Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NETL: Gasification Systems - Integrated Warm Gas Multicontaminant Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Project Number: DE-FC26-05NT42459 Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Project ID: DE-FC26-05NT42459 Objective: The objective is to develop a warm multi-contaminant syngas cleaning system for operation between 300 and 700° F. This project will continue development of the RTI warm syngas cleanup technology suite. Based on the field testing results with real syngas from Eastman Chemical Company's gasifier under DOE Contract DE-AC26-99FT40675, additional technical issues need to be addressed to move the technologies used in warm syngas cleaning further towards commercial deployment especially for chemical/fuels production. These issues range from evaluation of startup and standby options for the more developed desulfurization processes to integration and actual pilot plant testing with real coal-derived syngas for the technologies that were tested at bench scale during Phase I. Development shall continue of the warm gas syngas cleaning technology platform through a combination of lab-scale R&D and larger integrated pilot plant testing with real coal-derived syngas as well as process/systems analysis and simulation for optimization of integration and intensification.

2

Warm Gas Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Warm Gas Cleanup Warm Gas Cleanup NETL Office of Research and Development Project Number: FWP-2012.03.03 Task 5 Project Description The Environmental Protection Agency (EPA) has established strict regulations for the trace contaminant emissions from integrated gasification combined cycle (IGCC) systems. The Department of Energy (DOE) performance goals for trace contaminant removal were selected to meet or exceed EPA's standard limits for contaminants, as well as to avoid poisoning of: the catalysts utilized in making liquids from fuel gas the electrodes in fuel cells selective catalytic reduction (SCR) catalysts The objective of the NETL's ORD Warm Gas Cleanup project is to assist in achieving both DOE and EPA targets for trace contaminant capture from coal gasification, while preserving the high thermal efficiency of the IGCC system. To achieve this, both lab and pilot-scale research is underway to develop sorbents capable of removing the following contaminants from high temperature syngas (up to 550°F):

3

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove trace elements such as mercury and arsenic, capture the greenhouse gas carbon dioxide (CO2), and extract more than 99.9 percent of the sulfur from the syngas. A novel process to convert the extracted sulfur to a pure elemental sulfur product will also be tested. This project supports DOE's vision of coal power plants with near-zero

4

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove trace elements such as mercury and arsenic, capture the greenhouse gas carbon dioxide (CO2), and extract more than 99.9 percent of the sulfur from the syngas. A novel process to convert the extracted sulfur to a pure elemental sulfur product will also be tested. This project supports DOE's vision of coal power plants with near-zero

5

Gas stream cleanup  

Science Conference Proceedings (OSTI)

This report describes the current status and recent accomplishments of gas stream cleanup (GSCU) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Gas Stream Cleanup Program is to develop contaminant control strategies that meet environmental regulations and protect equipment in advanced coal conversion systems. Contaminant control systems are being developed for integration into seven advanced coal conversion processes: Pressurized fludized-bed combustion (PFBC), Direct coal-fueled turbine (DCFT), Intergrated gasification combined-cycle (IGCC), Gasification/molten carbonate fuel cell (MCFC), Gasification/solid oxide fuel cell (SOFC), Coal-fueled diesel (CFD), and Mild gasification (MG). These advanced coal conversion systems present a significant challenge for development of contaminant control systems because they generate multi-contaminant gas streams at high-pressures and high temperatures. Each of the seven advanced coal conversion systems incorporates distinct contaminant control strategies because each has different contaminant tolerance limits and operating conditions. 59 refs., 17 figs., 5 tabs.

Bossart, S.J.; Cicero, D.C.; Zeh, C.M.; Bedick, R.C.

1990-08-01T23:59:59.000Z

6

Sorption Mechanisms for Mercury Capture in Warm Post-Gasification Gas Clean-Up Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorption MechaniSMS for Mercury Sorption MechaniSMS for Mercury capture in WarM poSt-GaSification GaS clean-up SySteMS Background Power generation systems employing gasification technology must remove a variety of potential air pollutants, including mercury, from the synthetic gas steam prior to combustion. In general, efforts to remove mercury have focused on removal at lower temperatures (under 300 °F). The ability to remove mercury at warm-gas cleanup conditions (300 °F to 700 °F) or in the hot-gas cleanup range (above 1200 °F) would provide plant operators with greater flexibility to choose the treatment method best suited to conditions at their plant. The University of Arizona is investigating the use of paper waste-derived sorbents (PWDS) for the removal of mercury and other trace metals at temperatures in and

7

Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems  

SciTech Connect

The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

1990-12-01T23:59:59.000Z

8

Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 2  

Science Conference Proceedings (OSTI)

On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster dsplays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume II covers papers presented at sessions 5 and 6 on system for the production of synthesis gas, and on system for the production of power. All papers have been processed for inclusion in the Energy Data Base.

Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

1987-08-01T23:59:59.000Z

9

Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 1  

Science Conference Proceedings (OSTI)

On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster displays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume I covers information presented at sessions 1 through 4 on systems for the production of Co-products and industrial fuel gas, environmental projects, and components and materials. Individual papers have been processed for the Energy Data Base.

Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

1987-08-01T23:59:59.000Z

10

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Wood Feedstock  

DOE Green Energy (OSTI)

As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for treatment of wood-derived syngas for use in the synthesis of liquid fuels. Two different 2,000 metric tonne per day gasification schemes, a low-pressure, indirect system using the gasifier, and a high-pressure, direct system using gasification technology were evaluated. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

Nexant Inc.

2006-05-01T23:59:59.000Z

11

Sorption Mechanisms for Mercury Capture in Warm Post-Gasification Gas Clean-Up Systems  

SciTech Connect

The research was directed towards a sorbent injection/particle removal process where a sorbent may be injected upstream of the warm gas cleanup system to scavenge Hg and other trace metals, and removed (with the metals) within the warm gas cleanup process. The specific objectives of this project were to understand and quantify, through fundamentally based models, mechanisms of interaction between mercury vapor compounds and novel paper waste derived (kaolinite + calcium based) sorbents (currently marketed under the trade name MinPlus). The portion of the research described first is the experimental portion, in which sorbent effectiveness to scavenge metallic mercury (Hg{sup 0}) at high temperatures (>600 C) is determined as a function of temperature, sorbent loading, gas composition, and other important parameters. Levels of Hg{sup 0} investigated were in an industrially relevant range ({approx} 25 {micro}g/m{sup 3}) although contaminants were contained in synthetic gases and not in actual flue gases. A later section of this report contains the results of the complementary computational results.

Jost Wendt; Sung Jun Lee; Paul Blowers

2008-09-30T23:59:59.000Z

12

Design and Testing of a Landfill Gas Cleanup System for Carbonate Fuel Cell Power Plants: Volume 1: Field Test Results  

Science Conference Proceedings (OSTI)

This report presents results of an effort to develop a low-cost cleanup system that would enable landfill gas to be used in carbonate fuel cells or other power generation devices. The EPRI-developed system is now available for license to commercial applications.

1997-11-26T23:59:59.000Z

13

Reactor water cleanup system  

DOE Patents (OSTI)

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

Gluntz, Douglas M. (San Jose, CA); Taft, William E. (Los Gatos, CA)

1994-01-01T23:59:59.000Z

14

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Black Liquor Gasification  

DOE Green Energy (OSTI)

As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for removal of acid gases from black liquor-derived syngas for use in both power and liquid fuels synthesis. Two 3,200 metric tonne per day gasification schemes, both low-temperature/low-pressure (1100 deg F, 40 psi) and high-temperature/high-pressure (1800 deg F, 500 psi) were used for syngas production. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory and Princeton University. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

Nexant Inc.

2006-05-01T23:59:59.000Z

15

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer  

DOE Green Energy (OSTI)

This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

Nexant Inc.

2006-05-01T23:59:59.000Z

16

Assessment of Fuel Gas Cleanup Systems for Waste Gas Fueled Power Generation  

Science Conference Proceedings (OSTI)

There are many industrial operations that have waste gas streams that are combustible. Chief among these is biogas produced by anaerobic digestion of organic wastes to produce a methane-rich biogas in landfills and anaerobic digesters. These gas streams are increasingly being used to fuel local power generators. The biogas streams, however, contain traces of a wide variety of contaminants. Removal of these contaminants may be required to either meet the manufacturer's requirements for fuel gas quality to...

2006-12-21T23:59:59.000Z

17

Design and Testing of a Landfill Gas Cleanup System for Carbonate Fuel Cell Power Plants: Volume II: Full Scale Landfill Gas Cleanup for Carbonate Fuel Cell Power Plants (Proprietary)  

Science Conference Proceedings (OSTI)

This document is a proprietary version of section 5 of EPRI technical report TR-108043-V1. The volume contains detailed design information and operating conditions for a full-scale, low-cost cleanup system that would enable landfill gas to be used in carbonate fuel cells or other power generation devices. The EPRI-developed system is now available for license to commercial applications.

1998-02-27T23:59:59.000Z

18

Proceedings of the eighth annual coal-fueled heat engines and gas stream cleanup systems contractors review meeting  

SciTech Connect

The goal of the Heat Engines and Gas Stream Cleanup Programs at Morgantown Energy Technology Center is to develop essential technologies so the private sector can commercialize power plants burning coal-derived fuels. The purpose of this annual meeting is to provide a forum for scientists and engineers to present their results, exchange ideas and talk about their plans. Topics discussed were: Heat Engines Commercialization and Proof of Concepts Projects; Components and Testing of Coal-Fueled Gas Turbines; Advances in Barrier Filters; Pulse Combustion/Agglomeration; Advances in Coal-Fueled Diesels; Gas Stream Cleanup; Turbine and Diesel Emissions; and Poster Presentations.

Webb, H.A.; Bedick, R.C.; Geiling, D.W.; Cicero, D.C. (eds.)

1991-07-01T23:59:59.000Z

19

Carbon Formation and Metal Dusting in Hot-Gas Cleanup Systems of Coal Gasifiers  

SciTech Connect

There are several possible materials/systems degradation modes that result from gasification environments with appreciable carbon activities. These processes, which are not necessarily mutually exclusive, include carbon deposition, carburization, metal dusting, and CO disintegration of refractories. Carbon formation on solid surfaces occurs by deposition from gases in which the carbon activity (a sub C) exceeds unity. The presence of a carbon layer CO can directly affect gasifier performance by restricting gas flow, particularly in the hot gas filter, creating debris (that may be deposited elsewhere in the system or that may cause erosive damage of downstream components), and/or changing the catalytic activity of surfaces.

Tortorelli, Peter F.; Judkins, Roddie R.; DeVan, Jackson H.; Wright, Ian G.

1995-12-31T23:59:59.000Z

20

Gas separation and hot-gas cleanup  

DOE Green Energy (OSTI)

Catalytic gasification of coal to produce H{sub 2}-, CO-, and CH{sub 4}-rich mixtures of gases for consumption in molten carbonate fuel cells is currently under development; however, to optimize the fuel cell performance and extend its operating life,it is desired to separate as much of the inert components (i.e., CO{sub 2} and N{sub 2}) and impurities (i.e., H{sub 2}S and NH{sub 3}) as possible from the fuel gas before it enters the fuel cell. In addition, the economics of the integrated gasification combined cycle (IGCC) can be improved by separating as much of the hydrogen as possible from the fuel, since hydrogen is a high-value product. Researchers at the Energy & Environmental Research Center and Bend Research, Inc., investigated pressure-driven membranes as a method for accomplishing this gas separation and hot-gas cleanup. These membranes are operated at temperatures as high as 800{degrees}C and at pressures up to 300 psig. They have very small pore sizes that separate the undesirable gases by operating in the Knudsen diffusion region of mass transport (30 -50{Angstrom}) or in the molecular sieving region of mass transport phenomena (<5{Angstrom}). In addition, H{sub 2} separation through a palladium metal membrane proceeds via a solution-diffusion mechanism for atomic hydrogen. This allows the membranes to exhibit extremely high selectivity for hydrogen separation. The objective of this study was to determine the selectivity of the ceramic membranes for removing undesirable gases while allowing the desired gases to be concentrated in the permeate stream.

Swanson, M.L.

1996-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Physical gas stream cleanup: Technology status report  

SciTech Connect

This report is a summary of the status of particulate control technologies for use at high temperatures and high pressures. The technologies are being developed under the Physical Gas Stream Cleanup Program that is administered by the US Department of Energy, Morgantown Energy Technology Center. The intended uses of the particulate control technologies are to protect components in advanced coal systems, such as integrated gasification combined cycles, pressurized fluidized-bed combustion combined cycles, gasification molten carbonate fuel cells, and direct coal-fueled turbines. The use of particulate control technologies for these advanced energy conversion systems requires separation and collection of particles at temperatures in excess of 1000/sup 0/F and at pressures in excess of 7 atmospheres. These temperature and pressure regimes represent a drastic departure from those of conventional technologies. The Physical Gas Stream Cleanup Program seeks to establish a technical and economic data base that will demonstrate the feasibility of high-temperature, high-pressure particulate control. Particulate control concepts and their corresponding research and development projects are described in this report. These projects include subpilot-scale tests of an electrostatic precipitator, a ceramic cross-flow filter, and a screenless granular-bed filter on a 30-inch diameter pressurized fluidized-bed combustor. Bench-scale tests will also be conducted using a ceramic cross-flow filter, a ceramic bag filter, and an electrostatic precipitator on a 6-inch diameter fluidized-bed gasifier. Additional research involves laboratory evaluation of acoustic agglomeration, turbulence characterization and suppression in cyclones and characterization of ceramic fabrics for bag filters. Each project and significant accomplishments in FY 85 are described. 14 refs., 25 figs., 5 tabs.

1986-04-01T23:59:59.000Z

22

NETL: Gasification Systems - High Temperature Syngas Cleanup...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hornick, Tampa Electric Company, Ben Gardner, RTI International, presented at the Gasification Technologies Conference, San Francisco, CA Oct 9-12, 2011. Warm Gas Clean-up and...

23

Carbon formation and metal dusting in hot-gas cleanup systems of coal gasifiers  

SciTech Connect

The product gas resulting from the partial oxidation of Carboniferous materials in a gasifier is typically characterized by high carbon and sulfur, but low oxygen, activities and, consequently, severe degradation of the structural and functional materials can occur. The objective of this task was to establish the potential risks of carbon deposition and metal dusting in advanced coal gasification processes by examining the current state of knowledge regarding these phenomena, making appropriate thermochemical calculations for representative coal gasifiers, and addressing possible mitigation methods. The paper discusses carbon activities, iron-based phase stabilities, steam injection, conditions that influence kinetics of carbon deposition, and influence of system operating parameters on carbon deposition and metal dusting.

Judkins, R.R.; Tortorelli, P.F.; Judkins, R.R.; DeVan, J.H.; Wright, I.G. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

1995-11-01T23:59:59.000Z

24

PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES  

Science Conference Proceedings (OSTI)

This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97 . Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy / Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

None

1999-05-05T23:59:59.000Z

25

PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES  

Science Conference Proceedings (OSTI)

This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97 . Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy / Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

NONE

1998-11-30T23:59:59.000Z

26

PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES  

Science Conference Proceedings (OSTI)

This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97{reg_sign}. Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy/Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

NONE

1999-05-05T23:59:59.000Z

27

Reactive carbon from life support wastes for incinerator flue gas cleanup-System Testing  

DOE Green Energy (OSTI)

This paper presents the results from a joint research initiative between NASA Ames Research Center and Lawrence Berkeley National lab. The objective of the research is to produce activated carbon from life support wastes and to use the activated carbon to adsorb and chemically reduce the NO{sub x} and SO{sub 2} contained in incinerator flue gas. Inedible biomass waste from food production is the primary waste considered for conversion to activated carbon. Results to date show adsorption of both NO{sub x} and SO{sub 2} in activated carbon made from biomass. Conversion of adsorbed NO{sub x} to nitrogen has also been observed.

Fisher, John W.; Pisharody, Suresh; Moran, Mark J.; Wignarajah, Kanapathipillai; Xu, X.H.; Shi, Yao; Chang, Shih-Ger

2002-05-14T23:59:59.000Z

28

Desulfurization of fuel gases in fluidized bed gasification and hot fuel gas cleanup systems  

DOE Patents (OSTI)

A problem with the commercialization of fluidized bed gasification is that vast amounts of spent sorbent are generated if the sorbent is used on a once-through basis, especially if high sulfur coals are burned. The requirements of a sorbent for regenerative service in the FBG process are: (1) it must be capable of reducing the sulfur containing gas concentration of the FBG flue gas to within acceptable environmental standards; (2) it must not lose its reactivity on cyclic sulfidation and regeneration; (3) it must be capable of regeneration with elimination of substantially all of its sulfur content; (4) it must have good attrition resistance; and, (5) its cost must not be prohibitive. It has now been discovered that calcium silicate pellets, e.g., Portland cement type III pellets meet the criteria aforesaid. Calcium silicate removes COS and H/sub 2/S according to the reactions given to produce calcium sulfide silicate. The sulfur containing product can be regenerated using CO/sub 2/ as the regenerant. The sulfur dioxide can be conveniently reduced to sulfur with hydrogen or carbon for market or storage. The basic reactions in the process of this invention are the reactions with calcium silicate given in the patent. A convenient and inexpensive source of calcium silicate is Portland cement. Portland cement is a readily available, widely used construction meterial.

Steinberg, M.; Farber, G.; Pruzansky, J.; Yoo, H.J.; McGauley, P.

1983-08-26T23:59:59.000Z

29

Particulate hot gas stream cleanup technical issues  

Science Conference Proceedings (OSTI)

The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

Pontius, D.H.; Snyder, T.R.

1999-09-30T23:59:59.000Z

30

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology  

DOE Green Energy (OSTI)

This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

Nexant Inc.

2006-05-01T23:59:59.000Z

31

Pilot scale experience on IGCC hot gas cleanup  

SciTech Connect

In September 1993 Enviropower Inc. entered into a Cooperative Research and Development Agreement (CRADA) with the Department of Energy in order to develop and demonstrate the major components of an IGCC process such as hot gas cleanup systems. The objectives of the project are to develop and demonstrate: (1) hydrogen sulfide removal using regenerable metal oxide sorbent in pressurized fluidized bed reactors, (2) recovery of elemental sulfur from the tail-gas of the sorbent regenerator, and (3) hot gas particulate removal using ceramic candle filters.

Salo, K.; Ghazanfari, R.; Feher, G. [and others

1995-11-01T23:59:59.000Z

32

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems  

SciTech Connect

This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

Nexant Inc.

2006-05-01T23:59:59.000Z

33

Renewable Natural Gas Clean-up Challenges and Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Natural Gas Clean-up Renewable Natural Gas Clean-up p Challenges and Applications Renewable Resource Webinar July 13, 2011 Brian Weeks, Gas Technology Institute 281 235 7993, brian.weeks@gastechnology.org Kristine Wiley, Gas Technology Institute 847 768 0910 kristine wiley@gastechnology org 847 768 0910, kristine.wiley@gastechnology.org 2 Today's Talk Today s Talk >Who is GTI Who is GTI >What is Renewable Natural Gas (RNG) Ch ll f R bl N t l G >Challenges for Renewable Natural Gas >How do we clean up RNG? >Recommendations and Summary 2 - - 3 GTI at a Glance... > Not-for-profit research > Not for profit research, with 65+ year history > Facilities 18 Chi ─ 18 acre campus near Chicago ─ 200,000 ft 2 , 28 specialized labs $60 illi > $60 + million i in revenue

34

Cleanup of hydrocarbon conversion system  

Science Conference Proceedings (OSTI)

This patent describes a process for the catalytic reforming of a substantially contaminant-free second hydrocarbon feed using a second reforming catalyst, in a catalytic-reforming system having equipment contaminated through contact with a contaminant-containing prior feed. It comprises: contacting the first hydrocarbon feed in the catalytic-reforming system at first reforming conditions with a first reforming catalyst until contaminant removal from the conversion system is substantially completed and the system is contaminant-free; thereafter replacing the first reforming catalyst in the contaminant-free catalytic-reforming system with a second reforming catalyst; and thereafter contacting the second hydrocarbon feed in the contaminant-free catalytic-reforming system with the second reforming catalyst at second reforming conditions.

Peer, R.L.; Russ, M.B.

1990-07-10T23:59:59.000Z

35

Biomass Gas Cleanup Using a Therminator  

SciTech Connect

The objective of the project is to develop and demonstrate a novel fluidized-bed process module called a ?¢????Therminator?¢??? to simultaneously destroy and/or remove tar, NH3 and H2S from raw syngas produced by a fluidized-bed biomass gasifier. The raw syngas contains as much as 10 g/m3 of tar, 4,000 ppmv of NH3 and 100 ppmv of H2S. The goal of the Therminator module would be to use promising regenerable catalysts developed for removing tar, ammonia, and H2S down to low levels (around 10 ppm). Tars are cracked to a non-condensable gas and coke that would deposit on the acid catalyst. We will deposit coke, much like a fluid catalytic cracker (FCC) in a petroleum refinery. The deposited coke fouls the catalyst, much like FCC, but the coke would be burned off in the regenerator and the regenerated catalyst would be returned to the cracker. The rapid circulation between the cracker and regenerator would ensure the availability of the required amount of regenerated catalyst to accomplish our goal. Also, by removing sulfur down to less than 10 ppmv, NH3 decomposition would also be possible in the cracker at 600-700???°C. In the cracker, tar decomposes and lays down coke on the acid sites of the catalyst, NH3 is decomposed using a small amount of metal (e.g., nickel or iron) catalyst incorporated into the catalyst matrix, and H2S is removed by a small amount of a metal oxide (e.g. zinc oxide or zinc titanate) by the H2S-metal oxide reaction to form metal sulfide. After a tolerable decline in activity for these reactions, the catalyst particles (and additives) are transported to the regenerator where they are exposed to air to remove the coke and to regenerate the metal sulfide back to metal oxide. Sulfate formation is avoided by running the regeneration with slightly sub-stoichiometric quantity of oxygen. Following regeneration, the catalyst is transported back to the cracker and the cycling continues. Analogous to an FCC reactor system, rapid cycling will allow the use of very active cracking catalysts that lose activity due to coking within the order of several seconds.

David C. Dayton; Atish Kataria; Rabhubir Gupta

2012-03-06T23:59:59.000Z

36

Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, April 1--June 30, 1992  

SciTech Connect

This quarterly technical progress report summarizes work completed during the Seventh Quarter of the First Budget Period, April 1 through June 30, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion will include the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source; Hot Gas Cleanup Units to mate to all gas streams. Combustion Gas Turbine; Fuel Cell and associated gas treatment; and Externally Fired Gas Turbine/Water Augmented Gas Turbine. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

Not Available

1992-12-01T23:59:59.000Z

37

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

DOE Green Energy (OSTI)

To utilize landfill gas for power generation using carbonate fuel cells, the LFG must be cleaned up to remove sulfur and chlorine compounds. This not only benefits the operation of the fuel cell, but also benefits the environment by preventing the emission of these contaminants to the atmosphere. Commercial technologies for gas processing are generally economical in relatively large sizes (3 MMSCFD or larger), and may not achieve the low levels of contaminants required. To address the issue of LFG clean-up for fuel cell application, a process was developed utilizing commercially available technology. A pilot-scale test facility utilizing this process was built at a landfill site in Anoka, Minnesota using the EPRI fuel cell test facility used for coal gas testing. The pilot plant was tested for 1000 hours, processing 970,000 SCF (27,500 Nm{sup 3}) of landfill gas. Testing indicated that the process could achieve the following concentrations of contaminants in the clean gas: Less than 80 ppbv hydrogen sulfide; less than 1 ppm (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv if any individual chlorinated hydrocarbon; and 1.5 ppm (average) Sulfur Dioxide. The paper describes the LFG composition for bulk and trace compounds; evaluation of various methods to clean landfill gas; design of a LFG cleanup system; field test of pilot-scale gas cleanup process; fuel cell testing on simulated landfill gas; single cell testing on landfill gas contaminants and post test analysis; and design and economic analyses of a full scale gas cleanup system.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

38

Architecture synthesis basis for the Hanford Cleanup system: First issue  

SciTech Connect

This document describes a set of candidate alternatives proposed to accomplish the Hanford Cleanup system functions defined in a previous work. Development of alternatives is part of a sequence of system engineering activities which lead to definition of all the products which, when completed, accomplish the cleanup mission. The alternative set is developed to functional level four or higher depending on need.

Holmes, J.J. [comp.

1994-06-01T23:59:59.000Z

39

Hot Gas Cleanup Test Facility for gasification and pressurized combustion. Quarterly report, October--December 1994  

Science Conference Proceedings (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs. Substantial progress in underground construction activities was achieved during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. MWK equipment at the grade level and the first tier are being set in the structure.

NONE

1995-02-01T23:59:59.000Z

40

Renewable Natural Gas Clean-up Challenges and Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

pipeline tariffs don't typically address all components Methods for treating "raw" biogas can be costly Methods for treating raw biogas can be costly 7 *Post clean-up. Methane...

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Integrated Low Emissions Cleanup system for direct coal fueled turbines  

Science Conference Proceedings (OSTI)

The United States Department of.Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of coal-fired turbine technology in the areas of Pressurized Fluidized Bed Combustion, Integrated Gasification Combined Cycles, and Direct Coal-Fired Turbines. A major technical challenge remaining for the development of coal-fired turbine systems is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating an Integrated Low Emissions Cleanup (ILEC) concept that has been configured to meet this technical challenge. This ceramic barrier filter, ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases, and is considering cleaning temperatures up to 2100{degrees}F. This document describes Phase II of the program, the design, construction, and shakedown of a bench-scale facility to test and confirm the feasibility of this ILEC technology.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Smeltzer, E.E.; Lippert, T.E.

1993-07-01T23:59:59.000Z

42

Development of hollow-fiber catalytic-membrane reactors for high-temperature gas cleanup  

SciTech Connect

The project consist of the following main activities: (1) Design of catalytic hollow fiber membrane reactors. Single and multiple hollow-fiber membranes were studied in reactor/permeation cells made from stainless steel or quartz tubes. Modification of the hollow fiber membrane with catalysts was performed by aqueous impregnation, vapor deposition, and utilization of packed-bed reactors. (2) Investigation of gas separations and catalytic reactions in membrane reactors. Permeation of pure gases and gas mixtures was studied as a function of temperature. Pure component catalytic studies on the decomposition of H{sub 2}S was typically studied using 10% H{sub 2}S diluted in He. The H{sub 2}S and H{sub 2} concentrations were measured in both the tube and shell sides of the membrane reactor to determine the degree of chemical equilibrium shift. (3) Process development of the cleanup system using a simulated gas stream with a composition similar to that from an IGCC system. Catalytic studies using the IGCC gas composition will be performed according to the procedure used in the H{sub 2}S experiments. The conditions for optimum conversion in a gas mixture will be investigated.

Ma, Yi H.; Moser, M.R.; Pien, S.M.

1992-12-01T23:59:59.000Z

43

Development of hollow-fiber catalytic-membrane reactors for high-temperature gas cleanup  

SciTech Connect

The project consist of the following main activities: (1) Design of catalytic hollow fiber membrane reactors. Single and multiple hollow-fiber membranes were studied in reactor/permeation cells made from stainless steel or quartz tubes. Modification of the hollow fiber membrane with catalysts was performed by aqueous impregnation, vapor deposition, and utilization of packed-bed reactors. (2) Investigation of gas separations and catalytic reactions in membrane reactors. Permeation of pure gases and gas mixtures was studied as a function of temperature. Pure component catalytic studies on the decomposition of H[sub 2]S was typically studied using 10% H[sub 2]S diluted in He. The H[sub 2]S and H[sub 2] concentrations were measured in both the tube and shell sides of the membrane reactor to determine the degree of chemical equilibrium shift. (3) Process development of the cleanup system using a simulated gas stream with a composition similar to that from an IGCC system. Catalytic studies using the IGCC gas composition will be performed according to the procedure used in the H[sub 2]S experiments. The conditions for optimum conversion in a gas mixture will be investigated.

Ma, Yi H.; Moser, M.R.; Pien, S.M.

1992-01-01T23:59:59.000Z

44

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Warm Gas Multicontaminant Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Description Integrated Gasification Combined Cycle (IGCC) technology offers a means to utilize coal -the most abundant fuel in the United States-to produce a host of products, ranging from electricity to value-added chemicals like transportation fuels and hydrogen, in an efficient, environmentally friendly manner. However, the overall cost (capital, operating,

45

Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes  

DOE Green Energy (OSTI)

This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

1982-01-01T23:59:59.000Z

46

Task 3.10 - Gas Separation and Hot-Gas Cleanup: Topical report, August 1995  

DOE Green Energy (OSTI)

Catalytic gasification of coal to produce H{sub 2}-, CO-, and CH{sub 4}-rich mixtures of gases for consumption in molten carbonate fuel cells is currently under development; however, to optimize the fuel cell performance and extend its operating life, it is desired to separate as much of the inert components (i.e., CO{sub 2} and N{sub 2}) and impurities (i e., H{sub 2}S and NH{sub 3}) as possible from the fuel gas before it enters the fuel cell. In addition, the economics of the integrated gasification combined cycle (IGCC) can be improved by separating as much of the hydrogen as possible from the fuel, since hydrogen is a high-value product. Researchers at the Energy {ampersand} Environmental Research Center (EERC) and Bend Research, Inc., investigated pressure-driven membranes as a method for accomplishing this gas separation and hot- gas cleanup. These membranes are operated at temperatures as high as 800{degrees}C and at pressures up to 300 psig. They have very small pore sizes that separate the undesirable gases by operating in the Knudsen diffusion region of mass transport (30-50 A) or in the molecular sieving region of mass transport phenomena (less than 5A). In addition, H{sub 2} separation through a palladium metal membrane proceeds via a solution- diffusion mechanism for atomic hydrogen. This allows the membranes to exhibit extremely high selectivity for hydrogen separation.

Swanson, M.L.

1997-12-31T23:59:59.000Z

47

Task 6.5 - Gas Separation and Hot-Gas Cleanup  

DOE Green Energy (OSTI)

Catalytic gasification of coal to produce H{sub 2}- and CH{sub 4}-rich gases for consumption in molten carbonate fuel cells is currently under development; however, to optimize the fuel cell performance and extend its operating life, it is desired to separate as much of the inerts (i.e., CO{sub 2} and N{sub 2}) and impurities (i.e., H{sub 2}S and NH{sub 3}) as possible from the fuel gas before they enter the fuel cell. In addition, the economics of the integrated gasification combined cycle (IGCC) can be improved by separating as much of the hydrogen as possible from the fuel, since hydrogen is a high-value product. One process currently under development by the Energy & Environmental Research Center (EERC) for accomplishing this gas separation and hot-gas cleanup involves gas separation membranes. These membranes are operated at temperatures as high as 800 C and pressures up to 300 psig. Some of these membranes can have very small pores (30-50 {angstrom}), which inefficiently separate the undesired gases by operating in the Knudsen diffusion region of mass transport. Other membranes with smaller pore sizes (<5 {angstrom}) operate in the molecular sieving region of mass transport phenomena, Dissolution of atomic hydrogen into thin metallic membranes made of platinum and palladium alloys is also being developed. Technological and economic issues that must be resolved before gas separation membranes are commercially viable include improved gas separation efficiency, membrane optimization, sealing of membranes in pressure vessels, high burst strength of the ceramic material, pore thermal stability, and material chemical stability. Hydrogen separation is dependent on the temperature, pressure, pressure ratio across the membrane, and ratio of permeate flow to total flow. For gas separation under Knudsen diffusion, increasing feed pressure and pressure ratio across the membrane should increase gas permeability; decreasing the temperature and the permeate-to-total flow ratio should also increase gas permeability. In the molecular sieving regime of mass transport, the inlet pressure and pressure ratio should have no effect on gas permeability, while increasing temperature should increase permeability.

Swanson, Michael L.; Ness Jr., Robert O.; Hurley, John P.; McCollor, Donald P.

1997-06-01T23:59:59.000Z

48

Landfill Gas Cleanup for Carbonate Fuel Cell Power Generation: Final Report  

DOE Green Energy (OSTI)

Landfill gas represents a significant fuel resource both in the United States and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

49

The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification  

E-Print Network (OSTI)

Gupta, B. Turk, M. Lesemann. RTI/Eastman warm syngas clean-feasibility analysis of RTI warm gas cleanup(WGCU)reactor was constructed by RTI from DOE-Morgantown gasifier,

Luo, Qian

2012-01-01T23:59:59.000Z

50

Evaluation of secondary-system layup and cleanup practices and processes. Final report. [PWR  

Science Conference Proceedings (OSTI)

The study of PWR secondary system layup and cleanup practices was undertaken to evaluate current and proposed methods of corrosion product control associated with extended plant outages. The overall goal was to evaluate means for significantly minimizing the steam generator sludge burden. The study included a field survey of 14 representative PWR plants, an extensive literature search and an evaluation of corrosion product transport data. Recommendations for layup and cleanup system processes were derived from these practices and related information. Estimates of the potential benefits to be expected in the control of corrosion products by controlled layup environments during extended outages and by cleanup following such outages are provided. Cleanup during all, or most, phases of operation is indicated as being most beneficial. Layup and cleanup system process design information is also provided.

Cleary, W.F.

1983-04-01T23:59:59.000Z

51

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

DOE Green Energy (OSTI)

Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

Steinfield, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

52

Evaluation and Categorization of Secondary System Layup and Cleanup Practices for PWR Plants  

Science Conference Proceedings (OSTI)

To determine ways to minimize corrosion-product transport to the secondary side of PWR steam generators, layup and post-shutdown cleanup practices now in use or proposed by utilities with operating PWR plants were examined. The results show that about 30% of the plants attempt routine layup of secondary systems during plant outages and about 60% attempt system cleanup before and during startup.

