Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

SNOX Flue Gas Cleaning Demonstration Project: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

SO 2 to SO 3 . The exit gas from the SO 3 converter passes through a novel glass-tube condenser in which the SO 3 is hydrated to H 2 SO 4 vapor and then condensed to a concentrated...

2

Clean Coal Diesel Demonstration Project  

DOE Green Energy (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

3

NETL: Clean Coal Technology Demonstration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

CCTDP Major Demonstrations Clean Coal Technology Demonstration Program (CCTDP) The Clean Coal Technology Demonstration Program (CCTDP) was launched in 1986 as a multibillion dollar...

4

NETL: CCPI/Clean Coal Demonstrations  

NLE Websites -- All DOE Office Websites (Extended Search)

Topical Reports Topical Reports CCPI/Clean Coal Demonstrations Topical Reports General Topical Report #18: Environmental Benefits of Clean Coal Technologies[PDF-2MB] (Apr 2001) This report describes a variety of processes that are capable of meeting existing and emerging environmental regulations and competing economically in a deregulated electric power marketplace. Topical Report #17: Software Systems in Clean Coal Demonstration Projects [PDF-650KB] (Dec 2001) This report describes computer software systems used to optimize coal utilization technologies. Environmental Control Technologies Sulfur Dioxide Control Technologies Topical Report #12: Advanced Technologies for the Control of Sulfur Dioxide Emissions from Coal-Fired Boilers [PDF-1.6MB] (June 1999) A discussion of three CCT projects that demonstrate innovative wet flue gas desulfurization technologies to remove greater than 90% SO2.

5

NETL: Clean Coal Demonstrations - Clean Coal Today Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Today Newsletter Clean Coal Today Newsletter Clean Coal Demonstrations Clean Coal Today Newsletter Clean Coal Today is a quarterly newsletter of the U.S. Department of Energy, Office of Fossil Energy (FE), Office of Clean Coal. Among other things, Clean Coal Today highlights progress under the Clean Coal Power Initiative, the Power Plant Improvement Initiative, and the few remaining projects of the original Clean Coal Technology Demonstration Program. Reporting on coal R&D performed at government laboratories, as well as in conjunction with stakeholders, it provides key information on FE's coal-related activities, most of which are directed toward near-zero emissions, ultra-efficient technologies of the future. Subscriptions are free – to have your name placed on the mailing list, contact the Editor at Phoebe.Hamill@hq.doe.gov.

6

Clean Coal Technology Demonstration Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Technology Demonstration Program Clean Coal Technology Demonstration Program The Office of Fossil Energy's Clean Coal Technology Demonstration Program (1986-1993) laid...

7

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleanest Coal Technology Clean Coal 101 Lesson 5: The Cleanest Coal Technology-A Real Gas Don't think of coal as a solid black rock. Think of it as a mass of atoms. Most of the...

8

NETL: Gasification Systems - Gas Cleaning  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleaning Cleaning Chemicals from Coal Complex Chemicals from Coal Complex (Eastman Company) Novel gas cleaning and conditioning are crucial technologies for achieving near-zero emissions, while meeting gasification system performance and cost targets. DOE's Gasification Systems program supports technology development in the area of gas cleaning and conditioning, including advanced sorbents and solvents, particulate filters, and other novel gas-cleaning approaches that remove and convert gas contaminants into benign and marketable by-products. To avoid the cost and efficiency penalties associated with cooling the gas stream to temperatures at which conventional gas clean-up systems operate, novel processes are being developed that operate at mild to high temperatures and incorporate multi-contaminant control to

9

Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Pacific Pacific Gas and Electric Company to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Google Bookmark Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Delicious Rank Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program

10

NETL: Clean Coal Demonstrations - Project Performance Summaries  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

11

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

NLE Websites -- All DOE Office Websites (Extended Search)

Combined SO2 / NOx Control Technologies Combined SO2 / NOx Control Technologies SNOX(tm) Flue Gas Cleaning Demonstration Project - Project Brief [PDF-359KB] ABB Environmental Systems, Niles, OH PROGRAM PUBLICATIONS Final Reports Final Report Volume II: Project Performance and Economics [PDF-10.2MB] (July 1996) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports ABB Environmental Systems SNOX(tm) Flue Gas Cleaning Demonstration Project, Project Performance Summary [PDF-450KB] (June 1999) SNOX(tm) Flue Gas Cleaning Demonstration Project: A DOE Assessment [PDF-185KB] (June 2000) Technologies for the Combined Control of Sulfur Dioxide and Nitrogen Oxides Emissions from Coal-Fired Boilers, Topical Report No. 13 [PDF-500KB] (May 1999) Design Reports Final Report Volume I: Public Design [PDF-3.9MB] (July 1996)

12

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 4  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Environmental Control Technologies - Combined SO2 /NOx Control Technologies Milliken Clean Coal Technology Demonstration Project - Project Brief [PDF-342KB] New York State Electric & Gas Corporation, Lansing, NY PROGRAM PUBLICATIONS Final Reports Milliken Clean Coal Technology Demonstration Project, Project Performance and Economics Report, Final Report (Apr 1999) Volume 1 [PDF-12.4MB] Volume 2 [PDF-15.7MB] CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Milliken Clean Coal Technology Demonstration Project, Project Performance Summary [PDF-1.4MB] (Nov 2002) Milliken Clean Coal Demonstration Project: A DOE Assessment [PDF-1.1MB] (Aug 2001) Advanced Technologies for the Control of Sulfur Dioxide Emissions from Coal-Fired Boilers, Topical Report No.12 [PDF-1.28MB] (June 1999)

13

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Environmental Control Technologies - SO2 Control Technologies 10-MW Demonstration of Gas Suspension Absorption - Project Brief [PDF-342KB] Airpol, Inc., West Paducah, KY PROGRAM PUBLICATIONS Final Reports Clean Coal Technology III: 10-MW Demonstration of Gas Suspension Absorption, Final Project Performance and Economics Report [PDF-8.2MB] ((June 1995) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports 10-MW Demonstration of Gas Suspension Absorption, Project Performance Summary [PDF-2.0MB] ((June 1999) The Removal of SO2 Using Gas Suspension Absorption Technology Demonstration Project - A DOE Assessment (Sept 1996) [PDF-212KB] SO2 Removal Using Gas Suspension Absorption Technology, Topical Report No. 4 [PDF-680KB] (Apr 1995)

14

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Clean Coal Technology Program: Combustion Engineering IGCC Repowering Project, Clean Energy Demonstration Project (Oct 1994) -- Not Available PAPERS AND PRESENTATIONS...

15

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal 101 Lesson 1: Cleaning Up Coal Clean Coal COAL is our most abundant fossil fuel. The United States has more coal than the rest of the world has oil. There is still...

16

NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE  

DOE Green Energy (OSTI)

Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the individual gas cleaning stages, and the probable operating conditions of the gas cleaning stages to conceptually satisfy the gas cleaning requirements; (2) Estimate process material & energy balances for the major plant sections and for each gas cleaning stage; (3) Conceptually size and specify the major gas cleaning process equipment; (4) Determine the resulting overall performance of the application; and (5) Estimate the investment cost and operating cost for each application. Analogous evaluation steps were applied for each application using conventional gas cleaning technology, and comparison was made to extract the potential benefits, issues, and development needs of the Filter-Reactor Novel Gas Cleaning technology. The gas cleaning process and related gas conditioning steps were also required to meet specifications that address plant environmental emissions, the protection of the gas turbine and other Power Island components, and the protection of the methanol synthesis reactor. Detailed material & energy balances for the gas cleaning applications, coupled with preliminary thermodynamic modeling and laboratory testing of candidate sorbents, identified the probable sorbent types that should be used, their needed operating conditions in each stage, and their required levels of performance. The study showed that Filter-Reactor Novel Gas Cleaning technology can be configured to address and conceptually meet all of the gas cleaning requirements for IGCC, and that it can potentially overcome several of the conventional IGCC power plant availability issues, resulting in improved power plant thermal efficiency and cost. For IGCC application, Filter-Reactor Novel Gas Cleaning yields 6% greater generating capacity and 2.3 percentage-points greater efficiency under the Current Standards case, and more than 9% generating capacity increase and 3.6 percentage-points higher efficiency in the Future Standards case. While the conceptual equipment costs are estimated to be only slightly lower for the Filter-Reactor Novel Gas Cleaning processes than for the conventional processes, the improved power plant capacity results in the potentia

Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

2005-12-01T23:59:59.000Z

17

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Clean Coal 101 Lesson 2: The Clean Coal Technology Program The Clean Coal Technology Program began in 1985 when the United States and Canada decided that something had to be done about the "acid rain" that was believed to be damaging rivers, lakes, forests, and buildings in both countries. Since many of the pollutants that formed "acid rain" were coming from big coal-burning power plants in the United States, the U.S. Government took the lead in finding a solution. One of the steps taken by the U.S. Department of Energy was to create a partnership program between the Government, several States, and private companies to test new methods developed by scientists to make coal burning much cleaner. This became the "Clean Coal Technology Program."

18

NETL: Major Demonstrations Clean Coal Related Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Shelf Clean Coal Related Information Advanced Power Systems General Low-Emission Boiler System High-Performance Coal-Fired Power Systems Alternative Fuels and Chemicals from...

19

Exhaust gas clean up process  

DOE Patents (OSTI)

A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

Walker, R.J.

1988-06-16T23:59:59.000Z

20

Clean Coal Technology Demonstration Program. Program update 1994  

SciTech Connect

The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

NONE

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Knocking the NOx Out of Coal Clean Coal 101 Lesson 3: Knocking the NOx Out of Coal How NOx Forms NOx Formation Air is mostly nitrogen molecules (green in the above diagram) and...

22

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Technologies - Combined SO2 NOx Control Technologies Milliken Clean Coal Technology Demonstration Project - Project Brief PDF-342KB New York State Electric &...

23

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Advanced Electric Power Generation - Advanced Combustion Systems Clean Coal Diesel Demonstration Project - Project Brief PDF-57KB Arthur D. Little, Inc., Fairbanks, AK PROGRAM...

24

COAL CLEANING BY GAS AGGLOMERATION  

SciTech Connect

The agglomeration of ultrafine-size coal particles in an aqueous suspension by means of microscopic gas bubbles was demonstrated in numerous experiments with a scale model mixing system. Coal samples from both the Pittsburgh No. 8 Seam and the Upper Freeport Seam were used for these experiments. A small amount of i-octane was added to facilitate the process. Microscopic gas bubbles were generated by saturating the water used for suspending coal particles with gas under pressure and then reducing the pressure. Microagglomerates were produced which appeared to consist of gas bubbles encapsulated in coal particles. Since dilute particle suspensions were employed, it was possible to monitor the progress of agglomeration by observing changes in turbidity. By such means it became apparent that the rate of agglomeration depends on the concentration of microscopic gas bubbles and to a lesser extent on the concentration of i-octane. Similar results were obtained with both Pittsburgh No. 8 coal and Upper Freeport coal.

MEIYU SHEN; ROYCE ABBOTT; T.D. WHEELOCK

1998-09-30T23:59:59.000Z

25

NETL: CCPI/Clean Coal Demonstrations  

NLE Websites -- All DOE Office Websites (Extended Search)

CCPIClean Coal Demonstrations Topical Reports General Topical Report 25: Power Plant Optimization Demonstration Projects PDF-1.6MB (Jan 2008) This report describes four...

26

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Advanced Electric Power Generation - Fluidized Bed Combustion McIntosh Unit 4A PCFB Demonstration Project - Project Brief [PDF-186KB] Lakeland Department of Electric & Water, Lakeland, FL PROGRAM PUBLICATIONS Annual/Quarterly Technical Reports Pressurized Circulating Fluidized Bed (PCFB) Repowering Project, Annual Report, January - December 1993 (Apr 1994) -- Not Available Pressurized Circulating Fluidized Bed (PCFB) Repowering Project, Annual Report, August 1991 - December 1992 (Apr 1993) -- Not Available Interim Reports Karhula Hot Gas Cleanup Test Results (June 1994) -- Not Available PCFB Repowering Project 80 MW Plant Description (May 1994) -- Not Available Comprehensive Report to Congress Comprehensive Report to Congress on the Clean Coal Technology Progam: Pressurized Circulating Fluidized Bed Demonstration Project (June 1991) -- Not Available

27

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

A "Bed" for Burning Coal A "Bed" for Burning Coal Clean Coal 101 Lesson 4: A "Bed" for Burning Coal? It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with government and college officials on the campus of Georgetown University to celebrate the completion of one of the world's most advanced coal combustors. It was a small coal burner by today's standards, but large enough to provide heat and steam for much of the university campus. But the new boiler built beside the campus tennis courts was unlike most other boilers in the world. A Fluidized Bed Boiler A Fluidized Bed Boiler In a fluidized bed boiler, upward blowing jets of air suspend burning coal, allowing it to mix with limestone that absorbs sulfur pollutants.

28

Field demonstration of the ICE 250[trademark] Cleaning System  

SciTech Connect

The ICE 250[trademark] Cleaning System was engineered to convert water into small ice particles for use in cleaning and decontamination applications. Ice crystals are produced in a special icemaker and pressured through a hose-nozzle onto the surface to be cleaned. The Rocky Mountain Oilfield Testing Center and Ice Cleaning Systems, Inc., conducted a test of this system at Naval Petroleum Reserve No. 3 to evaluate the system's cleaning capabilities in an oil field environment. Equipment cleaned included an oil storage tank, a rod pumping unit, a road grader, and a wellhead. Contaminants were unrefined sour crude oil, hydraulic fluid, paraffin, and dirt, occurring separately and as mixtures. In all four demonstration cleaning tasks, the ICE 250 System effectively removed surface contaminant mixtures in a timely manner and left no oily residue. A minimal amount of waste moistur2048s generated, thereby reducing cleanup and disposal costs.

Johnston, J.L.; Jackson, L.M.

1999-10-05T23:59:59.000Z

29

Field demonstration of the ICE 250{trademark} Cleaning System  

SciTech Connect

The ICE 250{trademark} Cleaning System was engineered to convert water into small ice particles for use in cleaning and decontamination applications. Ice crystals are produced in a special icemaker and pressured through a hose-nozzle onto the surface to be cleaned. The Rocky Mountain Oilfield Testing Center and Ice Cleaning Systems, Inc., conducted a test of this system at Naval Petroleum Reserve No. 3 to evaluate the system's cleaning capabilities in an oil field environment. Equipment cleaned included an oil storage tank, a rod pumping unit, a road grader, and a wellhead. Contaminants were unrefined sour crude oil, hydraulic fluid, paraffin, and dirt, occurring separately and as mixtures. In all four demonstration cleaning tasks, the ICE 250 System effectively removed surface contaminant mixtures in a timely manner and left no oily residue. A minimal amount of waste moisture was generated, thereby reducing cleanup and disposal costs.

Johnston, J.L.; Jackson, L.M.

1999-10-05T23:59:59.000Z

30

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

31

NETL: Clean Coal Demonstrations - Post-Project (DOE) Assessments  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Assessments DOE Assessments Clean Coal Demonstrations DOE Post-Project Assessments DOE Assessment of the Clean Coal Diesel Demonstration Project [PDF-590KB] DOE Assessment of the JEA Large-Scale CFB Combustion Demonstration Project [PDF-177KB] DOE Assessment of the Advanced Coal Conversion Process Demonstration [PDF-649KB] DOE Assessment of the Tampa Electric Integrated Gasification Combined-Cycle Demonstration Project [PDF-550KB] 500-MW Demonstration of Advanced Wall-Fired Combustion Techniques for the Reduction of Nitrogen Oxide (NOx) Emissions from Coal- Fired Boilers: A DOE Assessment [PDF-921KB] Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH™) Process [PDF-382KB] Healy Clean Coal Project: A DOE Assessment [PDF-713KB] Pulse Combustor Design: A DOE Assessment [PDF-569KB]

32

DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supported Coal Cleaning Technology Succeeds in Commercial Supported Coal Cleaning Technology Succeeds in Commercial Demonstration DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration January 4, 2011 - 12:00pm Addthis Washington, DC - A novel technology that could help release some of the currently unusable energy in an estimated 2 billion tons of U.S. coal waste has been successfully demonstrated by a Department of Energy (DOE) supported project. The full-scale test of the advanced hyperbaric centrifuge technology at a Jim Walter Resources Inc. coal-cleaning plant in Alabama resulted in the successful reduction of moisture from ultrafine coal waste. The test builds on an eight-year cooperative effort between the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL) and the Virginia

33

Clean Coal Technology Demonstration Program: Program Update 2001  

Science Conference Proceedings (OSTI)

Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results. Also includes Power Plant Improvement Initiative Projects.

Assistant Secretary for Fossil Energy

2002-07-30T23:59:59.000Z

34

Clean Coal Technology Demonstration Program: Program Update 1998  

SciTech Connect

Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

1999-03-01T23:59:59.000Z

35

Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technology Forum Vehicle Technology Forum Leadership Committee Meeting to someone by E-mail Share Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on Facebook Tweet about Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on Twitter Bookmark Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on Google Bookmark Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on Delicious Rank Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on Digg Find More places to share Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership

36

Clean Cities: Natural Gas Vehicle Technology Forum Technical...  

NLE Websites -- All DOE Office Websites (Extended Search)

Winter 2003) to someone by E-mail Share Clean Cities: Natural Gas Vehicle Technology Forum Technical Committee Meeting (Winter 2003) on Facebook Tweet about Clean Cities: Natural...

37

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Environmental Control Technologies - NOx Control Technologies Micronized Coal Reburning Demonstration for NOx Control - Project Brief PDF-245KB New York State Electric & Gas...

38

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

NLE Websites -- All DOE Office Websites (Extended Search)

SOx-NOx-Rox Box(tm) Flue Gas Cleanup Demonstration Project - Project Brief [PDF-317KB] SOx-NOx-Rox Box(tm) Flue Gas Cleanup Demonstration Project - Project Brief [PDF-317KB] The Babcock & Wilcox Co., Dilles Bottom, OH PROGRAM PUBLICATIONS Final Reports SOx-NOx-Rox Box(tm) Flue Gas Cleanup Demonstration Final Report [PDF-27.5MB] (Sept 1995) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports SOx-NOx-Rox Box(tm) Flue Gas Cleanup Demonstration: A DOE Assessment [PDF-296KB] (Dec 2000) SOx-NOx-Rox Box(tm) Flue Gas Cleanup Demonstration Project, Project Performance Summary [PDF-1.4MB] (June 1999) Technologies for the Combined Control of Sulfur Dioxide and Nitrogen Oxides Emissions from Coal-Fired Boilers, Topical Report No. 13 [PDF-500KB] (May 1999) Design Reports 5 MWe SNRBT Demonstration Facility: Detailed Design Report [PDF-4.5MB] (Nov 1992)

39

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Flue Gas Desulfurization Demonstration Project - Project Brief [PDF-250KB] Advanced Flue Gas Desulfurization Demonstration Project - Project Brief [PDF-250KB] Pure Air on the Lake L.P., Chesterton, IN PROGRAM PUBLICATIONS Final Reports Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, Final Technical Report, Volume II: Project Performance and Economics [PDF-25MB] (Apr 1996) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Advanced Flue Gas Desulfurization (AFGD) Demonstration Project: A DOE Assessment [PDF-235KB] (Aug 2001) Advanced Flue Gas Desulfurization Demonstration Project, Project Performance Summary [PDF-1.96MB] (June 1999) Advanced Technologies for the Control of Sulfur Dioxide Emissions from Coal-Fired Boilers, Topical Report No.12 [PDF-1.28MB] (June 1999) Design Reports

40

Demonstration of a Low-NOx Heavy-Duty Natural Gas Engine  

DOE Green Energy (OSTI)

Results of a Next Generation Natural Gas Vehicle engine research project: A Caterpillar C-12 natural gas engine with Clean Air Power Dual-Fuel technology and exhaust gas recirculation demonstrated low NOx and PM emissions.

Not Available

2004-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 5  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Advanced Electric Power Generation - Advanced Combustion Systems Clean Coal Diesel Demonstration Project - Project Brief [PDF-57KB] Arthur D. Little, Inc., Fairbanks, AK PROGRAM PUBLICATIONS Final Reports Not Available CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Clean Coal Diesel Demonstration Project: A DOE Assessment [PDF-590KB] (July 2007) Annual/Quarterly Technical Reports Coal Diesel Combined-Cycle Project, Annual Report [PDF-2.7MB] (June 1998) January 1996 - January 1997 Interim Reports Coal-Fueled Diesel System for Stationary Power Applications - Technology Development Topical Report [PDF-9.5 MB] (Aug 1995) Final Report [PDF-12.4 MB] March 1988 - June 1994 (Oct 1995) Environmental Reports Environmental Assessment - Coal-Fired Diesel Generator [PDF-4.2MB] (May 1997)

42

Clean coal technologies: Research, development, and demonstration program plan  

SciTech Connect

The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

Not Available

1993-12-01T23:59:59.000Z

43

Clean Cities: Natural Gas Vehicle Technology Forum 2013 Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Forum 2013 Meeting to someone by E-mail Share Clean Cities: Natural Gas Vehicle Technology Forum 2013 Meeting on Facebook Tweet about Clean Cities: Natural Gas Vehicle Technology...

44

Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Vehicle Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E to someone by E-mail Share Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Facebook Tweet about Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Twitter Bookmark Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Google Bookmark Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Delicious Rank Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Digg Find More places to share Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on AddThis.com...

45

Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting to someone by E-mail Share Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting on Facebook Tweet about Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting on Twitter Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting on Google Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting on Delicious Rank Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting on Digg Find More places to share Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program

46

Clean Coal Technology Demonstration Program. Program update 1995  

Science Conference Proceedings (OSTI)

This document describes activities of the U.S. Clean Coal Technology Program for the time of 1985-1995. Various clean coal technologies are described.

NONE

1996-04-01T23:59:59.000Z

47

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Coal Processing for Clean Fuels - Coal Preparation Technologies Self-Scrubbing Coal(tm): An Integrated Approach to Clean Air - Project Brief PDF-483KB Custom Coals...

48

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Environmental Control Technologies - NOx Control Technologies Demonstration of Selective Catalytic Reduction Technology for the Control of NOx Emissions from High-Sulfur Coal-Fired Boilers - Project Brief [PDF-247KB] Southern Company Services, Pensacola, FL PROGRAM PUBLICATIONS Final Reports Innovative Clean Coal Technologies (ICCT) Demonstration of Selective Catalytic Reduction (SCR) Technology for the Control of Nitrogen Oxide (NOx) Emissions from High-Sulfur Coal-Fired Boilers Volume 1, Final Report [PDF-29MB] (Oct 1996) Volume 2, Appendices A-N [PDF-20.2MB] (Oct 1996) Volume 3, Appendices O-T [PDF-17.9MB] (Oct 1996) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Demonstration Of Selective Catalytic Reduction For The Control Of NOx Emissions From High-Sulfur Coal-Fired Boilers, Project Performance Summary [PDF-1.1MB] (Nov 2002)

49

Clean Cities: Natural Gas Vehicle Technology Forum 2012 Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Meeting to someone by E-mail 2 Meeting to someone by E-mail Share Clean Cities: Natural Gas Vehicle Technology Forum 2012 Meeting on Facebook Tweet about Clean Cities: Natural Gas Vehicle Technology Forum 2012 Meeting on Twitter Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2012 Meeting on Google Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2012 Meeting on Delicious Rank Clean Cities: Natural Gas Vehicle Technology Forum 2012 Meeting on Digg Find More places to share Clean Cities: Natural Gas Vehicle Technology Forum 2012 Meeting on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group

50

Clean Cities: Natural Gas Transit and School Bus Users Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Transit and School Bus Transit and School Bus Users Group to someone by E-mail Share Clean Cities: Natural Gas Transit and School Bus Users Group on Facebook Tweet about Clean Cities: Natural Gas Transit and School Bus Users Group on Twitter Bookmark Clean Cities: Natural Gas Transit and School Bus Users Group on Google Bookmark Clean Cities: Natural Gas Transit and School Bus Users Group on Delicious Rank Clean Cities: Natural Gas Transit and School Bus Users Group on Digg Find More places to share Clean Cities: Natural Gas Transit and School Bus Users Group on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group

51

Clean Cities: Natural Gas Vehicle Technology Forum 2011 Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Meeting to someone by E-mail 1 Meeting to someone by E-mail Share Clean Cities: Natural Gas Vehicle Technology Forum 2011 Meeting on Facebook Tweet about Clean Cities: Natural Gas Vehicle Technology Forum 2011 Meeting on Twitter Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2011 Meeting on Google Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2011 Meeting on Delicious Rank Clean Cities: Natural Gas Vehicle Technology Forum 2011 Meeting on Digg Find More places to share Clean Cities: Natural Gas Vehicle Technology Forum 2011 Meeting on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group

52

Clean Cities Moving Fleets Forward with Liquefied Natural Gas | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Cities Moving Fleets Forward with Liquefied Natural Gas Clean Cities Moving Fleets Forward with Liquefied Natural Gas Clean Cities Moving Fleets Forward with Liquefied Natural Gas May 30, 2013 - 2:52pm Addthis Waste hauler Enviro Express converted its fleet of heavy-duty trucks to run on liquefied natural gas (LNG) and built the first LNG station east of the Mississippi River with help from the Energy Department's Clean Cities initiative. | Photo courtesy of New Haven Clean Cities Coalition. Waste hauler Enviro Express converted its fleet of heavy-duty trucks to run on liquefied natural gas (LNG) and built the first LNG station east of the Mississippi River with help from the Energy Department's Clean Cities initiative. | Photo courtesy of New Haven Clean Cities Coalition. Shannon Brescher Shea Communications Manager, Clean Cities Program

53

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

Journal of Engineering for Gas Turbines and Power, 121:569-operations with natural gas: Fuel composition implications,USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATION

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

54

Clean Cities: Natural Gas Vehicle Technology Forum 2005 Meeting and  

NLE Websites -- All DOE Office Websites (Extended Search)

2005 Meeting and Presentations to someone by E-mail 2005 Meeting and Presentations to someone by E-mail Share Clean Cities: Natural Gas Vehicle Technology Forum 2005 Meeting and Presentations on Facebook Tweet about Clean Cities: Natural Gas Vehicle Technology Forum 2005 Meeting and Presentations on Twitter Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2005 Meeting and Presentations on Google Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2005 Meeting and Presentations on Delicious Rank Clean Cities: Natural Gas Vehicle Technology Forum 2005 Meeting and Presentations on Digg Find More places to share Clean Cities: Natural Gas Vehicle Technology Forum 2005 Meeting and Presentations on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative

55

Clean Cities: Natural Gas Vehicle Technology Forum 2010 Meeting and  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Meeting and Presentations to someone by E-mail 10 Meeting and Presentations to someone by E-mail Share Clean Cities: Natural Gas Vehicle Technology Forum 2010 Meeting and Presentations on Facebook Tweet about Clean Cities: Natural Gas Vehicle Technology Forum 2010 Meeting and Presentations on Twitter Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2010 Meeting and Presentations on Google Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2010 Meeting and Presentations on Delicious Rank Clean Cities: Natural Gas Vehicle Technology Forum 2010 Meeting and Presentations on Digg Find More places to share Clean Cities: Natural Gas Vehicle Technology Forum 2010 Meeting and Presentations on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative

56

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 5  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Reports on Withdrawn & Terminated Projects Warren Station Externally Fired Combined-Cycle Demo. Project - (There is no Project Brief for this project) Pennsylvania Electric Company PROGRAM PUBLICATIONS Comprehensive Report to Congress Comprehensive Report to Congress on the Clean Coal Technology Program: Warren Station EFCC Demonstration Project (June 1994) U.S. Department of Energy report DOE/FE-0316P. (Available from NTIS as DE94017288) PAPERS AND PRESENTATIONS Externally Fired Combined Cycle: An Effective Coal-Fueled Technology for Repowering and New Generation (Mar 1995) L.E. Stoddard et al., (Black and Veatch), 20th International Technical Conference on Coal Utilization and Fuels Systems. U.S. Department of Energy Report CONF-950313-2 and DOE/MC/31327-95/C0451 (Available from NTIS as DE95012295).

57

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Control Technologies - Combined SO2/NOx Control Technologies Environmental Control Technologies - Combined SO2/NOx Control Technologies Commercial Demonstration of the NOXSO SO2/NOx Removal Flue Gas Cleanup System - Project Brief [PDF-188KB] NOXSO Corporation - Alcoa Warrick Power Station, Hammond, IN Program Publications Final Reports Not Available Annual/Quarterly Technical Reports Commercial Demonstration of the NOXSO SO2/NOx Removal Flue Gas Cleanup System Quarterly Technical Progress Reports Report No. 16. December 1994 - February 1995 [PDF-2.3MB] Report No. 15. (Sept - November 1994 [PDF-2.0MB] Report No. 14. June - August 1994 [PDF-2.8MB] Report No. 13. March - May 1994 [PDF-2.4MB] Report No. 12. December 1993 - February 1994 [PDF-3.0MB] Report No. 11. (Sept - November 1993 [PDF-3.3MB] Report No. 10. June - August 1993 [PDF-3.8MB]

58

Clean Cities: Natural Gas Vehicle Technology Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

Forum Forum Natural Gas Vehicle Technology Form (NGVTF) logo The Natural Gas Vehicle Technology Forum (NGVTF) supports development and deployment of commercially competitive natural gas engines, vehicles, and infrastructure. Learn about NGVTF's purpose, activities, meetings, stakeholders, steering committee, and webinars. Purpose Led by the National Renewable Energy Laboratory in partnership with the U.S. Department of Energy and the California Energy Commission, NGVTF unites a diverse group of stakeholders to: Share information and resources Identify natural gas engine, vehicle, and infrastructure technology targets Facilitate government-industry research, development, demonstration, and deployment (RDD&D) to achieve targets Communicate high-priority needs of natural gas vehicle end users to natural gas equipment and vehicle manufacturers

59

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

Comprehensive Report to Congress on the Clean Coal Technology Progam: Four Rivers Energy Modernization Project (June 1994) -- Not Available PAPERS AND PRESENTATIONS Four...

60

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Advanced Electric Power Generation - Advanced Combustion Systems Healy Clean Coal Project - Project Brief PDF-226KB Alaska Industrial Development and Export Authority, Healy,...

Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

Comprehensive Report to Congress Comprehensive Report to Congress on the Clean Coal Technology Program: Pion Pine IGCC Power Project PDF-335KB (June 1992) PAPERS AND...

62

Clean coal technology demonstration program: Program update 1996-97  

SciTech Connect

The Clean Coal Technology Demonstration Program (known as the CCT Program) reached a significant milestone in 1996 with the completion of 20 of the 39 active projects. The CCT Program is responding to a need to demonstrate and deploy a portfolio of technologies that will assure the U.S. recoverable coal reserves of 297 billion tons could continue to supply the nation`s energy needs economically and in a manner that meets the nation`s environmental objectives. This portfolio of technologies includes environmental control devices that contributed to meeting the accords on transboundary air pollution recommended by the Special Envoys on Acid Rain in 1986. Operational, technical, environmental, and economic performance information and data are now flowing from highly efficient, low-emission, advanced power generation technologies that will enable coal to retain its prominent role into the next millennium. Further, advanced technologies are emerging that will enhance the competitive use of coal in the industrial sector, such as in steelmaking. Coal processing technologies will enable the entire coal resource base to be used while complying with environmental requirements. These technologies are producing products used by utilities and industrial processes. The capability to coproduce products, such as liquid and solid fuels, electricity, and chemicals, is being demonstrated at a commercial scale by projects in the CCT Program. In summary, this portfolio of technologies is satisfying the national need to maintain a multifuel energy mix in which coal is a key component because of its low-cost, availability, and abundant supply within the nation`s borders.

1997-10-01T23:59:59.000Z

63

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

NLE Websites -- All DOE Office Websites (Extended Search)

NOx Control Technologies NOx Control Technologies Demonstration of Coal Reburning for Cyclone Boiler NOx Control - Project Brief [PDF-320KB] The Babcock & Wilcox Company, Cassville, WI Program Publications Final Reports Demonstration of Coal Reburning for Cyclone Boiler NOx Control, Final Project Report [PDF-14.4MB] (Feb 1994) Appendices 1 - 5 [PDF-2.6MB] (Feb 1994) Appendix 1: Small Boiler Simulator Description Appendix 2: Statement of Work by Task and Subtask Appendix 3: Evaluation of Reburning for NOx Control from Lignite-Fired Cyclone Boilers Appendix 4: Nelson Dewey In-Furnace gas Species and Temperature Measurements Appendix 5: Balance of Plant Details Appendix 6: Test Report - Nelson Dewey Cyclone Reburn Optimization and Performance Environmental Tests [PDF-6.2MB] (Feb 1994)

64

Clean Cities: Natural Gas Transit (and School Bus) Users Group...  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Transit (and School Bus) Users Group Meeting Archives to someone by E-mail Share Clean Cities: Natural Gas Transit (and School Bus) Users Group Meeting Archives on...

65

An Update of the U.S. Clean Coal Technology Demonstration Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

19931994 An Update of the U.S. Clean Coal Technology Demonstration Program Office of Fossil Energy, U.S. DepaNnent of Energy Clean Coal Briefs Plans are moving ahead for the Thud...

66

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Advanced Electric Power Generation - Advanced Combustion Systems Healy Clean Coal Project - Project Brief [PDF-226KB] Alaska Industrial Development and Export Authority, Healy, AK PROGRAM PUBLICATIONS Final Reports Healy Clean Coal Project, Project Performance and Economics Report, Final Report: Volume 2 [PDF-1.2MB] (Apr 2001) Annual/Quarterly Technical Reports Healy Clean Coal Project , Quarterly Technical Progress Reports Numbers 1 and 2, January - June 1991 [PDF-1.3MB] Number 3, July - September 1991 [PDF-579KB] Number 4, October - December 1991 [PDF-862KB] Number 5, January - March 1992 [PDF-668KB] Number 6, April - June 1992 [PDF-1.2MB] Number 14, April - June 1994 [PDF-311KB] Numbers 16-19, October 1994 - September 1995 [PDF-1.3MB] Number 20, October - December 1995 [PDF-653KB]

67

Landfill Gas-to-Electricity Demonstration Project  

DOE Green Energy (OSTI)

Medium Btu methane gas is a naturally occurring byproduct of anaerobic digestion of landfilled municipal solid waste. The energy potential of landfill gas in New York State is estimated to be 61 trillion Btu's per year or the equivalent of 10% of the natural gas used annually in the state. The 18-month Landfill Gas-to-Electricity Demonstration Project conducted at the Fresh Kills Landfill in Staten Island, New York conclusively demonstrated that landfill gas is an acceptable fuel for producing electricity using an internal combustion engine/generator set. Landfill gas proved to be a reliable and consistent fuel source during a six-month field test program. Engine exhaust emissions were determined to be comparable to that of natural gas and no unusually high corrosion rates on standard pipeline material were found.

