Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Estimation of Molar Heat Capacities in Solution from Gas Chromatographic Data  

Science Journals Connector (OSTI)

......the solutions of hydrocarbons--the general...and the molar heat capacity Abstract...Chromatographic Data K roly H berger...measure- ments of heat capacities and...Chem. Eng. Data 20: 24346 (1975...R. Fuchs. Heat capacities of...Enthalpies of combustion of some aliphatic......

Károly Héberger; Miklós Görgényi

2001-03-01T23:59:59.000Z

2

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

3

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

4

California Working Natural Gas Underground Storage Capacity ...  

Gasoline and Diesel Fuel Update (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

5

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

6

Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

. . Underground Natural Gas Storage Capacity by State, December 31, 1996 (Capacity in Billion Cubic Feet) Table State Interstate Companies Intrastate Companies Independent Companies Total Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Percent of U.S. Capacity Alabama................. 0 0 1 3 0 0 1 3 0.04 Arkansas ................ 0 0 3 32 0 0 3 32 0.40 California................ 0 0 10 470 0 0 10 470 5.89 Colorado ................ 4 66 5 34 0 0 9 100 1.25 Illinois ..................... 6 259 24 639 0 0 30 898 11.26 Indiana ................... 6 16 22 97 0 0 28 113 1.42 Iowa ....................... 4 270 0 0 0 0 4 270 3.39 Kansas ................... 16 279 2 6 0 0 18 285 3.57 Kentucky ................ 6 167 18 49 0 0 24 216 2.71 Louisiana................ 8 530 4 25 0 0 12 555 6.95 Maryland ................ 1 62

7

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly Natural Gas Underground Storage Report," are collected from storage operators on a field-level basis. Operators can report field-level data either on a per reservoir basis or on an aggregated reservoir basis. It is possible that if all operators reported on a per reservoir basis that the demonstrated peak working gas capacity would be larger. Additionally, these data reflect inventory levels as of the last day of the report month, and a facility may have reached a higher inventory on a different day of the report month, which would not be recorded on Form EIA-191M.

8

Analytical Estimation of CO2 Storage Capacity in Depleted Oil and Gas Reservoirs Based on Thermodynamic State Functions  

E-Print Network (OSTI)

dimensions. Vertical discretization of grid size allows to improve aquifer influx modeling......................................... 55 Table 4.2? Reservoir model properties. ................................................................ 58 Table 4... fuel dependency will continue in the near future, increasing the need to develop economic and technologically feasible approaches to reduce and capture and dispose CO2 emissions. Geological storage of CO2 in aquifers and depleted oil and gas...

Valbuena Olivares, Ernesto

2012-02-14T23:59:59.000Z

9

,"California Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural Gas Storage Capacity",12,"Annual",2013,"6301988" ,"Release...

10

,"New York Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas Storage Capacity",11,"Annual",2013,"6301988" ,"Release...

11

Colorado Working Natural Gas Underground Storage Capacity (Million...  

Annual Energy Outlook 2012 (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Colorado Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

12

"Assessment of the Adequacy of Natural Gas Pipeline Capacity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

13

Assessment of the Adequacy of Natural Gas Pipeline Capacity in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

14

Geological controls and estimation algorithms of lacustrine shale gas adsorption capacity: A case study of the Triassic strata in the southeastern Ordos Basin, China  

Science Journals Connector (OSTI)

Abstract High-pressure methane adsorption experiments on a series of Triassic lacustrine shale moisture-equilibrated samples from the southeastern Ordos Basin, China, were conducted at pressure up to 20 MPa, two of which were measured at 30 °C, 40 °C, 50 °C, 60 °C, and 70 °C, and seven were performed under reservoir temperature (from 48 °C to 62 °C) to investigate the effect of organic matter content, maturity, mineralogical compositions and reservoir conditions (temperature and pressure) on the methane sorption capacity. The total organic carbon contents (TOCs) range from 0.91 wt.% to 6.11 wt.%. The thermal maturities, as inferred from Rock-Eval Analysis, range from low mature to high mature. The minerals of the shale samples are dominated by clays (36–57 wt.%) and quartz (19–44 wt.%). For the entire shale samples the dominant clay minerals are mixed-layer illite/smectite with some illite and no smectite exists, corresponding to a stage of late diagenesis. The studied samples have N2 BET surface areas ranging between 1.47 and 9.21 m2/g and pore volumes of 0.013–0.034 cm3/g. The methane sorption capacities of moisture-equilibrated shale samples show a positive correlation with TOC contents and BET surface areas. No relationship was observed between the clay contents and methane sorption capacities, indicating that clay minerals do not significantly contribute to methane sorption capacity in these organic shales. The Langmuir pressure (PL) increases exponentially with temperature and the Langmuir volume (VL) decreases linearly with temperature. A computational scheme has been developed to calculate the methane sorption capacity of shales as a function of TOC content, temperature and pressure based on Langmuir sorption isotherm function. Using this algorithm methane sorption capacity of organic shales as function of depth can be obtained. Due to the predominating effect of pressure the methane sorption capacity increases with depth initially, through a maximum and then decreases due to the influence of increasing temperature at a greater depth. The maximum gas sorption capacity typically occurs at a depth range between 400 and 900 m. With TOC content increasing, the maximum methane sorption capacities of organic shales and the corresponding depths increase.

Wenming Ji; Yan Song; Zhenxue Jiang; Xiangzeng Wang; Yongqiang Bai; Jinyan Xing

2014-01-01T23:59:59.000Z

15

California Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) California Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

16

Nitrogen expander cycles for large capacity liquefaction of natural gas  

SciTech Connect

Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun [Hong Ik University, Department of Mechanical Engineering, Seoul, 121-791 (Korea, Republic of); Choe, Kun Hyung [Korea Gas Corporation, Incheon, 406-130 (Korea, Republic of)

2014-01-29T23:59:59.000Z

17

Natural Gas Productive Capacity for the Lower-48 States  

Gasoline and Diesel Fuel Update (EIA)

for the Lower-48 States for the Lower-48 States 6/4/01 Click here to start Table of Contents Natural Gas Productive Capacity for the Lower-48 States Natural Gas Productive Capacity for the Lower-48 States Natural Gas Productive Capacity for the Lower-48 States - Summary - Natural Gas Productive Capacity for the Lower-48 States - Summary - PPT Slide Natural Gas Productive Capacity for the Lower-48 States - Summary - Natural Gas Productive Capacity for the Lower-48 States - Methodology - Natural Gas Productive Capacity for the Lower-48 States - Methodology - Natural Gas Productive Capacity for the Lower-48 States - Methodology - PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide Other Areas PPT Slide PPT Slide PPT Slide

18

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

19

Natural Gas Underground Storage Capacity (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 9,072,508 9,104,181 9,111,242 9,117,296 9,132,250 9,171,017 1989-2013 Alaska 83,592 83,592 83,592 83,592 83,592 83,592 2013-2013 Lower 48 States 8,988,916 9,020,589 9,027,650 9,033,704 9,048,658 9,087,425 2012-2013 Alabama 35,400 35,400 35,400 35,400 35,400 35,400 2002-2013 Arkansas 21,853 21,853 21,853 21,853 21,853 21,853 2002-2013 California 592,711 592,711 592,711 599,711 599,711 599,711 2002-2013 Colorado 122,086 122,086 122,086 122,086 122,086 122,086 2002-2013

20

Evaluation of capacity release transactions in the natural gas industry  

E-Print Network (OSTI)

The purpose of this thesis is to analyze capacity release transactions in the natural gas industry and to state some preliminary conclusions about how the capacity release market is functioning. Given FERC's attempt to ...

Lautzenhiser, Stephen

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Underground Natural Gas Working Storage Capacity - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Underground Natural Gas Working Storage Capacity Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Overview Natural gas working storage capacity increased by about 2 percent in the Lower 48 states between November 2011 and November 2012. The U.S. Energy Information Administration (EIA) has two measures of working gas storage capacity, and both increased by similar amounts: Demonstrated maximum volume increased 1.8 percent to 4,265 billion cubic feet (Bcf) Design capacity increased 2.0 percent to 4,575 Bcf Maximum demonstrated working gas volume is an operational measure of the highest level of working gas reported at each storage facility at any time

22

Microsoft Word - GasCapacityReport3-17.doc  

Gasoline and Diesel Fuel Update (EIA)

for the Lower-48 States Executive Summary This analysis examines the availability of effective productive capacity to meet the projected wellhead demand for natural gas through 2003. Effective productive capacity is defined as the maximum production available from natural gas wells considering limitations of the production, gathering, and transportation systems. Surplus or unutilized capacity is the difference between the effective productive capacity and the actual production. This report contains projections of natural gas effective productive capacity in the Lower-48 States for 2003 and is based on prices and production forecasts in EIA's February 2003 Short Term Energy Outlook (STEO). The analysis projects an average surplus capacity of 5.6 Bcf/d in 2003 under STEO Base

23

Cost Estimating and Cost Management Capacity Building Workshop  

E-Print Network (OSTI)

Cost Estimating and Cost Management Capacity Building Workshop August 11-13, 2010 Coffman Memorial 574 guidebook on cost estimating and cost management · To learn how states are moving forward with the implementation of the guidebook or other initiatives related to cost estimating and cost management · To share

Minnesota, University of

24

,"New York Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:07:28 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NY2"...

25

,"New York Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:07:27 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NY2"...

26

POSITIVITY CASES, ESTIMATES AND ASYMPTOTIC EXPANSIONS FOR CONDENSER CAPACITIES.  

E-Print Network (OSTI)

POSITIVITY CASES, ESTIMATES AND ASYMPTOTIC EXPANSIONS FOR CONDENSER CAPACITIES. ALAIN BONNAF´E Abstract. We study positivity cases, estimates and asymptotic expansions of condenser p the internal part of the condenser has a non-empty interior. The study of the point and its approximation

Boyer, Edmond

27

Maryland Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 64,000 64,000 64,000 64,000 64,000 64,000 1988-2012 Salt Caverns

28

Ohio Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 572,477 572,477 580,380 580,380 580,380 577,944 1988-2012

29

Texas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 690,678 740,477 766,768 783,579 812,394 831,190 1988-2012

30

Kentucky Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 220,359 220,359 220,368 221,751 221,751 221,751 1988-2012

31

Oregon Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 29,415 29,415 29,565 29,565 29,565 28,750 1989-2012 Salt Caverns

32

Michigan Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 1,060,558 1,062,339 1,069,405 1,069,898 1,075,472 1,078,979

33

Tennessee Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 1,200 1,200 1,200 0 1998-2012 Salt Caverns 0 1999-2012

34

Alabama Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 19,300 26,900 26,900 32,900 35,400 35,400 1995-2012 Salt Caverns

35

Wyoming Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 114,067 111,167 111,120 111,120 106,764 124,937 1988-2012

36

Indiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 114,294 114,937 114,274 111,271 111,313 110,749 1988-2012

37

Louisiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 588,711 615,858 651,968 670,880 690,295 699,646 1988-2012

38

Montana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 374,201 374,201 376,301 376,301 376,301 376,301 1988-2012

39

Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 9,560 6,200 9,500 9,500 9,500 9,500 1998-2012 Salt Caverns

40

Mississippi Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 166,909 187,251 210,128 235,638 240,241 289,416 1988-2012

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Pennsylvania Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 759,365 759,153 776,964 776,822 776,845 774,309 1988-2012

42

On the isobaric specific heat capacity of natural gas  

Science Journals Connector (OSTI)

Abstract A colorimeter equipped with a gas booster in conjunction with a PVT cell was used to measure the heat capacity of natural gas with different amounts of impurities. Based on new experimental and literature data, a general investigation of the isobaric specific heat capacity was carried out using the Jarrahian–Heidaryan equation of state (J–H-EOS). A model was obtained that is valid in wide ranges of pressures (0.1–40 MPa) and temperatures (250–414 K). The arithmetic average of the model’s absolute error is acceptable in engineering calculations and has superiority over other methods in its class.

Azad Jarrahian; Hamid Reza Karami; Ehsan Heidaryan

2014-01-01T23:59:59.000Z

43

Endogenous production capacity investment in natural gas market equilibrium models  

Science Journals Connector (OSTI)

Abstract The large-scale natural gas equilibrium model applied in Egging, 2013 combines long-term market equilibria and investments in infrastructure while accounting for market power by certain suppliers. Such models are widely used to simulate market outcomes given different scenarios of demand and supply development, environmental regulations and investment options in natural gas and other resource markets. However, no model has so far combined the logarithmic production cost function commonly used in natural gas models with endogenous investment decisions in production capacity. Given the importance of capacity constraints in the determination of the natural gas supply, this is a serious shortcoming of the current literature. This short note provides a proof that combining endogenous investment decisions and a logarithmic cost function yields a convex minimization problem, paving the way for an important extension of current state-of-the-art equilibrium models.

Daniel Huppmann

2013-01-01T23:59:59.000Z

44

Estimation of capacity credit for wind power in Libya  

Science Journals Connector (OSTI)

This paper presents the results of a study that evaluated the wind potential at the central region of the Libyan coast and estimated the capacity credit of wind power in the national network. Several sites were investigated to choose the most suitable sites for wind farm establishment. Different sizes of Wind Energy Converter Systems (WECSs) were selected to estimate the wind potential. The sizes were selected to satisfy present and future market development as well as to satisfy technical, economic, and environmental aspects. Wind data from three meteorological stations in the proposed region were used in assessing the wind potential. The wind potential was estimated according to the characteristics of the sites and power curves of the WECSs, and considering certain assumptions. The results showed that the capacity credit varied from about 20% to 50%, depending on penetration levels of wind power, for the assumptions made in this study.

Wedad B. El-Osta; Mohamed Ali Ekhlat; Amal S. Yagoub; Yousef Khalifa; E. Borass

2005-01-01T23:59:59.000Z

45

Estimating the Carbon Sequestration Capacity of Shale Formations Using Methane Production Rates  

Science Journals Connector (OSTI)

Estimating the Carbon Sequestration Capacity of Shale Formations Using Methane Production Rates ... Even though both of these strategies have some potential to sequester CO2, the magnitude is much smaller than current or projected CO2 emissions. ... This distribution is combined with stochastic estimates for (4) the ratio of CH4 volume to CO2 volume that can sorb to the fracture surface and (5) the ratio of the gas diffusivities at the fracture surface to estimate the volume of CO2 that could be sequestered in these wells. ...

Zhiyuan Tao; Andres Clarens

2013-08-29T23:59:59.000Z

46

Adjusted Estimates of Texas Natural Gas Production  

U.S. Energy Information Administration (EIA) Indexed Site

1 Energy Information Administration 1 Energy Information Administration Adjusted Estimates of Texas Natural Gas Production Background The Energy Information Administration (EIA) is adjusting its estimates of natural gas production in Texas for 2004 and 2005 to correctly account for carbon dioxide (CO 2 ) production. Normally, EIA would wait until publication of the Natural Gas Annual (NGA) before revising the 2004 data, but the adjustments for CO 2 are large enough to warrant making the changes at this time. Prior to 2005, EIA relied exclusively on the voluntary sharing of production data by state and federal government entities to develop its natural gas production estimates. In 2005, EIA began collecting production data directly from operators on the new EIA-914 production

47

Estimate Greenhouse Gas Emissions by Building Type | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type YOU ARE HERE Step 2 Starting with the programs contributing the greatest...

48

AGA Producing Region Natural Gas Underground Storage Capacity (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Producing Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,026,828 2,068,220 2,068,220 2,068,428 2,068,428 2,068,428 2,074,428 2,082,928 2,082,928 2,082,928 2,082,928 2,082,928 1995 2,082,928 2,096,611 2,096,611 2,096,176 2,096,176 2,096,176 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 1996 2,095,131 2,106,116 2,110,116 2,108,116 2,110,116 2,127,294 2,126,618 2,134,784 2,140,284 2,140,284 2,144,784 2,144,784 1997 2,143,603 2,149,088 2,170,288 2,170,288 2,170,178 2,170,178 2,189,642 2,194,242 2,194,242 2,194,242 2,194,242 2,194,242 1998 2,194,242 2,194,242 2,194,242 2,194,242 2,194,242 2,205,540 2,205,540 2,205,540 2,205,540 2,205,540 2,205,540 2,197,859

49

AGA Western Consuming Region Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Western Consuming Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,226,103 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1995 1,232,392 1,233,637 1,233,637 1,233,637 1,233,637 1,243,137 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1996 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1,228,208 1,270,505 1,270,505 1,270,505 1,270,505 1,270,505 1,270,505 1997 1,228,395 1,228,395 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1998 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,122,586 1,122,586 1,122,586 1,122,586 1,122,586 1,122,586 1,122,586

50

AGA Eastern Consuming Region Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 4,737,921 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,446 4,727,446 4,727,446 4,727,509 1995 4,730,109 4,647,791 4,647,791 4,647,791 4,647,791 4,647,791 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 1996 4,593,948 4,600,548 4,603,048 4,603,048 4,607,048 4,740,509 4,740,509 4,742,309 4,743,309 4,743,309 4,743,309 4,743,309 1997 4,681,090 4,574,740 4,586,024 4,578,486 4,586,024 4,582,146 4,582,146 4,582,146 4,585,702 4,585,702 4,585,702 4,585,702 1998 4,585,702 4,585,702 4,585,702 4,585,702 4,585,702 4,799,753 4,799,753 4,799,753 4,799,753 4,799,753 4,799,753 4,805,622

51

Optimal transition from coal to gas and renewable power under capacity constraints and adjustment costs  

E-Print Network (OSTI)

Optimal transition from coal to gas and renewable power under capacity constraints and adjustment existing coal power plants to gas and renewable power under a carbon budget. It solves a model of polluting, exhaustible resources with capacity constraints and adjustment costs (to build coal, gas, and renewable power

Paris-Sud XI, Université de

52

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in "Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available November 27, 2013 - 3:13pm Addthis The Office of Electricity Delivery and Energy Reliability has released its "Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" report. The report is now available for downloading. In 2005-06, the Office of Electricity Delivery and Energy Reliability (OE) conducted a study on the adequacy of interstate natural gas pipeline capacity serving the northeastern United States to meet natural gas demand in the event of a pipeline disruption. The study modeled gas demand for

53

Laboratory Development of A High Capacity Gas-Fired paper Dryer  

SciTech Connect

Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laparrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. natural gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300���������������ºF range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400���������������ºF were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.

Yaroslav Chudnovsky; Aleksandr Kozlov; Lester Sherrow

2005-09-30T23:59:59.000Z

54

Final Report: Laboratory Development of a High Capacity Gas-Fired Paper Dryer  

SciTech Connect

Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laperrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. natural gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300 deg F range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400 deg F were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.

Yaroslav Chudnovsky; Aleksandr Kozlov; Lester Sherrow

2005-09-30T23:59:59.000Z

55

Occurrence of UV-Absorbing, Mycosporine-Like Compounds among Cyanobacterial Isolates and an Estimate of Their Screening Capacity  

Science Journals Connector (OSTI)

...Estimate of Their Screening Capacity FERRAN GARCIA-PICHELt...fraction. The sunscreen capacities of MAA and scytonemin and their combined capacity were estimated for each strain...environments subject to intense solar radiation. They are often...

Ferran Garcia-Pichel; Richard W. Castenholz

1993-01-01T23:59:59.000Z

56

Storage and capacity rights markets in the natural gas industry  

E-Print Network (OSTI)

This dissertation presents a different approach at looking at market power in capacity rights markets that goes beyond the functional aspects of capacity rights markets as access to transportation services. In particular, ...

Paz-Galindo, Luis A.

1999-01-01T23:59:59.000Z

57

A robust approach to battery fuel gauging, part II: Real time capacity estimation  

Science Journals Connector (OSTI)

Abstract In this paper, the second of a series on battery fuel gauging, we present an approach for real time capacity estimation. In part I of this series, we presented a real time parameter estimation approach for various battery equivalent models. The proposed capacity estimation scheme has the following novel features: it employes total least squares (TLS) estimation in order to account for uncertainties in both model and the observations in capacity estimation. The TLS method can adaptively track changes in battery capacity. We propose a second approach to estimate battery capacity by exploiting rest states in the battery. This approach is devised to minimize the effect of hysteresis in capacity estimation. Finally, we propose a novel approach for optimally fusing capacity estimates obtained through different methods. Then, the proposed algorithm was validated using hardware-in-the-loop (HIL) data collected from commercially available Li-ion batteries. The proposed approach performs within 1% or better accuracy in terms of capacity estimation based on both simulated as well as HIL evaluations.

B. Balasingam; G.V. Avvari; B. Pattipati; K.R. Pattipati; Y. Bar-Shalom

2014-01-01T23:59:59.000Z

58

Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2005  

Gasoline and Diesel Fuel Update (EIA)

percent increase in capacity additions (see percent increase in capacity additions (see Box, "Capacity Measures," p. 4). Indeed, less new natural gas pipeline mileage was added in 2005 than in any year during the past decade. 1 Energy Information Administration, Office of Oil and Gas, August 2006 1 In 2005, at least 31 natural gas pipeline projects of varying profiles 2 were completed in the lower 48 States and the Gulf of Mexico (Figure 3, Table 1). Of these, 15 were expansions (increases in capacity) on existing natural gas pipelines while the other 16 were 9 system extensions or laterals associated with existing natural gas pipelines, 5 new natural gas pipeline systems, and 2 oil pipeline conversions. Expenditures for natural gas pipeline development amounted to less than $1.3

59

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 In 2005-06, the Office of Electricity Delivery and Energy Reliability (OE) conducted a study on the adequacy of interstate natural gas pipeline capacity serving the northeastern United States to meet natural gas demand in the event of a pipeline disruption. The study modeled gas demand for select market areas in the Northeast under a range of different weather conditions. The study then determined how interstate pipeline flow patterns could change in the event of a pipeline disruption to one or more of the pipelines serving the region in order to meet the gas demand. The results

60

Bi-level Optimization for Capacity Planning in Industrial Gas Markets  

E-Print Network (OSTI)

Bi-level Optimization for Capacity Planning in Industrial Gas Markets P. Garcia-Herreros, L. Zhang markets are dynamic: · Suppliers must anticipate demand growth · Most markets are served locally Capacity is incremental( t T, i I ) Demand satisfaction is constraint by capacities( t T, i I ) All markets

Grossmann, Ignacio E.

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Bi-level Optimization for Capacity Planning in Industrial Gas Markets  

E-Print Network (OSTI)

Bi-level Optimization for Capacity Planning in Industrial Gas Markets P. Garcia-Herreros, E. Arslan are dynamic: · Suppliers must anticipate demand growth · Most markets are served locally Capacity expansion supplier · Set of plants from independent suppliers with limited capacity · Rational markets that select

Grossmann, Ignacio E.

62

The Greenhouse Gas Protocol Initiative: Measurement and Estimation...  