1982-12-01T23:59:59.000Z

53

Evaluation of Secondary-System Layup and Cleanup Practices and Processes  

Science Conference Proceedings (OSTI)

A study of PWR secondary-system layup and cleanup practices was undertaken to evaluate current and proposed methods of corrosion-product control associated with extended plant outages. The report describes a field survey of 14 representative PWR plants, an extensive literature search, and an evaluation of corrosion-product transport data. Recommendations for layup and cleanup processes are presented, along with system design information.

1983-04-01T23:59:59.000Z

54

Integrated Low Emissions Cleanup system for multi-contaminant control  

SciTech Connect

An existing, natural gas-fired, bench-scale, high-pressure, high-temperature test facility, previously operated by W-STC for the development of ceramic barrier filters at simulated PFBC conditions using reinjected PFBC fly ashes, was modified to study ILEC performance under simulated PFBC conditions using simultaneously natural gas and coal firing. The system was also upgraded to operate at temperatures up to about 1800{degree}F. The objective of the bench-scale simulation is to produce a gas having pressure, temperature, gas composition (SO{sub 2}, alkali content, and particulate content), and fly ash particulate characteristics similar to actual coal-fired PFBC, or other coal combustors. Temperatures ranging from 1300{degree}F to about 1750{degree}F will be considered. The test facility will be operated to produce a gas volumetric flow of about 80 acfm, at 100 psig pressure, and will fire coal being from 5 to 40 % of the total energy input, the remainder being natural gas.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Smeltzer, E.E.

1993-09-01T23:59:59.000Z

55

Zevenhoven & Kilpinen CROSS EFFECTS, TOTAL SYSTEM LAY-OUT 13.6.2001 10-1 Figure 10.1 Typical pulverised coal combustion and gas clean-up system: dry scrubber +  

E-Print Network (OSTI)

REGULATIONS Although incinerator flue gas emission limits for acid gases have been imposed by the federal, such as sodium chlorite (NaCI02), is added to oxidize flue gas NO to N02, which can be removed by a sodium of saturated flue gas to approximately 60°C ( 140°F), the total (par ticulate and gaseous) mercury emissions

Laughlin, Robert B.

56

Test and evaluation of hot-gas cleanup devices, Phase I and II (Task 1). Technical progress report, September 1, 1981 - November 30, 1981  

SciTech Connect

This report presents the status of the work performed on a program for test and evaluation of gas cleanup devices for PFBC combined cycle systems. The work was performed during the period September 1, 1981 through November 30, 1981. This is the second quarterly report since the start of the program. Work has continued to restore the pressurized fluidized bed (PFB) technology plant at Wood-Ridge, N.J. to an operational status. Preliminary designs to incorporate each of three advanced gas cleanup devices following a first stage low pressure drop inertial type separator were previously completed. The advanced devices provided by suppliers under a separate DOE contract include a ceramic bag filter, an electrostatic precipitator and an electrostatically enhanced inertial separator. The final design activity necessary to modify the facility for the test of the ceramic bag filter has been completed. Testing of each hot gas cleanup device concurrently with a DOE supplied advanced concept particle sampling system and an alkali metal content measurement system is planned to start in April 1982.

Not Available

1981-01-01T23:59:59.000Z

57

NETL: Gasification Systems - Gas Cleaning  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleaning Cleaning Chemicals from Coal Complex Chemicals from Coal Complex (Eastman Company) Novel gas cleaning and conditioning are crucial technologies for achieving near-zero emissions, while meeting gasification system performance and cost targets. DOE's Gasification Systems program supports technology development in the area of gas cleaning and conditioning, including advanced sorbents and solvents, particulate filters, and other novel gas-cleaning approaches that remove and convert gas contaminants into benign and marketable by-products. To avoid the cost and efficiency penalties associated with cooling the gas stream to temperatures at which conventional gas clean-up systems operate, novel processes are being developed that operate at mild to high temperatures and incorporate multi-contaminant control to

58

Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant  

DOE Patents (OSTI)

In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

1982-01-01T23:59:59.000Z

59

Simulation of fracture fluid cleanup and its effect on long-term recovery in tight gas reservoirs  

E-Print Network (OSTI)

In the coming decades, the world will require additional supplies of natural gas to meet the demand for energy. Tight gas reservoirs can be defined as reservoirs where the formation permeability is so low (flowback procedures, production strategy, and reservoir conditions. Residual polymer in the fracture can reduce the effective fracture permeability and porosity, reduce the effective fracture half-length, and limit the well productivity. Our ability to mathematically model the fundamental physical processes governing fluid recovery in hydraulic fractures in the past has been limited. In this research, fracture fluid damage mechanisms have been investigated, and mathematical models and computer codes have been developed to better characterize the cleanup process. The codes have been linked to a 3D, 3-phase simulator to model and quantify the fracture fluid cleanup process and its effect on long-term gas production performances. Then, a comprehensive systematic simulation study has been carried out by varying formation permeability, reservoir pressure, fracture length, fracture conductivity, yield stress, and pressure drawdown. On the basis of simulation results and analyses, new ways to improve fracture fluid cleanup have been provided. This new progress help engineers better understand fracture fluid cleanup, improve fracture treatment design, and increase gas recovery from tight sand reservoirs, which can be extremely important as more tight gas reservoirs are developed around the world.

Wang, Yilin

2008-12-01T23:59:59.000Z

60

Integrated low emissions cleanup system for direct coal-fueled turbines  

SciTech Connect

The Westinghouse Electric Corporation, Science Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850[degrees]F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phase 2 - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.

Lippert, T.E.; Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Smeltzer, E.E.; Yang, W.C.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Integrated low emissions cleanup system for direct coal-fueled turbines  

SciTech Connect

The Westinghouse Electric Corporation, Science & Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850{degrees}F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phase 2 - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.

Lippert, T.E.; Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Smeltzer, E.E.; Yang, W.C.

1992-12-31T23:59:59.000Z

62

Evaluation and categorization of secondary system layup and cleanup practices for PWR plants  

Science Conference Proceedings (OSTI)

The EPRI Program S113-1, Evaluation of Secondary System Layup and Cleanup Proctices was established to study ways to minimize the transport of corrosion products into the secondary side PWR steam generators that occurs during plant startups following extended outages. As part of the EPRI Program, Task 200 objective was to identify and categorize the layup and cleanup practices now in use or proposed by utilities for PWR plants. The task study consisted of gathering information by conducting site visits to fourteen representative PWR plants in the USA, Europe and Japan, by conducting a search of the open literature, reviews of related EPRI Programs, and by evaluating the practices in terms of their potential effectiveness. The results show that about 30% of the plants attempt routine layup of secondary systems during outages and about 60% perform some form of system cleanup during the return to power following extended outages.

Cleary, W.F.

1982-12-01T23:59:59.000Z

63

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems  

Science Conference Proceedings (OSTI)

The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

1991-02-01T23:59:59.000Z

64

NETL's Gas Process Development Unit for Hot/Warm Gas Cleanup  

SciTech Connect

The long-term objectives for the GPDU project are to: (1) assess transport and fluidized bed reactor control and performance to determine the most suitable mode for continuous gas desulfurization, and (2) evaluate candidate sorbents for bulk removal of sulfurous compounds from syngas to assess the readiness of sorbents for commercial scale. The DOE has funded desulfurization and sorbent research for over 20 years and extensive laboratory-scale and bench-scale work has been conducted by government, academia and industry on the development and testing of regenerable sorbents for bulk sulfur removal from syngas (Cicero, et.al, 2000; Mitchell, 1998; Lew, 1989). However, the technologies still need to be proven in controlled conditions at a larger scale. Several Clean Coal Technology projects (i.e, the Toms Creek IGCC Demonstration Project, the Pinon Pine IGCC Power Project and the Tampa Electric Integrated Gasification Combined-Cycle Project) had proposed demonstrations of hot-gas desulfurization technology, but were not seen to completion (Clean Coal Technology Compendium website, 2002). As a result, there is a lack of data on sorbent and reactor performance under longer-term continuous conditions at a large scale. For commercial acceptance of hot- or warm-gas desulfurization, technology reliability is a question yet to be answered. The GPDU will fill the gap and has the objective to provide the proof-of-concept that is needed to foster commercialization of hot (greater than 538 C (1,000 F)) and/or warm (260 to 427 C (500 to 800 F)) gas desulfurization for IGCC processes. The GPDU facility, which includes a separate Syngas Generator (SGG) that supplies a simulated coal gas to the GPDU, is in the shakedown phase of operations with an initial reactor configuration of transport absorber-transport regenerator. The status and preliminary results of shakedown activities are presented to provide insight into startup and operations of a continuous transport desulfurization process.

Everitt, E.; Bissett, L.A.

2002-09-20T23:59:59.000Z

65

Hot gas cleanup and gas turbine aspects of an advanced PFBC power plant  

SciTech Connect

The overall objective of the second-generation PFBC development program is to advance this concept to a commercial status. Three major objectives of the current Phase 2 program activities are to: Separately test key components of the second-generation PFBC power plant at sub-scale to ascertain their performance characteristics, Revise the commercial plant performance and economic predictions where necessary, Prepare for a 1.6 MWe equivalent Phase 3 integrated subsystem test of the key components. The key components of the plant, with respect to development risk, are the carbonizer, the circulating PFBC unit, the ceramic barrier filter, and the topping combustor. This paper reports on the development and testing of one key component -- the ceramic barrier filter for the carbonizer fuel gas. The objective of the Phase 2 carbonizer ceramic barrier filter testing has been to confirm filter performance and operability in the carbonizer fuel gas environment.

Robertson, A. (Foster Wheeler Development Corp., Livingston, NJ (United States)); Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Bruck, G.J.; Smeltzer, E.E. (Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center)

1992-01-01T23:59:59.000Z

66

Energy and environmental research emphasizing low-rank coal -- Task 3.10, Gas separation and hot-gas cleanup  

DOE Green Energy (OSTI)

Catalytic gasification of coal to produce H{sub 2}-, CO-, and CH{sub 4}-rich mixtures of gases for consumption in molten carbonate fuel cells is currently under development; however, to optimize the fuel cell performance and extend its operating life, it is desired to separate as much of the inert components (i.e., CO{sub 2} and N{sub 2}) and impurities (i.e., H{sub 2}S and NH{sub 3}) as possible from the fuel gas before it enters the fuel cell. In addition, the economics of the integrated gasification combined cycle (IGCC) can be improved by separating as much of the hydrogen as possible from the fuel, since hydrogen is a high-value product. Researchers at the Energy and Environmental Research Center (EERC) and Bend Research, Inc., investigated pressure-driven membranes as a method for accomplishing this gas separation and hot-gas cleanup. These membranes are operated at temperatures as high as 800 C and at pressures up to 300 psig. They have very small pore sizes that separate the undesirable gases by operating in the Knudsen diffusion region of mass transport or in the molecular sieving region of mass transport phenomena. In addition, H{sub 2} separation through a palladium metal membrane proceeds via a solution-diffusion mechanism for atomic hydrogen. This allows the membranes to exhibit extremely high selectivity for hydrogen separation. Specific questions to be answered in this project include: what are the effects of membrane properties (i.e., surface area, pore size, and coating thickness) on permeability and selectivity of the desired gases; what are the effects of operating conditions (i.e., temperature, pressure, and flow rate) on permeability and selectivity; what are the effects of impurities (i.e., small particulate, H{sub 2}S, HCl, NH{sub 3}, etc.) on membrane performance?

Swanson, M.L.

1995-08-01T23:59:59.000Z

67

Survey of Optimization of Reactor Coolant Cleanup Systems: For Boiling Water Reactors and Pressurized Water Reactors  

Science Conference Proceedings (OSTI)

Optimization of the reactor coolant cleanup systems in the boiling water reactor (BWR) and pressurized water reactor (PWR) environment is important for controlling the transport of corrosion products (metals and activated metals), fission products, and coolant impurities (soluble and insoluble) throughout the reactor coolant loop, and this optimization contributes to reducing primary system radiation fields. The removal of radionuclides and corrosion products is just one of many functions (both ...

2013-09-27T23:59:59.000Z

68

OPERATION OF A TRITIUM GLOVEBOX CLEAN-UP SYSTEM USING ZIRCONIUM MANGANESE IRON AND ZIRCONIUM TWO IRON METAL GETTERS  

SciTech Connect

A metal hydride-based tritium clean-up system has been successfully operated for more than four years on an 11 m{sup 3} helium/nitrogen glovebox which was used for handling metal tritide powders. The clean-up system consists of two beds: (1) a Zr-Mn-Fe (in a 10% by weight Al binder, SAES ST909) bed operating at 675 C followed by (2) a Zr{sub 2}Fe (SAES ST198) bed operating at 250 C. The Zr-Mn-Fe bed serves to condition the gas stream by cracking hydrogenous impurities (such as H{sub 2}O and hydrocarbons) and absorbing oxygen and carbon. The Zr{sub 2}Fe bed absorbs the hydrogen isotopes from the flowing stream by forming a solid hydride compound. These beds contain 3 kilograms of Zr{sub 2}Fe and have been loaded routinely with 230-250 STP liters of hydrogen isotopes in earlier trials. The Zr-Mn-Fe alloy exhibits an anomaly during activation, namely an exotherm upon initial exposure to nitrogen. The purpose of this work is to better understand this reaction. Nitrogen absorption studies were done in order to quantify the nitrogen taken up by the getter and to characterize the reaction kinetics. In addition, ST909 phases before and after the reaction were studied with x-ray diffraction.

E. LARSON; K. COOK

2000-08-01T23:59:59.000Z

69

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 1, Final report  

Science Conference Proceedings (OSTI)

The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

1991-02-01T23:59:59.000Z

70

Development of the JAERI (Japan Atomic Energy Research Institute) fuel cleanup system for tests at the Tritium Systems Test Assembly  

Science Conference Proceedings (OSTI)

Tritium Process Laboratory (TPL) at the Japan Atomic Energy Research Institute (JAERI) has developed the Fuel Cleanup System (FCU) which accepts simulated fusion reactor exhaust and produces pure hydrogen isotopes and tritium-free waste. The major components are: a palladium diffuser, a catalytic reactor, cold traps, a ceramic electrolysis cell, and zirconium-cobalt beds. In 1988, an integrated loop of the FCU process was installed in the TPL and a number of hot'' runs were performed to study the system characteristics and improve system performance. Under the US-Japan collaboration program, the JAERI Fuel Cleanup System'' (JFCU) was designed and fabricated by JAERI/TPL for testing at the Tritium Systems Test Assembly (TSTA) in Los Alamos National Laboratory as a major subsystem of the simulated fusion fuel cycle. The JFCU was installed in the TSTA in early 1990.

Konishi, S.; Inoue, M.; Hayashi, T.; Okuno, K.; Naruse, Y. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)); Barnes, J.W.; Anderson, J.L. (Los Alamos National Lab., NM (USA))

1990-01-01T23:59:59.000Z

71

Facilitated transport ceramic membranes for high-temperature gas cleanup. Final report, February 1990--April 1994  

SciTech Connect

The objective of this program was to demonstrate the feasibility of developing high temperature, high pressure, facilitated transport ceramic membranes to control gaseous contaminants in Integrated Gasification Combined Cycle (IGCC) power generation systems. Meeting this objective requires that the contaminant gas H{sub 2}S be removed from an IGCC gas mixture without a substantial loss of the other gaseous components, specifically H{sub 2} and CH{sub 4}. As described above this requires consideration of other, nonconventional types of membranes. The solution evaluated in this program involved the use of facilitated transport membranes consisting of molten mixtures of alkali and alkaline earth carbonate salts immobilized in a microporous ceramic support. To accomplish this objective, Air Products and Chemicals, Inc., Golden Technologies Company Inc., and Research Triangle Institute worked together to develop and test high temperature facilitated membranes for the removal of H{sub 2}S from IGCC gas mixtures. Three basic experimental activities were pursued: (1) evaluation of the H{sub 2}S chemistry of a variety of alkali and alkaline earth carbonate salt mixtures; (2) development of microporous ceramic materials which were chemically and physically compatible with molten carbonate salt mixtures under IGCC conditions and which could function as a host to support a molten carbonate mixture and; (3) fabrication of molten carbonate/ceramic immobilized liquid membranes and evaluation of these membranes under conditions approximating those found in the intended application. Results of these activities are presented.

Quinn, R.; Minford, E.; Damle, A.S.; Gangwal, S.K.; Hart, B.A.

1994-04-01T23:59:59.000Z

72

Integrated low emissions cleanup system for coal fueled turbines Phase III bench-scale testing and evaluation  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of coal-fired turbine technologies such as Pressurized Fluidized Bed Combustion (PFBC), coal Gasification Combined Cycles (GCC), and Direct Coal-Fired Turbines (DCFT). A major technical development challenge remaining for coal-fired turbine systems is high-temperature gas cleaning to meet environmental emissions standards, as well as to ensure acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, has evaluated an Integrated Low Emissions Cleanup (ILEC) concept that has been configured to meet this technical challenge. This ceramic hot gas filter (HGF), ILEC concept controls particulate emissions, while simultaneously contributing to the control of sulfur and alkali vapor contaminants in high-temperature, high-pressure, fuel gases or combustion gases. This document reports on the results of Phase III of the ILEC evaluation program, the final phase of the program. In Phase III, a bench-scale ILEC facility has been tested to (1) confirm the feasibility of the ILEC concept, and (2) to resolve some major filter cake behavior issues identified in PFBC, HGF applications.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M. [and others

1995-08-01T23:59:59.000Z

73

Preliminary evaluation of a concept using microwave energy to improve an adsorption-based, natural gas clean-up process  

SciTech Connect

This report describes the results of a preliminary evaluation performed to: (1) determine if microwave energy could be used to regenerate a zeolite adsorbent and (2) to evaluate the feasibility of using microwave energy to improve the desorption phase of a pressure swing adsorption process applied to upgrading natural gas (methane) contaminated with nitrogen. Microwave regeneration was evaluated by comparing the adsorption characteristics of a zeolite preconditioned by heating under vacuum to the characteristics of the same zeolite after various lengths of exposure to microwave energy. The applicability of microwave regeneration to natural gas cleanup was evaluated by measuring the rise in adsorbent temperature resulting from the microwave exposure. Microwave energy consumed by heating the adsorbent is not productive and must therefore be minimal for a process to be economically viable. Exposure of the methane-saturated chabazite for 2 minutes to microwave energy effectively regenerated the adsorbent, but resulted in a 75{degrees}F (42{degrees}C) rise in adsorbent temperature. This temperature rise indicates that the concept is unacceptable for natural gas processing due to excessive energy consumption.

Grimes, R.W.

1992-12-01T23:59:59.000Z

74

Development of hollow fiber catalytic membrane reactors for high temperature gas cleanup  

DOE Green Energy (OSTI)

The technology employed in the Integrated Gasification Combined Cycle (IGCC) permits burning coals with a wide range of sulfur concentrations. Emissions from the process should be reduced by an order of magnitude below stringent federal air quality regulations for coal-fired plants. The maximum thermal efficiency of this type of process can be achieved by removing sulfur and particulates from the high temperature gas. The objective of this project was to develop economically and technically viable catalytic membrane reactors for high temperature, high pressure gaseous contaminant control in IGCC systems. These catalytic membrane reactors were used to decompose H{sub 2}S and separate the reaction products. The reactors were designed to operate in the hostile process environment of the IGCC systems, and at temperatures ranging from 500 to 1,000. Feasibility of the membrane reactor process for decomposition of hydrogen sulfide was demonstrated; permeability and selectivity of molecular-sieve and Vycor glass membranes were studied at temperatures up to 1,000 C; experimental study of hydrogen sulfide in the membrane reactor was completed; and a generalized mathematical model was developed for the simulation of the high temperature membrane reactor.

Ma, Y.H.; Moser, W.R.; Pien, S.; Shelekhin, A.B.

1994-10-01T23:59:59.000Z

75

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas  

SciTech Connect

One of the key obstacles for the introduction of commercial gasification technology for the production of power with Integrated Gasification Combined Cycle (IGCC) plants or the production of value added chemicals, transportation fuels, and hydrogen has been the cost of these systems. This situation is particularly challenging because the United States has ample coal resources available as raw materials and effective use of these raw materials could help us meet our energy and transportation fuel needs while significantly reducing our need to import oil. One component of the cost of these systems that faces strong challenges for continuous improvement is removing the undesirable components present in the syngas. The need to limit the increase in cost of electricity to < 35% for new coal-based power plants which include CO{sub 2} capture and sequestration addresses both the growing social concern for global climate change resulting from the emission of greenhouse gas and in particular CO{sub 2} and the need to control cost increases to power production necessary to meet this social objective. Similar improvements to technologies for trace contaminants are getting similar pressure to reduce environmental emissions and reduce production costs for the syngas to enable production of chemicals from coal that is cost competitive with oil and natural gas. RTI, with DOE/NETL support, has been developing sorbent technologies that enable capture of trace contaminants and CO{sub 2} at temperatures above 400 °F that achieve better capture performance, lower costs and higher thermal efficiency. This report describes the specific work of sorbent development for mercury (Hg), arsenic (As), selenium (Se), cadmium (Cd), and phosphorous (P) and CO{sub 2} removal. Because the typical concentrations of Hg, As, Se, Cd, and P are less than 10 ppmv, the focus has been on single-use sorbents with sufficient capacity to ensure replacement costs are cost effective. The research in this report describes the development efforts which expand this sorbent development effort to include Se, Cd, and P as well as Hg and As. Additional research has focused on improving removal performance with the goal of achieving effluent concentrations that are suitable for chemical production applications. By contrast, sorbent development for CO{sub 2} capture has focused on regenerable sorbents that capture the CO{sub 2} byproduct at higher CO{sub 2} pressures. Previous research on CO{sub 2} sorbents has demonstrated that the most challenging aspect of developing CO{sub 2} sorbents is regeneration. The research documented in this report investigates options to improve regeneration of the CO{sub 2} capture sorbents. This research includes effort on addressing existing regeneration limitations for sorbents previously developed and new approaches that focus initially on the regeneration performance of the sorbent.

Turk, Brian; Gupta, Raghubir; Sharma, Pradeepkumar; Albritton, Johnny; Jamal, Aqil

2010-09-30T23:59:59.000Z

76

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas  

Science Conference Proceedings (OSTI)

One of the key obstacles for the introduction of commercial gasification technology for the production of power with Integrated Gasification Combined Cycle (IGCC) plants or the production of value added chemicals, transportation fuels, and hydrogen has been the cost of these systems. This situation is particularly challenging because the United States has ample coal resources available as raw materials and effective use of these raw materials could help us meet our energy and transportation fuel needs while significantly reducing our need to import oil. One component of the cost of these systems that faces strong challenges for continuous improvement is removing the undesirable components present in the syngas. The need to limit the increase in cost of electricity to oil and natural gas. RTI, with DOE/NETL support, has been developing sorbent technologies that enable capture of trace contaminants and CO{sub 2} at temperatures above 400 °F that achieve better capture performance, lower costs and higher thermal efficiency. This report describes the specific work of sorbent development for mercury (Hg), arsenic (As), selenium (Se), cadmium (Cd), and phosphorous (P) and CO{sub 2} removal. Because the typical concentrations of Hg, As, Se, Cd, and P are less than 10 ppmv, the focus has been on single-use sorbents with sufficient capacity to ensure replacement costs are cost effective. The research in this report describes the development efforts which expand this sorbent development effort to include Se, Cd, and P as well as Hg and As. Additional research has focused on improving removal performance with the goal of achieving effluent concentrations that are suitable for chemical production applications. By contrast, sorbent development for CO{sub 2} capture has focused on regenerable sorbents that capture the CO{sub 2} byproduct at higher CO{sub 2} pressures. Previous research on CO{sub 2} sorbents has demonstrated that the most challenging aspect of developing CO{sub 2} sorbents is regeneration. The research documented in this report investigates options to improve regeneration of the CO{sub 2} capture sorbents. This research includes effort on addressing existing regeneration limitations for sorbents previously developed and new approaches that focus initially on the regeneration performance of the sorbent.

Turk, Brian; Gupta, Raghubir; Sharma, Pradeepkumar; Albritton, Johnny; Jamal, Aqil

2010-09-30T23:59:59.000Z

77

Landfill gas cleanup for carbonate fuel cell power generation. CRADA final report  

DOE Green Energy (OSTI)

The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. The technical effort was conducted by EPRI, consultant David Thimsen, Kaltec of Minnesota, Energy Research Corporation (ERC) and Interpoll Laboratories. The Electric Power Research Institute (EPRI) made available two test skids originally used to test an ERC 30 kW carbonate fuel cell at the Destec Coal Gasification Plan in Plaquemine, LA. EPRI`s carbonate fuel cell pilot plant was installed at the Anoka County Regional Landfill in Ramsey, Minnesota. Additional gas cleaning equipment was installed to evaluate a potentially inexpensive, multi-stage gas cleaning process to remove sulfur and chlorine in the gas to levels acceptable for long-term, economical carbonate fuel cell operation. The pilot plant cleaned approximately 970,000 scf (27,500 Nm{sup 3}) of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations. Less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorined hydrocarbon; and 1.5 ppm sulfur dioxide. These were the detection limits of the analytical procedures employed. It is probable that the actual concentrations are below these analytical limits.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

78

Gas stream clean-up filter and method for forming same  

DOE Patents (OSTI)

A gas cleaning filter is formed in-situ within a vessel containing a fluidizable bed of granular material of a relatively large size fraction. A filter membrane provided by a porous metal or ceramic body or such a body supported a perforated screen on one side thereof is coated in-situ with a layer of the granular material from the fluidized bed by serially passing a bed-fluidizing gas stream through the bed of granular material and the membrane. The layer of granular material provides the filtering medium for the combined membrane-granular layer filter. The filter is not blinded by the granular material and provides for the removal of virtually all of the particulates from a process gas stream. The granular material can be at least partially provided by a material capable of chemically reacting with and removing sulfur compounds from the process gas stream. Low level radioactive waste containing organic material may be incinerated in a fluidized bed in communication with the described filter for removing particulates from the gaseous combustion products.

Mei, Joseph S. (Morgantown, WV); DeVault, James (Fairmont, WV); Halow, John S. (Waynesburg, PA)

1993-01-01T23:59:59.000Z

79

A gas stream clean-up filter and method for forming same  

DOE Patents (OSTI)

A gas cleaning filter is formed in-situ within a vessel containing a fluidizable bed of granular material of a relatively large size fraction. A filter membrane provided by a porous metal or ceramic body or such a body supported a perforated screen on one side thereof is coated in-situ with a layer of the granular material from the fluidized bed by serially passing a bed-fluidizing gas stream through the bed of granular material and the membrane. The layer of granular material provides the filtering medium for the combined membrane-granular layer filter. The filter is not blinded by the granular material and provides for the removal of virtually all of the particulates from a process gas stream. The granular material can be at least partially provided by a material capable of chemically reacting with and removing sulfur compounds from the process gas stream. Low level radioactive waste containing organic material may be incinerated in a fluidized bed in communication with the described filter for removing particulates from the gaseous combustion products.

Mei, J.S.; Halow, J.S.; DeVault, J.D.

1992-12-31T23:59:59.000Z

80

US Department of Energy`s high-temperature and high-pressure particulate cleanup for advanced coal-based power systems  

Science Conference Proceedings (OSTI)

The availability of reliable, low-cost electricity is a cornerstone for the United States` ability to compete in the world market. The Department of Energy (DOE) projects the total consumption of electricity in the US to rise from 2.7 trillion kilowatt-hours in 1990 to 3.5 trillion in 2010. Although energy sources are diversifying, fossil fuel still produces 90 percent of the nation`s energy. Coal is our most abundant fossil fuel resource and the source of 56 percent of our electricity. It has been the fuel of choice because of its availability and low cost. A new generation of high-efficiency power systems has made it possible to continue the use of coal while still protecting the environment. Such power systems greatly reduce the pollutants associated with cola-fired plants built before the 1970s. To realize this high efficiency and superior environmental performance, advanced coal-based power systems will require gas stream cleanup under high-temperature and high-pressure (HTHP) process conditions. Presented in this paper are the HTHP particulate capture requirements for the Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized-Bed Combustion (PFBC) power systems, the HTHP particulate cleanup systems being implemented in the PFBC and IGCC Clean Coal Technology (CCT) Projects, and the currently available particulate capture performance results.

Dennis, R.A.

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NETL: Gasification Systems - Warm Gas Multi-Contaminant Removal System  

NLE Websites -- All DOE Office Websites (Extended Search)

Warm Gas Multi-Contaminant Removal System Warm Gas Multi-Contaminant Removal System Project Number: DE-SC00008243 TDA Research, Inc. is developing a high-capacity, low-cost sorbent that removes anhydrous ammonia (NH3), mercury (Hg), and trace contaminants from coal- and coal/biomass-derived syngas. The clean-up system will be used after the bulk warm gas sulfur removal step, and remove NH3 and Hg in a regenerable manner while irreversibly capturing all other trace metals (e.g., Arsenic, Selenium) reducing their concentrations to sub parts per million (ppm) levels. Current project plans include identifying optimum chemical composition and structure that provide the best sorbent performance for removing trace contaminants, determining the effect of operating parameters, conducting multiple-cycle experiments to test the life of the sorbent for NH3 and Hg removal, and conducting a preliminary design of the sorbent reactor.

82

Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases  

DOE Patents (OSTI)

This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

Ayala, Raul E. (Clifton Park, NY)

1993-01-01T23:59:59.000Z

83

The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification  

E-Print Network (OSTI)

for biomas-derived syngas. National Renewable EnergyM. Lesemann. RTI/Eastman warm syngas clean-up technology:v the composition of syngas from steam hydrogasification

Luo, Qian

2012-01-01T23:59:59.000Z

84

Development of an Integrated Multicontaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

an Integrated an Integrated Multicontaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems Background The U.S. has more coal than any other country, and it can be converted through gasification into electricity, liquid fuels, chemicals, or hydrogen. However, for coal gasification to become sufficiently competitive to benefit the U.S. economy and help reduce our dependence on foreign fuels, gasification costs must be reduced

85

Development of ceramic membrane reactors for high temperature gas cleanup. Final report  

SciTech Connect

The objective of this project was to develop high temperature, high pressure catalytic ceramic membrane reactors and to demonstrate the feasibility of using these membrane reactors to control gaseous contaminants (hydrogen sulfide and ammonia) in integrated gasification combined cycle (IGCC) systems. Our strategy was to first develop catalysts and membranes suitable for the IGCC application and then combine these two components as a complete membrane reactor system. We also developed a computer model of the membrane reactor and used it, along with experimental data, to perform an economic analysis of the IGCC application. Our results have demonstrated the concept of using a membrane reactor to remove trace contaminants from an IGCC process. Experiments showed that NH{sub 3} decomposition efficiencies of 95% can be achieved. Our economic evaluation predicts ammonia decomposition costs of less than 1% of the total cost of electricity; improved membranes would give even higher conversions and lower costs.

Roberts, D.L.; Abraham, I.C.; Blum, Y.; Gottschlich, D.E.; Hirschon, A.; Way, J.D.; Collins, J.

1993-06-01T23:59:59.000Z

86

Assessment of hot gas contaminant control  

SciTech Connect

The objective of this work is to gather data and information to assist DOE in responding to the NRC recommendation on hot gas cleanup by performing a comprehensive assessment of hot gas cleanup systems for advanced coal-based Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) including the status of development of the components of the hot gas cleanup systems, and the probable cost and performance impacts. The scope and time frame of information gathering is generally responsive to the boundaries set by the National Research council (NRC), but includes a broad range of interests and programs which cover hot gas cleanup through the year 2010. As the status of hot gas cleanup is continually changing, additional current data and information are being obtained for this effort from this 1996 METC Contractors` Review Meeting as well as from the 1996 Pittsburgh Coal Conference, and the University of Karlsruhe Symposium. The technical approach to completing this work consists of: (1) Determination of the status of hot gas cleanup technologies-- particulate collection systems, hot gas desulfurization systems, and trace contaminant removal systems; (2) Determination of hot gas cleanup systems cost and performance sensitivities. Analysis of conceptual IGCC and PFBC plant designs with hot gas cleanup have been performed. The impact of variations in hot gas cleanup technologies on cost and performance was evaluated using parametric analysis of the baseline plant designs and performance sensitivity.

Rutkowski, M.D.; Klett, M.G.; Zaharchuk, R.

1996-12-31T23:59:59.000Z

87

Advanced coal-fueled industrial cogeneration gas turbine system  

DOE Green Energy (OSTI)

The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. This quarter, work was centered on design, fabrication, and testing of the combustor, cleanup, fuel specifications, and hot end simulation rig. 2 refs., 59 figs., 29 tabs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1990-07-01T23:59:59.000Z

88

Flue Gas Desulfurization Systems  

Science Conference Proceedings (OSTI)

In many of the operating flue gas desulfurization (FGD) systems throughout the world, materials corrosion leads to considerable costs and downtime. Utilities are often required to maintain, repair, replace, and/or upgrade existing materials to combat corrosion issues. This document provides the results of a recent EPRI survey that examined the various types of corrosion and materials damage in FGD systems.