Not Available

1982-10-01T23:59:59.000Z

68

Demonstration Abstract: WARP A Flexible Platform for Clean-Slate Wireless Medium Access Protocol Design  

E-Print Network (OSTI)

Demonstration Abstract: WARP ­ A Flexible Platform for Clean-Slate Wireless Medium Access Protocol University Wireless Open-Access Research Platform (WARP) provides a high performance research tool for clean-slate provides a general environment for a clean-slate MAC/PHY de- velopment unlike other platforms which rely

Knightly, Edward W.

69

Madison Gas and Electric - Clean Power Partner Solar Buyback Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Madison Gas and Electric - Clean Power Partner Solar Buyback Madison Gas and Electric - Clean Power Partner Solar Buyback Program Madison Gas and Electric - Clean Power Partner Solar Buyback Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info Start Date 03/06/2007 (systems installed prior to this date do not qualify) State Wisconsin Program Type Performance-Based Incentive Rebate Amount $0.25/kWh Provider Madison Gas and Electric '''''The Clean Power Partners Program has reached the 1 MW cap. Applicants can be placed on a waiting list or participate in MGE's [http://www.mge.com/Home/rates/cust_gen.htm net metering program].''''' Customer-generators enrolled in the Madison Gas and Electric (MGE) green

70

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

Boiler (June 1993) J.J. Catasus-Servia, et al., Third International Joint ISAPOWID EPRI Controls and Instrumentation Conference Reducing Stack Emissions by Gas Firing in...

71

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Environmental Control Technologies - Combined SO2 / NOx Control Technologies Enhancing the Use of Coals by Gas Reburning and Sorbent Injection - Project Brief [PDF-328KB] Energy and Environmental Research Inc., Springfield/Hennepin, IL PROGRAM PUBLICATIONS Final Reports Enhancing the Use of Coals by Gas Reburning and Sorbent Injection Volume 1: Program Overview, Part A-Final Public Design Report, Part B-Project Performance and Economics [PDF-17MB] (Feb 1997) Volume 2: Gas Reburning-Sorbent injection at Hennepin Unit 1 [PDF-12MB] (Mar 1996) Volume 3: Gas Reburning-Sorbent Injection at Edwards Unit 1 [PDF-3.8MB] (Mar 1996) Volume 4: Gas Reburning-Sorbent Injection at Lakeside Unit 7 [PDF-21.9MB] (Mar1996) Volume 5: Guideline Manual [PDF-6.9MB] (Sept 1998)

72

Renewable Natural Gas Clean-up Challenges and Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Natural Gas Clean-up Renewable Natural Gas Clean-up p Challenges and Applications Renewable Resource Webinar July 13, 2011 Brian Weeks, Gas Technology Institute 281 235 7993, brian.weeks@gastechnology.org Kristine Wiley, Gas Technology Institute 847 768 0910 kristine wiley@gastechnology org 847 768 0910, kristine.wiley@gastechnology.org 2 Today's Talk Today s Talk >Who is GTI Who is GTI >What is Renewable Natural Gas (RNG) Ch ll f R bl N t l G >Challenges for Renewable Natural Gas >How do we clean up RNG? >Recommendations and Summary 2 - - 3 GTI at a Glance... > Not-for-profit research > Not for profit research, with 65+ year history > Facilities 18 Chi ─ 18 acre campus near Chicago ─ 200,000 ft 2 , 28 specialized labs $60 illi > $60 + million i in revenue

73

NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE  

SciTech Connect

The objective of this program is to develop and evaluate novel sorbents for the Siemens Westinghouse Power Company's (SWPC's) ''Ultra-Clean Gas Cleaning Process'' for reducing to near-zero levels the sulfur- and chlorine-containing gas emissions and fine particulate matter (PM2.5) caused by fuel bound constituents found in carbonaceous materials, which are processed in Integrated Gasification Combined Cycle (IGCC) technologies.

Javad Abbasian

2001-07-01T23:59:59.000Z

74

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Gas Reburning and Low-NOx Burners on a Wall-Fired Boiler - Project Brief [PDF-252KB] Evaluation of Gas Reburning and Low-NOx Burners on a Wall-Fired Boiler - Project Brief [PDF-252KB] Energy and Environmental Research Corp., Denver, CO PROGRAM PUBLICATIONS Final Reports Evaluation of Gas Reburning and Low NOx Burners on a Wall-Fired Boiler: Performance and Economics Report, Gas Reburning-Low NOx Burner System, Cherokee Station Unit No. 3, Final Report [PDF-17.2MB] (July 1998) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Evaluation of Gas Reburning and Low-NOx Burners on a Wall-Fired Boiler: A DOE Assessment [PDF-309KB] (Feb 2001) Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers, Topical Report No.14 [PDF-1.2MB] ((May 1999) Reduction of NOx and SO2 Using Gas Reburning, Sorbent Injection, and Integrated Technologies, Topical Report No. 3 [PDF-1MB] ((Sept 1993)

75

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Engineering IGCC Repowering Project - (There is no Project Brief for this project) Combustion Engineering IGCC Repowering Project - (There is no Project Brief for this project) ABB Combustion Engineering, Inc. Program Publications Annual/Quarterly Technical Reports IGCC Repowering Project, Clean Coal II Project, Annual Report, (Oct 1992 - (Sept 1993 [PDF-7MB] (Oct1993) Annual Report, January - December 1992. U.S. Department of Energy report DOE/MC/26308-3645 (Available from NTIS as DE94004063). Interim Reports Use of the Lockheed Kinetic Extruder for Coal Feeding, Topical Report (Feb 1994) U.S. Department of Energy report DOE/MC/26308-3646 (Available from NTIS as DE94004066) Controls and Instrumentation, Topical Report (Dec 1993) U.S. Department of Energy report DOE/MC/26308-3648 (Available from NTIS as DE94004068) Topical Report: Sulfuric Acid Plant, Topical Report (Dec 1993)

76

Self-scrubbing coal{sup TM}: An integrated approach to clean air. A proposed Clean Coal Technology Demonstration Project  

Science Conference Proceedings (OSTI)

This environmental assessment (EA) was prepared by the U.S.Department of Energy (DOE), with compliance with the National Environmental Policy Act (NEPA) of 1969, Council on Environmental Quality (CE) regulations for implementating NEPA (40 CFR 1500-1508) and DOE regulations for compliance with NEPA (10 CFR 1021), to evaluate the potential environmental impacts associated with a proposed demonstration project to be cost-shared by DOE and Custom Coals International (CCI) under the Clean Coal Technology (CCT) Demonstration Program of DOE`s Office of Fossil Energy. CCI is a Pennsylvania general partnership located in Pittsburgh, PA engaged in the commercialization of advanced coal cleaning technologies. The proposed federal action is for DOE to provide, through a cooperative agreement with CCI, cost-shared funding support for the land acquisition, design, construction and demonstration of an advanced coal cleaning technology project, {open_quotes}Self-Scrubbing Coal: An Integrated Approach to Clean Air.{close_quotes} The proposed demonstration project would take place on the site of the presently inactive Laurel Coal Preparation Plant in Shade Township, Somerset County, PA. A newly constructed, advanced design, coal preparation plant would replace the existing facility. The cleaned coal produced from this new facility would be fired in full-scale test burns at coal-fired electric utilities in Indiana, Ohio and PA as part of this project.

Not Available

1994-01-01T23:59:59.000Z

77

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Industrial Applications Cement Kiln Flue Gas Recovery Scrubber - Project Brief [PDF-247KB] Passamaquoddy Technology Limited Partnership, Thomaston, ME Program Publications Final Reports Passamaquoddy Technology Recovery Scrubber(tm) Final Report, Volume 1 [PDF-5.4MB] (Feb 1994) Final Report, Volume 2 and Appendices A - M [PDF-10.4MB] (Feb 1994) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Cement Kiln Flue Gas Recovery Scrubber Project: A DOE Assessment [PDF-246KB] (Nov 2001) Cement Kiln Flue Gas Recovery Scrubber, Project Performance Summary [PDF-2MB] (June 1999) Design Reports Passamaquoddy Technology Recovery Scrubber(tm) Public Design Report (Oct 1993) [PDF-2.7MB) Interim Reports Interim Technical Report [PDF-973KB] (Mar 1992)

78

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Scale Demonstration of Low-NOx Cell Burner Retrofit - Project Brief [PDF-294KB] Full-Scale Demonstration of Low-NOx Cell Burner Retrofit - Project Brief [PDF-294KB] The Babcock & Wilcox Company, Aberdeen, OH PROGRAM PUBLICATIONS Final Reports Full-Scale Demonstration of Low-NOx Cell Burner Retrofit, Final Report [PDF-3.6MB] (July 1994) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Full-Scale Demonstration of Low-NOx Cell Burner Retrofit, Project Performance Summary [PDF-1.18MB] (June 1999) Full-Scale Demonstration of Low-NOx Cell Burner Retrofit: A DOE Assessment [PDF-1.1MB] (Nov 2000) Reducing Emissions of Nitrogen Oxides via Low-NOx Burner Technologies, Topical Report No. 5 [PDF-825KB] (Sept 1996) Design Reports Full-Scale Demonstration of Low-NOx Cell Burner Retrofit, Public Design Report [PDF-2.68MB] (Aug 1991)

79

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Technology Program: PFBC Utility Demonstration Project (Feb 1990) U.S. Department of Energy report DOEFE-0159 (Available from NTIS as DE90008094) PAPERS AND PRESENTATIONS No...

80

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program: Warren Station EFCC Demonstration Project (June 1994) U.S. Department of Energy report DOEFE-0316P. (Available from NTIS as DE94017288) PAPERS AND PRESENTATIONS...

Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Program: Toms Creek IGCC Demonstration Project (Sept 1992) U.S. Department of Energy report DOEFE-0264P (Available from NTIS as DE93000960) PAPERS AND PRESENTATIONS...

82

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Reburning for Cyclone Boiler NOx Control - Project Brief PDF-320KB The Babcock & Wilcox Company, Cassville, WI Program Publications Final Reports Demonstration of Coal...

83

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Coal Conversion Process Demonstration - Project Brief PDF-192KB Rosebud SynCoal Partnership, Colstrip, MT PROGRAM PUBLICATIONS Final Reports Advanced Coal Conversion...

84

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustor with Internal Sulfur, Nitrogen, and Ash Control - Project Brief PDF-302KB Coal Tech Corp., Williamsport, PA PROGRAM PUBLICATIONS Final Reports Demonstration of an...

85

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Applications Blast Furnace Granular-Coal Injection System Demonstration Project - Project Brief PDF-314KB Bethlehem Steel Corp., Burns Harbor, IN PROGRAM PUBLICATIONS...

86

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Advanced Electric Power Generation - Fluidized Bed Combustion McIntosh Unit 4A PCFB Demonstration Project - Project Brief PDF-186KB Lakeland Department of Electric & Water,...

87

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Advanced Electric Power Generation - Fluidized Bed Combustion JEA Large-Scale CFB Combustion Demonstration Project - Project Brief [PDF-169KB] JEA, Jacksonville, FL PROGRAM PUBLICATIONS Final Reports Final Technical Report for the JEA Large-Scale CFB Combustion Demonstration Project [PDF-438KB](July 2005) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports JEA Large-Scale CFB Combustion Demonstration Project: A DOE Assessment [PDF-177KB] (Nov 2005) The JEA Large-Scale CFB Combustion Demonstration Project, Topical Report No.22 [PDF-2.1MB] (Mar 2003) Design Reports Detailed Public Design Report for the JEA Large-Scale CFB Combustion Demonstration Project [PDF-2.5MB] (June 2003) Appendices 4, 5, and 6: Major Equipment List,

88

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 5  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Advanced Electric Power Generation - Integrated Gasification Combined Cycle Kentucky Pioneer IGCC Demonstration Project - Project Brief [PDF-80KB] Kentucky Pioneer Energy, L.L.C.; Trapp, Clark County, KY PROGRAM PUBLICATIONS Final Report Kentucky Pioneer Energy LLC Integrated Gasification Combined Cycle Project: 2 MW Fuel Cell Demonstration [PDF-3.2MB] (Apr 2006) Design Reports Kentucky Pioneer Energy IGCC CCT Demonstration Project, 2 MW Fuel Cell Demonstration, Basis of Design [PDF-696KB] (May 2002) Environmental Reports Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project: Final Environmental Impact Statement, [PDF-5.7MB] (Nov 2002) Appendices A-C and E [PDF-965KB] Appendix D, Pages 1-40 [PDF-5.2MB] Appendix D, Pages 41-71 [PDF-4.3MB]

89

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Coal Conversion Process Demonstration - Project Brief [PDF-192KB] Advanced Coal Conversion Process Demonstration - Project Brief [PDF-192KB] Rosebud SynCoal Partnership, Colstrip, MT PROGRAM PUBLICATIONS Final Reports Advanced Coal Conversion Process Demonstration Final Technical Report [PDF-362KB] (Sept 2004) Annual/Quarterly Technical Reports Advanced Coal Conversion Process Demonstration Annual Technical Progress Reports January - December 1991 [PDF-920KB] January - December 1992 [PDF-2.9MB] January - December 1993 [PDF-3.3MB] January - December 1995 [PDF-2.9MB] January - December 1996 [PDF-250KB] January - December 1997 [PDF-264KB] January - December 1998 [PDF-188KB] January - December 1999 [PDF-212KB] January - December 2000 [PDF-231KB] Advanced Coal Conversion Process Demonstration Quarterly Technical Progress Reports

90

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

NLE Websites -- All DOE Office Websites (Extended Search)

NOx Control Technologies NOx Control Technologies 180-MWe Demonstration of Advanced Tangentially-Fired Combustion Techniques for the Reduction of NOx Emissions from Coal-Fired Boilers - Project Brief [PDF-280KB] Southern Company Services, Inc., Lynn Haven, FL PROGRAM PUBLICATIONS Final Reports 180-MWe Demonstration of Advanced Tangentially-Fired Combustion Techniques for the Reduction of Nitrogen Oxide (NOx) Emissions from Coal-Fired Boilers, Final Report and Key Project Findings [PDF-4.6MB] (Feb 1994) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports 180-MWe Demonstration of Advanced Tangentially Fired Combustion Techniques for the Reduction of NOx Emissions, Project Performance Summary [PDF-1.9MB] (June 1999) The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NOx) Emissions From Coal-Fired Boilers Demonstration Project: A DOE Assessment [PDF-243KB] (Mar 2000)

91

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Techniques for the Reduction of Nitrogen Oxide (NOx) Emissions from Coal-Fired Boilers, Phases 1 - 3B, Final Report PDF-21MB (Jan 1998) 500 MW Demonstration...

92

Engineering analysis of biomass gasifier product gas cleaning technology  

DOE Green Energy (OSTI)

For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

1986-08-01T23:59:59.000Z

93

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Industrial Applications Advanced Cyclone Combustor with Internal Sulfur, Nitrogen, and Ash Control - Project Brief [PDF-302KB] Coal Tech Corp., Williamsport, PA PROGRAM PUBLICATIONS Final Reports Demonstration of an Advanced Cyclone Coal Combustor with Internal Sulfur Nitrogen, and Ash Control for the Conversion of a 23-MMBtu/Hour Oil Fired Boiler to Pulverized Coal (Aug 1991) Volume 1: Final Technical Report [PDF-5.9MB] Appendixes I through VI [PDF-8.9MB] CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports The Coal Tech Advanced Cyclone Combustor Demonstration Project -- A DOE Assessment [PDF-234KB] (May 1993) Environmental Reports Annual Environmental Report for The Demonstration of an Advanced Cyclone Coal Combustor, with Internal Sulfur, Nitrogen, and Ash Control for the Conversion of a 23 MMBtu/Hour Boiler to Coal [PDF-812KB] (Sept 1987)

94

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

Indirect Liquefaction Indirect Liquefaction Commercial-Scale Demonstration of the Liquid-Phase Methanol (LPMEOH(tm)) Process - Project Brief [PDF-282KB] Air Products Liquid Phase Conversion Company, L.P., Kingsport, TN PROGRAM PUBLICATIONS Final Reports Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(tm)) Process, Final Report [PDF-3.5MB] (June 2003) Annual/Quarterly Technical Reports Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(tm)) Process, Technical Progress Reports No. 34, October - December 2002 [PDF-448KB] No. 33, July - September 2002 [PDF-116KB] No. 32, April - June 2002 [PDF-148KB] No. 31, January - March 2002 [PDF-156KB] No. 30, October - December 2001 [PDF-141KB] No. 29, July - September 2001 [PDF-129KB] No. 28, April - June 2001 [PDF-154KB]

95

Innovative coke oven gas cleaning system for retrofit applications  

Science Conference Proceedings (OSTI)

Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This project combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE is providing cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct an Environmental Monitoring Plan (EMP) for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. This report is the third quarterly status report of the EMP. It covers the Environmental Monitoring Plan activities for the full year of 1991 from January 1, 1991 through December 31, 1991, including the forth quarter. See Sections 2, 3 and 4 for status reports of the Project Installation and Commissioning, the Environmental Monitoring activities and the Compliance Monitoring results for the period. Section 5 contains a list of Compliance Reports submitted to regulatory agencies during the period. The EMP describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) document the extent of compliance of monitoring activities, i.e. those monitoring required to meet permit requirements, (2) confirm the specific impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base for the assessment of the environmental performance of the technology demonstrated by the project.

Not Available

1992-10-16T23:59:59.000Z

96

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Environmental Control Technologies - SO2 Control Technologies Confined Zone Dispersion Flue Gas Desulfurization Demo. - Project Brief [PDF-296KB] Bechtel Corp., Seward, PA PROGRAM PUBLICATIONS Final Reports Confined Zone Dispersion Project, Final Technical Report [PDF-7.8MB] ((June 1994) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Confined Zone Dispersion Project: A DOE Assessment [PDF-178KB] (Nov 1999) Design Reports Confined Zone Dispersion Project, Public Design Report (Oct 1993) U.S. Department of Energy report DOE/PC/90456-T10 Cover page through Section 3.5.3 [PDF-6.3 MB] (Oct 1993) Section 3.6 through a portion of Appendix C [PDF-6.1 MB] (Oct 1993) Balance of Appendix C [PDF-5.7 MB] (Oct 1993) Interim Reports

97

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Environmental Control Technologies - SO2 Control Technologies Demonstration of Innovative Applications of Technology for the CT-121 FGD Process - Project Brief [PDF-265KB] Southern Company Services, Newnan, GA PROGRAM PUBLICATIONS Final Reports Demonstration of Innovative Applications of Technology for the CT-121 FGD Process, Final Report (Jan 1997) Volume 1, Executive Summary [PDF-4.6MB] Volume 2, Operation [PDF-32.8MB] Volume 2 Appendices [PDF-6.3MB] Volume 3, Equipment Vol 3a, Materials and Maintenance [PDF-34.6MB] Vol 3b, Instrumentation and Control [PDF-1.2MB] Vol 3c, Materials Test & Evaluation Program [PDF-28.2MB] Volume 4, Gypsum Stacking &Byproduct Evaluation [PDF-11.3MB] Volume 5, Environmental Monitoring Plan [PDF-3MB] Volume 5 Appendices [PDF-5.8MB]

98

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Applications Industrial Applications Blast Furnace Granular-Coal Injection System Demonstration Project - Project Brief [PDF-314KB] Bethlehem Steel Corp., Burns Harbor, IN PROGRAM PUBLICATIONS Final Reports Blast Furnace Granular Coal Injection System Demonstration Project, Project Performance and Economics, Final Report Vol. 2 [PDF-3.8MB] (Oct 1999) Annual/Quarterly Technical Reports Blast Furnace Granular Coal Injection Project, Annual Reports January - December 1998 [PDF-1.7MB] January - December 1997 [PDF-1.7MB] January - December 1996 [PDF-1.7MB] January - December 1995 [PDF-2.6MB] January - December 1994 [PDF-2MB] (July 1995) January - December 1993[PDF-1.5MB] (June 1994) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports

99

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

Mild Gasification Mild Gasification ENCOAL® Mild Coal Gasification Project - Project Brief [PDF-279KB] ENCOAL Corporation, Gillette, WY PROGRAM PUBLICATIONS Final Reports ENCOAL Mild Coal Gasification Project Final Reports [PDF-6.8MB] (Sept 1997) (Includes the following 3 reports) ENCOAL Project Final Report [PDF-460KB] (Sept 1997) Final Design Modifications Report [PDF-5.2MB] (Sept 1997) Commercial Plant Feasibility Study [PDF-1MB] (Sept 1997) Annual/Quarterly Technical Reports ENCOAL Mild Coal Gasification Project Annual Report, October 1994 - September 1995 [PDF-2.6MB] (Jan 1996) ENCOAL Mild Coal Gasification Demonstration Project, Annual Report, October 1993-September 1994 [PDF-1.5MB] (Mar 1995) ENCOAL Mild Coal Gasification Demonstration Project, Annual Report [PDF-1.6MB] (Oct 1993)

100

Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000  

SciTech Connect

The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric power marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.

NONE

2000-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

operations with natural gas: Fuel composition implications,of Natural gas testing LANDFILL GAS COMPOSITION Tapping into

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

102

Gas stream cleaning system and method  

DOE Patents (OSTI)

An oil mist and solid particle laden gas from an oil shale retorting operation is initially treated with a temperature controlled oil spray and then by a coalescer to reduce the quantity of oil mist and remove most of the solid particle content of the gas stream and then finally treated by an electrostatic precipitator to essentially remove the oil mist remaining in the gas.

Kunchal, S. Kumar (300 Enterprise Bldg., Grand Junction, CO 81501); Erck, Louis J. (Anvil Points, Rifle, CO 81650); Harris, Harry A. (No. 25 Anvil Points, Rifle, CO 81650)

1979-04-13T23:59:59.000Z

103

Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion  

SciTech Connect

The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally, the transient demonstration was performed in Phase IV. The project demonstrated the achievement of meeting US10 emissions without NOx aftertreatment. The successful execution of the project has served to highlight the effectiveness of closely matched combustion predictive tools to engine testing. It has further served to highlight the importance of key technologies and future areas of research and development. In this regard, recommendations are made towards further improvements in the areas of engine hardware, fuel injection systems, controls and fuels.

Ojeda, William de

2010-07-31T23:59:59.000Z

104

Demonstration plant for IGCC using the U-GAS process  

SciTech Connect

Tampella, Ltd., in cooperation with the Institute of Gas Technology (IGT), is developing the gasification technology for U-GAS{reg_sign} to produce electricity from coal using the integrated gasification combined-cycle (IGCC). The concept of IGCC is to join the clean burning gasification island with a more efficient gas and stream turbine island to produce electric power with minimal environmental impact. IGT has developed the U-GAS process to produce a low- or medium-Btu gas from different types of coal feedstocks. The process uses a combination of fluidized=bed gasification and ash agglomeration in a single-stage reactor. A 30-tons/day-capacity pilot plant located in Chicago has been used to develop the process. Feedstocks ranging from relatively unreactive metallurgical coke to highly reactive peat have been gasified successfully in the this pilot plant, indicating its ability to handle a feedstock with widely varying properties. A new 10 megawatt pilot plant has been designed and is under construction in Tampere, Finland, as the first step toward the commercialization of this technology. Tampella is planning to design and deliver a commercial-scale IGCC demonstration plant by 1994. 7 refs., 5 figs.

Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Salo, K. [Tampella Power, Tampere (Finland)

1991-12-01T23:59:59.000Z

105

Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Virginia Cleans up Virginia Cleans up With Natural Gas Refuse Trucks to someone by E-mail Share Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Facebook Tweet about Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Twitter Bookmark Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Google Bookmark Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Delicious Rank Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Digg Find More places to share Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on AddThis.com... May 11, 2013 Virginia Cleans up With Natural Gas Refuse Trucks W atch how Richmond, Virginia, powers refuse haulers and other city vehicles

106

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

Simulated Landfill Gas Intake Diagram STEADY STATE OPERATIONlandfill gas. Expanding the understanding of HCCI mode of engine operation

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

107

Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

7 JUNE 2012 7 JUNE 2012 Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions and Improve Efficiency 2 Cover Photos: * Top left: Great River Energy's Coal Creek Station * Top right: We Energy's Presque Isle Power Plant * Bottom: Dynegy's Baldwin Energy Complex A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * NeuCo. , Inc. * WeEnergies 3 Executive Summary 4 Clean Coal Technology Demonstration Program 5 CCPI Program 6 Demonstration of Integrated Optimization Software at

108

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bygas and simulated landfill gas as a fuel source. This

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

109

Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project  

DOE Green Energy (OSTI)

The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer lab evaluation; cold-start test-cell evaluations; overall feasibility, economics, and efficiency of SFP fuel production; and an economic analysis. Two unexpected issues that arose during the project were further studied and resolved: variations in NOx emissions were accounted for and fuel-injection nozzle fouling issues were traced to the non-combustible (ash) content of the engine oil, not the F-T fuel. The F-T fuel domestically produced and evaluated in this effort appears to be a good replacement candidate for petroleum-based transportation fuels. However, in order for domestic F-T fuels to become a viable cost-comparable alternative to petroleum fuels, the F-T fuels will need to be produced from abundant U.S. domestic resources such as coal and biomass, rather than stranded natural gas.

Stephen P. Bergin

2006-06-30T23:59:59.000Z

110

Clean and Highly-Ordered Graphene Synthesized in the Gas-Phase  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean and Highly-Ordered Graphene Synthesized in the Gas-Phase Title Clean and Highly-Ordered Graphene Synthesized in the Gas-Phase Publication Type Journal Article Year of...

111

Advanced Flue Gas Desulfurization (AFGD) Demonstration Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the WES, which involves injection into the flue gas duct upstream of the existing electrostatic 11 precipitator (ESP). The hot flue gas evaporates the water and the...

112

Advanced Acid Gas Separation Technology for Clean Power and Syngas  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Processing Systems Syngas Processing Systems Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications Air Products and Chemicals, Inc. Project Number: FE0013363 Project Description In this project, Air Products will operate a two-bed mobile system at the National Carbon Capture Center (NCCC) facility. A slipstream of authentic, high-hydrogen syngas based on low-rank coal will be evaluated as the feedstock. Testing will be conducted for approximately eight weeks, thereby providing far longer adsorbent exposure data than demonstrated to date. By utilizing real-world, high- hydrogen syngas, information necessary to understand the utility of the system for methanol production will be made available. In addition, Air Products will also operate a multi-bed PSA process development unit (PDU), located at its Trexlertown, PA headquarters, to evaluate the impact of incorporating pressure equalization steps in the process cycle. This testing will be conducted utilizing a sulfur-free, synthetic syngas, and will improve the reliability of the prediction of the system's operating performance at commercial scale.

113

GE, Clean Energy Fuels Partner to Expand Natural Gas Highway | OpenEI  

Open Energy Info (EERE)

GE, Clean Energy Fuels Partner to Expand Natural Gas Highway GE, Clean Energy Fuels Partner to Expand Natural Gas Highway Home > Groups > Clean and Renewable Energy Jessi3bl's picture Submitted by Jessi3bl(15) Member 16 December, 2012 - 19:18 clean energy Clean Energy Fuels energy Environment Fuel GE Innovation Partnerships Technology Innovation & Solutions Transportation Trucking GE, Clean Energy Fuels Partner to Expand 'Natural Gas Highway' GE and Clean Energy Fuels announced a collaboration to expand the infrastructure for natural gas transportation in the United States. The agreement supports Clean Energy's efforts in developing America's Natural Gas Highway, a fueling network that will enable trucks to operate on liquefied natural gas coast to coast and border to border. Clean Energy Fuels will initially purchase two ecomagination-qualified

114

Industrial Fuel Gas Demonstration Plant Program. Annual progress report, January-December 1979  

SciTech Connect

The objective of the Industrial Fuel Gas Demonstration Plant Program is to demonstrate the feasibility of converting agglomerating and high sulfur coal to clean fuel gas and utilizing this gas in a commercial application. Specific objectives are to conduct process analysis, design, construction, testing, operation and evaluation of a plant based on the U-Gas process for converting coal to industrial fuel gas. Phase I of the MLGW Industrial Fuel Gas Demonstration Plant Program started in September, 1977. In the first quarter of 1978, a conceptual design of a commercial plant was started, together with environmental monitoring activities and technical support work at the U-Gas pilot plant. After a series of successful pilot plant runs during the October 1978-March 1979 period, design work on the Demonstration Plant commenced. With the exception of Task I - Design and Evaluation of Commercial Plant, the majority of all other efforts were completed in 1979. These tasks are listed.

None

1980-01-01T23:59:59.000Z

115

Evaluation of Ultra Clean Fuels from Natural Gas  

DOE Green Energy (OSTI)

ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-clean burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also applicable to coal-derived FT liquid fuels. After different gas clean up processes steps, the coal-derived syngas will produce FT liquid fuels that have similar properties to natural gas derived FT liquids.

Robert Abbott; Edward Casey; Etop Esen; Douglas Smith; Bruce Burke; Binh Nguyen; Samuel Tam; Paul Worhach; Mahabubul Alam; Juhun Song; James Szybist; Ragini Acharya; Vince Zello; David Morris; Patrick Flynn; Stephen Kirby; Krishan Bhatia; Jeff Gonder; Yun Wang; Wenpeng Liu; Hua Meng; Subramani Velu; Jian-Ping Shen, Weidong Gu; Elise Bickford; Chunshan Song; Chao-Yang Wang; Andre' Boehman

2006-02-28T23:59:59.000Z

116

The role of Integrated Gasification Combined Cycle in the USDOE`s Clean Coal Research, Development and Demonstration Program  

SciTech Connect

For many years, the US Department of Energy (DOE) has been funding research, development, and demonstration (RD&D) projects to develop advanced power generation technologies. The goal of this activity is to catalyze the private sector to commercialize technologies that will provide reasonably priced electricity and still meet stringent environmental standards. Integrated Gasification Combined Cycle (IGCC) systems are emerging as one of the more attractive candidate technologies to meet this goal. The Morgantown Energy Technology Center (METC) has been assigned the responsibility for implementing IGCC projects in DOE`s Clean Coal RD&D program. The IGCC technology offers the potential for significant Improvements in environmental performance, compared to today`s coal-fired power plants. Sulfur dioxide and nitrogen oxide emissions from IGCC systems will be less than one-tenth of existing environmental standards. Thus, the IGCC technology will make coal-based plants as clean as plants that bum natural gas.

Bajura, R.A.; Schmidt, D.K.

1993-06-01T23:59:59.000Z

117

Ultra-Clean Fischer-Tropsch Fuels Production and Demonstration Project  

DOE Green Energy (OSTI)

The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: Dynamometer Durability Testing, the Denali Bus Fleet Demonstration, Bus Fleet Demonstrations Emissions Analysis, Impact of SFP Fuel on Engine Performance, Emissions Analysis, Feasibility Study of SFPs for Rural Alaska, and Cold Weather Testing of Ultra Clean Fuel.

Steve Bergin

2005-10-14T23:59:59.000Z

118

Clean Cities: Clean Cities Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Clean Cities: Clean Cities Partnerships to someone by E-mail Share Clean Cities: Clean Cities Partnerships on Facebook Tweet about Clean Cities: Clean Cities Partnerships on Twitter Bookmark Clean Cities: Clean Cities Partnerships on Google Bookmark Clean Cities: Clean Cities Partnerships on Delicious Rank Clean Cities: Clean Cities Partnerships on Digg Find More places to share Clean Cities: Clean Cities Partnerships on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum

119

Innovative coke oven gas cleaning system for retrofit applications  

DOE Green Energy (OSTI)

The coke plant at the Sparrows Point Plant consist of three coke oven batteries and two coal chemical plants. The by-product coke oven gas (COG) consists primarily of hydrogen, methane, carbon monoxide, nitrogen and contaminants consisting of tars, light oils (benzene, toluene, and xylene) hydrogen sulfide, ammonia, water vapor and other hydrocarbons. This raw coke oven gas needs to be cleaned of most of its contaminants before it can be used as a fuel at other operations at the Sparrows Point Plant. In response to environmental concerns, BSC decided to replace much of the existing coke oven gas treatment facilities in the two coal chemical Plants (A and B) with a group of technologies consisting of: Secondary Cooling of the Coke oven Gas; Hydrogen Sulfide Removal; Ammonia Removal; Deacification of Acid Gases Removed; Ammonia Distillation and Destruction; and, Sulfur Recovery. This combination of technologies will replace the existing ammonia removal system, the final coolers, hydrogen sulfide removal system and the sulfur recovery system. The existing wastewater treatment, tar recovery and one of the three light oil recovery systems will continue to be used to support the new innovative combination of COG treatment technologies.

Not Available

1992-08-24T23:59:59.000Z

120

The role of IGCC in USDOE clean coal research, development and demonstration  

SciTech Connect

For many years, the US Department of Energy (DOE) has been funding research, development, and demonstration (RD&D) projects to develop advanced power generation technologies. The goal of this RD&D is private sector commercialization of technologies that will provide reasonably priced electricity and still meet stringent environmental standards. Integrated Gasification Combined-Cycle (IGCC) systems are emerging as one of the more attractive candidate technologies to meet this goal. The Morgantown Energy Technology Center (METC) has been assigned the responsibility for implementing IGCC projects in DOE`s Clean Coal RD&D program. Projects related to IGCC are briefly described.

Schmidt, D.K.; Rath, L.K.

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Innovative coke oven gas cleaning system for retrofit applications. Volume 1, Public design report  

SciTech Connect

This Public Design Report provides, in a single document, available nonproprietary design -information for the ``Innovative Coke Oven Gas Cleaning System for Retrofit Applications`` Demonstration Project at Bethlehem Steel Corporation`s Sparrows Point, Maryland coke oven by-product facilities. This project demonstrates, for the first time in the United States, the feasibility of integrating four commercially available technologies (processes) for cleaning coke oven gas. The four technologies are: Secondary Gas Cooling, Hydrogen Sulfide and Ammonia Removal, Hydrogen Sulfide and Ammonia Recovery, and Ammonia Destruction and Sulfur Recovery. In addition to the design aspects, the history of the project and the role of the US Department of,Energy are briefly discussed. Actual plant capital and projected operating costs are also presented. An overview of the integration (retrofit) of the processes into the existing plant is presented and is followed by detailed non-proprietary descriptions of the four technologies and their overall effect on reducing the emissions of ammonia, sulfur, and other pollutants from coke oven gas. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions, catalyst and chemical requirements, and utility requirements are given for each unit. Plant startup provisions, environmental considerations and control monitoring, and safety considerations are also addressed for each process.