Open Energy Info (EERE)

Estimation of Uncertainty of GHG Emissions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: Measurement and Estimation of...

63

Natural gas productive capacity for the lower 48 States, 1980 through 1995  

SciTech Connect

The purpose of this report is to analyze monthly natural gas wellhead productive capacity in the lower 48 States from 1980 through 1992 and project this capacity from 1993 through 1995. For decades, natural gas supplies and productive capacity have been adequate to meet demand. In the 1970`s the capacity surplus was small because of market structure (split between interstate and intrastate), increasing demand, and insufficient drilling. In the early 1980`s, lower demand, together with increased drilling, led to a large surplus capacity as new productive capacity came on line. After 1986, this large surplus began to decline as demand for gas increased, gas prices fell, and gas well completions dropped sharply. In late December 1989, the decline in this surplus, accompanied by exceptionally high demand and temporary weather-related production losses, led to concerns about the adequacy of monthly productive capacity for natural gas. These concerns should have been moderated by the gas system`s performance during the unusually severe winter weather in March 1993 and January 1994. The declining trend in wellhead productive capacity is expected to be reversed in 1994 if natural gas prices and drilling meet or exceed the base case assumption. This study indicates that in the low, base, and high drilling cases, monthly productive capacity should be able to meet normal production demands through 1995 in the lower 48 States (Figure ES1). Exceptionally high peak-day or peak-week production demand might not be met because of physical limitations such as pipeline capacity. Beyond 1995, as the capacity of currently producing wells declines, a sufficient number of wells and/or imports must be added each year in order to ensure an adequate gas supply.

Not Available

1994-07-14T23:59:59.000Z

64

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation 10.1073/pnas.1309334111...of unconventional natural gas, particularly shale gas...best-performing coal-fired generation under certain...

Garvin A. Heath; Patrick O’Donoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

65

Mathematical model and simulation of gas ow through a porous medium in high breaking capacity  

E-Print Network (OSTI)

Mathematical model and simulation of gas #29;ow through a porous medium in high breaking capacity, France. Abstract. A one-dimensional model is introduced to describe the gas #29;ow and the heat transfer model coupled with a porous medium model taking into account the mechanical interaction gas-silica sand

Sart, Remi

66

Methodologies for estimating one-time hazardous waste generation for capacity generation for capacity assurance planning  

SciTech Connect

This report contains descriptions of methodologies to be used to estimate the one-time generation of hazardous waste associated with five different types of remediation programs: Superfund sites, RCRA Corrective Actions, Federal Facilities, Underground Storage Tanks, and State and Private Programs. Estimates of the amount of hazardous wastes generated from these sources to be shipped off-site to commercial hazardous waste treatment and disposal facilities will be made on a state by state basis for the years 1993, 1999, and 2013. In most cases, estimates will be made for the intervening years, also.

Tonn, B.; Hwang, Ho-Ling; Elliot, S. [Oak Ridge National Lab., TN (United States); Peretz, J.; Bohm, R.; Hendrucko, B. [Univ. of Tennessee, Knoxville, TN (United States)

1994-04-01T23:59:59.000Z

67

,"U.S. Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

3,"Monthly","9/2013","1/15/1989" 3,"Monthly","9/2013","1/15/1989" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_stor_cap_dcu_nus_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_stor_cap_dcu_nus_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 7:03:21 PM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage Capacity" "Sourcekey","N5290US2","NGA_EPG0_SACW0_NUS_MMCF","NA1394_NUS_8" "Date","U.S. Total Natural Gas Underground Storage Capacity (MMcf)","U.S. Working Natural Gas Total Underground Storage Capacity (MMcf)","U.S. Natural Gas Count of Underground Storage Capacity (Count)"

68

Figure A1. Natural gas processing plant capacity in the United States, 2013 2012  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Figure A1. Natural gas processing plant capacity in the United States, 2013 2012 Table A2. Natural gas processing plant capacity, by state, 2013 (million cubic feet per day) Alabama 1,403 Arkansas 24 California 926 Colorado 5,450 Florida 90 Illinois 2,100 Kansas 1,818 Kentucky 240 Louisiana 10,737 Michigan 479 Mississippi 1,123

69

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Buildings  

Energy.gov (U.S. Department of Energy (DOE))

When estimating the cost of implementing the greenhouse gas (GHG) mitigation strategies, Federal agencies should consider the life-cycle costs and savings of the efforts.

70

,"New York Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2012...

71

Estimating the Capacity Value of Concentrating Solar Power Plants: A Case Study of the Southwestern United States  

SciTech Connect

We estimate the capacity value of concentrating solar power (CSP) plants without thermal energy storage in the southwestern U.S. Our results show that CSP plants have capacity values that are between 45% and 95% of maximum capacity, depending on their location and configuration. We also examine the sensitivity of the capacity value of CSP to a number of factors and show that capacity factor-based methods can provide reasonable approximations of reliability-based estimates.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2012-05-01T23:59:59.000Z

72

Improving Gas-Fired Heat Pump Capacity and Performance by Adding a Desiccant Dehumidification Subsystem  

E-Print Network (OSTI)

capacity 50%. Increased initial manufacturing costs are estimated at around $500/ton ($142/kW) for volume production. This cost Level is expected to reduce the total initial cost per ton compared to a system without the desiccant subsystem....

Parsons, B. K.; Pesaran, A. A.; Bharathan, D.; Shelpuk, B. C.

1990-01-01T23:59:59.000Z

73

U.S. Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 8,402,216 8,498,535 8,655,740 8,763,798 8,849,125 8,991,335

74

Estimating Major and Minor Natural Fracture Patterns in Gas  

E-Print Network (OSTI)

Estimating Major and Minor Natural Fracture Patterns in Gas Shales Using Production Data Razi Identification of infill drilling locations has been challenging with mixed results in gas shales. Natural fractures are the main source of permeability in gas shales. Natural fracture patterns in shale has a random

Mohaghegh, Shahab

75

title Estimating Policy Driven Greenhouse Gas Emissions Trajectories  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy Driven Greenhouse Gas Emissions Trajectories Estimating Policy Driven Greenhouse Gas Emissions Trajectories in California The California Greenhouse Gas Inventory Spreadsheet GHGIS Model year month institution Lawrence Berkeley National Laboratory address Berkeley abstract p A California Greenhouse Gas Inventory Spreadsheet GHGIS model was developed to explore the impact of combinations of state policies on state greenhouse gas GHG and regional criteria pollutant emissions The model included representations of all GHGemitting sectors of the California economy including those outside the energy sector such as high global warming potential gases waste treatment agriculture and forestry in varying degrees of detail and was carefully calibrated using available data and projections from multiple state agencies and

76

,"Alaska Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (MMcf)" Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm_epg0_sac_sal_mmcfm.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_sac_sal_mmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:57:12 PM"

77

,"Iowa Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (MMcf)" Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ia2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ia2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:10 PM"

78

,"U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Caverns Capacity (MMcf)" Salt Caverns Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacws_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacws_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

79

,"U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Count)"  

U.S. Energy Information Administration (EIA) Indexed Site

Acquifers Capacity (Count)" Acquifers Capacity (Count)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Count)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1392_nus_8a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1392_nus_8a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:23 PM"

80

,"U.S. Working Natural Gas Underground Storage Acquifers Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Acquifers Capacity (MMcf)" Acquifers Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Acquifers Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacwa_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacwa_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

,"U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacwd_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacwd_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

82

,"U.S. Natural Gas Underground Storage Acquifers Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Acquifers Capacity (MMcf)" Acquifers Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Underground Storage Acquifers Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1392_nus_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1392_nus_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:23 PM"

83

,"U.S. Working Natural Gas Total Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Underground Storage Capacity (MMcf)" Total Underground Storage Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Total Underground Storage Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacw0_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacw0_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

84

The Greenhouse Gas Protocol Initiative: Measurement and Estimation of  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: Measurement and Estimation of The Greenhouse Gas Protocol Initiative: Measurement and Estimation of Uncertainty of GHG Emissions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: Measurement and Estimation of Uncertainty of GHG Emissions Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: GHG Uncertainty Guide[1] The Greenhouse Gas Protocol Uncertainty Tool is designed to facilitate a quantitative and qualitative estimation of uncertainty associated with a

85

Estimate and Analyze Greenhouse Gas Mitigation Strategy Implementation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimate and Analyze Greenhouse Gas Mitigation Strategy Estimate and Analyze Greenhouse Gas Mitigation Strategy Implementation Costs Estimate and Analyze Greenhouse Gas Mitigation Strategy Implementation Costs October 7, 2013 - 10:18am Addthis Analyzing the cost of implementing each greenhouse gas (GHG) mitigation measure provides an important basis for prioritizing different emission reduction strategies. While actual costs should be used when available, this guidance provides cost estimates or considerations for the major emission reduction measures to help agencies estimate costs without perfect information. Cost criteria the agency may consider when prioritizing strategies include: Lifecycle cost Payback Cost effectiveness ($ invested per MTCO2e, metric tonne carbon dioxide equivalent avoided). Implementation costs should be analyzed for each emissions source:

86

Theoretical Estimates of HVAC Duct Channel Capacity for High-Speed Internet Access  

E-Print Network (OSTI)

Theoretical Estimates of HVAC Duct Channel Capacity for High-Speed Internet Access Ariton E. Xhafa-conditioning (HVAC) ducts based on multi-carrier transmission that uses M-QAM mod- ulation and measured channel- flections in HVAC ducts). Our work also shows that data rates in excess of 300 Mbps are possible over

Stancil, Daniel D.

87

Estimate Greenhouse Gas Emissions by Building Type | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type October 7, 2013 - 10:51am Addthis YOU ARE HERE Step 2 Starting with the programs contributing the greatest proportion of building greenhouse gas (GHG) emissions, the agency should next determine which building types operated by those programs use the most energy (Figure 1). Energy intensity is evaluated instead of emissions in this approach because programs may not have access to emissions data by building type. Figure 1 - An image of an organizational-type chart. A rectangle labeled 'Program 1' has lines pointing to three other rectangles below it labeled 'Building Type 1,' 'Building Type 2,' and 'Building Type 3.' Next to the building types it says, 'Step 2. Estimate emissions by building type.

88

Methodology for EIA Weekly Underground Natural Gas Storage Estimates  

Weekly Natural Gas Storage Report (EIA)

Methodology for EIA Weekly Underground Natural Gas Storage Estimates Methodology for EIA Weekly Underground Natural Gas Storage Estimates Latest Update: November 25, 2008 This report consists of the following sections: Survey and Survey Processing - a description of the survey and an overview of the program Sampling - a description of the selection process used to identify companies in the survey Estimation - how the regional estimates are prepared from the collected data Computing the 5-year Averages, Maxima, Minima, and Year-Ago Values for the Weekly Natural Gas Storage Report - the method used to prepare weekly data to compute the 5-year averages, maxima, minima, and year-ago values for the weekly report Derivation of the Weekly Historical Estimates Database - a description of the process used to generate the historical database for the

89

Estimate Greenhouse Gas Emissions by Building Type  

Energy.gov (U.S. Department of Energy (DOE))

Starting with the programs contributing the greatest proportion of building greenhouse gas (GHG) emissions, the agency should next determine which building types operated by those programs use the most energy (Figure 1). Energy intensity is evaluated instead of emissions in this approach because programs may not have access to emissions data by building type.

90

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...and conventional gas are not significantly...harmonized estimates of life cycle GHG emissions...unconventional gas used for electricity...combined cycle turbine (NGCC) compared...explanation of the remaining harmonization...evaluated shale gas LCAs: inclusion of missing life cycle stages...

Garvin A. Heath; Patrick O’Donoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

91

Revision Policy for EIA Weekly Underground Natural Gas Storage Estimates  

Weekly Natural Gas Storage Report (EIA)

September 23, 2013 September 23, 2013 This report consists of the following sections: General EIA Weekly Natural Gas Storage Report Revisions Policy - a description of how revisions to the Weekly Natural Gas Storage Report estimates may occur EIA Weekly Natural Gas Storage Report Policy to Allow Unscheduled Release of revisions - a description of the policy that will be implemented in the event of an out-of-cycle release Revisions to the Historical Database - a description of how revisions will be noted in the Historical database The U.S. Energy Information Administration (EIA) is announcing changes Revisions may be presented for the most recent estimates of working gas in storage under a number of circumstances that occur after release of the estimates. These include: I. A respondent revises previously submitted data (respondents are

92

Revision Policy for EIA Weekly Underground Natural Gas Storage Estimates  

Weekly Natural Gas Storage Report (EIA)

April 26, 2005 April 26, 2005 This report consists of the following sections: General EIA Weekly Natural Gas Storage Report Revisions Policy - a description of how revisions to the Weekly Natural Gas Storage Report estimates may occur EIA Weekly Natural Gas Storage Report Policy to Allow Unscheduled Release of revisions - a description of the policy that will be implemented in the event of an out-of-cycle release Revisions to the Historical Database - a description of how revisions will be noted in the Historical database Revisions may be presented for the most recent estimates of working gas in storage under a number of circumstances that occur after release of the estimates. These include: I. A respondent revises previously submitted data (respondents are requested to submit revisions if the change is greater than 500 million

93

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Jeffery Greenblatt November 2013 For decades, California has used groundbreaking tools to collect and analyze emissions data from a variety of sources to establish a scientific basis for policy making. As its scope has expanded to include greenhouse gas (GHG) reductions, it has sought out similar tools to use to achieve the goals of legislation such as the Global Warming Solutions Act of 2006 (AB 32). To support this effort, Lawrence Berkeley National Laboratory developed a California Greenhouse Gas Inventory Spreadsheet (GHGIS) model funded by the California Air Resources Board (ARB), to explore the impact of combinations

94

Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2007  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Information Administration, Office of Oil and Gas, July 2008 1 U.S. natural gas pipeline construction activity accelerated in 2007 with capacity additions to the grid totaling nearly 14.9 billion cubic feet (Bcf) of daily deliverability (Figure 1). These additions were the largest of any year in the Energy Information Administration's (EIA) 10-year database of pipeline construction activity. The increased level of natural gas pipeline construction activity in 2007 conformed to a growth trend that began slowly in 2005 and intensified in 2006. In 2007, about 1,700 miles of pipeline were installed, which was greater than in any year since 2003 (Figure 2). The expansion cycle for natural gas pipeline construction is occurring at the same time as the development of the

95

Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2007  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration, Office of Oil and Gas, July 2008 1 U.S. natural gas pipeline construction activity accelerated in 2007 with capacity additions to the grid totaling nearly 14.9 billion cubic feet (Bcf) of daily deliverability (Figure 1). These additions were the largest of any year in the Energy Information Administration's (EIA) 10-year database of pipeline construction activity. The increased level of natural gas pipeline construction activity in 2007 conformed to a growth trend that began slowly in 2005 and intensified in 2006. In 2007, about 1,700 miles of pipeline were installed, which was greater than in any year since 2003 (Figure 2). The expansion cycle for natural gas pipeline construction is occurring at the same time as the development of the

96

,"U.S. Natural Gas Underground Storage Salt Caverns Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Caverns Capacity (MMcf)" Salt Caverns Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Underground Storage Salt Caverns Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1393_nus_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1393_nus_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:34 PM"

97

,"U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Count)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Count)" Depleted Fields Capacity (Count)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Count)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1391_nus_8a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1391_nus_8a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:06 PM"

98

,"U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity (Count)"  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Caverns Capacity (Count)" Salt Caverns Capacity (Count)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity (Count)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1393_nus_8a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1393_nus_8a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:34 PM"

99

,"U.S. Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1391_nus_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1391_nus_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:05 PM"

100

,"Tennessee Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","12/2012" Monthly","12/2012" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290tn2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290tn2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:23 PM" "Back to Contents","Data 1: Tennessee Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290TN2" "Date","Tennessee Natural Gas Underground Storage Capacity (MMcf)" 37271,1200 37302,1200 37330,1200 37361,1200

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

,"Texas Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290tx2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290tx2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:24 PM" "Back to Contents","Data 1: Texas Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290TX2" "Date","Texas Natural Gas Underground Storage Capacity (MMcf)" 32324,590248 32689,589780 33054,586502 33419,589018 33785,595229 34150,598782

102

,"Pennsylvania Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290pa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290pa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:22 PM" "Back to Contents","Data 1: Pennsylvania Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290PA2" "Date","Pennsylvania Natural Gas Underground Storage Capacity (MMcf)" 32324,805394 32689,805393 33054,640938 33419,640938

103

,"Arkansas Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ar2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ar2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:08 PM" "Back to Contents","Data 1: Arkansas Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290AR2" "Date","Arkansas Natural Gas Underground Storage Capacity (MMcf)" 32324,36147 32689,31447 33054,31277 33419,31277 33785,31277 34150,31277

104

,"Colorado Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290co2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290co2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:10 PM" "Back to Contents","Data 1: Colorado Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290CO2" "Date","Colorado Natural Gas Underground Storage Capacity (MMcf)" 37271,100227 37302,100227 37330,100227 37361,100227

105

,"Louisiana Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290la2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290la2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:14 PM" "Back to Contents","Data 1: Louisiana Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290LA2" "Date","Louisiana Natural Gas Underground Storage Capacity (MMcf)" 37271,580037 37302,580037 37330,580037 37361,580037

106

,"Kansas Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ks2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ks2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:12 PM" "Back to Contents","Data 1: Kansas Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290KS2" "Date","Kansas Natural Gas Underground Storage Capacity (MMcf)" 32324,334925 32689,334925 33054,301199 33419,301199 33785,290571

107

,"Kentucky Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ky2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ky2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:13 PM" "Back to Contents","Data 1: Kentucky Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290KY2" "Date","Kentucky Natural Gas Underground Storage Capacity (MMcf)" 37271,219914 37302,219914 37330,219914 37361,219914

108

,"Ohio Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290oh2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290oh2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:21 PM" "Back to Contents","Data 1: Ohio Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290OH2" "Date","Ohio Natural Gas Underground Storage Capacity (MMcf)" 37271,573784 37302,573784 37330,573784 37361,573784 37391,573784

109

,"Mississippi Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ms2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ms2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:17 PM" "Back to Contents","Data 1: Mississippi Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MS2" "Date","Mississippi Natural Gas Underground Storage Capacity (MMcf)" 37271,134012 37302,134012 37330,134012

110

,"Minnesota Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290mn2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290mn2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:15 PM" "Back to Contents","Data 1: Minnesota Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MN2" "Date","Minnesota Natural Gas Underground Storage Capacity (MMcf)" 32324,7000 32689,7000 33054,7000 33419,7000 33785,7000 34150,7000

111

,"Pennsylvania Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290pa2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290pa2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:23 PM" "Back to Contents","Data 1: Pennsylvania Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290PA2" "Date","Pennsylvania Natural Gas Underground Storage Capacity (MMcf)" 37271,713818 37302,713818 37330,713818

112

,"Maryland Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290md2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290md2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:14 PM" "Back to Contents","Data 1: Maryland Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MD2" "Date","Maryland Natural Gas Underground Storage Capacity (MMcf)" 32324,61978 32689,61978 33054,61978 33419,61978 33785,62400 34150,62400

113

,"Kansas Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ks2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ks2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:12 PM" "Back to Contents","Data 1: Kansas Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290KS2" "Date","Kansas Natural Gas Underground Storage Capacity (MMcf)" 37271,301502 37302,301502 37330,301502 37361,301502

114

,"Arkansas Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ar2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ar2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:08 PM" "Back to Contents","Data 1: Arkansas Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290AR2" "Date","Arkansas Natural Gas Underground Storage Capacity (MMcf)" 37271,22000 37302,22000 37330,22000 37361,22000

115

,"Montana Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290mt2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290mt2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:18 PM" "Back to Contents","Data 1: Montana Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MT2" "Date","Montana Natural Gas Underground Storage Capacity (MMcf)" 32324,373963 32689,373960 33054,373960 33419,373960 33785,375010

116

,"Minnesota Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290mn2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290mn2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:16 PM" "Back to Contents","Data 1: Minnesota Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MN2" "Date","Minnesota Natural Gas Underground Storage Capacity (MMcf)" 37271,7000 37302,7000 37330,7000 37361,7000

117

,"Indiana Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290in2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290in2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:11 PM" "Back to Contents","Data 1: Indiana Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290IN2" "Date","Indiana Natural Gas Underground Storage Capacity (MMcf)" 32324,114603 32689,112045 33054,97332 33419,102246 33785,106176

118

,"Oklahoma Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ok2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ok2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:21 PM" "Back to Contents","Data 1: Oklahoma Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290OK2" "Date","Oklahoma Natural Gas Underground Storage Capacity (MMcf)" 32324,377189 32689,364887 33054,362616 33419,362616 33785,359616

119

,"Texas Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290tx2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290tx2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:24 PM" "Back to Contents","Data 1: Texas Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290TX2" "Date","Texas Natural Gas Underground Storage Capacity (MMcf)" 37271,699324 37302,698258 37330,699324 37361,699324

120

,"Oregon Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290or2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290or2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:22 PM" "Back to Contents","Data 1: Oregon Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290OR2" "Date","Oregon Natural Gas Underground Storage Capacity (MMcf)" 37271,17755 37302,21080 37330,21080 37361,21080 37391,21080

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

,"Louisiana Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290la2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290la2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:13 PM" "Back to Contents","Data 1: Louisiana Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290LA2" "Date","Louisiana Natural Gas Underground Storage Capacity (MMcf)" 32324,559019 32689,559019 33054,550823 33419,559823 33785,539200

122

,"Indiana Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290in2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290in2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:11 PM" "Back to Contents","Data 1: Indiana Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290IN2" "Date","Indiana Natural Gas Underground Storage Capacity (MMcf)" 37271,109310 37302,109310 37330,109310 37361,109310

123

,"Alabama Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290al2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290al2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:08 PM" "Back to Contents","Data 1: Alabama Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290AL2" "Date","Alabama Natural Gas Underground Storage Capacity (MMcf)" 37271,5280 37302,5280 37330,5280 37361,5280 37391,5280

124

,"Colorado Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290co2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290co2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:09 PM" "Back to Contents","Data 1: Colorado Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290CO2" "Date","Colorado Natural Gas Underground Storage Capacity (MMcf)" 32324,82662 32689,82662 33054,98999 33419,98999 33785,105790

125

,"Mississippi Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ms2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ms2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:17 PM" "Back to Contents","Data 1: Mississippi Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MS2" "Date","Mississippi Natural Gas Underground Storage Capacity (MMcf)" 32324,108171 32689,108207 33054,108601 33419,114621 33785,114627

126

,"Michigan Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290mi2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290mi2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:15 PM" "Back to Contents","Data 1: Michigan Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MI2" "Date","Michigan Natural Gas Underground Storage Capacity (MMcf)" 37271,1070717 37302,1070717 37330,1070717 37361,1070717

127

,"Nebraska Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ne2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ne2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:19 PM" "Back to Contents","Data 1: Nebraska Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NE2" "Date","Nebraska Natural Gas Underground Storage Capacity (MMcf)" 37271,39469 37302,39469 37330,39469 37361,39469