2005-12-23T23:59:59.000Z

89

Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter)  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meat this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300[degree]F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1992-10-20T23:59:59.000Z

90

Integrated low emissions cleanup system for direct coal fueled turbines. Twenty-eighth quarterly report, July--September 1994  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of advanced, coal-fueled turbine power plants such as pressurized fluid bed combustion and coal gasification combined cycles. A major technical challenge remaining for the development of the coal-fueled turbine is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure process gases. This document reports the status of a program in the twenty-seventh quarter to develop this ILEC technology.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M. [and others

1996-02-01T23:59:59.000Z

91

WIPP Accelerating Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

ACCELERATING CLEANUP: ACCELERATING CLEANUP: PATHS TO CLOSURE CARLSBAD AREA OFFICE JUNE 1998 I. Operations/Field Overview CAO Mission The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of transuranic (TRU) waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to CAO, WIPP site operations, transportation, and other activities associated with the National TRU Program (NTP). The CAO develops and directs implementation of the TRU waste program, and assesses compliance with the program guidance, as well as the commonality of activities and assumptions among all TRU waste sites. NTP Program Management

92

Results of tritium experiments on ceramic electrolysis cells and palladium diffusers for application to fusion reactor fuel cleanup systems  

Science Conference Proceedings (OSTI)

Tritium tests at the Tritium Systems Test Assembly have demonstrated that ceramic electrolysis cells and palladium alloy diffuser developed in Japan are possible components for a fusion reactor fuel cleanup system. Both components have been successfully operated with tritium for over a year. A failure of the first electrolysis cell was most likely the result of an over voltage on the ceramic. A simple circuit was developed to eliminate this mode of failure. The palladium diffusers tubes exhibited some degradation of mechanical properties as a result of the build up of helium from the tritium decay, after 450 days of operation with tritium, however the effects were not significant enough to affect the performance. New models of the diffuser and electrolysis cell, providing higher flow rates and more tritium compatible designs are currently being tested with tritium. 8 refs., 5 figs.

Carlson, R.V.; Binning, K.E.; Konishi, S.; Yoshida, H.; Naruse, Y.

1987-01-01T23:59:59.000Z

93

Gas turbine premixing systems  

SciTech Connect

Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

2013-12-31T23:59:59.000Z

94

Advanced coal-fueled gas turbine systems  

SciTech Connect

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

95

Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration)  

SciTech Connect

The objective of this contract is to investigate the removal of SO[sub x] and particulate matter from direct coal-fired combustion gas streams at high temperature and high pressure conditions. This investigation will be accomplished through a bench-scale testing and evaluation program employing sorbent mixed with a coal-water slurry for SO[sub x] removal, and an innovative particulate control concept. The particulate control device utilizes electrostatic agglomeration followed by a high efficiency mechanical collector (cyclone). The process goal is to achieve particulate collection efficiency better than that required by the 1979 new source performance standards. An additional goal is to demonstrate 70% SO[sub x] removal efficiency. This research project is now in the second of a 3 phase (phase II) project. Phase II is to fabricate the combustor and particulate control devices and install the system at a test facility located at Research-Cottrell's, KVB Western Laboratory, Santa Ana, CA. There are three functional categories, or tasks which are to be completed in sequence. These tasks are itemized as follows: design, procurement, and installation, shakedown and startup, and reporting.

Quimby, J.M.

1992-05-01T23:59:59.000Z

96

Development of hollow fiber catalytic membrane reactors for high temperature gas cleanup. Final report, September 1989--March 1994  

SciTech Connect

The objective of this project was to develop economically and technically viable catalytic membrane reactors for high temperature, high pressure gaseous contaminant control in Integrated Gasification Combined Cycle (IGCC) systems. These catalytic membrane reactors decompose H{sub 2}S and separate the reaction products. The reactors were designed to operate in the hostile process environment of the IGCC systems, and at temperatures ranging from 500 to 1000{degrees}C. Severe conditions encountered in the IGCC process (e.g., 900{degrees}C, containing of H{sub 2}S, CO{sub 2} and H{sub 2}O) make it impossible to use polymeric membranes in the process. A list of inorganic membranes that can be employed in the membrane reactor includes Pd metallic membranes, molecular-sieve glass membranes (PPG Industries), porous Vycor glass membranes and porous sol-gel derived membranes such as alumina, zirconia. Alumina and zirconia membranes, however, cannot withstand for a long time at high temperatures in the presence of water vapors. Palladium membranes are a very promising class of inorganic membranes for gas separations that is currently under development. In this project two different types of membranes were used in the design of the membrane reactor -- molecular-sieve glass membrane and Vycor glass porous membrane.

Ma, Yi Hua; Moser, W.R.; Pien, S.; Shelekhin, A.B.

1994-07-01T23:59:59.000Z

97

Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter)  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: a baseline ceramic barrier filter nEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300[degrees]F. This document reports the status of a program in the eighteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1992-04-20T23:59:59.000Z

98

Accelerating cleanup: Paths to closure  

SciTech Connect

This report describes the status of Environmental Management`s (EM`s) cleanup program and a direction forward to complete achievement of the 2006 vision. Achieving the 2006 vision results in significant benefits related to accomplishing EM program objectives. As DOE sites accelerate cleanup activities, risks to public health, the environment, and worker safety and health are all reduced. Finding more efficient ways to conduct work can result in making compliance with applicable environmental requirements easier to achieve. Finally, as cleanup activities at sites are completed, the EM program can focus attention and resources on the small number of sites with more complex cleanup challenges. Chapter 1 describes the process by which this report has been developed and what it hopes to accomplish, its relationship to the EM decision-making process, and a general background of the EM mission and program. Chapter 2 describes how the site-by-site projections were constructed, and summarizes, for each of DOE`s 11 Operations/Field Offices, the projected costs and schedules for completing the cleanup mission. Chapter 3 presents summaries of the detailed cleanup projections from three of the 11 Operations/Field Offices: Rocky Flats (Colorado), Richland (Washington), and Savannah River (South Carolina). The remaining eight Operations/Field Office summaries are in Appendix E. Chapter 4 reviews the cost drivers, budgetary constraints, and performance enhancements underlying the detailed analysis of the 353 projects that comprise EM`s accelerated cleanup and closure effort. Chapter 5 describes a management system to support the EM program. Chapter 6 provides responses to the general comments received on the February draft of this document.

NONE

1998-06-01T23:59:59.000Z

99

Development and demonstration of a wood-fired gas turbine system  

DOE Green Energy (OSTI)

The objectives of the test program were to obtain some preliminary information regarding the nature of particulate and vapor phase alkali compounds produced and to assess any deleterious impact they might have on materials of construction. Power Generating Incorporated (PGI) is developing a wood-fired gas turbine system for specialized cogeneration applications. The system is based on a patented pressurized combustor designed and tested by PGI in conjunction with McConnell Industries. The other components of the system are fuel receiving, preparation, storage and feeding system, gas clean-up equipment, and a gas turbine generator.

Smith, V.; Selzer, B.; Sethi, V.

1993-08-01T23:59:59.000Z

100

Gas turbine cooling system  

SciTech Connect

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

WIPP - CBFO Accelerating Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

more information, access DOE Environmental Management site at: http:www.em.doe.govclosure For more information regarding the Accelerating Cleanup: Paths to Closure, contact...

102

Superfund accelerated cleanup model  

SciTech Connect

In an effort to speed and maximize cleanup of the worst sites first, the Environmental Protection Agency (EPA) developed the Superfund Accelerated Cleanup Model (SACM). SACM streamlines the Superfund process so hazardous waste sites can be addressed quicker and in a more cost effective manner. EPA Regional offices developed a number of pilot projects to test the principles of SACM. Although many pilots are underway in the Regions, the pilots described here involve four areas: accelerating cleanup through early actions; integrating site assessments; using Regional Decision Teams to establish priorities; and accelerating cleanup through the use of new technology.

Not Available

1994-08-01T23:59:59.000Z

103

Gas-recovery system  

DOE Patents (OSTI)

Nuclear explosions have been proposed as a means for recovering gas from underground gas-bearing rock formations. In present practice, the nuclear device is positioned at the end of a long pipe which is subsequently filled with grout or concrete. After the device is exploded, the grout is drilled through to provide a flow path for the released gas to the ground surface. As settled grout is brittle, often the compressive shock of the explosion fractures the grout and deforms the pipe so that it may not be removed nor reused. In addition, the pipe is sometimes pinched off completely and the gas flow is totally obstructed. (2 claims)

Heckman, R.A.

1971-12-14T23:59:59.000Z

104

Gas hydrate cool storage system  

DOE Patents (OSTI)

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

105

Site Transition Process Upon Cleanup Completion | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Process Upon Cleanup Completion Site Transition Process Upon Cleanup Completion Site Transition Process Upon Cleanup Completion Site Transition Process Upon Cleanup Completion More...

106

Site Transition Process Upon Cleanup Completion | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Transition Process Upon Cleanup Completion Site Transition Process Upon Cleanup Completion Site Transition Process Upon Cleanup Completion Site Transition Process Upon Cleanup...

107

Fission gas detection system  

DOE Patents (OSTI)

A device for collecting fission gas released by a failed fuel rod which device uses a filter to pass coolant but which filter blocks fission gas bubbles which cannot pass through the filter due to the surface tension of the bubble.

Colburn, Richard P. (Pasco, WA)

1985-01-01T23:59:59.000Z

108

Process gas solidification system  

DOE Patents (OSTI)

It has been the practice to (a) withdraw hot, liquid UF.sub.6 from various systems, (b) direct the UF.sub.6 into storage cylinders, and (c) transport the filled cylinders to another area where the UF.sub.6 is permitted to solidify by natural cooling. However, some hazard attends the movement of cylinders containing liquid UF.sub.6, which is dense, toxic, and corrosive. As illustrated in terms of one of its applications, the invention is directed to withdrawing hot liquid UF.sub.6 from a system including (a) a compressor for increasing the pressure and temperature of a stream of gaseous UF.sub.6 to above its triple point and (b) a condenser for liquefying the compressed gas. A network containing block valves and at least first and second portable storage cylinders is connected between the outlet of the condenser and the suction inlet of the compressor. After an increment of liquid UF.sub.6 from the condenser has been admitted to the first cylinder, the cylinder is connected to the suction of the compressor to flash off UF.sub.6 from the cylinder, thus gradually solidifying UF.sub.6 therein. While the first cylinder is being cooled in this manner, an increment of liquid UF.sub.6 from the condenser is transferred into the second cylinder. UF.sub.6 then is flashed from the second cylinder while another increment of liquid UF.sub.6 is being fed to the first. The operations are repeated until both cylinders are filled with solid UF.sub.6, after which they can be moved safely. As compared with the previous technique, this procedure is safer, faster, and more economical. The method also provides the additional advantage of removing volatile impurities from the UF.sub.6 while it is being cooled.

Fort, William G. S. (Oak Ridge, TN); Lee, Jr., William W. (Oak Ridge, TN)

1978-01-01T23:59:59.000Z

109

Hot-gas cleanup for molten carbonate fuel cells-dechlorination and soot formation. Final report, May 19, 1981-July 19, 1983  

DOE Green Energy (OSTI)

Two separate aspects of hot-gas conditioning for molten carbonate fuel cells (MCFC) were investigated under this contract: potential high temperature chloride sorbent materials were sreened and tested and carbon deposition on MCFC components was studied experimentally to determine guidelines for maximizing MCFC efficiency while avoiding carbon fouling. Natural minerals containing sodium carbonate were identified as the most promising candidates for economical removal of chlorides from coal gasifier effluents at temperatures of about 800 K (980/sup 0/F). The mineral Shortite was tested in a fixed bed and found to perform remarkably well with no calcination. Using Shortite we were able to achieve the program goal of less than 1 ppmV chlorides at 800 K. Shortite is an abundant mineral with no competing commercial demand, so it should provide an economical chloride cleanup sorbent. Measurements showed that carbon deposition can occur in the equilibrium carbon freee region because of the relative rates of the relevant reactions. On all surfaces tested, the Boudouard carbon formation reaction is much faster than the water-gas shift reaction which is much faster than the methanation reaction. This means that the normal practice of adding steam to prevent carbon formation will only succeed if flows are slow enough for the water shift reaction to go substantially to completion. More direct suppression of carbon formation can be achieved by CO/sub 2/ addition through anode recycle to force the Boudouard reaction backward. Addition of steam or CO/sub 2/ must be minimized to attain the highest possible MCFC efficiency. 28 references, 31 figures, 22 tables.

Ham, D.; Gelb, A.; Lord, G.; Simons, G.

1984-01-01T23:59:59.000Z

110

Novel Cleanup Agents Designed Exclusively for Oil Field Membrane Filtration Systems Low Cost Field Demonstrations of Cleanup Agents in Controlled Experimental Environments  

Science Conference Proceedings (OSTI)

The goal of our project is to develop innovative processes and novel cleaning agents for water treatment facilities designed to remove fouling materials and restore micro-filter and reverse osmosis (RO) membrane performance. This project is part of Texas A&M University's comprehensive study of the treatment and reuse of oilfield brine for beneficial purposes. Before waste water can be used for any beneficial purpose, it must be processed to remove contaminants, including oily wastes such as residual petroleum hydrocarbons. An effective way of removing petroleum from brines is the use of membrane filters to separate oily waste from the brine. Texas A&M and its partners have developed highly efficient membrane treatment and RO desalination for waste water including oil field produced water. We have also developed novel and new cleaning agents for membrane filters utilizing environmentally friendly materials so that the water from the treatment process will meet U.S. EPA drinking water standards. Prototype micellar cleaning agents perform better and use less clean water than alternate systems. While not yet optimized, the new system restores essentially complete membrane flux and separation efficiency after cleaning. Significantly the amount of desalinated water that is required to clean the membranes is reduced by more than 75%.

David Burnett; Harold Vance

2007-08-31T23:59:59.000Z

111

System of treating flue gas  

DOE Patents (OSTI)

A system is described for treating or cleaning incinerator flue gas containing acid gases and radioactive and fissionable contaminants. Flue gas and a quench solution are fed into a venturi and then tangentially into the lower portion of a receptacle for restricting volumetric content of the solution. The upper portion of the receptacle contains a scrub bed to further treat or clean the flue gas.

Ziegler, D.L.

1975-12-01T23:59:59.000Z

112

Gas turbine diagnostic system  

E-Print Network (OSTI)

In the given article the methods of parametric diagnostics of gas turbine based on fuzzy logic is proposed. The diagnostic map of interconnection between some parts of turbine and changes of corresponding parameters has been developed. Also we have created model to define the efficiency of the compressor using fuzzy logic algorithms.

Talgat, Shuvatov

2011-01-01T23:59:59.000Z

113

NETL: Gasification Systems - Gas Separation  

NLE Websites -- All DOE Office Websites (Extended Search)

Separation Separation Ion-Transport Membrane Oxygen Separation Modules Ion-Transport Membrane Oxygen Separation Modules Gas separation unit operations represent major cost elements in gasification plants. The gas separation technology being supported in the DOE program promises significant reduction in cost of electricity, improved thermal efficiency, and superior environmental performance. Gasification-based energy conversion systems rely on two gas separation processes: (1) separation of oxygen from air for feed to oxygen-blown gasifiers; and (2) post-gasification separation of hydrogen from carbon dioxide following (or along with) the shifting of gas composition when carbon dioxide capture is required or hydrogen is the desired product. Research efforts include development of advanced gas separation

114

Backscatter absorption gas imaging system  

DOE Patents (OSTI)

A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

McRae, Jr., Thomas G. (Livermore, CA)

1985-01-01T23:59:59.000Z

115

Fuel cell gas management system  

SciTech Connect

A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

DuBose, Ronald Arthur (Marietta, GA)

2000-01-11T23:59:59.000Z

116

Reactive carbon from life support wastes for incinerator flue gas cleanup-System Testing  

E-Print Network (OSTI)

of Utah with the combustion of biomass has shown that thegas, studies of the combustion of biomass by N A S A Ames

2002-01-01T23:59:59.000Z

117

Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twenty-third quarterly status report, April--June 1993  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: A baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degrees}F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1993-07-19T23:59:59.000Z

118

Integrated Low Emissions Cleanup system for direct coal fueled turbines (moving bed, fluid contactor/ceramic filter). Twenty-second quarterly status report, January--March 1993  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: A baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degrees}F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1993-10-01T23:59:59.000Z

119

Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twentieth quarterly status report, July--September 1992  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meat this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degree}F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1992-10-20T23:59:59.000Z

120

Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twenty-ninth quarterly status report, October--December 1994  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of advanced, coal-fueled turbine power plants such as pressurized fluid bed combustion and coal gasification combined cycles. A major technical challenge remaining for the development of the coal-fueled turbine is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure process gases. This document reports the status of a program in the twenty-seventh quarter to develop this ILEC technology.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M. [and others

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Integrated Low Emissions Cleanup system for direct coal fueled turbines, (moving bed, fluid bed contactor/ceramic filter). Twenty-fourth quarterly status report, July--September 1993  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degree}F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1993-12-31T23:59:59.000Z

122

Greenhouse gas emissions in biogas production systems  

E-Print Network (OSTI)

Augustin J et al. Automated gas chromatographic system forof the atmospheric trace gases methane, carbon dioxide, andfuel consumption and of greenhouse gas (GHG) emissions from

Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

2009-01-01T23:59:59.000Z

123

Gas characterization system functional design criteria  

DOE Green Energy (OSTI)

This is the functional design criteria for the gas characterization systems being placed on selected flammable gas watch-list tanks in support of the hydrogen mitigation tests.

Straalsund, E.K.

1995-01-05T23:59:59.000Z

124

2013 Congressional Nuclear Cleanup Caucus Briefings | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Congressional Nuclear Cleanup Caucus Briefings 2013 Congressional Nuclear Cleanup Caucus Briefings The Congressional Nuclear Cleanup Caucus serves as a way to brief members of...

125

HANFORD SITE CLEANUP OBJECTIVES INCONSISTENTWITH PROJECTED LAND...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HANFORD SITE CLEANUP OBJECTIVES INCONSISTENTWITH PROJECTED LAND USES, IG-0446 HANFORD SITE CLEANUP OBJECTIVES INCONSISTENTWITH PROJECTED LAND USES, IG-0446 The cleanup of the...

126

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2002-02-01T23:59:59.000Z

127

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2000-01-01T23:59:59.000Z

128

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2002-04-01T23:59:59.000Z

129

Interaction of Fracture Fluid With Formation Rock and Proppant on Fracture Fluid Clean-up and Long-term Gas Recovery in Marcellus Shale Reservoirs.  

E-Print Network (OSTI)

??The exploitation of unconventional gas reservoirs has become an integral part of the North American gas supply. The economic viability of many unconventional gas developments (more)

Yue, Wenting

2012-01-01T23:59:59.000Z

130

Cleanup Sites | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup Sites Cleanup Sites Cleanup Sites Center Map As the largest environmental cleanup program in the world, EM has been charged with the responsibility of cleaning up 107 sites across the country whose area is equal to the combined area of Rhode Island and Delaware. EM has made substantial progress in nearly every area of nuclear waste cleanup and as of September 2012, completed cleanup at 90 of these sites. The "active" sites continue to have ongoing cleanup projects under EM's purview. Use the interactive map above to see states that still have cleanup activities associated with them. The tooltip in the upper-right corner shows site data for each state, and each marker gives site information as well as links to the site fact sheets here on the EM website and each site's full website.

131

Biogas Impurities and Cleanup for Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Impurities and Cleanup for Fuel Cells Impurities and Cleanup for Fuel Cells Dennis Papadias and Shabbir Ahmed Argonne National Laboratory Presented at the Biogas and Fuel Cells Workshop Golden, CO June 11-13, 2012 Biogas is the product of anaerobic decomposition of organic waste Municipal solid wastes (MSW)  For every 1 million tons of MSW: - 432,000 cubic feet per day of landfill gas (LFG) for a period of 20 years - 1 MW of electricity 1 Sewage sludge/waste water (WWTP or ADG)  A typical WWTP processes 100 gallons per day (GD) for every person served - 1 cubic foot of digester gas can be produced per 100 gallons of wastewater  100 kW of electricity 1 can be generated from 4.5 MGD of waste water Agricultural waste (i.e. dairy waste)  About 70-100 ft 3 /day of digester gas is produced

132

Gas sampling system for a mass spectrometer  

DOE Patents (OSTI)

The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.

Taylor, Charles E; Ladner, Edward P

2003-12-30T23:59:59.000Z

133

Gas fired Advanced Turbine System  

SciTech Connect

The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

LeCren, R.T.; White, D.J.

1993-01-01T23:59:59.000Z

134

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY, OH, VA, WV 1,849 9,350 10,365 Transcontinental Gas Pipeline Co. Northeast, Southeast Southwest AL, GA, LA, MD, MS, NC, NY, SC, TX, VA, GM 2,670 8,466 10,450 Northern Natural Gas Co. Central, Midwest Southwest IA, IL, KS, NE, NM, OK, SD, TX, WI, GM 1,055 7,442 15,874 Texas Eastern Transmission Corp.

135

Cleanup at Rocky Flats  

NLE Websites -- All DOE Office Websites (Extended Search)

David L. Clark, Los Alamos National Laboratory David L. Clark, Los Alamos National Laboratory The Rocky Flats Environmental Technology Site (RFETS) is an environmental cleanup site located about 16 miles northwest of downtown Denver (Fig 1). Two decades of routine monitoring have shown that the environment around RFETS is contaminated with actinide elements (U, Pu, Am) from site operations, [1] and RFETS has been designated by the U.S. Environmental Protection Agency (EPA) as a Superfund cleanup site. Until December 1989, the Rocky Flats Plant made components for nuclear weapons using various radioactive and hazardous materials, including plutonium, uranium and beryllium. Nearly 40 years of nuclear weapons production left behind a legacy of contaminated facilities, soils, and ground water. More than 2.5 million people live within a 50 mile radius of the site; 300,000 of those live in the Rocky Flats watershed.

136

EIA - Natural Gas Pipeline System - Northeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Northeast Region Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These interstate pipelines deliver natural gas to several intrastate natural gas pipelines and at least 50 local distribution companies in the region. In addition, they also serve large industrial concerns and, increasingly, natural gas fired electric power generation facilities.

137

Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Eighteenth quarterly status report, January--March 1992  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: a baseline ceramic barrier filter nEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degrees}F. This document reports the status of a program in the eighteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1992-04-20T23:59:59.000Z

138

Mercury sorbent delivery system for flue gas  

DOE Patents (OSTI)

The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

Klunder; ,Edgar B. (Bethel Park, PA)

2009-02-24T23:59:59.000Z

139

Manage fuel gas with an expert system  

Science Conference Proceedings (OSTI)

The Star Louisiana refinery has fuel gas header systems throughout the plant that are utilized by fuel gas producers and consumers. The refinery simultaneously exports surplus fuel gas from the export gas header, and maintains a minimum natural gas makeup rates from multiple external suppliers for fuel gas header pressure control. Successfully implementing a fuel gas expert system has facilitated communication of accurate, timely information to all unit control board operators in the refinery when any change or sub-optimal situation occurs in either of these systems. Information provided from the expert system rule knowledge base results in: proper unit operating actions taken when a flaring situation approaches, thus minimizing the negative impact of flaring on the environment and minimizing product loses to the flare; minimizing purchase of makeup natural gas used for fuel gas system pressure control; maximizing export gas capacity to prevent surplus fuel gas production from limiting refinery operation; immediately recognizing an upset in any fuel gas header system and advising the best corrective action for all affected refinery units; and minimizing voice communication required between units in an upset, since the expert system provides the communication immediately in expert advice messages.

Giacone, G.; Toben, S.; Bergeron, G. [Star Enterprise, Convent, LA (United States); Ayral, T. [Key Control Inc., Westlake Village, CA (United States)

1996-09-01T23:59:59.000Z

140

Environmental Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Cleanup Environmental Cleanup Environmental Cleanup Learn more about the history, cleanup activities and possible future uses of the Hanford Site, a 586-square-mile government site in southeast Washington State. | Video courtesy of the Energy Department. The Energy Department is committed to a safe, complete cleanup of the environmental legacy of five decades of government-sponsored nuclear weapons development and nuclear energy research. As part of this mission, we safely and cost-effectively transport and dispose of low-level wastes; decommission and decontaminate old facilities; remediate contaminated soil and groundwater; and secure and store nuclear material in stable, secure locations to protect national security. Featured An Update on the Hanford Site and Cleanup Progress

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hanford Achieves a Cleanup First  

Energy.gov (U.S. Department of Energy (DOE))

RICHLAND, Wash. DOE contractors have completed cleanup of F Area, the first reactor area at the 586-square-mile Hanford site to be fully remediated.

142

Environmental Cleanup, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab campus Cleanup Project Details Groundwater Peconic River Surface and Soil Brookhaven Graphite Research Reactor High Flux Beam Reactor Brookhaven Medical Reactor...

143

LNG delivery system for gas powered vehicles  

Science Conference Proceedings (OSTI)

This patent describes a natural gas delivery system. It comprises a first vehicle mounted tank for storing liquid natural gas and natural gas vapor; a second vehicle mounted tank for storing liquid natural gas and natural gas vapor; a use line connected to the first and second tanks for receiving natural gas from the first and second tanks and delivering natural gas vapor to the use device on the vehicle and means for pressurizing the natural gas in the use line; means for selecting one of the first or second tanks to deliver natural gas to the use line; and means for overriding the selecting means to deliver natural gas vapor to the use line from either of the tanks in response to detecting a pressure rise therein which exceeds a preselected maximum.

Nesser, T.A.; Hedegard, K.W.

1992-07-07T23:59:59.000Z

144

Idaho Site Advances Recovery Act Cleanup after Inventing Effective  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Advances Recovery Act Cleanup after Inventing Effective Site Advances Recovery Act Cleanup after Inventing Effective Treatment Idaho Site Advances Recovery Act Cleanup after Inventing Effective Treatment For the first time in history, workers at the Idaho site achieved success in the initial cleanup of potentially dangerous sodium in a decommissioned nuclear reactor using an innovative treatment process. The American Recovery and Reinvestment Act invested $70 million in the project, which employs 130 workers. DOE officials cheered the outcome and praised the team that designed and implemented the innovative sodium treatment for which the DOE has filed a provisional patent application. Idaho Site Advances Recovery Act Cleanup after Inventing Effective Treatment More Documents & Publications Experimental Breeder Reactor-II Primary Tank System Wash Water Workshop

145

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-12-01T23:59:59.000Z

146

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-01-01T23:59:59.000Z

147

EIA - Natural Gas Pipeline System - Western Region  

U.S. Energy Information Administration (EIA) Indexed Site

Western Region Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving any region (see Table below). Slightly more than half the capacity entering the region is on natural gas pipeline systems that carry natural gas from the Rocky Mountain area and the Permian and San Juan basins. These latter systems enter the region at the New Mexico-Arizona and Nevada-Utah State lines. The rest of the capacity arrives on natural gas pipelines that access Canadian natural gas at the Idaho and Washington State border crossings with British Columbia, Canada.

148

Mercury Sorbent Delivery System for Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

(NETL) is seeking licensing partners interested in implementing United States Patent Number 7,494,632 entitled "Mercury Sorbent Delivery System for Flue Gas." Disclosed in...

149

System and method for detecting gas  

DOE Patents (OSTI)

A system to detect a presence of a specific gas in a mixture of gaseous byproducts comprising moisture vapor is disclosed. The system includes an electrochemical cell, a transport to deliver the mixture of gaseous byproducts from the electrochemical cell, a gas sensor in fluid communication with the transport, the sensor responsive to a presence of the specific gas to generate a signal corresponding to a concentration of the specific gas, and a membrane to prevent transmission of liquid moisture, the membrane disposed between the transport and the gas sensor.

Chow, Oscar Ken (Simsbury, CT); Moulthrop, Lawrence Clinton (Windsor, CT); Dreier, Ken Wayne (Madison, CT); Miller, Jacob Andrew (Dexter, MI)

2010-03-16T23:59:59.000Z

150

Determination of the effect of formation water on fracture-fluid cleanup  

SciTech Connect

Understanding hydraulic-fracture cleanup is essential for improving well stimulation. Residual gel damages fracture conductivity, shortens effective fracture half-length, and limits well productivity. The drive to develop fluids, additives, and procedures that minimize this damage continues to be a dominant theme in fracture-fluid-development programs. Fracture cleanup is a complex problem, and many parameters (e.g., fluid system, job design, flowback procedure, and reservoir conditions) can influence polymer and fluid recovery efficiencies. Often, specific products and methods that work well in one reservoir have little effect in another. Systematic analysis of fluid and polymer returns after a treatment is completed is the only way to quantify fracture cleanup. This is referred to as flowback analysis. This paper discusses a flowback-analysis field study on large hydraulic-fracturing treatments in the Taylor zone of the Cotton Valley formation in east Texas. This is a low-permeability (approximately 0.01 md) tight gas formation. It is a heterogeneous zone with layers of productive sandstone interspersed with relatively impermeable layers of shale. A typical well in this field initially produces approximately 0.75 to 1.3 MMcf/D gas and 35 to 40 bbl of water/MMcf of gas. The returns from 10 wells in this field were analyzed thoroughly.

NONE

1998-03-01T23:59:59.000Z

151

NETL: Gasification - Recovery Act: High Temperature Syngas Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Processing Systems Syngas Processing Systems Recovery Act: High Temperature Syngas Cleanup Technology Scale-Up and Demonstration Project Research Triangle Institute Project Number: FE0000489 Project Description Research Triangle Institute (RTI) is designing, building, and testing the Warm Temperature Desulfurization Process (WDP) at pre-commercial scale (50 megawatt electric equivalent [MWe]) to remove more than 99.9 percent of the sulfur from coal-derived synthesis gas (syngas). RTI is integrating this WDP technology with an activated methyl diethanolamine (aMDEA) solvent technology to separate 90% of the carbon dioxide (CO2) from shifted syngas. The Polk Power Station, an integrated gasification combined cycle (IGCC) power plant, will supply approximately 20% of its coal-derived syngas as a slipstream to feed into the pre-commercial scale technologies being scaled-up.

152

Richland Operations Office Completes Cleanup in Hanford's 300...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

sewer system - was removed from the 300-15 Waste Site in the north section. RICHLAND, Wash. - EM met a Tri-Party Agreement milestone by completing cleanup of the north portion of...

153

Gas characterization monitoring system functional design criteria  

DOE Green Energy (OSTI)

The purpose of this document is to provide the functional design criteria for the Gas Characterization Monitoring Systems (Standard-E Hydrogen Monitoring Systems,) to be designed, fabricated and installed on the Waste Tank Farms in the Hanford 200 Areas.

Schneider, T.C.

1997-06-01T23:59:59.000Z

154

EIA - Natural Gas Pipeline System - Central Region  

U.S. Energy Information Administration (EIA) Indexed Site

Central Region Central Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Central Region Overview | Domestic Gas | Exports | Regional Pipeline Companies & Links Overview Twenty-two interstate and at least thirteen intrastate natural gas pipeline companies (see Table below) operate in the Central Region (Colorado, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming). Twelve interstate natural gas pipeline systems enter the region from the south and east while four enter from the north carrying Canadian supplies. The average utilization rates on those shipping Canadian natural gas tend to be higher than those carrying domestic supplies.

155

Flue Gas Cleanup at Temperatures about 1400 C for a Coal Fired Combined Cycle Power Plant: State and Perspectives in the Pressurized Pulverized Coal Combustion (PPCC) Project  

Science Conference Proceedings (OSTI)

The PPCC technology, a combined cycle, requires comprehensive cleaning of the flue gases because coal contains a large variety of minerals and other substances. This would lead to fast destruction of the gas turbine blades due to erosion and corrosion. The present specifications of the turbine manufacturers for the required flue gas quality are at a maximum particulate content of 5 mg/m3 s.t.p., diameter of Kraftwerke GmbH, SaarEnergie GmbH, Siemens AG, and Steag AG.

Foerster, M.E.C.; Oeking, K.; Hannes, K.

2002-09-18T23:59:59.000Z

156

Natural Gas Annual Respondent Query System  

Gasoline and Diesel Fuel Update (EIA)

loading new table loading new table Home > Natural Gas > Natural Gas Annual Respondent Query System Natural Gas Annual Respondent Query System (EIA-176 Data through 2012) Report: 176 Natural Gas Deliveries 176 Natural Gas Supply Items 176 Natural Gas Other Disposition Items 176 Type of Operations and Sector Items 176 Continuation Text Lines 176 Company List 191 Field Level Storage Data 757 Processing Capacity 176 Custom Report (User-defined) Years: 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 to 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Sort by: Area, Company, Item Company, Area, Item Item, Area, Company Company: Show only Company ID Show only Company Name Show both Company ID, Name 2012 Total

157

Gas lift systems make ideal offshore workers  

Science Conference Proceedings (OSTI)

With a low initial installation cost and small footprint, gas lift systems are well suited for offshore installations where compressed gas is usually already available. These systems are used on multiple and slimhole completions and handle sandy conditions well. They are also used to kick off wells that will flow naturally once the heavier completion fluids leave the production string. Gas lift itself is a mature workaday technology. Measurement and control of gas flow is an area of intense development in gas lift technology. One new control method involves production of multiple completions through a single wellbore. Typically, gas lift valves are opened and closed through tubing pressure. But downhole measurement technology does not yet yield information good enough for stable gas lift control of multiple completions. Gas lift is proving to be a useful AL technique in conjunction with electric submersible pumps (ESP). Located above the ESP pump, the gas lift can reduce the head and allow greater flow. This is helpful when small casing restricts the size of the downhole ESP pump. Wells can usually be produced by the gas lift alone in case of ESP failure, or by replacing the ESP where schedules, high repair costs or low prices rule out repair.