Not Available

1994-05-24T23:59:59.000Z

122

Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration  

DOE Green Energy (OSTI)

In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

NONE

1995-06-01T23:59:59.000Z

123

ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

SciTech Connect

The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: SFP Construction and Fuel Production, Impact of SFP Fuel on Engine Performance, Fleet Testing at WMATA and Denali National Park, Demonstration of Clean Diesel Fuels in Diesel Electric Generators in Alaska, and Economic Analysis. ICRC provided overall project organization and budget management for the project. ICRC held meetings with various project participants. ICRC presented at the Department of Energy's annual project review meeting. The plant began producing fuel in October 2004. The first delivery of finished fuel was made in March of 2004 after the initial start-up period.

Steve Bergin

2004-10-18T23:59:59.000Z

124

ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

DOE Green Energy (OSTI)

The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: SFP Construction and Fuel Production, Impact of SFP Fuel on Engine Performance, Fleet Testing at WMATA and Denali National Park, Demonstration of Clean Diesel Fuels in Diesel Electric Generators in Alaska, and Economic Analysis. ICRC provided overall project organization and budget management for the project. ICRC held meetings with various project participants. ICRC presented at the Department of Energy's annual project review meeting. The plant began producing fuel in October 2004. The first delivery of finished fuel was made in March of 2004 after the initial start-up period.

Steve Bergin

2004-10-18T23:59:59.000Z

125

Innovative coal gas cleaning at Sparrows Point Coal Chemical Plant, Maryland for Bethlehem Steel Corporation  

SciTech Connect

In response to the Clean Coal II solicitation, Bethlehem Steel Corporation (BSC) submitted a proposal to the DOE in May 1988. The proposal submitted by BSC describes a Unique integration of commercial technologies developed by Davy/Still Otto to clean coke oven gas being produced at its Sparrows Point, Maryland steel plant. This innovative coke oven gas cleaning system combines secondary gas cooling with hydrogen sulfide and ammonia removal, hydrogen sulfide and ammonia recovery, ammonia destruction and sulfur recovery to produce a cleaner fuel gas for plant use. The primary environmental benefit associated with employing this innovative coke oven gas cleaning system is realized when the fuel gas is burned within the steel plant. Emissions of sulfur dioxide are reduced by more than 60 percent. The removal, recovery and destruction of ammonia eliminates the disposal problems associated with an unmarketable ammonium sulfate by-product. Significant reduction in benzene and hydrogen cyanide emissions are also obtained.

Antrobus, K.; Platts, M. (Davy/Still Otto, Pittsburgh, PA (US)); Harbold, L. (Bethlehem Steel Corp., PA (USA)); Kornosky, R. (Office of Clean Coal Technology, US DOE, Pittsburgh, PA (US))

1990-01-01T23:59:59.000Z

126

A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas  

Office of Scientific and Technical Information (OSTI)

Timothy C. Merkel (Primary Contact) Timothy C. Merkel (Primary Contact) RTI P.O. Box 12194 Research Triangle Park, NC 27709 merkel@rti.org Tel (919) 485-2742 Fax (919) 541-8000 Raghubir P. Gupta RTI P.O. Box 12194 Research Triangle Park, NC 27709 gupta@rti.org Tel (919) 541-8023 Fax (919) 541-8000 Suresh C. Jain U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880 Morgantown, WV 26507 suresh.jain@netl.doe.gov Tel (304) 285-5431 Fax (304) 285-4403 Brian S. Turk RTI P.O. Box 12194 Research Triangle Park, NC 27709 bst@rti.org Tel (919) 541-8024 Fax (919) 541-8000 Daniel C. Cicero U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880 Morgantown, WV 26507 daniel.cicero@netl.doe.gov Tel (304) 285-4826 Fax (304) 285-4403 A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas

127

NETL: Hydrogen & Clean Fuels - Abstract : Gas Adsorption on Single...  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamics Geological & Env. Systems Materials Science Contacts TECHNOLOGIES Oil & Natural Gas Supply Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources...

128

Demonstration plant engineering and design. Phase I. The pipeline gas demonstration plant. Volume 9. Plant Section 800: product gas compression and drying  

SciTech Connect

Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase scheduled to be completed in June 1981. One of the major efforts of Phase I is the completion of the process design and the project engineering design of the Demonstration Plant. This design effort has been completed. A report of the design effort is being issued in 24 volumes. This is Volume 9 which reports the design of Plant Section 800 - Product Gas Compression and Drying. Plant Section 800 compresses, cools, and drys the SNG product to conditions and specifications required for pipeline use. A conventional triethylene glycol (TEG) gas drying unit is employed to reduce the moisture content of the SNG to less than 7 pounds per million standard cubic feet. The product SNG has a minimum pressure of 800 psig and a maximum temperature of 100/sup 0/F. This section also includes the product gas analysis, metering, and totalizing instruments. It is designed to remove 3144 pounds of water from 19 million SCFC of SNG product. Volume 9 contains the following design information: process operation; design basis; heat and material balance; stream compositions; utility, chemical and catalyst summary; major equipment and machinery list; major equipment and machinery requisitions; instrument list; instrument requisitions; line lists; process flow diagram; engineering flow diagrams; and section plot plan.

Not Available

1981-01-01T23:59:59.000Z

129

Demonstration plant engineering and design. Phase I: the pipeline gas demonstration plant. Volume 7. Plant Section 500 - shift/methanation  

Science Conference Proceedings (OSTI)

Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the completion of the process design and the project engineering design of the Demonstration Plant. A report of the design effort is being issued in 24 volumes. This is Volume 7 which reports the design of Plant Section 500 - Shift/Methanation. The shift/methanation process is used to convert the purified synthesis gas from the Rectisol unit (Plant Section 400) into the desired high-Btu SNG product. This is accomplished in a series of fixed-bed adiabatic reactors. Water is added to the feed gas to the reactors to effect the requisite reactions. A nickel catalyst is used in the shift/methanation process, and the only reaction products are methane and carbon dioxide. The carbon dioxide is removed from the SNG in Plant Sectin 600 - CO/sub 2/ Removal. After carbon dioxide removal from the SNG, the SNG is returned to Plant Section 500 for final methanation. The product from the final methanation reactor is an SNG stream having a gross heating value of approximately 960 Btu per standard cubic foot. The shift/methanation unit at design conditions produces 19 Million SCFD of SNG from 60 Million SCFD of purified synthesis gas.

Not Available

1981-01-01T23:59:59.000Z

130

Guidelines for Fuel Gas Line Cleaning Using Compressed Air or Nitrogen  

Science Conference Proceedings (OSTI)

This document lays a foundation for helping the industry to better understand common practices, design basis, and issues to consider for performing fuel gas line cleaning using compressed air or nitrogen pneumatic blow processes.

2011-12-14T23:59:59.000Z

131

Renewable Natural Gas Clean-up Challenges and Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

pipeline tariffs don't typically address all components Methods for treating "raw" biogas can be costly Methods for treating raw biogas can be costly 7 *Post clean-up. Methane...

132

Madison Gas & Electric - Clean Power Partner Solar Buyback Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

do not qualify) Wisconsin Program Type Performance-Based Incentive Rebate Amount 0.25kWh '''''The Clean Power Partners Program has reached the 1 MW cap. Applicants can be...

133

An Update of the U.S. Clean Coal Technology Demonstration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Ofiice of Fossil Energy, U.S. Department of Energy Ofiice of Fossil Energy, U.S. Department of Energy Clean Coal Briefs Progress continued in the program this quarteras Southern Company Servic- es' SCR test project became the 23rd government/industry cooperative ven- ture to move into operations (see story p, 7). Look for results and other data in future issues of Clean Coul Today. Tthe Second Annual Clean Coal Technology Conference was held in Atlanta,GA,fromSeptember7-9,1993. This year's conference attracted a large number of overseas visitors who are interested in learning more about the clean coal technologies being demon- strated in the United States. Special thanks to the Southern States Energy Board for its help and hospitality this year, and to Georgia Power Company for its kind hospitality during the tour of

134

DOE Announces Restructured FutureGen Approach to Demonstrate CCS Technology at Multiple Clean Coal Plants  

Energy.gov (U.S. Department of Energy (DOE))

Affirms Commitment to Clean Coal Technology Investments; Requests $648 Million for Coal Research, Development and Deployment for FY09 Budget - Largest Coal Budget Request in more than 25 years...

135

Preconceptual design of the gas-phase decontamination demonstration cart  

Science Conference Proceedings (OSTI)

Removal of uranium deposits from the interior surfaces of gaseous diffusion equipment will be a major portion of the overall multibillion dollar effort to decontaminate and decommission the gaseous diffusion plants. Long-term low-temperature (LTLT) gas-phase decontamination is being developed at the K-25 Site as an in situ decontamination process that is expected to significantly lower the decontamination costs, reduce worker exposure to radioactive materials, and reduce safeguard concerns. This report documents the preconceptual design of the process equipment that is necessary to conduct a full-scale demonstration of the LTLT method in accordance with the process steps listed above. The process equipment and method proposed in this report are not intended to represent a full-scale production campaign design and operation, since the gas evacuation, gas charging, and off-gas handling systems that would be cost effective in a production campaign are not cost effective for a first-time demonstration. However, the design presented here is expected to be applicable to special decontamination projects beyond the demonstration, which could include the Deposit Recovery Program. The equipment will therefore be sized to a 200 ft size 1 converter (plus a substantial conservative design margin), which is the largest item of interest for gas phase decontamination in the Deposit Recovery Program. The decontamination equipment will allow recovery of the UF{sub 6}, which is generated from the reaction of ClF{sub 3} with the uranium deposits, by use of NaF traps.

Munday, E.B.

1993-12-01T23:59:59.000Z

136

Clean Cities: Natural Gas Vehicle Technology Forum Technical...  

NLE Websites -- All DOE Office Websites (Extended Search)

infrastructure technology development and marketing, small scale liquefied natural gas (LNG) production, and codes & standards. Many attendees also toured Pacific Gas & Electric's...

137

Clean Cities: Natural Gas Transit and School Bus Users Group  

NLE Websites -- All DOE Office Websites (Extended Search)

related to natural gas buses Serving as a liaison between stakeholders and natural gas vehicleequipment manufacturers Meetings TUG meeting participation is generally limited to...

138

DOE to Join with WVU to Optimize Hot Gas Filter Cleaning, Lower Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

September 24, 1999 September 24, 1999 DOE to Join with WVU to Optimize Hot Gas Filter Cleaning, Lower Costs One of the keys to future, high efficiency, cleaner coal-fired power plants is the development of hot gas filters. Most of the devices available today to filter pollution-causing impurities from power plant gas streams operate at relatively low temperatures. Tomorrow's advanced power plants - those, for example, that use coal gasifiers and advanced fluidized bed combustors - will require filtering systems that are able to withstand much hotter gas flows and function reliably at lower costs. In an effort to reduce the operational costs of these future filter systems, the Department of Energy (DOE) and West Virginia University (WVU) will conduct experiments at the university's test facility to better understand how hot-gas filters are cleaned. DOE will provide $232,000 of the total $488,888 project that will ultimately help to optimize the cleaning process.

139

By-product disposal from MSW incinerator flue gas cleaning systems  

Science Conference Proceedings (OSTI)

Waste incineration has been found to be an effective method of achieving significant volume reduction of Municipal Solid Waste (MSW) while at the same time allowing for energy recovery in the form of steam or electricity. Concern over potential air pollution from incinerators in the form of acid gases, heavy metals and dioxins has led to the application of Spray Dryer Absorption (SDA) flue gas cleaning systems to control these emissions. SDA has demonstrated high efficiencies in converting these air pollutants into a dry by-product for disposal. This has, in turn, led to concerns over potential secondary pollution from the disposal of these by-products. This paper presents a description of the SDA process and reviews disposal options for the SDA product. Product characteristics are given and results of leaching studies are presented. Comparisons between EPA's and TEP and TCLP procedures are presented. Results of dioxin measurements from the by-product are given.

Donnelly, J.R. (Joy Manufacturing Co., Los Angeles, CA (US)); Jons, E. (A/S Niro Atomizer, Copenhagen (DK))

1987-01-01T23:59:59.000Z

140

An Update of the U.S. Clean Coal Technology Demonstration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Fossil Energy, U.S. Department ol Energy Office of Fossil Energy, U.S. Department ol Energy Notable First Annual Clean Coal Conference -Technology Developers Linked with Wide Range of Users- Clean Coal Briefs MuchoftheDepartmentofEnergy's tftmtion this summer in the Clean 7oal Technology Program focused on L series of public "scoping" meetings hat were held across the nation. These nettings are one of the first steps aded for the Department to com- ~IeteanEnvironmentalImpactState- nent. a comprehensive analysis re- luired by the National Environmen- ,a1 Policy Act (NEPA) for certain mjects. While a requirement of law, hex meetings--as well as the entire 'JEPA process-provide excellent opportunities for the Department and he industrial project sponsors to work with local communities, both educat-

Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Clean Cities: Natural Gas Vehicle Technology Forum 2013 Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Forum 2013 Meeting Natural Gas Vehicle Technology Form (NGVTF) logo The Natural Gas Vehicle Technology Forum (NGVTF) will hold a meeting for stakeholders on Oct. 22-23, 2013, at...

142

Clean Coal Demonstration Projects -- Operation Experience and Risk Assessment Through September 1997, Interim Report  

Science Conference Proceedings (OSTI)

Clean coal technologies such as Integrated Gasification Combined Cycle and Pressurized Fluidized Bed Combustion can meet stringent emission standards and achieve high plant efficiencies. Commercial and near-commercial sized plants using these technologies have accumulated several years of operational experience and are serious candidates for new coal-based power plants.

1997-12-23T23:59:59.000Z

143

Clean Coal Technology Demonstration Projects -- Operating Experience and Risk Assessment Through September 1998  

Science Conference Proceedings (OSTI)

Clean coal technologies such as Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) can meet stringent emission standards and achieve high efficiencies. Commercial and near-commercial sized plants using these technologies have accumulated several years of operational experience and are serious candidates for new coal-based power plants.

1998-12-18T23:59:59.000Z

144

Demonstration of Natural Gas Engine Driven Air Compressor Technology at Department of Defense Industrial Facilities  

E-Print Network (OSTI)

Recent downsizing and consolidation of Department of Defense (DOD) facilities provides an opportunity to upgrade remaining facilities with more efficient and less polluting equipment. Use of air compressors by the DOD is widespread and the variety of tools and machinery that operate on compressed air is increasing. The energy cost of operating a natural gas engine-driven air compressor (NGEDAC) is usually lower than the cost of operating an electric-driven air compressor. Initial capital costs are offset by differences in prevailing utility rates, efficiencies of partial load operation, reductions in peak demand, heat recovery, and avoiding the cost of back-up generators. Natural gas, a clean-burning fuel, is abundant and readily available. In an effort to reduce its over-all environmental impact and energy consumption, the U.S. Army plans to apply NGEDAC technology in support of fixed facilities compressed air systems. Site assessment and demonstration results are presented in this paper.

Lin, M.; Aylor, S. W.; Van Ormer, H.

2002-04-01T23:59:59.000Z

145

ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

DOE Green Energy (OSTI)

The Syntroleum plant is mechanically complete and currently undergoing start-up. The fuel production and demonstration plan is near completion. The study on the impact of small footprint plant (SFP) fuel on engine performance is about half-completed. Cold start testing has been completed. Preparations have been completed for testing the fuel in diesel electric generators in Alaska. Preparations are in progress for testing the fuel in bus fleets at Denali National Park and the Washington Metropolitan Transit Authority. The experiments and analyses conducted during this project show that Fischer-Tropsch (FT) gas-to-liquid diesel fuel can easily be used in a diesel engine with little to no modifications. Additionally, based on the results and discussion presented, further improvements in performance and emissions can be realized by configuring the engine to take advantage of FT diesel fuel's properties. The FT fuel also shows excellent cold start properties and enabled the engine tested to start at more the ten degrees than traditional fuels would allow. This plant produced through this project will produce large amounts of FT fuel. This will allow the fuel to be tested extensively, in current, prototype, and advanced diesel engines. The fuel may also contribute to the nation's energy security. The military has expressed interest in testing the fuel in aircraft and ground vehicles.

Steve Bergin

2003-10-17T23:59:59.000Z

146

Clean Cities: National Clean Fleets Partner: Staples  

NLE Websites -- All DOE Office Websites (Extended Search)

Staples Staples to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Staples on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Staples on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Staples on Google Bookmark Clean Cities: National Clean Fleets Partner: Staples on Delicious Rank Clean Cities: National Clean Fleets Partner: Staples on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Staples on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame

147

Clean Cities: National Clean Fleets Partner: Verizon  

NLE Websites -- All DOE Office Websites (Extended Search)

Verizon Verizon to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Verizon on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Verizon on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Verizon on Google Bookmark Clean Cities: National Clean Fleets Partner: Verizon on Delicious Rank Clean Cities: National Clean Fleets Partner: Verizon on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Verizon on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame

148

COMPRESSED NATURAL GAS DEMONSTRATION BUS 7. Author{s)  

E-Print Network (OSTI)

A demonstration compressed natural gas (CNG) bus has been operating on The University of Texas at Austin shuttle system since 1992. This CNG vehicle, provided by the Blue Bird Company, was an opportunity for the University to evaluate the effectiveness of a CNG bus for shuttle operations. Three basic operating comparisons were made: 1) fuel consumption, 2) tire wear, and 3) vehicle performance. The bus was equipped with a data logger, Which was downloaded regularly, for trip reports. Tire wear was monitored regularly, and performance tests were conducted at the Natural Gas Vehicle Technology Center. Overall, the data suggest that fuel costs for the CNG bus are comparable to those for University diesel buses. This is a result of the lower fuel price for natural gas. Actual natural gas fuel consumption was higher for the CNG buses than for the diesel buses. Due to weight differences, tire wear was much less on the CNG buses. Finally, after installation of a closed-loop system, the CNG bus out-performed the diesel bus on acceleration, grade climbing ability, and speed.

Cheng-ming Wu; Ron Matthews; Mark Euritt

1994-01-01T23:59:59.000Z

149

Final environmental information volume for the coke oven gas cleaning project at the Bethlehem Steel Corporation Sparrows Point Plant  

Science Conference Proceedings (OSTI)

Bethelehem Steel Corporation (BSC) is planning to conduct a demonstration project involving an integrated system that can be retrofitted into coke oven gas handling systems to address a variety of environmental and operational factors in a more cost-effective manner. Successful application of this technology to existing US coke plants could: (1) reduce emissions of sulfur dioxide, cyanide, and volatile organic compounds (including benzene) (2) reduce the cost and handling of processing feed chemicals, (3) disposal costs of nuisance by-products and (4) increase reliability and reduce operation/maintenance requirements for coke oven gas desulfurization systems. The proposed system will remove sulfur from the coke oven gas in the form of hydrogen sulfide using the ammonia indigenous to the gas as the primary reactive chemical. Ammonia and hydrogen cyanide are also removed in this process. The hydrogen sulfide removed from the coke oven gas in routed to a modified Claus plant for conversion to a saleable sulfur by-product. Ammonia and hydrogen cyanide will be catalytically converted to hydrogen, nitrogen, carbon dioxide, and carbon monoxide. The tail gas from the sulfur recovery unit is recycled to the coke oven gas stream, upstream of the new gas cleaning system. The proposed demonstration project will be installed at the existing coke oven facilities at BSC's Sparrows Point Plant. This volume describes the proposed actions and the resulting environmental impacts. 21 refs., 19 figs., 9 tabs.

Not Available

1990-04-24T23:59:59.000Z

150

Natural gas research, development, and demonstration contractors review meeting  

DOE Green Energy (OSTI)

The U.S. Department of Energy is sponsoring two major programs to develop high efficiency, natural gas fueled power generation technologies. These programs are the Advanced Turbine Systems (ATS) Program and the Fuel Cell Program. While natural gas is gaining acceptance in the electric power sector, the improved technology from these programs will make gas an even more attractive fuel, particularly in urban areas where environmental concerns are greatest. Under the auspices of DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE), the 8-year ATS Program is developing and will demonstrate advanced gas turbine power systems for both large central power systems and smaller industrial-scale systems. The large-scale systems will have efficiencies significantly greater than 60 percent, while the industrial-scale systems will have efficiencies with at least an equivalent 15 percent increase over the best 1992-vintage technology. The goal is to have the system ready for commercial offering by the year 2000. DOE/FE and DOE/EE also cooperate in the development of fuel cells. DOE/EE is responsible for transportation applications, while DOE/FE supports fuel cell development for stationary electric power. Fuel cell systems in the 100 kilowatt (M) to several megawatt (MW) size range are an attractive technology for power generation because of their ultra-high energy conversion efficiency and extremely low environmental emissions. As modular units for distributed power generation, fuel cells are expected to be particularly beneficial where their by-product heat can be effectively used in cogeneration applications. The first generation of fuel cells for power generation is currently entering the commercial market. Advanced fuel cell power systems fueled with natural gas are expected to be commercially available by the turn of the century. The domestic and international market for this advanced technology is expected to be very large.

Bajura, R.A.

1995-12-01T23:59:59.000Z

151

Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Forum 2014 Meeting Forum 2014 Meeting Natural Gas Vehicle Technology Form (NGVTF) logo The Natural Gas Vehicle Technology Forum (NGVTF) will hold a meeting for stakeholders on Jan. 14-15, 2014, at Brookhaven National Laboratory in Upton, New York. Meeting Details Date: Jan. 14-15, 2014 | Icon of a calendar. Add to my calendar Location: Brookhaven National Laboratory 33 Lewis Rd. Upton, NY 11961 The National Renewable Energy Laboratory is hosting this meeting in partnership with the U.S. Department of Energy and the California Energy Commission to support the development and deployment of commercially competitive natural gas engines, vehicles, and infrastructure. NGVTF is free and open to stakeholders, so join the conversation about natural gas engines, vehicles, infrastructure, and codes and standards.

152

Renewable Natural Gas Clean-upp Challenges and Applications  

E-Print Network (OSTI)

at wide turndown ratio FlFlare Gas 18 To Reformer #12;19 GTI's current project initiatives GTI s current Production at 50kg/day) Electricity Compression CO2 NOx, 12.5 kW to move ADG products of Hydrogen Gasthru) · Hydrocarbon reforming (including inherent CH4) · Sour water-gas shift to achieve H2:CO >3 · Compression

153

Renewable Natural Gas Clean-upp Challenges and Applications  

E-Print Network (OSTI)

and lightweight and can be operated at wide turndown ratio FlFlare Gas 18 To Reformer #12;19 Removal of Trace (Hydrogen Fuel Production at 50kg/day) Electricity Compression CO2 NOx, 12.5 kW to move ADG products

154

DRY FLUE GAS CLEANING PROCESSES FOR ACHIEVING AIR POLLUTANT EMISSIONS  

E-Print Network (OSTI)

was mercury adsorption onto calcium sulfate (CaSO4), a byproduct of the flue gas desulfurization (FGD) wet., Powers K.W., and Pitoniak E.R. (2004) Method for Purifying Flue Gases from Combustion Sources. PatentCoupling of Advanced Oxidation and Adsorption Processes onto Silica-Titania Composites for Low

Columbia University

155

"LIMITS AND CHANCES IN FLUE-GAS CLEANING -INTE RNATIONAL PERSPECTIVE"  

E-Print Network (OSTI)

) and elemental mercury (Hg«» under oxidizing conditions of the off-gases downstream of the refuse incinerator), sulfur dioxide (S02)' nitrogen oxides (NOx), carbon monoxide (CO), PCDDs/PCDFs, cadmium (Cd), mercury (Hg emission regulations. Mercury Control in MWCs The capture of Hg in flue gas cleaning devices depends on the

Columbia University

156

A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas  

DOE Green Energy (OSTI)

The overall objective of this project is to develop technologies for cleaning/conditioning IGCC generated syngas to meet contaminant tolerance limits for fuel cell and chemical production applications. The specific goals are to develop processes for (1) removal of reduced sulfur species to sub-ppm levels using a hybrid process consisting of a polymer membrane and a regenerable ZnO-coated monolith or a mixed metal oxide sorbent; (2) removal of hydrogen chloride vapors to sub-ppm levels using an inexpensive, high-surface-area material; and (3) removal of NH3 with acidic adsorbents followed by conversion of this NH3 into nitrogen and water. Existing gasification technologies can effectively and efficiently convert a wide variety of carbonaceous feedstocks (coal, petcoke, resids, biomass, etc.) into syngas, which predominantly contains carbon monoxide and hydrogen. Unfortunately, the impurities present in these carbonaceous feedstocks are converted to gaseous contaminants such as H2S, COS, HCl, NH3, alkali macromolecules and heavy metal compounds (such as Hg) during the gasification process. Removal of these contaminants using conventional processes is thermally inefficient and capital intensive. This research and development effort is focused on investigation of modular processes for removal of sulfur, chlorine, nitrogen and mercury compounds from syngas at elevated temperature and pressures at significantly lower costs than conventional technologies.

Merkel, T.C.; Turk, B.S.; Gupta, R.P.; Cicero, D.C.; Jain, S.C.

2002-09-20T23:59:59.000Z

157

Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Advanced Flue Gas Desulfurization (AFGD) Demonstration Project A DOE Assessment August 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

158

NOVEL GAS CLEANING/ CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE  

NLE Websites -- All DOE Office Websites (Extended Search)

INTEGRATED GASIFICATION COMBINED CYCLE VOLUME I - CONCEPTUAL COMMERCIAL EVALUATION OPTIONAL PROGRAM FINAL REPORT September 1, 2001 - December 31, 2005 By Dennis A. Horazak (Siemens), Program Manager Richard A. Newby (Siemens) Eugene E. Smeltzer (Siemens) Rachid B. Slimane (GTI) P. Vann Bush (GTI) James L. Aderhold, Jr. (GTI) Bruce G. Bryan (GTI) December 2005 DOE Award Number: DE-AC26-99FT40674 Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Siemens Power Generation, Inc. 4400 Alafaya Trail Orlando, FL 32826 & Gas Technology Institute 1700 S. Mt. Prospect Rd. Des Plaines, Illinois 60018 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government.

159

Development and demonstration of a solid fuel-fired gas turbine system  

SciTech Connect

Western Research Institute (WRI) and Power Generating Incorporated (PGI) are developing a solid fuel-fired gas turbine system for specialized cogeneration applications. The system is based on a patented pressurized combustor designed and tested by PGI in conjunction with McConnell Industries. The other components of the system are (a) fuel receiving, preparation, storage and feeding system, (b) gas clean-up equipment, and (c) a gas turbine generator. An approximately 400 kW prototype system is under construction at the WRI facilities in Laramie, Wyoming. As a part of this demonstration the integrated system, following a short shakedown period, will be operated on white wood. White wood was selected as the fuel for early tests because of its low ash (0.5 - 1.0 %), silica, and sulfur contents. The system will then be operated on coal. It is expected that the design of the coal-based system will evolve as the wood testing proceeds. In previous similar wood-fired system development attempts, albeit at lower turbine inlet temperatures, a major technical hindrance to long-term operation of a gas turbine power system has been the degradation of the hot section of the gas turbine. Deposition, erosion, and corrosion are main issues that need to be addressed. In the wood-fired PGI system, erosion is not likely to be of concern because of the low silica and low overall ash content of the fuel and the fact that the wood ash particle size is expected to be in the range where little or no erosion would be expected. However, because of the high alkali content of the fuel, deposition and corrosion can become major issues. This paper will deal with the issues pertaining to the design of the prototype being constructed at the WRI premises. Preliminary thoughts on the design aspects of the plant modifications required for coal testing will also be presented.

Speight, J.G.; Sethi, V.K.

1995-11-01T23:59:59.000Z

160

Innovative coke oven gas cleaning system for retrofit applications  

SciTech Connect

The EMP consists of a Compliance Monitoring Sampling Program and a Supplemental monitoring Sampling Program. The Compliance Monitoring Sampling Program will be conducted during a summer and a winter Baseline periods during the Pre-Construction/Construction phases of the Project and during a summer and a winter period following the successful Startup and Operational phase of the completed Project. compliance monitoring consist of conducting all the sampling and observation programs associated with existing required Federal, State, and Local Regulations, Permits and Orders. These include air, water, and waste monitoring and OSHA and NESHAP monitoring. The Supplemental Monitoring Program will also be conducted during a summer and a winter Baseline periods during the Pre-Construction/Construction phases of the Demonstration Facility and during a summer and a winter period following the successful startup and Operational phase of the completed Facility. Supplemental Monitoring includes sampling of 27 additional streams that are important to measure operational or environmental performance and impacts of the installation of the new COG treatment facilities.

Not Available

1992-09-21T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Laser Oil and Gas Well Drilling Demonstration Videos  

DOE Data Explorer (OSTI)

ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into the borehole to wash out rock cuttings and keep water and other fluids from the underground formations from seeping into the well. The technical challenge will be to determine whether too much laser energy is expended to clear away the fluid where the drilling is occurring. (Copied with editing from http://www.ne.anl.gov/facilities/lal/laser_drilling.html). The demonstration videos, provided here in QuickTime format, are accompanied by patent documents and PDF reports that, together, provide an overall picture of this fascinating project.

162

Case Studies of Greenhouse Gas Emissions Offset Projects Implemented in the United Nations Clean Development Mechanism  

Science Conference Proceedings (OSTI)

This paper describes case studies of greenhouse gas (GHG) emissions offset project activities undertaken within the United Nations Clean Development Mechanism (CDM) program. This paper is designed to communicate key lessons learned from the implementation of different types of GHG emissions offsets projects in the CDM to policy makers in the U.S. who may be interested in developing national, regional or state-based GHG offsets programs. This paper also is designed to provide important insights to entitie...

2011-12-21T23:59:59.000Z

163

Bench-Scale Demonstration of Hot-Gas Desulfurization Technology  

SciTech Connect

The U.S. Department of Energy (DOE), Federal Energy Technology Center (FETC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs.

Jeffrey W. Portzer; Santosh K. Gangwal

1998-12-01T23:59:59.000Z

164

Stirling Engine Natural Gas Combustion Demonstration Program. Final report, October 1989-January 1991  

Science Conference Proceedings (OSTI)

Fueled on natural gas, the Stirling engine is an inherently clean, quiet, and efficient engine. With increasing environmental concern for air quality and the increasingly more stringent requirements for low engine exhaust emissions, the Stirling engine may be an attractive alternative to internal combustion (IC) engines. The study has demonstrated that ultra low emissions can be attained with a Stirling-engine-driven electric generator configured to burn natural gas. Combustion parameters were optimized to produce the lowest possible exhaust emissions for a flame-type combustor without compromising overall engine thermal efficiency. A market application survey and manufacturing cost analysis indicate that a market opportunity potentially exists in the volumes needed to economically manufacture a newly designed Stirling engine (Mod III) for stationary applications and hybrid vehicles. The translation of such potential markets into actual markets does, however, pose difficult challenges as substantial investments are required. Also, the general acceptance of a new engine type by purchasers requires a considerable amount of time.

Ernst, W.; Moryl, J.; Riecke, G.

1991-02-01T23:59:59.000Z

165

Demonstration of a Carbonate Fuel Cell on Coal Derived Gas  

E-Print Network (OSTI)

Several studies indicate that carbonate fuel cell systems have the potential to offer efficient, cost competitive, and environmentally preferred power plants operating on natural gas or coal derived gas (syn-gas). To date, however, no fuel cell system has run on actual syn-gas. Consequently, the Electric Power Research Institute (EPRI) has sponsored a 20 kW carbonate fuel cell pilot plant that will begin operating in March at Destec Energys coal gasification plant in Plaquemine, Louisiana. The primary purpose of the test is to determine the effect of syn-gas contaminants on the performance and life of the carbonate fuel cell. This paper will describe the project objectives, design aspects of the pilot facility, and the status of the project.

Rastler, D. M.; Keeler, C. G.; Chi, C. V.

1993-03-01T23:59:59.000Z

166

Clean Cities: Clean Cities National Parks Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities National Parks Initiative Clean Cities National Parks Initiative to someone by E-mail Share Clean Cities: Clean Cities National Parks Initiative on Facebook Tweet about Clean Cities: Clean Cities National Parks Initiative on Twitter Bookmark Clean Cities: Clean Cities National Parks Initiative on Google Bookmark Clean Cities: Clean Cities National Parks Initiative on Delicious Rank Clean Cities: Clean Cities National Parks Initiative on Digg Find More places to share Clean Cities: Clean Cities National Parks Initiative on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum

167

Sorption Mechanisms for Mercury Capture in Warm Post-Gasification Gas Clean-Up Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorption MechaniSMS for Mercury Sorption MechaniSMS for Mercury capture in WarM poSt-GaSification GaS clean-up SySteMS Background Power generation systems employing gasification technology must remove a variety of potential air pollutants, including mercury, from the synthetic gas steam prior to combustion. In general, efforts to remove mercury have focused on removal at lower temperatures (under 300 °F). The ability to remove mercury at warm-gas cleanup conditions (300 °F to 700 °F) or in the hot-gas cleanup range (above 1200 °F) would provide plant operators with greater flexibility to choose the treatment method best suited to conditions at their plant. The University of Arizona is investigating the use of paper waste-derived sorbents (PWDS) for the removal of mercury and other trace metals at temperatures in and

168

An Update ofthe U.S. Clean Coal Technology Demonstration Program Office of Fossil Energy, U.S. Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Issue No. 4, Fat, ,991 3 Issue No. 4, Fat, ,991 An Update ofthe U.S. Clean Coal Technology Demonstration Program Office of Fossil Energy, U.S. Department of Energy Nine New Clean Coal Technology Projects Selected In Fourth Round of Competition Clean Coal Briefs Highlights ofthis past quarter of the Clean Coal Technology Demonstra- tion Program include the addition 01 nine new projects selected for funding under the fourth round of competition, a new $203 million cooperative agree- ment for a pressurized circulating flu- idized bed combustion plant in Des Moines, Iowa, and the kick-off of next year's planned fifth round with the announcement of public meetings (see separate stories for details). The 42 government-industry projects now in the Clean Coal Pro- gram family-with a total value ex-

169

Clean Cities: National Clean Fleets Partner: UPS  

NLE Websites -- All DOE Office Websites (Extended Search)

UPS to UPS to someone by E-mail Share Clean Cities: National Clean Fleets Partner: UPS on Facebook Tweet about Clean Cities: National Clean Fleets Partner: UPS on Twitter Bookmark Clean Cities: National Clean Fleets Partner: UPS on Google Bookmark Clean Cities: National Clean Fleets Partner: UPS on Delicious Rank Clean Cities: National Clean Fleets Partner: UPS on Digg Find More places to share Clean Cities: National Clean Fleets Partner: UPS on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame Contacts National Clean Fleets Partner: UPS

170

Clean Cities: National Clean Fleets Partner: GE  

NLE Websites -- All DOE Office Websites (Extended Search)

GE to GE to someone by E-mail Share Clean Cities: National Clean Fleets Partner: GE on Facebook Tweet about Clean Cities: National Clean Fleets Partner: GE on Twitter Bookmark Clean Cities: National Clean Fleets Partner: GE on Google Bookmark Clean Cities: National Clean Fleets Partner: GE on Delicious Rank Clean Cities: National Clean Fleets Partner: GE on Digg Find More places to share Clean Cities: National Clean Fleets Partner: GE on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame Contacts National Clean Fleets Partner: GE

171

BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY  

SciTech Connect

The U.S. Department of Energy (DOE), Federal Energy Technology Center (FETC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2} TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents. Overall chemical reactions with Zn{sub 2} TiO{sub 4} during the desulfurization (sulfidation)-regeneration cycle are shown below: Sulfidation: Zn{sub 2} TiO{sub 4} + 2H{sub 2}S {yields} 2ZnS + TiO{sub 2} + 2H{sub 2}O; Regeneration: 2ZnS + TiO{sub 2} + 3O{sub 2} {yields} Zn{sub 2} TiO{sub 4} + 2SO{sub 2} The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO{sub 2}.

