used in the Gas Centrifuge Enrichment Plant  

SciTech Connect

A requirement exists for effective and efficient transfer of technical knowledge from the design engineering team to the production work force. Performance-Based Training (PBT) is a systematic approach to the design, development, and implementation of technical training. This approach has been successfully used by the US Armed Forces, industry, and other organizations. The advantages of the PBT approach are: cost-effectiveness (lowest life-cycle training cost), learning effectiveness, reduced implementation time, and ease of administration. The PBT process comprises five distinctive and rigorous phases: Analysis of Job Performance, Design of Instructional Strategy, Development of Training Materials and Instructional Media, Validation of Materials and Media, and Implementation of the Instructional Program. Examples from the Gas Centrifuge Enrichment Plant (GCEP) are used to illustrate the application of PBT.

Rooks, W.A. Jr.

1982-01-01T23:59:59.000Z

445

A computer program for deriving soil cleanup criteria  

SciTech Connect

The US Department of Energy (DOE) has issued a new order, DOE Order 5400.5, for Radiation Protection of the Public and the Environment. In this order, the DOE sets forth radiological protection guidelines for the cleanup of residual radioactive materials. Radionuclide concentrations and radioactivity levels have been established that are acceptable if a site is to be used without radiological restrictions. The guidelines can be categorized as either generic (site independent), that is, taken from existing radiation protection standards, or site specific, that is, derived from the basic dose limit using site-specific data and models. The generic guidelines for soil concentrations of [sup 226]Ra, [sup 228]Ra, [sup 230]Th, and [sup 232]Th adopted in DOE Order 5400.5 are generally consistent with US Environmental Protection Agency standards in Title 40, Code of Federal Regulations, Part 192. Procedures and data for deriving site-specific guidelines for other radionuclides in soil have been coded in a microcomputer program called RESRAD. The RESRAD code has been used by the DOE and its contractors to calculate postremediation doses and cleanup guidelines. The RESRAD code is a useful, easy to run, and very user-friendly tool.

Yu, C. (Argonne National Lab., IL (United States))

1990-01-01T23:59:59.000Z

446

Natural Gas EIA-176 Query System Readme(1999)  

Gasoline and Diesel Fuel Update (EIA)

176 Query System Readme 176 Query System Readme 1.0 INTRODUCTION TO THE EIA-176 FRONT END QUERY FACILITY This system provides a method of extracting and using the EIA-176 data, and saving the query results in various mediums and formats. There are pre-set data extractions available, which allow the user to select and run the most often-used queries. 1.1 Hardware Requirements The minimum hardware requirements are: - An IBM-compatible personal computer (PC) 386SX 16 MHZ with 2 megabytes RAM. (A 486DX 33MHZ with 4 megabytes RAM is recommended). - MS-DOS operating system (version 3.x or greater), or compatible, or Network operating system capable of emulating MS-DOS. - MS-DOS file handles should be set to at least 50 in the CONFIG.SYS. In Windows NT, this file is called CONFIG.NT.

447

Hot gas defrosting method for air-source transcritical CO2 heat pump systems  

Science Journals Connector (OSTI)

Abstract When the air-source heat pump systems operate at low ambient temperatures in winter, frost forms on the coil surface of the outdoor evaporators. The frost substantially affects the operating performance and energy efficiency of heat pump systems, and hence periodic defrosting is essential. In this study, several defrost methods are presented to look for a candidate for air-source transcritical CO2 heat pump systems. The hot gas method proves to be more suitable among other defrosting methods for transcritical CO2 heat pump systems. To validate its reliability and rationality, an air-source transcritical CO2 heat pump water heater was built in a climatic laboratory. Through the experiments, the dynamic process of temperature and pressure were obtained to demonstrate the hot gas defrosting characteristics and system cycle. The hot gas defrosting cycle in the ph diagram was also validated by experiment results. Meanwhile, instant defrosting images were captured to record the dynamic defrosting process. The defrosting process lasted 10min and defrosting efficiency was 34.8% for hot gas defrosting method. The effectiveness and applicability of hot gas defrosting method for CO2 heat pump water heater is validated by experiments.