NONE

1999-05-01T23:59:59.000Z

158

Upper Los Alamos Canyon Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Upper Los Alamos Canyon Cleanup Upper Los Alamos Canyon Cleanup Upper Los Alamos Canyon Cleanup The Upper Los Alamos Canyon Project involves cleaning up hazardous materials left over from some of the Laboratory's earliest activities. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Located along Los Alamos Canyon from 7th Street to the Pajarito Ski Hill, the Upper Los Alamos Canyon Project involves examining sites in present and former Laboratory technical areas to see if any further environmental cleanup actions are needed. If not, the Laboratory can apply to have these sites removed permanently from LANL's Hazardous Waste Permit, meaning that no further actions are needed at those sites. Among the 115 sites included in the Upper LA Canyon Project, 54 have been

159

Technology Development Advances EM Cleanup  

Energy.gov (U.S. Department of Energy (DOE))

The unique nature of many of EM's remaining facilities will require a strong and responsive engineering and technology program to improve work and public safety, and reduce costs and environmental impacts while completing the cleanup program.

160

Superfund Cleanups and Infant Health  

E-Print Network (OSTI)

We are the first to examine the effect of Superfund cleanups on infant health rather than focusing on proximity to a site. We study singleton births to mothers residing within 5km of a Superfund site between 1989 and 2003 ...

Currie, Janet

2011-02-23T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

U-PLANT GEOGRAPHIC ZONE CLEANUP PROTOTYPE  

Science Conference Proceedings (OSTI)

The U Plant geographic zone (UPZ) occupies 0.83 square kilometers on the Hanford Site Central Plateau (200 Area). It encompasses the U Plant canyon (221-U Facility), ancillary facilities that supported the canyon, soil waste sites, and underground pipelines. The UPZ cleanup initiative coordinates the cleanup of the major facilities, ancillary facilities, waste sites, and contaminated pipelines (collectively identified as ''cleanup items'') within the geographic zone. The UPZ was selected as a geographic cleanup zone prototype for resolving regulatory, technical, and stakeholder issues and demonstrating cleanup methods for several reasons: most of the area is inactive, sufficient characterization information is available to support decisions, cleanup of the high-risk waste sites will help protect the groundwater, and the zone contains a representative cross-section of the types of cleanup actions that will be required in other geographic zones. The UPZ cleanup demonstrates the first of 22 integrated zone cleanup actions on the Hanford Site Central Plateau to address threats to groundwater, the environment, and human health. The UPZ contains more than 100 individual cleanup items. Cleanup actions in the zone will be undertaken using multiple regulatory processes and decision documents. Cleanup actions will include building demolition, waste site and pipeline excavation, and the construction of multiple, large engineered barriers. In some cases, different cleanup actions may be taken at item locations that are immediately adjacent to each other. The cleanup planning and field activities for each cleanup item must be undertaken in a coordinated and cohesive manner to ensure effective execution of the UPZ cleanup initiative. The UPZ zone cleanup implementation plan (ZCIP) was developed to address the need for a fundamental integration tool for UPZ cleanup. As UPZ cleanup planning and implementation moves forward, the ZCIP is intended to be a living document that will provide a focal point for integrating UPZ actions, including field cleanup activities, waste staging and handling, and post-cleanup monitoring and institutional controls.

ROMINE, L.D.

2006-02-01T23:59:59.000Z

162

Combustion modeling in advanced gas turbine systems  

DOE Green Energy (OSTI)

Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K. [Brigham Young Univ., Provo, UT (United States). Advanced Combustion Engineering Research Center

1995-12-31T23:59:59.000Z

163

Integrated operation of a pressurized gasifier, hot gas desulfurization system and turbine simulator  

SciTech Connect

The overall objective of the General Electric Hot Gas Cleanup (HGCU) Program is to develop a commercially viable technology to remove sulfur, particulates, and halogens from a high-temperature fuel gas stream using a moving bed, regenerable mixed metal oxide sorbent based process. This technology will ultimately be incorporated into advanced Integrated Gasification Combined Cycle (IGCC) power generation systems. The objectives of the turbine simulator testing are (1) to demonstrate the suitability of fuel gas processed by the HGCU system for use in state-of-the-art gas turbines firing at F conditions (2,350 F rotor inlet temperature) and (2) to quantify the combustion characteristics and emissions of such a combustor. Testing of the GE HGCU system has been underway since December 1990. The two most recent tests, Test 5 and Test 6, represent the latest advancements in regenerator configuration, type of sorbent, and chloride control systems. Test 5 was based on the use of zinc titanate sorbent and included a revised regenerator configuration and a sodium bicarbonate injection system for chloride control. Test 6 incorporated the use of Z-Sorb, a chloride guard in the regenerator recycle loop, and further modifications to the regenerator internal configuration. This report describes the test conditions in detail and discusses the test results.

Bevan, S.; Najewicz, D.; Gal, E.; Furman, A.H.; Ayala, R.; Feitelberg, A.

1994-10-01T23:59:59.000Z

164

Natural gas cleanup: Evaluation of a molecular sieve carbon as a pressure swing adsorbent for the separation of methane/nitrogen mixtures  

SciTech Connect

This report describes the results of a preliminary evaluation to determine the technical feasibility of using a molecular sieve carbon manufactured by the Takeda Chemical Company of Japan in a pressure owing adsorption cycle for upgrading natural gas (methane) contaminated with nitrogen. Adsorption tests were conducted using this adsorbent in two, four, and five-step adsorption cycles. Separation performance was evaluated in terms of product purity, product recovery, and sorbent productivity for all tests. The tests were conducted in a small, single-column adsorption apparatus that held 120 grams of the adsorbent. Test variables included adsorption pressure, pressurization rate, purge rate and volume, feed rate, and flow direction in the steps from which the product was collected. Sorbent regeneration was accomplished by purging the column with the feed gas mixture for all but one test series where a pure methane purge was used. The ratio between the volumes of the pressurization gas and the purge gas streams was found to be an important factor in determining separation performance. Flow rates in the various cycle steps had no significant effect. Countercurrent flow in the blow-down and purge steps improved separation performance. Separation performance appears to improve with increasing adsorption pressure, but because there are a number of interrelated variables that are also effected by pressure, further testing will be needed to verify this. The work demonstrates that a molecular sieve carbon can be used to separate a mixture of methane and nitrogen when used in a pressure swing cycle with regeneration by purge. Further work is needed to increase product purity and product recovery.

Grimes, R.W.

1994-06-01T23:59:59.000Z

165

Development of novel copper-based sorbents for hot-gas cleanup. [Quarterly] technical report, March 1, 1993--May 31, 1993  

SciTech Connect

The objective of this investigation is to evaluate two novel copper-based sorbents (i.e. copper-chromium and copper-cerium) for their effectiveness in removing hydrogen sulfide from fuel gas in the temperature range of 650{degrees} to 850{degrees}C. In this program, structural and kinetic studies are conducted on various compositions of the two selected copper-based sorbents to determine the optimum sorbent composition. The effect of operating conditions on the performance of the sorbents alone with the stability and regenerability of the selected sorbents in successive sulfidation/regeneration operation are determined. Parametric multicycle desulfurization tests were conducted this quarter in a bench-scale (5-cm-diameter) quartz reactor at one atmosphere using the CuCr{sub 2}O{sub 4} and CuO/CeO{sub 2} sorbents. The parameters studied included temperature, space velocity, and feed gas composition. Both sorbents were able to reduce the H{sub 2}S concentration of the reactor feed gas to <10 ppM under all conditions tested. The apparent reactivity of the CuO/CeO{sub 2} sorbent was lower after the first cycle which may be attributed to incomplete regeneration caused by sulfate formation.

Hill, A.H.; Abbasian, J. [Institute of Gas Technology, Chicago, IL (United States); Flytzani-Stephanopoulos, M.; Li, Li [Massachusetts Inst. of Tech., Cambridge, MA (United States)

1993-09-01T23:59:59.000Z

166

EIA - Natural Gas Pipeline System - Southwest Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southwest Region Southwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southwest Region Overview | Export Transportation | Intrastate | Connection to Gulf of Mexico | Regional Pipeline Companies & Links Overview Most of the major onshore interstate natural gas pipeline companies (see Table below) operating in the Southwest Region (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas) are primarily exporters of the region's natural gas production to other parts of the country and Mexico, while an extensive Gulf of Mexico and intrastate natural gas pipeline network is the main conduit for deliveries within the region. More than 56,000 miles of natural gas pipeline on more than 66 intrastate natural gas pipeline systems (including offshore-to-onshore and offshore Gulf of Mexico pipelines) deliver natural gas to the region's local natural gas distribution companies and municipalities and to the many large industrial and electric power facilities located in the region.

167

Hot gas filter and system assembly  

DOE Patents (OSTI)

A filter element for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system.

Lippert, Thomas Edwin (Murrysville, PA); Palmer, Kathryn Miles (Monroeville, PA); Bruck, Gerald Joseph (Murrysville, PA); Alvin, Mary Anne (Pittsburgh, PA); Smeltzer, Eugene E. (Export, PA); Bachovchin, Dennis Michael (Murrysville, PA)

1999-01-01T23:59:59.000Z

168

WIMAX TECHNOLOGY AT HANFORD: UPDATING INFRASTRUCTURE, ACCELERATING CLEANUP  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WIMAX TECHNOLOGY AT HANFORD: UPDATING INFRASTRUCTURE, ACCELERATING WIMAX TECHNOLOGY AT HANFORD: UPDATING INFRASTRUCTURE, ACCELERATING CLEANUP WIMAX TECHNOLOGY AT HANFORD: UPDATING INFRASTRUCTURE, ACCELERATING CLEANUP December 1, 2009 - 12:00pm Addthis Richland, WA - In direct support of Hanford cleanup and the American Reinvestment and Recovery Act (ARRA) accelerated cleanup initiatives, the U.S. Department of Energy (DOE) Richland Operations Office (RL) is teaming with the Site services contractor, Mission Support Alliance, LLC (MSA), CH2M HILL Plateau Remediation Company and Washington River Protection Services Company to implement a WiMAX-based communications infrastructure at Hanford to augment the existing fiber optic and Wi-Fi-based systems. Wi-Fi and WiMAX are both considered last mile technologies that carry signals from telecommunications backbones (in this case hubs or access

169

WIMAX TECHNOLOGY AT HANFORD: UPDATING INFRASTRUCTURE, ACCELERATING CLEANUP  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WIMAX TECHNOLOGY AT HANFORD: UPDATING INFRASTRUCTURE, ACCELERATING WIMAX TECHNOLOGY AT HANFORD: UPDATING INFRASTRUCTURE, ACCELERATING CLEANUP WIMAX TECHNOLOGY AT HANFORD: UPDATING INFRASTRUCTURE, ACCELERATING CLEANUP December 1, 2009 - 12:00pm Addthis Richland, WA - In direct support of Hanford cleanup and the American Reinvestment and Recovery Act (ARRA) accelerated cleanup initiatives, the U.S. Department of Energy (DOE) Richland Operations Office (RL) is teaming with the Site services contractor, Mission Support Alliance, LLC (MSA), CH2M HILL Plateau Remediation Company and Washington River Protection Services Company to implement a WiMAX-based communications infrastructure at Hanford to augment the existing fiber optic and Wi-Fi-based systems. Wi-Fi and WiMAX are both considered last mile technologies that carry signals from telecommunications backbones (in this case hubs or access

170

Groundwater Cleanup Progresses at Paducah Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup Progresses at Paducah Site Cleanup Progresses at Paducah Site Groundwater Cleanup Progresses at Paducah Site October 30, 2013 - 12:00pm Addthis Workers drill holes for installation of electrodes as part of a heating system to help clean up contamination. Workers drill holes for installation of electrodes as part of a heating system to help clean up contamination. A crane lifts the carbon treatment system into place. This technology treats vapor pumped to the surface by the belowground heating system. A crane lifts the carbon treatment system into place. This technology treats vapor pumped to the surface by the belowground heating system. The belowground heating system operates in front of the C-400 Cleaning Building. The belowground heating system operates in front of the C-400 Cleaning

171

Development and demonstration of a solid fuel-fired gas turbine system  

SciTech Connect

Western Research Institute (WRI) and Power Generating Incorporated (PGI) are developing a solid fuel-fired gas turbine system for specialized cogeneration applications. The system is based on a patented pressurized combustor designed and tested by PGI in conjunction with McConnell Industries. The other components of the system are (a) fuel receiving, preparation, storage and feeding system, (b) gas clean-up equipment, and (c) a gas turbine generator. An approximately 400 kW prototype system is under construction at the WRI facilities in Laramie, Wyoming. As a part of this demonstration the integrated system, following a short shakedown period, will be operated on white wood. White wood was selected as the fuel for early tests because of its low ash (0.5 - 1.0 %), silica, and sulfur contents. The system will then be operated on coal. It is expected that the design of the coal-based system will evolve as the wood testing proceeds. In previous similar wood-fired system development attempts, albeit at lower turbine inlet temperatures, a major technical hindrance to long-term operation of a gas turbine power system has been the degradation of the hot section of the gas turbine. Deposition, erosion, and corrosion are main issues that need to be addressed. In the wood-fired PGI system, erosion is not likely to be of concern because of the low silica and low overall ash content of the fuel and the fact that the wood ash particle size is expected to be in the range where little or no erosion would be expected. However, because of the high alkali content of the fuel, deposition and corrosion can become major issues. This paper will deal with the issues pertaining to the design of the prototype being constructed at the WRI premises. Preliminary thoughts on the design aspects of the plant modifications required for coal testing will also be presented.

Speight, J.G.; Sethi, V.K.

1995-11-01T23:59:59.000Z

172

Computer Measurement and Automation System for Gas-fired Heating...  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Measurement and Automation System for Gas-fired Heating Furnace Title Computer Measurement and Automation System for Gas-fired Heating Furnace Publication Type Journal...

173

Integrated operation of a pressurized fixed-bed gasifier, hot gas desulfurization system, and turbine simulator  

Science Conference Proceedings (OSTI)

The overall objective of the General Electric Hot Gas Cleanup (HGCU) Program is to develop a commercially viable technology to remove sulfur, particulates, and halogens from a high-temperature fuel gas stream using a moving bed, regenerable mixed metal oxide sorbent based process. The HGCU Program is based on the design and demonstration of the HGCU system in a test facility made up of a pilot-scale fixed bed gasifier, a HGCU system, and a turbine simulator in Schenectady, NY, at the General Electric Research and Development Center. The objectives of the turbine simulator testing are (1) to demonstrate the suitability of fuel gas processed by the HGCU system for use in state-of-the-art gas turbines firing at 2,350 F rotor inlet temperature and (2) to quantify the combustion characteristics and emissions on low-Btu fuel gas. The turbine simulator program also includes the development and operation of experimental combustors based on the rich-quench-lean concept (RQL) to minimize the conversion of ammonia and other fuel-bound nitrogen species to NO{sub x} during combustion. The HGCU system and turbine simulator have been designed to process approximately 8,000 lb/hr of low heating value fuel gas produced by the GE fixed bed gasifier. The HGCU system has utilized several mixed metal oxide sorbents, including zinc ferrite, zinc titanate, and Z-Sorb, with the objective of demonstrating good sulfur removal and mechanical attrition resistance as well as economic cost characteristics. Demonstration of halogen removal and the characterization of alkali and trace metal concentrations in the fuel gas are subordinate objectives of the overall program. This report describes the results of several long-duration pilot tests.

Bevan, S.; Ayala, R.E.; Feitelberg, A.; Furman, A.

1995-11-01T23:59:59.000Z

174

Center for Advanced Gas Turbine Systems Research  

SciTech Connect

An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

Golan, L.P.

1992-12-31T23:59:59.000Z

175

Center for Advanced Gas Turbine Systems Research  

SciTech Connect

An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

Golan, L.P.

1992-01-01T23:59:59.000Z

176

Environmental Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Cleanup Environmental Cleanup Environmental Cleanup August 23, 2013 EM Office of External Affairs Acting Communications Director Dave Borak talks with EM intern Valerie Edwards. | Photo courtesy of the Energy Department. Internships Help Future Energy Leaders Gain Hands-On Experience What's it like interning at the Energy Department? We interviewed one intern to find out. August 6, 2013 Oak Ridge National Laboratory The U.S. Department of Energy's (DOE) Oak Ridge National Laboratory (ORNL) is the nation's largest multi-program science and technology laboratory. ORNL's mission is to deliver scientific discoveries and technical breakthroughs that will accelerate the development and deployment of solutions in clean energy and global security. August 6, 2013 Y-12 National Security Complex

177

Argonne National Lab Cleanup schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Takes Steps to Complete Clean-Up of Argonne by 2003; Takes Steps to Complete Clean-Up of Argonne by 2003; Schedule for Shipping Waste to WIPP is 'Good News' for Illinois CARLSBAD, N.M., May 15, 2000 - The U.S. Department of Energy (DOE) reinforced plans to complete the clean-up of its Argonne National Laboratory-East site in Illinois by 2003 by accelerating its schedule for shipping transuranic waste to DOE's permanent disposal site in New Mexico. Previously, the shipments were not expected to begin before 2003. Under the accelerated schedule, shipments to DOE's Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, are expected to begin in Spring 2001 and be completed by the end of the calendar year. Characterization of the waste currently stored at Argonne will begin this October. This agreement is a major step in honoring Argonne and DOE's commitment to the community to

178

Environmental Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 19, 2010 August 19, 2010 Recovery Act Progress at Idaho National Lab North Wind Services will be constructing several new structures at the INL Radioactive Waste Management Complex -- facilities that will provide important protection from the elements and minimize the spread of contamination during buried waste excavation, retrieval and packaging operations. August 18, 2010 New Contract Helps Portsmouth GDP Cleanup To accelerate the Portsmouth GDP cleanup efforts left over from the Cold War, the Department of Energy made a huge step forward in our nuclear environmental cleanup efforts. August 13, 2010 Geek-Up: K East Reactor Demolition, Retrograde Melting and Cloud Pattern Tracking Recovery Act funds help clean up the Hanford site, retrograde melting (melting as something cools) and how open-cell clouds could help predict

179

Protocol_for_Environmental_Management_Cleanup_Projects_(clean...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ProtocolforEnvironmentalManagementCleanupProjects(clean).pdf ProtocolforEnvironmentalManagementCleanupProjects(clean).pdf ProtocolforEnvironmentalManagementCleanup...

180

Accelerating Clean-up at Savannah River | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Clean-up at Savannah River Accelerating Clean-up at Savannah River Accelerating Clean-up at Savannah River More Documents & Publications Integrated Project Team RM...

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Development of advanced gas turbine systems  

SciTech Connect

The objective of the Advanced Turbine Systems study is to investigate innovative natural gas fired cycle developments to determine the feasibility of achieving 60% efficiency within a 8-year time frame. The potential system was to be environmentally superior, cost competitive and adaptable to coal-derived fuels. Progress is described.

Bannister, R.L.; Little, D.A.; Wiant, B.C.

1993-11-01T23:59:59.000Z

182

High Temperature Syngas Cleanup Technology Scale-up  

NLE Websites -- All DOE Office Websites (Extended Search)

RECOVERY ACT: Scale-Up of RECOVERY ACT: Scale-Up of High-Temperature Syngas Cleanup Technology Background Coal gasification generates a synthesis gas (syngas)-predominantly a mixture of carbon monoxide (CO) and hydrogen (H 2 )-that can be used for chemical production of hydrogen, methanol, substitute natural gas (SNG), and many other industrial chemicals, or for electric power generation. Conventional integrated gasification combined cycle (IGCC) power plants use this syngas as a fuel for a combustion

183

NEXT GENERATION GAS TURBINE SYSTEMS STUDY  

SciTech Connect

Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

2003-03-01T23:59:59.000Z

184

NEXT GENERATION GAS TURBINE SYSTEMS STUDY  

DOE Green Energy (OSTI)

Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

2003-03-01T23:59:59.000Z

185

Accelerated cleanup risk reduction  

Science Conference Proceedings (OSTI)

There is no proven technology for remediating contaminant plume source regions in a heterogeneous subsurface. This project is an interdisciplinary effort to develop the requisite new technologies so that will be rapidly accepted by the remediation community. Our technology focus is hydrous pyrolysis/oxidation (HPO) which is a novel in situ thermal technique. We have expanded this core technology to leverage the action of steam injection and place an in situ microbial filter downstream to intercept and destroy the accelerated movement of contaminated groundwater. Most contaminant plume source regions, including the chlorinated solvent plume at LLNL, are in subsurface media characterized by a wide range in hydraulic conductivity. At LLNL, the main conduits for contaminant transport are buried stream channels composed of gravels and sands; these have a hydraulic conductivity in the range of 10{sup -1} to 10{sup -2} cm/s. Clay and silt units with a hydraulic conductivity of 10{sup -1} to 10{sup -6} cm/s bound these buried channels; these are barriers to groundwater movement and contain the highest contaminant concentrations in the source region. New remediation technologies are required because the current ones preferentially access the high conductivity units. HPO is an innovative process for the in situ destruction of contaminants in the entire subsurface. It operates by the injection of steam. We have demonstrated in laboratory experiments that many contaminants rapidly oxidize to harmless compounds at temperatures easily achieved by injecting steam, provided sufficient dissolved oxygen is present. One important challenge in a heterogeneous source region is getting heat, contaminants, and an oxidizing agent in the same place at the same time. We have used the NUFT computer program to simulate the cyclic injection of steam into a contaminated aquifer for design of a field demonstration. We used an 8 hour, steam/oxygen injection cycle followed by a 56 hour relaxation period in which the well was `capped`. Our results show the formation of an inclined gas phase during injection and a fast collapse of the steam zone within an hour of terminating steam injection. The majority of destruction occurs during the collapse phase, when contaminant laden water is drawn back towards the well. Little to no noncondensible gasses are created in this process, removing any possibility of sparging processes interfering with contaminant destruction. Our models suggest that the thermal region should be as hot and as large as possible. To have HPO accepted, we need to demonstrate the in situ destruction of contaminants. This requires the ability to inexpensively sample at depth and under high temperatures. We proved the ability to implies monitoring points at depths exceeding 150 feet in highly heterogeneous soils by use of cone penetrometry. In addition, an extractive system has been developed for sampling fluids and measuring their chemistry under the range of extreme conditions expected. We conducted a collaborative field test of HPO at a Superfund site in southern California where the contaminant is mainly creosote and pentachlorophenol. Field results confirm the destruction of contaminants by HPO, validate our field design from simulations, demonstrate that accurate field measurements of the critical fluid parameters can be obtained using existing monitoring wells (and minimal capital cost) and yield reliable cost estimates for future commercial application. We also tested the in situ microbial filter technology as a means to intercept and destroy the accelerated flow of contaminants caused by the injection of steam. A series of laboratory and field tests revealed that the selected bacterial species effectively degrades trichloroethene in LLNL Groundwater and under LLNL site conditions. In addition, it was demonstrated that the bacteria effectively attach to the LLNL subsurface media. An in-well treatability study indicated that the bacteria initially degrade greater than 99% of the contaminant, to concentrations less than regulatory limit

Knapp, R.B.; Aines, R.M.; Blake, R.G.; Copeland, A.B.; Newmark, R.L.; Tompson, A.F.B.

1998-02-01T23:59:59.000Z

186

Program to develop advanced gas turbine systems  

SciTech Connect

The need for an advanced turbine program for land-based engines has been broadly recognized in light of reductions in military funding for turbines, rapid growth in the sale of gas turbines for utility and industrial usage, and the fierce competition with off-shore manufacturers. Only with Government support can US manufacturers meet rapidly changing market conditions such as increased emissions requirements and lower capital cost requirements. In light of this, ATS planning was requested by Congress in the fiscal year (FY) 92 appropriations and is included in thee Energy Policy Act of 1992. The program budget has increased rapidly, with the FY 94 budget including. over $28 million for ATS program activities. The Natural Gas Strategic Plan and Multi-Year Program Crosscut Plan, 1993--1998, includes the ATS program as part of the overall DOE plan for natural gas-related research and development (R&D) activities. Private sector support for the program is sufficient. Three open meetings have been held during the last 2 years to provide an opportunity for industry suggestions and comments. As the result of a public review of the program plan held June 4, 1993, in Pittsburgh, 46 letters of support were received from industry, academia, and others. Gas turbines represent the fastest growing market segment in electrical and cogeneration markets, with over 60 percent of recent installations based on gas turbines. Gas turbine systems offer low installation and operating costs, low emissions (currently with add-on equipment for non-attainment areas), and quick installation (1--2 years). According to the Annual Energy Outlook 1993, electricity and natural gas demand should both grow substantially through 2010. Natural gas-fired gas turbine systems continue to be the prime candidates for much of both new and retrofit capacity in this period. Emissions requirements continue to ratchet downward with single-digit NO{sub x} ppM required in several non-attainment areas in the US

Webb, H.A. [USDOE Morgantown Energy Technology Center, WV (United States); Parks, W.P. [USDOE, Washington, DC (United States)

1994-07-01T23:59:59.000Z

187

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

operations with natural gas: Fuel composition implications,of Natural gas testing LANDFILL GAS COMPOSITION Tapping into

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

188

Superfund Cleanups and Infant Health  

E-Print Network (OSTI)

We are the first to examine the effect of Superfund cleanups on infant health rather than focusing on proximity to a site. We study singleton births to mothers residing within 5km of a Superfund site between 1989-2003 in ...

Currie, Janet

189

Integrated Energy and Greenhouse Gas Management System  

E-Print Network (OSTI)

With Climate Change legislation on the horizon, the need to integrate energy reduction initiatives with greenhouse gas reduction efforts is critical to manufactures competitiveness and financial strength going forward. MPC has developed an integrated Energy and Greenhouse Gas Management System that allows companies to reduce energy and carbon intensity at the same time all the while bolstering bottom line performance. Reducing energy use and greenhouse gases is not an option but a necessity today. All manufacturing companies need to develop in-house capabilities to manage these important resources or pay the price of high carbon taxes and/or face a depletion in operating margins. MPC will present a case history highlighting the steps taken, the results obtained and the lessons learned in developing an integrated Energy and Greenhouse Gas Management System with a major industrial manufacturing company in the Midwest. Key subject areas covered include: Integration of Climate Change and Energy Management Strategies- a winning approach to meet the challenge; Turn a potential cost of compliance into a new cash flow source; Leveraging Energy Management Systems to optimize savings; Navigating through the new Greenhouse Gas reporting requirements; Utilizing Plant and Corporate Energy Management Dashboards to Control Energy Consumption and Greenhouse Gas emissions.

Spates, C. N.

2010-01-01T23:59:59.000Z

190

Accelerating Clean-up at Savannah River | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Clean-up at Savannah River Accelerating Clean-up at Savannah River Accelerating Clean-up at Savannah River More Documents & Publications Accelerating Clean-up at...

191

The Virtual Gas Turbine System for Alloy Assesment  

Science Conference Proceedings (OSTI)

Key words: Virtual turbine, Alloy design program, Gas turbine design program, Nickel-base ... developed a virtual gas turbine (VT) system as a combination of.

192

Hanford Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Groundwater Contamination Areas Shrink as EM Exceeds Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals Hanford Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals June 26, 2013 - 12:00pm Addthis The 200 West Pump and Treat System is Hanford’s largest facility for treating contaminated groundwater. The 200 West Pump and Treat System is Hanford's largest facility for treating contaminated groundwater. A graphic showing the 200 West Pump and Treat plumes and well network. A graphic showing the 200 West Pump and Treat plumes and well network. The 200 West Pump and Treat System is Hanford's largest facility for treating contaminated groundwater. A graphic showing the 200 West Pump and Treat plumes and well network. RICHLAND, Wash. - Workers supporting groundwater cleanup for EM's

193

Power Systems Development Facility. Quarterly report, July 1--September 30, 1996  

SciTech Connect

This quarterly technical progress report summarizes the work completed during the third quarter of a project entitled Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion. The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phase expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

NONE

1996-12-31T23:59:59.000Z

194

Comprehensive Environmental Cleanup and Responsibility Act (Montana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comprehensive Environmental Cleanup and Responsibility Act Comprehensive Environmental Cleanup and Responsibility Act (Montana) Comprehensive Environmental Cleanup and Responsibility Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Institutional Fuel Distributor Savings Category Buying & Making Electricity Program Info State Montana Program Type Environmental Regulations Provider Montana Department of Environmental Quality The Comprehensive Environmental Cleanup and Responsibility Act contains general provisions (sections 705-729), along with the Voluntary Cleanup and Redevelopment Act (sections 730-738) and the Controlled Allocation of

195

Advanced Hot-Gas Desulfurization Sorbents  

Science Conference Proceedings (OSTI)

Integrated gasification combined cycle (IGCC) power systems are being advanced worldwide for generating electricity from coal due to their superior environmental performance, economics, and efficiency in comparison to conventional coal-based power plants. Hot gas cleanup offers the potential for higher plant thermal efficiencies and lower cost. A key subsystem of hot-gas cleanup is hot-gas desulfurization using regenerable sorbents. Sorbents based on zinc oxide are currently the leading candidates and are being developed for moving- and fluidized- bed reactor applications. Zinc oxide sorbents can effectively reduce the H{sub 2}S in coal gas to around 10 ppm levels and can be regenerated for multicycle operation. However, all current first-generation leading sorbents undergo significant loss of reactivity with cycling, as much as 50% or greater loss in only 25-50 cycles. Stability of the hot-gas desulfurization sorbent over 100`s of cycles is essential for improved IGCC economics over conventional power plants. This project aims to develop hot-gas cleanup sorbents for relatively lower temperature applications, 343 to 538{degrees}C with emphasis on the temperature range from 400 to 500{degrees}. Recent economic evaluations have indicated that the thermal efficiency of IGCC systems increases rapidly with the temperature of hot-gas cleanup up to 350{degrees}C and then very slowly as the temperature is increased further. This suggests that the temperature severity of the hot-gas cleanup devices can be reduced without significant loss of thermal efficiency. The objective of this study is to develop attrition-resistant advanced hot-gas desulfurization sorbents which show stable and high sulfidation reactivity at 343{degrees}C (650{degrees}F) to 538{degrees}C(1OOO{degrees}F) and regenerability at lower temperatures than leading first generation sorbents.

Jothimurugesan, K.; Gangwal, S.K.; Gupta, R.; Turk, B.S.

1997-07-01T23:59:59.000Z

196

Improved method for removing metal vapor from gas streams  

DOE Patents (OSTI)

This invention relates to a process for gas cleanup to remove one or more metallic contaminants present as vapor. More particularly, the invention relates to a gas cleanup process using mass transfer to control the saturation levels such that essentially no particulates are formed, and the vapor condenses on the gas passage surfaces. It addresses the need to cleanup an inert gas contaminated with cadmium which may escape from the electrochemical processing of Integral Fast Reactor (IFR) fuel in a hot cell. The IFR is a complete, self-contained, sodium-cooled, pool-type fast reactor fueled with a metallic alloy of uranium, plutonium and zirconium, and is equipped with a close-coupled fuel cycle. Tests with a model have shown that removal of cadmium from argon gas is in the order of 99.99%. The invention could also apply to the industrial cleanup of air or other gases contaminated with zinc, lead, or mercury. In addition, the invention has application in the cleanup of other gas systems contaminated with metal vapors which may be toxic or unhealthy.

Ahluwalia, R.K.; Im, K.H.

1994-09-19T23:59:59.000Z

197

Gibbs Energy Minimization in Gas + Liquid + Solid Systems  

E-Print Network (OSTI)

Gibbs Energy Minimization in Gas + Liquid + Solid Systems DENTON S. EBEL,1 MARK S. GHIORSO,2 in solar nebula gas,4 and more recent treatments of gas + solid + liquid equilibria in solar gas.5, 6 nonideal liquid and solid solutions and a vapor composed of a mixture of ideal gas species, all at fixed

Grossman, Lawrence

198

Impact of Natural Gas Infrastructure on Electric Power Systems  

E-Print Network (OSTI)

--Combined-cycle unit, electricity market, natural gas infrastructure, pipeline contingency, pumped-storage hydro, renew gas utilities typically rely on the natural gas storage to augment supplies flowing through) in the natural gas system, deliver natural gas from city gate stations, underground storage facilities, and other

Fu, Yong

199

Ozark 260-mile gas line system completed  

Science Conference Proceedings (OSTI)

Gathering gas in the Arkoma basin of Oklahoma and Arkansas for transport to market, the 260-mile Ozark gas line system runs from southwest of McAlester, Okla., to Natural Gas Pipeline Co. of America's station at Searcy, Ark. The recently completed mainline has an initial capacity of 170 million CF/day with a maximum operating pressure of 1200 psig and a delivery pressure of 700 psig at the NGPL station. The 20-in. pipeline is API 5LX-Grade X60, 0.281-in. wall thickness for Class 1 areas, 0.344 for Class 2 areas, 0.406 for Class 3 areas, and API 5LX-Grade X52, 0.500-in. wall thickness for river crossings.

Dixon, R.R.

1982-05-01T23:59:59.000Z

200

Hot Gas Conditioning: Recent Progress with Larger-Scale Biomass Gasification Systems; Update and Summary of Recent Progress  

DOE Green Energy (OSTI)

As a result of environmental and policy considerations, there is increasing interest in using renewable biomass resources as feedstock for power, fuels, and chemicals and hydrogen. Biomass gasification is seen as an important technology component for expanding the use of biomass. Advanced biomass gasification systems provide clean products that can be used as fuel or synthesis gases in a variety of environmentally friendly processes. Advanced end-use technologies such as gas turbines or synthesis gas systems require high quality gases with narrowly defined specifications. Other systems such as boilers may also have fuel quality requirements, but they will be substantially less demanding. The gas product from biomass gasifiers contains quantities of particulates, tars, and other constituents that may exceed these specified limits. As a result, gas cleaning and conditioning will be required in most systems. Over the past decade, significant research and development activities have been conducted on the topic of gas cleanup and conditioning. This report provides an update of efforts related to large-scale biomass gasification systems and summarizes recent progress. Remaining research and development issues are also summarized.

Stevens, D. J.