Unknown

1999-10-01T23:59:59.000Z

172

Development and demonstration of a wood-fired gas turbine system  

DOE Green Energy (OSTI)

The objectives of the test program were to obtain some preliminary information regarding the nature of particulate and vapor phase alkali compounds produced and to assess any deleterious impact they might have on materials of construction. Power Generating Incorporated (PGI) is developing a wood-fired gas turbine system for specialized cogeneration applications. The system is based on a patented pressurized combustor designed and tested by PGI in conjunction with McConnell Industries. The other components of the system are fuel receiving, preparation, storage and feeding system, gas clean-up equipment, and a gas turbine generator.

Smith, V.; Selzer, B.; Sethi, V.

1993-08-01T23:59:59.000Z

173

NSTAR Electric & Gas Corporation Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

NSTAR Electric & Gas Corporation NSTAR Electric & Gas Corporation Country United States Headquarters Location Westwood, Massachusetts Recovery Act Funding $2,362,000.00 Total Project Value $4,724,000.00 Coordinates 42.2139873°, -71.2244987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

174

Pacific Gas & Electric Company Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

Pacific Gas & Electric Company Pacific Gas & Electric Company Country United States Headquarters Location San Francisco, California Recovery Act Funding $25,000,000.00 Total Project Value $355,938,600.00 Coordinates 37.7749295°, -122.4194155° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

175

NSTAR Electric & Gas Corporation Smart Grid Demonstration Project (2) |  

Open Energy Info (EERE)

Lead NSTAR Electric & Gas Corporation Lead NSTAR Electric & Gas Corporation Country United States Headquarters Location Westwood, Massachusetts Recovery Act Funding $5,267,592.00 Total Project Value $10,535,184.00 Coordinates 42.2139873°, -71.2244987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

176

Gas turbines engines and transmissions for bus demonstration programs  

SciTech Connect

The technical status report fulfills the contractual requirements of Contract EM-78-C-02-4867. The report covers the period from 31 January 1979 through 30 April 1979 and is a summary of DDA activities for the effort performed on the procurement of eleven (11) Allison GT 404-4 gas turbine engines and five (5) HT740CT and siz (6) V730CT Allison automatic transmissions and the required associated software. (TFD)

Nigro, D.N.

1979-04-01T23:59:59.000Z

177

Next Generation Natural Gas Vehicle Program Phase I: Clean Air Partners 0.5 g/hp-h NOx Engine Concept; Final Report  

DOE Green Energy (OSTI)

Subcontractor report details work done by Clean Air Partners to develop 0.5 g/hp-h NOx natural gas engine exhaust gas recirculation (EGR) technology for the Next Generation Natural Gas Vehicle Program.

Wong, H. C.

2003-07-01T23:59:59.000Z

178

NATO/CCMS Pilot Study Evaluation of Demonstrated and Emerging Technologies for the Treatment and Clean Up  

E-Print Network (OSTI)

This document reports on the second meeting of the Phase III Pilot Study on the Evaluation of Demonstrated and Emerging Technologies for the Treatment and Clean Up of Contaminated Land and Groundwater. The United States is the lead country for the Pilot Study, and Germany and The Netherlands are the Co-Pilot countries. The first phase was successfully concluded in 1991, and the results were published in three volumes. The second phase, which expanded to include newly emerging technologies, was concluded in 1997; final reports documenting 52 completed projects and the participation of 14 countries were published in June 1998. Through these pilot studies, critical technical information was made available to participating countries and the world community. The Phase III study focuses on the technologies for treating contaminated land and groundwater. This Phase is addressing issues of sustainability, environmental merit, and cost-effectiveness, in addition to continued emphasis on emerging remediation technologies. The objectives of the study are to critically evaluate technologies, promote the appropriate use of technologies, use information technology systems to disseminate the products, and to foster innovative thinking in the area of contaminated land. The Phase III Mission Statement is provided at the end of this report

Annual Report Number; Groundwater (phase Iii; Of Contaminated L

2000-01-01T23:59:59.000Z

179

The Regional Incidence of a National Greenhouse Gas Emission Limit: Title VII of the American Clean Energy and Security Act  

E-Print Network (OSTI)

The Regional Incidence of a National Greenhouse Gas Emission Limit: Title VII of the American the macroeconomic costs of greenhouse gas emission reductions under Title VII of the American Clean Energy limits on domestic emissions of greenhouse gases (GHGs). This paper analyzes the macroeconomic costs

Wing, Ian Sue

180

Small-scale Facilities for Gas Clean Up and Carbon Capture Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Henry W. Pennline Henry W. Pennline Chemical Engineer National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6013 henry.pennline@netl.doe.gov Diane (DeeDee) Newlon Technology Transfer Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4086 r.diane.newlon@netl.doe.gov Small-Scale FacilitieS For GaS clean Up and carbon captUre reSearch Capabilities The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is conducting research on the cleanup of gas produced either by the combustion or gasification of fossil fuels. This effort directly supports the goal of various DOE technology programs (i.e., Carbon Sequestration, Gasification, etc.) to ensure the continued utilization of coal in an environmentally and economically

Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Prototype demonstration of dual sorbent injection for acid gas control on municipal solid waste combustion units  

SciTech Connect

This report gathered and evaluated emissions and operations data associated with furnace injection of dry hydrated lime and duct injection of dry sodium bicarbonate at a commercial, 1500 ton per day, waste-to-energy facility. The information compiled during the project sheds light on these sorbents to affect acid gas emissions from municipal solid waste combustors. The information assesses the capability of these systems to meet the 1990 Clean Air Act and 1991 EPA Emission Guidelines.

None

1994-05-01T23:59:59.000Z

182

Gas stream clean-up filter and method for forming same  

DOE Patents (OSTI)

A gas cleaning filter is formed in-situ within a vessel containing a fluidizable bed of granular material of a relatively large size fraction. A filter membrane provided by a porous metal or ceramic body or such a body supported a perforated screen on one side thereof is coated in-situ with a layer of the granular material from the fluidized bed by serially passing a bed-fluidizing gas stream through the bed of granular material and the membrane. The layer of granular material provides the filtering medium for the combined membrane-granular layer filter. The filter is not blinded by the granular material and provides for the removal of virtually all of the particulates from a process gas stream. The granular material can be at least partially provided by a material capable of chemically reacting with and removing sulfur compounds from the process gas stream. Low level radioactive waste containing organic material may be incinerated in a fluidized bed in communication with the described filter for removing particulates from the gaseous combustion products.

Mei, Joseph S. (Morgantown, WV); DeVault, James (Fairmont, WV); Halow, John S. (Waynesburg, PA)

1993-01-01T23:59:59.000Z

183

A gas stream clean-up filter and method for forming same  

DOE Patents (OSTI)

A gas cleaning filter is formed in-situ within a vessel containing a fluidizable bed of granular material of a relatively large size fraction. A filter membrane provided by a porous metal or ceramic body or such a body supported a perforated screen on one side thereof is coated in-situ with a layer of the granular material from the fluidized bed by serially passing a bed-fluidizing gas stream through the bed of granular material and the membrane. The layer of granular material provides the filtering medium for the combined membrane-granular layer filter. The filter is not blinded by the granular material and provides for the removal of virtually all of the particulates from a process gas stream. The granular material can be at least partially provided by a material capable of chemically reacting with and removing sulfur compounds from the process gas stream. Low level radioactive waste containing organic material may be incinerated in a fluidized bed in communication with the described filter for removing particulates from the gaseous combustion products.

Mei, J.S.; Halow, J.S.; DeVault, J.D.

1992-12-31T23:59:59.000Z

184

Combatting urban air pollution through Natural Gas Vehicle (NGV) analysis, testing, and demonstration  

DOE Green Energy (OSTI)

Deteriorating urban air quality ranks as a top concern worldwide, since air pollution adversely affects both public health and the environment. The outlook for improving air quality in the world`s megacities need not be bleak, however, The use of natural gas as a transportation fuel can measurably reduce urban pollution levels, mitigating chronic threats to health and the environment. Besides being clean burning, natural gas vehicles (NGVs) are economical to operate and maintain. The current cost of natural gas is lower than that of gasoline. Natural gas also reduces the vehicle`s engine wear and noise level, extends engine life, and decreases engine maintenance. Today, about 700,000 NGVs operate worldwide, the majority of them converted from gasoline or diesel fuel. This article discusses the economic, regulatory and technological issues of concern to the NGV industry.

NONE

1995-03-01T23:59:59.000Z

185

Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant  

DOE Patents (OSTI)

In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

1982-01-01T23:59:59.000Z

186

Recycle/reuse of boiler chemical cleaning wastes in wet limestone flue gas desulfurization (FGD) systems  

Science Conference Proceedings (OSTI)

Boiler chemical cleaning wastes (BCCW) are generated by the periodic waterside cleaning of utility boilers to remove metallic deposits from boiler tube surfaces. Depending on boiler metallurgy, BCCW generally contain high concentrations of iron and copper or both, as well as other heavy metals such as chromium, lead, nickel, and zinc. BCCW treatment and disposal methods include precipitation, coponding in an ash pond, evaporation in the fireside of an operating boiler (for organic solvents), and contracted off-site disposal. Depending on the type of BCCW chemical treatment methods achieve varying degrees of success. BCCW which contain organic chelating agents can be especially difficult to treat to national pollutant discharge elimination system (NPDES) limits (1 mg/L for both iron and copper) with conventional lime precipitation.Research is being done to evaluate different BCCW treatment and disposal methods. One waste management option under consideration is reuse of BCCW in utility wet flue gas desulfurization (FGD) systems. To investigate this option, a series of laboratory tests were performed in which five different types of BCCW were added to the reaction tank of EPRI's bench-scale wet limestone FGD system. This paper presents the results and conclusions from this study.

Stohs, M.; Owens, D.R. (Radian Corp. (US)); Micheletti, W. (Electric Power Research Inst., Palo Alto, CA (USA))

1988-01-01T23:59:59.000Z

187

Clean Cities: Clean Cities Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities Webinars on Twitter Bookmark Clean Cities: Clean Cities Webinars on Google Bookmark Clean Cities: Clean Cities Webinars on Delicious Rank Clean Cities: Clean...

188

Clean Cities: Clean Cities Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Cities: Clean Cities Videos on Twitter Bookmark Clean Cities: Clean Cities Videos on Google Bookmark Clean Cities: Clean Cities Videos on Delicious Rank Clean Cities: Clean...

189

Clean Cities: National Clean Fleets Partner: Enterprise Holdings  

NLE Websites -- All DOE Office Websites (Extended Search)

Enterprise Holdings to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Enterprise Holdings on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Enterprise Holdings on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Enterprise Holdings on Google Bookmark Clean Cities: National Clean Fleets Partner: Enterprise Holdings on Delicious Rank Clean Cities: National Clean Fleets Partner: Enterprise Holdings on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Enterprise Holdings on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group

190

An Update of the U.S. Clean Coal Technology Demonstration Program Office of Fossil Energy, U.S. Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

SCR Holds Promise for Effective NO, Control SCR Holds Promise for Effective NO, Control CCT Projects Address Higher Costs, Limited U.S. Experience Clean Coal Briefs This quarter saw several major projects in the Clelm Coal Technology Program complete construction activi- ties and move into initial opcretions, bringing to 17 the total number of operatingf~cilitiesin theprogram Data generated from these projects will help utilities form their stratcgics for corn- pliance with the IYYO Clean Air Act Amendmxlts. Pure Air began running its first advanced flue gas desulfurization unit on June 2. The scrubber is running well, capturing more than YO percent of the SO, emissions from two units at Northern Indiana Public Service k's Bailly Station Construction of the 528 MW scrubber was completed

191

Clean Cities: Clean Cities Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications Learn about alternative fuels and vehicles, infrastructure development, emissions, idle reduction, and more in the following Clean Cities-branded publications. Program Clean Cities Overview Clean Cities Now - Fall 2013 issue Fuels Biodiesel Basics Natural Gas Basics Spanish version Propane Basics Spanish version Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends Straight Vegetable Oil as Diesel Fuel? Spanish version Vehicles Clean Cities 2014 Vehicle Buyer's Guide Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment Flexible Fuel Vehicles: Providing a Renewable Fuel Choice Spanish version Hybrid and Plug-In Electric Vehicles

192

Apparatus for dusting off gas by filtration and aspiration cleaning of filter, and application to combustion gases  

SciTech Connect

Method and apparatus for dusting off gases by filtration and cleaning of filter by aspiration and application thereof to combustion gases are disclosed. This invention relates to the filtration of dust loaded gases, and, in particular, combustion gases in the hot state. It consists of passing gases to be dusted off from top to bottom over a bed of pulverulent material, in particular, a sand bed and cleaning the upper layer of said bed by aspiration of dusts deposited thereon. This invention is particularly adapted for dusting off combustion gases from boilers or thermal power stations or gases to be supplied to gas turbines.

Merry, J.

1982-07-06T23:59:59.000Z

193

Industrial Fuel Gas Demonstration Plant Program. Task III, Demonstration plant safety, industrial hygiene, and major disaster plan (Deliverable No. 35)  

SciTech Connect

This Health and Safety Plan has been adopted by the IFG Demonstration Plant managed by Memphis Light, Gas and Water at Memphis, Tennessee. The plan encompasses the following areas of concern: Safety Plan Administration, Industrial Health, Industrial Safety, First Aid, Fire Protection (including fire prevention and control), and Control of Safety Related Losses. The primary objective of this plan is to achieve adequate control of all potentially hazardous activities to assure the health and safety of all employees and eliminate lost work time to both the employees and the company. The second objective is to achieve compliance with all Federal, state and local laws, regulations and codes. Some thirty specific safe practice instruction items are included.

None

1980-03-01T23:59:59.000Z

194

TREATMENT TANK OFF-GAS TESTING FOR THE ENHANCED CHEMICAL CLEANING PROCESS  

DOE Green Energy (OSTI)

The purpose of this activity was to provide a bounding estimate of the volume of hydrogen gas generated during Enhanced Chemical Cleaning (ECC) of residual sludge remaining in a Type I or Type II treatment tank as well as to provide results independent of the sludge volume in the waste tank to be cleaned. Previous testing to support Chemical Cleaning was based on a 20:1 oxalic acid to sludge ratio. Hydrogen gas evolution is the primary safety concern. Sealed vessel coupon tests were performed to estimate the hydrogen generation rate due to corrosion of carbon steel by 2.5 wt.% oxalic acid. These tests determined the maximum instantaneous hydrogen generation rate, the rate at which the generation rate decays, and the total hydrogen generated. These values were quantified based on a small scale methodology similar to the one described in WSRC-STI-2007-00209, Rev. 0. The measured rates support identified Safety Class functions. The tests were performed with ASTM A285 Grade C carbon steel coupons. Bounding conditions were determined for the solution environment. The oxalic acid concentration was 2.5 wt.% and the test temperature was 75 C. The test solution was agitated and contained no sludge simulant. Duplicate tests were performed and showed excellent reproducibility for the hydrogen generation rate and total hydrogen generated. The results showed that the hydrogen generation rate was initially high, but decayed rapidly within a couple of days. A statistical model was developed to predict the instantaneous hydrogen generation rate as a function of exposure time by combining both sets of data. An upper bound on the maximum hydrogen generation rate was determined from the upper 95% confidence limit. The upper bound confidence limit for the hydrogen generation rate is represented by the following equation. ln (G{sub v}) = -8.22-0.0584 t + 0.0002 t{sup 2}. This equation should be utilized to estimate the instantaneous hydrogen generation rate per unit surface area, G{sub v}, at a given time, t. The units for G{sub v} and t are ft{sup 3}/ft{sup 2}/min and hours, respectively. The total volume of hydrogen gas generated during the test was calculated from the model equation. An upper bound on the total gas generated was determined from the upper 95% confidence limit. The upper bound limit on the total hydrogen generated during the 163 hour test was 0.332 ft{sup 3}/ft{sup 2}. The maximum instantaneous hydrogen generation rate for this scenario is greater than that previously measured in the 8 wt.% oxalic acid tests due to both the absence of sludge in the test (i.e., greater than 20:1 ratio of acid to sludge) and the use of polished coupons (vs. mill scale coupons). However, due to passivation of the carbon steel surface, the corrosion rate decays by an order of magnitude within the first three days of exposure such that the instantaneous hydrogen generation rates are less than that previously measure in the 8 wt.% oxalic acid tests. While the results of these tests are bounding, the conditions used in this study may not be representative of the ECC flowsheet, and the applicability of these results to the flowsheet should be evaluated for the following reasons: (1) The absence of sludge results in higher instantaneous hydrogen generation rates than when the sludge is present; and (2) Polished coupons do not represent the condition of the carbon steel interior of the tank, which are covered with mill scale. Based on lower instantaneous corrosion rates measured on mill scale coupons exposed to oxalic acid, lower instantaneous hydrogen generation rates are expected for the tank interior than measured on the polished coupons. Corrosion rates were determined from the coupon tests and also calculated from the measured hydrogen generation rates. Excellent agreement was achieved between the time averaged corrosion rate calculated from the hydrogen generation rates and the corrosion rates determined from the coupon tests. The corrosion rates were on the order of 18 to 28 mpy. Good agreement was also observed between the maximum instantaneo

Wiersma, B.

2011-08-29T23:59:59.000Z

195

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR is working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group found a new site for the project at a North Texas Exploration (NTE) gas processing plant, which met with limited success. MTR then located an alternative testing opportunity and signed a contract with Towne Exploration in the third quarter of 2006, for a demonstration plant in Rio Vista, CA, to be run through May 2007. The demonstration for Towne has already resulted in the sale of two commercial skids to the company; the units will be delivered in mid-2007. Total sales of nitrogen/natural gas membrane separation units from the partnership with ABB are now approaching $4.0 million.

Kaaeid Lokhandwala

2007-03-31T23:59:59.000Z

196

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR is working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group found a new site for the project at a North Texas Exploration (NTE) gas processing plant, and we continue, but have as yet been unsuccessful in our attempts, to negotiate with Atmos Energy for a final test of the original project demonstration unit. In the meantime, MTR has located an alternative testing opportunity and signed a contract with Towne Exploration for a demonstration plant in Rio Vista, CA, to be run through May 2007. Several commercial sales have resulted from the partnership with ABB, and total sales of nitrogen/natural gas membrane separation units are now approaching $2.6 million.

Kaaeid Lokhandwala

2006-09-30T23:59:59.000Z

197

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR is working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group found a new site for the project at a North Texas Exploration (NTE) gas processing plant, which met with limited success. However, a small test system was installed at a Twin Bottoms Energy well in Kentucky. This unit operated successfully for six months, and demonstrated the technology's reliability on a small scale. MTR then located an alternative test site with much larger gas flow rates and signed a contract with Towne Exploration in the third quarter of 2006, for a demonstration plant in Rio Vista, California, to be run through May 2007. The demonstration for Towne has already resulted in the sale of two commercial skids to the company; both units will be delivered by the end of 2007. Total sales of nitrogen/natural gas membrane separation units from the partnership with ABB are now approaching $4.0 million.

Kaaeid Lokhandwala

2007-03-31T23:59:59.000Z

198

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

hydrogenfrom natural gas and the distribution and storage ofProduction and Storage Fuel Cycle" Natural gas/CompressedHz

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

199

New York State Electric & Gas Corporation Smart Grid Demonstration Project  

Open Energy Info (EERE)

New York State Electric & Gas Corporation Smart Grid Demonstration Project New York State Electric & Gas Corporation Smart Grid Demonstration Project Jump to: navigation, search Project Lead New York State Electric & Gas Corporation Country United States Headquarters Location Binghamton, New York Recovery Act Funding $29,561,142.00 Total Project Value $125,006,103.00 Coordinates 42.0986867°, -75.9179738° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

200

CALCULATION OF DEMONSTRATION BULK VITRIFICATION SYSTEM MELTER INLEAKAGE AND OFF-GAS GENERATION RATE  

SciTech Connect

The River Protection Project (RPP) mission is to safely store, retrieve, treat, immobilize, and dispose of the Hanford Site tank waste. The Demonstration Bulk Vitrification System (DBVS) is a research and development project whose objective is to demonstrate the suitability of Bulk Vitrification treatment technology waste form for disposing of low-activity waste from the Tank Farms. The objective of this calculation is to determine the DBVS melter inleakage and off-gas generation rate based on full scale testing data from 38D. This calculation estimates the DBVS melter in leakage and gas generation rate based on test data. Inleakage is estimated before the melt was initiated, at one point during the melt, and at the end of the melt. Maximum gas generation rate is also estimated.

MAY TH

2008-04-16T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Clean Cities: National Clean Fleets Partner: FedEx  

NLE Websites -- All DOE Office Websites (Extended Search)

FedEx to FedEx to someone by E-mail Share Clean Cities: National Clean Fleets Partner: FedEx on Facebook Tweet about Clean Cities: National Clean Fleets Partner: FedEx on Twitter Bookmark Clean Cities: National Clean Fleets Partner: FedEx on Google Bookmark Clean Cities: National Clean Fleets Partner: FedEx on Delicious Rank Clean Cities: National Clean Fleets Partner: FedEx on Digg Find More places to share Clean Cities: National Clean Fleets Partner: FedEx on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame Contacts National Clean Fleets Partner: FedEx

202

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group found a new site for the project at a North Texas Exploration (NTE) gas processing plant, and we are now negotiating with Atmos Energy for a final test of the project demonstration unit. Several commercial sales have also resulted from the partnership with ABB, and sales of nitrogen/natural gas membrane separation units now total $2.3 million.

Kaaeid Lokhandwala

2006-03-20T23:59:59.000Z

203

Hot-gas filter testing with the transport reactor demonstration unit  

Science Conference Proceedings (OSTI)

The objectives of the hot-gas cleanup (HGC) work on the transport reactor demonstration unit (TRDU) located at the Energy & Environmental Research Center (EERC) is to demonstrate acceptable performance of hot-gas filter elements in a pilot-scale system prior to long-term demonstration tests. The primary focus of the experimental effort in the 2-year project will be the testing of hot-gas filter element performance (particulate collection efficiency, filter pressure differential, filter cleanability, and durability) as a function of temperature and filter face velocity during short-term operation (100-200 hours). This filter vessel will be utilized in combination with the TRDU to evaluate the performance of selected hot-gas filter elements under gasification operating conditions. This work will directly support the power systems development facility (PSDF) utilizing the M.W. Kellogg transport reactor located at Wilsonville, Alabama and, indirectly, the Foster Wheeler advanced pressurized fluid-bed combustor, also located at Wilsonville.

Mann, M.D.; Swanson, M.L.; Ness, R.O.; Haley, J.S.

1995-11-01T23:59:59.000Z

204

Investigation of Internal Cleaning Effects in Two-Phase Gas-Liquid Flows  

E-Print Network (OSTI)

Pressure waves in a gas-liquid medium with a stratifiedDynamics of Gas and Vapor-Liquid Media, Energoatomizdat,the pressure waves in a gas liquid medium with a stratified

Garg, Saurabh; Dornfeld, David; Klaus Berger

2009-01-01T23:59:59.000Z

205

Clean Cities: Clean Cities National Parks Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

National Parks Initiative National Parks Initiative Submit a Project, National Park Service logo Clean Cities partners with the National Park Service (NPS) through the Clean Cities National Parks Initiative to support transportation projects that educate park visitors on the benefits of reducing petroleum use and greenhouse gas emissions. This initiative complements the NPS Climate Friendly Parks program by demonstrating the environmental benefits of reducing petroleum use. Glacier Greater Yellowstone Area Rocky Mountain Denali National Mall and Memorial Park Mississippi River Sleeping Bear Dunes Yellowstone Grand Teton Mammoth Cave Zion Blue Ridge Parkway Great Smoky Mountains Shenandoah Acadia San Antonio Missions Grand Canyon Golden Gate Mesa Verde Project Locations - Photo of the snow-covered Teton Mountain range in Grand Teton National Park.

206

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

RFG Running Hot Soak Diurnal CNG :Diesel Fuels Emissions RFGwith compressednatural gas (CNG),the hydrocarbontaitpipemethanol, natural gas (CNG),and hydrogen. As noted above,

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

207

Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System  

Science Conference Proceedings (OSTI)

Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: Phase 1 market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. Phase 2 Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

Zurlo, James; Lueck, Steve

2011-08-31T23:59:59.000Z

208

Innovative coke oven gas cleaning system for retrofit applications. Environmental Monitoring program. Volume 1 - sampling progrom report. Baseline Sampling Program report  

Science Conference Proceedings (OSTI)

Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This innovative coke oven gas cleaning system combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE provided cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct and Environmental Monitoring Plan for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. It also requires the preparation of a final report on the results of the Baseline Compliance and Supplemental Sampling Programs that are part of the EMP and which were conducted prior to the startup of the innovative coke oven gas cleaning system. This report is the Baseline Sampling Program report.

Stuart, L.M.

1994-05-27T23:59:59.000Z

209

Clean Cities: National Clean Fleets Partner: PepsiCo  

NLE Websites -- All DOE Office Websites (Extended Search)

PepsiCo PepsiCo to someone by E-mail Share Clean Cities: National Clean Fleets Partner: PepsiCo on Facebook Tweet about Clean Cities: National Clean Fleets Partner: PepsiCo on Twitter Bookmark Clean Cities: National Clean Fleets Partner: PepsiCo on Google Bookmark Clean Cities: National Clean Fleets Partner: PepsiCo on Delicious Rank Clean Cities: National Clean Fleets Partner: PepsiCo on Digg Find More places to share Clean Cities: National Clean Fleets Partner: PepsiCo on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame

210

Clean Cities: National Clean Fleets Partner: Best Buy  

NLE Websites -- All DOE Office Websites (Extended Search)

Best Buy Best Buy to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Best Buy on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Best Buy on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Best Buy on Google Bookmark Clean Cities: National Clean Fleets Partner: Best Buy on Delicious Rank Clean Cities: National Clean Fleets Partner: Best Buy on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Best Buy on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame

211

Clean Cities: National Clean Fleets Partner: Coca-Cola  

NLE Websites -- All DOE Office Websites (Extended Search)

Coca-Cola to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Coca-Cola on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Coca-Cola on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Coca-Cola on Google Bookmark Clean Cities: National Clean Fleets Partner: Coca-Cola on Delicious Rank Clean Cities: National Clean Fleets Partner: Coca-Cola on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Coca-Cola on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum

212

Clean Cities: National Clean Fleets Partner: AMP Americas  

NLE Websites -- All DOE Office Websites (Extended Search)

AMP AMP Americas to someone by E-mail Share Clean Cities: National Clean Fleets Partner: AMP Americas on Facebook Tweet about Clean Cities: National Clean Fleets Partner: AMP Americas on Twitter Bookmark Clean Cities: National Clean Fleets Partner: AMP Americas on Google Bookmark Clean Cities: National Clean Fleets Partner: AMP Americas on Delicious Rank Clean Cities: National Clean Fleets Partner: AMP Americas on Digg Find More places to share Clean Cities: National Clean Fleets Partner: AMP Americas on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum

213

Clean Cities: New Haven Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Haven Clean Cities Coalition Haven Clean Cities Coalition The New Haven Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. New Haven Clean Cities coalition Contact Information Lee Grannis 203-627-3715 lgrannis@snet.net Brian McGrath 203-627-6874 soggy3@aol.com Coalition Website Clean Cities Coordinators Coord Lee Grannis Coord Coord Brian McGrath Coord Photo of Lee Grannis Lee Grannis started the New Haven Clean Cities coalition in 1995 and has served as the coalition's coordinator for the last 12 years. As part of his Clean Cities mission, Grannis has developed projects and obtained federal and matching funding for compressed natural gas, liquefied natural gas, light duty electric vehicles, electric transit, hydrogen

214

Clean Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Research Clean Coal Research Clean Coal Turbines Gasification Fuel Cells Hydrogen from Coal Coal to Liquids Major Demonstrations Crosscutting Research Carbon Capture and...

215

The integrated melter off-gas treatment systems at the West Valley Demonstration Project  

SciTech Connect

The West Valley Demonstration project was established by an act of Congress in 1980 to solidify the high level radioactive liquid wastes produced from operation of the Western New York Nuclear Services Center from 1966 to 1972. The waste will be solidified as borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems.

Vance, R.F.

1991-12-01T23:59:59.000Z

216

Demonstration Test of Iron Addition to a Flue Gas Desulfurization (FGD) Absorber to Enhance Mercury Removal  

Science Conference Proceedings (OSTI)

This report documents the findings from a full-scale demonstration test of the effects on trace elements of adding iron to a forced oxidation flue gas desulfurization (FGD) scrubber. Three specific effects were evaluated: lowering mercury emissions to the atmosphere; lowering the concentration of soluble or sub-micron-sized mercury particles in FGD purge water, which could improve removal of mercury in FGD purge water treatment; and lowering the concentration of selenate in FGD purge water, which could i...

2009-12-31T23:59:59.000Z

217

Materials in Clean Power Systems VI: Clean Coal-, Hydrogen Based ...  

Science Conference Proceedings (OSTI)

clean coal technologies, carbon sequestration, membrane-based gas separations, biofuel production, hydrogen production from various sources, etc. With an...

218

Clean Cities: San Francisco Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Francisco Clean Cities Coalition Francisco Clean Cities Coalition The San Francisco Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. San Francisco Clean Cities coalition Contact Information Bill Zeller 415-355-3728 william.zeller@sfgov.org Coalition Website Clean Cities Coordinator Bill Zeller Photo of Bill Zeller Bill Zeller currently leads the San Francisco Clean Cities Coalition. Although he is new to the leadership position, he has worked with SFCCC for many years as an active stakeholder representing PG&E and as the Treasurer. He has worked in the clean transportation industry since the late 1980s, promoting natural gas and electric vehicles. He recently retired from PG&E after 28 years of service. He is now the manager of Clean Vehicle Programs

219

Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application  

SciTech Connect

The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA system were delivered to VPTNA and then assembly of APA engine was completed by June 2007. Functional testing of APA engine was performed and AC and AM modes testing were completed by October 2007. After completing testing, data analysis and post processing were performed. Especially, the models were instrumental in identifying some of the key issues with the experimental HVA system. Based upon the available engine test results during AC and AM modes, the projected fuel economy improvement over the NY composite cycle is 14.7%. This is close to but slightly lower than the originally estimated 18% from ADVISOR simulation. The APA project group demonstrated the concept of APA technology by using simulation and experimental testing. However, there are still exists of technical challenges to meet the original expectation of APA technology. The enabling technology of this concept, i.e. a fully flexible valve actuation system that can handle high back pressure from the exhaust manifold is identified as one of the major technical challenges for realizing the APA concept.

Hyungsuk Kang; Chun Tai

2010-05-01T23:59:59.000Z

220

DEVELOPMENT AND DEMONSTRATION OF AN ULTRA LOW NOx COMBUSTOR FOR GAS TURBINES  

SciTech Connect

Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this project was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using nanoSTAR technology. A mechanically simple single zone injector can be used in Solar Turbine's Taurus 60 engine. (3) Rig testing of single monolithic injectors demonstrated sub 3 ppmv NOX and sub 10 ppmv CO and UHC emissions (all corrected to 15% O2) at Taurus 60 full-load pressure and combustion air inlet temperature. (4) Testing of two nanoSTAR injectors in Solar Turbine's sector rig demonstrated the ability for injectors to survive when fired in close proximity at Taurus 60 full load pressure and combustion air inlet temperature. (5) Sector rig tests demonstrated emissions performance and range of operability consistent with single injector rig tests. Alzeta has committed to the commercialization of nanoSTAR injectors and has sufficient production capability to conclude development and meet initial demand.

NEIL K. MCDOUGALD

2005-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DEVELOPMENT AND DEMONSTRATION OF AN ULTRA LOW NOx COMBUSTOR FOR GAS TURBINES  

SciTech Connect

Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this project was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using nanoSTAR technology. A mechanically simple single zone injector can be used in Solar Turbine's Taurus 60 engine. (3) Rig testing of single monolithic injectors demonstrated sub 3 ppmv NOX and sub 10 ppmv CO and UHC emissions (all corrected to 15% O2) at Taurus 60 full-load pressure and combustion air inlet temperature. (4) Testing of two nanoSTAR injectors in Solar Turbine's sector rig demonstrated the ability for injectors to survive when fired in close proximity at Taurus 60 full load pressure and combustion air inlet temperature. (5) Sector rig tests demonstrated emissions performance and range of operability consistent with single injector rig tests. Alzeta has committed to the commercialization of nanoSTAR injectors and has sufficient production capability to conclude development and meet initial demand.

NEIL K. MCDOUGALD

2005-04-30T23:59:59.000Z

222

Clean Cities: Clean Cities Internships  

NLE Websites -- All DOE Office Websites (Extended Search)

Internships to someone by Internships to someone by E-mail Share Clean Cities: Clean Cities Internships on Facebook Tweet about Clean Cities: Clean Cities Internships on Twitter Bookmark Clean Cities: Clean Cities Internships on Google Bookmark Clean Cities: Clean Cities Internships on Delicious Rank Clean Cities: Clean Cities Internships on Digg Find More places to share Clean Cities: Clean Cities Internships on AddThis.com... Coordinator Basics Outreach Education & Webinars Online Learning Webinars Internships Meetings Reporting Contacts Clean Cities Internships Clean Cities offers internships through the Clean Cities University Workforce Development Program, which unites Clean Cities coalitions across the country with students interested in changing the future of onroad transportation.