128

,"Ohio Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290oh2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290oh2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:20 PM" "Back to Contents","Data 1: Ohio Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290OH2" "Date","Ohio Natural Gas Underground Storage Capacity (MMcf)" 32324,612547 32689,612547 33054,591494 33419,591494 33785,591494 34150,594644

129

,"Alabama Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290al2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290al2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:07 PM" "Back to Contents","Data 1: Alabama Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290AL2" "Date","Alabama Natural Gas Underground Storage Capacity (MMcf)" 34880,2600 35246,3280 35611,3280 35976,3280 36341,3280 36707,3280

130

,"Wyoming Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290wy2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290wy2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:28 PM" "Back to Contents","Data 1: Wyoming Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290WY2" "Date","Wyoming Natural Gas Underground Storage Capacity (MMcf)" 37271,105869 37302,105869 37330,105869 37361,105869

131

,"Washington Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290wa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290wa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:26 PM" "Back to Contents","Data 1: Washington Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290WA2" "Date","Washington Natural Gas Underground Storage Capacity (MMcf)" 32324,36400 32689,36400 33054,32100 33419,34100 33785,34100

132

,"Oregon Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290or2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290or2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:22 PM" "Back to Contents","Data 1: Oregon Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290OR2" "Date","Oregon Natural Gas Underground Storage Capacity (MMcf)" 32689,9791 33054,9791 33419,9791 33785,11445 34150,11445 34515,11622

133

,"California Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ca2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ca2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:09 PM" "Back to Contents","Data 1: California Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290CA2" "Date","California Natural Gas Underground Storage Capacity (MMcf)" 37271,388480 37302,475720 37330,475720 37361,475720

134

,"Utah Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ut2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ut2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:25 PM" "Back to Contents","Data 1: Utah Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290UT2" "Date","Utah Natural Gas Underground Storage Capacity (MMcf)" 32324,114980 32689,114980 33054,114980 33419,114980 33785,114980 34150,114980

135

,"Nebraska Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ne2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ne2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:18 PM" "Back to Contents","Data 1: Nebraska Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NE2" "Date","Nebraska Natural Gas Underground Storage Capacity (MMcf)" 32324,88438 32689,88438 33054,143311 33419,93311 33785,93311

136

,"Utah Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ut2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ut2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:25 PM" "Back to Contents","Data 1: Utah Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290UT2" "Date","Utah Natural Gas Underground Storage Capacity (MMcf)" 37271,129480 37302,129480 37330,129480 37361,129480 37391,129480

137

,"Michigan Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290mi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290mi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:15 PM" "Back to Contents","Data 1: Michigan Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MI2" "Date","Michigan Natural Gas Underground Storage Capacity (MMcf)" 32324,982362 32689,982362 33054,994542 33419,995181 33785,994281

138

,"Virginia Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290va2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290va2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:26 PM" "Back to Contents","Data 1: Virginia Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290VA2" "Date","Virginia Natural Gas Underground Storage Capacity (MMcf)" 37271,4967 37302,4967 37330,4967 37361,4967 37391,4967

139

,"Wyoming Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290wy2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290wy2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:27 PM" "Back to Contents","Data 1: Wyoming Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290WY2" "Date","Wyoming Natural Gas Underground Storage Capacity (MMcf)" 32324,103831 32689,103830 33054,106130 33419,106130 33785,105668

140

,"Washington Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290wa2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290wa2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:26 PM" "Back to Contents","Data 1: Washington Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290WA2" "Date","Washington Natural Gas Underground Storage Capacity (MMcf)" 37271,37300 37302,37300 37330,37300 37361,37300

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Estimate Greenhouse Gas Reduction Potential and Cost-Effectiveness of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greenhouse Gas Reduction Potential and Cost-Effectiveness Greenhouse Gas Reduction Potential and Cost-Effectiveness of Strategies for Vehicles and Mobile Equipment Estimate Greenhouse Gas Reduction Potential and Cost-Effectiveness of Strategies for Vehicles and Mobile Equipment October 7, 2013 - 11:58am Addthis YOU ARE HERE: Step 3 After identifying petroleum reduction strategies, a Federal agency should estimate the greenhouse gas (GHG) reduction potential and cost effectiveness of these strategies for vehicles and mobile equipment. The table below provides steps for identifying optimal vehicle acquisition strategies. Table 1. Framework for Identifying Optimal Vehicle Acquisition Strategies Step Summary Purpose PLAN and COLLECT 1 Determine vehicle acquisition requirements Establish a structured Vehicle Allocation Matrix (VAM) to determine the numbers and types of vehicles required to accomplish your fleet's mission

142

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies Using  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Costs to Implement Greenhouse Gas Mitigation Strategies Costs to Implement Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings Estimate Costs to Implement Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings October 7, 2013 - 11:25am Addthis After determining the best greenhouse gas (GHG) reduction strategies using renewable energy, a Federal agency should estimate the cost of implementing them in a building or buildings. There are several cost factors that need to be considered when developing a renewable energy project. Capital costs, fixed and variable operations and maintenance (O&M) costs and in the case of biomass and waste-to-energy projects, fuel costs all contribute to the total cost of operating a renewable energy system. The levelized system cost takes into account these

143

New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Estimated Production (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,127 1,099 1,149 1980's 1,064 1,086 942 799 856 843 628 728 731 760 1990's 887 1,013 1,143 1,337 1,362 1,397 1,423 1,547 1,449 1,539 2000's 1,508 1,536 1,524 1,415 1,527 1,493 1,426 1,349 1,349 1,350 2010's 1,220 1,170 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Reserves Estimated Production New Mexico Dry Natural Gas Proved Reserves Dry Natural Gas Estimated Production

144

GAMS program used to estimate capacity with the hyperbolic graph efficiency measure, with constant returns to scale and undesirable outputs.  

E-Print Network (OSTI)

. "Estimating Capacity and Efficiency in Fisheries with Undesirable Outputs." VIMS Marine resource Report N(obs) weights gamma(obs,var) ; POSITIVE Variable weight, gamma; EQUATIONS CONSTR1(GOUTPUT, OBS) DEA constraint

145

GAMS program used to estimate capacity with the hyperbolic graph efficiency measure, with variable returns to scale and undesirable outputs.  

E-Print Network (OSTI)

. "Estimating Capacity and Efficiency in Fisheries with Undesirable Outputs." VIMS Marine resource Report N(obs) weights gamma(obs,var) ; POSITIVE Variable weight, gamma; EQUATIONS CONSTR1(GOUTPUT, OBS) DEA constraint

146

Capacity payment impact on gas-fired generation investments under rising renewable feed-in — A real options analysis  

Science Journals Connector (OSTI)

Abstract We assess the effect of capacity payments on investments in gas-fired power plants in the presence of different degrees of renewable energy technology (RET) penetration. Low variable cost renewables increasingly make investments in gas-fired generation unprofitable. At the same time, growing feed-in from intermittent \\{RETs\\} amplifies fluctuations in power generation, thus entailing the need for flexible buffer capacity—currently mostly gas-fired power plants. A real options approach is applied to evaluate investment decisions and timing of a single investor in gas-fired power generation. We investigate the necessity and effectiveness of capacity payments. Our model incorporates multiple uncertainties and assesses the effect of capacity payments under different degrees of RET penetration. In a numerical study, we implement stochastic processes for peak-load electricity prices and natural gas prices. We find that capacity payments are an effective measure to promote new gas-fired generation projects. Especially in times of high renewable feed-in, capacity payments are required to incentivize peak-load investments.

Daniel Hach; Stefan Spinler

2014-01-01T23:59:59.000Z

147

Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,691 1,667 1,592 1980's 1,526 1,700 1,636 1,544 1,778 1,686 1,658 1,813 1,896 1,983 1990's 2,058 1,983 1,895 1,770 1,721 1,562 1,580 1,555 1,544 1,308 2000's 1,473 1,481 1,518 1,554 1,563 1,587 1,601 1,659 1,775 1,790 2010's 1,703 1,697 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Reserves Estimated Production Oklahoma Dry Natural Gas Proved Reserves

148

Estimate Impact of Strategies on Greenhouse Gas Emissions | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact of Strategies on Greenhouse Gas Emissions Impact of Strategies on Greenhouse Gas Emissions Estimate Impact of Strategies on Greenhouse Gas Emissions October 7, 2013 - 1:35pm Addthis YOU ARE HERE Step 3 To estimate the GHG impact of a business travel reduction program, a Federal agency or program should quantify the number of trips that could be avoided each year. If an agency has a large proportion of international travel, the agency may estimate changes in domestic and international trips separately because the associated savings in miles can be very different. General Services Administration Resources to Support GHG Mitigation Planning TravelTrax provides agencies with several tools that can help plan for reductions in business travel. This includes a tool to help estimate the impact of videoconferencing and a tool that can help conference and event planners to identify event locations that consider where attendees are coming from in order to reduce air travel GHGs. These tools are embedded in the GSA Travel MIS database, thus enabling agencies to link their actual travel to different planning scenarios and evaluate options.

149

Some methods of oil and gas reserve estimation in Azerbaijan  

SciTech Connect

This article deals with the scientific and practical problems related to estimating oil and gas reserves in terrigenous reservoirs of the Productive Series of middle Pliocene and in Upper Cretaceous volcanic and sedimentary rocks. The deposits in question are spread over onshore Azerbaijan and adjacent offshore areas in the Caspian Sea and are approximately 6.5 km deep. This article presents lithologic, stratigraphic, and petrophysical criteria used for selecting prospects for reserve estimation. Also presented are information on structure of rocks and estimation of their lithologic and physical properties. New methods for the interpretation and application of petrophysical and logging data, as well as statistical estimation of reserves, in complex volcaniclastic reservoir rocks, are also discussed.

Abasov, M.T.; Buryakovsky, L.A.; Kondrushkin, Y.M.; Dzhevanshir, R.D.; Bagarov, T.Y. [Azerbaijan Academy of Sciences, Baku (Azerbaijan); Chilingar, G.V. [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Civil and Environmental Engineering

1997-08-01T23:59:59.000Z

150

Estimating Externalities of Natural Gas Fuel Cycles, Report 4  

SciTech Connect

This report describes methods for estimating the external costs (and possibly benefits) to human health and the environment that result from natural gas fuel cycles. Although the concept of externalities is far from simple or precise, it generally refers to effects on individuals' well being, that result from a production or market activity in which the individuals do not participate, or are not fully compensated. In the past two years, the methodological approach that this report describes has quickly become a worldwide standard for estimating externalities of fuel cycles. The approach is generally applicable to any fuel cycle in which a resource, such as coal, hydro, or biomass, is used to generate electric power. This particular report focuses on the production activities, pollution, and impacts when natural gas is used to generate electric power. In the 1990s, natural gas technologies have become, in many countries, the least expensive to build and operate. The scope of this report is on how to estimate the value of externalities--where value is defined as individuals' willingness to pay for beneficial effects, or to avoid undesirable ones. This report is about the methodologies to estimate these externalities, not about how to internalize them through regulations or other public policies. Notwithstanding this limit in scope, consideration of externalities can not be done without considering regulatory, insurance, and other considerations because these institutional factors affect whether costs (and benefits) are in fact external, or whether they are already somehow internalized within the electric power market. Although this report considers such factors to some extent, much analysis yet remains to assess the extent to which estimated costs are indeed external. This report is one of a series of reports on estimating the externalities of fuel cycles. The other reports are on the coal, oil, biomass, hydro, and nuclear fuel cycles, and on general methodology.

Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

1998-01-01T23:59:59.000Z

151

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Buildings October 7, 2013 - 11:09am Addthis YOU ARE HERE Step 4 When estimating the cost of implementing the greenhouse gas (GHG) mitigation strategies, Federal agencies should consider the life-cycle costs and savings of the efforts. The major cost elements associated with developing and implementing a project are identified in Table 1. Table 1. Major Costs for Project Development and Implementation Cost Element Description Variables Project planning costs Preparatory work by building owners and design team. Benchmarking activities. Building audits. Developing statements of work for subcontractors. Selecting contractors. Integrated design process (for major renovations). Type of project; previous team experience; local markets; number of stakeholders

152

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Employee Commuting Employee Commuting Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Employee Commuting October 7, 2013 - 2:27pm Addthis YOU ARE HERE Step 4 For greenhouse gas (GHG) mitigation, once a Federal agency identifies the employee commute alternatives and supporting strategies that will most effectively reduce trips to the worksite, costs of encouraging adoption of those methods can be estimated. The annual costs of commute trip reduction programs can vary greatly by worksite. This section outlines types of costs that might be incurred by an agency as well as savings and other benefits of commute trip reduction to an agency, its employees, and the communities surrounding its major worksites. It includes: Employer costs and benefits Employee costs and benefits

153

Systems, methods and computer readable media for estimating capacity loss in rechargeable electrochemical cells  

DOE Patents (OSTI)

A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples charge characteristics of the electrochemical cell. The computing system periodically determines cell information from the charge characteristics of the electrochemical cell. The computing system also periodically adds a first degradation characteristic from the cell information to a first sigmoid expression, periodically adds a second degradation characteristic from the cell information to a second sigmoid expression and combines the first sigmoid expression and the second sigmoid expression to develop or augment a multiple sigmoid model (MSM) of the electrochemical cell. The MSM may be used to estimate a capacity loss of the electrochemical cell at a desired point in time and analyze other characteristics of the electrochemical cell. The first and second degradation characteristics may be loss of active host sites and loss of free lithium for Li-ion cells.

Gering, Kevin L.

2013-06-18T23:59:59.000Z

154

Estimating Predictive Variance for Statistical Gas Distribution Modelling  

SciTech Connect

Recent publications in statistical gas distribution modelling have proposed algorithms that model mean and variance of a distribution. This paper argues that estimating the predictive concentration variance entails not only a gradual improvement but is rather a significant step to advance the field. This is, first, since the models much better fit the particular structure of gas distributions, which exhibit strong fluctuations with considerable spatial variations as a result of the intermittent character of gas dispersal. Second, because estimating the predictive variance allows to evaluate the model quality in terms of the data likelihood. This offers a solution to the problem of ground truth evaluation, which has always been a critical issue for gas distribution modelling. It also enables solid comparisons of different modelling approaches, and provides the means to learn meta parameters of the model, to determine when the model should be updated or re-initialised, or to suggest new measurement locations based on the current model. We also point out directions of related ongoing or potential future research work.

Lilienthal, Achim J.; Asadi, Sahar; Reggente, Matteo [AASS Research Center, Oerebro University (Sweden)

2009-05-23T23:59:59.000Z

155

NETL: Oil & Natural Gas Projects 00516 North Dakota Refining Capacity Study  

NLE Websites -- All DOE Office Websites (Extended Search)

North Dakota Refining Capacity Study North Dakota Refining Capacity Study DE-FE0000516 Goal The objective of the North Dakota Refining Capacity study is to assess the feasibility of increasing the oil refinery capacity in North Dakota, and, if possible, determine the scale of such an expansion, the slate of refined product(s) that would produce the most economic benefit, and the preferred ownership model, i.e., private, public or private-public. Performer North Dakota Association of Rural Electric Cooperatives (NDAREC) Corval Group, partnered with Purvin & Gertz and Mustang Engineering Background The genesis of this study came from an April 2008 report issued by the U.S. Geological Survey (USGS) asserting that North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. This assessment shows a 25-fold increase in the amount of recoverable oil compared to the USGS 1995 estimate of 151 million barrels of oil. The Bakken Formation estimate is larger than all other current USGS oil assessments of the lower 48 states and is the largest "continuous" oil accumulation ever assessed by the USGS. The new report points out that the new geologic models applied to the Bakken Formation, advances in drilling and production technologies, and recent oil discoveries have resulted in these substantially larger technically recoverable oil volumes. About 105 million barrels of oil were produced from the Bakken Formation by the end of 2007. In 2008, the formation produced another 27.2 million barrels of oil, which represented 43% of the state’s annual oil production of some 62.3 million barrels. Even though oil prices have dropped significantly in recent months, it appears that oil production from this formation will continue strong for decades to come. Most recently, a major production find has occurred in the Three Forks formation underlying the Bakken. This find is still undergoing significant testing, but early evidence suggests it represents another significant recoverable pool of oil in western North Dakota.

156

Study on capacity optimization of PEM fuel cell and hydrogen mixing gas-engine compound generator  

Science Journals Connector (OSTI)

Development of a small-scale power source not dependent on commercial power may result in various effects. For example, it may eliminate the need for long distance power-transmission lines, and mean that the amount of green energy development is not restricted to the dynamic characteristics of a commercial power grid. Moreover, the distribution of the independent energy source can be optimized with regionality in mind. This paper examines the independent power supply system relating to hydrogen energy. Generally speaking, the power demand of a house tends to fluctuate considerably over the course of a day. Therefore, when introducing fuel cell cogeneration into an apartment house, etc., low-efficiency operations in a low-load region occur frequently in accordance with load fluctuation. Consequently, the hybrid cogeneration system (HCGS) that uses a solid polymer membrane-type fuel cell (PEM-FC) and a hydrogen mixture gas engine (NEG) together to improve power generation efficiency during partial load of fuel cell cogeneration is proposed. However, since facility costs increase, if the HCGS energy cost is not low compared with the conventional method, it is disadvantageous. Therefore, in this paper, HCGS is introduced into 10 household apartments in Tokyo, and the power generation efficiency, carbon dioxide emissions and optimal capacity of a boiler and heat storage tank are investigated through analysis. Moreover, the system characteristics change significantly based on the capacity of PEM-FC and NEG that compose HCGS. Therefore, in this study, the capacity of PEM-FC and that of NEG are investigated, as well as the power generation efficiency, carbon dioxide emissions and the optimal capacity of a boiler and heat storage tank. Analysis revealed that the annual average power generation efficiency when the capacity of PEM-FC and NEG is 5 kW was 27.3%. Meanwhile, the annual average power generation efficiency of HCGS is 1.37 times that of the PEM-FC independent system, and 1.28 times that of the NEG independent system, respectively.

Shin’ya Obara; Itaru Tanno

2007-01-01T23:59:59.000Z

157

,"U.S. Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

12,"Annual",2012,"6/30/1988" 12,"Annual",2012,"6/30/1988" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_stor_cap_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_stor_cap_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 7:03:21 PM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage Capacity" "Sourcekey","N5290US2","NA1393_NUS_2","NA1392_NUS_2","NA1391_NUS_2","NGA_EPG0_SACW0_NUS_MMCF","NGA_EPG0_SACWS_NUS_MMCF","NGA_EPG0_SACWA_NUS_MMCF","NGA_EPG0_SACWD_NUS_MMCF","NA1394_NUS_8","NA1393_NUS_8","NA1392_NUS_8","NA1391_NUS_8"

158

Weigel, Southworth, and Meyer 1 Calculators for Estimating Greenhouse Gas Emissions from Public  

E-Print Network (OSTI)

Weigel, Southworth, and Meyer 1 Calculators for Estimating Greenhouse Gas Emissions from Public Greenhouse Gas Emissions from Public Transit Agency Vehicle Fleet Operations ABSTRACT This paper reviews calculation tools available for quantifying the greenhouse gas emissions associated with different types

159

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Title Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Publication Type Report LBNL Report Number LBNL-6541E Year of Publication 2013 Authors Greenblatt, J. Date Published 10/2013 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHGemitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 μm) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants, targets were less well-defined, but while all three scenarios were able to make significant reductions in ROG, NOx and PM2.5 both statewide and in the two regional air basins, they may nonetheless fall short of what will be required by future federal standards. Specifically, in Scenario 1, regional NOx emissions are approximately three times the estimated targets for both 2023 and 2032, and in Scenarios 2 and 3, NOx emissions are approximately twice the estimated targets. Further work is required in this area, including detailed regional air quality modeling, in order to determine likely pathways for attaining these stringent targets.

160

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles and Mobile Equipment Vehicles and Mobile Equipment Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Vehicles and Mobile Equipment October 7, 2013 - 1:13pm Addthis YOU ARE HERE: Step 4 Once a Federal agency identifies the various strategic opportunities to reduce greenhouse gas (GHG) emissions for vehicles and mobile equipment, it is necessary to evaluate the associated costs of adopting each strategy. The costs to reduce GHG emissions can vary greatly from cost-free behavior modification to the high-cost of purchasing zero-emission battery electric vehicles and associated fueling infrastructure. This section provides an overview of the costs and savings to consider when planning for mobile source emissions reductions, including efforts to: Reduce vehicle miles traveled

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Estimation of Gas Leak Rates Through Very Small Orifices  

Office of Scientific and Technical Information (OSTI)

Estimation of Gas Leak Rates Estimation of Gas Leak Rates Through Very Small Orifices and Channels by Herbert J. Bomelburg February 1977 Prepared for the Nuclear Regulatory Commission -..- Pacific Northwest Laboratories Th% report was preparrd is an accceullt r.84 work spoi.wr~d by the Un~ted States Governmect. Kettker t > ~ United States nor the L'nited states 'rl:clczr 1tcgl;l;:cry Cornmiszion. :or ally c! their e m p i o y e ~ , nor any of chcrr contractors, subcontraao~r, a . tlveir rrn~invct?t-, r.~aies any H r r l a tty, cxpreji o r implied, or ?.;+~nics any !egA liability or rcrpocsibility for iirc accuracy. zcm:lc.~cn~ss 01 ~rscf.~!ccss -,f an). i?fzrxat-on, 3Poar.i:b4. prodiict cr I.m)cess disclosed, or repreen:.; :hi.: i;s i43? wott:rl n.;\ irlfringe pr ivzrc:i*l u w x o :ig.~ts.

162

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Travel Business Travel Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Business Travel October 7, 2013 - 1:37pm Addthis YOU ARE HERE Step 4 Once business travel reduction strategies have been identified, a Federal agency may evaluate the cost of implementing those measures and any potential savings from avoided travel. The annual costs associated with reducing business travel may vary greatly by agency, program, and site depending on the current level of video conferencing and desktop collaboration solutions that are available between the organization's major travel destinations. This will be largely driven by whether the agency has to install or upgrade equipment or just make them more accessible and familiar to users. Strategies focused on policy and

163

Estimation of the Energy and Capacity Savings in Texas from Appliance Efficiency Standards  

E-Print Network (OSTI)

The purpose of this presentation will be to assess the technical potential for energy and capacity savings in Texas by the year 2006 by the statewide adoption of minimum appliance efficiency standards equivalent to those recently adopted...

Verdict, M.