Bin Hu; Dongfang Yang; Feng Cao; Ziwen Xing; Jiyou Fei

2015-01-01T23:59:59.000Z

448

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Quantifying the role of groundwater in hydrocarbon systems using noble gas  

E-Print Network (OSTI)

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Quantifying the role of groundwater in hydrocarbon systems using noble gas isotopes (EARTH-15-CB1) Host institution biodegradation of oil can remove its value ­ but what controls the biodegradation? The deep biosphere plays a key

Henderson, Gideon

449

Interaction of particles with carrier gas in HVOF spraying systems  

Science Journals Connector (OSTI)

Several designs of high-velocity oxygen fuel (HVOF) thermal spray systems have been created during the last ... coatings comparable in quality to detonation (D-gun) coatings. This paper presents numerical analysi...

E. Kadyrov; Y. Evdokimenko; V. Kisel; V. Kadyrov

1994-12-01T23:59:59.000Z

450

Reduce Natural Gas Use in Your Industrial Process Heating Systems  

SciTech Connect

This DOE Industrial Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

Not Available

2007-09-01T23:59:59.000Z

451

Strangeness Enhancement and System Size in the Hadronic Gas Model  

E-Print Network (OSTI)

Strange particle enhancement in relativistic ion collisions is discussed with particular attention to the dependence on the size of the volume and/or the baryon number of the system.

Azwinndini Muronga; Jean Cleymans

1997-09-23T23:59:59.000Z

452

Efficiency Analysis of Natural Gas Residential Micro-cogeneration Systems  

Science Journals Connector (OSTI)

The systems feature different energy conversion technologies: Stirling engine (WhisperGen), spark-ignition internal combustion (IC) engine (FreeWatt), and polymer electrolyte fuel cell (PEFC) (EBARA Ballard). ... The Stirling engine is the least expensive that requires the least maintenance. ... Experimental Determination of the Efficiency and Emissions of a Residential Microcogeneration System Based on a Stirling Engine and Fueled by Diesel and Ethanol ...

Amir A. Aliabadi; Murray J. Thomson; James S. Wallace

2010-01-22T23:59:59.000Z

453

Method for controlling exhaust gas heat recovery systems in vehicles  

DOE Patents (OSTI)

A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

Spohn, Brian L.; Claypole, George M.; Starr, Richard D

2013-06-11T23:59:59.000Z

454

Natural gas transmission and distribution model of the National Energy Modeling System  

SciTech Connect

The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

NONE

1997-02-01T23:59:59.000Z

455

Low pressure cooling seal system for a gas turbine engine  

DOE Patents (OSTI)

A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

Marra, John J

2014-04-01T23:59:59.000Z

456

Molten carbonate fuel cell and gas turbine hybrid systems as distributed energy resources  

Science Journals Connector (OSTI)

Molten carbonate fuel cell (MCFC)/gas turbine (GT) hybrid system has attracted a great deal of research effort due to its higher electricity efficiency. However, its technology has remained at the conceptual level due to incomplete examination of the related issues, challenges and variables. To contribute to the development of system technology, the MCFC/GT hybrid system is analyzed and discussed herein. A qualitative comparison of the two kinds of MCFC/GT hybrid system, indirect and direct, is hindered by the many variables involved. However, the indirect system may be preferred for relatively small-scale systems with the micro-GT. The direct system can be more competitive in terms of system efficiency and GT selection due to the optionality of system layouts as well as even higher GT inlet temperature. System layout is an important factor influencing the system efficiency. The other issues such as GT selection, system pressurization and part-load operation are also significant.

Jung-Ho Wee

2011-01-01T23:59:59.000Z

457

Cleanup Verification Package for the 118-F-5 PNL Sawdust Pit  

SciTech Connect

This cleanup verification package documents completion of remedial action, sampling activities, and compliance with cleanup criteria for the 118-F-5 Burial Ground, the PNL (Pacific Northwest Laboratory) Sawdust Pit. The 118-F-5 Burial Ground was an unlined trench that received radioactive sawdust from the floors of animal pens in the 100-F Experimental Animal Farm.