2001-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Oilfield Flare Gas Electricity Systems (OFFGASES Project)  

Science Conference Proceedings (OSTI)

The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

Rachel Henderson; Robert Fickes

2007-12-31T23:59:59.000Z

202

Environmental Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 11, 2013 February 11, 2013 The Office of Nuclear Energy's mission is to advance nuclear power as a resource that can meet the United State's energy, environmental and national security needs. Office of Nuclear Energy Launches New Website A new website for NE means easier access to information and more up-to-date news for users. Check it out! January 30, 2013 Legacy Management Sites January 15, 2013 Secretary Chu, Governor Gregoire Issue Statement on Hanford Cleanup U.S. Energy Secretary Steven Chu and Governor Chris Gregoire issued a joint statement on the cleanup efforts underway at Hanford. December 21, 2012 The Rocky Flats Plant was first established in 1951 as a nuclear weapons manufacturing facility. Today, almost 4,000 acres make up the Rocky Flats National Wildlife Refuge. Located just 16 miles northwest of Denver, Colorado, the refuge provides a habitat for migratory birds and mammals. | Photo courtesy of the U.S. Department of Energy.

203

Accelerating cleanup: Paths to closure  

SciTech Connect

This document was previously referred to as the Draft 2006 Plan. As part of the DOE`s national strategy, the Richland Operations Office`s Paths to Closure summarizes an integrated path forward for environmental cleanup at the Hanford Site. The Hanford Site underwent a concerted effort between 1994 and 1996 to accelerate the cleanup of the Site. These efforts are reflected in the current Site Baseline. This document describes the current Site Baseline and suggests strategies for further improvements in scope, schedule and cost. The Environmental Management program decided to change the name of the draft strategy and the document describing it in response to a series of stakeholder concerns, including the practicality of achieving widespread cleanup by 2006. Also, EM was concerned that calling the document a plan could be misconstrued to be a proposal by DOE or a decision-making document. The change in name, however, does not diminish the 2006 vision. To that end, Paths to Closure retains a focus on 2006, which serves as a point in time around which objectives and goals are established.

Edwards, C.

1998-06-30T23:59:59.000Z

204

Richland Operations Office Completes Cleanup in Hanford's 300 Area North  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Richland Operations Office Completes Cleanup in Hanford's 300 Richland Operations Office Completes Cleanup in Hanford's 300 Area North Section Richland Operations Office Completes Cleanup in Hanford's 300 Area North Section March 28, 2013 - 12:00pm Addthis An aerial view of Hanford’s 300 Area North Section following completion of cleanup. An aerial view of Hanford's 300 Area North Section following completion of cleanup. Workers demolish the 384 Building, known as the Power House and Heating Plant, in the north portion of the 300 Area. Workers demolish the 384 Building, known as the Power House and Heating Plant, in the north portion of the 300 Area. More than 8,000 feet of pipe — part of the 300 Area’s process sewer system — was removed from the 300-15 Waste Site in the north section. More than 8,000 feet of pipe - part of the 300 Area's process sewer

205

Richland Operations Office Completes Cleanup in Hanford's 300 Area North  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Richland Operations Office Completes Cleanup in Hanford's 300 Richland Operations Office Completes Cleanup in Hanford's 300 Area North Section Richland Operations Office Completes Cleanup in Hanford's 300 Area North Section March 28, 2013 - 12:00pm Addthis An aerial view of Hanford’s 300 Area North Section following completion of cleanup. An aerial view of Hanford's 300 Area North Section following completion of cleanup. Workers demolish the 384 Building, known as the Power House and Heating Plant, in the north portion of the 300 Area. Workers demolish the 384 Building, known as the Power House and Heating Plant, in the north portion of the 300 Area. More than 8,000 feet of pipe — part of the 300 Area’s process sewer system — was removed from the 300-15 Waste Site in the north section. More than 8,000 feet of pipe - part of the 300 Area's process sewer

206

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2000-10-01T23:59:59.000Z

207

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2004-04-01T23:59:59.000Z

208

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL. As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2001-07-01T23:59:59.000Z

209

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2002-07-01T23:59:59.000Z

210

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in the quarterly report. As this program administers research, we have included all program activity herein within the past quarter dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL. As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2000-05-01T23:59:59.000Z

211

Recovery Act Invests in Cleanup, Preservation of Hanford Site Locomotives,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Invests in Cleanup, Preservation of Hanford Site Invests in Cleanup, Preservation of Hanford Site Locomotives, Railcars Recovery Act Invests in Cleanup, Preservation of Hanford Site Locomotives, Railcars With the help of the American Recovery and Reinvestment Act, the Hanford Site is preserving the history of its locomotives and railcars as workers clean up the legacy of the Cold War. In the recently completed railcar project – a $5.5 million effort funded by the Recovery Act – the Richland Operations Office and its contractors moved two locomotives and two cask cars onto reclaimed track at the B Reactor for permanent public display. Designated a National Historic Landmark in August 2008, the B Reactor is slated to become part of the national park system commemorating the Manhattan Project and is open for

212

Mercury cleanup efforts intensify | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury cleanup efforts ... Mercury cleanup efforts ... Mercury cleanup efforts intensify Posted: February 11, 2013 - 3:31pm | Y-12 Report | Volume 9, Issue 2 | 2013 Millions of pounds of mercury were required to support Y-12's post-World War II mission of separating lithium isotopes. Cleaning up the toxic heavy metal poses many challenges, but what Y-12 is learning could help conquer mercury pollution worldwide. There's a reason you won't find mercury in many thermometers these days. Mercury is a heavy metal that occurs in several chemical forms, all of which can produce toxic effects in high enough doses. Mercury was used in the column exchange process, which Y-12 employed to produce lithium-6 from 1953 to 1962. Through process spills, system leaks and surface runoff, some 700,000 pounds of mercury have been lost to the

213

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

Simulated Landfill Gas Intake Diagram STEADY STATE OPERATIONlandfill gas. Expanding the understanding of HCCI mode of engine operation

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

214

Neural net controlled tag gas sampling system for nuclear reactors  

DOE Patents (OSTI)

A method and system for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod.

Gross, Kenneth C. (Bolingbrook, IL); Laug, Matthew T. (Idaho Fall, ID); Lambert, John D. B. (Wheaton, IL); Herzog, James P. (Downers Grove, IL)

1997-01-01T23:59:59.000Z

215

Exhaust gas recirculation system for an internal combustion engine  

SciTech Connect

An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

Wu, Ko-Jen

2013-05-21T23:59:59.000Z

216

Tips: Natural Gas and Oil Heating Systems | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas and Oil Heating Systems Tips: Natural Gas and Oil Heating Systems May 30, 2012 - 5:41pm Addthis Install a new energy-efficient furnace to save money over the long term....

217

Greenhouse gas balances of biomass energy systems  

DOE Green Energy (OSTI)

A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol from corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large nonlinearities in the carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues.

Marland, G. [Oak Ridge National Lab., TN (United States); Schlamadinger, B. [Institute for Energy Research, Joanneum Research, Graz, (Austria)

1994-12-31T23:59:59.000Z

218

Uniform System of Accounts for Gas Utilities (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

This rule establishes a uniform system of accounts and annual report filing requirements for natural gas utilities operating in Maine.

219

Hydrogen mitigation Gas Characterization System: System design description  

DOE Green Energy (OSTI)

The Gas Characterization System (GCS) design is described for flammable gas monitoring. Tank 241-SY-101 (SY-101) is known to experience periodic tank level increases and decreases during which hydrogen gas is released. It is believed that the generated gases accumulate in the solids-containing layer near the bottom of the tank. Solids and gases are also present in the crust and may be present in the interstitial liquid layer. The accumulation of gases creates a buoyancy that eventually overcomes the density and bonding strength of the bottom layer. When this happens, the gas from the bottom layer is released upward through the liquid layer to the vapor space above the tank crust. Previous monitoring of the vapor space gases during such an event indicates hydrogen release concentrations greater than the lower flammability limit (LFL) of hydrogen in a partial nitrous oxide atmosphere. Tanks 241-AN-105, 241-AW-101, and 241-SY-103 have been identified as having the potential to behave similar to SY-101. These waste tanks have been placed on the flammable gas watch list (FGWL). All waste tanks on the FGWL will have a standard hydrogen monitoring system (SHMS) installed to measure hydrogen. In the event that hydrogen levels exceed 0.75% by volume, additional characterization will be required. The purpose of this additional vapor space characterization is to determine the actual lower flammability limit of these tanks, accurately measure low baseline gas release concentrations, and to determine potential hazards associated with larger Gas Release Events (GREs). The instruments to be installed in the GCS for vapor monitoring will allow accurate analysis of samples from the tank vapor space. It will be possible to detect a wide range of hydrogen from parts per million to percent by volume, as well as other gas species suspected to be generated in waste tanks.

Schneider, T.C.

1998-07-17T23:59:59.000Z

220

All metal valve structure for gas systems  

DOE Patents (OSTI)

A valve assembly with a resilient metal seat member is disclosed for providing a gas-tight seal in a gas handling system. The valve assembly also includes a valve element for sealing against the valve seat member; and an actuating means for operating the valve element. The valve seat member is a one-piece stainless steel ring having a central valve port and peripheral mounting flange, and an annular corrugation in between. A groove between the first and second ridges serves as a flexure zone during operation of the valve member and thus provides the seating pressure between the inner ridge or valve seat and the valve element. The outer annular ridge has a diameter less than said valve element to limit the seating motion of the valve element, preventing non-elastic deformation of the seat member.

Baker, Ray W. (Hamilton, OH); Pawlak, Donald A. (Centerville, OH); Ramey, Alford J. (Miamisburg, OH)

1984-11-13T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Getting reimbursed for UST cleanup  

Science Conference Proceedings (OSTI)

To accelerate the pace of underground storage tank (UST) cleanup, many states now have programs that reimburse UST owners for money spent on various phases of soil and groundwater remediation. Many other states are enacting these programs. At their best, these programs have provided an incentive for those who operate USTs of all sizes to report and clean up contamination problems. Many states were surprised at the numbers of UST owners who came forward. This was certainly the case in Florida. In 1987, Florida's Department of Environmental Regulation (DER), in order to obtain rapid disclosure and meet remediation of leaking USTs, developed its Early Detection Incentive (EDI) program, which is now becoming a model for other states. Two important provisions of the program are amnesty from prosecution for not having previously reported leaking tanks and nearly full funding from the state for tank removal and cleanup. Prior to EDI, less than 1,000 petroleum USTs had been reported. As of May 1992, the number had reached 9,444 - about five times more sites than had been anticipated. While EDI has removed the threat of prosecution by the state for non-disclosure of leaking tanks, it does not absolve the responsible parties from potential liabilities due to underground plumes of contamination migrating off-site onto other properties. If the responsible parties wan to take charge of their own cleanup projects, they must advance the money for each stage of the operation. The cost of assessment and remediation of these sites can amount to several hundred thousand dollars. Consequently, swift negotiation in receiving state agency approval for various remediation phases, as well as site closure, can significantly shorten the amount of time it takes to get reimbursement from the state. Therefore, there is considerable incentive for the responsible parties to get their sites cleaned up as quickly as possible.

Dunn, B. (Groundwater Technology, Inc., Tampa, FL (United States))

1993-04-01T23:59:59.000Z

222

HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY  

SciTech Connect

Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the {approx}200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of the River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were signed by the Parties on October 26,2010, and are now in the process of being implemented.

BERGMAN TB

2011-01-14T23:59:59.000Z

223

Development of a coal-fired gas turbine cogeneration system: Status report  

SciTech Connect

The Allison Advanced Coal-Fueled Turbine Program is now in the sixth year of a development effort that has led to a POC engine demonstration test on a Coal-Water-Slurry (CWS) fuel. Earlier forecasts by CWS suppliers that suitable CWS fuels would be commercially available at an economic price have not been realized. A program replan has, therefore, been executed that incorporates the use of readily available dry pulverized coal. To support this program, technology issues relating to combustor performance and emission control, hot gas cleanup, and turbine deposition, erosion and corrosion (DEC) have been addressed. In addition, system assessment studies have been performed to evaluate the commercial prospects for small (<8 MWe) coal-fired industrial cogeneration systems and the application of the rich-quench-lean (RQL) coal-combustion technology to larger (> 100 MWe) utility-sized gas turbines. These results are reported by Wenglarz (1992). Combustor and engine tests on dry coal are now planned in preparation for a commercial demonstration that will follow the completion of this program.

Wilkes, C.; Wenglarz, R.A.; Hart, P.J.; Thomas, W.H.; Rothrock, J.W.; Harris, C.N.; Bourke, R.C.

1992-01-01T23:59:59.000Z

224

Monitoring Environmental Cleanup at Brookhaven National Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Compensation, and Liability Act environmental cleanup activities at Brookhaven National Laboratory comply with the Record of Decision (ROD) for each project. (A ROD...

225

Peconic River Cleanup at Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

a study of potential health impacts and developed various cleanup strategies. When the Lab and the Department of Energy (DOE) released a proposed plan for comment, the plan...

226

COMPRESSIVE STRESS SYSTEM FOR A GAS TURBINE ENGINE - Energy ...  

The present application provides a compressive stress system for a gas turbine engine. The compressive stress system may include a first bucket ...

227

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

Journal of Engineering for Gas Turbines and Power, 121:569-operations with natural gas: Fuel composition implications,USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATION

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

228

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bygas and simulated landfill gas as a fuel source. This

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

229

GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM  

SciTech Connect

Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. A prototype system was built for low-pressure cast-iron mains and tested in a spider- and serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The prototype unit combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-slave architecture to collect data from a distributed spider-arrangement, and in a master-repeater-slave configuration in serial or ladder-network arrangements. It was found that the system was capable of performing all data-sampling and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and valuable data was collected in order to determine how to improve on range and data-quality in the future.

Hagen Schempf, Ph.D.

2003-02-27T23:59:59.000Z

230

GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM  

Science Conference Proceedings (OSTI)

Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. In Phase II of this three-phase program, an improved prototype system was built for low-pressure cast-iron and high-pressure steel (including a no-blow installation system) mains and tested in a serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The experiment was carried out in several open-hole excavations over a multi-day period. The prototype units (3 total) combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-repeater-slave configuration in serial or ladder-network arrangements. It was verified that the system was capable of performing all data-sampling, data-storage and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and the system was demonstrated to run off in-ground battery- and above-ground solar power. The remote datalogger access and storage-card features were demonstrated and used to log and post-process system data. Real-time data-display on an updated Phase-I GUI was used for in-field demonstration and troubleshooting.

Hagen Schempf

2004-09-30T23:59:59.000Z

231

EIA - Natural Gas Pipeline System - Midwest Region  

U.S. Energy Information Administration (EIA)

Natural Gas Pipelines in the Midwest Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links. Overview Twenty-six interstate and at ...

232

Natural Gas Pipeline and System Expansions  

U.S. Energy Information Administration (EIA)

Energy Information Administration / Natural Gas Monthly April 1997 vii This special report examines recent expansions to the North American natural gas pipeline network

233

Horizontal well construction/completion process in a Gulf of Mexico unconsolidated sand: development of baseline correlations for improved drill-in fluid cleanup practices  

E-Print Network (OSTI)

This thesis examines, in detail, the procedures and practices undertaken in the drilling and completion phases of a Gulf of Mexico horizontal well in an unconsolidated sand. In particular, this thesis presents a detailed case history analysis of well planning, completion and cleanup operations. Our objectives are to present a complete examination of the openhole horizontal well construction/completion process using a new drill-in fluid (DIF). Further, we will establish data critical to development of new cleanup correlation techniques (the continuing goal of the CEA-73 industry consortium). Project results are intended to advance the technology progression of cleanup in horizontal welts by using a "Best Completion Practices'' well to establish a baseline analysis for development of rigsite DIF cleanup correlations. Presented in this thesis are: * Completion specifics of subject well * Audit of horizontal well design/well construction process * Documentation (on-location) of lignite practices * Laboratory analyses of DO cleanup * Well performance analysis Well audit results show that prudent DIF selection requires a thorough understanding of formation and reservoir specifics, along with completion and cleanup operations. Adequate pre-planning by lignite personnel for handling, weather problems, storage/mixing requirements and fluid property maintenance are very important for successful operations using DIF. Proper maintenance of solids control systems is essential for quality control of DIF properties. Detailed well planning by the operator (Vastar Resources), coupled with a conscientious mud service company (TBC-Brinadd, Houston), led to smooth execution of well completion/cleanup operations.aboratory analyses of field DIF samples taken during drilling show that entrained drill solids in DIF can greatly impact mudcaps removal during cleanup. However, well performance was roughly three times original expectations, achieving a stabilized gas flow rate of approximately 34 MMCF/D. Horizontal well decline type curve techniques and a proprietary analysis method developed by Conoco were used to estimate formation properties, using only wellhead production rates and pressures. Using these results, we estimated DIF cupcake removal for various reservoir permeability scenarios. Results suggest that a high percentage of DIF filtercake removal was achieved only if reservoir permeability was less than the permeability range (100-500 md) initially estimated by the operator.

Lacewell, Jason Lawrence

1999-01-01T23:59:59.000Z

234

Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development  

E-Print Network (OSTI)

Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report: A Systems Approach Including Marcellus Shale Gas Development Executive Summary In the 21st century new we focused on the case of un- conventional natural gas recovery from the Marcellus shale In addition

Walter, M.Todd

235

Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development  

E-Print Network (OSTI)

Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report Transitions: A Systems Approach Including Marcellus Shale Gas Development Executive Summary In the 21st the Marcellus shale In addition to the specific questions identified for the case of Marcellus shale gas in New

Angenent, Lars T.

236

Advanced Liquid Natural Gas Onboard Storage System  

DOE Green Energy (OSTI)

Cummins Westport Incorporated (CWI) has designed and developed a liquefied natural gas (LNG) vehicle fuel system that includes a reciprocating pump with the cold end submerged in LNG contained in a vacuum-jacketed tank. This system was tested and analyzed under the U.S. Department of Energy (DOE) Advanced LNG Onboard Storage System (ALOSS) program. The pumped LNG fuel system developed by CWI and tested under the ALOSS program is a high-pressure system designed for application on Class 8 trucks powered by CWI's ISX G engine, which employs high-pressure direct injection (HPDI) technology. A general ALOSS program objective was to demonstrate the feasibility and advantages of a pumped LNG fuel system relative to on-vehicle fuel systems that require the LNG to be ''conditioned'' to saturation pressures that exceeds the engine fuel pressure requirements. These advantages include the capability to store more fuel mass in given-size vehicle and station tanks, and simpler lower-cost LNG refueling stations that do not require conditioning equipment. Pumped LNG vehicle fuel systems are an alternative to conditioned LNG systems for spark-ignition natural gas and port-injection dual-fuel engines (which typically require about 100 psi), and they are required for HPDI engines (which require over 3,000 psi). The ALOSS program demonstrated the feasibility of a pumped LNG vehicle fuel system and the advantages of this design relative to systems that require conditioning the LNG to a saturation pressure exceeding the engine fuel pressure requirement. LNG tanks mounted on test carts and the CWI engineering truck were repeatedly filled with LNG saturated at 20 to 30 psig. More fuel mass was stored in the vehicle tanks as well as the station tank, and no conditioning equipment was required at the fueling station. The ALOSS program also demonstrated the general viability and specific performance of the CWI pumped LNG fuel system design. The system tested as part of this program is designed to be used on Class 8 trucks with CWI ISX G HPDI engines. Extensive test cart and engineering truck tests of the pump demonstrated good durability and the high-pressure performance needed for HPDI application. The LNG tanks manufactured by Taylor-Wharton passed SAE J2343 Recommended Practice drop tests and accelerated road-load vibration tests. NER and hold-time tests produced highly consistent results. Additional tests confirmed the design adequacy of the liquid level sensor, vaporizer, ullage volume, and other fuel system components. While the testing work performed under this program focused on a high-pressure pumped LNG fuel system design, the results also validate the feasibility of a low-pressure pumped fuel system. A low-pressure pumped fuel system could incorporate various design refinements including a simpler and lighter-weight pump, which would decrease costs somewhat relative to a high-pressure system.

Greg Harper; Charles Powars

2003-10-31T23:59:59.000Z

237

Power systems development facility. Quarterly report, January 1995--March 1995  

Science Conference Proceedings (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: (1) Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. (2) Hot Gas Cleanup Units to mate to all gas streams. (3) Combustion Gas Turbine. (4) Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs.

NONE

1995-05-01T23:59:59.000Z

238

Rock-physics Models for Gas-hydrate Systems Associated  

E-Print Network (OSTI)

at Austin, Austin, Texas, U.S.A. ABSTRACT R ock-physics models are presented describing gas-hydrate systems. Knapp, and R. Boswell, eds., Natural gas hydrates--Energy resource potential and associated geologic

Texas at Austin, University of

239

Collusion Through Insurance: Sharing the Costs of Oil Spill Cleanups  

E-Print Network (OSTI)

Insurance: Sharing the Costs of Oil Spill Cleanups." EddieInsurance: Sharing the Costs of Oil Spill Cleanups EddieINSURANCE: SHARING THE COSTS OF OIL SPILL CLEANUPS Eddie

Dekel, Eddie; Scothmer, Suzanne

1989-01-01T23:59:59.000Z

240

Accelerating Clean-up at Savannah River | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Clean-up at Savannah River Accelerating Clean-up at Savannah River Accelerating Clean-up at Savannah River More Documents & Publications Project NameDescription Slide...

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Automatic flue gas heat recovery system  

Science Conference Proceedings (OSTI)

An automatic flue gas heat recovery system for supplementing or replacing a conventional, separate hot water system. In the example described, the heat recovery system is applied to a pizza restaurant where large quantities of heat energy are normally wasted up an oven chimney stack, and large quantities of hot water also are required for restaurant operations. An electric motor driven pump circulates water in a closed loop between a storage tank and a heat exchanger tube located in the oven chimney stack. A thermostat control automatically starts the pump when the oven heats the chimney stack to an effective water heating temperature. When temperature in the storage tank reaches a predetermined maximum, the thermostat control stops the pump, opens a drain valve, and dumps water quickly and completely from the heat exchanger tube. Three different embodiments are shown and described illustrating systems with one or more storage tanks and one or more pumps. In the plural storage tank embodiments, an existing hot water heating tank may be converted for use to augment a main tank supplied with the present system.

Whalen, D.A.

1983-02-22T23:59:59.000Z

242

High temperature gas reactor and energy pipeline system  

SciTech Connect

Under contract to the General Electric Co. as a part of a DOE-sponsored program, the Energy Systems Analysis Group at the Institute of Gas Technology examined the following aspects of the high temperature gas reactor closed loop chemical energy pipeline concept: (1) pipeline transmission and storage system design; (2) pipeline and storage system cost; (3) methane reformer interface; and (4) system safety and environmental aspects. This work focuses on the pipeline and storage system concepts, pipeline size, compressor power, and storage facility requirements were developed for 4 different types of pipeline systems to obtain system cost estimates. Each pipeline system includes a synthesis-gas pipeline from the reformer to the methanator, a methane-rich gas pipeline from the methanator to the reformer, a water return line from the methanator to the reformer, and storage for the synthesis gas, methane-rich gas and water.

Daniels, E.; Blazek, C.; Pflasterer, G.R.; Allen, D.C.

1981-01-01T23:59:59.000Z

243

Bench-Scale Demonstration of Hot-Gas Desulfurization Technology  

SciTech Connect

The U.S. Department of Energy (DOE), Federal Energy Technology Center (FETC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs.

Jeffrey W. Portzer; Santosh K. Gangwal

1998-12-01T23:59:59.000Z

244

Environmental Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 28, 2009 July 28, 2009 800 to 1000 New Jobs Coming to Piketon Department of Energy to Accelerate Cleanup Work While USEC Further Develops ACP Technology April 22, 2009 Op-Ed by Secretary of Energy Steven Chu and Secretary of Labor Hilda Solis: Building the American Clean Energy Economy To commemorate Earth Day, the op-ed below on green jobs and energy independence by Secretaries Steven Chu and Hilda Solis ran in the following papers yesterday and today: Austin American-Statesman Buffalo News Denver Post Montgomery Advertiser Omaha World Herald Pittsburgh Post-Gazette April 22, 2009 US Department of Energy Promotes Special Earth Week Feature on Energy.gov Simple Steps Will Help Consumers Save Money -- and the Planet March 27, 2009 U.S. and Portugal Sign Agreement for Climate Research Collaboration

245

Environmental Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 28, 2010 October 28, 2010 Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative WASHINGTON - The White House Council on Environmental Quality and the U.S. Department of Energy hosted a workshop with the Great Lakes Wind Collaborative in Chicago on October 26 - 27, 2010, focused on the siting of offshore wind power in the Great Lakes. The two day workshop brought together wind developers, Federal and state regulators, environmental advocates, and other regional stakeholders to discuss methods for ensuring greater clarity, certainty and coordination of Federal and state decision-making for offshore wind development in the Great Lakes. October 6, 2010 Agreement on New Commitments for Hanford Tank Waste Cleanup Sent to Federal

246

EIA - Natural Gas Pipeline Network - Network Configuration & System Design  

U.S. Energy Information Administration (EIA) Indexed Site

Network Configuration & System Design Network Configuration & System Design About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Network Configuration and System Design Overview | Transmission/Storage | Design Criteria | Importance of Storage| Overall Pipeline System Configuration Overview A principal requirement of the natural gas transmission system is that it be capable of meeting the peak demand of its shippers who have contracts for firm service. To meet this requirement, the facilities developed by the natural gas transmission industry are a combination of transmission pipelines to bring the gas to the market areas and of underground natural gas storage sites and liquefied natural gas (LNG) peaking facilities located in the market areas.

247

HANFORD SITE RIVER CORRIDOR CLEANUP  

SciTech Connect

In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.

BAZZELL, K.D.

2006-02-01T23:59:59.000Z

248

DOE Awards Small Business Contract to Support Cleanup of New...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Support Cleanup of New York West Valley Demonstration Project DOE Awards Small Business Contract to Support Cleanup of New York West Valley Demonstration Project March 1, 2013 -...

249

Recovery Act Workers Complete Environmental Cleanup of Coal Ash...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Complete Environmental Cleanup of Coal Ash Basin Recovery Act Workers Complete Environmental Cleanup of Coal Ash Basin The Savannah River Site (SRS) recently cleaned up a 17-acre...

250

Site Transition Process upon Completion of the Cleanup Mission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Process upon Completion of the Cleanup Mission: Fact Sheet (September 2013) Site Transition Process upon Completion of the Cleanup Mission: Fact Sheet (September 2013) DOE's...

251

Recovery Act Workers Complete Environmental Cleanup of Coal Ash...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workers Complete Environmental Cleanup of Coal Ash Basin Recovery Act Workers Complete Environmental Cleanup of Coal Ash Basin The Savannah River Site (SRS) recently cleaned up a...

252

Workers at Hanford Site Achieve Recovery Act Legacy Cleanup Goals...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at Hanford Site Achieve Recovery Act Legacy Cleanup Goals Ahead of Schedule Workers at Hanford Site Achieve Recovery Act Legacy Cleanup Goals Ahead of Schedule The Hanford Site...

253

NUMERICAL STUDY OF CO-CURRENT WATER-DRY GAS FLOW IN GAS GATHERING SYSTEMS.  

E-Print Network (OSTI)

??The optimum operation of the surface production system is one of the key elements needed for the successful operation of natural gas well facilities, particularly (more)

Fernandez Luengo, Juan

2010-01-01T23:59:59.000Z

254

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, 2 June 1992--1 June 1993  

SciTech Connect

This program was initiated in June of 1986 because advances in coal-fueled gas turbine technology over the previous few years, together with DOE-METC sponsored studies, served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine could ultimately be the preferred system in appropriate market application sectors. In early 1991 it became evident that a combination of low natural gas prices, stringent emission limits of the Clean Air Act and concerns for CO{sub 2} emissions made the direct coal-fueled gas turbine less attractive. In late 1991 it was decided not to complete this program as planned. The objective of the Solar/METC program was to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. Component development of the coal-fueled combustor island and cleanup system while not complete indicated that the planned engine test was feasible. Preliminary designs of the engine hardware and installation were partially completed. A successful conclusion to the program would have initiated a continuation of the commercialization plan through extended field demonstration runs. After notification of the intent not to complete the program a replan was carried out to finish the program in an orderly fashion within the framework of the contract. A contract modification added the first phase of the Advanced Turbine Study whose objective is to develop high efficiency, natural gas fueled gas turbine technology.

LeCren, L.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1993-06-01T23:59:59.000Z

255

EIA - Natural Gas Pipeline System - Links to U.S. Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Links Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Links to U.S. Natural Gas Pipeline Information - The links below will either direct the user to a narrative describing the system, a pipeline system map, a FERC prescribed "Informational Postings" page, or a FERC Tariff Sheet. Pipeline Name Type of System Regions of Operations Acadian Gas Pipeline System Intrastate Southwest Algonquin Gas Transmission Co Interstate Northeast Alliance Pipeline Co Interstate Central, Midwest Anaconda Pipeline System Gathering Gulf of Mexico ANR Pipeline Co Interstate Midwest ANR Storage Co Interstate Midwest Arkansas Oklahoma Gas Co Intrastate Southwest Arkansas Western Pipeline Co Intrastate

256

System and method for producing substitute natural gas from coal  

DOE Patents (OSTI)

The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

Hobbs, Raymond (Avondale, AZ)

2012-08-07T23:59:59.000Z

257

Safety of Gas Transmission and Distribution Systems (Maine) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Provider Public Utilities Commission These regulations describe requirements for the participation of natural gas utilities in the Underground Utility Damage Prevention Program,

258

Natural Gas Pipeline and System Expansions, 1997-2000  

U.S. Energy Information Administration (EIA)

complement CNGs planned improvement to its system for Pipeline Companys Express 500 is one such proposal, with flowing gas between Leidy, Pennsylvania, ...

259

Evaluation of a Cyclone and Hot Gas Filter System  

NLE Websites -- All DOE Office Websites (Extended Search)

a Cyclone and a Cyclone and Hot Gas Filter System Description The Wabash River Coal Gasification Plant uses an oxygen-blown E-Gas gasifier technology, owned by ConocoPhillips, which produces fuel gas containing significant amounts of fine particulates. Currently, particulates are cleaned from the fuel gas with metal candle filters. These filters require two costly plant shut-downs per year for cleaning or replacement. During the U.S Department of Energy-supported project

260

NEXT GENERATION GAS TURBINE (NGGT) SYSTEMS STUDY  

SciTech Connect

Building upon the 1999 AD Little Study, an expanded market analysis was performed by GE Power Systems in 2001 to quantify the potential demand for an NGGT product. This analysis concluded that improvements to the US energy situation might be best served in the near/mid term (2002-2009) by a ''Technology-Focused'' program rather than a specific ''Product-Focused'' program. Within this new program focus, GEPS performed a parametric screening study of options in the three broad candidate categories of gas turbines: aero-derivative, heavy duty, and a potential hybrid combining components of the other two categories. GEPS's goal was to determine the best candidate systems that could achieve the DOE PRDA expectations and GEPS's internal design criteria in the period specified for initial product introduction, circa 2005. Performance feasibility studies were conducted on candidate systems selected in the screening task, and critical technology areas were identified where further development would be required to meet the program goals. DOE PRDA operating parameters were found to be achievable by 2005 through evolutionary technology. As a result, the study was re-directed toward technology enhancements for interim product introductions and advanced/revolutionary technology for potential NGGT product configurations. Candidate technologies were identified, both evolutionary and revolutionary, with a potential for possible development products via growth step improvements. Benefits were analyzed from two perspectives: (1) What would be the attributes of the top candidate system assuming the relevant technologies were developed and available for an NGGT market opportunity in 2009/2010; and (2) What would be the expected level of public benefit, assuming relevant technologies were incorporated into existing new and current field products as they became available. Candidate systems incorporating these technologies were assessed as to how they could serve multiple applications, both in terms of incorporation of technology into current products, as well as to an NGGT product. In summary, potential program costs are shown for development of the candidate systems along with the importance of future DOE enabling participation. Three main conclusions have been established via this study: (1) Rapid recent changes within the power generation regulatory environment and the resulting ''bubble'' of gas turbine orders has altered the timing and relative significance associated with the conclusions of the ADL study upon which the original DOE NGGT solicitation was based. (2) Assuming that the relevant technologies were developed and available for an NGGT market opportunity circa 2010, the top candidate system that meets or exceeds the DOE PRDA requirements was determined to be a hybrid aero-derivative/heavy duty concept. (3) An investment by DOE of approximately $23MM/year to develop NGGT technologies near/mid term for validation and migration into a reasonable fraction of the installed base of GE F-class products could be leveraged into $1.2B Public Benefit, with greatest benefits resulting from RAM improvements. In addition to the monetary Public Benefit, there is also significant benefit in terms of reduced energy consumption, and reduced power plant land usage.

Unknown

2001-12-05T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

High temperature gas reactor and energy pipeline system  

DOE Green Energy (OSTI)

A study was made of the following aspects of the High Temperature Gas Reactor (HTGR) Closed Loop Chemical Energy Pipeline (CEP) concept: pipeline transmission and storage system design, pipeline and storage system cost, methane reformer interface, and system safety and environmental aspects. This paper focuses on the pipeline and storage system concepts. Pipeline size, compressor power, and storage facility requirements were developed for four different types of pipeline systems to obtain system cost estimates. Each pipeline system includes a synthesis-gas pipeline from the reformer to the methanator, a methane-rich gas pipeline from the methanator to the reformer, a water return line from the methanator to the reformer, and storage for the synthesis gas, methane-rich gas and water.

Daniels, E.; Blazek, C.; Allen, D.C.; Pflasterer, G.R.