1986-01-01T23:59:59.000Z

164

Estimated gas reserves and availability of the Viking-Kinsella Field, Alberta, Canada  

E-Print Network (OSTI)

-KINSELVL FEEI' . ~. . . . . . . . . . ~ ~ ~ - ~ 3 '3 CIASSIF ICATION of RESERVES Proved Reserves Probable Reserves Possible Reserves 5 6 6 6 FUTURE AVAIIJBXLITY of PIPELINE GAS. . . . . . . . . . . . . . . . 6 Estimation of' Projected Peri...'ormance of Free Gas . . . . . . . 7 Estimated Projected Performance of' the Viking-Kinaella Field . 9 CONCWS ION ACKNOWLZDGEbEN1'S REFERENCES 13 TABUIAT I 0 NS I - Estimated Natnral Gas Reserves--viking sand IX - Projected Perf'ormance--Viking Sand 15...

Meyer, Lawrence Joffre

1952-01-01T23:59:59.000Z

165

Modelling of an integrated gas and electricity network with significant wind capacity.  

E-Print Network (OSTI)

??The large scale integration of wind generation capacity into an electricity network poses technical as well as economic challenges. In this research, three major challenges… (more)

Qadrdan, Meysam

2012-01-01T23:59:59.000Z

166

Primer on gas integrated resource planning  

SciTech Connect

This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S. [Lawrence Berkeley Lab., CA (United States)

1993-12-01T23:59:59.000Z

167

Preliminary estimates of electrical generating capacity of slim holes--a theoretical approach  

SciTech Connect

The feasibility of using small geothermal generators (< 1 MWe) for off-grid electrical power in remote areas or for rural electrification in developing nations would be enhanced if drilling costs could be reduced. This paper examines the electrical generating capacity of fluids which can be produced from typical slim holes (six-inch diameter or less), both by binary techniques (with downhole pumps) and, for hotter reservoir fluids, by conventional spontaneous-discharge flash-steam methods. Depending mainly on reservoir temperature, electrical capacities from a few hundred kilowatts to over one megawatt per slim hole appear to be possible.

Pritchett, John W.

1995-01-26T23:59:59.000Z

168

Adaptive Air Charge Estimation for Turbocharged Diesel Engines without Exhaust Gas Recirculation  

E-Print Network (OSTI)

Adaptive Air Charge Estimation for Turbocharged Diesel Engines without Exhaust Gas Recirculation an adaptive observer for in-cylinder air charge estimation for turbocharged diesel engines without exhaust gas (734) 764-4256 1 #12;Storset et al.- Adaptive Air Charge Est. for TC Diesel Engines 2 1 Introduction

Stefanopoulou, Anna

169

Local Frequency Based Estimators for Anomaly Detection in Oil and Gas Applications  

E-Print Network (OSTI)

Local Frequency Based Estimators for Anomaly Detection in Oil and Gas Applications Alexander Singh industrial applications such as the smart grid and oil and gas are continuously monitored. The massive to positively impact the bottom line. In the oil and gas industry, modern oil rigs are outfitted with thousands

Slatton, Clint

170

Capacity estimation and code design principles for continuous phase modulation (CPM)  

E-Print Network (OSTI)

is represented as Y n = Sn + Zn 1 < n < Ns. The received signal is processed by the demodulator to produce the 12 symbol likelihoods ´(n) = [Prob(Xn = 0);Prob(Xn = 1);:::;Prob(Xn = M ¡ 1)] for each discrete time instant n 2 [1;2;:::;Ns]. The M-ary CPM modulator... the properties of the channel make it easy to find the distribution that maximizes the mutual information. For channels with memory the information theoretic definition of capacity is maximum of limn!1 1N I(XN1 ; Y N1 ) , over all possible distributions...

Ganesan, Aravind

2004-09-30T23:59:59.000Z

171

electricity generating capacity | OpenEI  

Open Energy Info (EERE)

generating capacity generating capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity generating capacity datasets: annual operational electricity generation capacity by plant type (1975 - 2009); estimated generating capacity by fuel type for North Island, South Island and New Zealand (2009); and information on generating plants (plant type, name, owner, commissioned date, and capacity), as of December 2009. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords biomass coal Electric Capacity electricity generating capacity geothermal Hydro Natural Gas wind Data application/vnd.ms-excel icon Operational Electricity Generation Capacity by Plant Type (xls, 42.5 KiB)

172

Localities and their natural gas : stories of problem diffusion, state preemption, and local government capacity  

E-Print Network (OSTI)

The rapid rise of oil and gas production in the United States poses a new set of policy challenges for local governments. Striving to balance the goals of encouraging economic growth and mitigating its side effects, local ...

Agatstein, Jessica C

2013-01-01T23:59:59.000Z

173

Improving UK greenhouse gas emission estimates using tall tower observations   

E-Print Network (OSTI)

Greenhouse gases in the Earth’s atmosphere play an important role in regulating surface temperatures. The UK is signatory to international agreements that legally commit the UK to reduce its greenhouse gas emissions, and ...

Howie, James Edward

2014-06-30T23:59:59.000Z

174

Non-uniqueness problem in estimating original gas in place  

E-Print Network (OSTI)

and a negligence of the effect of a considerable encroaching aquifer that could be thought not to exist. This study shows several examples for synthetic gas reservoir/aquifer systems that are modeled mathematically, then programmed, to simulate...

El-Ahmady, Mohamed Hamed

2000-01-01T23:59:59.000Z

175

Estimate Impact of Strategies on Greenhouse Gas Emissions  

Energy.gov (U.S. Department of Energy (DOE))

To estimate the GHG impact of a business travel reduction program, a Federal agency or program should quantify the number of trips that could be avoided each year. If an agency has a large proportion of international travel, the agency may estimate changes in domestic and international trips separately because the associated savings in miles can be very different.

176

Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region  

SciTech Connect

The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

Poyer, D.A.; Teotia, A.P.S.

1994-08-01T23:59:59.000Z

177

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy-Driven Greenhouse Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Jeffery B. Greenblatt Energy Analysis and Environmental Impacts Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, CA 94720 November 2013 This work was supported by the Research Division, California Air Resources Board under ARB Agreement No. 12-329. LBNL-6451E DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of

178

Estimate Greenhouse Gas Reduction Potential and Cost-Effectiveness of Strategies for Vehicles and Mobile Equipment  

Energy.gov (U.S. Department of Energy (DOE))

After identifying petroleum reduction strategies, a Federal agency should estimate the greenhouse gas (GHG) reduction potential and cost effectiveness of these strategies for vehicles and mobile equipment. The table below provides steps for identifying optimal vehicle acquisition strategies.

179

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Employee Commuting  

Energy.gov (U.S. Department of Energy (DOE))

For greenhouse gas (GHG) mitigation, once a Federal agency identifies the employee commute alternatives and supporting strategies that will most effectively reduce trips to the worksite, costs of encouraging adoption of those methods can be estimated.

180

Estimating Water Needs to Meet 2025 Electricity Generating Capacity Forecasts by NERC Region  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL-2006/1235 NETL-2006/1235 August 2006 Revised April 8, 2008 Estimating Freshwater Needs to Meet Future Thermoelectric Generation Requirements Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...thermal efficiency, fuel heating value, power plant...natural gas as a bridge fuel . Clim Change 118 : 609...emissions and freshwater consumption of Marcellus shale gas...following Fig. S1) for the fuel cycle of shale gas...water, and/or oil) Vessel and pipeline blowdowns...

Garvin A. Heath; Patrick O’Donoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

182

Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation  

E-Print Network (OSTI)

Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate simulating reflectors (BSRs) imply the potential existence of gas hydrates offshore southwestern Taiwan that the fluxes are very high in offshore southwestern Taiwan. The depths of the SMI are different at sites GH6

Lin, Andrew Tien-Shun

183

Application of the Continuous EUR Method to Estimate Reserves in Unconventional Gas Reservoirs  

E-Print Network (OSTI)

Reservoirs 19. Cheng et al. (2007) Decline Curve Analysis for Multilayered Tight Gas Reservoirs 20. Blasingame and Rushing Method for Gas-in-Place and Reserves Estimation (2005) 21. Clarkson et al. (2007) Production Data Analysis for Coalbed-Methane... Wells 22. Clarkson et al. (2008) Production Data Analysis for Coalbed-Methane Wells 23. Rushing et al. (2008) Production Data Analysis for Coalbed-Methane Wells 24. Lewis and Hughes (2008) Production Data Analysis for Shale Gas Wells 25. Mattar et al...

Currie, Stephanie M.

2010-10-12T23:59:59.000Z

184

TY RPRT T1 Estimating Policy Driven Greenhouse Gas Emissions Trajectories in  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy Driven Greenhouse Gas Emissions Trajectories in Estimating Policy Driven Greenhouse Gas Emissions Trajectories in California The California Greenhouse Gas Inventory Spreadsheet GHGIS Model A1 J Greenblatt AB p A California Greenhouse Gas Inventory Spreadsheet GHGIS model was developed to explore the impact of combinations of state policies on state greenhouse gas GHG and regional criteria pollutant emissions The model included representations of all GHGemitting sectors of the California economy including those outside the energy sector such as high global warming potential gases waste treatment agriculture and forestry in varying degrees of detail and was carefully calibrated using available data and projections from multiple state agencies and other sources Starting from basic drivers such as population numbers

185

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...rock allow for the release and collection of the natural gas. Fracking can be done in vertical or horizontal wells. Liquids...methods to increase gas flows, such as mechanical or chemical fracking, is often required before the wells are able to produce commercial...

Garvin A. Heath; Patrick O’Donoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

186

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...collection of the natural gas. Fracking can be done in vertical...as mechanical or chemical fracking, is often required...C (2011) The greenhouse impact of unconventional gas...Subgroup of the Operations and Environment Task Group of the National...

Garvin A. Heath; Patrick O’Donoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

187

Estimation of Landfill Gas Generation Rate and Gas Permeability Field of Refuse Using Inverse Modeling  

Science Journals Connector (OSTI)

Landfill methane must be captured to reduce emissions of greenhouse gases; moreover it can be used as an alternative energy source. However, despite the widespread use of landfill gas (LFG) collection systems for...

Yoojin Jung; Paul Imhoff; Stefan Finsterle

2011-10-01T23:59:59.000Z

188

A critical review of methods used in the estimation of natural gas reserves  

E-Print Network (OSTI)

for the de- gree of PROFESSIONAL ENGINEER MA JOR SU% JEGT: PETROLEUM ENGINEERING itay f956 A GR1TLGAL REVXE? 0$' METHODS gSED THE ESTIMATION op NATURAL GAS RESERVES 8y Henry J. Gruy Approved as to style and content by Ghairman of C, ommittee hiay... Reserves 21 Refereaces 22 CO LA CA 4J CO 2'79098 TASLE OF ILLUSTRATIONS A CRITICAL REVIEW Ol' METHODS USED IN THE ESTIMATION QF NATURAL GAS RESERVE Curves Curve No. Curves Showing Change in the Compres- sibility Factor with Depth and Gomposf...

Gruy, Henry Jones

1956-01-01T23:59:59.000Z

189

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...production activities to the oil produced from associated...of production in the price environment...for transportation and heating should be...study (51%, higher heating value basis). 1 Olmstead...reductions in natural gas prices for emissions of CO2 from the US power...

Garvin A. Heath; Patrick O’Donoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

190

Estimation of original gas in place from short-term shut-in pressure data for commingled tight gas reservoirs with no crossflow  

E-Print Network (OSTI)

gas production (GP) under these circumstances. This research studies different empirical methods to estimate the original gas in place (OGIP) for one-layer or commingled two-layer tight gas reservoirs without crossflow, from short-term (72-hour) shut...

Khuong, Chan Hung

2012-06-07T23:59:59.000Z

191

Application of Artificial Neural Network for Estimating Tight Gas Sand Intrinsic Permeability  

Science Journals Connector (OSTI)

Application of Artificial Neural Network for Estimating Tight Gas Sand Intrinsic Permeability ... This jth neuron occupies a general position in the network since it accepts inputs from nodes in the input layer and sends its output to neurons to the second hidden layer. ... (15)?Veelenturf, L. P. J. Analysis and Applications of Artificial Neural Networks; Prentice Hall:? London, 1995. ...

Ali A. Garrouch; Nejib Smaoui

1996-09-19T23:59:59.000Z

192

Recoverable Natural Gas Resource of the United States: Summary of Recent Estimates  

Science Journals Connector (OSTI)

...Summary of Recent Estimates John B. Curtis 1 Scott L. Montgomery...montgomery@prodigy.net John B. Curtis is associate professor...Technology Institute (Holtberg and Cochener, 2001), the National Petroleum...the Potential Gas Committee: John D. Haun, David F. Morehouse...

John B. Curtis; Scott L. Montgomery

193

ESTIMATING THE IMPACT OF DEMOGRAPHICS AND AUTOMOTIVE TECHNOLOGIES ON GREENHOUSE GAS  

E-Print Network (OSTI)

McNally, MASc Candidate Bruce Hellinga, PhD, PEng Department of Civil Engineering University of Transportation Engineers to be held May 12-15, 2002 in Ottawa Ontario #12;1 Estimating the Impact of Demographics and Automotive Technologies on Greenhouse Gas Emissions Ryan McNally, MASc Candidate Bruce Hellinga, PhD, PEng

Hellinga, Bruce

194

Simultaneous use of MRM (maximum rectangle method) and optimization methods in determining nominal capacity of gas engines in CCHP (combined cooling, heating and power) systems  

Science Journals Connector (OSTI)

Abstract Energy, economic, and environmental analyses of combined cooling, heating and power (CCHP) systems were performed here to select the nominal capacities of gas engines by combination of optimization algorithm and maximum rectangle method (MRM). The analysis was performed for both priority of providing electricity (PE) and priority of providing heat (PH) operation strategies. Four scenarios (SELL-PE, SELL-PH, No SELL-PE, No SELL-PH) were followed to specify design parameters such as the number and nominal power of prime movers, heating capacities of both backup boiler and energy storage tank, and the cooling capacities of electrical and absorption chillers. By defining an objective function called the Relative Annual Benefit (RAB), Genetic Algorithm optimization method was used for finding the optimal values of design parameters. The optimization results indicated that two gas engines (with nominal powers of 3780 and 3930 kW) in SELL-PE scenario, two gas engines (with nominal powers of 5290 and 5300 kW) in SELL-PH scenario, one gas engine (with nominal power of 2440 kW) in No SELL-PE scenario provided the maximum value of the objective function. Furthermore in No SELL-PE scenario (which had the lowest RAB value in comparison with that for the above mentioned scenarios), thermal energy storage was not required. Due to very low value of RAB, any gas engine in No SELL-PH scenario was not recommended.

Sepehr Sanaye; Navid Khakpaay

2014-01-01T23:59:59.000Z

195

Total Working Gas Capacity  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2008 2009 2010 2011 2012 View History U.S. 4,211,193 4,327,844 4,410,224 4,483,650 4,576,356 2008-2012 Alabama 20,900 20,900 25,150 27,350 27,350 2008-2012 Arkansas 14,500 13,898 13,898 12,036 12,178 2008-2012 California 283,796 296,096 311,096 335,396 349,296 2008-2012 Colorado 42,579 48,129 49,119 48,709 60,582 2008-2012 Illinois 296,318 303,761 303,500 302,385 302,962 2008-2012 Indiana 32,769 32,157 32,982 33,024 33,024 2008-2012 Iowa 87,350 87,414 90,613 91,113 90,313 2008-2012 Kansas 119,260 119,339 123,190 123,225 123,343 2008-2012 Kentucky

196

Total Working Gas Capacity  

Gasoline and Diesel Fuel Update (EIA)

12,178 2012-2014 California 374,296 374,296 374,296 374,296 374,296 374,296 2012-2014 Colorado 60,582 60,582 60,582 60,582 60,582 63,774 2012-2014 Illinois 303,312 303,312...

197

EIA - All Natural Gas Analysis  

Gasoline and Diesel Fuel Update (EIA)

All Natural Gas Analysis All Natural Gas Analysis 2010 Peaks, Plans and (Persnickety) Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry. Natural gas shale and the need for high deliverability storage are identified as key drivers in natural gas storage capacity development. The presentation also provides estimates of planned storage facilities through 2012. Categories: Prices, Storage (Released, 10/28/2010, ppt format) U.S Natural Gas Imports and Exports: 2009 This report provides an overview of U.S. international natural gas trade in 2009. Natural gas import and export data, including liquefied natural gas (LNG) data, are provided through the year 2009 in Tables SR1-SR9. Categories: Imports & Exports/Pipelines (Released, 9/28/2010, Html format)

198

Detecting gas flares and estimating flaring volumes at individual flow stations using MODIS data  

Science Journals Connector (OSTI)

Abstract Gas flaring has gained global recognition as a prominent agent of pollution, leading to the establishment of the Global Gas Flaring Reduction (GGFR) initiative, which requires an objective means of monitoring flaring activity. Because auditable information on flaring activity is difficult to obtain there have recently been attempts to detect flares using satellite imagery, typically at global scales. However, to adequately assess the environmental and health impacts of flaring from local to regional scales, it is important that we have a means of acquiring information on the location of individual active flaring sites and the volume of gas combusted at these sites. In this study we developed an approach to the retrieval of such information using nighttime MODIS thermal imagery. The MODIS flare detection technique (MODET) and the MODIS flare volume estimation technique (MOVET) both exploit the absolute and contextual radiometric response of flare sites. The levels of detection accuracy and estimation error were quantified using independent observations of flare location and volume. The MODET and MOVET were applied to an archive of MODIS data spanning 2000–2014 covering the Niger Delta, Nigeria, a significant global hotspot of flaring activity. The results demonstrate the substantial spatial and temporal variability in gas flaring across the region, between states and between onshore and offshore sites. Thus, whilst the estimated total volume of gas flared in the region over the study period is large (350 Billion Cubic Metres), the heterogeneity in the flaring indicates that the impacts of such flares will be highly variable in space and time. In this context, the MODET and MOVET offer a consistent and objective means of monitoring flaring activity over an appropriate range of scales and it is now important that their robustness and transferability is tested in other oil-producing regions of the world.

Obinna C.D. Anejionu; G. Alan Blackburn; J. Duncan Whyatt

2015-01-01T23:59:59.000Z

199

A METHOD FOR ESTIMATING GAS PRESSURE IN 3013 CONTAINERS USING AN ISP DATABASE QUERY  

SciTech Connect

The U.S. Department of Energy's Integrated Surveillance Program (ISP) is responsible for the storage and surveillance of plutonium-bearing material. During storage, plutonium-bearing material has the potential to generate hydrogen gas from the radiolysis of adsorbed water. The generation of hydrogen gas is a safety concern, especially when a container is breached within a glove box during destructive evaluation. To address this issue, the DOE established a standard (DOE, 2004) that sets the criteria for the stabilization and packaging of material for up to 50 years. The DOE has now packaged most of its excess plutonium for long-term storage in compliance with this standard. As part of this process, it is desirable to know within reasonable certainty the total maximum pressure of hydrogen and other gases within the 3013 container if safety issues and compliance with the DOE standards are to be attained. The principal goal of this investigation is to document the method and query used to estimate total (i.e. hydrogen and other gases) gas pressure within a 3013 container based on the material properties and estimated moisture content contained in the ISP database. Initial attempts to estimate hydrogen gas pressure in 3013 containers was based on G-values (hydrogen gas generation per energy input) derived from small scale samples. These maximum G-values were used to calculate worst case pressures based on container material weight, assay, wattage, moisture content, container age, and container volume. This paper documents a revised hydrogen pressure calculation that incorporates new surveillance results and includes a component for gases other than hydrogen. The calculation is produced by executing a query of the ISP database. An example of manual mathematical computations from the pressure equation is compared and evaluated with results from the query. Based on the destructive evaluation of 17 containers, the estimated mean absolute pressure was significantly higher (P<.01) than the mean GEST pressure. There was no significant difference (P>.10) between the mean pressures from DR and the calculation. The mean predicted absolute pressure was consistently higher than GEST by an average difference of 57 kPa (8 psi). The mean difference between the estimated pressure and digital radiography was 11 kPa (2 psi). Based on the initial results of destructive evaluation, the pressure query was found to provide a reasonably conservative estimate of the total pressure in 3013 containers whose material contained minimal moisture content.

Friday, G; L. G. Peppers, L; D. K. Veirs, D

2008-07-31T23:59:59.000Z

200

Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint  

SciTech Connect

In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

Heath, G. A.; Burkhardt, J. J.

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A comparative analysis of the technical and economic indicators characterizing independent small-capacity power installations for supplying power to trunk gas lines and gas distribution stations  

Science Journals Connector (OSTI)

Results obtained from a feasibility study of different independent sources of energy are presented, using which one can select them on a sound basis for supplying heat and power for trunk gas lines and gas distri...

G. A. Fokin

2010-11-01T23:59:59.000Z

202

Using Decline Curve Analysis, Volumetric Analysis, and Bayesian Methodology to Quantify Uncertainty in Shale Gas Reserve Estimates  

E-Print Network (OSTI)

Probabilistic decline curve analysis (PDCA) methods have been developed to quantify uncertainty in production forecasts and reserves estimates. However, the application of PDCA in shale gas reservoirs is relatively new. Limited work has been done...

Gonzalez Jimenez, Raul 1988-

2012-11-30T23:59:59.000Z

203

Correlation of injury occurrence data with estimated maximal aerobic capacity and body composition in a high frequency manual materials handling task  

E-Print Network (OSTI)

as follows (Nieman, 1986): 1. Low - V 0, ?( 36 ml/min/kg. 2. Medium ? VO, & 36 ml/min/kg and ( 46 ml/min/kg. 3. High - VO, & 46 ml/min/kg. The descriptive statistics of the 222 data points (9 missing data points) for the relative aerobic capacity... shows the trend of decreased injury occurrences with respect to higher step test estimated relative VO, ?(measured in ml/min/kg). The relative VO, appears to have a highly significant correlation to injury occurrence (p=0. 002). More specifically...

Craig, Brian Nichols

2012-06-07T23:59:59.000Z

204

World experience with development of combined-cycle and gas turbine technologies and prospects for employing them in the thermal power engineering of Russia using the capacities of the country’s industry producing power machinery and equipment  

Science Journals Connector (OSTI)

World experience gained from using combined-cycle and gas-turbine technologies in power engineering is analyzed. The technical and production capacities of the Russian industry constructing power machinery and...

O. N. Favorskii; V. L. Polishchuk; I. M. Livshits…

2007-09-01T23:59:59.000Z

205

Joint inversion of seismic AVO and EM data for gas saturation estimation using a sampling-based stochastic model  

E-Print Network (OSTI)

hypothesis using a sampling-based stochastic model, based on a typical situation of gas explorationJoint inversion of seismic AVO and EM data for gas saturation estimation using a sampling- based stochastic model Jinsong Chen*, G. Michael Hoversten, and D. W. Vasco, Lawrence Berkeley National Laboratory

Chen, Jinsong

206

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

SciTech Connect

A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHG- emitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 ?m) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants, targets were less well-defined, but while all three scenarios were able to make significant reductions in ROG, NOx and PM2.5 both statewide and in the two regional air basins, they may nonetheless fall short of what will be required by future federal standards. Specifically, in Scenario 1, regional NOx emissions are approximately three times the estimated targets for both 2023 and 2032, and in Scenarios 2 and 3, NOx emissions are approximately twice the estimated targets. Further work is required in this area, including detailed regional air quality modeling, in order to determine likely pathways for attaining these stringent targets.