223

CCUS Demonstrations Making Progress  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, First Quarter, 2013 9, First Quarter, 2013 www.fossil.energy.gov/news/energytoday.html HigHligHts inside 2 CCUS Demonstrations Making Progress A Column from the Director of Clean Energy Sys- tems, Office of Clean Coal 4 LNG Exports DOE Releases Third Party Study on Impact of Natural Gas Exports 5 Providing Emergency Relief Petroleum Reservers Helps Out with Hurricane Relief Efforts 7 Game-Changing Membranes FE-Funded Project Develops Novel Membranes for CCUS 8 Shale Gas Projects Selected 15 Projects Will Research Technical Challenges of Shale Gas Development A project important to demonstrat- ing the commercial viability of carbon capture, utilization and storage (CCUS) technology has completed the first year of inject-

224

Innovative coke oven gas cleaning system for retrofit applications. Quarterly environmental monitoring report No. 3, January 1, 1991--December 31, 1991  

Science Conference Proceedings (OSTI)

Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This project combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE is providing cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct an Environmental Monitoring Plan (EMP) for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. This report is the third quarterly status report of the EMP. It covers the Environmental Monitoring Plan activities for the full year of 1991 from January 1, 1991 through December 31, 1991, including the forth quarter. See Sections 2, 3 and 4 for status reports of the Project Installation and Commissioning, the Environmental Monitoring activities and the Compliance Monitoring results for the period. Section 5 contains a list of Compliance Reports submitted to regulatory agencies during the period. The EMP describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) document the extent of compliance of monitoring activities, i.e. those monitoring required to meet permit requirements, (2) confirm the specific impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base for the assessment of the environmental performance of the technology demonstrated by the project.

Not Available

1992-10-16T23:59:59.000Z

225

Analysis of the University of Texas at Austin compressed natural gas demonstration bus. Interim research report  

Science Conference Proceedings (OSTI)

A demonstration compressed natural gas (CNG) bus has been operating on The University of Texas at Austin shuttle system since 1992. This CNG vehicle, provided by the Blue Bird Company, was an opportunity for the University to evaluate the effectiveness of a CNG bus for shuttle operations. Three basic operating comparisons were made: (1) fuel consumption, (2) tire wear, and (3) vehicle performance. The bus was equipped with a data logger, which was downloaded regularly, for trip reports. Tire wear was monitored regularly, and performance tests were conducted at the Natural Gas Vehicle Technology Center. Overall, the data suggest that fuel costs for the CNG bus are comparable to those for University diesel buses. This is a result of the lower fuel price for natural gas. Actual natural gas fuel consumption was higher for the CNG buses than for the diesel buses. Due to weight differences, tire wear was much less on the CNG buses. Finally, after installation of a closed-loop system, the CNG bus out-performed the diesel bus on acceleration, grade climbing ability, and speed.

Wu, C.M.; Matthews, R.; Euritt, M.

1994-06-01T23:59:59.000Z

226

Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report  

SciTech Connect

The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

NONE

1996-04-30T23:59:59.000Z

227

Clean Cities: Tucson Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tucson Clean Cities Coalition Tucson Clean Cities Coalition The Tucson Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Tucson Clean Cities coalition Contact Information Colleen Crowninshield 520-792-1093 x426 ccrowninshield@pagnet.org Coalition Website Clean Cities Coordinator Colleen Crowninshield Photo of Colleen Crowninshield Colleen Crowninshield has worked for Pima Association of Governments since 1994. In 2001, she assumed the Tucson Clean Cities responsibilities and became the full-time coordinator of the program. She also runs the Solar Partnership in Southern Arizona. Colleen has made many advances in the Tucson Clean Cities program. She opened the first compressed natural gas, E85, and biodiesel retail

228

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

ENERGY USAGE, AND GREENHOUSE EMISSIONS GAS 4. ASSESSMENT ANDgas consumption (miles per gallon or Wh mile) of a vehicle, calculation of the fuel usageGas from Biomass from Solar Carbon Dioxide Table 2: [gin ~mlsslons~-~iJfr Usage

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

229

Development and demonstration of a wood-fired gas turbine system  

DOE Green Energy (OSTI)

Power Generating Inc. (PGI) has developed and patented a unique direct-fired gas turbine power system (PGI Power System) that operates on solid wood-based fuels. The PGI Power System is designed to generate from 500 kilowatts to 3.5 megawatts of electrical power and up to 30 million Btu per hour of thermal energy for various industrial and utility applications. The system is expected to operate at thermal efficiency levels greater than 70% through full utilization of both the electrical and thermal energy it generates at a specific host facility. PGI and WRI built a 450-kW prototype system at the Western Research Institute (WRI) facilities in Laramie, Wyoming, to demonstrate the technical and economic viability of the PGI Power System. The plant has undergone a brief shakedown, and is presently being operated on white wood. In previous attempts to develop similar systems, the major technical hindrance to long-term operation of a gas turbine power system has been degradation of the hot section in the gas turbine. This problem is overcome in the PGI Power System through its unique design, by closely controlling fuel specifications, and by developing specialized operating procedures. In wood-fired testing conducted to date, no degradation in the engine performance is obvious.

Sethi, V.

1997-10-01T23:59:59.000Z

230

Clean Cities: Clean Cities Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Clean Cities: Clean Cities Publications to someone by E-mail Share Clean Cities: Clean Cities Publications on Facebook Tweet about Clean Cities: Clean Cities Publications on Twitter Bookmark Clean Cities: Clean Cities Publications on Google Bookmark Clean Cities: Clean Cities Publications on Delicious Rank Clean Cities: Clean Cities Publications on Digg Find More places to share Clean Cities: Clean Cities Publications on AddThis.com... Publications Technical Assistance Clean Cities Publications Learn about alternative fuels and vehicles, infrastructure development, emissions, idle reduction, and more in the following Clean Cities-branded publications. Program Clean Cities Overview Clean Cities Now - Fall 2013 issue

231

OpenEI Community - Clean Energy Fuels  

Open Energy Info (EERE)

en.openei.orgcommunitytaxonomyterm2070 en GE, Clean Energy Fuels Partner to Expand Natural Gas Highway http:en.openei.orgcommunityblogge-clean-energy-fuels-partner-expa...

232

Clean Cities: Clean Cities Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Clean Cities: Clean Cities Contacts to someone by E-mail Share Clean Cities: Clean Cities Contacts on Facebook Tweet about Clean Cities: Clean Cities Contacts on Twitter Bookmark Clean Cities: Clean Cities Contacts on Google Bookmark Clean Cities: Clean Cities Contacts on Delicious Rank Clean Cities: Clean Cities Contacts on Digg Find More places to share Clean Cities: Clean Cities Contacts on AddThis.com... Goals & Accomplishments Partnerships Hall of Fame Contacts Clean Cities Contacts Clean Cities contact information is provided here. Clean Cities is funded and managed by the U.S. Department of Energy (DOE). The organization includes staff from DOE headquarters, national laboratories, technical contractors, and coalition coordinators.

233

Clean Cities: Maine Clean Communities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maine Clean Communities Coalition Maine Clean Communities Coalition The Maine Clean Communities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Maine Clean Communities coalition Contact Information Steven Linnell 207-774-9891 slinnell@gpcog.org Coalition Website Clean Cities Coordinator Steven Linnell Photo of Steven Linnell Steven Linnell has been the coordinator of the statewide Maine Clean Communities coalition since its designation in 1997. The coalition's greatest achievement so far has been helping the Greater Portland METRO build the first fast-fill compressed natural gas (CNG) fueling infrastructure in the state, which currently serves 13 CNG transit buses and four CNG school buses. The coalition has also played a role in shaping

234

Clean Cities: New Jersey Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Jersey Clean Cities Coalition Jersey Clean Cities Coalition The New Jersey Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. New Jersey Clean Cities coalition Contact Information Chuck Feinberg 973-886-1655 chuck.feinberg@gmail.com Coalition Website Clean Cities Coordinator Chuck Feinberg Photo of Chuck Feinberg Chuck Feinberg is founder and Chairman of the Board of the 501(c)3 nonprofit NJ Clean Cities Coalition (NJCCC), which promotes alternative fuels and advanced vehicles, fuel blends, fuel economy, hybrid vehicles, and idle reduction initiatives. Current projects include technology deployment to public and private fleets, including the use of compressed natural gas, propane, hydrogen, plug-in and hybrid electricity, and others.

235

Clean Cities: Funded Clean Cities Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Funded Clean Cities Projects Funded Clean Cities Projects Clean Cities has awarded more than $300 million to fund hundreds of projects that reduce petroleum use. Since its inception in 1993, Clean Cities has funded more than 500 transportation projects nationwide through a competitive application process. These projects awards contribute to Clean Cities' primary goal of reducing petroleum use in the U.S. by 2.5 billion gallons per year by 2020. Some funded Clean Cities projects have included: Introduction of all-electric and hybrid electric vehicles into public and private fleets Development of E85 (85% ethanol, 15% gasoline) fueling stations along busy transportation corridors Conversion of conventional vehicles to run on natural gas and propane Installation of idle-reduction equipment in school buses and tractor trailers.

236

Clean Cities: Louisiana Clean Fuels coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Louisiana Clean Fuels Coalition Louisiana Clean Fuels Coalition The Louisiana Clean Fuels coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Louisiana Clean Fuels coalition Contact Information Ann Vail Shaneyfelt 225-334-8083 ashaneyfelt@louisianacleanfuels.org Lauren Lambert-Tompkins 225-485-2522 llambert@louisianacleanfuels.org Coalition Website Clean Cities Coordinators Coord Ann Vail Shaneyfelt Coord Coord Lauren Lambert-Tompkins Coord Photo of Ann Vail Shaneyfelt Ann Vail Shaneyfelt has served as a marketing professional for over 10 years, joined the Louisiana Clean Fuels (LCF) coalition team in 2012 and was named coordinator in October, 2013. She has worked successfully across a variety of industries including oil and gas exploration, healthcare

237

Natural gas buses: Separating myth from fact (Clean Cities alternative fuel information series fact sheet)  

DOE Green Energy (OSTI)

Increasing numbers of transit agencies across North America are making the choice to convert their bus fleets to compressed natural gas (CNG), and even more are seriously considering it. Natural gas buses now account for at least 20{percent} of all new bus orders. However, it becomes difficult for fleet operators to fairly evaluate the potential benefits of an alternative fuel program if they are confronted with misinformation or poor comparisons based on false assumptions. This fact sheet addresses some of the most common misconceptions that seem to work their way into anecdotal stories, media reports, and even some poorly researched white papers and feasibility studies. It is an expanded version of information that was presented on behalf of the U.S. Department of Energy at the South Coast Air Basin Alternative Fuel and Electric Transit Bus Workshop in Diamond Bar, California, on March 15, 2000.

Parish, R.

2000-04-27T23:59:59.000Z

238

Sorption Mechanisms for Mercury Capture in Warm Post-Gasification Gas Clean-Up Systems  

SciTech Connect

The research was directed towards a sorbent injection/particle removal process where a sorbent may be injected upstream of the warm gas cleanup system to scavenge Hg and other trace metals, and removed (with the metals) within the warm gas cleanup process. The specific objectives of this project were to understand and quantify, through fundamentally based models, mechanisms of interaction between mercury vapor compounds and novel paper waste derived (kaolinite + calcium based) sorbents (currently marketed under the trade name MinPlus). The portion of the research described first is the experimental portion, in which sorbent effectiveness to scavenge metallic mercury (Hg{sup 0}) at high temperatures (>600 C) is determined as a function of temperature, sorbent loading, gas composition, and other important parameters. Levels of Hg{sup 0} investigated were in an industrially relevant range ({approx} 25 {micro}g/m{sup 3}) although contaminants were contained in synthetic gases and not in actual flue gases. A later section of this report contains the results of the complementary computational results.

Jost Wendt; Sung Jun Lee; Paul Blowers

2008-09-30T23:59:59.000Z

239

Clean Energy Fuels | OpenEI Community  

Open Energy Info (EERE)

by Jessi3bl(15) Member 16 December, 2012 - 20:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation...

240

Clean air program: Liquefied natural gas safety in transit operations. Final report  

SciTech Connect

The report examines the safety issues relating to the use of Liquefied natural Gas (LNG) in transit service. The surveys consisted of: (1) extensive interviews; (2) review of recrods, procedures, and plans relating to safety; (3) examination of facilities and equipment; (4) observations of operations including fueling, maintenance, morning start-up, and revenue service; (5) measurement of methane concentrations in the air where the buses are being fueled or stored. Interviews included all job categories associated with management, operations, safety, maintenance, acquisition, and support. The surveys also included an examination of the occupational hygiene aspects of LNG use.

Friedman, D.M.; Malcosky, N.D.

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Certification Testing and Demonstration of Insulated Pressure Vessels for Vehicular Hydrogen and Natural Gas Storage  

Science Conference Proceedings (OSTI)

We are working on developing an alternative technology for storage of hydrogen or natural gas on light-duty vehicles. This technology has been titled insulated pressure vessels. Insulated pressure vessels are cryogenic-capable pressure vessels that can accept either liquid fuel or ambient-temperature compressed fuel. Insulated pressure vessels offer the advantages of cryogenic liquid fuel tanks (low weight and volume), with reduced disadvantages (fuel flexibility, lower energy requirement for fuel liquefaction and reduced evaporative losses). The work described in this paper is directed at verifying that commercially available pressure vessels can be safely used to store liquid hydrogen or LNG. The use of commercially available pressure vessels significantly reduces the cost and complexity of the insulated pressure vessel development effort. This paper describes a series of tests that have been done with aluminum-lined, fiber-wrapped vessels to evaluate the damage caused by low temperature operation. All analysis and experiments to date indicate that no significant damage has resulted. Future activities include a demonstration project in which the insulated pressure vessels will be installed and tested on two vehicles. A draft standard will also be generated for obtaining insulated pressure vessel certification.

Aceves, S M; Martinez-Frias, J; Espinosa-Loza, F; Schaffer, R; Clapper, W

2002-05-22T23:59:59.000Z

242

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During precommissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with their Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's Engineering group has found a new site for the project at a Duke Energy gas processing plant in Milfay, Oklahoma.

Dr. Andre Da Costa

2003-04-10T23:59:59.000Z

243

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technology Group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group first found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produced about 1 MMscfd of gas containing 24% nitrogen. The membrane unit was built to bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid was built by ABB. NTE ordered the required compressor and MTR made the membrane modules for a December 2004 delivery. However, the gas supply was not steady enough for field testing, and MTR/ABB have now located other sites for field testing and commercial development.

Kaaeid Lokhandwala

2005-12-22T23:59:59.000Z

244

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR is now working with the company's Randall Gas Technology Group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group first found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produced about 1 MMscfd of gas containing 24% nitrogen. The membrane unit was built to bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid was built by ABB. NTE ordered the required compressor and MTR made the membrane modules for a December 2004 delivery. However, the gas supply was not steady enough for field testing, and MTR/ABB have now located other sites for field testing and commercial development.

Kaaeid Lokhandwala

2005-12-15T23:59:59.000Z

245

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd nitrogen removal/gas treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group has found a new site for the project field test at a North Texas Exploration (NTE) gas processing plant. The plant produces about 1 MMscfd of gas containing 24% nitrogen. The membrane unit will bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid is being built by ABB. NTE has ordered the required compressor and MTR is making the membrane modules. The membrane skid is scheduled to be completed by December 29. Our target is to have the unit installed and optimized by mid-January.

Kaaeid Lokhandwala

2005-02-28T23:59:59.000Z

246

CleanFleet. Final report: Volume 1, summary  

DOE Green Energy (OSTI)

The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The demonstration consisted of 111 package delivery vans operating on five alternative fuels and the control fuel, unleaded gasoline. The alternative fuels were propane gas, compressed natural gas, California Phase 2 reformulated gasoline (RFG), methanol with 15 percent RFG (called M-85), and electricity. This volume of the eight volume CleanFleet final report is a summary of the project design and results of the analysis of data collected during the demonstration on vehicle maintenance and durability, fuel economy, employee attitudes, safety and occupational hygiene, emissions, and fleet economics.

NONE

1995-12-01T23:59:59.000Z

247

Clean Cities: National Clean Fleets Partner: Johnson Controls...  

NLE Websites -- All DOE Office Websites (Extended Search)

per vehicle. The fleet's strategies also include the use of compressed natural gas, propane, more fuel-efficient vehicles, and telematics. Fast Facts Joined the National Clean...

248

Breakthrough Water Cleaning Technology Could Lessen Environmental Impacts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Water Cleaning Technology Could Lessen Environmental Breakthrough Water Cleaning Technology Could Lessen Environmental Impacts from Shale Production Breakthrough Water Cleaning Technology Could Lessen Environmental Impacts from Shale Production April 28, 2011 - 1:00pm Addthis Washington, DC - A novel water cleaning technology currently being tested in field demonstrations could help significantly reduce potential environmental impacts from producing natural gas from the Marcellus shale and other geologic formations, according to the Department of Energy's (DOE) National Energy Technology Laboratory (NETL). ABSMaterial's Osorb® technology, which uses swelling glass to remove impurities, has been shown to clean flow back water and produced water from hydraulically fractured oil and gas wells. Produced waters are by far the

249

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

Greenhouse Gas Emissions of Shale Gas, Nuraral Gas, Coal,Emissions of Marcellus Shale Gas, ENvr_. Ries. LTRs. , Aug.acknowledge, "Marcellus shale gas production is still in its

Hagan, Colin R.

2012-01-01T23:59:59.000Z

250

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group has found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produces about 1 MMscfd of gas containing 24% nitrogen. The membrane unit will bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid is being built by ABB. NTE has ordered the required compressor and MTR is making the membrane modules. The membrane skid is scheduled to be completed by December 29. Our target is to have the unit installed and optimized by mid-January.

Kaaeid Lokhandwala

2004-09-01T23:59:59.000Z

251

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group has found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produces about 1 MMscfd of gas containing 24% nitrogen. The membrane unit will bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid is being built by ABB. NTE has ordered the required compressor and MTR is making the membrane modules. The membrane skid is scheduled to be completed by December 29. Our target is to have the unit installed and optimized by mid-January.

Kaaeid Lokhandwala

2004-11-15T23:59:59.000Z

252

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1-MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technologies group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group has found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produces about 1 MMscfd of gas containing 24% nitrogen. The membrane unit will bring this gas to 4% nitrogen for delivery to the pipeline. The system has been installed in the field and initial startup activities have been completed. The system has not yet produced the flow rate required for continuous stable operation. NTE, the company hosting this test site/pilot plant, will drill additional wells to increase the inlet flow rate. The system is expected to be in full continuous operation by May 2004.

Kaaeid Lokhandwala

2004-04-30T23:59:59.000Z

253

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During precommissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group has found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produces about 1 MMscfd of gas containing 24% nitrogen. The membrane unit will bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid is being built by ABB. NTE has ordered the required compressor and MTR is making the membrane modules. The membrane skid is scheduled to be completed by December 29. The target is to have the unit installed and optimized by mid-January.

Andre Da Costa

2003-11-24T23:59:59.000Z

254

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPERATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global. MTR will be working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group has found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produces about 1 MMscfd of gas containing 24% nitrogen. The membrane unit will bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid is being built by ABB. NTE has ordered the required compressor and MTR is making the membrane modules. System fabrication was completed in January 2004 and the membrane inserts were loaded. Additional pressure testing and verification will be completed prior to shipment, which is expected in early February 2004.

Kaaeid Lokhandwala

2004-01-30T23:59:59.000Z

255

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global. MTR will be working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group has found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produces about 1 MMscfd of gas containing 24% nitrogen. The membrane unit will bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid is being built by ABB. NTE has ordered the required compressor and MTR is making the membrane modules. System fabrication was completed in January 2004 and the membrane inserts were loaded. Additional pressure testing and verification will be completed prior to shipment, which is expected in early February 2004.

Kaaeid Lokhandwala

2003-12-31T23:59:59.000Z

256

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During precommissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Membrane Technology and Research, Inc. (MTR) has started to negotiate a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with their Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry.

Dr. Andre Da Costa

2003-04-10T23:59:59.000Z

257

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During precommissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Membrane Technology and Research, Inc. (MTR) continued to negotiate a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with their Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry.

Dr. Andre Da Costa

2003-04-10T23:59:59.000Z

258

OpenEI Community - clean energy  

Open Energy Info (EERE)

30 en GE, Clean Energy Fuels Partner to Expand Natural Gas Highway http:en.openei.orgcommunityblogge-clean-energy-fuels-partner-expand-natural-gas-highway

259

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas: Nineteenth Quarterly Progress Report (Second Quarter 2006)  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation, and is working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group found a new site for the project at a North Texas Exploration (NTE) gas processing plant, and we continue, but have as yet been unsuccessful in our attempts, to negotiate with Atmos Energy for a final test of the project demonstration unit. In the meantime, MTR has located an alternative testing opportunity and signed a contract for a demonstration plant in Rio Vista, CA. Several commercial sales have resulted from the partnership with ABB, and total sales of nitrogen/natural gas membrane separation units are now approaching $2.6 million.

Kaaeid Lokhandwala

2006-06-30T23:59:59.000Z

260

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO RECOVER HEAVY HYDROCARBONS AND TO REMOVE WATER FROM NATURAL GAS  

SciTech Connect

The objective of this project is to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world conditions would convince industry users of the efficiency and reliability of the process. The system has been designed and fabricated by Membrane Technology and Research, Inc. (MTR) and will be installed and operated at British Petroleum (BP)-Amoco's Pascagoula, MS plant. The Gas Research Institute will partially support the field demonstration and BP-Amoco will help install the unit and provide onsite operators and utilities. The gas processed by the membrane system will meet pipeline specifications for dewpoint and Btu value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. At the end of this demonstration project the process will be ready for commercialization. The route to commercialization will be developed during this project and may involve collaboration with other companies already servicing the natural gas processing industry.

R. Baker; R. Hofmann; K.A. Lokhandwala

2003-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Field Demonstration of a Membrane Process to Recover Heavy Hydrocarbons and to Remove Water from Natural Gas  

SciTech Connect

The objective of this project is to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world conditions would convince industry users of the efficiency and reliability of the process. The system has been designed and fabricated by Membrane Technology and Research, Inc. (MTR) and will be installed and operated at British Petroleum (BP)-Amoco's Pascagoula, MS plant. The Gas Research Institute will partially support the field demonstration and BP-Amoco will help install the unit and provide onsite operators and utilities. The gas processed by the membrane system will meet pipeline specifications for dewpoint and BTU value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. At the end of this demonstration project the process will be ready for commercialization. The route to commercialization will be developed during this project and may involve collaboration with other companies already servicing the natural gas processing industry.

R. Baker; T. Hofmann; K. A. Lokhandwala

2004-09-29T23:59:59.000Z

262

Field Demonstration of a Membrane Process to Recover Heavy Hydrocarbons and to Remove Water from Natural Gas  

SciTech Connect

The objective of this project is to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world high-pressure conditions is being conducted to convince industry users of the efficiency and reliability of the process. The system was designed and fabricated by Membrane Technology and Research, Inc. (MTR) and installed and operated at BP Amoco's Pascagoula, MS plant. The Gas Research Institute is partially supporting the field demonstration and BP-Amoco helped install the unit and provided onsite operators and utilities. The gas processed by the membrane system meets pipeline specifications for dewpoint and BTU value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. During the course of this project, MTR has sold 11 commercial units related to the field test technology, and by the end of this demonstration project the process will be ready for broader commercialization. A route to commercialization has been developed during this project and involves collaboration with other companies already servicing the natural gas processing industry.

R. Baker; T. Hofmann; K. A. Lokhandwala

2005-09-29T23:59:59.000Z

263

Field Demonstration of a Membrane Process to Recover Heavy Hydrocarbons and to Remove Water from Natural Gas  

Science Conference Proceedings (OSTI)

The objective of this project is to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world high-pressure conditions is being conducted to convince industry users of the efficiency and reliability of the process. The system was designed and fabricated by Membrane Technology and Research, Inc. (MTR) and installed and operated at BP Amoco's Pascagoula, MS plant. The Gas Research Institute is partially supporting the field demonstration and BP-Amoco helped install the unit and provides onsite operators and utilities. The gas processed by the membrane system meets pipeline specifications for dew point and BTU value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. During the course of this project, MTR has sold 13 commercial units related to the field test technology, and by the end of this demonstration project the process will be ready for broader commercialization. A route to commercialization has been developed during this project and involves collaboration with other companies already servicing the natural gas processing industry.

R. Baker; T. Hofmann; K. A. Lokhandwala

2006-09-29T23:59:59.000Z

264

Clean Cities: National Clean Fleets Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

National Clean Fleets Partnership to someone by E-mail Share Clean Cities: National Clean Fleets Partnership on Facebook Tweet about Clean Cities: National Clean Fleets Partnership...

265

6000 tpd SRC-I Demonstration Plant gas systems. Design baseline package, Volume 8. [DEA process  

SciTech Connect

Volume 8 contains the design of the fuel gas desulfurization process (DEA) and of the liquefied petroleum gases (LPG) section of the plant. The removal of acid gases is accomplished by intimately contacting the feed stream with the descending DEA solution. A partially regenerated semi-lean DEA solution is fed to an intermediate tray of the column for the bulk removal of H/sub 2/S and CO/sub 2/ while a fully regenerated lean DEA solution is fed at the top tray for the removal of the remaining acid gases in the top section of the absorber. The lean solution stream temperature is maintained at 10 to 15/sup 0/F above the absorber feed gas temperature to prevent hydrocarbon condensation in the column with consequent foaming and flooding of the column. The overhead gas (Stream 6305) leaving the H.P. DEA absorber is cooled and passed through the Sweet Gas K.O. Drum (bottom section of V-15305) to separate any condensate. The gas leaving the drum is further contacted with a 3 weight percent caustic solution in the bottom section of the Treated Gas Wash Column (T-15303) for removal of residual acid gases in order to comply with the sweet gas specifications of 1 ppMv H/sub 2/S and 10 ppMv CO/sub 2/. The LPG Recovery Unit is designed to process 15.95 MMSCFD of low pressure fuel reject gas from the HPU to recover approximately 60 percent of the propane and most of the heavier hydrocarbons. The recovered hydrocarbons are produced as liquefied petroleum gas (LPG) product. Specifications for the LPG product are: (1) Ethane/Propane (Vol/Vol) 0.02; and (2) LPG product should meet GPA Publication 2140-77 Commercial B-P mixture specifications.

1983-01-27T23:59:59.000Z

266

Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at Ft. Bliss, Texas. Interim report  

Science Conference Proceedings (OSTI)

A technology demonstration program of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles was conducted at FL Bliss, Texas to demonstrate the use of CNG as an alternative fuel. The demonstration program at FL Bliss was the first Army initiative with CNG-fueled vehicles under the legislated Alternative Motor Fuels Act. This Department of Energy (DOE)-supported fleet demonstration consisted of 48 General Services Administration (GSA)-owned, Army-leased 1992 dedicated CNG General Motors (GM) 3/4-ton pickup trucks and four 1993 gasoline-powered Chevrolet 3/4-ton pickup trucks.

Alvarez, R.A.; Yost, D.M.

1995-11-01T23:59:59.000Z

267

Clean Cities: Advanced Vehicle Technology Competitions  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas...

268

Clean Energy Procurement (Maryland) | Open Energy Information  

Open Energy Info (EERE)

Name Clean Energy Procurement Incentive Type Green Power Purchasing Applicable Sector State Government Eligible Technologies Anaerobic Digestion, Biomass, Landfill Gas,...

269

TECHNICAL AND OPERATING SUPPORT FOR PILOT DEMONSTRATION OF MORPHYSORB ACID GAS REMOVAL PROCESS  

Science Conference Proceedings (OSTI)

GTI and Krupp Uhde have been jointly developing advanced technology for removing high concentrations of acid gas from high-pressure natural gas for over a decade. This technology, the Morphysorb{reg_sign} process, based on N-formyl and N-acetyl morpholine mixtures, has now been tested in a large-scale facility and this paper presents preliminary results from acceptance testing at that facility. Earlier publications have discussed the bench-scale and pilot plant work that led up to this important milestone. The site was Duke Energy's new Kwoen sour gas upgrader near Chetwynd B.C., Canada. This facility has a nameplate capacity of 300 MMscfd of sour natural gas. The objective of the Morphysorb process at this site was to remove 33 MMscfd of acid gas (H{sub 2}S and CO{sub 2}) for reinjection downhole. This represents about half the acid gas present in the feed to the plant. In so doing, proportionately more of the plant ''sales'' gas, which is sent for final processing at the nearby Pine River plant, can be sent down the line without coming up against the sulfur removal capacity limits of Pine River plant, than could with other solvents that were evaluated. Other benefits include less loss of methane downhole with the rejected acid gas and lower circulation and recycle compression horsepower than with competitive solvents. On the downside, the process is expected to have higher solvent vaporization losses than competitive solvents, but this is a comparatively minor drawback when weighed against the value of the benefits. These benefits (and drawbacks) were developed into quantitative ''acceptance'' criteria, which will determine if the solvent will continue to be used at the site and for award of monetary bonuses to the process developer (GTI).

Nagaraju Palla; Dennis Leppin

2003-09-30T23:59:59.000Z

270

TECHNICAL AND OPERATING SUPPORT FOR PILOT DEMONSTRATION OF MORPHYSORB ACID GAS REMOVAL PROCESS  

Science Conference Proceedings (OSTI)

GTI and Krupp Uhde have been jointly developing advanced technology for removing high concentrations of acid gas from high-pressure natural gas for over a decade. This technology, the Morphysorb{reg_sign} process, based on N-formyl and N-acetyl morpholine mixtures, has now been tested in a large-scale facility and this paper presents preliminary results from acceptance testing at that facility. Earlier publications have discussed the bench-scale and pilot plant work that led up to this important milestone. The site was Duke Energy's new Kwoen sour gas upgrader near Chetwynd B.C., Canada. This facility has a nameplate capacity of 300 MMscfd of sour natural gas. The objective of the Morphysorb process at this site was to remove 33 MMscfd of acid gas (H{sub 2}S and CO{sub 2}) for reinjection downhole. This represents about half the acid gas present in the feed to the plant. In so doing, proportionately more of the plant ''sales'' gas, which is sent for final processing at the nearby Pine River plant, can be sent down the line without coming up against the sulfur removal capacity limits of Pine River plant, than could with other solvents that were evaluated. Other benefits include less loss of methane downhole with the rejected acid gas and lower circulation and recycle compression horsepower than with competitive solvents. On the downside, the process is expected to have higher solvent vaporization losses than competitive solvents, but this is a comparatively minor drawback when weighed against the value of the benefits. These benefits (and drawbacks) were developed into quantitative ''acceptance'' criteria, which will determine if the solvent will continue to be used at the site and for award of monetary bonuses to the process developer (GTI).

Nagaraju Palla; Dennis Leppin

2003-06-30T23:59:59.000Z

271

Field Demonstration of a Membrane Process to Recover Heavy Hydrocarbons and to Remove Water from Natural Gas  

SciTech Connect

The objective of this project was to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world high-pressure conditions was conducted to convince industry users of the efficiency and reliability of the process. The system was designed and fabricated by Membrane Technology and Research, Inc. (MTR) and installed and operated at BP Amoco's Pascagoula, MS plant. The Gas Research Institute partially supported the field demonstration and BP-Amoco helped install the unit and provide onsite operators and utilities. The gas processed by the membrane system meets pipeline specifications for dew point and BTU value and can be delivered without further treatment to the pipeline. During the course of this project, MTR has sold thirteen commercial units related to the field test technology. Revenue generated from new business is already more than four times the research dollars invested in this process by DOE. The process is ready for broader commercialization and the expectation is to pursue the commercialization plans developed during this project, including collaboration with other companies already servicing the natural gas processing industry.

Kaaeid Lokhandwala

2007-03-30T23:59:59.000Z

272

TECHNICAL AND OPERATING SUPPORT FOR PILOT DEMONSTRATION OF MORPHYSORB ACID GAS REMOVAL PROCESS  

SciTech Connect

Over the past 14 years, the Gas Technology Institute and jointly with Uhde since 1997 developing Morphysorb{reg_sign} a new physical solvent-based acid gas removal process. Based on extensive laboratory, bench, pilot-plant scale experiments and computer simulations, DEGT Gas Transmission Company, Canada (DEGT) has chosen the process for use at its Kwoen processing facility near Chetwynd, British Columbia, Canada as the first commercial application for the Morphysorb process. DOE co-funded the development of the Morphysorb process in various stages of development. DOE funded the production of this report to ensure that the results of the work would be readily available to potential users of the process in the United States. The Kwoen Plant is designed to process 300 MMscfd of raw natural gas at 1,080-psia pressure. The sour natural gas contains 20 to 25 percent H{sub 2}S and CO{sub 2}. The plant reduces the acid gas content by about 50% and injects the removed H{sub 2}S and CO{sub 2} into an injection well. The Kwoen plant has been operating since August 2002. Morphysorb{reg_sign} is a physical solvent-based process used for the bulk removal of CO{sub 2} and/or H{sub 2}S from natural gas and other gaseous streams. The solvent consists of N-Formyl morpholine and other morpholine derivatives. This process is particularly effective for high-pressure and high acid-gas applications and offers substantial savings in investment and operating cost compared to competitive physical solvent-based processes. GTI and DEGT first entered into an agreement in 2002 to test the Morphysorb process at their Kwoen Gas Treating Plant in northern BC. The process is operating successfully without any solvent related problems and has between DEGTC and GTI. As of December 2003, about 90 Bcf of sour gas was processed. Of this about 8 Bcf of acid gas containing mainly H{sub 2}S and CO{sub 2} was injected back into the depleted reservoir and 82 Bcf sent for further processing at DEGTC's Pine River Plant. This report discusses the operational performance at Kwoen plant during the performance test as well as the solvent performance since the plant started up. The Morphysorb performance is assessed by Duke Energy according to five metrics: acid gas pickup, recycle gas flow, total hydrocarbon loss in acid gas stream, Morphysorb solvent losses and foaming related problems. Plant data over a period of one year show that the Morphysorb solvent has performed extremely well in four out of five of these categories. The fifth metric, Morphysorb solvent loss, is being evaluated over a longer-term period in order to accurately assess it. However, the preliminary indications based on makeup solvent used to date are that solvent losses will also be within expectations. The analysis of the solvent samples indicates that the solvent is very stable and did not show any sign of degradation. The operability of the solvent is good and no foaming related problems have been encountered. According to plant operators the Morphysorb unit runs smoothly and requires no special attention.