1980-12-19T23:59:59.000Z

262

The National Energy Modeling System: An Overview 2000 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

natural gas transmission and distribution module (NGTDM) of NEMS represents the natural gas market and determines regional market-clearing prices for natural gas supplies and for end-use consumption, given the information passed from other NEMS modules. A transmission and distribution network (Figure 15), composed of nodes and arcs, is used to simulate the interregional flow and pricing of gas in the contiguous United States and Canada in both the peak (December through March) and offpeak (April through November) period. This network is a simplified representation of the physical natural gas pipeline system and establishes the possible interregional flows and associated prices as gas moves from supply sources to end users. natural gas transmission and distribution module (NGTDM) of NEMS represents the natural gas market and determines regional market-clearing prices for natural gas supplies and for end-use consumption, given the information passed from other NEMS modules. A transmission and distribution network (Figure 15), composed of nodes and arcs, is used to simulate the interregional flow and pricing of gas in the contiguous United States and Canada in both the peak (December through March) and offpeak (April through November) period. This network is a simplified representation of the physical natural gas pipeline system and establishes the possible interregional flows and associated prices as gas moves from supply sources to end users. Figure 15. Natural Gas Transmission and Distribution Module Network

263

Electronic fuel control system for gas turbine  

SciTech Connect

A method is described for monitoring gas turbine operating temperatures and rotational velocity for producing one of a group of fuel control signals for controlling the fuel input rate to the gas turbine. The method consists of: monitoring turbine inlet temperatures through respective sensors for the gas turbine, averaging the turbine inlet temperatures to produce an average turbine inlet temperature signal, monitoring a gas generator inlet temperature sensor of the gas turbine for producing a gas generator inlet temperature signal, generating a speed signal proportional to the rotational velocity of the gas turbine, combining the gas generator inlet temperature signal with the speed signal to produce a first function signal, applying the first function signal to a stored data set to produce a second function signal, the stored data set related to performance characteristics of the gas turbine, and comparing the turbine inlet temperature signal to the second function signal to produce a difference signal therefrom, the difference signal serving as a fuel control signal for the gas turbine.

Nick, C.F.

1986-04-22T23:59:59.000Z

264

Ultra-low emissions gas turbine combustion system program. Progress report, July 1, 1993--February 28, 1994  

SciTech Connect

The Santa Barbara County Air Pollution Control District (SBCAPCD) has arranged a consortium to develop ultra-low emissions combustor technology applicable to gas turbines. The goal of the program is to develop and demonstrate a safe, efficient, and cost-effective method to meet a 9 ppmv NO{sub x} emission limit for gas turbines. Currently this emission limit can only be met with the selective catalytic reduction (SCR) technology (a post combustion cleanup process that is capital intensive and maintenance intensive). In coordination with a comprehensive technical advisory committee, SBCAPCD has evaluated different potential low emissions technologies and decided upon a lean premix approach to retrofit existing turbines and to integrate with new engines. This technology will provide a low cost alternative to the expensive controls and will substantially reduce NO{sub x} emissions from gas turbines. The design, fabrication and testing of the ultra-low NO{sub x} combustor system is currently being performed by Allison Gas Turbine Division, General Motors Corporation. This project continues to be overseen by a technical advisory committee to ensure timely and cost-effective product delivery.

Talwar, M.

1994-02-01T23:59:59.000Z

265

Power systems development facility. Quarterly technical progress report, July 1, 1994--September 30, 1994  

Science Conference Proceedings (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: (1) Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. (2) Hot Gas Cleanup Units to mate to all gas streams. (3) Combustion Gas Turbine. (4) Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

NONE

1995-07-01T23:59:59.000Z

266

Gas stream cleaning system and method  

DOE Patents (OSTI)

An oil mist and solid particle laden gas from an oil shale retorting operation is initially treated with a temperature controlled oil spray and then by a coalescer to reduce the quantity of oil mist and remove most of the solid particle content of the gas stream and then finally treated by an electrostatic precipitator to essentially remove the oil mist remaining in the gas.

Kunchal, S. Kumar (300 Enterprise Bldg., Grand Junction, CO 81501); Erck, Louis J. (Anvil Points, Rifle, CO 81650); Harris, Harry A. (No. 25 Anvil Points, Rifle, CO 81650)

1979-04-13T23:59:59.000Z

267

Glass melter off-gas system  

DOE Patents (OSTI)

This invention is comprised of an apparatus and method for melting glass in a glass melter in such a way as to reduce deposition of particulates in the off-gas duct. Deposit accumulation is reduced by achieving an off-gas velocity above approximately 15 meters/second and an off-gas temperature as close as possible to, but not higher than, the glass softening point. Because the deposits are largely water-soluble, those that do form on the interior surface of the duct can be readily removed by injecting water or steam directly into the off-gas duct from its entrance or exit.

Jantzen, C.M.

1992-12-31T23:59:59.000Z

268

Lab completes record year for environmental cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Record year for environmental cleanup Record year for environmental cleanup Lab completes record year for environmental cleanup Personnel conducted more field investigations and cleanup campaigns than ever and completed a record number of Lab shipments to WIPP. December 16, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

269

Environmental Cleanup Reports | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Cleanup Reports Environmental Cleanup Reports Environmental Cleanup Reports September 8, 2010 Audit Report: OAS-L-10-10 The Audit of Precious Metals at NNSA Sites August 12, 2010 Audit Letter Report: OAS-RA-L-10-05 Decommissioning and Demolition Activities at Office of Science Sites May 25, 2010 Audit Report: OAS-RA-10-10 Waste Processing and Recovery Act Acceleration Efforts for Contact-Handled Transuranic Waste at the Hanford Site May 3, 2010 Audit Report: OAS-L-10-04 The Interim Treatment of Salt Waste at the Savannah River Site April 23, 2010 Audit Letter Report: OAS-RA-L-10-03 Audit of Moab Mill Tailings Cleanup Project April 9, 2010 Audit Report: OAS-RA-10-07 Management Alert on Environmental Management's Select Strategy for Disposition of Savannah River Site Depleted Uranium Oxides

270

Microsoft Word - California_cleanup.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Completes California Sites Cleanup CARLSBAD, N.M., June 14, 2010 - The U.S. Department of Energy's Carlsbad Field Office (CBFO) has successfully completed its campaign to clean up...

271

Lab completes first Recovery Act cleanup project  

NLE Websites -- All DOE Office Websites (Extended Search)

facility began in May and proceeded quickly. As part of the cleanup, a nearly new backup diesel generator was removed from the building and later donated to a nonprofit hospital...

272

2013 Congressional Nuclear Cleanup Caucus Briefings  

Energy.gov (U.S. Department of Energy (DOE))

The Congressional Nuclear Cleanup Caucus serves as a way to brief members of Congress and their staff on EM headquarters and site activities, including budget, safety and project progress.

273

Electrical swing adsorption gas storage and delivery system  

DOE Patents (OSTI)

Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided.

Judkins, Roddie R. (Knoxville, TN); Burchell, Timothy D. (Oak Ridge, TN)

1999-01-01T23:59:59.000Z

274

Electrical swing adsorption gas storage and delivery system  

DOE Patents (OSTI)

Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided. 5 figs.

Judkins, R.R.; Burchell, T.D.

1999-06-15T23:59:59.000Z

275

Two-tank working gas storage system for heat engine  

DOE Patents (OSTI)

A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

Hindes, Clyde J. (Troy, NY)

1987-01-01T23:59:59.000Z

276

Thermal oxidation vitrification flue gas elimination system  

SciTech Connect

With minor modifications to a Best Demonstrated Available Technology hazardous waste incinerator, it is possible to obtain combustion without potentially toxic emissions by using technology currently employed in similar applications throughout industry. Further, these same modifications will reduce waste handling over an extended operating envelope while minimizing energy consumption. Three by-products are produced: industrial grade carbon dioxide, nitrogen, and a final waste form that will exceed Toxicity Characteristics Leaching Procedures requirements and satisfy nuclear waste product consistency tests. The proposed system utilizes oxygen rather than air as an oxidant to reduce the quantities of total emissions, improve the efficiency of the oxidation reactions, and minimize the generation of toxic NO{sub x} emissions. Not only will less potentially hazardous constituents be generated; all toxic substances can be contained and the primary emission, carbon dioxide -- the leading ``greenhouse gas`` contributing to global warming -- will be converted to an industrial by-product needed to enhance the extraction of energy feedstocks from maturing wells. Clearly, the proposed configuration conforms to the provisions for Most Achievable Control Technology as defined and mandated for the private sector by the Clear Air Act Amendments of 1990 to be implemented in 1997 and still lacking definition.

Kephart, W. [Foster-Wheeler Environmental Corp., Oak Ridge, TN (United States); Angelo, F. [Resource Energy Corp. (United States); Clemens, M. [Argonne National Lab., IL (United States)

1995-06-01T23:59:59.000Z

277

Advanced coal-fueled gas turbine systems  

Science Conference Proceedings (OSTI)

Activity towards completing Advanced Turbine Systems (ATS) Phase I work was begun again in December. Effort to complete the Phase I work was temporarily suspended upon receipt of the ATS Phase II RFP the last week in August. The Westinghouse ATS team's efforts were directed at preparing the ATS Phase II proposal which was submitted November 18. It is planned to finish Phase I work and submit the topical report by the end of February 1993. The objective of the four slogging combustor tests conducted during this reporting period (i.e., tests SL3-1 through SL3-4) were to perform sulfur capture experiments using limestoneand iron oxide based sorbents and to collect exhaust vapor phase and solids bound alkali measurements using the Westinghouse and Ames Laboratory alkali probes/monitors. The most significant, if not outstanding result revealed by these tests is that the Ames alkali monitor indicates that the vapor phase sodium is approximately 23--30 ppbw and the vapor phase potassium is approximately 5--20 ppbw. For reference, alkalilevels of 20 ppbw are acceptable in Westinghouse gas turbines fueled with crude oil.

Not Available

1993-02-03T23:59:59.000Z

278

Advanced coal-fueled gas turbine systems  

DOE Green Energy (OSTI)

Westinghouse's Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO[sub x] emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO[sub x] levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

Not Available

1992-09-01T23:59:59.000Z

279

HARVESTING EMSP RESEARCH RESULTS FOR WASTE CLEANUP  

Science Conference Proceedings (OSTI)

The extent of environmental contamination created by the nuclear weapons legacy combined with expensive, ineffective waste cleanup strategies at many U.S. Department of Energy (DOE) sites prompted Congress to pass the FY96 Energy and Water Development Appropriations Act, which directed the DOE to: ''provide sufficient attention and resources to longer-term basic science research, which needs to be done to ultimately reduce cleanup costs'', ''develop a program that takes advantage of laboratory and university expertise, and'' ''seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective.'' In response, the DOE initiated the Environmental Management Science Program (EMSP)-a targeted, long-term research program intended to produce solutions to DOE's most pressing environmental problems. EMSP funds basic research to lower cleanup cost and reduce risk to workers, the public, and the environment; direct the nation's scientific infrastructure towards cleanup of contaminated waste sites; and bridge the gap between fundamental research and technology development activities. EMSP research projects are competitively awarded based on the project's scientific, merit coupled with relevance to addressing DOE site needs. This paper describes selected EMSP research projects with long, mid, and short-term deployment potential and discusses the impacts, focus, and results of the research. Results of EMSP research are intended to accelerate cleanup schedules, reduce cost or risk for current baselines, provide alternatives for contingency planning, or provide solutions to problems where no solutions exist.

Guillen, Donna Post; Nielson, R. Bruce; Phillips, Ann Marie; Lebow, Scott

2003-02-27T23:59:59.000Z

280

Optimization system for operation of gas cogeneration power plant  

Science Conference Proceedings (OSTI)

The paper presents a distributed control system for the realization of cogenerative supply of electricity and heat and, in given case, for their combination with waste heat recovery, particularly in combined (gas-steam) cycle industrial power plants. ... Keywords: cogenerative gas power plant, control of distributed parameter systems, optimization, process control

Ion Miciu

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Gas characterization system 241-AN-105 field acceptance test procedure  

DOE Green Energy (OSTI)

This document details the field Acceptance Testing of a gas characterization system being installed on waste tank 241-AN-105. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases.

Schneider, T.C.

1996-03-01T23:59:59.000Z

282

Gas characterization system 241-AW-101 field acceptance test procedure  

DOE Green Energy (OSTI)

This document details the field Acceptance Testing of a gas characterization system being installed on waste tank 241-AW-101. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases.

Schneider, T.C.

1996-03-01T23:59:59.000Z

283

EIA - Natural Gas Pipeline System - Southeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southeast Region Southeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southeast Region Overview | Transportation to Atlantic & Gulf States | Gulf of Mexico Transportation Corridor | Transportation to the Northern Tier | Regional Pipeline Companies & Links Overview Twenty-three interstate, and at least eight intrastate, natural gas pipeline companies operate within the Southeast Region (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee). Fifteen of the twenty-one interstate natural gas pipelines originate in the Southwest Region and receive most of their supplies from the Gulf of Mexico or from the States of Texas and/or Louisiana.

284

The Energy Transformation Limit Theorem for Gas Flow Systems  

E-Print Network (OSTI)

The limit energy theorem which determines the possibility of transformation the energy flow in power systems in the absence of technical work is investigated and proved for such systems as gas lasers and plasmatrons, chemical gas reactors, vortex tubes, gas-acoustic and other systems, as well as a system of close stars. In the case of the same name ideal gas in the system the maximum ratio of energy conversion effectiveness is linked to the Carnot theorem, which in its turn is connected with the Nernst theorem. However, numerical analyses show that the class of flow energy systems is non-carnot one. The ratio of energy conversion effectiveness depends on the properties of the working medium; a conventional cycle in open-circuit is essentially irreversible. The proved theorem gives a more strongly worded II law of thermodynamics for the selected class of flow energy systems. Implications for astrophysical thermodynamic systems and the theory of a strong shock wave are discussed.

Volov, V T

2011-01-01T23:59:59.000Z

285

Fuel cell/gas turbine system performance studies  

SciTech Connect

Because of the synergistic effects (higher efficiencies, lower emissions) of combining a fuel cell and a gas turbine into a power generation system, many potential system configurations were studied. This work is focused on novel power plant systems by combining gas turbines, solid oxide fuel cells, and a high-temperature heat exchanger; these systems are ideal for the distributed power and on- site markets in the 1-5 MW size range.

Lee, G.T.; Sudhoff, F.A.

1996-12-31T23:59:59.000Z

286

Systems and method for delivering liquified gas to an engine  

DOE Patents (OSTI)

A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.

Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); O' Brien, James E. (Idaho Falls, ID); Siahpush, Ali S. (Idaho Falls, ID); Brown, Kevin B. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

287

Spark gap switch system with condensable dielectric gas  

DOE Patents (OSTI)

A spark gap switch system is disclosed which is capable of operating at a high pulse rate comprising an insulated switch housing having a purging gas entrance port and a gas exit port, a pair of spaced apart electrodes each having one end thereof within the housing and defining a spark gap therebetween, an easily condensable and preferably low molecular weight insulating gas flowing through the switch housing from the housing, a heat exchanger/condenser for condensing the insulating gas after it exits from the housing, a pump for recirculating the condensed insulating gas as a liquid back to the housing, and a heater exchanger/evaporator to vaporize at least a portion of the condensed insulating gas back into a vapor prior to flowing the insulating gas back into the housing.

Thayer, III, William J. (Kent, WA)

1991-01-01T23:59:59.000Z

288

Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems  

DOE Green Energy (OSTI)

This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

Komar, C.A. (ed.)

1980-01-01T23:59:59.000Z

289

Starter systems designed for efficient air/gas comsumption  

Science Conference Proceedings (OSTI)

This paper examines engine starting systems designed by Pow-R-Quik. Pow-R-Quik's most recent product line includes several models that are designed to start most diesel and natural gas engines. Pow-R-Quick also offers air starting systems for a wide range of gas turbine applications. The model DS16, air or gas starter, is designed for engines with a displacement up to 500 cid diesel and up to 1000 cid natural gas. The DS60 model is also an air or gas operated starter with specially designed heavy duty bearings for maximum performance. To prove out starter durability and performance, Pow-R-Quik has installed three fully instrumented diesel engine test cells. The number of starts that can be achieved ranges from zero to 99,000. The system can be set to regulate the air for low or high pressure starts, control the lubricant, etc.

Not Available

1985-05-01T23:59:59.000Z

290

Brine and gas recovery from geopressured systems. I. Parametric calculations  

DOE Green Energy (OSTI)

A series of parametric calculations was run with the S-CUBED geopressured-geothermal simulator MUSHRM to assess the effects of important formation, fluid and well parameters on brine and gas recovery from geopressured reservoir systems. The specific parameters considered are formation permeability, pore-fluid salinity, temperature and gas content, well radius and location with respect to reservoir boundaries, desired flow rate, and possible shale recharge. It was found that the total brine and gas recovered (as a fraction of the resource in situ) were most sensitive to formation permeability, pore-fluid gas content, and shale recharge.

Garg, S.K.; Riney, T.D.

1984-02-01T23:59:59.000Z

291

Los Alamos National Laboratory names cleanup subcontractors  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleanup subcontractors named Cleanup subcontractors named Los Alamos National Laboratory names cleanup subcontractors The three companies are Los Alamos Technical Associates (LATA), Portage Inc., and ARSEC Environmental, LLC (ARSEC). August 14, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Fred deSousa

292

Idaho Cleanup Contractor Surpasses Significant Safety Milestones |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup Contractor Surpasses Significant Safety Milestones Cleanup Contractor Surpasses Significant Safety Milestones Idaho Cleanup Contractor Surpasses Significant Safety Milestones April 29, 2013 - 12:00pm Addthis CWI employees discuss safety procedures before they remove a spent nuclear fuel shipment from a shipping container. CWI employees discuss safety procedures before they remove a spent nuclear fuel shipment from a shipping container. IDAHO FALLS, Idaho - For the second time in a little over a year, employees with DOE contractor CH2M-WG Idaho (CWI) supporting EM at the Idaho site have achieved 1 million hours without a recordable injury. They also worked more than 1.7 million hours without a lost work-time injury. "Our focus is working with employees to keep each other safe," said CWI Environmental, Safety, and Health Vice President Kevin Daniels. "We

293

Demolition, Groundwater Cleanup Highlight Paducah's 2013 Accomplishments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demolition, Groundwater Cleanup Highlight Paducah's 2013 Demolition, Groundwater Cleanup Highlight Paducah's 2013 Accomplishments Demolition, Groundwater Cleanup Highlight Paducah's 2013 Accomplishments December 24, 2013 - 12:00pm Addthis A high-reach shear removes debris from the tallest structure of the C-340 complex at Paducah. Watch a video of this work here. The 120-foot-high Metals Plant was the tallest building at the Paducah site and encompassed about 1.5 million cubic feet, the volume of a football field roughly three stories tall. Demolition debris filled 28 rail cars and was shipped offsite for disposal. A high-reach shear removes debris from the tallest structure of the C-340 complex at Paducah. Watch a video of this work here. The 120-foot-high Metals Plant was the tallest building at the Paducah site and encompassed

294

Natural Gas Pipeline and System Expansions  

Reports and Publications (EIA)

This special report examines recent expansions tothe North American natural gas pipeline networkand the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It includes those projects in Canada and Mexico that tie in with U.S. markets or projects.

Information Center

1997-04-01T23:59:59.000Z

295

Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System  

SciTech Connect

The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

2005-06-01T23:59:59.000Z

296

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents (OSTI)

A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

Viscovich, P.W.; Bannister, R.L.

1995-07-11T23:59:59.000Z

297

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents (OSTI)

A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

1995-01-01T23:59:59.000Z

298

Functional design criteria for the retained gas sampler system  

DOE Green Energy (OSTI)

A Retained Gas Sampler System (RGSS) is being developed to capture and analyze waste samples from Hanford Flammable Gas Watch List Tanks to determine both the quantity and composition of gases retained in the waste. The RGSS consists of three main components: the Sampler, Extractor, and Extruder. This report describes the functional criteria for the design of the RGSS components. The RGSS Sampler is based on the WHC Universal Sampler design with modifications to eliminate gas leakage. The primary function of the Sampler is to capture a representative waste sample from a tank and transport the sample with minimal loss of gas content from the tank to the laboratory. The function of the Extruder is to transfer the waste sample from the Sampler to the Extractor. The function of the Extractor is to separate the gases from the liquids and solids, measure the relative volume of gas to determine the void fraction, and remove and analyze the gas constituents.

Wootan, D.W.

1995-04-12T23:59:59.000Z

299

Method for nonlinear optimization for gas tagging and other systems  

DOE Patents (OSTI)

A method and system are disclosed for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established. 6 figs.

Chen, T.; Gross, K.C.; Wegerich, S.

1998-01-06T23:59:59.000Z

300

Method for nonlinear optimization for gas tagging and other systems  

DOE Patents (OSTI)

A method and system for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established.

Chen, Ting (Chicago, IL); Gross, Kenny C. (Bolingbrook, IL); Wegerich, Stephan (Glendale Heights, IL)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Gas characterization system operation, maintenance, and calibration plan  

DOE Green Energy (OSTI)

This document details the responsibilities and requirements for operation, maintenance, and calibration of the Gas Characterization Systems (GCS) analytical instrumentation. It further, defines the division of responsibility between the Characterization Monitoring Development organization and Tank Farms Operations.

Tate, D.D.

1996-03-04T23:59:59.000Z

302

Monitoring system improves maintenance for North Sea industrial gas turbines  

SciTech Connect

A change in maintenance emphasis and installation of a computerized condition-monitoring system for Type-H industrial gas turbines on Ekofisk platforms have led to more efficient use of manpower and more-productive machinery.

Cullen, J.P. (Phillips Petroleum Co., Tanager (NO))

1988-10-24T23:59:59.000Z

303

World Energy Projection System Plus Model Documentation: Natural Gas Model  

Reports and Publications (EIA)

This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS+) Natural Gas Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

Brian Murphy

2011-09-29T23:59:59.000Z

304

New and interesting prepolymers based on the molecular dynamics computer simulation of binary systems to be utilized in the clean-up technologies of off-shore oil spills  

Science Conference Proceedings (OSTI)

New emerging technologies for the clean-up of off-shore oil spills have been reported. Several research groups are currently working on various ways to develop new urethane prepolymers that will foam upon contact with water and encapsulate the oil droplets ... Keywords: computer simulation, hydrophobic, miscibility, molecular dynamics, oil spill, urethane prepolymer

Rasha A. Azzam; Tarek M. Madkour

2008-12-01T23:59:59.000Z

305

Detection system for a gas chromatograph  

DOE Patents (OSTI)

A method and apparatus are described for the quantitative analysis of vaporizable compounds, and in particular of polycyclic aromatic hydrocarbons which may be induced to fluoresce. The sample to be analyzed is injected into a gas chromatography column and is eluted through a narrow orifice into a vacuum chamber. The free expansion of the eluted sample into the vacuum chamber creates a supersonic molecular beam in which the sample molecules are cooled to the extent that the excited vibrational and rotational levels are substantially depopulated. The cooled molecules, when induced to fluoresce by laser excitation, give greatly simplified spectra suitable for analytical purposes. The laser induced fluorimetry provides great selectivity, and the gas chromatograph provides quantitative transfer of the sample to the molecular beam.

Hayes, John M. (Ames, IA); Small, Gerald J. (Ames, IA)

1984-01-01T23:59:59.000Z

306

Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems  

Science Conference Proceedings (OSTI)

This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energy??s Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion concepts were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process ?? High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.

Howard Meyer

2010-11-30T23:59:59.000Z

307

Idaho Cleanup Project completes work at Test Area North complex...  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho Cleanup Project completes work at Test Area North complex at DOEs Idaho site Loss-Of-Fluid Test Reactor Facility (before) Idaho Cleanup Project workers have completed all...

308

FIXED-PRICE CONTRACTING FOR DEPARTMENT OF ENERGY CLEANUP ACTIVITIES...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FIXED-PRICE CONTRACTING FOR DEPARTMENT OF ENERGY CLEANUP ACTIVITIES, CR-B-02-01 FIXED-PRICE CONTRACTING FOR DEPARTMENT OF ENERGY CLEANUP ACTIVITIES, CR-B-02-01 As part of its...

309

Assessment of synfuel spill cleanup options  

DOE Green Energy (OSTI)

Existing petroleum-spill cleanup technologies are reviewed and their limitations, should they be used to mitigate the effects of synfuels spills, are discussed. The six subsections of this report address the following program goals: synfuels production estimates to the year 2000; possible sources of synfuel spills and volumes of spilled fuel to the year 2000; hazards of synfuels spills; assessment of existing spill cleanup technologies for oil spills; assessment of cleanup technologies for synfuel spills; and disposal of residue from synfuel spill cleanup operations. The first goal of the program was to obtain the most current estimates on synfuel production. These estimates were then used to determine the amount of synfuels and synfuel products likely to be spilled, by location and by method of transportation. A review of existing toxicological studies and existing spill mitigation technologies was then completed to determine the potential impacts of synthetic fuel spills on the environment. Data are presented in the four appendixes on the following subjects: synfuel production estimates; acute toxicity of synfuel; acute toxicity of alcohols.

Petty, S.E.; Wakamiya, W.; English, C.J.; Strand, J.A.; Mahlum, D.D.

1982-04-01T23:59:59.000Z

310

PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM  

DOE Green Energy (OSTI)

Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

W.L. Lundberg; G.A. Israelson; R.R. Moritz (Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

2000-02-01T23:59:59.000Z

311

Materials for Nuclear Waste Disposal and Environmental Cleanup  

Science Conference Proceedings (OSTI)

Symposium, Materials for Nuclear Waste Disposal and Environmental Cleanup ... Secure and Certify Studies to Work on Production of Spiked Plutonium.

312

Power systems development facility. Quarterly technical progress report, July 1--September 30, 1993  

SciTech Connect

This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, July 1 through September 30, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. Hot Gas Cleanup Units to mate to all gas streams; Combustion Gas Turbine; and Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility.

Not Available

1993-12-31T23:59:59.000Z

313

Idaho Cleanup Project CH2M-WG Idaho, LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Cleanup Project CH2M-WG Idaho, LLC Idaho Cleanup Project CH2M-WG Idaho, LLC Idaho Cleanup Project Idaho Cleanup Project CH2M-WG Idaho, LLC More Documents & Publications...

314

BASIN-CENTERED GAS SYSTEMS OF THE U.S.  

SciTech Connect

The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographic distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.

Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman; Timothy A. Gognat; Ronald C. Johnson; James W. Schmoker; Michael S. Wilson; Charles Bartberger

2000-11-01T23:59:59.000Z

315

On-Board Hydrogen Gas Production System For Stirling Engines  

DOE Patents (OSTI)

A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

Johansson, Lennart N. (Ann Arbor, MI)

2004-06-29T23:59:59.000Z

316

Waste Clean-up 1  

Science Conference Proceedings (OSTI)

... These figures are concepts of the Waste Retrieval System and Deployment for the Hanford, Washington tank farm, specifically focused on tank C ...

2011-09-30T23:59:59.000Z

317

NETL: Gasification Systems - High Temperature Syngas Cleanup...  

NLE Websites -- All DOE Office Websites (Extended Search)

construct the project and sequester the CO2. The Polk Power Station, an integrated gasification combined cycle (IGCC) power plant, will supply a portion of its coal-derived syngas...

318

Exhaust gas purification system for lean burn engine  

DOE Patents (OSTI)

An exhaust gas purification system for a lean burn engine includes a thermal mass unit and a NO.sub.x conversion catalyst unit downstream of the thermal mass unit. The NO.sub.x conversion catalyst unit includes at least one catalyst section. Each catalyst section includes a catalytic layer for converting NO.sub.x coupled to a heat exchanger. The heat exchanger portion of the catalyst section acts to maintain the catalytic layer substantially at a desired temperature and cools the exhaust gas flowing from the catalytic layer into the next catalytic section in the series. In a further aspect of the invention, the exhaust gas purification system includes a dual length exhaust pipe upstream of the NO.sub.x conversion catalyst unit. The dual length exhaust pipe includes a second heat exchanger which functions to maintain the temperature of the exhaust gas flowing into the thermal mass downstream near a desired average temperature.

Haines, Leland Milburn (Northville, MI)

2002-02-19T23:59:59.000Z

319

System for recovering methane gas from liquid waste  

SciTech Connect

A system for and method of recovering methane gas from liquid waste which is stored within a pit is disclosed herein. The methane gas is produced by causing the liquid waste to undergo anaerobic fermentation. Therefore, it is necessary to close the pit in an air tight fashion. This is carried out using a cover sheet which is fixedly disposed over the pit in an air tight but readily disengagable fashion. The liquid waste within this air tight pit is preferably agitated intermittently during its storage therein whereby to increase the amount of methane gas produced.

Grabis, D.W.

1983-07-19T23:59:59.000Z

320

Tips: Natural Gas and Oil Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas and Oil Heating Systems Natural Gas and Oil Heating Systems Tips: Natural Gas and Oil Heating Systems May 30, 2012 - 5:41pm Addthis Install a new energy-efficient furnace to save money over the long term. Install a new energy-efficient furnace to save money over the long term. If you plan to buy a new heating system, ask your local utility or state energy office about the latest technologies on the market. For example, many newer models have designs for burners and heat exchangers that are more efficient during operation and cut heat loss when the equipment is off. Consider a sealed-combustion furnace -- they are safer and more efficient. Long-Term Savings Tip Install a new energy-efficient furnace to save money over the long term. Look for the ENERGY STAR® and EnergyGuide labels to compare efficiency and

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced coal-fueled industrial cogeneration gas turbine system  

SciTech Connect

Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1991-07-01T23:59:59.000Z

322

Opto-Electronics in Large Array Gas Detector Systems  

E-Print Network (OSTI)

Large array gas detector systems are used in particle and nuclear physics experiments involving high-energy nucleon-nucleon and heavy-ion collisions. We have observed that in large array gas detector systems the momentary discharges inside the detector cells result in slowdown of High Voltage conditioning and possible hindrances in signal processing. We have explored the opto-electronic devices like the opto-coupler, optical fibre and signal processing circuit, which provide successful monitoring procedures and preventive measures to overcome the challenges produced in such complex detector systems.

M. R. Dutta Majumdar; Debasish Das; Tapan K. Nayak

2005-12-23T23:59:59.000Z

323

Slag processing system for direct coal-fired gas turbines  

SciTech Connect

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

324

Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security  

E-Print Network (OSTI)

Approved for public release; distribution is unlimited. Lexington Massachusetts This page intentionally left blank. EXECUTIVE SUMMARY Concern about energy security on domestic Department of Defense installations has led to the possibility of using natural gas-fired electricity generators to provide power in the event of electric grid failures. As natural gas is an increasingly base-load fuel for electricity generation in the United States, the electricity generation system has become increasingly dependent on the operation of the natural gas system. However, as the natural gas system is also partly dependent on electricity for its ability to deliver natural gas from the well-head to the consumer, the question arises of whether, in the event of an electric grid failure, the natural gas would continue to flow. As the natural gas transmission system largely uses natural gas from the pipelines as a source of power, once the gas has been extracted from the ground, the system is less dependent on the electric grid. However, some of the drilling rigs, processing units, and pipeline compressors do depend on electric power, making the vulnerability to the system to a disruption in the national electricity supply network vary depending on the cause, breadth, and geographic location of the disruption. This is due to the large numbers of players in the natural gas production and

N. Judson; N. Judson

2013-01-01T23:59:59.000Z

325

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

and valves, an air-to-air (ATA) heat exchanger, a liquid-to-air (LTA) heat exchanger, an ICTC manifold and heatis designed with two heat exchanger systems to accommodate

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

326

Steam cooling system for a gas turbine  

SciTech Connect

The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

Wilson, Ian David (Mauldin, SC); Barb, Kevin Joseph (Halfmoon, NY); Li, Ming Cheng (Cincinnati, OH); Hyde, Susan Marie (Schenectady, NY); Mashey, Thomas Charles (Coxsackie, NY); Wesorick, Ronald Richard (Albany, NY); Glynn, Christopher Charles (Hamilton, OH); Hemsworth, Martin C. (Cincinnati, OH)

2002-01-01T23:59:59.000Z

327

Cleanup Progresses at the Office of River Protection | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup Progresses at the Office of River Protection Cleanup Progresses at the Office of River Protection Cleanup Progresses at the Office of River Protection December 24, 2013 - 12:00pm Addthis The concrete “core” is removed from Tank C-105 after workers cut a 55-inch hole in the tank dome. The concrete "core" is removed from Tank C-105 after workers cut a 55-inch hole in the tank dome. A composite image of dozens of individual-frame photos taken inside Tank C-110 provides a rare panoramic view of its interior. Portions of the tank floor and the Foldtrack waste-retrieval system are clearly visible. A composite image of dozens of individual-frame photos taken inside Tank C-110 provides a rare panoramic view of its interior. Portions of the tank floor and the Foldtrack waste-retrieval system are clearly visible.

328

Cleanup Progresses at the Office of River Protection | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup Progresses at the Office of River Protection Cleanup Progresses at the Office of River Protection Cleanup Progresses at the Office of River Protection December 24, 2013 - 12:00pm Addthis The concrete “core” is removed from Tank C-105 after workers cut a 55-inch hole in the tank dome. The concrete "core" is removed from Tank C-105 after workers cut a 55-inch hole in the tank dome. A composite image of dozens of individual-frame photos taken inside Tank C-110 provides a rare panoramic view of its interior. Portions of the tank floor and the Foldtrack waste-retrieval system are clearly visible. A composite image of dozens of individual-frame photos taken inside Tank C-110 provides a rare panoramic view of its interior. Portions of the tank floor and the Foldtrack waste-retrieval system are clearly visible.