Greenblatt, Jeffery B.

2013-10-10T23:59:59.000Z

207

Direct Experimental Evidence for a Negative Heat Capacity in the Liquid-to-Gas Phase Transition in Hydrogen Cluster Ions: Backbending of the Caloric Curve  

Science Journals Connector (OSTI)

By selecting specific decay reactions in high-energy collisions (60??keV/amu) of hydrogen cluster ions with a helium target (utilizing event-by-event data of a recently developed multicoincidence experiment) and by deriving corresponding temperatures for these microcanonical cluster ensembles (analyzing respective fragment distributions), we are able to construct caloric curves for H3+(H2)m cluster ions (6?m?14). All individual curves and the mean of these curves show a backbending in the plateau region, thus constituting direct evidence for a negative microcanonical heat capacity in the liquid-to-gas transition of these finite systems.

F. Gobet; B. Farizon; M. Farizon; M. J. Gaillard; J. P. Buchet; M. Carré; P. Scheier; T. D. Märk

2002-10-11T23:59:59.000Z

208

Removing Cross-Border Capacity Bottlenecks in the European Natural Gas Market—A Proposed Merchant-Regulatory Mechanism  

Science Journals Connector (OSTI)

We propose a merchant-regulatory framework to promote investment in the European natural gas network infrastructure based on a price cap over two-part tariffs. As suggested by Vogelsang (J Regul Econ 20:141–165,

Anne Neumann; Juan Rosellón; Hannes Weigt

2014-11-01T23:59:59.000Z

209

A critical review of methods used in the estimation of natural gas reserves: Natural gas reserves in the state of Texas. Some educational prerequisites in the field of petroleum economics and evaluation.  

E-Print Network (OSTI)

-Associated Gas Reserves Volumetr ic Method Discussion of the Factors in tne Volumetri. Formula The Decline Curve Method 7 7 12 Ie Methods of Estimating Associated Gas Reserves Methods of Estimatmg Dissolved Gas Reserves Water Drive Constant Voluxne... Bibliography 58 TABLE of ILLUSTRATIONS ~Pa e A CRITICAI REVIEW OF METHODS USED IN THE ESTIMATION OF NATURAL GAS RESERVES Curves Curve No Curves Showing Change in the Compressi- bility Factor with Depth and Composition of the Wet Gas. Z4-A Curve No...

Crichton, John Alston

2012-06-07T23:59:59.000Z

210

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

E-Print Network (OSTI)

ARB, 2013b) from 2000-2010: 1. Commercial a. CHP (NG) 2.Industrial a. CHP (NG, refinery gas, coal) b. Oil and gas3%/yr retrofits, ZNE 37% RPS, CHP, DG PV, nuclear relicense,

Greenblatt, Jeffery B.

2014-01-01T23:59:59.000Z

211

EIA - Natural Gas Storage Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Storage Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground Storage - All Operators Total storage by base gas and working gas, and storage activity by State (monthly, annual). Underground Storage by Type U.S. storage and storage activity by all operators, salt cavern fields and nonsalt cavern (monthly, annual). Underground Storage Capacity Storage capacity, working gas capacity, and number of active fields for salt caverns, aquifers, and depleted fields by State (monthly, annual). Liquefied Natural Gas Additions to and Withdrawals from Storage By State (annual). Weekly Natural Gas Storage Report Estimates of natural gas in underground storage for the U.S. and three regions of the U.S.

212

Scale-dependent gas hydrate saturation estimates in sand reservoirs in the Ulleung Basin, East Sea of Korea  

Science Journals Connector (OSTI)

Through the use of 2-D and 3-D seismic data, several gas hydrate prospects were identified in the Ulleung Basin, East Sea of Korea and thirteen drill sites were established and logging-while-drilling (LWD) data were acquired from each site in 2010. Sites UBGH2–6 and UBGH2–10 were selected to test a series of high amplitude seismic reflections, possibly from sand reservoirs. LWD logs from the UBGH2–6 well indicate that there are three significant sand reservoirs with varying thickness. Two upper sand reservoirs are water saturated and the lower thinly bedded sand reservoir contains gas hydrate with an average saturation of 13%, as estimated from the P-wave velocity. The well logs at the UBGH2–6 well clearly demonstrated the effect of scale-dependency on gas hydrate saturation estimates. Gas hydrate saturations estimated from the high resolution LWD acquired ring resistivity (vertical resolution of about 5–8 cm) reaches about 90% with an average saturation of 28%, whereas gas hydrate saturations estimated from the low resolution A40L resistivity (vertical resolution of about 120 cm) reaches about 25% with an average saturation of 11%. However, in the UBGH2–10 well, gas hydrate occupies a 5-m thick sand reservoir near 135 mbsf with a maximum saturation of about 60%. In the UBGH2–10 well, the average and a maximum saturation estimated from various well logging tools are comparable, because the bed thickness is larger than the vertical resolution of the various logging tools. High resolution wireline log data further document the role of scale-dependency on gas hydrate calculations.

M.W. Lee; T.S. Collett

2013-01-01T23:59:59.000Z

213

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

E-Print Network (OSTI)

k. Integrated gasification combined cycle (IGCC) coal l. PCIntegrated Gasification Combined Cycle (IGCC) Power Plant,Analysis: Natural Gas Combined Cycle (NGCC) Power Plant,

Greenblatt, Jeffery B.

2014-01-01T23:59:59.000Z

214

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

E-Print Network (OSTI)

decision support tool for landfill gas-to energy projects,”industrial emissions e. Landfills f. Solid waste treatmentreductions Forests, dairy, landfills 75% overall savings HFC

Greenblatt, Jeffery B.

2014-01-01T23:59:59.000Z

215

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

natural-gas- fired combined cycle generation, and the othernatural-gas-fired combined cycle plants. This assumptionplants were efficient combined cycle plants. The four

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

216

Real-time estimation of gas turbine engine damage using a control-based Kalman filter algorithm  

SciTech Connect

In this paper a second-generation Kalman filter algorithm is described that has sufficient accuracy and response for real-time detection and estimation of gas turbine engine gas path damage caused by normal wear, mechanical failures, and ingestion of foreign objects. The algorithm was developed for in-flight operation of aircraft engines but also has application for marine and industrial gas turbines. The control measurement and microcomputer requirements are described. The performance and sensitivity to engine transients and measurement errors is evaluated. The algorithm is demonstrated with actual engine data of ice and bird ingestion tests.

Kerr, L.J.; Nemec, T.S.; Gallops, G.W. (Pratt and Whitney, United Technologies Corp., West Palm Beach, FL (US))

1992-04-01T23:59:59.000Z

217

EIA - Analysis of Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

Prices Prices 2010 Peaks, Plans and (Persnickety) Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry. Natural gas shale and the need for high deliverability storage are identified as key drivers in natural gas storage capacity development. The presentation also provides estimates of planned storage facilities through 2012. Categories: Prices, Storage (Released, 10/28/2010, ppt format) Natural Gas Year-In-Review 2009 This is a special report that provides an overview of the natural gas industry and markets in 2009 with special focus on the first complete set of supply and disposition data for 2009 from the Energy Information Administration. Topics discussed include natural gas end-use consumption trends, offshore and onshore production, imports and exports of pipeline and liquefied natural gas, and above-average storage inventories. Categories: Prices, Production, Consumption, Imports/Exports & Pipelines, Storage (Released, 7/9/2010, Html format)

218

Open-Source LCA Tool for Estimating Greenhouse Gas Emissions from Crude Oil Production Using Field Characteristics  

Science Journals Connector (OSTI)

Open-Source LCA Tool for Estimating Greenhouse Gas Emissions from Crude Oil Production Using Field Characteristics ... OPGEE models oil production emissions in more detail than previous transport LCA models. ... El-Houjeiri, H. and Brandt, A.Exploring the variation of GHG emissions from conventional oil production using an engineering-based LCA model. ...

Hassan M. El-Houjeiri; Adam R. Brandt; James E. Duffy

2013-05-01T23:59:59.000Z

219

STATUS OF SCOPING PLAN RECOMMENDED MEASURES The estimated 2020 greenhouse gas (GHG) emission reductions for measures described in the  

E-Print Network (OSTI)

1 STATUS OF SCOPING PLAN RECOMMENDED MEASURES The estimated 2020 greenhouse gas (GHG) emission. These regulations, which reflect ARB's progress towards reducing statewide GHG emissions, include comprehensive through the use of an updated GHG emission forecast. The updated forecast was developed using average

220

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

E-Print Network (OSTI)

of-state fuel consumption was estimated for marine OGV. Themarine OGV electricity use in 2020 (IEPR: Kavalec, 2013) 3. FuelsIn-state jet fuel b. Aviation gasoline 3. Marine ocean-going

Greenblatt, Jeffery B.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Top-down and bottom-up estimates of CO2 storage capacity in the United Kingdom sector of the southern North Sea basin  

Science Journals Connector (OSTI)

...formations oil and gas fields, if any...on the injection strategy, the reservoir properties...except in oil- and gas-bearing regions...Combined Cycle Gas Turbine power plant. Their...has been a prolific gas-producing basin...gas fields under development. This is realistic...

Sam Holloway; Ceri J. Vincent; Michelle S. Bentham; Karen L. Kirk

222

This latest issues of the Ntrual Gas Montly (March 2004) contains estimates  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Data for 2003 Natural Gas Data for 2003 Preliminary data for 2003 indicate that natural gas total supply and demand were down in 2003 by almost 5 percent compared to 2002. Dry natural gas production in 2003 was 19,068 billion cubic feet (Bcf) compared with 18,964 Bcf in 2002. The increase in the production level reflects the increased drilling for natural gas. However, although natural gas well completions increased by 26 percent in 2003 compared with the previous year, dry natural gas production increased by only 0.5 percent. Net imports went down in 2003 continuing the downward trend of 2002, which was the first decline since 1986. Total net imports were lower in each month of 2003 compared with 2002. Net imports in 2003 were 3,236 Bcf which is a decline of 263 Bcf from 2002 levels. Total pipeline imports

223

Panama Canal capacity analysis  

SciTech Connect

Predicting the transit capacities of the various Panama Canal alternatives required analyzing data on present Canal operations, adapting and extending an existing computer simulation model, performing simulation runs for each of the alternatives, and using the simulation model outputs to develop capacity estimates. These activities are summarized in this paper. A more complete account may be found in the project final report (TAMS 1993). Some of the material in this paper also appeared in a previously published paper (Rosselli, Bronzini, and Weekly 1994).

Bronzini, M.S. [Oak Ridge National Lab., Knoxville, TN (United States). Center for Transportation Analysis

1995-04-27T23:59:59.000Z

224

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

renewables, including hydroelectric. For this analysis, itin 2010 and 33% in 2020. Hydroelectric generation follows aGas Cogeneration Hydroelectric New Renewables Existing

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

225

Permeability Estimation from Fracture Calibration Test Analysis in Shale and Tight Gas  

E-Print Network (OSTI)

closure can be used to estimate the reservoir permeability. However, for very low permeability, the time to reach radial flow can exceed any practical duration. This study shows how to use the reservoir pressure to estimate the maximum reservoir...

Xue, Han 1988-

2012-12-13T23:59:59.000Z

226

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

227

Working Gas Capacity of Aquifers  

U.S. Energy Information Administration (EIA) Indexed Site

96,950 396,092 364,228 363,521 367,108 2008-2012 96,950 396,092 364,228 363,521 367,108 2008-2012 Alabama 0 2012-2012 Arkansas 0 2012-2012 California 0 0 2009-2012 Colorado 0 2012-2012 Illinois 244,900 252,344 216,132 215,017 215,594 2008-2012 Indiana 19,978 19,367 19,437 19,479 19,215 2008-2012 Iowa 87,350 87,414 90,613 91,113 90,313 2008-2012 Kansas 0 2012-2012 Kentucky 6,629 6,629 6,629 6,629 6,629 2008-2012 Louisiana 0 2012-2012 Michigan 0 2012-2012 Minnesota 2,000 2,000 2,000 2,000 2,000 2008-2012 Mississippi 0 2012-2012 Missouri 11,276 3,040 3,656 6,000 6,000 2008-2012 Montana 0 2012-2012 New Mexico 0 2012-2012 New York 0 2012-2012 Ohio 0 2012-2012 Oklahoma 31 2012-2012 Oregon 0 2012-2012 Pennsylvania 942 2012-2012 Tennessee 0 2012-2012 Texas 0 2012-2012 Utah 948 948 939 939 948 2008-2012

228

Natural Gas Aquifers Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

1,347,516 1,351,832 1,340,633 1,233,017 1,231,897 1,237,269 1,347,516 1,351,832 1,340,633 1,233,017 1,231,897 1,237,269 1999-2012 Alabama 0 1999-2012 Arkansas 0 1999-2012 California 0 0 1999-2012 Colorado 0 1999-2012 Illinois 876,960 874,384 885,848 772,381 777,294 779,862 1999-2012 Indiana 81,490 81,991 81,328 81,268 81,310 80,746 1999-2012 Iowa 278,238 284,747 284,811 288,010 288,210 288,210 1999-2012 Kansas 0 1999-2012 Kentucky 9,567 9,567 9,567 9,567 9,567 9,567 1999-2012 Louisiana 0 1999-2012 Michigan 0 1999-2012 Minnesota 7,000 7,000 7,000 7,000 7,000 7,000 1999-2012 Mississippi 0 1999-2012 Missouri 32,940 32,876 10,889 11,502 13,845 13,845 1999-2012 Montana 0 1999-2012 New Mexico 0 1999-2012 New York 0 1999-2012 Ohio 0 1999-2012 Oklahoma 170 1999-2012 Oregon 0 1999-2012 Pennsylvania

229

Working Gas Capacity of Aquifers  

Gasoline and Diesel Fuel Update (EIA)

96,950 396,092 364,228 363,521 367,108 2008-2012 96,950 396,092 364,228 363,521 367,108 2008-2012 Alabama 0 2012-2012 Arkansas 0 2012-2012 California 0 0 2009-2012 Colorado 0 2012-2012 Illinois 244,900 252,344 216,132 215,017 215,594 2008-2012 Indiana 19,978 19,367 19,437 19,479 19,215 2008-2012 Iowa 87,350 87,414 90,613 91,113 90,313 2008-2012 Kansas 0 2012-2012 Kentucky 6,629 6,629 6,629 6,629 6,629 2008-2012 Louisiana 0 2012-2012 Michigan 0 2012-2012 Minnesota 2,000 2,000 2,000 2,000 2,000 2008-2012 Mississippi 0 2012-2012 Missouri 11,276 3,040 3,656 6,000 6,000 2008-2012 Montana 0 2012-2012 New Mexico 0 2012-2012 New York 0 2012-2012 Ohio 0 2012-2012 Oklahoma 31 2012-2012 Oregon 0 2012-2012 Pennsylvania 942 2012-2012 Tennessee 0 2012-2012 Texas 0 2012-2012 Utah 948 948 939 939 948 2008-2012

230

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Vehicles and Mobile Equipment  

Energy.gov (U.S. Department of Energy (DOE))

Once a Federal agency identifies the various strategic opportunities to reduce greenhouse gas (GHG) emissions for vehicles and mobile equipment, it is necessary to evaluate the associated costs of adopting each strategy.

231

Fundamentals of Capacity Control  

Science Journals Connector (OSTI)

Whereas capacity planning determines in advance the capacities required to implement a production program, capacity control determines the actual capacities implemented shortly beforehand. The capacity control...

Prof. Dr.-Ing. habil. Hermann Lödding

2013-01-01T23:59:59.000Z

232

Kalman-filtered compressive sensing for high resolution estimation of anthropogenic greenhouse gas emissions from sparse measurements.  

SciTech Connect

The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. The limited nature of the measured data leads to a severely-underdetermined estimation problem. If the estimation is performed at fine spatial resolutions, it can also be computationally expensive. In order to enable such estimations, advances are needed in the spatial representation of ffCO2 emissions, scalable inversion algorithms and the identification of observables to measure. To that end, we investigate parsimonious spatial parameterizations of ffCO2 emissions which can be used in atmospheric inversions. We devise and test three random field models, based on wavelets, Gaussian kernels and covariance structures derived from easily-observed proxies of human activity. In doing so, we constructed a novel inversion algorithm, based on compressive sensing and sparse reconstruction, to perform the estimation. We also address scalable ensemble Kalman filters as an inversion mechanism and quantify the impact of Gaussian assumptions inherent in them. We find that the assumption does not impact the estimates of mean ffCO2 source strengths appreciably, but a comparison with Markov chain Monte Carlo estimates show significant differences in the variance of the source strengths. Finally, we study if the very different spatial natures of biogenic and ffCO2 emissions can be used to estimate them, in a disaggregated fashion, solely from CO2 concentration measurements, without extra information from products of incomplete combustion e.g., CO. We find that this is possible during the winter months, though the errors can be as large as 50%.

Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet [Carnegie Institution for Science, Stanford, CA; Michalak, Anna M. [Carnegie Institution for Science, Stanford, CA; van Bloemen Waanders, Bart Gustaaf [Sandia National Laboratories, Albuquerque NM; McKenna, Sean Andrew [IBM Research, Mulhuddart, Dublin, Ireland

2013-09-01T23:59:59.000Z

233

Method for estimation of the average local working temperatures and the residual resource of metal coatings of gas-turbine blades  

Science Journals Connector (OSTI)

A new method is proposed for estimation of the average local operating temperatures and the residual service life (resource) of protective MCrAlY metal coatings of gas-turbine blades after a certain time of opera...

P. G. Krukovskii; K. A. Tadlya

2007-05-01T23:59:59.000Z

234

NETL: Methane Hydrates - DOE/NETL Projects - Estimate Gas-Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 DE-FC26-06NT42959 Goal The goal of this project is to evaluate the direct-current electrical resistivity (DCR) method for remotely detecting and characterizing the concentration of gas hydrates in the deep marine environment. This will be accomplished by adapting existing DCR instrumentation for use on the sea floor in the deep marine environment and testing the new instrumentation at Mississippi Canyon Block 118. Performer Baylor University, Waco, TX 76798 Collaborators Advanced Geosciences Inc., Austin, TX 78726 Specialty Devices Inc., Wylie, TX 75098 Background Marine occurrences of methane hydrates are known to form in two distinct

235

XBRL Taxonomy for Estimating the Effects of Greenhouse Gas Emissions on Corporate Financial Positions  

Science Journals Connector (OSTI)

Companies around the world are increasingly expected to report their greenhouse gas emissions. Currently there are various formulas to calculate emissions, and there are different reporting formats. Most of the reporting formats are paper-based or non-readable-by-machine ... Keywords: Business Data Processing, Data Integration, Environmental Impact Assessment, Environmental Reporting, Finance, Information Systems, XML

Fumiko Satoh

2011-04-01T23:59:59.000Z

236

Special Section --Marine Controlled-Source Electromagnetic Methods A Bayesian model for gas saturation estimation  

E-Print Network (OSTI)

Special Section -- Marine Controlled-Source Electromagnetic Methods A Bayesian model for gas Vasco1 , Yoram Rubin2 , and Zhangshuan Hou2 ABSTRACT We develop a Bayesian model to jointly invert reservoir model. We consid- er the porosity and fluid saturation of each layer in the reservoir, the bulk

Chen, Jinsong

237

Electric Capacity | OpenEI  

Open Energy Info (EERE)

Capacity Capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated December 15th, 2010 (3 years ago) Keywords Electric Capacity Electricity Generation New Zealand projections

238

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer  

SciTech Connect

This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

Nexant Inc.

2006-05-01T23:59:59.000Z

239

CHEMISTRY 223: Introductory Physical Chemistry I. Kinetics 1: Gas laws, kinetic theory of collisions. Thermodynamics: Zeroth law of thermodynamics. First law of thermodynamics, heat capacity,  

E-Print Network (OSTI)

of collisions. Thermodynamics: Zeroth law of thermodynamics. First law of thermodynamics, heat capacity, enthalpy, thermochemistry, bond energies. Second law of thermodynamics; the entropy and free energy functions. Third law of thermodynamics, absolute entropies, free energies, Maxwell relations and chemical

Ronis, David M.

240

Preliminary Estimates of Combined Heat and Power Greenhouse GasAbatement Potential for California in 2020  

SciTech Connect

The objective of this scoping project is to help the California Energy Commission's (CEC) Public Interest Energy Research (PIER) Program determine where it should make investments in research to support combined heat and power (CHP) deployment. Specifically, this project will: {sm_bullet} Determine what impact CHP might have in reducing greenhouse gas (GHG) emissions, {sm_bullet} Determine which CHP strategies might encourage the most attractive early adoption, {sm_bullet} Identify the regulatory and technological barriers to the most attractive CHP strategies, and {sm_bullet} Make recommendations to the PIER program as to research that is needed to support the most attractive CHP strategies.

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare,Kristina

2007-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Power spectral density estimation for wireless fluctuation enhanced gas sensor nodes  

E-Print Network (OSTI)

Fluctuation enhanced sensing (FES) is a promising method to improve the selectivity and sensitivity of semiconductor and nanotechnology gas sensors. Most measurement setups include high cost signal conditioning and data acquisition units as well as intensive data processing. However, there are attempts to reduce the cost and energy consumption of the hardware and to find efficient processing methods for low cost wireless solutions. In our paper we propose highly efficient signal processing methods to analyze the power spectral density of fluctuations. These support the development of ultra-low-power intelligent fluctuation enhanced wireless sensor nodes while several further applications are also possible.

Mingesz, Robert; Gingl, Zoltan

2014-01-01T23:59:59.000Z

242

ESTIMATE OF THE TOTAL MECHANICAL FEEDBACK ENERGY FROM GALAXY CLUSTER-CENTERED BLACK HOLES: IMPLICATIONS FOR BLACK HOLE EVOLUTION, CLUSTER GAS FRACTION, AND ENTROPY  

SciTech Connect

The total feedback energy injected into hot gas in galaxy clusters by central black holes can be estimated by comparing the potential energy of observed cluster gas profiles with the potential energy of non-radiating, feedback-free hot gas atmospheres resulting from gravitational collapse in clusters of the same total mass. Feedback energy from cluster-centered black holes expands the cluster gas, lowering the gas-to-dark-matter mass ratio below the cosmic value. Feedback energy is unnecessarily delivered by radio-emitting jets to distant gas far beyond the cooling radius where the cooling time equals the cluster lifetime. For clusters of mass (4-11) x 10{sup 14} M{sub sun}, estimates of the total feedback energy, (1-3) x 10{sup 63} erg, far exceed feedback energies estimated from observations of X-ray cavities and shocks in the cluster gas, energies gained from supernovae, and energies lost from cluster gas by radiation. The time-averaged mean feedback luminosity is comparable to those of powerful quasars, implying that some significant fraction of this energy may arise from the spin of the black hole. The universal entropy profile in feedback-free gaseous atmospheres in Navarro-Frenk-White cluster halos can be recovered by multiplying the observed gas entropy profile of any relaxed cluster by a factor involving the gas fraction profile. While the feedback energy and associated mass outflow in the clusters we consider far exceed that necessary to stop cooling inflow, the time-averaged mass outflow at the cooling radius almost exactly balances the mass that cools within this radius, an essential condition to shut down cluster cooling flows.