Nagaraju Palla; Dennis Leppin

2004-02-01T23:59:59.000Z

273

Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

El-Fadel, Mutasem, E-mail: mfadel@aub.edu.lb [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon); Abi-Esber, Layale; Salhab, Samer [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon)

2012-11-15T23:59:59.000Z

274

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

acknowledge, "Marcellus shale gas production is still in itsof Marcellus shale gas production may not be fully

Hagan, Colin R.

2012-01-01T23:59:59.000Z

275

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During precommissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. In early 2002, Membrane Technology and Research, Inc. (MTR) began to negotiate a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR and ABB Lummus have now completed negotiations and have signed a joint development, marketing and sales agreement with a focus on natural gas applications. Part of the agreement calls for the Randall Gas Technology division of ABB Lummus to provide cost share for the current project.

Dr. Andre Da Costa

2003-04-10T23:59:59.000Z

276

Clean Cities Transportation Workshop for Almaty  

NLE Websites -- All DOE Office Websites (Extended Search)

and ways to overcome challenges for implementing Almaty's compressed natural gas (CNG) clean air bus program as well as the prospects for natural gas vehicles (NGVs) in...

277

CleanFleet. Volume 2, Project Design and Implementation  

DOE Green Energy (OSTI)

The CleanFleet alternative fuels demonstration project evaluated five alternative motorfuels in commercial fleet service over a two-year period. The five fuels were compressed natural gas, propane gas, California Phase 2 reformulated gasoline (RFG), M-85 (85 percent methanol and 15 percent RFG), and electric vans. Eight-four vans were operated on the alternative fuels and 27 vans were operated on gasoline as baseline controls. Throughout the demonstration information was collected on fleet operations, vehicle emissions, and fleet economics. In this volume of the CleanFleet findings, the design and implementation of the project are summarized.

NONE

1995-12-01T23:59:59.000Z

278

ADVANCED FRACTURING TECHNOLOGY FOR TIGHT GAS: AN EAST TEXAS FIELD DEMONSTRATION  

Science Conference Proceedings (OSTI)

The primary objective of this research was to improve completion and fracturing practices in gas reservoirs in marginal plays in the continental United States. The Bossier Play in East Texas, a very active tight gas play, was chosen as the site to develop and test the new strategies for completion and fracturing. Figure 1 provides a general location map for the Dowdy Ranch Field, where the wells involved in this study are located. The Bossier and other tight gas formations in the continental Unites States are marginal plays in that they become uneconomical at gas prices below $2.00 MCF. It was, therefore, imperative that completion and fracturing practices be optimized so that these gas wells remain economically attractive. The economic viability of this play is strongly dependent on the cost and effectiveness of the hydraulic fracturing used in its well completions. Water-fracs consisting of proppant pumped with un-gelled fluid is the type of stimulation used in many low permeability reservoirs in East Texas and throughout the United States. The use of low viscosity Newtonian fluids allows the creation of long narrow fractures in the reservoir, without the excessive height growth that is often seen with cross-linked fluids. These low viscosity fluids have poor proppant transport properties. Pressure transient tests run on several wells that have been water-fractured indicate a long effective fracture length with very low fracture conductivity even when large amounts of proppant are placed in the formation. A modification to the water-frac stimulation design was needed to transport proppant farther out into the fracture. This requires suspending the proppant until the fracture closes without generating excessive fracture height. A review of fracture diagnostic data collected from various wells in different areas (for conventional gel and water-fracs) suggests that effective propped lengths for the fracture treatments are sometimes significantly shorter than those predicted by fracture models. There was no accepted optimal method for conducting hydraulic fracturing in the Bossier. Each operator used a different approach. Anadarko, the most active operator in the play, had tested at least four different kinds of fracture treatments. The ability to arrive at an optimal fracturing program was constrained by the lack of adequate fracture models to simulate the fracturing treatment, and an inability to completely understand the results obtained in previous fracturing programs. This research aimed at a combined theoretical, experimental and field-testing program to improve fracturing practices in the Bossier and other tight gas plays.

Mukul M. Sharma

2005-03-01T23:59:59.000Z

279

An Update of the U.S. Clean Coal Technology Demonstration Program Office of Fossil Energy, U.S. Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Power Generation Future Bright Advanced Power Generation Future Bright With Coal Gasification-Combined Cycle Clean Coal Briefs Six Major Projects in DOE's CCT Program American Electric Power's (AEP) Tidd plant continues to break new ground in its performance as the Nation's first operating pressurized lluidized hcd combustion (PFBC) power plant. In rcccnt operations at Ohio Power Company's Brilliant, Ohio plant site, the unit reached a gross electric power output of 71 megawatts--its full power capacity. Two other milestones--a maximum bed height of 140 inches and a nrar- maximum bed temperature of I575 degrees F-were also attained during the tests. Power production in the U.S. is expected to increase rapidly during the next 20 years. Totalconsumption ofelectricity isexpectedtoriscfrom 2.7 trillionkilnvett-

280

Dept. of Energy/Dept. of Transportation Gas Turbine Transit Bus Demonstration Program: program plan  

SciTech Connect

This document is the program plan for a cooperative project of the Urban Mass Transportation Administration (UMTA) of the Department of Transportation and the Division of Transportation Energy Conservation (TEC) of the Department of Energy to test and evaluate the use of gas-turbine engines in transit buses. UMTA is responsible for furnishing buses from UMTA grantees, technical direction for bus/engine integration, and coordination of operational use of buses in selected cities. TEC is responsible for providing gas turbines, data acquisition/reduction services, and management for the complete project. The project will be carried out in three phases. In Phase I, prototype turbine engines will be used. One turbine-powered bus and diesel-powered bus will be tested at a test facility to obtain baseline data. Five turbine-powered buses will be evaluated in revenue service in one city. In Phase II, preproduction turbine engines will be used. One turbine-powered bus and diesel-powered bus will be baseline tested and ten turbine-powered buses will be evaluated in two cities. In Phase III, production gas turbine engines will be used. Only the turbine-powered bus will run baseline tests in this phase. Ten turbine-powered buses will be evaluated in two cities.

1978-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

from coal- or natural gas-fired power plants occur "up-of natural gas is lost before reaching the power plant." 30power plant. Yet, when it comes to upstream emissions, the lifecycle for natural gas

Hagan, Colin R.

2012-01-01T23:59:59.000Z

282

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

to close the gap on unregulated greenhouse gas emissions.a higher lifecycle greenhouse gas content than conventionalIN- FORMATION ON GREENHOUSE GAS EMISSIONs AssocIATEIDn wrri

Hagan, Colin R.

2012-01-01T23:59:59.000Z

283

Clean Cities: Ellen Bourbon  

NLE Websites -- All DOE Office Websites (Extended Search)

Ellen Bourbon Ellen Bourbon Project Assistance Ellen Bourbon provides programmatic support for Clean Cities as an employee of New West Technologies. She assists the U.S. Department of Energy headquarters and the Clean Cities regional managers and works with Clean Cities coalitions across the country as they develop and revise their strategies to meet petroleum reduction goals. Bourbon worked for the New Jersey Office of Clean Energy for 14 years as the Alternative Fuels Project Manager. During much of that time, she also served as New Jersey's Clean Cities coordinator, establishing the program and growing it into a statewide coalition. She worked extensively on projects involving natural gas, propane, biodiesel, and hybrid electric vehicles, and she developed a range of incentive programs to encourage state and local governments to use alternative fuels and advanced vehicles.

284

Clean Cities: Clean Cities QR Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

QR Codes to someone by E-mail Share Clean Cities: Clean Cities QR Codes on Facebook Tweet about Clean Cities: Clean Cities QR Codes on Twitter Bookmark Clean Cities: Clean Cities...

285

Toms Creek IGCC Demonstration Project  

SciTech Connect

The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020{degree}F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

Virr, M.J.

1992-11-01T23:59:59.000Z

286

Toms Creek IGCC Demonstration Project  

SciTech Connect

The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020[degree]F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

Virr, M.J.

1992-01-01T23:59:59.000Z

287

Clean Cities: Clean Cities Annual Reporting Database  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Reporting Database to someone by E-mail Share Clean Cities: Clean Cities Annual Reporting Database on Facebook Tweet about Clean Cities: Clean Cities Annual Reporting...

288

Clean Cities: Clean Cities Coalition Fundraising  

NLE Websites -- All DOE Office Websites (Extended Search)

Fundraising to someone by E-mail Share Clean Cities: Clean Cities Coalition Fundraising on Facebook Tweet about Clean Cities: Clean Cities Coalition Fundraising on Twitter Bookmark...

289

Clean Cities: Clean Cities Coalition Reporting  

NLE Websites -- All DOE Office Websites (Extended Search)

Coalition Reporting to someone by E-mail Share Clean Cities: Clean Cities Coalition Reporting on Facebook Tweet about Clean Cities: Clean Cities Coalition Reporting on Twitter...

290

Clean Cities: Clean Cities Technical Support  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Support to someone by E-mail Share Clean Cities: Clean Cities Technical Support on Facebook Tweet about Clean Cities: Clean Cities Technical Support on Twitter Bookmark...

291

Clean Cities: Clean Cities Coalition Redesignation  

NLE Websites -- All DOE Office Websites (Extended Search)

Redesignation to someone by E-mail Share Clean Cities: Clean Cities Coalition Redesignation on Facebook Tweet about Clean Cities: Clean Cities Coalition Redesignation on Twitter...

292

Clean Cities: Clean Cities University Online Learning  

NLE Websites -- All DOE Office Websites (Extended Search)

University Online Learning to someone by E-mail Share Clean Cities: Clean Cities University Online Learning on Facebook Tweet about Clean Cities: Clean Cities University Online...

293

Clean Cities: Clean Cities Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Clean Cities contact information is provided here. Clean Cities is funded and managed by the U.S. Department of Energy (DOE). The organization includes staff from DOE...

294

Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation  

SciTech Connect

Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

2012-05-01T23:59:59.000Z

295

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

ance for new stationary source in the oil and gas industry.standards for new oil-burning stationary sources. 123 Cong.See Oil and Natural Gas Sector: New Source Performance

Hagan, Colin R.

2012-01-01T23:59:59.000Z

296

Water Treatment System Cleans Marcellus Shale Wastewater | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater April 13, 2011 - 1:00pm Addthis Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana County, Pa. as part of a National Energy Technology Laboratory (NETL)-sponsored demonstration. During nine continuous months of operation, the unit successfully treated 77 percent of the water stream onsite, providing distilled water as the product. The average treated water cost per barrel over the demonstration period was

297

Water Treatment System Cleans Marcellus Shale Wastewater | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater April 13, 2011 - 1:00pm Addthis Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana County, Pa. as part of a National Energy Technology Laboratory (NETL)-sponsored demonstration. During nine continuous months of operation, the unit successfully treated 77 percent of the water stream onsite, providing distilled water as the product. The average treated water cost per barrel over the demonstration period was

298

Advanced Flue Gas Desulfurization (AFGD) Demonstration Project. Technical progress report No. 15, July 1, 1993--September 30, 1993  

Science Conference Proceedings (OSTI)

The goal of this project is to demonstrate that, by combining state-of-the-art technology, highly efficient plant operation and maintenance capabilities and by-product gypsum sales, significant reductions of SO{sub 2} emissions can be achieved at approximately one-half the life cycle cost of a conventional Flue Gas Desulfurization (FGD) system. Further, this emission reduction is achieved without generating solid waste and while minimizing liquid wastewater effluent. Basically, this project entails the design, construction and operation of a nominal 600 MWe AFGD facility to remove SO{sub 2} from coal-fired power plant flue gas at the Northern Indiana Public Service Company`s Bailly Generating Station.

Not Available

1994-08-01T23:59:59.000Z

299

Clean Cities: State of Delaware Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State of Delaware Clean Cities Coalition State of Delaware Clean Cities Coalition The State of Delaware Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. State of Delaware Clean Cities coalition Contact Information Morgan Ellis 302-739-9053 morgan.ellis@state.de.us Clean Cities Coordinator Morgan Ellis Photo of Morgan Ellis Morgan Ellis has been with the Delaware Division of Energy and Climate for three years and became the Clean Cities coordinator in 2013. Her roles and responsibilities include representing the State of Delaware on the Transportation Climate Initiative, the Regional Greenhouse Gas Initiative, as well as working on climate related policies for the State of Delaware. Ellis worked with Delaware's Clean Cities Coalition on implementing the

300

CleanFleet. Final report: Volume 6, occupational hygiene  

DOE Green Energy (OSTI)

The CleanFleet project was a 24-month demonstration of FedEx delivery vans operating on each of four gaseous or liquid alternative fuels: compressed natural gas (CNG), propane gas, methanol M-85, and California Phase 2 reformulated gasoline (RFG). Two electric vans were also demonstrated. Each alternative fuel fleet was operated from a different FedEx station site in the Los Angeles area. Gasoline-fueled control vans located at each site allowed for comparisons between fleets. The alternative fuels used in the CleanFleet project differ from conventional fuels both in their physical properties and in their potential health effects. These differences can result in occupational health implications for fleet users of these fuels. Therefore, as part of the CleanFleet project a limited occupational hygiene survey was performed.

NONE

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NETL: Major Demonstrations Success Stories  

NLE Websites -- All DOE Office Websites (Extended Search)

of Technology from Clean Coal Demonstration Projects PDF-75KB (June 2006) The Investment Pays Off PDF-3.7MB (Nov 1999) Clean Coal Technology: The Investment Pays Off (July...

302

Major Demonstrations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Demonstrations Major Demonstrations Major Demonstrations A state-of-the-art integrated coal gasification combined-cycle (IGCC) power plant, Tampa Electric's Polk Power Station produces enough electricity to serve 75,000 homes. A state-of-the-art integrated coal gasification combined-cycle (IGCC) power plant, Tampa Electric's Polk Power Station produces enough electricity to serve 75,000 homes. The Office of Fossil Energy is co-funding large-scale demonstrations of clean coal technologies to hasten their adoption into the commercial marketplace. Through the year 2030, electricity consumption in the United States is expected to grow by about 1 percent per year. The ability of coal-fired generation to help meet this demand could be limited by concerns over greenhouse gas emissions. While the Major Demonstrations performed to date

303

Gas turbine demonstration of pyrolysis: derived fuels. Third technical progress report, July 1, 1979-December 31, 1981  

DOE Green Energy (OSTI)

The objective of this program is to demonstrate the feasibility of utilizing pyrolytic oil and char as a fuel for a combustion turbine engine. This is the first phase of an extended program with the ultimate goal of commercializing a gas turbine engine and electrical generating system which is independent of petroleum-based fuels. Maximum use of existing technology and current production engine hardware (Teledyne CAE Model J69-T-29 Turbojet Engine) is being incorporated for a sequence of test evaluations rating from isolated combustor component tests to full scale engine demonstration tests. The technical goals to be achieved during the course of this project are: pyrolytic fuel characterization in terms of its properties and constituents; pyrolytic fuel combustion technology in gas turbine application in terms of pyrolytic oil atomization, quantity of char burned, emissions, performance and associated combustion system aerothermodynamics; pyrolytic fuel (oil and char slurry) handling, mixing, and storage technology; and engine materials compatibility with the the pyrolytic fuel and its combustion products. Progress achieved during the period from July 1979 through Deember 1981 in design, analysis, an project management hardware fabrication and procurement, fuel chemistry and properties, and combustor rig tests are summarized.

Jasas, G.; Kasper, J.

1982-01-01T23:59:59.000Z

304

Innovative coke oven gas cleaning system for retrofit applications. Quarterly environmental monitoring report No. 1, January 1, 1991--June 30, 1991  

DOE Green Energy (OSTI)

The coke plant at the Sparrows Point Plant consist of three coke oven batteries and two coal chemical plants. The by-product coke oven gas (COG) consists primarily of hydrogen, methane, carbon monoxide, nitrogen and contaminants consisting of tars, light oils (benzene, toluene, and xylene) hydrogen sulfide, ammonia, water vapor and other hydrocarbons. This raw coke oven gas needs to be cleaned of most of its contaminants before it can be used as a fuel at other operations at the Sparrows Point Plant. In response to environmental concerns, BSC decided to replace much of the existing coke oven gas treatment facilities in the two coal chemical Plants (A and B) with a group of technologies consisting of: Secondary Cooling of the Coke oven Gas; Hydrogen Sulfide Removal; Ammonia Removal; Deacification of Acid Gases Removed; Ammonia Distillation and Destruction; and, Sulfur Recovery. This combination of technologies will replace the existing ammonia removal system, the final coolers, hydrogen sulfide removal system and the sulfur recovery system. The existing wastewater treatment, tar recovery and one of the three light oil recovery systems will continue to be used to support the new innovative combination of COG treatment technologies.

Not Available

1992-08-24T23:59:59.000Z

305

Clean Cities: Clean Cities Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

regions. Materials include a fact sheet, a Clean Cities Plug-In Electric Vehicle Handbook for Workplace Charging Station Hosts, and other resources. In addition, this webinar...

306

Clean Cities: Clean Cities Goals and Accomplishments  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities Goals and Accomplishments Clean Cities Goals and Accomplishments to someone by E-mail Share Clean Cities: Clean Cities Goals and Accomplishments on Facebook Tweet about Clean Cities: Clean Cities Goals and Accomplishments on Twitter Bookmark Clean Cities: Clean Cities Goals and Accomplishments on Google Bookmark Clean Cities: Clean Cities Goals and Accomplishments on Delicious Rank Clean Cities: Clean Cities Goals and Accomplishments on Digg Find More places to share Clean Cities: Clean Cities Goals and Accomplishments on AddThis.com... Goals & Accomplishments Clean Cities 20th Anniversary Partnerships Hall of Fame Contacts Clean Cities Goals and Accomplishments Clean Cities' primary goal is to cut petroleum use in the United States by 2.5 billion gallons per year by 2020. To achieve this goal, Clean Cities

307

Clean Cities: News Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

about Clean Cities: News Archives on Twitter Bookmark Clean Cities: News Archives on Google Bookmark Clean Cities: News Archives on Delicious Rank Clean Cities: News Archives on...

308

Clean Cities: Mike Scarpino  

NLE Websites -- All DOE Office Websites (Extended Search)

about Clean Cities: Mike Scarpino on Twitter Bookmark Clean Cities: Mike Scarpino on Google Bookmark Clean Cities: Mike Scarpino on Delicious Rank Clean Cities: Mike Scarpino on...

309

Clean Cities: Judi Deitchel  

NLE Websites -- All DOE Office Websites (Extended Search)

about Clean Cities: Judi Deitchel on Twitter Bookmark Clean Cities: Judi Deitchel on Google Bookmark Clean Cities: Judi Deitchel on Delicious Rank Clean Cities: Judi Deitchel on...

310

Clean Cities: Linda Bluestein  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities: Linda Bluestein on Twitter Bookmark Clean Cities: Linda Bluestein on Google Bookmark Clean Cities: Linda Bluestein on Delicious Rank Clean Cities: Linda Bluestein...

311

Clean Cities: Margaret Smith  

NLE Websites -- All DOE Office Websites (Extended Search)

about Clean Cities: Margaret Smith on Twitter Bookmark Clean Cities: Margaret Smith on Google Bookmark Clean Cities: Margaret Smith on Delicious Rank Clean Cities: Margaret Smith...

312

Clean Cities: Neil Kirschner  

NLE Websites -- All DOE Office Websites (Extended Search)

about Clean Cities: Neil Kirschner on Twitter Bookmark Clean Cities: Neil Kirschner on Google Bookmark Clean Cities: Neil Kirschner on Delicious Rank Clean Cities: Neil Kirschner...

313

Clean Cities: National Clean Fleets Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Fleets Partnership Through the National Clean Fleets Partnership, Clean Cities works with large private fleets to reduce petroleum use. The initiative provides fleets with...

314

Clean Cities: Starting a Clean Cities Coalition  

NLE Websites -- All DOE Office Websites (Extended Search)

Coalitions Coalitions Printable Version Share this resource Send a link to Clean Cities: Starting a Clean Cities Coalition to someone by E-mail Share Clean Cities: Starting a Clean Cities Coalition on Facebook Tweet about Clean Cities: Starting a Clean Cities Coalition on Twitter Bookmark Clean Cities: Starting a Clean Cities Coalition on Google Bookmark Clean Cities: Starting a Clean Cities Coalition on Delicious Rank Clean Cities: Starting a Clean Cities Coalition on Digg Find More places to share Clean Cities: Starting a Clean Cities Coalition on AddThis.com... Locations Starting Coalitions Contacts Starting a Clean Cities Coalition Starting a Clean Cities coalition can be a great first step toward reducing petroleum use in your area. The U.S. Department of Energy (DOE) grants official Clean Cities designation to coalitions that exhibit

315

Clean Cities: Clean Cities 20th Anniversary  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Clean Cities: Clean Cities 20th Anniversary to someone by E-mail Share Clean Cities: Clean Cities 20th Anniversary on Facebook Tweet about Clean Cities: Clean Cities 20th Anniversary on Twitter Bookmark Clean Cities: Clean Cities 20th Anniversary on Google Bookmark Clean Cities: Clean Cities 20th Anniversary on Delicious Rank Clean Cities: Clean Cities 20th Anniversary on Digg Find More places to share Clean Cities: Clean Cities 20th Anniversary on AddThis.com... Goals & Accomplishments Clean Cities 20th Anniversary Partnerships Hall of Fame Contacts Clean Cities 20th Anniversary Clean Cities marked a major milestone in 2013, celebrating 20 years of progress in cutting petroleum use in transportation. Through the work of

316

Clean Cities: Connecticut Southwestern Area Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Connecticut Southwestern Area Clean Cities Coalition Connecticut Southwestern Area Clean Cities Coalition The Connecticut Southwestern Area Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Connecticut Southwestern Area Clean Cities coalition Contact Information Ed Boman 203-256-3010 eboman@town.fairfield.ct.us Clean Cities Coordinator Ed Boman Photo of Ed Boman Ed Boman has been a stakeholder of the Connecticut Southwestern Area Clean Cities coalition since 1995. In that time, he was the coordinator of energy alternatives, and the coalition received state and federal funding to install compressed natural gas stations in four municipalities and to buy over 40 vehicles. In 2009, he successfully partnered with three other

317

Clean Cities: Clean Communities of Western New York (Buffalo) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Communities of Western New York (Buffalo) Coalition Clean Communities of Western New York (Buffalo) Coalition The Clean Communities of Western New York (Buffalo) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Clean Communities of Western New York (Buffalo) coalition Contact Information Craig Jackson 716-362-9543 cjackson@ccofwny.org Coalition Website Clean Cities Coordinator Craig Jackson Photo of Craig Jackson Craig Jackson has been the Coordinator of Clean Communities of WNY since Nov. 2012. Jackson's role as coordinator is to assure that local partnerships are built to reduce petroleum use in transportation. Mr. Jackson has worked in the rotating equipment industry servicing the Oil & Gas, Power Generation and Air Separation markets for over 6 years. Jackson

318

Boise Buses Running Strong with Clean Cities  

Energy.gov (U.S. Department of Energy (DOE))

A local Clean Cities coalition helped Idaho's Valley Regional Transit switch to compressed natural gas buses, allowing the transit authority to maintain its service while reducing harmful emissions.

319

Clean Energy On-Bill Financing  

Energy.gov (U.S. Department of Energy (DOE))

By April 1, 2014, the Energy Conservation Management Board and the Clean Energy Finance and Investment Authority (CEFIA) must consult with electric distribution companies and gas companies to...

320

CHARACTERIZATION OF CONDITIONS OF NATURAL GAS STORAGE RESERVOIRS AND DESIGN AND DEMONSTRATION OF REMEDIAL TECHNIQUES FOR DAMAGE MECHANISMS FOUND THEREIN  

SciTech Connect

The underground gas storage (UGS) industry uses over 400 reservoirs and 17,000 wells to store and withdrawal gas. As such, it is a significant contributor to gas supply in the United States. It has been demonstrated that many UGS wells show a loss of deliverability each year due to numerous damage mechanisms. Previous studies estimate that up to one hundred million dollars are spent each year to recover or replace a deliverability loss of approximately 3.2 Bscf/D per year in the storage industry. Clearly, there is a great potential for developing technology to prevent, mitigate, or eliminate the damage causing deliverability losses in UGS wells. Prior studies have also identified the presence of several potential damage mechanisms in storage wells, developed damage diagnostic procedures, and discussed, in general terms, the possible reactions that need to occur to create the damage. However, few studies address how to prevent or mitigate specific damage types, and/or how to eliminate the damage from occurring in the future. This study seeks to increase our understanding of two specific damage mechanisms, inorganic precipitates (specifically siderite), and non-darcy damage, and thus serves to expand prior efforts as well as complement ongoing gas storage projects. Specifically, this study has resulted in: (1) An effective lab protocol designed to assess the extent of damage due to inorganic precipitates; (2) An increased understanding of how inorganic precipitates (specifically siderite) develop; (3) Identification of potential sources of chemical components necessary for siderite formation; (4) A remediation technique that has successfully restored deliverability to storage wells damaged by the inorganic precipitate siderite (one well had nearly a tenfold increase in deliverability); (5) Identification of the types of treatments that have historically been successful at reducing the amount of non-darcy pressure drop in a well, and (6) Development of a tool that can be used by operators to guide treatment selection in wells with significant non-darcy damage component. In addition, the effectiveness of the remediation treatment designed to reduce damage caused by the inorganic precipitate siderite was measured, and the benefits of this work are extrapolated to the entire U.S. storage industry. Similarly the potential benefits realized from more effective identification and treatment of wells with significant nondarcy damage component are also presented, and these benefits are also extrapolated to the entire U.S. storage industry.

J.H. Frantz Jr; K.G. Brown; W.K. Sawyer; P.A. Zyglowicz; P.M. Halleck; J.P. Spivey

2004-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Clean Cities: Clean Cities Public Outreach Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities Public Outreach Resources Clean Cities Public Outreach Resources to someone by E-mail Share Clean Cities: Clean Cities Public Outreach Resources on Facebook Tweet about Clean Cities: Clean Cities Public Outreach Resources on Twitter Bookmark Clean Cities: Clean Cities Public Outreach Resources on Google Bookmark Clean Cities: Clean Cities Public Outreach Resources on Delicious Rank Clean Cities: Clean Cities Public Outreach Resources on Digg Find More places to share Clean Cities: Clean Cities Public Outreach Resources on AddThis.com... Coordinator Basics Outreach Logos, Graphics, & Photographs Print Products & Templates Exhibit Booths Presentations Videos QR Codes Tips Education & Webinars Meetings Reporting Contacts Clean Cities Public Outreach Resources Use these robust resources to support your Clean Cities coalition's public

322

Clean Cities: 2011 Clean Cities Stakeholder Summit  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events Printable Version Share this resource Send a link to Clean Cities: 2011 Clean Cities Stakeholder Summit to someone by E-mail Share Clean Cities: 2011 Clean Cities Stakeholder Summit on Facebook Tweet about Clean Cities: 2011 Clean Cities Stakeholder Summit on Twitter Bookmark Clean Cities: 2011 Clean Cities Stakeholder Summit on Google Bookmark Clean Cities: 2011 Clean Cities Stakeholder Summit on Delicious Rank Clean Cities: 2011 Clean Cities Stakeholder Summit on Digg Find More places to share Clean Cities: 2011 Clean Cities Stakeholder Summit on AddThis.com... Conferences & Workshops Clean Cities 20th Anniversary Electric Vehicle Community Readiness Stakeholder Summit Waste-to-Wheels Plug-In Vehicle & Infrastructure Fuel & Vehicle Strategy 2011 Clean Cities Stakeholder Summit

323

Clean Cities: Funded Clean Cities Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Clean Cities: Funded Clean Cities Projects to someone by E-mail Share Clean Cities: Funded Clean Cities Projects on Facebook Tweet about Clean Cities: Funded Clean Cities Projects on Twitter Bookmark Clean Cities: Funded Clean Cities Projects on Google Bookmark Clean Cities: Funded Clean Cities Projects on Delicious Rank Clean Cities: Funded Clean Cities Projects on Digg Find More places to share Clean Cities: Funded Clean Cities Projects on AddThis.com... Current Opportunities Related Opportunities Funded Projects Recovery Act Projects Community Readiness Projects Alternative Fuel Market Projects Funded Clean Cities Projects Clean Cities has awarded more than $300 million to fund hundreds of

324

Clean Cities: Clean Cities Now Newsletter Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

Archives to Archives to someone by E-mail Share Clean Cities: Clean Cities Now Newsletter Archives on Facebook Tweet about Clean Cities: Clean Cities Now Newsletter Archives on Twitter Bookmark Clean Cities: Clean Cities Now Newsletter Archives on Google Bookmark Clean Cities: Clean Cities Now Newsletter Archives on Delicious Rank Clean Cities: Clean Cities Now Newsletter Archives on Digg Find More places to share Clean Cities: Clean Cities Now Newsletter Archives on AddThis.com... News Blog Newsletter Archives Subscribe Information for Media Clean Cities Now Newsletter Archives To read past issues of the Clean Cities Now newsletter or its predecessor publications, Clean Cities News and Alternative Fuels News, select from the list below. Clean Cities Now Volume 17 Issue 2 - October 2013

325

Clean Cities: Clean Cities Education and Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Education and Webinars to someone by E-mail Share Clean Cities: Clean Cities Education and Webinars on Facebook Tweet about Clean Cities: Clean Cities Education and Webinars on...

326

Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at St. Bliss, Texas. Interim report, October 1992--May 1994  

DOE Green Energy (OSTI)

Results are presented from a demonstration program conducted on the comparative evaluations of the combustion of compressed natural gas as an alternative fuel for gasoline. General Motors pick-up trucks were utilized in the study.

Alvarez, R.A.; Yost, D.M.

1995-11-01T23:59:59.000Z

327

Clean Cities: Clean Cities Exhibit Booths  

NLE Websites -- All DOE Office Websites (Extended Search)

Exhibit Booths to someone Exhibit Booths to someone by E-mail Share Clean Cities: Clean Cities Exhibit Booths on Facebook Tweet about Clean Cities: Clean Cities Exhibit Booths on Twitter Bookmark Clean Cities: Clean Cities Exhibit Booths on Google Bookmark Clean Cities: Clean Cities Exhibit Booths on Delicious Rank Clean Cities: Clean Cities Exhibit Booths on Digg Find More places to share Clean Cities: Clean Cities Exhibit Booths on AddThis.com... Coordinator Basics Outreach Logos, Graphics, & Photographs Print Products & Templates Exhibit Booths Presentations Videos QR Codes Tips Education & Webinars Meetings Reporting Contacts Clean Cities Exhibit Booths Clean Cities tabletop exhibit booth Clean Cities offers exhibit booths to help you reach your coalition's audiences and engage your stakeholders and the public.

328

Clean Cities: Clean Cities Conferences and Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Conferences and Workshops Conferences and Workshops to someone by E-mail Share Clean Cities: Clean Cities Conferences and Workshops on Facebook Tweet about Clean Cities: Clean Cities Conferences and Workshops on Twitter Bookmark Clean Cities: Clean Cities Conferences and Workshops on Google Bookmark Clean Cities: Clean Cities Conferences and Workshops on Delicious Rank Clean Cities: Clean Cities Conferences and Workshops on Digg Find More places to share Clean Cities: Clean Cities Conferences and Workshops on AddThis.com... Conferences & Workshops Clean Cities 20th Anniversary Electric Vehicle Community Readiness Stakeholder Summit Waste-to-Wheels Plug-In Vehicle & Infrastructure Fuel & Vehicle Strategy Clean Cities Conferences and Workshops Clean Cities offers conferences and workshops about alternative fuels and

329

Clean Cities: Clean Cities Coordinator Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Coordinator Basics to Coordinator Basics to someone by E-mail Share Clean Cities: Clean Cities Coordinator Basics on Facebook Tweet about Clean Cities: Clean Cities Coordinator Basics on Twitter Bookmark Clean Cities: Clean Cities Coordinator Basics on Google Bookmark Clean Cities: Clean Cities Coordinator Basics on Delicious Rank Clean Cities: Clean Cities Coordinator Basics on Digg Find More places to share Clean Cities: Clean Cities Coordinator Basics on AddThis.com... Coordinator Basics Clean Cities Program Structure Reference Materials Technical Support Fundraising Redesignation Outreach Education & Webinars Meetings Reporting Contacts Clean Cities Coordinator Basics Explore these resources for basic information to help you effectively support your Clean Cities coalition. Icon of an organization chart. Program Structure

330

Clean Cities: Clean Cities Contacts for Coordinators  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts for Coordinators Contacts for Coordinators to someone by E-mail Share Clean Cities: Clean Cities Contacts for Coordinators on Facebook Tweet about Clean Cities: Clean Cities Contacts for Coordinators on Twitter Bookmark Clean Cities: Clean Cities Contacts for Coordinators on Google Bookmark Clean Cities: Clean Cities Contacts for Coordinators on Delicious Rank Clean Cities: Clean Cities Contacts for Coordinators on Digg Find More places to share Clean Cities: Clean Cities Contacts for Coordinators on AddThis.com... Coordinator Basics Outreach Education & Webinars Meetings Reporting Contacts Clean Cities Contacts for Coordinators The Clean Cities contact resources help coordinators communicate with the Clean Cities program staff and other coordinators. Program Contacts Use the program contacts to communicate individually with U.S. Department

331

Clean Cities: Clean Cities Program Structure  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Structure to Program Structure to someone by E-mail Share Clean Cities: Clean Cities Program Structure on Facebook Tweet about Clean Cities: Clean Cities Program Structure on Twitter Bookmark Clean Cities: Clean Cities Program Structure on Google Bookmark Clean Cities: Clean Cities Program Structure on Delicious Rank Clean Cities: Clean Cities Program Structure on Digg Find More places to share Clean Cities: Clean Cities Program Structure on AddThis.com... Coordinator Basics Clean Cities Program Structure Reference Materials Technical Support Fundraising Redesignation Outreach Education & Webinars Meetings Reporting Contacts Clean Cities Program Structure Clean Cities is funded and managed by the U.S. Department of Energy (DOE). The organization includes staff from DOE headquarters, national

332

Clean Cities: Clean Cities Reference Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Materials to Reference Materials to someone by E-mail Share Clean Cities: Clean Cities Reference Materials on Facebook Tweet about Clean Cities: Clean Cities Reference Materials on Twitter Bookmark Clean Cities: Clean Cities Reference Materials on Google Bookmark Clean Cities: Clean Cities Reference Materials on Delicious Rank Clean Cities: Clean Cities Reference Materials on Digg Find More places to share Clean Cities: Clean Cities Reference Materials on AddThis.com... Coordinator Basics Clean Cities Program Structure Reference Materials Technical Support Fundraising Redesignation Outreach Education & Webinars Meetings Reporting Contacts Clean Cities Reference Materials Use these reference materials-including quick-reference documents, publications, websites, and the Clean Cities Coalition Wiki-to develop

333

Clean Cities: Clean Cities Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnerships Partnerships Clean Cities partners with thousands of stakeholders in the public and private sectors to reduce petroleum use in transportation. Partnerships and collaborations are the foundation of Clean Cities' efforts to reduce petroleum use. An active network of government agencies, industry representatives, community organizations, and businesses allows a variety of stakeholders to combine their efforts and exchange information and resources. Local Efforts Clean Cities coalitions build these partnerships at the state and local levels with thousands of stakeholders in communities across the country. National Efforts At the national level, Clean Cities collaborates with federal agencies, equipment manufacturers, fuel providers, industry associations, and large companies whose vehicle fleets operate in multiple states. These national-level partnerships include:

334

Advanced Coal Conversion Process Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOENETL-20051217 U.S. Department of Energy Office of Fossil Energy National Energy...