329

Operational Flexibility Guidelines for Gas Turbine Low NOx Combustion Systems  

Science Conference Proceedings (OSTI)

Gas turbine low-NOx combustion systems can differ in hardware from manufacturer to manufacturer, but the principle is the same. Low-NOx combustors reduce peak flame temperatures by mixing fuel and air before combustion and by keeping the fuel-to-air ratio as low (lean) as possible, while still maintaining combustion stability over the broadest possible operating range. Low-NOx combustion systems are inherently more complex than diffusion combustion systems, a fact that impacts operational flexibility, re...

2011-12-14T23:59:59.000Z

330

Problem of improving coke oven gas purification systems  

Science Conference Proceedings (OSTI)

A discussion of the problems of improving desulfurization processes of coke oven gas was presented. Of particular interest were control systems and increasing capacity of the coke ovens. Included in the discussion were the vacuum-carbonate and arsenic-soda sulfur removal systems. Problems involved with these systems were the number of treatment operations, the volume of the reagents used, and the operation of equipment for naphthalene and cyanide removal.

Goldin, I.A.

1982-01-01T23:59:59.000Z

331

Gas Centrifuge Enrichment Plant Safeguards System Modeling  

SciTech Connect

The U.S. Department of Energy (DOE) is interested in developing tools and methods for potential U.S. use in designing and evaluating safeguards systems used in enrichment facilities. This research focuses on analyzing the effectiveness of the safeguards in protecting against the range of safeguards concerns for enrichment plants, including diversion of attractive material and unauthorized modes of use. We developed an Extend simulation model for a generic medium-sized centrifuge enrichment plant. We modeled the material flow in normal operation, plant operational upset modes, and selected diversion scenarios, for selected safeguards systems. Simulation modeling is used to analyze both authorized and unauthorized use of a plant and the flow of safeguards information. Simulation tracks the movement of materials and isotopes, identifies the signatures of unauthorized use, tracks the flow and compilation of safeguards data, and evaluates the effectiveness of the safeguards system in detecting misuse signatures. The simulation model developed could be of use to the International Atomic Energy Agency IAEA, enabling the IAEA to observe and draw conclusions that uranium enrichment facilities are being used only within authorized limits for peaceful uses of nuclear energy. It will evaluate improved approaches to nonproliferation concerns, facilitating deployment of enhanced and cost-effective safeguards systems for an important part of the nuclear power fuel cycle.

Elayat, H A; O'Connell, W J; Boyer, B D

2006-06-05T23:59:59.000Z

332

Solid fuel combustion system for gas turbine engine  

DOE Patents (OSTI)

A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

1993-01-01T23:59:59.000Z

333

Stimulus Funding Will Accelerate Cleanup In Idaho  

NLE Websites -- All DOE Office Websites (Extended Search)

STIMULUS FUNDING WILL STIMULUS FUNDING WILL ACCELERATE CLEANUP IN IDAHO Funding from the American Recovery and Reinvestment Act will do more than sustain employment at the U.S. Department of Energy's Idaho Site - it will accelerate cleanup. Click here to see larger image Inside the retrieval enclosure at Accelerated Retrieval Project-III Click on image to enlarge The Office of Environmental Management received $6 billon in additional funding under the "stimulus bill" passed earlier this year by Congress and signed by President Obama. The Idaho Site will receive $468 million of the EM funding. The funding will be used at DOE's Idaho Site to: Decontaminate and decommission buildings that have no useful mission. Accelerate removal of buried radioactive waste, which will be

334

Airfoil seal system for gas turbine engine  

SciTech Connect

A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.

Diakunchak, Ihor S.

2013-06-25T23:59:59.000Z

335

Heat generation in natural gas adsorption systems  

SciTech Connect

Experiments were conducted using a high-surface-area carbon as an adsorbent for methane to determine the impact of the heat of adsorption upon the storage capacity. The rapid filling of an adsorption storage system under conditions in which the heat of adsorption is not dissipated results in only about 75% of the methane being stored at 3.44 MPa (500 psia) as can be stored by a slow fill rate with heat dissipation. These results depend upon the initial temperature of the absorbent bed and upon the characteristics of the substrate itself. 4 refs., 5 figs.

Remick, R.J.; Tiller, A.J.

1986-01-01T23:59:59.000Z

336

Environmental Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 10, 2011 May 10, 2011 Improved cookstove in village of Santa Cruz de Lanchi, installed through Peru's national cookstove program. | Photo credit: Ranyee Chiang, DOE Department of Energy Planning Cookstoves Research, Releases Biomass Technical Meeting Summary As awareness builds for clean-burning cookstoves in the developing world, the Department of Energy is working with other government agencies and NGOs to make stoves cleaner, more efficient and more affordable. March 16, 2011 Ener-G-Rotors' 5kW prototype system | courtesy of Ener-G-Rotors Turning Waste Heat into Power: Ener-G-Rotors and the Entrepreneurial Mentorship Program If you've ever driven by an industrial plant, you've probably noticed big white plumes rising from the tops of the facilities. While it might

337

A Portable Expert System for Gas Turbine Maintenance  

E-Print Network (OSTI)

Combustion turbines for electric power generation and industrial applications have steadily increased in size, efficiency and prominence. The newest class of gas turbine-generators coming into service will deliver 150 megawatts, with turbine inlet temperatures of 2300 F. To sustain high levels of performance and reliability of this equipment, diagnostics and maintenance planning have also become increasingly important. Within the electric power industry, for example, as the overall fleet of gas turbines has aged, their annual service factor has increased to carry more of the peak load burden as reserve margins shrink. However, peaking duty requires frequent cycling with large thermal stresses that tend to shorten the life of hot section components. To assist the industry in meeting these needs, EPRI has developed The SA?VANT System. This unique multi-faceted portable unit will apply a broad range of expert systems in the workplace for power plant maintenance, including turbomachinery of all types, but especially for gas turbines.

Quentin, G. H.

1989-09-01T23:59:59.000Z

338

Cooling system for a gas turbine  

DOE Patents (OSTI)

A plurality of arcuate circumferentially spaced supply and return manifold segments are arranged on the rim of a rotor for respectively receiving and distributing cooling steam through exit ports for distribution to first and second-stage buckets and receiving spent cooling steam from the first and second-stage buckets through inlet ports for transmission to axially extending return passages. Each of the supply and return manifold segments has a retention system for precluding substantial axial, radial and circumferential displacement relative to the rotor. The segments also include guide vanes for minimizing pressure losses in the supply and return of the cooling steam. The segments lie substantially equal distances from the centerline of the rotor and crossover tubes extend through each of the segments for communicating steam between the axially adjacent buckets of the first and second stages, respectively.

Wilson, Ian David (Mauldin, SC); Salamah, Samir Armando (Niskayuna, NY); Bylina, Noel Jacob (Niskayuna, NY)

2003-01-01T23:59:59.000Z

339

Southwest Plume Cleanup at Paducah Site to Start by Summer 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Plume Cleanup at Paducah Site to Start by Summer 2013 Southwest Plume Cleanup at Paducah Site to Start by Summer 2013 Southwest Plume Cleanup at Paducah Site to Start by Summer 2013 April 1, 2012 - 12:00pm Addthis Deep soil mixing at the Paducah site will involve a large-diameter auger like this one. Deep soil mixing at the Paducah site will involve a large-diameter auger like this one. Senior Advisor for Environmental Management David Huizenga (right) and Paducah Site Lead Reinhard Knerr look at a three-dimensional model of the Paducah site’s groundwater system. University of Kentucky College of Design students assembled the model for the Paducah Gaseous Diffusion Plant Citizens Advisory Board. The model was displayed at the April 18 Site-Specific Advisory Board Chairs Meeting in Paducah, where Huizenga spoke before taking his first tour of the Paducah site.

340

Southwest Plume Cleanup at Paducah Site to Start by Summer 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Plume Cleanup at Paducah Site to Start by Summer 2013 Southwest Plume Cleanup at Paducah Site to Start by Summer 2013 Southwest Plume Cleanup at Paducah Site to Start by Summer 2013 April 1, 2012 - 12:00pm Addthis Deep soil mixing at the Paducah site will involve a large-diameter auger like this one. Deep soil mixing at the Paducah site will involve a large-diameter auger like this one. Senior Advisor for Environmental Management David Huizenga (right) and Paducah Site Lead Reinhard Knerr look at a three-dimensional model of the Paducah site’s groundwater system. University of Kentucky College of Design students assembled the model for the Paducah Gaseous Diffusion Plant Citizens Advisory Board. The model was displayed at the April 18 Site-Specific Advisory Board Chairs Meeting in Paducah, where Huizenga spoke before taking his first tour of the Paducah site.

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Automated gas transfer systems for low pressure operations  

Science Conference Proceedings (OSTI)

The introduction of new components and the modification of commercially available hardware have been instrumental in the automation of low pressure gas transfer systems. The benefits from the automation have been faster sample operation, increased precision and a safer environment for the operator.

Baker, R.W.; Hoseus, N.L.

1988-01-22T23:59:59.000Z

342

An expert system prototype for designing natural gas cogeneration plants  

Science Conference Proceedings (OSTI)

Cogeneration plants are units that simultaneously produce electricity and useful heat from the same fuel. In such plants different components (prime movers, pumps, steam generators, etc.) are combined in order to meet electricity and useful heat loads ... Keywords: Cogeneration, Engineering design, Expert systems, Natural gas

Jos Alexandre Matelli; Edson Bazzo; Jonny Carlos da Silva

2009-05-01T23:59:59.000Z

343

Simulated coal gas MCFC power plant system verification  

DOE Green Energy (OSTI)

The following tasks are included in this project: Commercialization; Power plant development; Manufacturing facilities development; Test facility development; Stack research; and Advanced research and technology development. This report briefly describes the subtasks still to be completed: Power plant system test with reformed natural gas; Upgrading of existing, US government-owned, test facilities; and Advanced MCFC component research.

NONE

1998-02-01T23:59:59.000Z

344

Innovative coke oven gas cleaning system for retrofit applications  

DOE Green Energy (OSTI)

The coke plant at the Sparrows Point Plant consist of three coke oven batteries and two coal chemical plants. The by-product coke oven gas (COG) consists primarily of hydrogen, methane, carbon monoxide, nitrogen and contaminants consisting of tars, light oils (benzene, toluene, and xylene) hydrogen sulfide, ammonia, water vapor and other hydrocarbons. This raw coke oven gas needs to be cleaned of most of its contaminants before it can be used as a fuel at other operations at the Sparrows Point Plant. In response to environmental concerns, BSC decided to replace much of the existing coke oven gas treatment facilities in the two coal chemical Plants (A and B) with a group of technologies consisting of: Secondary Cooling of the Coke oven Gas; Hydrogen Sulfide Removal; Ammonia Removal; Deacification of Acid Gases Removed; Ammonia Distillation and Destruction; and, Sulfur Recovery. This combination of technologies will replace the existing ammonia removal system, the final coolers, hydrogen sulfide removal system and the sulfur recovery system. The existing wastewater treatment, tar recovery and one of the three light oil recovery systems will continue to be used to support the new innovative combination of COG treatment technologies.

Not Available

1992-08-24T23:59:59.000Z

345

Slag processing system for direct coal-fired gas turbines  

SciTech Connect

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

346

Air Toxics Control by Wet Flue Gas Desulfurization Systems  

Science Conference Proceedings (OSTI)

This report provides an update on three tasks associated with the EPRI project, Air Toxics Control by Wet Flue Gas Desulfurization (FGD) Systems. The first task is an investigation of the factors that influence and control the oxidation-reduction potential (ORP) at which a limestone forced oxidation FGD system operates. Both a literature review and a numerical analysis of full-scale wet FGD data were conducted. Results from this task are presented and discussed in Section 2 of the ...

2012-12-31T23:59:59.000Z

347

Commercialization of coal-fueled gas turbine systems  

SciTech Connect

The overall goal of this program is to develop and demonstrate the technological bases for economically attractive, commercial, coal- fired gas turbine systems. Objectives to accomplish this goal include these: identify candidate technical approaches to meet the challenges of using coal as a turbine fuel, screen the candidate technical approaches by testing their relative performance and evaluating their effects on the economic attractiveness of commercial coal-fueled systems, demonstrate the most promising technologies and associated components in proof-of-concept system tests leading up to commercialization. This paper presents background information on the project, and results on cogeneration systems, combined cycle power plants to include performance and cost.

Wilkes, C.; Wenglarz, R.A.

1992-12-01T23:59:59.000Z

348

Commercialization of coal-fueled gas turbine systems  

SciTech Connect

The overall goal of this program is to develop and demonstrate the technological bases for economically attractive, commercial, coal- fired gas turbine systems. Objectives to accomplish this goal include these: identify candidate technical approaches to meet the challenges of using coal as a turbine fuel, screen the candidate technical approaches by testing their relative performance and evaluating their effects on the economic attractiveness of commercial coal-fueled systems, demonstrate the most promising technologies and associated components in proof-of-concept system tests leading up to commercialization. This paper presents background information on the project, and results on cogeneration systems, combined cycle power plants to include performance and cost.

Wilkes, C.; Wenglarz, R.A.

1992-01-01T23:59:59.000Z

349

Albany Interim Landfill gas extraction and mobile power system: Using landfill gas to produce electricity. Final report  

DOE Green Energy (OSTI)

The Albany Interim Landfill Gas Extraction and Mobile Power System project served three research objectives: (1) determination of the general efficiency and radius of influence of horizontally placed landfill gas extraction conduits; (2) determination of cost and effectiveness of a hydrogen sulfide gas scrubber utilizing Enviro-Scrub{trademark} liquid reagent; and (3) construction and evaluation of a dual-fuel (landfill gas/diesel) 100 kW mobile power station. The horizontal gas extraction system was very successful; overall, gas recovery was high and the practical radius of influence of individual extractors was about 50 feet. The hydrogen sulfide scrubber was effective and its use appears feasible at typical hydrogen sulfide concentrations and gas flows. The dual-fuel mobile power station performed dependably and was able to deliver smooth power output under varying load and landfill gas fuel conditions.

NONE

1997-06-01T23:59:59.000Z

350

Development requirements for an advanced gas turbine system  

Science Conference Proceedings (OSTI)

In cooperation with US Department of Energy`s Morgantown Energy Technology Center, a Westinghouse-led team is working on the second part of an 8-year, Advanced Turbine Systems Program to develop the technology required to provide a significant increase in natural gas-fired combined cycle power generation plant efficiency. This paper reports on the Westinghouse program to develop an innovative natural gas-fired advanced turbine cycle, which, in combination with increased firing temperature, use of advanced materials, increased component efficiencies, and reduced cooling air usage, has the potential of achieving a lower heating value plant efficiency in excess of 60%.

Bannister, R.L.; Cheruvu, N.S.; Little, D.A.; McQuiggan, G. [Westinghouse Electric Corp., Orlando, FL (United States)

1995-10-01T23:59:59.000Z

351

Deliverability on the interstate natural gas pipeline system  

SciTech Connect

Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall system design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.

1998-05-01T23:59:59.000Z

352

Manhattan Project Truck Unearthed in Recovery Act Cleanup | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manhattan Project Truck Unearthed in Recovery Act Cleanup Manhattan Project Truck Unearthed in Recovery Act Cleanup Manhattan Project Truck Unearthed in Recovery Act Cleanup A Los Alamos National Laboratory (LANL) excavation crew working on an American Recovery and Reinvestment Act cleanup project has uncovered the remnants of a 1940s military truck buried in a Manhattan Project landfill. The truck was unearthed inside a sealed building where digging is taking place at Material Disposal Area B (MDA-B), the Lab's first hazardous and radioactive waste landfill. MDA-B was used from 1944 to 1948. Manhattan Project Truck Unearthed in Recovery Act Cleanup More Documents & Publications Los Alamos Lab Completes Excavation of Waste Disposal Site Used in the 1940s Protecting Recovery Act Cleanup Site During Massive Wildfire

353

Recovery Act Investment Accelerates Cleanup Work at DOE's Paducah Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investment Accelerates Cleanup Work at DOE's Paducah Investment Accelerates Cleanup Work at DOE's Paducah Site Recovery Act Investment Accelerates Cleanup Work at DOE's Paducah Site July 15, 2011 - 12:00pm Addthis UF6 piping deactivation The black inlet hose is attached to a negative air machine that allows Feed Plant cleanup workers to safely deactivate uranium hexafluoride (UF6) piping, seen at right of the lift supporting the crew. UF6 piping deactivation The black inlet hose is attached to a negative air machine that allows Feed Plant cleanup workers to safely deactivate uranium hexafluoride (UF6) piping, seen at right of the lift supporting the crew. Heavy equipment demo Heavy equipment demolishes the last part of the eastern third of the Feed Plant at the Paducah Site. Cleanup continues to prepare the remaining part of the complex, backgroundfor demolition later.

354

DOE Completes TRU Waste Cleanup at Bettis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRU Waste Cleanup at Bettis TRU Waste Cleanup at Bettis DOE Completes TRU Waste Cleanup at Bettis September 23, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. - The U.S. Department of Energy (DOE) has successfully completed cleanup of all Cold War legacy transuranic (TRU) waste at the Bettis Atomic Power Laboratory (BAPL) near Pittsburgh, Pa., permanently disposing of it at the Waste Isolation Pilot Plant (WIPP). BAPL is the 20th site to be completely cleaned of legacy TRU waste. This milestone was achieved using approximately $640,000 of a $172 million investment from the American Recovery and Reinvestment Act to expedite legacy waste cleanup activities across the DOE complex. This summer, TRU waste cleanup was also completed at the Nuclear Radiation Development, LLC,

355

Systems for delivering liquified natural gas to an engine  

DOE Patents (OSTI)

A fuel delivery system includes a fuel tank configured to receive liquid natural gas. A first conduit extends from a vapor holding portion of the fuel tank to an economizer valve. A second conduit extends from a liquid holding portion of the fuel tank to the economizer valve. Fluid coupled to the economizer valve is a vaporizer which is heated by coolant from the engine and is positioned below the fuel tank. The economizer valve selectively withdraws either liquid natural gas or vaporized natural gas from the fuel tank depending on the pressure within the vapor holding portion of the fuel tank. A delivery conduit extends from the vaporizer to the engine. A return conduit having a check valve formed therein extends from the delivery conduit to the vapor holding portion of the fuel tank for pressurizing the fuel tank.

Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); O' Brien, James E. (Idaho Falls, ID); Siahpush, Ali S. (Idaho Falls, ID); Brown, Kevin B. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

356

Thermal chemical recuperation method and system for use with gas turbine systems  

DOE Patents (OSTI)

A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

Yang, W.C.; Newby, R.A.; Bannister, R.L.

1999-04-27T23:59:59.000Z

357

Thermal chemical recuperation method and system for use with gas turbine systems  

DOE Patents (OSTI)

A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

Yang, Wen-Ching (Export, PA); Newby, Richard A. (Pittsburgh, PA); Bannister, Ronald L. (Winter Springs, FL)

1999-01-01T23:59:59.000Z

358

Integrated exhaust gas recirculation and charge cooling system  

SciTech Connect

An intake system for an internal combustion engine comprises an exhaust driven turbocharger configured to deliver compressed intake charge, comprising exhaust gas from the exhaust system and ambient air, through an intake charge conduit and to cylinders of the internal combustion engine. An intake charge cooler is in fluid communication with the intake charge conduit. A cooling system, independent of the cooling system for the internal combustion engine, is in fluid communication with the intake charge cooler through a cooling system conduit. A coolant pump delivers a low temperature cooling medium from the cooling system to and through the intake charge cooler for the transfer of heat from the compressed intake charge thereto. A low temperature cooler receives the heated cooling medium through the cooling system conduit for the transfer or heat therefrom.

Wu, Ko-Jen

2013-12-10T23:59:59.000Z

359

TRUEX process solvent cleanup with solid sorbents  

SciTech Connect

Solid sorbents, alumina, silica gel, and Amberlyst A-26 have been tested for the cleanup of degraded TRUEX-NPH solvent. A sodium carbonate scrub alone does not completely remove acidic degradation products from highly degraded solvent and cannot restore the stripping performance of the solvent. By following the carbonate scrub with either neutral alumina or Amberlyst A-26 anion exchange resin, the performance of the TRUEX-NPH is substantially restored. The degraded TRUEX-NPH was characterized before and after treatment by supercritical fluid chromatography. Its performance was evaluated by americium distribution ratios, phase-separation times, and lauric acid distribution coefficients. 17 refs., 2 figs., 5 tabs.

Tse, Pui-Kwan; Reichley-Yinger, L.; Vandegrift, G.F.

1989-01-01T23:59:59.000Z

360

Assessment of Nuclear Safety Culture at the Idaho Cleanup Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oversight Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project May 2011 November 2012 Office of Safety and Emergency...

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EM Risk and Cleanup Decision Making Presentation by Mark Gilbertson...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AND CLEANUP DECISION MAKING www.em.doe.gov 1 Mark Gilbertson Deputy Assistant Secretary for Site Restoration Office of Environmental Management May 31, 2012 Presented to...

362

Recovery Act funding accelerates cleanup of Idaho Site, Creates...  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act funding accelerates cleanup of Idaho Site, Creates jobs in community IDAHO FALLS American Recovery and Reinvestment Act (ARRA) funding has accelerated a project...

363

IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact: Brad Bugger (208) 526-0833 For Immediate Release: Wednesday, June 29, 2011 IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER Idaho Falls, ID The...

364

IMPORTANT CLEANUP PROJECT TO RESUME AT IDAHO NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

the Department of Energy for other cleanup work at the INL, including decontaminating and decommissioning three nuclear reactors - started in 2005 and completed last year. That...

365

Manhattan Project truck unearthed at landfill cleanup site  

NLE Websites -- All DOE Office Websites (Extended Search)

Phonebook Calendar Video Newsroom News Releases News Releases - 2011 April Manhattan project truck Manhattan Project truck unearthed at landfill cleanup site A LANL...

366

ORNL research reveals new challenges for mercury cleanup | ornl...  

NLE Websites -- All DOE Office Websites (Extended Search)

Jennifer Brouner Communications 865.241.0709 ORNL research reveals new challenges for mercury cleanup ORNL researchers are learning more about the microbial processes that convert...

367

Engineering analysis of biomass gasifier product gas cleaning technology  

DOE Green Energy (OSTI)

For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

1986-08-01T23:59:59.000Z

368

Use of influence diagrams in gas transfer system option prioritization  

DOE Green Energy (OSTI)

A formal decision-analysis methodology was applied to aid the Department of Energy (DOE) in deciding which of several gas transfer system (GTS) options should be selected. The decision objectives for this case study, i.e., risk and cost, were directly derived from the DOE guidelines. Influence diagrams were used to define the structure of the decision problem and clearly delineate the flow if information. A set of performance matrices wee used in conjunction with the influence diagrams to assess and evaluate the degree to which the objectives of the case study were met. These performance measures were extracted from technical models, design and operating data, and professional judgments. The results were aggregated to provide an overall evaluation of the different design options of the gas transfer system. Consequently, the results of this analysis were used as an aid to DOE to select a viable GTS option.

Heger, A.S. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Garcia, M.D. [Los Alamos National Lab., NM (United States)

1995-08-01T23:59:59.000Z

369

Functional requirements for gas characterization system computer software  

DOE Green Energy (OSTI)

This document provides the Functional Requirements for the Computer Software operating the Gas Characterization System (GCS), which monitors the combustible gasses in the vapor space of selected tanks. Necessary computer functions are defined to support design, testing, operation, and change control. The GCS requires several individual computers to address the control and data acquisition functions of instruments and sensors. These computers are networked for communication, and must multi-task to accommodate operation in parallel.

Tate, D.D.

1996-01-01T23:59:59.000Z

370

THERMAL HYDRAULIC ANALYSIS OF A GAS TEST LOOP SYSTEM  

Science Conference Proceedings (OSTI)

This paper discusses thermal hydraulic calculations for a Gas Test Loop (GTL) system designed to provide a high intensity fast-flux irradiation environment for testing fuels and materials for advanced concept nuclear reactors. To assess the performance of candidate reactor fuels, these fuels must be irradiated under actual fast reactor flux conditions and operating environments, preferably in an existing irradiation facility [1]. Potential users of the GTL include the Generation IV Reactor Program, the Advanced Fuel Cycle Initiative and Space Nuclear Programs.

Donna Post Guillen; James E. Fisher

2005-11-01T23:59:59.000Z

371

Cover and startup gas supply system for solid oxide fuel cell generator  

DOE Patents (OSTI)

A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.

Singh, Prabhakar (Export, PA); George, Raymond A. (Pittsburgh, PA)

1999-01-01T23:59:59.000Z

372

Cover and startup gas supply system for solid oxide fuel cell generator  

DOE Patents (OSTI)

A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.

Singh, P.; George, R.A.

1999-07-27T23:59:59.000Z

373

An acid-gas removal system for upgrading subquality natural gas  

SciTech Connect

The objective of this project is to develop systems to reduce the cost of treating subquality natural gas. Based on over 1,000 laboratory experiments on vapor-liquid equilibria and mass transfer and simulation studies, the use of N-Formyl Morpholine as a solvent together with structured packings has the following advantages: high capacity for H{sub 2}S and CO{sub 2} removal; little or no refrigeration required; less loss of hydrocarbons (CH{sub 4}, C{sub 2}-C{sub 6}); and dehydration potential. To verify these findings and to obtain additional data base for scale-up, a field test unit capable of processing 1MMSCF/d of natural gas has been installed at the Shell Western E and P Inc. (SWEPI) Fandango processing plant site. The results of the testing at the Fandango site will be presented when available.

Palla, N.; Lee, A.L. [Inst. of Gas Technology, Chicago, IL (United States); Leppin, D. [Gas Research Inst., Chicago, IL (United States); Shoemaker, H.D. [USDOE Morgantown Energy Technology Center, WV (United States); Hooper, H.M.; Emmrich, G. [Krupp Koppers GmbH, Essen (Germany); Moore, T.F.

1996-09-01T23:59:59.000Z

374

Water augmented indirectly-fired gas turbine systems and method  

SciTech Connect

An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

Bechtel, Thomas F. (Lebanon, PA); Parsons, Jr., Edward J. (Morgantown, WV)

1992-01-01T23:59:59.000Z

375

Water augmented indirectly-fired gas turbine system and method  

DOE Patents (OSTI)

An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a high driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1000{degrees}C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

Bechtel, T.F.; Parsons, E.J. Jr.

1991-12-31T23:59:59.000Z

376

Water augmented indirectly-fired gas turbine system and method  

DOE Patents (OSTI)

An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a high driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1000[degrees]C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

Bechtel, T.F.; Parsons, E.J. Jr.

1991-01-01T23:59:59.000Z

377

This fact sheet describes the environmental cleanup activities the U.S. Departme  

Office of Legacy Management (LM)

environmental cleanup activities the U.S. Department of Energy Grand Junction Projects Office is environmental cleanup activities the U.S. Department of Energy Grand Junction Projects Office is conducting at the Monticello Mill Tailings Site in Monticello, Utah. These activities are being performed in accordance with Federal and State environmental laws. Background The original Monticello mill was built in 1942 to provide an additional supply of vanadium during World War II. Vanadium, an element used to strengthen steel, and uranium were milled intermittently until 1960. Mill tailings are sand-like material that remains after uranium has been extracted from the ore. Tailings contain naturally occurring materials that radioactively decay to radium and produce radon, a radioactive gas. If inhaled over a long period of time, particularly in enclosed areas,

378

A High Efficiency PSOFC/ATS-Gas Turbine Power System  

DOE Green Energy (OSTI)

A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

2001-02-01T23:59:59.000Z

379

Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using  

E-Print Network (OSTI)

Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission and the oil & gas industries. The combustion system used in Solar's products are discussed along- bility for the introduction of new combustion systems for gas turbine products to enhance fuel

Ponce, V. Miguel

380

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS  

DOE Green Energy (OSTI)

A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated system that exceeds the U.S. Department of Energy (DOE) goal of 40% (HHV) efficiency at emission levels well below the DOE suggested limits; and (5) An advanced biofueled power system whose levelized cost of electricity can be competitive with other new power system alternatives.

David Liscinsky

2002-10-20T23:59:59.000Z

382

EM, UCOR Quickly Reconcile Oak Ridge Cleanup Contract | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM, UCOR Quickly Reconcile Oak Ridge Cleanup Contract EM, UCOR Quickly Reconcile Oak Ridge Cleanup Contract EM, UCOR Quickly Reconcile Oak Ridge Cleanup Contract July 12, 2012 - 12:00pm Addthis DOE and UCOR employees held an event today celebrating the recent contract reconciliation. DOE and UCOR employees held an event today celebrating the recent contract reconciliation. OAK RIDGE, Tenn. - At a ceremony today, Oak Ridge's Environmental Management (EM) program and its prime contractor, URS | CH2M Oak Ridge, LLC (UCOR) celebrated the completion of the site's reconciled cleanup contract. The newly aligned contract accurately specifies the projects and activities that the site's cleanup contractor will perform. "The speedy completion of this process is a testament to DOE and UCOR contract teams and managers," said Sue Cange, acting manager of the Oak

383

The Application of NEPA to CERCLA Cleanups | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Application of NEPA to CERCLA Cleanups The Application of NEPA to CERCLA Cleanups The Application of NEPA to CERCLA Cleanups On March 31, 1994, officials from the Departrnent of Energy (DOE), the Environmental Protection Agency (EPA), and the Council on Environmental Quality (CEQ) met with then Acting Assistant Attorney General Lois Schiffer and other representatives of the Department of Justice (DOJ) to discuss the issue of the relationship of the National Environmental Policy Act (NEPA) to the cleanup of federal facilities under the CERCLA Superfund program. The meeting focused on proposals for addressing problems that have arisen from DOE's attempts to integrate the procedural and analytical approaches of NEPA into the CERCLA cleanup process. This document describes what was discussed at the meeting and the consensus reached there.

384

Final Rocky Flats Cleanup Agreement, July 19, 1996 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Flats Cleanup Agreement Rocky Flats Cleanup Agreement State Colorado Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA/RCRA Scope Summary Establish the regulatory framework for achieving the ultimate cleanup of the Rocky Flats Site. Parties DOE; US EPA; The State of Colorado Date 7/19/1996 SCOPE * Establish the regulatory framework for achieving the ultimate cleanup of the Rocky Flats Site. * Ensure that the environmental impacts associated with activities at the Site will continue to be investigated and that appropriate response actions are taken. * Establish a procedural framework and schedule for developing, implementing, and monitoring appropriate response actions at the site. * Coordinate all of DOE's cleanup obligations under CERCLA, RCRA, and the Colorado

385

Secretary Chu Highlights Recovery Act Cleanup Progress | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Highlights Recovery Act Cleanup Progress Highlights Recovery Act Cleanup Progress Secretary Chu Highlights Recovery Act Cleanup Progress March 23, 2010 - 12:00am Addthis OAK RIDGE, TENN. - Energy Secretary Steven Chu announced today that the Department's Environmental Management program has spent more than $1.5 billion in American Recovery and Reinvestment Act funds on cleanup projects around the country - 25 percent of the program's total - creating an estimated 14,400 jobs since the start of the Recovery Act. "Because of the Recovery Act, programs around the country have been able to expand, hire and continue our important cleanup work," said Secretary Chu. "These investments have played a key role in helping local economies recover, creating jobs and supporting small businesses in dozens of

386

Lab receives an additional $19 million for environmental cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab receives an additional $19 million for environmental cleanup Lab receives an additional $19 million for environmental cleanup Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Lab receives an additional $19 million for environmental cleanup Lab also selects local businesses for five-year contracts June 1, 2013 Governor Susana Martinez visited the Lab in May to urge additional funding for cleanup Governor Susana Martinez visited the Lab in May to urge additional funding for cleanup Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Thanks to support from New Mexico Senators Tom Udall and Martin Heinrich, Representatives Ben Ray Lujan and Steve Pearce and Governor Susana Martinez, the Lab has received an additional $19 million for environmental

387

DOE Surpasses Cleanup Target Ahead of Schedule | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surpasses Cleanup Target Ahead of Schedule Surpasses Cleanup Target Ahead of Schedule DOE Surpasses Cleanup Target Ahead of Schedule May 12, 2011 - 12:00am Addthis WASHINGTON, D.C. - The U.S. Department of Energy announced today it has surpassed one of the Obama Administration's High Priority Performance Goals five months ahead of schedule in its effort to clean up the legacy of the Cold War. Through a $6 billion American Recovery and Reinvestment Act investment, the Department's cleanup footprint has been reduced by 45 percent, from 931 square miles to 516 square miles. By achieving this reduction, the Department is on track to reduce its overall cleanup footprint by approximately 90 percent by 2015. Footprint reduction lowers costs associated with site surveillance and maintenance and helps protect the

388

The Application of NEPA to CERCLA Cleanups | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Application of NEPA to CERCLA Cleanups The Application of NEPA to CERCLA Cleanups The Application of NEPA to CERCLA Cleanups On March 31, 1994, officials from the Departrnent of Energy (DOE), the Environmental Protection Agency (EPA), and the Council on Environmental Quality (CEQ) met with then Acting Assistant Attorney General Lois Schiffer and other representatives of the Department of Justice (DOJ) to discuss the issue of the relationship of the National Environmental Policy Act (NEPA) to the cleanup of federal facilities under the CERCLA Superfund program. The meeting focused on proposals for addressing problems that have arisen from DOE's attempts to integrate the procedural and analytical approaches of NEPA into the CERCLA cleanup process. This document describes what was discussed at the meeting and the consensus reached there.