Mathews, William G.; Guo Fulai, E-mail: mathews@ucolick.org [University of California Observatories/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

2011-09-10T23:59:59.000Z

243

Radio Bridge Structure and Its Application to Estimate the Mach Number and Ambient Gas Temperature of Powerful Sources  

Science Journals Connector (OSTI)

The radio bridge shape of very powerful extended (FR II) radio sources has been studied in detail; the sample used here includes 12 radio galaxies and six radio-loud quasars with redshifts between 0 and 1.8. Specifically, the width and radio surface brightness of the radio bridge are measured as a function of distance from the radio hot spot on each side of each source. The width as a function of distance from the hot spot agrees very well with theoretical predictions based on the standard model of bridge growth, in which the bridge expands laterally because of a blast wave driven by the large pressure difference between the relativistic plasma in the radio hot spot and surrounding radio lobe and the adjacent ambient gas. The simple assumptions that go into the theoretical prediction are that the lobe radio power and width (measured in the vicinity of the radio hot spot) are roughly constant over the lifetime of a given source, and that the rate at which the bridge lengthens, referred to as the lobe propagation velocity, is roughly constant over the lifetime of a source. These three assumptions appear to be consistent with other independent studies of very powerful extended radio sources of the type studied here, within the present (rather large) observational uncertainties. The radio surface brightness as a function of distance from the hot spot agrees surprisingly well with a simple model in which the radio bridge undergoes adiabatic expansion in the lateral direction, assuming that the initial lobe radio power and lobe width are time independent for a given source. That is, the observed lobe surface brightness and width, and the width as a function of position along the radio bridge, are used to predict the radio surface brightness as a function of position along the radio bridge, assuming adiabatic expansion of the bridge in the lateral direction. The predicted and observed surface brightness along the bridge agree surprisingly well. This suggests that there is little reacceleration of relativistic electrons within the radio bridge and that the backflow velocity of relativistic plasma within the bridge is small compared with the lobe advance velocity. These results are consistent with implications based on the bridge shape and structure discussed by Alexander & Leahy since we consider only very powerful FR II sources here. The Mach number with which the radio lobe propagates into the ambient medium can be estimated using the structure of the radio bridge; this Mach number is the ratio of the lobe propagation velocity to the sound speed of the ambient gas. The lateral expansion of the bridge is driven initially by a blast wave. When the velocity of the blast wave falls to a value of the order of the sound speed of the ambient medium, the character of the expansion changes, and the functional form of the bridge width as a function of position exhibits a break, which may be used to estimate the ratio of the lobe advance velocity to the sound speed of the ambient gas. We observe this break in several sources studied here. The Mach number of lobe advance depends only upon the ratio of the width to the length of the bridge as a function of position, which is purely geometric. Typical Mach numbers obtained range from about 2 to 10 and seem to be roughly independent of redshift and the total size (core-lobe separation) of the radio source. The Mach number can be used to estimate the temperature of the ambient gas if an independent estimate of the lobe propagation velocity is available. Lobe propagation velocities estimated using the effects of synchrotron and inverse Compton aging of the relativistic electrons that produce the radio emission are combined with the Mach numbers in order to estimate ambient gas temperatures. The temperature obtained for Cygnus A matches that indicated by X-ray data for this source. Typical temperatures obtained range from about 1 to 20 keV. This temperature is characteristic of gas in clusters of galaxies at low redshift, which is interesting since we show in a companion paper that the ambient

Greg; Ruth; Lin Wan

1997-01-01T23:59:59.000Z

244

Oil Production Capacity Expansion Costs for the Persian Gulf  

Gasoline and Diesel Fuel Update (EIA)

TR/0606 TR/0606 Distribution Category UC-950 Oil Production Capacity Expansion Costs For The Persian Gulf January 1996 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration Oil Production Capacity Expansion Costs for the Persian Gulf iii Preface Oil Production Capacity Expansion Costs for the Persian Gulf provides estimates of development and operating costs for various size fields in countries surrounding the Persian

245

Determining the maximal capacity of a combined-cycle plant operating with afterburning of fuel in the gas conduit upstream of the heat-recovery boiler  

Science Journals Connector (OSTI)

The effect gained from afterburning of fuel in the gas conduit upstream of the heat-recovery boiler used as part of a PGU-450T combined-cycle plant is considered. The results obtained from ... electric and therma...

V. M. Borovkov; N. M. Osmanova

2011-01-01T23:59:59.000Z

246

Development of an Artificial ExpertSystem for Estimating the Rate ofGrowth of Gas Cone.  

E-Print Network (OSTI)

??Oil bearing zones are often accompanied by a gas cap which may enhance oil recovery by gas cap drive mechanism. As the well starts producing,… (more)

Sharma, Shashank

2011-01-01T23:59:59.000Z

247

Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce operational and capacity expansion costs for electric  

E-Print Network (OSTI)

expansion Plug-in hybrid electric vehicles Controlled charging Wind power integration a b s t r a c vehicles (BEVs), create additional electricity demand, resulting in additional air emissions from powerEstimating the potential of controlled plug-in hybrid electric vehicle charging to reduce

Michalek, Jeremy J.

248

Capacity Value of Concentrating Solar Power Plants  

SciTech Connect

This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2011-06-01T23:59:59.000Z

249

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Impact of Interruptible Natural Gas Service A Snapshot of California Natural Gas Market: Status and Outlook EIA's Testimony on Natural Gas Supply and Demand Residential Natural Gas Price Brochure Status of Natural Gas Pipeline System Capacity Previous Issues of Natural Gas Weekly Update Natural Gas Homepage Overview Net additions to storage during the fourth week of April were estimated to have been over 100 Bcf-a record high level for the first month of the refill season. Compared to last year when only 36 Bcf or 1.2 Bcf per day were added to stocks in April, this year the industry appears to be taking advantage of the reduction in demand that typically occurs in April, the first shoulder month of the year, and the recent price declines. After beginning the week down, spot prices at the Henry Hub trended down most days last week to end trading on Friday at $4.49 per MMBtu-the lowest price since early November. On the NYMEX futures market, the near-month (June) contract also moved down most days and ended last week at $4.490-down $0.377 from the previous Friday. Some-early summer high temperatures last week in the Northeast and winter-like weather in the Rockies (See Temperature Map) (See Deviation from Normal Temperatures Map) appear to have had little impact on the natural gas markets as prices declined most days at most major locations.

250

Capacity Markets for Electricity  

E-Print Network (OSTI)

ternative Approaches for Power Capacity Markets”, Papers andprof id=pjoskow. Capacity Markets for Electricity [13]Utility Commission- Capacity Market Questions”, available at

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

251

Estimation of exhaust gas aerodynamic force on the variable geometry turbocharger actuator: 1D flow model approach  

Science Journals Connector (OSTI)

Abstract This paper provides a reliable tool for simulating the effects of exhaust gas flow through the variable turbine geometry section of a variable geometry turbocharger (VGT), on flow control mechanism. The main objective is to estimate the resistive aerodynamic force exerted by the flow upon the variable geometry vanes and the controlling actuator, in order to improve the control of vane angles. To achieve this, a 1D model of the exhaust flow is developed using Navier–Stokes equations. As the flow characteristics depend upon the volute geometry, impeller blade force and the existing viscous friction, the related source terms (losses) are also included in the model. In order to guarantee stability, an implicit numerical solver has been developed for the resolution of the Navier–Stokes problem. The resulting simulation tool has been validated through comparison with experimentally obtained values of turbine inlet pressure and the aerodynamic force as measured at the actuator shaft. The simulator shows good compliance with experimental results.

Fayez Shakil Ahmed; Salah Laghrouche; Adeel Mehmood; Mohammed El Bagdouri

2014-01-01T23:59:59.000Z

252

High Capacity Immobilized Amine Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Immobilized Amine Sorbents Capacity Immobilized Amine Sorbents Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,288,136 entitled "High Capacity Immobilized Amine Sorbents." Disclosed in this patent is the invention of a method that facilitates the production of low-cost carbon dioxide (CO 2 ) sorbents for use in large-scale gas-solid processes. This method treats an amine to increase the number of secondary amine groups and impregnates the amine in a porous solid support. As a result of this improvement, the method increases CO 2 capture capacity and decreases the cost of using an amine-enriched solid sorbent in CO 2 capture systems. Overview The U.S. Department of Energy has placed a high priority on the separation

253

Fluid pressure arrival time tomography: Estimation and assessment in the presence of inequality constraints, with an application to a producing gas field at Krechba, Algeria  

SciTech Connect

Deformation in the overburden proves useful in deducing spatial and temporal changes in the volume of a producing reservoir. Based upon these changes we estimate diffusive travel times associated with the transient flow due to production, and then, as the solution of a linear inverse problem, the effective permeability of the reservoir. An advantage an approach based upon travel times, as opposed to one based upon the amplitude of surface deformation, is that it is much less sensitive to the exact geomechanical properties of the reservoir and overburden. Inequalities constrain the inversion, under the assumption that the fluid production only results in pore volume decreases within the reservoir. We apply the formulation to satellite-based estimates of deformation in the material overlying a thin gas production zone at the Krechba field in Algeria. The peak displacement after three years of gas production is approximately 0.5 cm, overlying the eastern margin of the anticlinal structure defining the gas field. Using data from 15 irregularly-spaced images of range change, we calculate the diffusive travel times associated with the startup of a gas production well. The inequality constraints are incorporated into the estimates of model parameter resolution and covariance, improving the resolution by roughly 30 to 40%.

Rucci, A.; Vasco, D.W.; Novali, F.

2010-04-01T23:59:59.000Z

254

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

255

Gas temperature profiles at different flow rates and heating rates suffice to estimate kinetic parameters for fluidised bed combustion  

SciTech Connect

Experimental work on estimation kinetic parameters for combustion was conducted in a bench-scale fluidised bed (FB: 105x200mm). Combustion medium was obtained by using an electrical heater immersed into the bed. The ratio of heating rate (kJ/s) to molar flow rate of air (mol/s) regulated by a rheostat so that the heat of combustion (kJ/mol) can be synthetically obtained by an electrical power supply for relevant O{sub 2}-feedstock concentration (C{sub 0}). O{sub 2}-restriction ratio ({beta}) was defined by the ratio of O{sub 2}-feedstock concentration to O{sub 2}-air concentration (C{sub O{sub 2}-AIR}) at prevailing heating rates. Compressed air at further atmospheric pressure ({approx_equal}102.7kPa) entered the bed that was alumina particles (250{mu}m). Experiments were carried out at different gas flow rates and heating rates. FB was operated with a single charge of (1300g) particles for obtaining the T/T{sub 0} curves, and than C/C{sub 0} curves. The mathematical relationships between temperature (T) and conversion ratio (X) were expressed by combining total energy balance and mass balance in FB. Observed surface reaction rate constants (k{sub S}) was obtained from the combined balances and proposed model was also tested for these kinetic parameters (frequency factor: k{sub 0}, activation energy: E{sub A}, and reaction order: n) obtained from air temperature measurements. It was found that the model curves allow a good description of the experimental data. Thus, reaction rate for combustion was sufficiently expressed. (author)

Suyadal, Y. [Faculty of Engineering, Department of Chemical Engineering, Ankara University, 06100-Tandogan, Ankara (Turkey)

2006-07-15T23:59:59.000Z

256

Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model: Preprint  

SciTech Connect

An important emerging issue is the estimation of renewables' contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to resource variability. Reliability-based methods, particularly, effective load-carrying capacity (ELCC), are considered to be the most robust techniques for addressing this resource variability. The Regional Energy Deployment System (ReEDS) capacity expansion model and other long-term electricity capacity planning models require an approach to estimating CV for generalized PV and system configurations with low computational and data requirements. In this paper we validate treatment of solar photovoltaic (PV) capacity value by ReEDS capacity expansion model by comparing model results to literature for a range of energy penetration levels. Results from the ReEDS model are found to compare well with both comparisons--despite not being resolved at an hourly scale.

Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

2014-08-01T23:59:59.000Z

257

Monitoring Infrastructure Capacity Monitoring Infrastructure Capacity  

E-Print Network (OSTI)

Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban) task. Monitoring infrastructure capacity is at least as complex as monitoring urban land markets Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban

Levinson, David M.

258

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Columbia Gas Transmission, LLC on March 16 began planned maintenance on its pipeline in Green County, Pennsylvania. The maintenance will reduce capacity at an interconnect...

259

Refinery Capacity Report  

Annual Energy Outlook 2012 (EIA)

Report --- Full report in PDF (1 MB) XLS --- Refinery Capacity Data by individual refinery as of January 1, 2006 Tables 1 Number and Capacity of Operable Petroleum...

260

Studies Estimating the Dermal Bioavailability of Polynuclear Aromatic Hydrocarbons from Manufactured Gas Plant Tar-Contaminated Soils  

Science Journals Connector (OSTI)

In vitro percutaneous absorption studies were performed with contaminated soils or organic extracts of contaminated soils collected at manufactured gas plant (MGP) sites. The MGP tar contaminated soils were found to contain a group of targeted polynuclear ...

Timothy A. Roy; Andrew J. Krueger; Barbara B. Taylor; David M. Mauro; Lawrence S. Goldstein

1998-08-22T23:59:59.000Z

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

High capacity immobilized amine sorbents  

DOE Patents (OSTI)

A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

Gray, McMahan L. (Pittsburgh, PA); Champagne, Kenneth J. (Fredericktown, PA); Soong, Yee (Monroeville, PA); Filburn, Thomas (Granby, CT)

2007-10-30T23:59:59.000Z

262

Information capacity of holograms in photorefractive crystals  

Science Journals Connector (OSTI)

From a single measurement of the signal-to-noise ratio of the image reconstructed from a hologram it is possible to estimate the information capacity of superimposed holograms and to...

Miridonov, S V; Kamshilin, A A; Khomenko, A V; Tentori, D

1994-01-01T23:59:59.000Z

263

Russia’s Natural Gas Export Potential up to 2050  

E-Print Network (OSTI)

Recent increases in natural gas reserve estimates and advances in shale gas technology make natural gas a fuel with good prospects to serve a bridge to a low-carbon world. Russia is an important energy supplier as it holds the world largest natural gas reserves and it is the world’s largest exporter of natural gas. Energy was one of the driving forces of Russia’s recent economic recovery from the economic collapse of 1990s. These prospects have changed drastically with a global recession and the collapse of oil and gas prices from their peaks of 2008. An additional factor is an ongoing surge in a liquefied natural gas (LNG) capacity and a development of Central Asia’s and the Middle East gas supplies that can compete with Russian gas in its traditional (European) and potential (Asian) markets. To study the long-term prospects for Russian natural gas, we employ the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the world economy. While we consider the updated reserve estimates for all world regions, in this paper we focus on the results for Russian natural gas trade. The role of natural gas is explored in the context of several policy assumptions: with no greenhouse gas mitigation policy and scenarios of emissions targets in developed countries. Scenarios where Europe takes on an even more restrictive target of 80

Sergey Paltsev; Sergey Paltsev

2011-01-01T23:59:59.000Z

264

installed capacity | OpenEI  

Open Energy Info (EERE)

installed capacity installed capacity Dataset Summary Description Estimates for each of the 50 states and the entire United States show Source Wind Powering America Date Released February 04th, 2010 (4 years ago) Date Updated April 13th, 2011 (3 years ago) Keywords annual generation installed capacity usa wind Data application/vnd.ms-excel icon Wind potential data (xls, 102.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments

265

First mideast capacity planned  

SciTech Connect

Kuwait catalyst Co.`s (KCC) plans to build a hydrodesulfurization (HDS) catalysts plant in Kuwait will mark the startup of the first refining catalysts production in the Persian Gulf region. KCC, owned by a conglomerate of Kuwait companies and governmental agencies, has licensed catalyst manufacturing technology from Japan Energy in a deal estimated at more than 7 billion ($62 million). Plant design will be based on technology from Orient Catalyst, Japan Energy`s catalysts division. Construction is expected to begin in January 1997 for production startup by January 1998. A source close to the deal says the new plant will eventually reach a capacity of 5,000 m.t./year of HDS catalysts to supply most of Kuwait`s estimated 3,500-m.t./year demand, driven primarily by Kuwait National Petroleum refineries. KCC also expects to supply demand from other catalyst consumers in the region. Alumina supply will be acquired on the open market. KCC will take all production from the plant and will be responsible for marketing.

Fattah, H.

1996-11-06T23:59:59.000Z

266

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

of 1 Tcf from the 1994 estimate of 51 Tcf. Ultimate potential for natural gas is a science-based estimate of the total amount of conventional gas in the province and is an...

267

Heritability and localization of genes regulating individual variation of apoptosis capacity  

Science Journals Connector (OSTI)

...Heritability of apoptosis capacity and linkage to chromosomal...individual variation of apoptosis capacity were estimated using a variance...Linkage Analysis Routines (SOLAR). Two key findings emerged...proportion of variation in apoptosis capacity among individuals is due to...

Bao-Li Chang; Sarah D. Isaacs; Matthew J. Loza; Kathy E. Wiley; Amy Tolin; Elizabeth M. Gillanders; Wennuan Liu; Tao Li; Jishan Sun; Tamara Adams; Siqun L. Zheng; Patrick C. Walsh; Jeffrey M. Trent; William B. Isaacs; and Jianfeng Xu

2005-05-01T23:59:59.000Z

268

Anisotropic models to account for large borehole washouts to estimate gas hydrate saturations in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Alaminos Canyon 21 B well  

Science Journals Connector (OSTI)

Through the use of 3-D seismic amplitude mapping, several gas hydrate prospects were identified in the Alaminos Canyon (AC) area of the Gulf of Mexico. Two locations were drilled as part of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (JIP Leg II) in May of 2009 and a comprehensive set of logging-while-drilling (LWD) logs were acquired at each well site. LWD logs indicated that resistivity in the range of ?2 ohm-m and P-wave velocity in the range of ?1.9 km/s were measured in the target sand interval between 515 and 645 feet below sea floor. These values were slightly elevated relative to those measured in the sediment above and below the target sand. However, the initial well log analysis was inconclusive regarding the presence of gas hydrate in the logged sand interval, mainly because large washouts caused by drilling in the target interval degraded confidence in the well log measurements. To assess gas hydrate saturations in the sedimentary section drilled in the Alaminos Canyon 21 B (AC21-B) well, a method of compensating for the effect of washouts on the resistivity and acoustic velocities was developed. The proposed method models the washed-out portion of the borehole as a vertical layer filled with sea water (drilling fluid) and the apparent anisotropic resistivity and velocities caused by a vertical layer are used to correct the measured log values. By incorporating the conventional marine seismic data into the well log analysis, the average gas hydrate saturation in the target sand section in the AC21-B well can be constrained to the range of 8–28%, with 20% being our best estimate.

M.W. Lee; T.S. Collett; K.A. Lewis

2012-01-01T23:59:59.000Z

269

Natural Gas Salt Caverns Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

253,410 341,213 397,560 456,009 512,279 715,821 1999-2012 253,410 341,213 397,560 456,009 512,279 715,821 1999-2012 Alabama 8,300 15,900 15,900 21,900 21,900 21,900 1999-2012 Arkansas 0 1999-2012 California 0 1999-2012 Colorado 0 1999-2012 Illinois 0 1999-2012 Indiana 0 1999-2012 Kansas 931 931 931 931 931 931 1999-2012 Kentucky 0 1999-2012 Louisiana 61,660 88,806 123,341 142,253 161,668 297,020 1999-2012 Maryland 0 1999-2012 Michigan 3,851 3,827 3,821 3,834 3,834 3,834 1999-2012 Mississippi 45,383 62,424 62,301 82,411 90,452 139,627 1999-2012 Montana 0 1999-2012 Nebraska 0 1999-2012 New Mexico 0 1999-2012 New York 2,340 2,340 2,340 2,340 2,340 0 1999-2012 Ohio 0 1999-2012 Oklahoma 0 1999-2012 Oregon 0 1999-2012 Pennsylvania 0 1999-2012 Tennessee 0 1999-2012 Texas 124,686 160,786 182,725 196,140 224,955 246,310 1999-2012

270

West Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

271

Kansas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

272

Montana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

273

Minnesota Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

274

Kentucky Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

275

Tennessee Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

276

Missouri Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

277

Oregon Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

278

Alabama Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

279

Natural Gas Salt Caverns Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

253,410 341,213 397,560 456,009 512,279 715,821 1999-2012 253,410 341,213 397,560 456,009 512,279 715,821 1999-2012 Alabama 8,300 15,900 15,900 21,900 21,900 21,900 1999-2012 Arkansas 0 1999-2012 California 0 1999-2012 Colorado 0 1999-2012 Illinois 0 1999-2012 Indiana 0 1999-2012 Kansas 931 931 931 931 931 931 1999-2012 Kentucky 0 1999-2012 Louisiana 61,660 88,806 123,341 142,253 161,668 297,020 1999-2012 Maryland 0 1999-2012 Michigan 3,851 3,827 3,821 3,834 3,834 3,834 1999-2012 Mississippi 45,383 62,424 62,301 82,411 90,452 139,627 1999-2012 Montana 0 1999-2012 Nebraska 0 1999-2012 New Mexico 0 1999-2012 New York 2,340 2,340 2,340 2,340 2,340 0 1999-2012 Ohio 0 1999-2012 Oklahoma 0 1999-2012 Oregon 0 1999-2012 Pennsylvania 0 1999-2012 Tennessee 0 1999-2012 Texas 124,686 160,786 182,725 196,140 224,955 246,310 1999-2012

280

Pennsylvania Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Oklahoma Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

282

Natural Gas Depleted Fields Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

6,801,291 6,805,490 6,917,547 7,074,773 7,104,948 7,038,245 6,801,291 6,805,490 6,917,547 7,074,773 7,104,948 7,038,245 1999-2012 Alabama 11,000 11,000 11,000 11,000 13,500 13,500 1999-2012 Arkansas 22,000 22,000 21,760 21,760 21,359 21,853 1999-2012 California 487,711 498,705 513,005 542,511 570,511 592,411 1999-2012 Colorado 98,068 95,068 105,768 105,768 105,858 124,253 1999-2012 Illinois 103,731 103,606 103,606 218,106 220,070 220,070 1999-2012 Indiana 32,804 32,946 32,946 30,003 30,003 30,003 1999-2012 Iowa 0 1999-2012 Kansas 287,996 281,291 281,370 283,891 283,800 283,974 1999-2012 Kentucky 210,792 210,792 210,801 212,184 212,184 212,184 1999-2012 Louisiana 527,051 527,051 528,626 528,626 528,626 402,626 1999-2012 Maryland 64,000 64,000 64,000 64,000 64,000 64,000 1999-2012

283

Mississippi Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

284

Wyoming Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

285

Texas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

286

Louisiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

287

Ohio Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico...