335

Preliminary evaluation of a concept using microwave energy to improve an adsorption-based, natural gas clean-up process  

SciTech Connect

This report describes the results of a preliminary evaluation performed to: (1) determine if microwave energy could be used to regenerate a zeolite adsorbent and (2) to evaluate the feasibility of using microwave energy to improve the desorption phase of a pressure swing adsorption process applied to upgrading natural gas (methane) contaminated with nitrogen. Microwave regeneration was evaluated by comparing the adsorption characteristics of a zeolite preconditioned by heating under vacuum to the characteristics of the same zeolite after various lengths of exposure to microwave energy. The applicability of microwave regeneration to natural gas cleanup was evaluated by measuring the rise in adsorbent temperature resulting from the microwave exposure. Microwave energy consumed by heating the adsorbent is not productive and must therefore be minimal for a process to be economically viable. Exposure of the methane-saturated chabazite for 2 minutes to microwave energy effectively regenerated the adsorbent, but resulted in a 75{degrees}F (42{degrees}C) rise in adsorbent temperature. This temperature rise indicates that the concept is unacceptable for natural gas processing due to excessive energy consumption.

Grimes, R.W.

1992-12-01T23:59:59.000Z

336

Clean Streams  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Streams Clean Streams Nature Bulletin No. 538-A October 5, 1974 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation CLEAN STREAMS Each year in mid-May is Clean Streams Week in Cook County by proclamation of the president of the county board and the Board of Forest Preserve Commissioners, and in all of Illinois by proclamation of the Governor. Its purpose is to focus the attention of everyone, young and old, upon the disgraceful conditions in our streams, formerly clean and beautiful, which have been made foul and unsightly by pollution with sewage and by the dumping of garbage and junk into them. Some of us remember when fish such as northern pike, black bass, sunfish, bluegills, crappies and channel catfish were plentiful in the rivers and creeks of Cook County. Now the desirable kinds of fish have largely disappeared and many portions are so polluted that even carp cannot exist. Swimming, once popular in the DesPlaines River, Salt Creek and other streams, has long been prohibited by the State Board of Health. In some streams the stench and appearance of the water is so repulsive that no one enjoys picnicking or resting in the shade along their banks.

337

Pilot-Scale Demonstration of hZVI Process for Treating Flue Gas Desulfurization Wastewater at Plant Wansley, Carrollton, GA  

E-Print Network (OSTI)

The hybrid Zero Valent Iron (hZVI) process is a novel chemical treatment platform that has shown great potential in our previous bench-scale tests for removing selenium, mercury and other pollutants from Flue Gas Desulfurization (FGD) wastewater. This integrated treatment system employs new iron chemistry to create highly reactive mixture of Fe^0, iron oxides (FeOx) and various forms of Fe (II) for the chemical transformation and mineralization of various heavy metals in water. To further evaluate and develop the hZVI technology, a pilot-scale demonstration had been conducted to continuously treat 1-2 gpm of the FGD wastewater for five months at Plant Wansley, a coal-fired power plant of Georgia Power. This demonstrated that the scaled-up system was capable of reducing the total selenium (of which most was selenate) in the FGD wastewater from over 2500 ppb to below 10 ppb and total mercury from over 100 ppb to below 0.01 ppb. This hZVI system reduced other toxic metals like Arsenic (III and V), Chromium (VI), Cadmium (II), Lead (II) and Copper (II) from ppm level to ppb level in a very short reaction time. The chemical consumption was estimated to be approximately 0.2-0.4 kg of ZVI per 1 m^3 of FGD water treated, which suggested the process economics could be very competitive. The success of the pilot test shows that the system is scalable for commercial application. The operational experience and knowledge gained from this field test could provide guidance to further improvement of technology for full scale applications. The hZVI technology can be commercialized to provide a cost-effective and reliable solution to the FGD wastewater and other metal-contaminated waste streams in various industries. This technology has the potential to help industries meet the most stringent environmental regulations for heavy metals and nutrients in wastewater treatment.

Peddi, Phani 1987-

2011-12-01T23:59:59.000Z

338

Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B  

SciTech Connect

This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

NONE

1998-01-01T23:59:59.000Z

339

Clean Cities: Clean Cities Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinar Archives to Webinar Archives to someone by E-mail Share Clean Cities: Clean Cities Webinar Archives on Facebook Tweet about Clean Cities: Clean Cities Webinar Archives on Twitter Bookmark Clean Cities: Clean Cities Webinar Archives on Google Bookmark Clean Cities: Clean Cities Webinar Archives on Delicious Rank Clean Cities: Clean Cities Webinar Archives on Digg Find More places to share Clean Cities: Clean Cities Webinar Archives on AddThis.com... Coordinator Basics Outreach Education & Webinars Online Learning Webinars Internships Meetings Reporting Contacts Clean Cities Webinar Archives Past Clean Cities webinars are listed below with links to videos and presentations. Find upcoming webinars. 2013 December Anatomy of a Work Truck Webinar Dec. 17, 2013 Doyle Sumrall, NTEA

340

BWR Ultrasonic Fuel Cleaning Qualification  

Science Conference Proceedings (OSTI)

This report presents the development and design of an ultrasonic fuel cleaning system for boiling water reactor (BWR) fuel. The prototype system was successfully demonstrated at Quad Cities. Sixteen reload assemblies cleaned by the system are currently in the Unit 2 core for additional irradiation.

2005-07-11T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Healy clean coal project  

Science Conference Proceedings (OSTI)

The objective of the Healy Clean Coal Project is to demonstrate the integration of an advanced combustor and heat recovery system with both high and low temperature emission control processes. The emission levels of SO{sub 2}, NO{sub x}, and particulates are expected to be significantly better then the federal New Source Performance Standards. (VC)

Not Available

1992-05-01T23:59:59.000Z

342

lackouts, rising gas prices, changes to the Clean Air Act, proposals to open wilderness and protected offshore areas to gas drilling, and increasing  

E-Print Network (OSTI)

and global oil peak. ("Peak" refers to a peak in extraction, followed by inexorable decline. Peak production you know that: · Natural Gas (NG) is the second most important energy source after oil; · In the U that of oil. To the extent that the so-called War on Terror is a cover for increasingly desper- ate moves

Keeling, Stephen L.

343

Clean Coal Power Initiative  

Science Conference Proceedings (OSTI)

This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

2006-03-31T23:59:59.000Z

344

CLEAN AIR | FEDEX | NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY...  

Open Energy Info (EERE)

NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY ACT | ENERGY INDEPENDENCE | FREDRICK SMITH | OIL | RENEWABLE ENERGY Home There are currently no posts in this category. Syndicate...

345

CleanFleet. Final report: Executive summary  

DOE Green Energy (OSTI)

CleanFleet, formally known as the South Coast Alternative Fuels Demonstration, was a comprehensive demonstration of alternative fuel vehicles (AFVs) in daily commercial service. Between April 1992 and September 1994, five alternative fuels were tested in 84 panel vans: compressed natural gas (CNG), propane gas, methanol as M-85, California Phase 2 reformulated gasoline (RFG), and electricity. The AFVs were used in normal FedEx package delivery service in the Los Angeles basin alongside 27 {open_quotes}control{close_quotes} vans operating on regular gasoline. The liquid and gaseous fuel vans were model year 1992 vans from Ford, Chevrolet, and Dodge. The two electric vehicles (EVs) were on loan to FedEx from Southern California Edison. The AFVs represented a snapshot in time of 1992 technologies that (1) could be used reliably in daily FedEx operations and (2) were supported by the original equipment manufacturers (OEMs). A typical van is shown in Figure 2. The objective of the project was to demonstrate and document the operational, emissions, and economic status of alternative fuel, commercial fleet delivery vans in the early 1990s for meeting air quality regulations in the mid to late 1990s. During the two-year demonstration, CleanFleet`s 111 vehicles travelled more than three million miles and provided comprehensive data on three major topics: fleet operations, emissions, and fleet economics. Fleet operations were examined in detail to uncover and resolve problems with the use of the fuels and vehicles in daily delivery service. Exhaust and evaporative emissions were measured on a subset of vans as they accumulated mileage. The California Air Resources Board (ARB) measured emissions to document the environmental benefits of these AFVs. At the same time, CleanFleet experience was used to estimate the costs to a fleet operator using AFVs to achieve the environmental benefits of reduced emissions.

NONE

1995-12-01T23:59:59.000Z

346

Clean Coal Technology and the Clean Coal Power Initiative | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Technology and the Clean Coal Power Initiative Clean Coal Technology and the Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy...

347

2013 Second Quarter Clean Energy/Clean Transportation Jobs Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Second Quarter Clean EnergyClean Transportation Jobs Report 2013 Second Quarter Clean EnergyClean Transportation Jobs Report Enivronmental Entrepreneurs (E2) Clean Energy...

348

What is Clean Cities?; Clean Cities Fact Sheet (September 2008...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

What is Clean Cities?; Clean Cities Fact Sheet (September 2008 Update) What is Clean Cities?; Clean Cities Fact Sheet (September 2008 Update) Fact sheet describes the Clean Cities...

349

Connecticut Fuel Cell Programs -From Demonstration to Deployment  

E-Print Network (OSTI)

CCEF Goals 6 #12;Clean Energy Technologies Fuel Cells Solar Biomass Hydro Landfill Gas Wave Wind 7 #12

350

NETL: Clean Coal Power Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

351

Clean Cities: Clean Cities Now Newsletter Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

Newsletter Archives To read past issues of the Clean Cities Now newsletter or its predecessor publications, Clean Cities News and Alternative Fuels News, select from the list...

352

Clean Cities: Clean Cities Public Outreach Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

your Clean Cities coalition's public outreach activities. Icon of a map. Logos, Graphics, and Photos Download the Clean Cities logos, graphics, and photos for outreach...

353

Clean Cities: Clean Cities Education and Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Education and Webinars Clean Cities University logo Clean Cities University (CCU) offers educational opportunities for coordinators and stakeholders through online learning,...

354

Clean Cities: Clean Cities-Atlanta coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Skip to Content U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Clean Cities Search Search Help Clean Cities...

355

Clean Cities: Kay Kelly  

NLE Websites -- All DOE Office Websites (Extended Search)

Tweet about Clean Cities: Kay Kelly on Twitter Bookmark Clean Cities: Kay Kelly on Google Bookmark Clean Cities: Kay Kelly on Delicious Rank Clean Cities: Kay Kelly on Digg...

356

Clean Cities: News  

NLE Websites -- All DOE Office Websites (Extended Search)

on Facebook Tweet about Clean Cities: News on Twitter Bookmark Clean Cities: News on Google Bookmark Clean Cities: News on Delicious Rank Clean Cities: News on Digg Find More...

357

Secretary Chu Announces Initiatives to Promote Clean Energy at First Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiatives to Promote Clean Energy at Initiatives to Promote Clean Energy at First Clean Energy Ministerial Secretary Chu Announces Initiatives to Promote Clean Energy at First Clean Energy Ministerial July 20, 2010 - 12:00am Addthis Washington, D.C. - At the world's first Clean Energy Ministerial, U.S. Energy Secretary Steven Chu today announced that the United States is helping launch more than 10 international clean energy initiatives. These initiatives will cut energy waste; help deploy smart grid, electric vehicle, and carbon capture technologies; support renewable energy markets; expand access to clean energy resources and jobs; and support women pursuing careers in clean energy. The new programs offer partners concrete, technical actions to promote economic growth while reducing greenhouse gas emissions and other pollutants. The initiatives will

358

Development and Demonstration of Waste Heat Integration with Solvent Process for More Efficient CO2 Removal from Coal-Fired Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

and Demonstration of and Demonstration of Waste Heat Integration with Solvent Process for More Efficient CO 2 Removal from Coal-Fired Flue Gas Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions, & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-

359

Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

national laboratory of the U.S. Department of Energy national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Subcontract Report Strategy for the Integration of NREL/SR-540-38720� Hydrogen as a Vehicle Fuel into September 2005 � the Existing Natural Gas Vehicle � Fueling Infrastructure of the � Interstate Clean Transportation � Corridor Project � April 22, 2004 - August 31, 2005 Gladstein, Neandross & Associates � Santa Monica, California � NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation

360

Development and Demonstration of Mobile, Small Footprint Exploration and Development Well System for Arctic Unconventional Gas Resources (ARCGAS)  

Science Conference Proceedings (OSTI)

Traditionally, oil and gas field technology development in Alaska has focused on the high-cost, high-productivity oil and gas fields of the North Slope and Cook Inlet, with little or no attention given to Alaska's numerous shallow, unconventional gas reservoirs (carbonaceous shales, coalbeds, tight gas sands). This is because the high costs associated with utilizing the existing conventional oil and gas infrastructure, combined with the typical remoteness and environmental sensitivity of many of Alaska's unconventional gas plays, renders the cost of exploring for and producing unconventional gas resources prohibitive. To address these operational challenges and promote the development of Alaska's large unconventional gas resource base, new low-cost methods of obtaining critical reservoir parameters prior to drilling and completing more costly production wells are required. Encouragingly, low-cost coring, logging, and in-situ testing technologies have already been developed by the hard rock mining industry in Alaska and worldwide, where an extensive service industry employs highly portable diamond-drilling rigs. From 1998 to 2000, Teck Cominco Alaska employed some of these technologies at their Red Dog Mine site in an effort to quantify a large unconventional gas resource in the vicinity of the mine. However, some of the methods employed were not fully developed and required additional refinement in order to be used in a cost effective manner for rural arctic exploration. In an effort to offset the high cost of developing a new, low-cost exploration methods, the US Department of Energy, National Petroleum Technology Office (DOE-NPTO), partnered with the Nana Regional Corporation and Teck Cominco on a technology development program beginning in 2001. Under this DOE-NPTO project, a team comprised of the NANA Regional Corporation (NANA), Teck Cominco Alaska and Advanced Resources International, Inc. (ARI) have been able to adapt drilling technology developed for the mineral industry for use in the exploration of unconventional gas in rural Alaska. These techniques have included the use of diamond drilling rigs that core small diameter (< 3.0-inch) holes coupled with wireline geophysical logging tools and pressure transient testing units capable of testing in these slimholes.

Paul Glavinovich

2002-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Clean Cities: Long Beach Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Long Beach Clean Cities Coalition Long Beach Clean Cities Coalition The Long Beach Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Long Beach Clean Cities coalition Contact Information Jannet Malig 562-860-2451 x2912 jmalig@cerritos.edu Rick Longobart 714-647-3348 rlongobart@santa-ana.org Clean Cities Coordinators Coord Jannet Malig Coord Coord Rick Longobart Coord Jannet Malig is a Clean Cities coordinator for Long Beach Clean Cities coalition. Long Beach Clean Cities Cerritos College 11111 New Falcon Way Cerritos, CA 90703 Rick Longobart is a Clean Cities coordinator for Long Beach Clean Cities coalition. Long Beach Clean Cities Finance & Management Services Agency 215 S. Center Street, Bldg #J M-83

362

Clean Coal Research | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Read more DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing...

363

Clean Cities: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News RSS Feed icon Subscribe to RSS News Feed. Find the latest news about the U.S. Department of Energy Clean Cities program and alternative transportation technologies. January 9, 2014 Clean Cities Publishes 2014 Vehicle Buyer's Guide The guide features a full list of 2014 vehicles that run on alternative fuels or use advanced fuel-saving technologies. More December 18, 2013 2012 Fuel Economy of New Vehicles Sets Record High: EPA The U.S. Environmental Protection Agency (EPA) reported that model year 2012 vehicles achieved an all-time high fuel economy average of 23.6 miles per gallon. More December 4, 2013 Annual Fuel Economy Guide with 2014 Models Released The U.S. Environmental Protection Agency (EPA) and the Energy Department released the 2014 Fuel Economy Guide that provides consumers with a resource to identify and choose the most fuel efficient and low greenhouse gas emitting vehicles. More

364

Interaction of Fracture Fluid With Formation Rock and Proppant on Fracture Fluid Clean-up and Long-term Gas Recovery in Marcellus Shale Reservoirs.  

E-Print Network (OSTI)

??The exploitation of unconventional gas reservoirs has become an integral part of the North American gas supply. The economic viability of many unconventional gas developments (more)

Yue, Wenting

2012-01-01T23:59:59.000Z

365

Clean Cities Now, Vol. 15, No. 1, April 2011 (Brochure)  

SciTech Connect

Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on electric vehicle deployment, renewable natural gas, and articles on Clean Cities coalition successes across the country.

Not Available

2011-04-01T23:59:59.000Z

366

Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002-September 30, 2004  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Development and Demonstration Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses October 15, 2002 - September 30, 2004 A. Del Toro SunLine Services Group Thousand Palms, California M. Frailey National Renewable Energy Laboratory Golden, Colorado F. Lynch Hydrogen Components Inc. Littleton, Colorado S. Munshi Westport Innovations Inc. Vancouver, British Columbia, Canada S. Wayne West Virginia University Morgantown, West Virginia Technical Report NREL/TP-540-38707 November 2005 Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses October 15, 2002 - September 30, 2004 A. Del Toro SunLine Services Group Thousand Palms, California M. Frailey National Renewable Energy Laboratory Golden, Colorado

367

Clean Cities: Kentucky Clean Cities Partnership coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Kentucky Clean Cities Partnership Coalition Kentucky Clean Cities Partnership Coalition The Kentucky Clean Cities Partnership coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Kentucky Clean Cities Partnership coalition Contact Information Melissa M. Howell 502-452-9152 or 502-593-3846 mhowell@kentuckycleanfuels.org Coalition Website Clean Cities Coordinator Melissa M. Howell Photo of Melissa M. Howell Melissa Howell has served as the executive director of the Kentucky Clean Cities Partnership (KCCP) since 1993. The Kentucky Clean Fuels Coalition, a nonprofit organization, houses the Kentucky Clean Cities Partnership. The Clean Cities program in Kentucky is one of the original 20 coalitions designated in 1994. The 1999 Clean Cities National Conference was hosted in Louisville, and the

368

Grills Safety and Cleaning Tips  

NLE Websites -- All DOE Office Websites (Extended Search)

24 Staff Meeting Safety Share 24 Staff Meeting Safety Share Subject: Grills Safety and Cleaning Tips The best ways to clean the racks - and to prevent debris buildup. Plus, safety tips for outdoor cooking. For a gas grill: * Start by closing the lid, as you would with a self-cleaning oven * Cover cooking grids with foil to help concentrate heat * Turn on high for five to 10 minutes maximum; do not overheat * When the grids are cool, use a brass-bristle brush to remove debris * Wash with soap and water * Clean off rust with vegetable oil * Chipped grids cannot be repaired; do not attempt to paint them For regular grill racks: * Crumple a wad of aluminum foil * Rub over the racks to remove bits of charred food or crud * Wash racks in warm, soapy water To prevent food from sticking to grill:

369

Demonstration of the enrichment of medium quality gas from gob wells through interactive well operating practices. Final report, June--December, 1995  

SciTech Connect

Methane released to the atmosphere during coal mining operations is believed to contribute to global warming and represents a waste of a valuable energy resource. Commercial production of pipeline-quality gob well methane through wells drilled from the surface into the area above the gob can, if properly implemented, be the most effective means of reducing mine methane emissions. However, much of the gas produced from gob wells is vented because the quality of the gas is highly variable and is often below current natural gas pipeline specifications. Prior to the initiation of field-testing required to further understand the operational criteria for upgrading gob well gas, a preliminary evaluation and assessment was performed. An assessment of the methane gas in-place and producible methane resource at the Jim Walter Resources, Inc. No. 4 and No. 5 Mines established a potential 15-year supply of 60 billion cubic feet of mien methane from gob wells, satisfying the resource criteria for the test site. To understand the effect of operating conditions on gob gas quality, gob wells producing pipeline quality (i.e., < 96% hydrocarbons) gas at this site will be operated over a wide range of suction pressures. Parameters to be determined will include absolute methane quantity and methane concentration produced through the gob wells; working face, tailgate and bleeder entry methane levels in the mine; and the effect on the economics of production of gob wells at various levels of methane quality. Following this, a field demonstration will be initiated at a mine where commercial gob gas production has not been attempted. The guidelines established during the first phase of the project will be used to design the production program. The economic feasibility of various utilization options will also be tested based upon the information gathered during the first phase. 41 refs., 41 figs., 12 tabs.

Blackburn, S.T.; Sanders, R.G.; Boyer, C.M. II; Lasseter, E.L.; Stevenson, J.W.; Mills, R.A.

1995-12-01T23:59:59.000Z

370

Clean Cities: Las Vegas Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Las Vegas Clean Cities Coalition Las Vegas Clean Cities Coalition The Las Vegas Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Las Vegas Clean Cities coalition Contact Information Ron Corbett 702-350-0025 info@lasvegascleancities.org Coalition Website Clean Cities Coordinator Ron Corbett Photo of Ron Corbett Ron Corbett is a Clean Cities coordinator for Las Vegas Clean Cities coalition. Las Vegas Clean Cities 1921 Night Shadow Ave Las Vegas, NV 89031 Search Coalitions Search for another coalition Enter ZIP Code or City, State Go Las Vegas Clean Cities coalition Statistics Population: 1,971,108 Area: 8,044 sq. mi. Boundaries: Clark County; City of Las Vegas Designated: October 18, 1993 Alternative Fueling Stations:

371

Clean Cities: Virginia Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Virginia Clean Cities Coalition Virginia Clean Cities Coalition The Virginia Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Virginia Clean Cities coalition Contact Information Alleyn Harned 540-568-8896 aharned@vacleancities.org Ryan Cornett 540-568-5586 rcornett@vacleancities.org Coalition Website Clean Cities Coordinators Coord Alleyn Harned Coord Coord Ryan Cornett Coord Photo of Alleyn Harned Alleyn Harned joined Virginia Clean Cities in 2009 and serves as the program coordinator. Harned works from the Virginia Clean Cities partnership at James Madison University, in Harrisonburg, Virginia. Prior to Clean Cities, Harned served as Assistant Secretary of Commerce and Trade in Virginia. Virginia Clean Cities

372

Clean Coal Technology Programs: Program Update 2009  

Science Conference Proceedings (OSTI)

The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nations energy security and reliability, while protecting the environment using the nations most abundant energy resourcecoal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

None

2009-10-01T23:59:59.000Z

373

Research Facilities & Centers | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Energy Clean Energy Research Areas Research Highlights Facilities and Centers BioEnergy Science Center Building Technologies Research and Integration Center Carbon Fiber Technology Facility Center For Structural Molecular Biology Climate Change Science Institute Joint Institute for Biological Sciences Manufacturing Demonstration Facility National Transportation Research Center Tools & Resources News and Awards Supporting Organizations Clean Energy Home | Science & Discovery | Clean Energy | Facilities and Centers SHARE Facilities, Centers Welcome Industry, Academia Oak Ridge National Laboratory facilities and capabilities together provide a unique environment for Clean Energy research. For example, as the lead institution for DOE's BioEnergy Science Center, ORNL is pioneering

374

Clean Energy Policy Analysis: Impact Analysis of Potential Clean...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative Clean Energy Policy Analysis: Impact Analysis of...

375

Small Businesses Helping Drive Economy: Clean Energy, Clean Sites...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Businesses Helping Drive Economy: Clean Energy, Clean Sites Small Businesses Helping Drive Economy: Clean Energy, Clean Sites A memo on small businesses helping drive the...

376

Clean Cities: National Clean Fleets Partnership Video (Text Version...  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Fleets Partnership Video (Text Version) to someone by E-mail Share Clean Cities: National Clean Fleets Partnership Video (Text Version) on Facebook Tweet about Clean...

377

Pilot-Scale Demonstration of Hybrid Zero-Valent Iron Water Treatment Technology: Removing Trace Metals from Flue Gas Desulfurization (FGD) Wastewater  

Science Conference Proceedings (OSTI)

In previous laboratory- and field bench-scale tests, the hybrid zero-valent iron (hZVI) process had been demonstrated capable of removing selenium, mercury, nitrates, and other pollutants from flue gas desulfurization (FGD) wastewater. By incorporating zero-valent iron (ZVI) with magnetite and certain Fe(II) species, the hZVI technology creates a highly reactive mixture that can transform and immobilize various trace metals, oxyanions, and other impurities from aqueous streams. To further evaluate ...

2013-04-09T23:59:59.000Z

378

King County Carbonate Fuel Cell Demonstration Project: Case Study of a 1MW Fuel Cell Power Plant Fueled by Digester Gas  

Science Conference Proceedings (OSTI)

This case study documents the first-year demonstration experiences of a 1-MW carbonate fuel cell system operating on anaerobic digester gas at a wastewater treatment plant in King County, Washington. The case study is one of several fuel cell project case studies under research by the EPRI Distributed Energy Resources Program. This case study is designed to help utilities and other interested parties understand the early applications of fuel cell systems to help them in their resource planning efforts an...

2005-03-30T23:59:59.000Z

379

Demonstration/evaluation of the Cat-Ox flue gas desulfurization system. Final report, June 1970-October 1975  

SciTech Connect

The report gives a comprehensive summary of the experience gained and the problems encountered during the Cat-Ox demonstration program. The report outlines the process design and construction, as well as operating experience and problems. Test results and conclusions derived from baseline testing, acceptance testing, ESP testing, transient testing, and a number of special tests and studies associated with the system are reported.

Bee, R.; Reale, R.; Wallo, A.

1978-03-01T23:59:59.000Z

380

Clean Cities Now - Vol. 9, No. 3  

NLE Websites -- All DOE Office Websites (Extended Search)

a Clean Cities coordinator. Coalition News 3 * Launching 10 new liquefied natural gas (LNG) refuse haulers for CR&R. (CA) * Purchasing seven CNG trucks for the City of...

Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

International Clean Energy Coalition  

Science Conference Proceedings (OSTI)

In 2003, the National Association of Regulatory Utility Commissioners (NARUC) and National Energy Technology Laboratories (NETL) collaboratively established the International Clean Energy Coalition (ICEC). The coalition consisting of energy policy-makers, technologists, and financial institutions was designed to assist developing countries in forming and supporting local approaches to greenhouse gas mitigation within the energy sector. ICEC's work focused on capacity building and clean energy deployment in countries that rely heavily on fossil-based electric generation. Under ICEC, the coalition formed a steering committee consisting of NARUC members and held a series of meetings to develop and manage the workplan and define successful outcomes for the projects. ICEC identified India as a target country for their work and completed a country assessment that helped ICEC build a framework for discussion with Indian energy decisionmakers including two follow-on in-country workshops. As of the conclusion of the project in 2010, ICEC had also conducted outreach activities conducted during United Nations Framework Convention on Climate Change (UNFCCC) Ninth Conference of Parties (COP 9) and COP 10. The broad goal of this project was to develop a coalition of decision-makers, technologists, and financial institutions to assist developing countries in implementing affordable, effective and resource appropriate technology and policy strategies to mitigate greenhouse gas emissions. Project goals were met through international forums, a country assessment, and in-country workshops. This project focused on countries that rely heavily on fossil-based electric generation.

Erin Skootsky; Matt Gardner; Bevan Flansburgh

2010-09-28T23:59:59.000Z

382

Clean Cities: South Shore Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

South Shore Clean Cities Coalition South Shore Clean Cities Coalition The South Shore Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. South Shore Clean Cities coalition Contact Information Carl Lisek 219-644-3690 clisek@southshorecleancities.org Coalition Website Clean Cities Coordinator Carl Lisek Photo of Carl Lisek Carl Lisek is vice president of Legacy Environmental Services and is the executive director for South Shore Clean Cities (SSCC) of northern Indiana. Lisek's wife, Lorrie, serves as executive leadership for SSCC and is the executive director for Wisconsin Clean Cities. The couple has been with the Clean Cities program since 2006. Through local partnerships with business, industry, and state and local

383

Clean Cities: Ann Arbor Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ann Arbor Clean Cities Coalition Ann Arbor Clean Cities Coalition The Ann Arbor Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Ann Arbor Clean Cities coalition Contact Information Mark Rabinsky 734-585-5720, Ext. 24 mark@cec-mi.org Coalition Website Clean Cities Coordinator Mark Rabinsky Photo of Mark Rabinsky Mark Rabinsky is a project manager and Ann Arbor Clean Cities Coordinator for Clean Energy Coalition. He is working to develop a plug-in electric vehicle charging infrastructure community preparedness plan for the State of Michigan. Prior to joining the Clean Energy Coalition, Rabinsky was the director of sustainability at Jackson Community College (JCC) in Jackson, Mich. where he created a program of study in alternative energy, and oversaw the

384

Clean Cities: Palmetto State Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Palmetto State Clean Cities Coalition Palmetto State Clean Cities Coalition The Palmetto State Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Palmetto State Clean Cities coalition Contact Information Jennifer Taraskiewicz 803-737-8037 jtaraskiewicz@energy.sc.gov Coalition Website Clean Cities Coordinator Jennifer Taraskiewicz Photo of Jennifer Taraskiewicz Jennifer Taraskiewicz is the Clean Cities Coordinator for the Palmetto State Clean Fuels Coalition (PSCFC), an initiative of the South Carolina Energy Office. The PSCFC was a designated coalition of the U.S. Department of Energy Clean Cities program in 2004, recognizing the commitment of our stakeholders to building an alternative fuels market in South Carolina.

385

Clean Cities: Clean Cities Hall of Fame  

NLE Websites -- All DOE Office Websites (Extended Search)

Hall of Fame Hall of Fame U.S. Department of Energy Clean Cities Hall of Fame logo The Clean Cities Hall of Fame recognizes outstanding contributions to the Clean Cities mission of reducing petroleum dependency in U.S. transportation. Inductees are ambassadors for alternative fuels and champions for fuel economy. Their exemplary dedication and leadership are paving the way for a new transportation future. 2013 Inductees 2012 Inductees Photo of Yvonne Anderson Yvonne Anderson Central Oklahoma Clean Cities Photo of Rita Ebert Rita Ebert Greater Long Island Clean Cities Coalition Photo of Richard Battersby Richard Battersby East Bay Clean Cities Photo of Lee Grannis Lee Grannis New Haven Clean Cities 2011 Inductees Photo of Colleen Crowninshield Colleen Crowninshield Tucson Clean Cities Coalition

386

Clean Cities: Twin Cities Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Twin Cities Clean Cities Coalition Twin Cities Clean Cities Coalition The Twin Cities Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Twin Cities Clean Cities coalition Contact Information Lisa Thurstin 651-223-9568 lisa.thurstin@lungmn.org Coalition Website Clean Cities Coordinator Lisa Thurstin Photo of Lisa Thurstin Lisa Thurstin has been the coordinator of the Twin Cities Clean Cities coalition since 2006. She is also the manager of Clean Fuel and Vehicle Technologies for the American Lung Association in Minnesota (ALAMN). For nine years, her duties have included management of ALAMN's biofuels activities through the Clean Air Choice consumer education program. Her responsibilities include coordinating events, designing educational and

387

Clean Cities: Los Angeles Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Los Angeles Clean Cities Coalition Los Angeles Clean Cities Coalition The Los Angeles Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Los Angeles Clean Cities coalition Contact Information Wayne King 213-485-3936 wayne.king@lacity.org Coalition Website Clean Cities Coordinator Wayne King Photo of Wayne King Wayne King serves as the Los Angeles Clean Cities Coalition Coordinator and is employed as an Environmental Specialist with the City of Los Angeles. King has worked for the City since 2000. He began working with the Clean Cities Coalition around 2003 and was co-coordinator beginning in early 2009. In February 2010 he took on the role of Clean Cities Coordinator. His major job duties focus on mobile source air pollution reduction programs.

388

Clean Cities: St. Louis Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

St. Louis Clean Cities Coalition St. Louis Clean Cities Coalition The St. Louis Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. St. Louis Clean Cities coalition Contact Information Kevin Herdler 314-397-5308 kevin@stlcleancities.org Coalition Website Clean Cities Coordinator Kevin Herdler Photo of Kevin Herdler Kevin Herdler has been involved with the Clean Cities program since its inception in 1993 and assisted in forming Atlanta's Clean Cities program in Georgia. In 1998, Herdler relocated to St. Louis and became involved with the St. Louis Regional Clean Cities program. In 2000, he was appointed the executive director. Herdler has been in the automotive field for 39 years and graduated technical school as a diesel technician. He is a veteran of the U.S. Air

389

Clean Cities: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News Stay current on Clean Cities by choosing from the news sources and media resources below. Clean Cities News Find out what's happening in Clean Cities and the alternative...

390

Clean Cities Fact Sheet  

DOE Green Energy (OSTI)

This fact sheet explains the Clean Cities Program and provides contact information for all coalitions and regional offices. It answers key questions such as: What is the Clean Cities Program? What are alternative fuels? How does the Clean Cities Program work? What sort of assistance does Clean Cities offer? What has Clean Cities accomplished? What is Clean Cities International? and Where can I find more information?

Not Available

2004-01-01T23:59:59.000Z

391

ZeroPoint Clean Technology Inc | Open Energy Information  

Open Energy Info (EERE)

York Zip 13676 Sector Biomass Product Developing of biomass gasification technology and gas-to-liquids processes. References ZeroPoint Clean Technology Inc1 LinkedIn...