389

DOE Surpasses Cleanup Target Ahead of Schedule: Recovery Act Investment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Surpasses Cleanup Target Ahead of Schedule: Recovery Act DOE Surpasses Cleanup Target Ahead of Schedule: Recovery Act Investment Saves Money, Trains Workers, Creates Jobs DOE Surpasses Cleanup Target Ahead of Schedule: Recovery Act Investment Saves Money, Trains Workers, Creates Jobs May 12, 2011 - 12:00pm Addthis Media Contact (202) 586-4940 WASHINGTON, D.C. - The U.S. Department of Energy announced today it has surpassed one of the Obama Administration's High Priority Performance Goals five months ahead of schedule in its effort to clean up the legacy of the Cold War. Through a $6 billion American Recovery and Reinvestment Act investment, the Department's cleanup footprint has been reduced by 45 percent, from 931 square miles to 516 square miles. By achieving this reduction, the Department is on track to reduce its overall cleanup footprint by

390

IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER June 29, 2011 - 12:00pm Addthis Media Contact Brad Bugger (208) 526-0833 Idaho Falls, ID - The Department of Energy Idaho Operations Office today announced that James Cooper has been named deputy manager of its highly-successful Idaho Cleanup Project, which oversees the environmental cleanup and waste management mission at DOE's Idaho site. Cooper has more than 30 years of experience in commercial and government engineering and management, including an eight month stint as acting Deputy Manager for EM. He has extensive experience in business management associated with program planning, development and administration. His experience includes all project phases from conceptual planning, cost and

391

EM's December Newsletter Recaps Cold War Cleanup Accomplishments in 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM's December Newsletter Recaps Cold War Cleanup Accomplishments EM's December Newsletter Recaps Cold War Cleanup Accomplishments in 2013 EM's December Newsletter Recaps Cold War Cleanup Accomplishments in 2013 December 24, 2013 - 12:00pm Addthis WASHINGTON, D.C. - On Dec. 19, EM completed demolition of the 4.8 million-square-foot Building K-25 at Oak Ridge, a milestone that capped a busy and successful 2013 for the Cold War cleanup program. The demolition was one of EM's most significant achievements this year, and it is captured in this newsletter issue along with dozens of other notable accomplishments across the EM complex. Read about EM's productive year, including cleanup of buildings and waste sites along the Columbia River in Washington state, progress in the disposition of transuranic waste at Idaho and other sites and preparations for a major demolition at the West Valley

392

Colorado and the Accelerated Cleanup at Rocky Flats  

SciTech Connect

When the Rocky Flats closure project was declared complete in October 2005, it was the largest environmental cleanup to date. Even more impressive, it was ahead of schedule and well under budget. Several factors combined to produce this success including a performance-based contract with financial incentives, development and application of innovative technologies, and a regulator-backed accelerated approach to the cleanup process. The factor in this success in which the State of Colorado had the largest role was in developing and enforcing the Rocky Flats Cleanup Agreement. In compliance with this agreement, cleanup was accomplished by means of multiple interim actions that led to a comprehensive final decision at the end. A key element that allowed the accelerated cleanup was constant consultation among DOE, its contractor, and the regulators plus collaboration with stakeholders. (authors)

Spreng, C. [Public Health and Environment, Colorado Dept., Denver, CO (United States)

2007-07-01T23:59:59.000Z

393

All-metal valve structure for gas systems  

DOE Patents (OSTI)

A valve assembly with a resilient metal seat member is disclosed for providing a gas-tight seal in a gas handling system. The valve assembly also includes a valve element for sealing against the valve seat member; and an actuating means for operating the valve element. The valve seat member is a one-piece stainless steel ring having a central valve port and peripheral mounting flange, and an annular corrugation in between. A groove between the first and second ridges serves as a flexure zone during operation of the valve member and thus provides the seating pressure between the inner ridge or valve seat and the valve element. The outer annular ridge has a diameter less than said valve element to limit the seating motion of the valve element, preventing non-elastic deformation of the seat member.

Baker, R.W.; Pawlak, D.A.; Ramey, A.J.

1982-06-10T23:59:59.000Z

394

A Glove Box Enclosed Gas-Tungsten Arc Welding System  

SciTech Connect

This report describes an inert atmosphere enclosed gas-tungsten arc welding system which has been assembled in support of the MC2730, MC2730A and MC 3500 Radioisotope Thermoelectric Generator (RTG) Enhanced Surveillance Program. One goal of this program is to fabricate welds with microstructures and impurity levels which are similar to production heat source welds previously produced at Los Alamos National Laboratory and the Mound Facility. These welds will subsequently be used for high temperature creep testing as part of the overall component lifetime assessment. In order to maximize the utility of the welding system, means for local control of the arc atmosphere have been incorporated and a wide range of welding environments can easily be evaluated. The gas-tungsten arc welding system used in the assembly is computer controlled, includes two-axis and rotary motion, and can be operated in either continuous or pulsed modes. The system can therefore be used for detailed research studies of welding impurity effects, development of prototype weld schedules, or to mimic a significant range of production-like welding conditions. Fixturing for fabrication of high temperature creep test samples have been designed and constructed, and weld schedules for grip-tab and test welds have been developed. The microstructure of these welds have been evaluated and are consistent with those used during RTG production.

Reevr, E, M; Robino, C.V.

1999-07-01T23:59:59.000Z

395

The best use of biomass? Greenhouse gas lifecycle analysis of predicted pyrolysis biochar systems.  

E-Print Network (OSTI)

??Life cycle analysis is carried out for 11 predicted configurations of pyrolysis biochar systems to determine greenhouse gas balance, using an original spreadsheet model. System (more)

Hammond, James A R

2009-01-01T23:59:59.000Z

396

Eastern gas shale database development program. Annual report 1 May 1983-30 April 1984  

Science Conference Proceedings (OSTI)

The Gas Research Institute (GRI) Eastern Gas Data System is an interactive information resource developed to provide ready access to substantive data on wells producing from the Devonian shales. The system is a computerized database which contains descriptive and historical geological and engineering data on a large number of Devonian shale gas wells in the Appalachian Basin. The principal purpose of the system is to meet the requirements for technical data of gas producers, researchers and GRI. The data is provided by cooperating industry sources, many of whom were also instrumental in the original definition and design of the system. The information which has been collected and compiled on individual wells includes data on identification, location, elevation, drilling, geology, cementing, perforation, stimulation, cleanup, and production histories. The Eastern Gas Data System currently contains extensive information on over 620 Devonian shale gas wells completed in the Appalachian Basin.

DeVos, D.R.; Hasselback, F.W.; Hoffmann, R.L.; Lerner, B.J.; May, J.E.

1984-07-01T23:59:59.000Z

397

Optimization of non-condensable gas removal system in geothermal power plant  

SciTech Connect

Optimization of non-condensable gas (hereinafter called N.C.G.) removal system in geothermal power station, in a special case that the geothermal steam contains large amount of noncondensable gas, is discussed. Four different alternative N.C.G. removal systems are studied, which are steam jet gas ejectors, centrifugal gas compressors, combined systems of steam ejectors and centrifugal compressors and back pressure turbine-without N.C.G. removal system. This report summarizes the results and gives recommendations as to the most suitable gas removal system and also as to optimum condenser pressure, in cases of large quantity N.C.G. content in geothermal steam.

Tajima, S.; Nomura, M.

1982-10-01T23:59:59.000Z

398

Gas Pipeline ASD Application Study: Business Plan for the Application of ASDs to a Section of a Gas Pipeline System  

Science Conference Proceedings (OSTI)

An adjustable speed drive (ASD) offers opportunities to operate a gas pipeline in a more energy efficient manner. This report focuses on the appropriate system requirements and includes data used to determine those requirements. It also provides a business plan for progressively applying ASDs to a 600-mile section of gas pipeline in order to realize full energy savings and operational improvements.

1999-04-02T23:59:59.000Z

399

Treating exhaust gas from a pressurized fluidized bed reaction system  

DOE Patents (OSTI)

Hot gases from a pressurized fluidized bed reactor system are purified. Under super atmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a filtrate cake on the surface of the separator, and a reducing agent--such as an NO{sub x} reducing agent (like ammonia)--is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1--20 cm/s) during passage of the gas through the filtrate cake while at super atmospheric pressure. Separation takes place within a distinct pressure vessel, the interior of which is at a pressure of about 2--100 bar, and introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine). 8 figs.

Isaksson, J.; Koskinen, J.

1995-08-22T23:59:59.000Z

400

Advanced Combustion Systems for Next Generation Gas Turbines  

SciTech Connect

Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program. Emissions measurements were obtained over a variety of operating conditions. A kinetics model is formulated to describe the emissions performance. The model is a tool for determining the conditions for low emission performance. The flow field was also modeled using CFD. A first prototype was developed for low emission performance on natural gas. The design utilized the tools anchored to the atmospheric prototype performance. The 1/6 scale combustor was designed for low emission performance in GE's FA+e gas turbine. A second prototype was developed to evaluate changes in the design approach. The prototype was developed at a 1/10 scale for low emission performance in GE's FA+e gas turbine. The performance of the first two prototypes gave a strong indication of the best design approach. Review of the emission results led to the development of a 3rd prototype to further reduce the combustor emissions. The original plan to produce a scaled-up prototype was pushed out beyond the scope of the current program. The 3rd prototype was designed at 1/10 scale and targeted further reductions in the full-speed full-load emissions.

Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

EIA - Natural Gas Pipeline Network - Region To Region System ...  

U.S. Energy Information Administration (EIA)

Home > Natural Gas > About U.S. Natural Gas Pipelines ... The EIA has determined that the informational map displays here do not raise security ...

402

AN ADVISORY SYSTEM FOR THE DEVELOPMENT OF UNCONVENTIONAL GAS RESERVOIRS.  

E-Print Network (OSTI)

??With the rapidly increasing demand for energy and the increasing prices for oil and gas, the role of unconventional gas reservoirs (UGRs) as energy sources (more)

Wei, Yunan

2010-01-01T23:59:59.000Z

403

A comparison between the performance of different silencer designs for gas turbine exhaust systems  

E-Print Network (OSTI)

A comparison between the performance of different silencer designs for gas turbine exhaust systems in more specialist applications, such as the exhaust systems of gas turbines, different silencer experiments are carried out with the aim of investigating performance of silencers used on gas turbines

Paris-Sud XI, Université de

404

Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems  

E-Print Network (OSTI)

Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems annual variations of greenhouse gas emissions from cropping systems and effects of land management a powerful tool for estimating greenhouse gas emissions from terrestrial ecosystems. INDEX TERMS: 1610 Global

405

Guidelines for Induced Flue Gas Recirculation: Volume 1: Reducing Air/Gas System Resistance and Enhancing Fan Capacity  

Science Conference Proceedings (OSTI)

This document guides users through a logical sequence, or "road map," of activities and decisions for optimizing solutions for fans, ducts, and related equipment in fossil plant combustion air and gas systems.

1999-12-13T23:59:59.000Z

406

System Modeling of Gas Engine Driven Heat Pump  

SciTech Connect

To improve the system performance of the GHP, modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated by using ORNL Modulating Heat Pump Design Software, which is used to predict steady-state heating and cooling performance of variable-speed vapor compression air-to-air heat pumps for a wide range of operational variables. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using desiccant system regenerated by waste heat from engine, the SHR can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% in rated operating conditions.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL); Shen, Bo [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

2012-01-01T23:59:59.000Z

407

Advanced IGCC power systems for the United States  

SciTech Connect

Integrated coal gasification combined-cycle (IGCC) power systems offer the potential of superior efficiency and environmental performance over power plants using pulverized coal-fired boilers with scrubbers to generate electricity in the United States. The Cool Water plant is demonstrating the feasibility of an IGCC system using an entrained-bed gasifier and ''cold'' gas cleanup technology. Technology is now being developed to simplify the IGCC system, increase its efficiency and reduce its capital costs. Hot gas sulfur and particulate cleanup is the most promising technology option for the gas supply block. Improved performance is also available from the power island by use of high-efficiency aircraft derivative turbines. Progress in these technologies and the exceptional match of these IGCC systems to the projected needs of the utility industry is presented.

Wieber, P.R.; Halow, J.S.

1986-01-01T23:59:59.000Z

408

Hazardous Sites Cleanup Act (Pennsylvania) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Sites Cleanup Act (Pennsylvania) Hazardous Sites Cleanup Act (Pennsylvania) Hazardous Sites Cleanup Act (Pennsylvania) < Back Eligibility Agricultural Construction Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Pennsylvania Program Type Environmental Regulations Grant Program Provider Department of Environmental Protection This Act tasks the Pennsylvania Department of Environmental Protection with regulating hazardous waste. The department is charged with siting, review, permitting and development of hazardous waste treatment and disposal facilities in order to protect public health and safety, foster economic growth and protect the environment. Pennsylvania law establishes a fund to provide to the Department the

409

Tritium research laboratory cleanup and transition project final report  

Science Conference Proceedings (OSTI)

This Tritium Research Laboratory Cleanup and Transition Project Final Report provides a high-level summary of this project`s multidimensional accomplishments. Throughout this report references are provided for in-depth information concerning the various topical areas. Project related records also offer solutions to many of the technical and or administrative challenges that such a cleanup effort requires. These documents and the experience obtained during this effort are valuable resources to the DOE, which has more than 1200 other process contaminated facilities awaiting cleanup and reapplication or demolition.

Johnson, A.J.

1997-02-01T23:59:59.000Z

410

NETL: Gasification Systems - Advanced Acid Gas Separation Technology for  

NLE Websites -- All DOE Office Websites (Extended Search)

Feed Systems Feed Systems Advanced Acid Gas Separation Technology for the Utilization of Low-Rank Coals Project Number: DE-FE0007759 Refinery offgas PSA at Air Products' facility in Baytown, TX Refinery offgas PSA at Air Products' facility in Baytown, TX. Air Products, in collaboration with the University of North Dakota Energy and Environmental Research Center (EERC), is testing its Sour Pressure Swing Adsorption (Sour PSA) process that separates syngas into an hydrogen-rich stream and second stream comprising of sulfur compounds(primarily hydrogen sulfide)carbon dioxide (CO2), and other impurities. The adsorbent technology testing that has been performed to date utilized syngas streams derived from higher rank coals and petcoke. Using data from experiments based on petcoke-derived syngas, replacing the

411

Fluid origin, gas fluxes and plumbing system in the sediment-hosted Salton Sea Geothermal System (California, USA)  

E-Print Network (OSTI)

Fluid origin, gas fluxes and plumbing system in the sediment-hosted Salton Sea Geothermal System Available online 12 June 2011 Keywords: Salton Sea Geothermal System hydrothermal seeps gas and water geochemistry flux measurements mantle The Salton Sea Geothermal System (California) is an easily accessible

Mazzini, Adriano

412

Study of gas contaminants and interaction with materials in RPC closed loop system  

E-Print Network (OSTI)

Resistive Plate Counters (RPC) detectors at the Large Hadron Collider (LHC) experiments use gas recirculation systems to cope with large gas mixture volumes and costs. In this paper a long-term systematic study about gas purifiers, gas contaminants and detector performance is discussed. The study aims at measuring the lifetime of purifiers with new and used cartridge material along with contaminants release in the gas system. During the data-taking the response of several RPC double-gap detectors was monitored in order to characterize the correlation between dark currents, filter status and gas contaminants.

S. Colafranceschi; R. Aurilio; L. Benussi; S. Bianco; L. Passamonti; D. Piccolo; D. Pierluigi; A. Russo; M. Ferrini; T. Greci; G. Saviano; C. Vendittozzi; M. Abbrescia; C. Calabria; A. Colaleo; G. Iaselli; M. Maggi; S. Nuzzo; G. Pugliese; P. Verwilligen; A. Sharma

2013-02-21T23:59:59.000Z

413

Study of gas contaminants and interaction with materials in RPC closed loop system  

E-Print Network (OSTI)

Resistive Plate Counters (RPC) detectors at the Large Hadron Collider (LHC) experiments use gas recirculation systems to cope with large gas mixture volumes and costs. In this paper a long-term systematic study about gas purifiers, gas contaminants and detector performance is discussed. The study aims at measuring the lifetime of purifiers with new and used cartridge material along with contaminants release in the gas system. During the data-taking the response of several RPC double-gap detectors was monitored in order to characterize the correlation between dark currents, filter status and gas contaminants.

Colafranceschi, S; Benussi, L; Bianco, S; Passamonti, L; Piccolo, D; Pierluigi, D; Russo, A; Ferrini, M; Greci, T; Saviano, G; Vendittozzi, C; Abbrescia, M; Calabria, C; Colaleo, A; Iaselli, G; Maggi, M; Nuzzo, S; Pugliese, G; Verwilligen, P; Sharma, A

2013-01-01T23:59:59.000Z

414

Analysis of Heating Systems and Scale of Natural Gas-Condensing Water Boilers in Northern Zones  

E-Print Network (OSTI)

In this paper, various heating systems and scale of the natural gas-condensing water boiler in northern zones are discussed, based on a technical-economic analysis of the heating systems of natural gas condensing water boilers in northern zones. The analysis shows that the low-temperature radiant floor heating system is more suitable for natural gas- condensing water boilers. It is more comfortable, more economical, and can save more energy than other heating systems.

Wu, Y.; Wang, S.; Pan, S.; Shi, Y.

2006-01-01T23:59:59.000Z

415

Summary report on the design of the retained gas sampler system (retained gas sampler, extruder and extractor)  

SciTech Connect

This document summarizes work performs in Fiscal Year 1994 to develop the three main components of Retained Gas Sampler System (RGSS). These primary components are the Retained Gas Sampler (RGS), the Retained Gas Extruder (RGE), and the Retained Gas Extractor (RGEx). The RGS is based on the Westinghouse Hanford Company (WHC) Universal Sampler design, and includes modifications to reduce gas leakage. The primary data priorities for the RGSS are to measure the void fraction and the flammable gas concentration in the waste sample. Significant progress has been made in developing the RGSS. The RGSS is being developed by WHC to extract a representative waste sample from a Flammable Gas Watch List Tanks and to measure both the amount and composition of free and {open_quotes}bound{close_quotes} gases. Sudden releases of flammable gas mixtures are a safety concern for normal waste storage operations and eventual waste retrieval. Flow visualization testing was used to identify important fluid dynamic issues related to the sampling process. The primary data priorities for the RGSS are to measure the void fraction and the flammable gas concentration in the waste sample. The safety analysis for the RGSS is being performed by Los Alamos National Laboratory and is more than sixty percent (60%) complete.

Wootan, D.W.; Bolden, R.C.; Bridges, A.E.; Cannon, N.S.; Chastain, S.A.; Hey, B.E.; Knight, R.C.; Linschooten, C.G.; Pitner, A.L.; Webb, B.J.

1994-09-29T23:59:59.000Z

416

Advanced Materials for Mercury 50 Gas Turbine Combustion System  

SciTech Connect

Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60,

Price, Jeffrey

2008-09-30T23:59:59.000Z

417

Advanced Materials for Mercury 50 Gas Turbine Combustion System  

DOE Green Energy (OSTI)

Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70,

Price, Jeffrey

2008-09-30T23:59:59.000Z

418

EIA - The National Energy Modeling System: An Overview 2003-Oil and Gas  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module The National Energy Modeling System: An Overview 2003 Oil and Gas Supply Module The oil and gas supply module (OGSM) consists of a series of process submodules that project the availability of: Domestic crude oil production and dry natural gas production from onshore, offshore, and Alaskan reservoirs Imported pipeline–quality gas from Mexico and Canada Imported liquefied natural gas. Figure 12. Oil and Gas Supply Module Regions. Need help, contact the National Energy Information Center at 202-202-586-8800. Figure 13. Oil and Gas Suppply Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Oil and Gas Supply Module Table. Need help, contact the National Energy Information Center at 202-586-8800.

419

Independent Oversight Activity Report, Idaho Cleanup Project - November  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activity Report, Idaho Cleanup Project - Activity Report, Idaho Cleanup Project - November 2013 Independent Oversight Activity Report, Idaho Cleanup Project - November 2013 November 2013 Pre-restart Visit to the Integrated Waste Treatment Unit by the Defense Nuclear Facilities Safety Board [HIAR-ICP-2013-11-19] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from November 19-22, 2013, at the Integrated Waste Treatment Unit facility of the Idaho Cleanup Project. The activity consisted of the HSS Site Lead touring the newly modified IWTU facility to observe the many process and equipment modifications that have been made since the facility was shut down. In addition, the Site Lead

420

Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Progress:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Progress: Recovery Act Funding Allows Demolition of Power Houses Ahead of Schedule Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Progress: Recovery Act Funding Allows Demolition of Power Houses Ahead of Schedule March 4, 2011 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE (509) 376-5365 Cameron.Hardy@rl.doe.gov Andre Armstrong, CHPRC (509) 376-6773 andre_l_armstrong@rl.g RICHLAND, WASH. - Today's safe and successful explosive demolition at Hanford's 200 Area by U.S. Department of Energy (DOE) contractor CH2M HILL Plateau Remediation Company (CHPRC) is the latest reminder of progress being made on cleanup as a result of American Recovery and Reinvestment Act investments. "Recovery Act funds allowed us to accelerate the schedule for removing

Note: This page contains sample records for the topic "gas cleanup system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Independent Oversight Assessment, Idaho Cleanup Project Sodium Bearing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Cleanup Project Sodium Idaho Cleanup Project Sodium Bearing Waste Treatment Project - November 2012 Independent Oversight Assessment, Idaho Cleanup Project Sodium Bearing Waste Treatment Project - November 2012 November 2012 Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent assessment of nuclear safety culture at the DOE Sodium Bearing Waste Treatment Project (SBWTP). The primary objective of the evaluation was to provide information regarding the status of the safety culture at SBWTP. The data collection phase of the assessment occurred in April and May 2012. SBWTP is one of DOE's largest nuclear

422

Secretary Chu, Governor Gregoire Issue Statement on Hanford Cleanup |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu, Governor Gregoire Issue Statement on Hanford Cleanup Chu, Governor Gregoire Issue Statement on Hanford Cleanup Secretary Chu, Governor Gregoire Issue Statement on Hanford Cleanup January 15, 2013 - 7:35pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- U.S. Energy Secretary Steven Chu and Governor Chris Gregoire issued the following joint statement on the cleanup efforts underway at Hanford: "Over the past several months, the Department of Energy and the State of Washington have worked together closely to ensure the Waste Treatment Plant is on a stable path to resolving the technical issues, completing construction, and beginning to treat waste in the coming years. "Based on insight gathered from a number leading scientific experts, the Department is now confident construction activities at the High-Level Waste

423

2012 Congressional Nuclear Cleanup Caucus Briefings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Congressional Nuclear Cleanup Caucus Briefings 2 Congressional Nuclear Cleanup Caucus Briefings 2012 Congressional Nuclear Cleanup Caucus Briefings The Congressional Nuclear Cleanup Caucus serves as a way to brief members of Congress and their staff on EM headquarters and site activities, including budget, safety and project progress. 02/16/2012 - FY 2013 Budget Overview 03/07/2012 - Richland Operations Office, WA 03/21/2012 - Oak Ridge, TN 03/22/2012 - Portsmouth/Paducah Project Office, OH-KY 03/27/2012 - Safety Overview with Deputy Assistant Secretary for Safety & Security Program, Matthew Moury 03/28/2012 - Idaho Operations Office, ID 04/18/2012 - Savannah River Site, SC 04/19/2012 - Office of River Protection, WA More Documents & Publications Assistant Secretary Triay's FY 2012 EM Budget Rollout Presentation

424

EM SSAB Contributes Community Views to Clean-up Decisions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contributes Community Views to Clean-up Decisions Contributes Community Views to Clean-up Decisions 2011 Local Board Contributions The Environmental Management Site-Specific Advisory Board (EM SSAB) has a unique mandate to provide input regarding the cleanup of nuclear legacy sites to the Department of Energy's Office of Environmental Management (EM). Chartered under the Federal Advisory Committee Act, the EM SSAB today comprises eight local boards, located in Hanford, WA; Idaho Falls, ID: Los Alamos, NM; the Nevada National Security Site; Oak Ridge, TN; Paducah, KY; Portsmouth, OH; and the Savannah River Site, SC. EM has made public participation a fundamental component of its cleanup mission and has found that the EM SSAB, which draws upon diverse community

425

SRS Recovery Act Completes Major Lower Three Runs Project Cleanup |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRS Recovery Act Completes Major Lower Three Runs Project Cleanup SRS Recovery Act Completes Major Lower Three Runs Project Cleanup SRS Recovery Act Completes Major Lower Three Runs Project Cleanup American Recovery and Reinvestment Act can now claim that 85 percent of the Savannah River Site (SRS) has been cleaned up with the recent completion of the Lower Three Runs (stream) Project. Twenty miles long, Lower Three Runs leaves the main body of the 310-square mile site and runs through parts of Barnwell and Allendale Counties until it flows into the Savannah River. Government property on both sides of the stream acts as a buffer as it runs through privately-owned property. Completing this project reduces the site's footprint by another 10 percent. SRS Recovery Act Completes Major Lower Three Runs Project Cleanup More Documents & Publications

426

EM Leads Successful Workshop Supporting Fukushima Cleanup | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Successful Workshop Supporting Fukushima Cleanup Successful Workshop Supporting Fukushima Cleanup EM Leads Successful Workshop Supporting Fukushima Cleanup August 8, 2013 - 12:00pm Addthis TOKYO - An EM-led U.S. delegation conducted its third workshop last month to provide expertise to Japanese officials leading the cleanup of the Fukushima Daiichi Nuclear Power Plant site and surrounding area, this time addressing priorities identified by Japan's government agencies. At the request of the Japanese Ministry of Environment (MOE) and Ministry of Economy, Trade and Industry (METI), the delegation's technical experts discussed their experience related to the behavior of radioactive cesium in the environment and other topics. The delegation included representatives from Savannah River, Pacific Northwest, Lawrence Berkeley, Lawrence

427

F Reactor Area Cleanup Complete | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

F Reactor Area Cleanup Complete F Reactor Area Cleanup Complete F Reactor Area Cleanup Complete September 19, 2012 - 12:00pm Addthis Media Contact Cameron Hardy, DOE Cameron.Hardy@rl.doe.gov 509-376-5365 RICHLAND, Wash. - U.S. Department of Energy (DOE) contractors have cleaned up the F Reactor Area, the first reactor area at the Hanford Site in southeastern Washington state to be fully remediated. While six of Hanford's nine plutonium production reactors have been sealed up, or cocooned, the F Reactor Area is the first to have all of its associated buildings and waste sites cleaned up in addition to having its reactor sealed up. "The cleanup of the F Reactor Area shows the tremendous progress workers are making along Hanford's River Corridor," said Dave Huizenga, Senior Advisor for the DOE Office of Environmental Management. "The River

428

SRS Recovery Act Completes Major Lower Three Runs Project Cleanup |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRS Recovery Act Completes Major Lower Three Runs Project Cleanup SRS Recovery Act Completes Major Lower Three Runs Project Cleanup SRS Recovery Act Completes Major Lower Three Runs Project Cleanup American Recovery and Reinvestment Act can now claim that 85 percent of the Savannah River Site (SRS) has been cleaned up with the recent completion of the Lower Three Runs (stream) Project. Twenty miles long, Lower Three Runs leaves the main body of the 310-square mile site and runs through parts of Barnwell and Allendale Counties until it flows into the Savannah River. Government property on both sides of the stream acts as a buffer as it runs through privately-owned property. Completing this project reduces the site's footprint by another 10 percent. SRS Recovery Act Completes Major Lower Three Runs Project Cleanup More Documents & Publications

429

Independent Oversight Activity Report, Idaho Cleanup Project - November  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Activity Report, Idaho Cleanup Project - Independent Oversight Activity Report, Idaho Cleanup Project - November 2013 Independent Oversight Activity Report, Idaho Cleanup Project - November 2013 November 2013 Pre-restart Visit to the Integrated Waste Treatment Unit by the Defense Nuclear Facilities Safety Board [HIAR-ICP-2013-11-19] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from November 19-22, 2013, at the Integrated Waste Treatment Unit facility of the Idaho Cleanup Project. The activity consisted of the HSS Site Lead touring the newly modified IWTU facility to observe the many process and equipment modifications that have been made since the facility was shut down. In addition, the Site Lead

430

Idaho Site Completes Cleanup Milestone Ahead of Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

News Media Contact: News Media Contact: Erik Simpson (208) 360-0426 For Immediate Release Date: June 23, 2010 Idaho Site Completes Cleanup Milestone Ahead of Schedule Idaho Falls, ID � The Department of Energy�s Idaho Operations Office, through the efforts of its cleanup contractor, CH2M-WG Idaho (CWI), recently reached a key cleanup milestone three weeks ahead of schedule by completing the transfer of nearly 6.6 metric tons of spent nuclear fuel from wet to dry storage. �The transfer of spent nuclear fuel from wet to dry storage represents a major contract milestone completion by CWI, a five year endeavor,� said Jim Cooper, DOE-ID Acting Deputy Manager for the Idaho Cleanup Project. �Completion of this campaign places the spent fuel in a safer configuration for the environment, complies with DOE�s commitment to the

431

Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Progress:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Progress: Recovery Act Funding Allows Demolition of Power Houses Ahead of Schedule Latest 200 Area Demolition Offers Snapshot of Hanford Cleanup Progress: Recovery Act Funding Allows Demolition of Power Houses Ahead of Schedule March 4, 2011 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE (509) 376-5365 Cameron.Hardy@rl.doe.gov Andre Armstrong, CHPRC (509) 376-6773 andre_l_armstrong@rl.g RICHLAND, WASH. - Today's safe and successful explosive demolition at Hanford's 200 Area by U.S. Department of Energy (DOE) contractor CH2M HILL Plateau Remediation Company (CHPRC) is the latest reminder of progress being made on cleanup as a result of American Recovery and Reinvestment Act investments. "Recovery Act funds allowed us to accelerate the schedule for removing

432

New Contract Helps Portsmouth GDP Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contract Helps Portsmouth GDP Cleanup Contract Helps Portsmouth GDP Cleanup New Contract Helps Portsmouth GDP Cleanup August 18, 2010 - 10:47am Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs Last week, we took a closer look at the dismantling of the final W62 warhead, a major milestone in the nation's efforts to reduce the amount of nuclear weapons in its stockpile. But after five decades of nuclear weapons production, the Cold War didn't just create a stockpile -- it left 1.5 million cubic meters of solid waste and 88 million gallons of liquid waste. This waste requires treatment and permanent safe storage in gaseous diffusion plants, like the Portsmouth Gaseous Diffusion Plant (GDP) in south-central Ohio. This week, the Department of Energy accelerated Portsmouth GDP cleanup

433

DOE Idaho site reaches 20-year cleanup milestone  

NLE Websites -- All DOE Office Websites (Extended Search)

IDAHO FALLS, IDAHO, 83403 IDAHO FALLS, IDAHO, 83403 Media Contact: Brad Bugger (208) 526-0833 For Immediate Release: January 19, 2012 DOE Idaho site reaches 20-year cleanup milestone IDAHO FALLS, ID- In two decades of Superfund cleanup work, the U.S. Department of Energy's Idaho site has removed hundreds of thousands of cubic yards of radioactive and hazardously contaminated soils, excavated radioactive waste buried since the 1950s, removed three nuclear reactors and hundreds of buildings, completely closed three major nuclear facilities and removed thousands of unexploded ordnance shells and fragments. Last month marked the 20-year anniversary of the signing and implementation of a cleanup agreement between DOE, the U.S. Environmental Protection Agency and the state of Idaho. In two decades, the cleanup agreement known

434

EM's Indefinite Delivery/Indefinite Quantity Cleanup Contracts |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM's Indefinite Delivery/Indefinite Quantity Cleanup Contracts EM's Indefinite Delivery/Indefinite Quantity Cleanup Contracts EM's Indefinite Delivery/Indefinite Quantity Cleanup Contracts The Office of Environmental Management (EM) has 23 Indefinite Delivery/Indefinite Quantity (IDIQ) contracts to provide cleanup services at EM sites across the United States. The scope of work of the IDIQ contracts includes: environmental remediation deactivation, decommissioning, demolition and removal of contaminated facilities waste management regulatory compliance These nationwide, multiple-award IDIQ contracts allow EM sites to place timely, competitive and cost-effective task orders for environmental services with either large or small businesses, as determined by the complexity of the requirements. Twelve of the IDIQ contracts were awarded

435

Protecting Recovery Act Cleanup Site During Massive Wildfire | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protecting Recovery Act Cleanup Site During Massive Wildfire Protecting Recovery Act Cleanup Site During Massive Wildfire Protecting Recovery Act Cleanup Site During Massive Wildfire Effective safety procedures in place at Los Alamos National Laboratory would have provided protections in the event that the raging Las Conchas fire had spread to the site of an American Recovery and Reinvestment Act project. "Our procedures not only placed the waste excavation site, Materials Disposal Area B (MDA-B), into a safe posture so it was well protected during the fire, but also allowed us to resume work quickly," said Project Director Al Chaloupka. Protecting Recovery Act Cleanup Site During Massive Wildfire More Documents & Publications Los Alamos Lab Completes Excavation of Waste Disposal Site Used in the 1940s

436

EM SSAB Contributes Community Views to Clean-up Decisions  

Energy.gov (U.S. Department of Energy (DOE))

EM has made public participation a fundamental component of its cleanup mission and has found that the EM SSAB, which draws upon diverse community viewpoints to provide advice and recommendations,...

437

Idaho Cleanup Project ships first Recovery Act-funded remote...  

NLE Websites -- All DOE Office Websites (Extended Search)

to clean up the Idaho Site." The Idaho Cleanup Project (ICP) has reactivated a large hot cell, or shielded enclosure, which had been dormant since 1988 at the Idaho Nuclear...

<