288

California Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico...

289

Arkansas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico...

290

Utah Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico...

291

Alaska Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico...

292

Arkansas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download...

293

California Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download...

294

Kansas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download...

295

Oklahoma Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download...

296

Alaska Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download...

297

Colorado Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download...

298

Minnesota Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download...

299

Missouri Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download...

300

Utah Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download...

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Indiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

302

Working Gas Capacity of Salt Caverns  

U.S. Energy Information Administration (EIA) Indexed Site

230,456 271,785 312,003 351,017 488,268 2008-2012 230,456 271,785 312,003 351,017 488,268 2008-2012 Alabama 11,900 11,900 16,150 16,150 16,150 2008-2012 Arkansas 0 2012-2012 California 0 2012-2012 Colorado 0 2012-2012 Illinois 0 2012-2012 Indiana 0 2012-2012 Kansas 375 375 375 375 375 2008-2012 Kentucky 0 2012-2012 Louisiana 57,630 84,487 100,320 111,849 200,702 2008-2012 Maryland 0 2012-2012 Michigan 2,154 2,150 2,159 2,159 2,159 2008-2012 Mississippi 43,292 43,758 56,928 62,932 100,443 2008-2012 Montana 0 2012-2012 Nebraska 0 2012-2012 New Mexico 0 2012-2012 New York 1,450 1,450 1,450 1,450 0 2008-2012 Ohio 0 2012-2012 Oklahoma 0 2012-2012 Oregon 0 2012-2012 Pennsylvania 0 2012-2012 Tennessee 0 2012-2012 Texas 109,655 123,664 130,621 152,102 164,439 2008-2012 Utah 0 2012-2012 Virginia

303

Working Gas Capacity of Depleted Fields  

U.S. Energy Information Administration (EIA) Indexed Site

,583,786 3,659,968 3,733,993 3,769,113 3,720,980 2008-2012 ,583,786 3,659,968 3,733,993 3,769,113 3,720,980 2008-2012 Alabama 9,000 9,000 9,000 11,200 11,200 2008-2012 Arkansas 14,500 13,898 13,898 12,036 12,178 2008-2012 California 283,796 296,096 311,096 335,396 349,296 2008-2012 Colorado 42,579 48,129 49,119 48,709 60,582 2008-2012 Illinois 51,418 51,418 87,368 87,368 87,368 2008-2012 Indiana 12,791 12,791 13,545 13,545 13,809 2008-2012 Iowa 0 2012-2012 Kansas 118,885 118,964 122,814 122,850 122,968 2008-2012 Kentucky 94,598 96,855 100,971 100,971 100,971 2008-2012 Louisiana 284,544 284,544 284,544 285,779 211,780 2008-2012 Maryland 17,300 18,300 18,300 18,300 18,300 2008-2012 Michigan 660,693 664,486 664,906 670,473 671,041 2008-2012 Mississippi 53,140 65,220 70,320 68,159 68,159 2008-2012

304

Michigan Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

305

Maryland Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

306

New York Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

307

Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

308

Estimation of Carbon Monoxide and Carbon Dioxide at Sub-ppm Level Concentrations in Ammonia Synthesis Gas  

Science Journals Connector (OSTI)

......can be handled per analysis. The ammonia synthesis...conditioning of I2O5 reactors or to marginal flow...20%. Thus, the reliability of the method depends...practice for the analysis of trace impurities...estimated from a single analysis the method of converting...to CO2 using I2O5 reactor (11) after its......

K. Annaji Rao; K.K. Pushpa; Hari Mohan; R.M. Iyer

1978-07-01T23:59:59.000Z

309

EPA-GHG Inventory Capacity Building | Open Energy Information  

Open Energy Info (EERE)

EPA-GHG Inventory Capacity Building EPA-GHG Inventory Capacity Building Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Training materials, Lessons learned/best practices References: US EPA GHG inventory Capacity Building[1] Logo: US EPA GHG inventory Capacity Building "Developing greenhouse gas inventories is an important first step to managing emissions. U.S. EPA's approach for building capacity to develop GHG inventories is based on the following lessons learned from working alongside developing country experts: Technical expertise for GHG inventories already exists in developing countries.

310

OpenEI - Electric Capacity  

Open Energy Info (EERE)

New Zealand Energy New Zealand Energy Outlook (2010): Electricity and Generation Capacity http://en.openei.org/datasets/node/357 The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included.

License

311

State and National Wind Resource Potential at Various Capacity...  

Wind Powering America (EERE)

4 8 650 1 2 806 3 0 69% 75 5% 14 031 7 49 073 Estimates of Windy 1 Land Area and Wind Energy Potential, by State, for areas > 35% Capacity Factor at 80m These estimates show, for...

312

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

313

Marine electromagnetic methods for gas hydrate characterization  

E-Print Network (OSTI)

15 m 3 ) Conventional gas reserves Year of estimate Figureworld conventional gas reserves (from Milkov and Sassen (

Weitemeyer, Karen Andrea

2008-01-01T23:59:59.000Z

314

Marine Electromagnetic Methods for Gas Hydrate Characterization  

E-Print Network (OSTI)

15 m 3 ) Conventional gas reserves Year of estimate Figureworld conventional gas reserves (from Milkov and Sassen (

Weitemeyer, Karen A

2008-01-01T23:59:59.000Z

315

Natural Gas Combined Cycle  

E-Print Network (OSTI)

The “Coal Ash Corrosion Resistant Materials Testing Program ” is being conducted by B&W at Reliant Energy’s Niles plant in Niles, Ohio. The total estimated cost of $1,864,603 is co-funded by DOE contributing 37.5%, OCDO providing 33.3 % and B&W providing 17%. The remaining 12 % is in-kind contributions by Reliant Energy and tubing suppliers. Materials development is important to the power industry, and to the use of coal. Figure 1 compares the cost of electricity for subcritical and supercritical coal-fired plants with a natural gas combined cycle (NGCC) plant based on an 85 % capacity factor. This shows that at $1.20/MBtu for fuel, coal is competitive with NGCC when gas is at $3.40/MBtu or higher. An 85 % capacity factor is realistic for a coal-fired plant, but NGCC plants are currently only achieving about 60%. This gives coal an advantage if compared on the basis of cost per kW generated per year. When subcritical and supercritical plants are compared,

Dennis K. Mcdonald; Subcritical Coal Plant; Supercritical Coal Plant

316

Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model  

SciTech Connect

An important issue for electricity system operators is the estimation of renewables' capacity contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to the resource variability. Reliability-based methods, particularly assessment of the Effective Load-Carrying Capacity, are considered to be the most robust and widely-accepted techniques for addressing this resource variability. This report compares estimates of solar PV capacity value by the Regional Energy Deployment System (ReEDS) capacity expansion model against two sources. The first comparison is against values published by utilities or other entities for known electrical systems at existing solar penetration levels. The second comparison is against a time-series ELCC simulation tool for high renewable penetration scenarios in the Western Interconnection. Results from the ReEDS model are found to compare well with both comparisons, despite being resolved at a super-hourly temporal resolution. Two results are relevant for other capacity-based models that use a super-hourly resolution to model solar capacity value. First, solar capacity value should not be parameterized as a static value, but must decay with increasing penetration. This is because -- for an afternoon-peaking system -- as solar penetration increases, the system's peak net load shifts to later in the day -- when solar output is lower. Second, long-term planning models should determine system adequacy requirements in each time period in order to approximate LOLP calculations. Within the ReEDS model we resolve these issues by using a capacity value estimate that varies by time-slice. Within each time period the net load and shadow price on ReEDS's planning reserve constraint signals the relative importance of additional firm capacity.

Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

2014-03-01T23:59:59.000Z

317

"ALON ISRAEL OIL COMPANY LTD",820,13,"ALON BAKERSFIELD OPERATING INC","West Coast","California","BAKERSFIELD",5,"CAT HYDROCRACKING, GAS OIL","Downstream Charge Capacity, Current Year (barrels per calendar day)",14250  

U.S. Energy Information Administration (EIA) Indexed Site

CORPORATION","SURVEY","PERIOD","COMPANY_NAME","RDIST_LABEL","STATE_NAME","SITE","PADD","PRODUCT","SUPPLY","QUANTITY" CORPORATION","SURVEY","PERIOD","COMPANY_NAME","RDIST_LABEL","STATE_NAME","SITE","PADD","PRODUCT","SUPPLY","QUANTITY" "ALON ISRAEL OIL COMPANY LTD",820,13,"ALON BAKERSFIELD OPERATING INC","West Coast","California","BAKERSFIELD",5,"CAT HYDROCRACKING, GAS OIL","Downstream Charge Capacity, Current Year (barrels per calendar day)",14250 "ALON ISRAEL OIL COMPANY LTD",820,13,"ALON BAKERSFIELD OPERATING INC","West Coast","California","BAKERSFIELD",5,"CAT HYDROCRACKING, GAS OIL","Downstream Charge Capacity, Current Year (barrels per stream day)",15000

318

Planned Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Planned Geothermal Capacity Planned Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Planned Geothermal Capacity This article is a stub. You can help OpenEI by expanding it. General List of Development Projects Map of Development Projects Planned Geothermal Capacity in the U.S. is reported by the Geothermal Energy Association via their Annual U.S. Geothermal Power Production and Development Report (April 2011). Related Pages: GEA Development Phases Geothermal Development Projects Add.png Add a new Geothermal Project Please be sure the project does not already exist in the list below before adding - perhaps under a different name. Technique Developer Phase Project Type Capacity Estimate (MW) Location Geothermal Area Geothermal Region GEA Report

319

wind power capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description These estimates are derived from a composite of high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States) and the National Center for Atmospheric Research (United States) as processed for use in the IMAGE model. The high resolution datasets were produced by the National Renewable Energy Laboratory (United States), Risø DTU National Laboratory (Denmark), the National Institute for Space Research (Brazil), and the Canadian Wind Energy Association. The data repr Source National Renewable Energy Laboratory Date Released Unknown Date Updated Unknown Keywords area capacity clean energy international

320

EIA - Electricity Generating Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010...

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Liquid heat capacity lasers  

DOE Patents (OSTI)

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

322

capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed Comment

323

Nanofluid heat capacities  

Science Journals Connector (OSTI)

Significant increases in the heat capacity of heat transfer fluids are needed not only to reduce the costs of liquid heating and cooling processes but also to bring clean energy producing technologies like concentrating solar power (CSP) to price parity with conventional energy generation. It has been postulated that nanofluids could have higher heat capacities than conventional fluids. In this work nano- and micron-sized particles were added to five base fluids (poly-? olefin mineral oil ethylene glycol a mixture of water and ethylene glycol and calcium nitrate tetrahydrate) and the resulting heat capacities were measured and compared with those of the neat base fluids and the weighted average of the heat capacities of the components. The particles used were inert metals and metal oxides that did not undergo any phase transitions over the temperature range studied. In the nanofluids studied here we found no increase in heat capacity upon the addition of the particles larger than the experimental error.

Anne K. Starace; Judith C. Gomez; Jun Wang; Sulolit Pradhan; Greg C. Glatzmaier

2011-01-01T23:59:59.000Z

324

WINDExchange: Wind Potential Capacity  

Wind Powering America (EERE)

area with a gross capacity factor1 of 35% and higher, which may be suitable for wind energy development. AWS Truepower LLC produced the wind resource data with a spatial...

325

QER Public Meeting in Denver, CO: Gas-Electricity Interdependencies...  

Energy Savers (EERE)

and General Manager, Brazos Electric Cooperative - Statement Beth Musich, Director Energy Markets and Capacity Products, Southern California Gas Company and San Diego Gas &...

326

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

is National Hurricane Preparedness Week. Natural Gas Transportation Update: Texas Gas Transmission (TGT) announced that the company will reduce capacity through the...

327

Shale gas production: potential versus actual greenhouse gas emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O’Sullivan, Francis Martin

328

EPA-GHG Inventory Capacity Building | Open Energy Information  

Open Energy Info (EERE)

EPA-GHG Inventory Capacity Building EPA-GHG Inventory Capacity Building (Redirected from US EPA GHG Inventory Capacity Building) Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Training materials, Lessons learned/best practices References: US EPA GHG inventory Capacity Building[1] Logo: US EPA GHG inventory Capacity Building "Developing greenhouse gas inventories is an important first step to managing emissions. U.S. EPA's approach for building capacity to develop GHG inventories is based on the following lessons learned from working alongside developing country experts: Technical expertise for GHG inventories already exists in developing

329

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

330

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

331

Natural Gas Liquids Estimated Production  

Gasoline and Diesel Fuel Update (EIA)

802 827 788 811 831 840 1979-2008 802 827 788 811 831 840 1979-2008 Federal Offshore U.S. 148 155 123 125 127 94 1981-2008 Pacific (California) 0 0 0 0 0 0 1979-2008 Louisiana & Alabama 120 127 98 102 108 80 1981-2008 Texas 28 28 25 23 19 14 1981-2008 Alaska 18 18 17 14 13 13 1979-2008 Lower 48 States 784 809 771 797 818 827 1979-2008 Alabama 5 4 5 5 4 9 1979-2008 Arkansas 0 0 0 0 0 0 1979-2008 California 10 10 11 11 11 11 1979-2008 Coastal Region Onshore 1 1 1 1 1 1 1979-2008 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2008 San Joaquin Basin Onshore 9 9 10 10 10 10 1979-2008 State Offshore 0 0 0 0 0 0 1979-2008 Colorado 29 32 31 32 33 45 1979-2008 Florida 1 0 0 0 0 0 1979-2008 Kansas 23 22 20 19 19 19 1979-2008

332

Shale Natural Gas Estimated Production  

Gasoline and Diesel Fuel Update (EIA)

1,293 2,116 3,110 5,336 7,994 2007-2011 1,293 2,116 3,110 5,336 7,994 2007-2011 Alaska 0 0 0 0 0 2007-2011 Lower 48 States 1,293 2,116 3,110 5,336 7,994 2007-2011 Alabama 0 0 0 0 2007-2010 Arkansas 94 279 527 794 940 2007-2011 California 101 2011-2011 San Joaquin Basin Onshore 101 2011-2011 Colorado 0 0 1 1 3 2007-2011 Kentucky 2 2 5 4 4 2007-2011 Louisiana 1 23 293 1,232 2,084 2007-2011 North 1 23 293 1,232 2,084 2007-2011 South Onshore 0 2011-2011 Michigan 148 122 132 120 106 2007-2011 Montana 12 13 7 13 13 2007-2011 New Mexico 2 0 2 6 9 2007-2011 East 2 0 1 3 5 2007-2011 West 0 0 1 3 4 2007-2011 North Dakota 3 3 25 64 95 2007-2011 Ohio 0 0 0 0 2007-2010 Oklahoma 40 168 249 403 476 2007-2011 Pennsylvania 1 1 65 396 1,068 2007-2011

333

Natural Gas Liquids Estimated Production  

Gasoline and Diesel Fuel Update (EIA)

802 827 788 811 831 840 1979-2008 802 827 788 811 831 840 1979-2008 Federal Offshore U.S. 148 155 123 125 127 94 1981-2008 Pacific (California) 0 0 0 0 0 0 1979-2008 Louisiana & Alabama 120 127 98 102 108 80 1981-2008 Texas 28 28 25 23 19 14 1981-2008 Alaska 18 18 17 14 13 13 1979-2008 Lower 48 States 784 809 771 797 818 827 1979-2008 Alabama 5 4 5 5 4 9 1979-2008 Arkansas 0 0 0 0 0 0 1979-2008 California 10 10 11 11 11 11 1979-2008 Coastal Region Onshore 1 1 1 1 1 1 1979-2008 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2008 San Joaquin Basin Onshore 9 9 10 10 10 10 1979-2008 State Offshore 0 0 0 0 0 0 1979-2008 Colorado 29 32 31 32 33 45 1979-2008 Florida 1 0 0 0 0 0 1979-2008 Kansas 23 22 20 19 19 19 1979-2008

334

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Summary from the Short-Term Energy Outlook Summary from the Short-Term Energy Outlook EIA Home > Natural Gas > Natural Gas Weekly Update Natural Gas Summary from the Short-Term Energy Outlook This summary is based on the most recent Short-Term Energy Outlook released May 6, 2002. EIA projects that natural gas wellhead prices will average $2.73 per MMBtu in 2002 compared with about $4.00 per MMBtu last year (Short-Term Energy Outlook, May 2002). This projection reflects the sharp increases in spot and near-term futures prices in recent weeks. Average wellhead prices have risen 38 percent from $2.14 per MMBtu in February to an estimated $2.96 in April. Spot prices at the Henry Hub have increased to an even greater extent, rising more than $1.50 per MMBtu since early February. The upward price trend reflects a number of influences, such as unusual weather patterns that have led to increased gas consumption, and tensions in the Middle East and rising crude oil prices. Other factors contributing to the recent price surge include the strengthening economy, the increased capacity and planned new capacity of gas-burning power plants, and concerns about the decline in gas-directed drilling.

335

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report June 2013 With Data as of January 1, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. Table 1. Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013

336

Dual capacity reciprocating compressor  

DOE Patents (OSTI)

A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

Wolfe, R.W.

1984-10-30T23:59:59.000Z

337

Dual capacity reciprocating compressor  

DOE Patents (OSTI)

A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

Wolfe, Robert W. (Wilkinsburg, PA)

1984-01-01T23:59:59.000Z

338

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report With Data as of January 1, 2013 | Release Date: June 21, 2013 | Next Release Date: June 20, 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1997 1995 1994 Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

339

Investigation of the carbon dioxide sorption capacity and structural deformation of coal  

SciTech Connect

Due to increasing atmospheric CO2 concentrations causing the global energy and environmental crises, geological sequestration of carbon dioxide is now being actively considered as an attractive option to mitigate greenhouse gas emissions. One of the important strategies is to use deep unminable coal seams, for those generally contain significant quantities of coal bed methane that can be recovered by CO2 injection through enhanced coal bed natural gas production, as a method to safely store CO2. It has been well known that the adsorbing CO2 molecules introduce structural deformation, such as distortion, shrinkage, or swelling, of the adsorbent of coal organic matrix. The accurate investigations of CO2 sorption capacity as well as of adsorption behavior need to be performed under the conditions that coals deform. The U.S. Department of Energy-National Energy Technology Laboratory and Regional University Alliance are conducting carbon dioxide sorption isotherm experiments by using manometric analysis method for estimation of CO2 sorption capacity of various coal samples and are constructing a gravimetric apparatus which has a visual window cell. The gravimetric apparatus improves the accuracy of carbon dioxide sorption capacity and provides feasibility for the observation of structural deformation of coal sample while carbon dioxide molecules interact with coal organic matrix. The CO2 sorption isotherm measurements have been conducted for moist and dried samples of the Central Appalachian Basin (Russell County, VA) coal seam, received from the SECARB partnership, at the temperature of 55 C.

Hur, Tae-Bong; Fazio, James; Romanov, Vyacheslav; Harbert, William

2010-01-01T23:59:59.000Z

340

Documentation of the Oil and Gas Supply Module (OGSM)  

SciTech Connect

The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian/Antrim shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted profitability to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

NONE

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology  

SciTech Connect

Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year that it will be available for CO2 storage. The modeling framework and assumptions used to assess the impact of the timing of CO2 storage resource availability on the region’s deployment of CCS technologies is also described. The purpose of this report is to describe the data and methodology for examining the carbon dioxide (CO2) storage capacity resource of a major hydrocarbon province incorporating estimated depletion dates for its oil and gas fields with the largest CO2 storage capacity. This allows the development of a projected timeline for CO2 storage availability across the basin and enables a more realistic examination of potential oil and gas field CO2 storage utilization by the region’s large CO2 point sources. The Alberta Basin of western Canada was selected for this initial examination as a representative mature basin, and the development of capacity and depletion date estimates for the 227 largest oil and gas pools (with a total storage capacity of 4.7 GtCO2) is described, along with the impact on source-reservoir pairing and resulting CO2 transport and storage economics. The analysis indicates that timing of storage resource availability has a significant impact on the mix of storage reservoirs selected for utilization at a given time, and further confirms the value that all available reservoir types offer, providing important insights regarding CO2 storage implementation to this and other major oil and gas basins throughout North America and the rest of the world. For CCS technologies to deploy successfully and offer a meaningful contribution to climate change mitigation, CO2 storage reservoirs must be available not only where needed (preferably co-located with or near large concentrations of CO2 sources or emissions centers) but also when needed. The timing of CO2 storage resource availability is therefore an important factor to consider when assessing the real opportunities for CCS deployment in a given region.

Dahowski, Robert T.; Bachu, Stefan

2007-03-05T23:59:59.000Z

342

Spare Capacity (2003) and Peak Production in World Oil  

Science Journals Connector (OSTI)

Reliable estimates of minimum spare capacity for world oil production can be obtained by comparing production ... before and following the collapse of the Iraqi oil industry in March 2003. Spare production was .....

Alfred J. Cavallo

2004-03-01T23:59:59.000Z

343

Question 2: Gas procurement strategy  

SciTech Connect

This article is a collection of responses from natural gas distribution company representatives to questions on how the start-up of the natural gas futures market has changed gas procurement strategies, identification of procurement problems related to pipeline capacity, deliverability, or pregranted abandonment of firm transportation, the competition of separate utility subsidiaries with brokers, marketers, and other gas suppliers who sell gas to large-volume industrial or other 'noncore' customers.

Carrigg, J.A.; Crespo, J.R.; Davis, E.B. Jr.; Farman, R.D.; Green, R.C. Jr.; Hale, R.W.; Howard, J.J.; McCormick, W.T. Jr.; Page, T.A.; Ryan, W.F.; Schrader, T.F.; Schuchart, J.A.; Smith, J.F.; Stys, R.D.; Thorpe, J.A.