L. D. Habel

2008-05-20T23:59:59.000Z

458

AN ADVISORY SYSTEM FOR THE DEVELOPMENT OF UNCONVENTIONAL GAS RESERVOIRS  

E-Print Network (OSTI)

, GDK, UFD, and Holditch ................... 104 4.6 D&C Advisor Help and Explanation System ................................................ 120 5 PROGRAMMING.......................................................139 Fig. 6.15?UFD model recommends a 640-ft fracture half-length. ...............................140 Fig. 6.16?Holditch rule of thumb half-length lies between those of more complicated methods...

Wei, Yunan

2010-01-16T23:59:59.000Z

459

An integrated solar thermal power system using intercooled gas turbine and Kalina cycle  

Science Journals Connector (OSTI)

A new solar tower thermal power system integrating the intercooled gas turbine top cycle and the Kalina bottoming cycle is proposed in the present paper. The thermodynamic performance of the proposed system is investigated, and the irreversibility of energy conversion is disclosed using the energyutilization diagram method. On the top cycle of the proposed system, the compressed air after being intercooled is heated at 1000C or higher at the solar tower receiver and is used to drive the gas turbine to generate power. The ammoniawater mixture as the working substance of the bottom cycle recovers the waste heat from the gas turbine to generate power. A concise analytical formula of solar-to-electric efficiency of the proposed system is developed. As a result, the peak solar-to-electric efficiency of the proposed system is 27.5% at a gas turbine inlet temperature of 1000C under the designed solar direct normal irradiance of 800W/m2. Compared with a conventional solar power tower plant, the proposed integrated system conserves approximately 69% of consumed water. The results obtained in the current study provide an approach to improve solar-to-electric efficiency and offer a potential to conserve water for solar thermal power plants in arid area.

Shuo Peng; Hui Hong; Hongguang Jin; Zhifeng Wang

2012-01-01T23:59:59.000Z

460

Preliminary Failure Modes and Effects Analysis of the US Massive Gas Injection Disruption Mitigation System Design  

SciTech Connect

This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a candidate design for the ITER Disruption Mitigation System. This candidate is the Massive Gas Injection System that provides machine protection in a plasma disruption event. The FMEA was quantified with generic component failure rate data as well as some data calculated from operating facilities, and the failure events were ranked for their criticality to system operation.

Lee C. Cadwallader

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Stripper Well Consortium Stripper Well Consortium DE-FC26-00NT41025 Goal: The goal is to enhance the ability of the domestic production industry to keep stripper wells producing at economic production rates in an environmentally safe manner, maximizing the recovery of domestic hydrocarbon resources. Objective: The objective is to develop and manage an industry-driven consortium that provides a cost-efficient vehicle for developing, transferring, and deploying new technologies into the private sector that focus on improving the production performance of domestic natural gas and oil stripper wells. Performer: The Pennsylvania State University (Energy Institute) - Project management Accomplishments: Established a consortium governing structure, constitution and bylaws, Established areas of research focus (reservoir remediation and characterization, well bore cleanup, and surface systems optimization) and rules for proposal submission and selection, and

462

Application of PV panels into electricity generation system of compression stations in gas transporting systems.  

E-Print Network (OSTI)

?? This thesis deals with problems of electricity generation and saving at compression stations of magistral gas transporting pipelines in Russia. Russia is a biggest (more)

Belyaev, Alexey

2013-01-01T23:59:59.000Z

463

Ground Gas Handbook  

Science Journals Connector (OSTI)

...pathways of least resistance to gas transport, and applications are discussed, such as migrating landfill gas emissions, also from leaking landfill gas collection systems, as well as natural gas and oil-field gas leakage from abandoned production...