392

Clean Cities Fact Sheet  

SciTech Connect

This is a routine revision of a general fact sheet that describes the Clean Cities partnership efforts and includes a list of Clean Cities coordinators.

Not Available

2005-09-01T23:59:59.000Z

393

Membranes for Clean Water  

Science Conference Proceedings (OSTI)

Membranes for Clean Water. Summary: ... Description: Impact. Access to affordable, clean water is vital to the nation's economic growth and security. ...

2013-02-02T23:59:59.000Z

394

Clean Cities Fact Sheet  

DOE Green Energy (OSTI)

This is a routine revision of a general fact sheet that describes the Clean Cities partnership efforts and includes a list of Clean Cities coordinators.

Not Available

2005-01-01T23:59:59.000Z

395

Clean Cities: Coordinator Toolbox  

NLE Websites -- All DOE Office Websites (Extended Search)

Coordinator Toolbox Printable Version Share this resource Send a link to Clean Cities: Coordinator Toolbox to someone by E-mail Share Clean Cities: Coordinator Toolbox on Facebook...

396

Clean Cities Fact Sheet  

DOE Green Energy (OSTI)

This is a routine revision of a general fact sheet that describes the Clean Cities partnership efforts and includes a list of Clean Cities coordinators.

Not Available

2005-04-01T23:59:59.000Z

397

CT Clean Energy Communities  

Energy.gov (U.S. Department of Energy (DOE))

The Clean Energy Communities program, offered by the Clean Energy Finance & Investment Authority and the Connecticut Energy Efficiency Fund, offers incentives for communities that pledge their...

398

Air-cleaning apparatus  

SciTech Connect

An air-cleaning, heat-exchange apparatus includes a main housing portion connected by means of an air inlet fan to the kitchen exhaust stack of a restaurant. The apparatus includes a plurality of heat exchangers through which a heat-absorptive fluid is circulated, simultaneously, by means of a suitable fluid pump. These heat exchangers absorb heat from the hot exhaust gas, out of the exhaust stack of the restaurant, which flows over and through these heat exchangers and transfers this heat to the circulating fluid which communicates with remote heat exchangers. These remote heat exchangers further transfer this heat to a stream of air, such as that from a cold-air return duct for supplementing the conventional heating system of the restaurant. Due to the fact that such hot exhaust gas is heavily grease laden , grease will be deposited on virtually all internal surfaces of the apparatus which this exhaust gas contacts. Consequently, means are provided for spraying these contacted internal surfaces , as well as the hot exhaust gas itself, with a detergent solution in which the grease is soluble, thereby removing grease buildup from these internal surfaces.

Howard, A.G.

1981-08-18T23:59:59.000Z

399

Clean Cities: About  

NLE Websites -- All DOE Office Websites (Extended Search)

About to someone by E-mail About to someone by E-mail Share Clean Cities: About on Facebook Tweet about Clean Cities: About on Twitter Bookmark Clean Cities: About on Google Bookmark Clean Cities: About on Delicious Rank Clean Cities: About on Digg Find More places to share Clean Cities: About on AddThis.com... Goals & Accomplishments Partnerships Hall of Fame Contacts About Clean Cities The U.S. Department of Energy's Clean Cities program advances the nation's economic, environmental, and energy security by supporting local actions to reduce petroleum use in transportation. Clean Cities is part of DOE's Vehicle Technologies Office. Clean Cities has saved more than 5 billion gallons of petroleum since its inception in 1993. Who We Are Almost 18,000 stakeholders contribute to Clean Cities' goals and

400

Clean Coal Technology Programs: Program Update 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

514 514 Clean Coal Technology Programs: Program Update 2007 Includes Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI) Projects As of September 2007 U.S. Department of Energy Assistant Secretary for Fossil Energy Washington, DC 20585 January 2008 T E C H N O L O G Y DOE/FE-0514 Clean Coal Technology Programs: Program Update 2007 Includes Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI) Projects As of September 2007 U.S. Department of Energy Assistant Secretary for Fossil Energy Washington, DC 20585 January 2008 T E C H N O L O G Y This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Offi

Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Clean Cities: Chicago Area Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Chicago Area Clean Cities Coalition Chicago Area Clean Cities Coalition The Chicago Area Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Chicago Area Clean Cities coalition Contact Information Samantha Bingham 312-744-8096 samantha.bingham@cityofchicago.org Coalition Website Clean Cities Coordinator Samantha Bingham Photo of Samantha Bingham Samantha Bingham is an Environmental Policy Analysis for the City of Chicago and has served as the coordinator for the Chicago Clean Cities coalition since 2006. Samantha manages several of the city's air quality improvement programs, coordinates responses to grant solicitations, and through analytical support and subject-matter knowledge assists in developing city policies and ordinances. In her role as a Clean Cities

402

Clean Cities: Detroit Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Detroit Clean Cities Coalition Detroit Clean Cities Coalition The Detroit Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Detroit Clean Cities coalition Contact Information Aaron Champion 734-585-5720 x23 aaron@cec-mi.org Coalition Website Clean Cities Coordinator Aaron Champion Photo of Aaron Champion Aaron Champion is the Coordinator for Detroit Area Clean Cities and a Project Manager with Clean Energy Coalition, where he works on sustainable transportation solutions. Previously, he served as Programs Representative between the U.S. Department of Energy and the Oklahoma Department of Commerce, where he implemented and monitored more than 70 energy efficiency and alternative fuel vehicle projects. Additionally, Champion provided

403

Clean Cities: Middle Tennessee Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Middle Tennessee Clean Cities Coalition Middle Tennessee Clean Cities Coalition The Middle Tennessee Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Middle Tennessee Clean Cities coalition Contact Information Atha Comiskey 615-884-4908 mtcf@comcast.net Coalition Website Clean Cities Coordinator Atha Comiskey Photo of Atha Comiskey Atha Comiskey has been with Middle Tennessee Clean Fuels since June 2009. Her history with alternative fuel began in 2001 when the Comiskey¿s began their C & E Biodiesel Business as distributors of Green Fuels American Biodiesel Processors. Since June of 2009, Atha has been leading force behind Middle Tennessee Clean Fuels (MTCF), covering 40 middle Tennessee counties. Atha has

404

Clean Cities: Clean Cities-Georgia coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Cities-Georgia Coalition Clean Cities-Georgia Coalition The Clean Cities-Georgia coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Clean Cities-Georgia coalition Contact Information Don Francis 404-906-0656 don@cleancitiesatlanta.net Coalition Website Clean Cities Coordinator Don Francis Photo of Don Francis Although Don Francis became the coordinator for the Georgia Clean Cities coalition in April 2009, he is not new to the program. He attended the ceremony when Atlanta was designated as the first Clean Cities coalition in the nation at the Georgia Dome in 1993. Prior to being elected as the coalition's executive director, Francis served on the board of directors and as the treasurer from 2000 to 2005. He has 40 years of experience in

405

Clean Cities: Empire Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Empire Clean Cities Coalition Empire Clean Cities Coalition The Empire Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Empire Clean Cities coalition Contact Information Christina Ficicchia 212-839-7728 christina@empirecleancities.org Coalition Website Clean Cities Coordinator Christina Ficicchia Photo of Christina Ficicchia Ms. Ficicchia is currently the Executive Director at Empire Clean Cities, acting as the Clean Cities Coalition Coordinator for the region. As the executive director, Ms. Ficicchia provides support and management related to the operations of the non-profit organization, develops strategies and programs that fulfill its mission, seeks out increased membership enrollment and funding and promotes the acceptance of alternative fuel

406

Clean Cities: Tulsa Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tulsa Clean Cities Coalition Tulsa Clean Cities Coalition The Tulsa Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Tulsa Clean Cities coalition Contact Information Adriane Jaynes (918) 579-9494 ajaynes@incog.org Eric Pollard 918-579-9434 epollard@incog.org Coalition Website Clean Cities Coordinators Coord Adriane Jaynes Coord Coord Eric Pollard Coord Photo of Adriane Jaynes Adriane Jaynes is the Co-Coordinator for Tulsa Area Clean Cities at Indian Nations Council of Governments (INCOG). Jaynes joined the Tulsa Area Clean Cities as Communications Specialist in March 2011 and has been Co-Coordinator since 2012. She has a Master's Degree in Social Work with an emphasis in Administration and Community Practice from the University of

407

Clean Cities: Arkansas Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Arkansas Clean Cities Coalition Arkansas Clean Cities Coalition The Arkansas Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Arkansas Clean Cities coalition Contact Information Mitchell Simpson 501-682-1060 msimpson@arkansasedc.com Coalition Website Clean Cities Coordinator Mitchell Simpson Photo of Mitchell Simpson Mitchell Simpson is the Outreach and Training Manager at the Arkansas Energy Office (AEO), a division of the Arkansas Economic Development Commission and has been the Arkansas Clean Cities Coordinator since October, 2012. Mitchell focuses on energy efficiency programming such as the Centers of Excellence, Arkansas Energy Star Appliance Rebate Program, Small Cities and Counties Program, Energy Efficiency Arkansas, Track and Save Program, Clean

408

Clean Cities: Pittsburgh Region Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Pittsburgh Region Clean Cities Coalition Pittsburgh Region Clean Cities Coalition The Pittsburgh Region Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Pittsburgh Region Clean Cities coalition Contact Information Richard Price 412-735-4114 rprice5705@aol.com Coalition Website Clean Cities Coordinator Richard Price Photo of Richard Price Rick Price is the Executive Director of the Pittsburgh Region Clean Cities and has been involved with the Pittsburgh Region Clean Cities for almost 15 years. He has served as coalition coordinator, president, and has been a member of the Board of Directors for 5 years. He is recently retired from the U.S. Department of Energy after 37 years of service. Rick was the

409

Clean Cities: Denver Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Denver Clean Cities Coalition Denver Clean Cities Coalition The Denver Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Denver Clean Cities coalition Contact Information Tyler Svitak 303-847-0281 tsvitak@lungcolorado.org Coalition Website Clean Cities Coordinator Tyler Svitak Photo of Tyler Svitak Tyler Svitak is a recent graduate of the University of Colorado, Denver, where he earned a BA in Geography with minors in political sciences and leadership studies. He became the Coordinator of Denver Metro Clean Cities Coalition in November, 2013, after serving as the Clean Cities Energy Coordinator managing DMCCC's role in Refuel Colorado. In this role he worked directly with fleet managers and local leadership to deploy

410

Clean Cities: Alabama Clean Fuels coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alabama Clean Fuels Coalition Alabama Clean Fuels Coalition The Alabama Clean Fuels coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Alabama Clean Fuels coalition Contact Information Mark Bentley 205-402-2755 mark@alabamacleanfuels.org Coalition Website Clean Cities Coordinator Mark Bentley Photo of Mark Bentley Mark Bentley has been the executive director of the Alabama Clean Fuels Coalition (ACFC) since August 2006. ACFC is a nonprofit, membership-based, organization that participates in the U. S. Department of Energy's Clean Cities program, which promotes the use of alternative fuels and alternative fuel vehicles throughout the United States. Bentley actively strives to lead efforts to build an alternative fuel industry in Alabama and leverages

411

Clean Cities: Granite State Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Granite State Clean Cities Coalition Granite State Clean Cities Coalition The Granite State Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Granite State Clean Cities coalition Contact Information Dolores Rebolledo 603-271-6751 dolores.rebolledo@des.nh.gov Coalition Website Clean Cities Coordinator Dolores Rebolledo Photo of Dolores Rebolledo Dolores Rebolledo joined the New Hampshire Department of Environmental Services (DES) as the Granite State Clean Cities coalition coordinator in 2009. The Granite State Clean Cities coalition is a collaboration of 85 public and private stakeholders from all regions of New Hampshire. Rebolledo has 14 years of experience in program management. Prior to joining DES, she was employed by MSB Services as a program consultant and

412

Clean Cities: Antelope Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Antelope Valley Clean Cities Coalition Antelope Valley Clean Cities Coalition The Antelope Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Antelope Valley Clean Cities coalition Contact Information Curtis Martin 661-492-5916 visioncc@verizon.net Coalition Website Clean Cities Coordinator Curtis Martin Photo of Curtis Martin Curtis Martin has been the coordinator for the Antelope Valley Clean Cities coalition since 2008. In addition to his Clean Cities functions, he is also the alternative fuels manager for Robertson's Palmdale Honda in Palmdale, California. As the alternative fuels manager, he is responsible for the sales and marketing of the Civic GX to retail and fleet customers. Martin has been involved in alternative fuels for the past 12 years and has

413

Clean Cities: Clean Fuels Ohio coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Fuels Ohio Coalition Clean Fuels Ohio Coalition The Clean Fuels Ohio coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Clean Fuels Ohio coalition Contact Information Sam Spofforth 614-884-7336 sam@cleanfuelsohio.org Andrew Conley 614-884-7336 andrew@cleanfuelsohio.org Coalition Website Clean Cities Coordinators Coord Sam Spofforth Coord Coord Andrew Conley Coord Photo of Sam Spofforth Sam Spofforth has served as Executive Director of Clean Fuels Ohio since the organization's founding in 2002. Under Spofforth's leadership, Clean Fuels Ohio has become the "go to" resource in Ohio for cleaner fuels, vehicles and energy-saving transportation technologies that reduce climate change, increase American energy security and strengthen Ohio's economy. He

414

Clean Cities: Wisconsin Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Wisconsin Clean Cities Coalition Wisconsin Clean Cities Coalition The Wisconsin Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Wisconsin Clean Cities coalition Contact Information Lorrie Lisek 414-221-4958 lorrie.lisek@wicleancities.org Coalition Website Clean Cities Coordinator Lorrie Lisek Photo of Lorrie Lisek Lorrie Lisek is the President and co-owner of Legacy Environmental Services, Inc., an environmental consulting firm specializing in quality of life and management of environmental, energy, transportation and construction projects and programs. Lisek was co-director for South Shore Clean Cities of Northern Indiana from 2005-2011. Her dedication to the Clean Cities' mission now extends north to Wisconsin where she has served

415

Clean Cities: Honolulu Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Honolulu Clean Cities Coalition Honolulu Clean Cities Coalition The Honolulu Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Honolulu Clean Cities coalition Contact Information Robert Primiano 808-768-3500 rprimiano@honolulu.gov Margaret Larson 808-587-3813 margaret.s.larson@dbedt.hawaii.gov Coalition Website Clean Cities Coordinators Coord Robert Primiano Coord Coord Margaret Larson Coord Photo of Robert Primiano Robert Primiano has been the Clean Cities Coordinator for the Honolulu Clean Cities Coalition since 2001. Over the past eight years, Primiano has coordinated the coalition's participation in many educational and promotional events in Honolulu. He is an executive board member of the local APWA chapter and heads the fleet division for Honolulu's municipal

416

Clean and Renewable Energy | OpenEI Community  

Open Energy Info (EERE)

Clean and Renewable Energy Clean and Renewable Energy Home > Clean and Renewable Energy > Posts by term > Clean and Renewable Energy Content Group Activity By term Q & A Feeds Term: clean energy Type Term Title Author Replies Last Post sort icon Blog entry clean energy GE, Clean Energy Fuels Partner to Expand Natural Gas Highway Jessi3bl 16 Dec 2012 - 19:18 Groups Menu You must login in order to post into this group. Recent content Transportation Energy Futures Study: The Key Results and Conclusions Webinar Viridis Africa 2013 - investment in cleantech Energy Secretary Steven Chu to host DOE's first google hangout at 2 EST IRENA launches global atlas of renewable energy potential GE, Clean Energy Fuels Partner to Expand Natural Gas Highway more Group members (6) Managers:

417

Clean Cities: Trev Hall  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Clean Cities: Trev Hall to someone by E-mail Share Clean Cities: Trev Hall on Facebook Tweet about Clean Cities: Trev Hall on Twitter Bookmark Clean Cities: Trev Hall on Google Bookmark Clean Cities: Trev Hall on Delicious Rank Clean Cities: Trev Hall on Digg Find More places to share Clean Cities: Trev Hall on AddThis.com... Goals & Accomplishments Partnerships Hall of Fame Contacts Trev Hall Clean Cities Regional Manager Trev Hall is the point of contact for Clean Cities' coalitions in Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Tennessee. His responsibilities include facilitating the efforts of the Clean Cities coalitions to increase the use of alternative fuels and

418

Clean Cities: David Kirschner  

NLE Websites -- All DOE Office Websites (Extended Search)

David Kirschner to someone by E-mail David Kirschner to someone by E-mail Share Clean Cities: David Kirschner on Facebook Tweet about Clean Cities: David Kirschner on Twitter Bookmark Clean Cities: David Kirschner on Google Bookmark Clean Cities: David Kirschner on Delicious Rank Clean Cities: David Kirschner on Digg Find More places to share Clean Cities: David Kirschner on AddThis.com... Goals & Accomplishments Partnerships Hall of Fame Contacts David Kirschner Clean Cities Regional Manager David C. Kirschner is the primary point of contact for Clean Cities' coalitions in Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, South Dakota, and Wisconsin. Kirschner started with Clean Cities in September 2011. His responsibilities include facilitating the efforts of the Clean Cities coalitions to increase the use

419

Clean Cities: Brett Aristegui  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Clean Cities: Brett Aristegui to someone by E-mail Share Clean Cities: Brett Aristegui on Facebook Tweet about Clean Cities: Brett Aristegui on Twitter Bookmark Clean Cities: Brett Aristegui on Google Bookmark Clean Cities: Brett Aristegui on Delicious Rank Clean Cities: Brett Aristegui on Digg Find More places to share Clean Cities: Brett Aristegui on AddThis.com... Goals & Accomplishments Partnerships Hall of Fame Contacts Brett Aristegui Clean Cities Regional Manager Brett Aristegui is the point of contact for Clean Cities' coalitions in California. His responsibilities include facilitating the efforts of the Clean Cities coalitions to increase the use of alternative fuels and vehicles through the development of public-private partnerships. Along with

420

Clean Cities: Information for Members of the Media  

NLE Websites -- All DOE Office Websites (Extended Search)

for Members of the Media for Members of the Media Clean Cities provides press releases, photos, b-roll footage, and contact information for members of the media to cover Clean Cities-related news. Press Releases Read official press releases about Clean Cities from the U.S. Department of Energy. See also Clean Cities news. Nov. 7, 2013 Energy Department Launches Alternative Fueling Station Locator App June 14, 2013 Top 10 Things You Didn't Know About Clean Cities May 30, 2013 Clean Cities Moving Fleets Forward with Liquefied Natural Gas May 28,2013 Boise Buses Running Strong with Clean Cities May 15, 2013 Clean Cities Helps Nonprofit Cut Fuel Costs with Propane May 9, 2013 Clean Cities Coalitions Charge Up Plug-In Electric Vehicles March 28, 2013 National Parks Move Transportation Forward in America's Great Outdoors

Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Clean Cities: National Clean Fleets Partner: Advanced Disposal Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Advanced Disposal Services to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Google Bookmark Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Delicious Rank Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions

422

Clean Cities: National Clean Fleets Partner: Schwan's Home Service  

NLE Websites -- All DOE Office Websites (Extended Search)

Schwan's Schwan's Home Service to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Schwan's Home Service on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Schwan's Home Service on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Schwan's Home Service on Google Bookmark Clean Cities: National Clean Fleets Partner: Schwan's Home Service on Delicious Rank Clean Cities: National Clean Fleets Partner: Schwan's Home Service on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Schwan's Home Service on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions

423

Clean Cities: National Clean Fleets Partner: Veolia Environmental Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Veolia Veolia Environmental Services to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Veolia Environmental Services on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Veolia Environmental Services on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Veolia Environmental Services on Google Bookmark Clean Cities: National Clean Fleets Partner: Veolia Environmental Services on Delicious Rank Clean Cities: National Clean Fleets Partner: Veolia Environmental Services on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Veolia Environmental Services on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program

424

Clean Cities: Clean Cities 20th Anniversary  

NLE Websites -- All DOE Office Websites (Extended Search)

20th Anniversary 20th Anniversary Clean Cities marked a major milestone in 2013, celebrating 20 years of progress in cutting petroleum use in transportation. Through the work of local coalitions across the country, Clean Cities has worked for two decades to advance the deployment of alternative and renewable fuels, advanced vehicles, fuel economy improvements, idle-reduction measures, and new technologies as they emerge. The Clean Cities 20th anniversary event was held June 24, 2013, in Washington, D.C. Transforming Transportation for Two Decades Explore Clean Cities' history of accomplishments in this interactive timeline. Get the Clean Cities 20th Anniversary widget and many other great free widgets at Widgetbox! Not seeing a widget? (More info) To share the Clean Cities 20th anniversary timeline on your website, blog, or social networking site, use the "Get Widget" button above.

425

Clean Cities: Central Florida Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Florida Clean Cities Coalition Florida Clean Cities Coalition The Central Florida Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Central Florida Clean Cities coalition Contact Information Colleen Kettles 321-638-1004 ckettles@fsec.ucf.edu Coalition Website Clean Cities Coordinator Colleen Kettles Photo of Colleen Kettles Colleen Kettles is the Coordinator of the Central Florida Clean Cities Coalition at the Florida Solar Energy Center. In addition to her role as the coordinator, Kettles is engaged in alternative energy workforce development and training initiatives. She has worked in both the public and private nonprofit sectors and has more than 30 years of legal and policy research, program development and implementation in the field of solar

426

Clean Cities: Northern Colorado Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Northern Colorado Clean Cities Coalition Northern Colorado Clean Cities Coalition The Northern Colorado Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Northern Colorado Clean Cities coalition Contact Information Sheble McConnellogue 970-302-0914 northcolo@cleancitiescolorado.org Maria Eisemann 970-988-2996 marianccc@comcast.net Coalition Website Clean Cities Coordinators Coord Sheble McConnellogue Coord Coord Maria Eisemann Coord Photo of Sheble McConnellogue Sheble McConnellogue was a Clean Cities Coordinator for NCCC when the coalition first began in 1996. Sheble has over two decades of experience in the field of community and environmental health education and environmental transportation planning. She earned a Master's degree in Urban and Regional Planning from CU at

427

Clean Cities: Rogue Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rogue Valley Clean Cities Coalition Rogue Valley Clean Cities Coalition The Rogue Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Rogue Valley Clean Cities coalition Contact Information Mike Quilty 541-621-4853 mikeq@roguevalleycleancities.org Coalition Website Clean Cities Coordinator Mike Quilty Mike Quilty served on the Rogue Valley Clean Cities Coalition (RVCCC) Board for three years prior to becoming RVCCC's Fleet Outreach Coordinator in late 2010. He was appointed RVCCC's Coordinator in March of 2013. Quilty is active in Oregon transportation policy issues. He is currently Chair of the Rogue Valley Metropolitan Planning Organization Policy Committee (2005 to Present), and is a member of the: Oregon Rail Leadership

428

Clean Cities: North Dakota Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

North Dakota Clean Cities Coalition North Dakota Clean Cities Coalition The North Dakota Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. North Dakota Clean Cities coalition Contact Information Joey Roberson-Kitzman 701-223-5613 joey.roberson-kitzman@lungnd.org Ajaleigh Williams 204-986-7879 awilliams@winnipeg.ca Coalition Website Clean Cities Coordinators Coord Joey Roberson-Kitzman Coord Coord Ajaleigh Williams Coord Photo of Joey Roberson-Kitzman Joey Roberson-Kitzman began serving as coordinator for North Dakota Clean Cities in 2011. Hosted by the American Lung Association in North Dakota (ALAND), Joey's responsibilities include educating motorists and fleets about the air quality and health benefits of using cleaner alternatives to

429

Clean Cities: Ocean State Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ocean State Clean Cities Coalition Ocean State Clean Cities Coalition The Ocean State Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Ocean State Clean Cities coalition Contact Information Wendy Lucht 401-874-2792 wlucht@uri.edu Coalition Website Clean Cities Coordinator Wendy Lucht Photo of Wendy Lucht Wendy Lucht has worked as the Ocean State Clean Cities coordinator at the University of Rhode Island (URI) since 2008 but has worked at URI since 1999. Lucht is working to make Rhode Island the first state certified by Project Get Ready, an initiative preparing cities and states for the arrival of plug-in hybrid electric vehicles (PHEV). As part of this effort, Lucht is serving as chair of the fleet-acquisition committee working on

430

Clean Cities: Utah Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Utah Clean Cities Coalition Utah Clean Cities Coalition The Utah Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Utah Clean Cities coalition Contact Information Robin Erickson 435-634-4361 robin.erickson@utahcleancities.org Sophia Jackson 801-535-7736 sophia.jackson@utahcleancities.org Coalition Website Clean Cities Coordinators Coord Robin Erickson Coord Coord Sophia Jackson Coord Photo of Robin Erickson Robin Erickson has been the director of the Utah Clean Cities coalition since 2007. Serving as a staff of one and raising funds for a part-time college intern, she has been the primary rallying point for the organization: staffing committees, organizing events and training workshops, and preparing grants in partnership with stakeholders. Erickson

431

Clean Cities: Greater Indiana Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Indiana Clean Cities Coalition Indiana Clean Cities Coalition The Greater Indiana Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Greater Indiana Clean Cities coalition Contact Information Kellie L. Walsh 317-985-4380 kellie@greaterindiana.com Coalition Website Clean Cities Coordinator Kellie L. Walsh Photo of Kellie L. Walsh Kellie Walsh has been the executive director for the Greater Indiana Clean Cities Coalition since 2002. In that time, she has assisted coalition stakeholders in securing over $14 million in federal and state funds to implement alternative fuel projects in both the public and private sectors. Walsh has been recognized by Senator Richard G. Lugar and Indiana's Lt. Governor Becky Skillman for her work in alternative fuels, especially

432

Clean Cities: Central Coast Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Coast Clean Cities Coalition Coast Clean Cities Coalition The Central Coast Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Central Coast Clean Cities coalition Contact Information Melissa Guise 805-305-5491 mguise@co.slo.ca.us Coalition Website Clean Cities Coordinator Melissa Guise Photo of Melissa Guise Melissa Guise is the coordinator of the Central Coast Clean Cities Coalition (C5) and works as an air quality specialist for the San Luis Obispo County Air Pollution Control District in San Luis Obispo, California. Guise has been the coalition's coordinator since 2004. Guise has over 25 years of experience in the environmental field working in both the public and private sectors. For the past eight years, she has

433

Clean Cities: Greater Philadelphia Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Greater Philadelphia Clean Cities Coalition Greater Philadelphia Clean Cities Coalition The Greater Philadelphia Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Greater Philadelphia Clean Cities coalition Contact Information Tony Bandiero 215-990-8200 director@phillycleancities.org Coalition Website Clean Cities Coordinator Tony Bandiero Photo of Tony Bandiero Tony Bandiero has a diverse background, from marketing manager with a high-tech micro-electronic manufacturer to his alternative fuels business development management for a petroleum construction company. His interest in the Clean Cities program was sparked in Long Island, NY (GLICC) where his former company was headquartered. Through his committee work with GLICC

434

Clean Cities: Centralina Clean Fuels coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Centralina Clean Fuels Coalition Centralina Clean Fuels Coalition The Centralina Clean Fuels coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Centralina Clean Fuels coalition Contact Information Jason Wager 704-348-2707 jwager@centralina.org Sean Flaherty 704-688-6508 sflaherty@centralina.org Coalition Website Clean Cities Coordinators Coord Jason Wager Coord Coord Sean Flaherty Coord Photo of Jason Wager Jason Wager has been the coordinator of the Centralina Clean Fuels Coalition (CCFC) since 2000. Wager is Sustainability Program Manager at the Centralina Council of Governments, serving the nine-county Greater Charlotte, North Carolina region, where he has worked since 1996. Wager has a Master of Arts in Geography from the University of North

435

Clean Cities: Southern Colorado Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Colorado Clean Cities Coalition Colorado Clean Cities Coalition The Southern Colorado Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Southern Colorado Clean Cities coalition Contact Information Nat Sobin 719-761-6782 nsobin@lungcolorado.org Coalition Website Clean Cities Coordinator Nat Sobin Photo of Nat Sobin Nathaniel (Nat) Sobin is a recent graduate of the University of Colorado at Boulder where he earned his PhD in engineering. His research emphasis relates to programmatic evaluation capacity of alternative fuels in the transportation sector. Sobin became the Coordinator of the Southern Colorado Clean Cities Coalition (SC4) in December of 2013. His research on alternative fuel deployment efforts has been funded by agencies such as the

436

Clean Cities: Southeast Florida Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Florida Clean Cities Coalition Florida Clean Cities Coalition The Southeast Florida Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Southeast Florida Clean Cities coalition Contact Information Christine Heshmati 954-985-4416 cheshmati@sfrpc.com Coalition Website Clean Cities Coordinator Christine Heshmati Photo of Christine Heshmati In 2010, Christine Heshmati became the Florida Gold Coast Clean Cities Coalition Coordinator, merging her background in transportation planning with that of professionals in the field of alternative fuels in order to add depth this Region's mission and goals. Heshmati has 22 years of transportation planning experience in Florida. Her background includes intergovernmental coordination, short range

437

Clean Cities: Greater Lansing Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Lansing Clean Cities Coalition Lansing Clean Cities Coalition The Greater Lansing Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Greater Lansing Clean Cities coalition Contact Information Kristin Jobin 517-925-8649 ext. 12 kristin@michigancleancities.org Coalition Website Clean Cities Coordinator Kristin Jobin Photo of Kristin Jobin Kristin Jobin is the Communications and Project Coordinator at Kuntzsch Business Services, Inc. (KBS), a Grand Ledge, Michigan based consultancy where Greater Lansing Area Clean Cities (GLACC) is managed. KBS is focused on building, managing and implementing initiatives that drive prosperity in the state. At KBS, Kristin supports the administration of grant funded

438

Clean Cities: Norwich Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Norwich Clean Cities Coalition Norwich Clean Cities Coalition The Norwich Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Norwich Clean Cities coalition Contact Information Pete Polubiatko 860-887-6964 pete@askncdc.com Coalition Website Clean Cities Coordinator Pete Polubiatko Photo of Pete Polubiatko Pete Polubiatko has been the coordinator of the Norwich Clean Cities coalition since 1995, when it was designated by the U.S. Department of Energy. In 1995, the Norwich City Council choose to have the municipally-owned utility manage the coalition and the role of coordinator became one of Pete's responsibilities as electric division manager. Polubiatko currently shares his time between construction management for

439

Clean Cities: East Tennessee Clean Fuels coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tennessee Clean Fuels Coalition Tennessee Clean Fuels Coalition The East Tennessee Clean Fuels coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. East Tennessee Clean Fuels coalition Contact Information Jonathan Overly 865-974-3625 jonathan@etcleanfuels.org Coalition Website Clean Cities Coordinator Jonathan Overly Photo of Jonathan Overly Jonathan Overly founded the East Tennessee Clean Fuels Coalition (ETCleanFuels) in 2002 and has managed it since its inception. He has spoken to thousands of people across east Tennessee including over 100 companies and organizations about partnering to expand alternative fuel use in the area. Many government and industry fleets are coalition members. Although biodiesel was an early lead fuel for the coalition, more recently

440

Clean Cities: Treasure Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Treasure Valley Clean Cities Coalition Treasure Valley Clean Cities Coalition The Treasure Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Treasure Valley Clean Cities coalition Contact Information Beth Baird 208-384-3984 bbaird@cityofboise.org Coalition Website Clean Cities Coordinator Beth Baird Photo of Beth Baird Beth Baird was involved in the development of the Treasure Valley Clean Cities coalition (TVCCC) and has been the coalition's coordinator since its designation in 2006. Baird has been employed at the city of Boise Public Works Department for 14 years. During that time, she developed the air quality program for the city of Boise. Most recently, she has taken on responsibilities for the Climate

Note: This page contains sample records for the topic "gas cleaning demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Clean Cities: Massachusetts Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Massachusetts Clean Cities Coalition Massachusetts Clean Cities Coalition The Massachusetts Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Massachusetts Clean Cities coalition Contact Information Stephen Russell 617-626-7325 or 617-797-5224 (cell) stephen.russell@state.ma.us Mike Manning 617-242-8755, X14 mm@avsglp.com Coalition Website Clean Cities Coordinators Coord Stephen Russell Coord Coord Mike Manning Coord Photo of Stephen Russell Stephen Russell became the co-coordinator of the Massachusetts Clean Cities coalition in September 2009. That same year, the coalition funded eight hybrid additions to a variety of light-, medium-, and heavy-duty trucks in both public and private fleets. In addition to his duties in the coalition,

442

Clean Cities: Iowa Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Iowa Clean Cities Coalition Iowa Clean Cities Coalition The Iowa Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Iowa Clean Cities coalition Contact Information Stephanie Weisenbach 515-725-3007 stephanie.weisenbach@iowa.gov Coalition Website Clean Cities Coordinator Stephanie Weisenbach Photo of Stephanie Weisenbach Stephanie Weisenbach is the Coordinator of the Iowa Clean Cities Coalition which is housed in the Iowa Economic Development Authority (IEDA) within state government. Stephanie worked at the IEDA and coordinated training and technical assistance for local governments, small businesses, and community and economic development leaders. Stephanie brings experience in grant writing and management, professional services contracting, communications,

443

Clean Cities: Wisconsin Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Wisconsin Clean Cities coalition Contact Information Lorrie...

444

Clean Cities: Southeast Florida Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Southeast Florida Clean Cities coalition Contact Information...

445

Clean Cities: Ann Arbor Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Prior to joining the Clean Energy Coalition, Rabinsky was the director of sustainability at Jackson Community College (JCC) in Jackson, Mich. where he created a program of...

446

Clean Cities: Clean Cities Now Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

A new tool that helps communities prepare for the arrival of electric vehicles New propane fueling stations in the Midwest. Clean Cities Now September 2012 Issue This issue...

447

Clean Cities: Louisiana Clean Fuels coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

has a Master's in Business Analytics and a background in economic development as well as energy, transportation, and emissions research. She first joined the Louisiana Clean Fuels...

448

Clean Energy Manufacturing Resources - Technology Maturation | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maturation Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Comply With Regulations and Standards DOE Building Technologies Office: Appliance and Equipment Standards - minimum energy conservation standards for more than 50 categories of appliances and equipment. Implementation, Certification and Enforcement - explains DOE

449

Clean Cities: Information Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Clean Cities: Information Resources to someone by E-mail Share Clean Cities: Information Resources on Facebook Tweet about Clean Cities: Information Resources on Twitter Bookmark Clean Cities: Information Resources on Google Bookmark Clean Cities: Information Resources on Delicious Rank Clean Cities: Information Resources on Digg Find More places to share Clean Cities: Information Resources on AddThis.com... Publications Technical Assistance Information Resources Learn about Clean Cities by exploring these information resources. Publications View Clean Cities-branded publications or search for publications about alternative fuels and vehicles. Technical Assistance Learn about technical assistance available to help organizations overcome