Allen W Hatheway

464

Oak Ridge EM Program Increases Focus on Mercury Cleanup | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Increases Focus on Mercury Cleanup Increases Focus on Mercury Cleanup Oak Ridge EM Program Increases Focus on Mercury Cleanup May 7, 2013 - 12:00pm Addthis Tennessee Department of Environment and Conservation Commissioner Robert Martineau, left to right, U.S. Sen. Lamar Alexander (R-Tenn.), Oak Ridge EM Manager Mark Whitney, EM Senior Advisor Dave Huizenga and EPA Deputy Regional Administrator for Region 4 Stan Meiburg gathered for the announcement on mercury cleanup. Tennessee Department of Environment and Conservation Commissioner Robert Martineau, left to right, U.S. Sen. Lamar Alexander (R-Tenn.), Oak Ridge EM Manager Mark Whitney, EM Senior Advisor Dave Huizenga and EPA Deputy Regional Administrator for Region 4 Stan Meiburg gathered for the announcement on mercury cleanup. OAK RIDGE, Tenn. - EM Senior Advisor Dave Huizenga recently joined local

465

Agreement on New Commitments for Hanford Tank Waste Cleanup Sent to Federal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agreement on New Commitments for Hanford Tank Waste Cleanup Sent to Agreement on New Commitments for Hanford Tank Waste Cleanup Sent to Federal Judge Agreement on New Commitments for Hanford Tank Waste Cleanup Sent to Federal Judge October 6, 2010 - 12:00am Addthis RICHLAND, Wash. - The U.S. Department of Energy and Washington State Department of Ecology (Ecology) jointly filed a motion today in U.S. District Court asking the court to approve and enter a judicial consent decree that imposes a new, enforceable, and achievable schedule for cleaning up waste from Hanford's underground tanks. The settlement also includes new milestones in the Tri-Party Agreement (TPA), an administrative order between DOE, Ecology, and the U.S. Environmental Protection Agency, which governs cleanup at DOE's Hanford Site. "Today's agreement represents an important milestone in the ongoing cleanup

466

EA-1867: Scale-up of High-Temperature Syngas Cleanup Technology, Polk  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Scale-up of High-Temperature Syngas Cleanup Technology, 7: Scale-up of High-Temperature Syngas Cleanup Technology, Polk County, Florida EA-1867: Scale-up of High-Temperature Syngas Cleanup Technology, Polk County, Florida Summary This EA evaluates the environmental impacts of a proposal to provide cost-shared funding to RTI International (RTI) for its proposed project to demonstrate the precommercial scale-up of RTI's high-temperature syngas cleanup and carbon capture and sequestration technologies. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download October 13, 2011 EA-1867: Finding of No Significant Impact RTI International Scale-Up of High-Temperature Syngas Cleanup and Carbon Capture and Sequestration Technologies, Polk County, Florida (October 2011)

467

Head of EM to Kick Off Congressional Nuclear Cleanup Caucus | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Head of EM to Kick Off Congressional Nuclear Cleanup Caucus Head of EM to Kick Off Congressional Nuclear Cleanup Caucus Head of EM to Kick Off Congressional Nuclear Cleanup Caucus April 22, 2013 - 12:00pm Addthis WASHINGTON, D.C. - EM Senior Advisor Dave Huizenga will provide an overview of EM's proposed fiscal year 2014 budget Thursday in the first of six briefings for the 19th annual U.S. House Nuclear Cleanup Caucus. Huizenga rolled out the $5.622 billion budget request earlier this month. The proposal, which requires approval by Congress, enables EM progress in all areas of the nuclear cleanup program while maintaining safety and compliance across the complex. The briefings are organized by Rep. Doc Hastings (R-Wash.), who chairs the bipartisan caucus. "These briefings provide valuable insight and help educate my colleagues

468

DOE and NASA Reach Cleanup Agreements with the State of California for the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NASA Reach Cleanup Agreements with the State of California NASA Reach Cleanup Agreements with the State of California for the Santa Susana Field Laboratory DOE and NASA Reach Cleanup Agreements with the State of California for the Santa Susana Field Laboratory December 6, 2010 - 12:00am Addthis Washington, D.C. - The Department of Energy and NASA both signed Administrative Orders on Consent (AOC) with the California Environmental Protection Agency (Cal EPA) today that define the process for characterization and the cleanup