1990-10-25T23:59:59.000Z

344

Capacity of steganographic channels  

Science Journals Connector (OSTI)

An information-theoretic approach is used to determine the amount of information that may be safely transferred over a steganographic channel with a passive adversary. A steganographic channel, or stego-channel is a pair consisting of the channel transition ... Keywords: information spectrum, information theory, steganalysis, steganographic capacity, steganography, stego-channel

Jeremiah J. Harmsen; William A. Pearlman

2005-08-01T23:59:59.000Z

345

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

346

Capacity Value of Solar Power  

SciTech Connect

Evaluating the capacity value of renewable energy sources can pose significant challenges due to their variable and uncertain nature. In this paper the capacity value of solar power is investigated. Solar capacity value metrics and their associated calculation methodologies are reviewed and several solar capacity studies are summarized. The differences between wind and solar power are examined, the economic importance of solar capacity value is discussed and other assessments and recommendations are presented.

Duignan, Roisin; Dent, Chris; Mills, Andrew; Samaan, Nader A.; Milligan, Michael; Keane, Andrew; O'Malley, Mark

2012-11-10T23:59:59.000Z

347

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",25548,15 "..Electric Utilities",16661,18 "..IPP & CHP",8887,13 "Net Generation (megawatthours)",103407706,15...

348

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",15404,29 "..Electric Utilities",12691,21 "..IPP & CHP",2713,33 "Net Generation (megawatthours)",54584295,28...

349

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",10,51 "Electric Utilities",, "IPP & CHP",10,51 "Net Generation (megawatthours)",71787,51 "Electric...

350

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",4491,43 "..Electric Utilities",19,49 "..IPP & CHP",4472,22 "Net Generation (megawatthours)",14428596,44...

351

Total Natural Gas Gross Withdrawals (Summary)  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity...

352

Net Withdrawals of Natural Gas from Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

353

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

354

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

355

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

356

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

357

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

358

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

359

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

360

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

362

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

363

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

364

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

365

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

366

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

367

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

368

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

369

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200 ................................................................................................................................................................................................................................................................................................ Delaware......................................

370

NREL: Energy Analysis - Utility-Scale Energy Technology Capacity Factors  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility-Scale Energy Technology Capacity Factors Utility-Scale Energy Technology Capacity Factors This chart indicates the range of recent capacity factor estimates for utility-scale renewable energy technologies. The dots indicate the average, and the vertical lines represent the range: Average +1 standard deviation and average -1 standard deviation. If you are seeking utility-scale technology cost and performance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation. Capital Cost (September 2013 Update) Operations & Maintenance (September 2013 Update) Utility-Scale Capacity Factors Useful Life Land Use by System Technology LCOE Calculator Capacity factor for energy technologies. For more information, please download supporting data for energy technology costs.

371

1993 Pacific Northwest Loads and Resources Study, Technical Appendix: Volume 2, Book 2, Capacity.  

SciTech Connect

Monthly totals of utility loads and capacities extrapolated as far as 2009 with a probability estimate of enough water resources for hydro power.

United States. Bonneville Power Administration.

1993-12-01T23:59:59.000Z

372

EIA - Natural Gas Pipeline Network - Regional/State Underground Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Regional/State Underground Natural Gas Storage Table Regional/State Underground Natural Gas Storage Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Underground Natural Gas Storage, Close of 2007 Depleted-Reservoir Storage Aquifer Storage Salt-Cavern Storage Total Region/ State # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) Central Region Colorado 8 42 1,088 0 0 0 0 0 0 8 42 1,088 Iowa 0 0 0 4 77 1,060 0 0 0 4 77 1,060

373

The IPCC/OECD/IEA Greenhouse Gas Inventories Programme: International Methods for the Estimation, Monitoring and Verification of GHG Emission Inventories  

Science Journals Connector (OSTI)

The aims of this paper are to summarise the current status in international methods for the estimation of GHG inventories and the relevance of this work...

Dr. Bo Lim; Pierre Boileau; Yamil Bonduki

1999-01-01T23:59:59.000Z

374

Development of Gas Turbine Combustors for Low BTU Gas  

Science Journals Connector (OSTI)

Large-capacity combined cycles with high-temperature gas turbines burning petroleum fuel or LNG have already ... the other hand, as the power generation technology utilizing coal burning the coal gasification com...

I. Fukue; S. Mandai; M. Inada

1992-01-01T23:59:59.000Z

375

Studies on the Applicability of Biomarkers in Estimating the Systemic Bioavailability of Polynuclear Aromatic Hydrocarbons from Manufactured Gas Plant Tar-Contaminated Soils  

Science Journals Connector (OSTI)

The systemic bioavailability of polynuclear aromatic hydrocarbons (PAH) from ingested soils containing manufactured gas plant (MGP) tar was evaluated in mice. Soil and organic extract of each soil were incorporated into a diet and fed to mice for two ...

Aruna Koganti; Deborah A. Spina; Kimberly Rozett; Bing-Li Ma; Eric H. Weyand; Barbara B. Taylor; David M. Mauro

1998-08-25T23:59:59.000Z

376

Empirical Methods for Detecting Regional Trends and Other Spatial Expressions in Antrim Shale Gas Productivity, with Implications for Improving Resource Projections Using Local Nonparametric Estimation Techniques  

Science Journals Connector (OSTI)

The primary objectives of this research were to (1) investigate empirical methods for establishing regional trends in unconventional gas resources as exhibited by historical production data ... 80-acre cells) fro...

Timothy C. Coburn; Philip A. Freeman; Emil D. Attanasi

2012-03-01T23:59:59.000Z

377

From carbon to light: a new framework for estimating greenhouse gas emissions reductions from replacing fuel-based lighting with LED systems  

Science Journals Connector (OSTI)

There is considerable well-intended, yet wishful anticipation about reducing greenhouse gas emissions by replacing fuel-based lighting in the developing world with grid-independent light-emitting diode (LED) lighting

Evan Mills; Arne Jacobson

2011-11-01T23:59:59.000Z

378

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Net Available Shell Storage Capacity by PAD District as of September 30, 2013 Net Available Shell Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 Refineries Crude Oil 17,334 831 21,870 1,721 86,629 3,468 4,655 174 39,839 1,230 170,327 7,424 Fuel Ethanol 174 - 175 1 289 - 134 - 92 - 864 1 Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,267 23 11,599 382 28,865 78 641 19 2,412 23 44,784 525 Propane/Propylene (dedicated)

379

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working Storage Capacity by PAD District as of September 30, 2013 Working Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity 1 2 3 4 5 U.S. Total Ending Stocks Utilization Rate 1 Refineries Crude Oil 15,154 17,952 72,858 4,109 35,324 145,397 90,778 62% Fuel Ethanol 151 142 257 114 79 743 482 65% Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,149 10,996 24,902 581 2,219 39,847 19,539 49% Propane/Propylene (dedicated) 3 405 3,710 3,886 54 199 8,254 4,104 NA Motor Gasoline (incl. Motor Gasoline Blending Components)

380

Estimating SCR installation costs  

SciTech Connect

The EUCG surveyed 72 separate US installations of selective catalytic reduction (SCR) systems at coal-fired units totalling 41 GW of capacity to identify the systems' major cost drivers. The results, summarized in this article, provide excellent first-order estimates and guidance for utilities considering installing the downstream emissions-control technology. 4 figs., 1 tab.

Marano, M.; Sharp, G. [American Electric Power (United States)

2006-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Natural gas leak mapper  

DOE Patents (OSTI)

A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

2008-05-20T23:59:59.000Z

382

Thermodynamics of the Yang-Mills gas  

Science Journals Connector (OSTI)

The contribution of nonlinear fluctuations (instantons) to the thermodynamics of the Yang-Mills gas at high temperature is estimated.

Barry J. Harrington and Harvey K. Shepard

1978-10-15T23:59:59.000Z

383

Adaptive capacity and its assessment  

SciTech Connect

This paper reviews the concept of adaptive capacity and various approaches to assessing it, particularly with respect to climate variability and change. I find that adaptive capacity is a relatively under-researched topic within the sustainability science and global change communities, particularly since it is uniquely positioned to improve linkages between vulnerability and resilience research. I identify opportunities for advancing the measurement and characterization of adaptive capacity by combining insights from both vulnerability and resilience frameworks, and I suggest several assessment approaches for possible future development that draw from both frameworks and focus on analyzing the governance, institutions, and management that have helped foster adaptive capacity in light of recent climatic events.

Engle, Nathan L.

2011-04-20T23:59:59.000Z

384

Gas production and transport in artificial sludge depots  

Science Journals Connector (OSTI)

This paper presents a study to determine the impact of gas production in dredging sludge on the storage capacity of artificial sludge depots. Gas is produced as a result of the decomposition of organic material present in dredging spoil. This process, in which methane and carbon dioxide are formed, may lead to expansion of sludge layers, partly or even completely counterbalancing consolidation. The study shows that, even with a very conservative estimation of the rate of gas production, accumulation of gas occurs as convective and diffusive transport proceed very slowly. Nucleation of gas bubbles occurs already at a limited oversaturation of pore water. During their growth, bubbles push aside the surrounding grain matrix. Resulting stresses may initiate cracks around bubbles. If these cracks join, they may form channels stretching out to the depot surface and along which gas may escape. However, channels are only stable to a limited depth below which bubble accumulation may continue. The gas content at which sufficient cracks and channels are formed to balance the rate of gas production with the rate of outflow strongly depends on the constitutive properties of the dredging sludge considered. In sludge with a high shear strength (>10 kPa), stable channels are created already at low deformations. However, a large expansion may occur in sludge with a low strength. The present study shows that accumulation of gas may continue until a bulk density less than that of water is attained. This is equivalent to a gas fraction of about 25–37%, depending on the initial water content of the sludge. Only then can gas escape as a result of instabilities in the sediment matrix. This should be well taken into account during the design and management of artificial depots.

T. van Kessel; W.G.M. van Kesteren

2002-01-01T23:59:59.000Z

385

Natural Gas Annual 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 Released: October 31, 2007 The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2006 and 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

386

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY, OH, VA, WV 1,849 9,350 10,365 Transcontinental Gas Pipeline Co. Northeast, Southeast Southwest AL, GA, LA, MD, MS, NC, NY, SC, TX, VA, GM 2,670 8,466 10,450 Northern Natural Gas Co. Central, Midwest Southwest IA, IL, KS, NE, NM, OK, SD, TX, WI, GM 1,055 7,442 15,874 Texas Eastern Transmission Corp.

387

Stretched Exponential Decline Model as a Probabilistic and Deterministic Tool for Production Forecasting and Reserve Estimation in Oil and Gas Shales  

E-Print Network (OSTI)

in the United States. Estimation of P50 and P10 reserves that meet SPE/WPC/AAPG/SPEE Petroleum Resources Management System (PRMS) criteria is important for internal resource inventories for most companies. In this work a systematic methodology was developed...

Akbarnejad Nesheli, Babak

2012-07-16T23:59:59.000Z

388

Chapter 10 - Natural Gas Sweetening  

Science Journals Connector (OSTI)

Abstract Acid gas constituents present in most natural gas streams are mainly hydrogen sulfide (H2S) and carbon dioxide (CO2). Many gas streams, however, particularly those in a refinery or manufactured gases, may contain mercaptans, carbon sulfide, or carbonyl sulfide. The level of acid gas concentration in the sour gas is an important consideration for selecting the proper sweetening process. Some processes are applicable for removal of large quantities of acid gas, and other processes have the capacity for removing acid gas constituents to ppm range. This chapter covers the minimum process requirements, criteria, and features for accomplishment of process design of gas sweetening units. The basic principles for process design of main equipment, piping, and instrumentation together with guidelines on present developments and process selection in the gas sweetening process are the main objectives throughout this chapter.

Alireza Bahadori

2014-01-01T23:59:59.000Z

389

Number of Producing Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Count) Count) Data Series: Wellhead Price Imports Price Price of Imports by Pipeline Price of LNG Imports Exports Price Price of Exports by Pipeline Price of LNG Exports Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

390

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

391

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

392

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

393

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

394

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

395

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

396

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

397

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

398

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

399

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

400

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

402

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

403

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

404

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

405

Philippines-Strengthening Planning Capacity for Low Carbon Growth in  

Open Energy Info (EERE)

Philippines-Strengthening Planning Capacity for Low Carbon Growth in Philippines-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Jump to: navigation, search Name Philippines-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Agency/Company /Organization Asian Development Bank Partner Japan, United Kingdom Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, People and Policy, Transportation Topics Baseline projection, GHG inventory, Low emission development planning, Market analysis, Pathways analysis, Policies/deployment programs Program Start 2011 Program End 2013 Country Philippines South-Eastern Asia References Strengthening Planning Capacity for Low Carbon Growth in Developing Asia[1]

406

Strengthening Planning Capacity for Low Carbon Growth in Developing Asia  

Open Energy Info (EERE)

Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Strengthening Planning Capacity for Low Carbon Growth in Developing Asia - Thailand Jump to: navigation, search Name Thailand-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Agency/Company /Organization Asian Development Bank Partner Japan, United Kingdom Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, People and Policy, Transportation Topics Baseline projection, GHG inventory, Low emission development planning, Market analysis, Pathways analysis, Policies/deployment programs Program Start 2011 Program End 2013 Country Thailand South-Eastern Asia References Strengthening Planning Capacity for Low Carbon Growth in Developing Asia[1]

407

Indonesia-Strengthening Planning Capacity for Low Carbon Growth in  

Open Energy Info (EERE)

Indonesia-Strengthening Planning Capacity for Low Carbon Growth in Indonesia-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Jump to: navigation, search Name Indonesia-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Agency/Company /Organization Asian Development Bank Partner Japan, United Kingdom Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, People and Policy, Transportation Topics Baseline projection, GHG inventory, Low emission development planning, Market analysis, Pathways analysis, Policies/deployment programs Program Start 2011 Program End 2013 Country Indonesia South-Eastern Asia References Strengthening Planning Capacity for Low Carbon Growth in Developing Asia[1]

408

Malaysia-Strengthening Planning Capacity for Low Carbon Growth in  

Open Energy Info (EERE)

Malaysia-Strengthening Planning Capacity for Low Carbon Growth in Malaysia-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Jump to: navigation, search Name Malaysia-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Agency/Company /Organization Asian Development Bank Partner Japan, United Kingdom Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, People and Policy, Transportation Topics Baseline projection, GHG inventory, Low emission development planning, Market analysis, Pathways analysis, Policies/deployment programs Program Start 2011 Program End 2013 Country Malaysia South-Eastern Asia References Strengthening Planning Capacity for Low Carbon Growth in Developing Asia[1]

409

Estimating Methods  

Directives, Delegations, and Requirements

Based on the project's scope, the purpose of the estimate, and the availability of estimating resources, the estimator can choose one or a combination of techniques when estimating an activity or project. Estimating methods, estimating indirect and direct costs, and other estimating considerations are discussed in this chapter.

1997-03-28T23:59:59.000Z

410

U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report  

SciTech Connect

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

NONE

1998-12-01T23:59:59.000Z

411

Natural Gas Annual 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 Released: January 28, 2009 The Natural Gas Annual 2007 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2007. Summary data are presented for each State for 2003 to 2007. The Natural Gas Annual 2007 Summary Highlights provides an overview of the supply and disposition of natural gas in 2007 and is intended as a supplement to the Natural Gas Annual 2007. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

412

Natural Gas Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

9 9 Released: December 28, 2010 The Natural Gas Annual 2009 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2009. Summary data are presented for each State for 2005 to 2009. The Natural Gas Annual 2009 Summary Highlights provides an overview of the supply and disposition of natural gas in 2009 and is intended as a supplement to the Natural Gas Annual 2009. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2009) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2009) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

413

Natural Gas Annual 2008  

Gasoline and Diesel Fuel Update (EIA)

8 8 Released: March 2, 2010 The Natural Gas Annual 2008 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2008. Summary data are presented for each State for 2004 to 2008. The Natural Gas Annual 2008 Summary Highlights provides an overview of the supply and disposition of natural gas in 2008 and is intended as a supplement to the Natural Gas Annual 2008. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2008) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2008) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

414

Documentation of the Oil and Gas Supply Module (OGSM)  

SciTech Connect

The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. It is prepared in accordance with the Energy Information Administration`s (EIA) legal obligation to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, Section 57(b)(2)). Projected production estimates of U.S. crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects U.S. domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted drilling expenditures and average drilling costs to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

NONE

1995-10-24T23:59:59.000Z

415

Natural Gas - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

injections typically continue beyond the end of October storage Natural gas, solar, and wind lead power plant capacity additions in first-half 2014 statescapacity and...

416

Axial bearing with gas lubrication for marine turbines  

Science Journals Connector (OSTI)

The possibility of enhancing the carrying capacity of the lubricant layer in bearings with gas lubrication is considered, for marine turbines. The basic design features of the hybrid...

M. V. Gribinichenko; A. V. Kurenskii; N. V. Sinenko

2013-10-01T23:59:59.000Z

417

Advancing Development and Greenhouse Gas Reductions in Vietnams...  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity for Low Emission Development Strategies EE energy efficiency FIT feed-in tariff GHG greenhouse gas GIS geographical information system GIZ Deutsche Gesellschaft fr...

418

Natural Gas Weekly Update, Printer-Friendly Version  

Annual Energy Outlook 2012 (EIA)

diameter pipeline with the capacity to transport 477 million cubic feet (MMcf) of natural gas per day. Facilities would also include a compressor station, 2 meter stations, 19...

419

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

repairs are completed. During this period capacity will be zero. Cheyenne Plains Gas Pipeline Company announced that repairs have been completed on the compressor at the...

420

COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY Empowering Communities in the Age of E-Government Prepared by Melinda Downing, Environmental Justice Program Manager, U.S. Department of Energy MAR 06 MARCH 2006 Since 1999, the Department of Energy has worked with the National Urban Internet and others to create community capacity through technology.  Empowering Communities in the Age of E-Government Table of Contents Message from the Environmental Justice Program Manager . . . . . . . . 3 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Partnerships. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Process Chart: From Agency to Community. . . . . . . . . . . . . . . . . . . 7 Case Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Dynamic Long-Term Modelling of Generation Capacity Investment and Capacity Margins  

E-Print Network (OSTI)

is the capital expenditure vector for the project with ??x?1i=0 Mxi = 1. For simplicity, the expenditure schedule uses a lagged 3Which in the case of natural gas match quite well with available future prices from ICE Futures Europe (out to 2017) but are arguably... capacity I(t), which is a parallel cascade of the four technology categories. Each single category is defined by a Delay Differential Equation (DDE): dIx dt = ? (?j ,?j)??x ?j?(t? ?j ? ?x)? ? (?j ,?j)??x ?j?(t? ?j ? ?x ? ?x), (1) where ?(t) is the Dirac...

Eager, Dan; Hobbs, Benjamin; Bialek, Janusz

2012-04-25T23:59:59.000Z

422

State Emissions Estimates  

Gasoline and Diesel Fuel Update (EIA)

Estimates of state energy-related carbon dioxide emissions Estimates of state energy-related carbon dioxide emissions Because energy-related carbon dioxide (CO 2 ) constitutes over 80 percent of total emissions, the state energy-related CO 2 emission levels provide a good indicator of the relative contribution of individual states to total greenhouse gas emissions. The U.S. Energy Information Administration (EIA) emissions estimates at the state level for energy-related CO 2 are based on data contained in the State Energy Data System (SEDS). 1 The state-level emissions estimates are based on energy consumption data for the following fuel categories: three categories of coal (residential/commercial, industrial, and electric power sector); natural gas; and ten petroleum products including-- asphalt and road oil, aviation gasoline, distillate fuel, jet fuel, kerosene, liquefied petroleum gases

423

generation capacity | OpenEI  

Open Energy Info (EERE)

generation capacity generation capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

424

Projections of U. S. GHG Reductions from Nuclear Power New Capacity Based on Historic Levels of Investment  

SciTech Connect

Historical rates of capital investment in nuclear plant construction was used as a guide to estimate the rate of future capacity introduction. The magnitude of nuclear capacity was then used to determine the effect on greenhouse gas (GHG) emissions from electrical production in the U.S. to 2050. Total capital investment in nuclear power plant construction for every U.S. nuclear unit from 1964 to 1990 were obtained and the total investment and divided by their construction period to provide a value for possible rate of investment. The total linear rate of capital expenditure over the entire period was determined as well as that for the period of peak construction from 1973 to 1985, $11.5 billion/y and $17.9 billion/y, respectively in 2004$. These were used with a variety of capital cost estimates for nuclear construction to obtain several scenarios for nuclear capacity additions. Total nuclear generation out to 2050 was calculated assuming current plants would be constrained by 60-year operating licenses (i.e., a single 20-year life extension). The effect on nuclear generating capacity was projected and the resultant impact on GHG emissions determined assuming nuclear would directly replace coal-fired generation. It was concluded that actually reductions in emissions would not be experienced until 2038, yet growth in emissions from electrical production would be slowed up through that point. Nuclear energy, therefore cannot have a dramatic short-term effect on emissions, as likely cannot any energy producing technology due to the significant time to introduce large-scale changes. Nuclear power, however, can have a major longer term impact on emissions, particularly under more favorable cost and investment conditions.

Besmann, Theodore M [ORNL

2010-01-01T23:59:59.000Z

425

Possible Locations for Gas-Fired Power Generation in Southern Germany  

Science Journals Connector (OSTI)

Gas-fired power generation has not only grown continuously in Europe, ... . Significant transport capacities in a high pressure gas grid are required to guarantee stable generation of gas-fired electricity. The p...

Joachim Müller-Kirchenbauer…

2013-01-01T23:59:59.000Z

426

Kansas Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 301,502 301,502 301,502 301,502 301,502 301,502 301,502 301,502 301,502 301,502 301,502 301,502 2003 301,502 301,502 301,502 301,502 301,502 299,474 299,474 299,474 299,474 299,474 299,474 299,474 2004 293,574 293,574 293,574 293,574 293,574 293,574 293,574 293,574 293,574 288,197 288,197 288,197 2005 288,197 288,197 288,197 289,259 289,259 289,259 289,259 289,259 289,259 289,259 289,259 289,259 2006 289,259 289,259 289,259 289,259 289,259 289,259 289,259 289,259 289,259 289,747 289,747 289,747 2007 289,747 289,747 289,747 289,747 289,747 289,747 289,747 289,747 288,383 288,383 288,383 288,383 2008 288,383 288,383 288,383 288,383 288,383 288,383 288,383 288,383 288,383 288,383 288,926 288,926

427

U.S. Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View

428

Louisiana Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 580,037 580,037 580,037 580,037 580,037 580,037 580,037 580,037 580,037 580,037 576,841 576,841 2003 576,841 576,841 576,841 576,841 576,841 587,116 563,590 587,116 587,116 587,116 587,116 587,116 2004 592,516 592,516 592,516 592,516 592,516 592,516 592,516 592,516 592,516 591,673 591,673 591,673 2005 591,673 591,673 591,673 591,673 591,673 591,673 591,673 591,673 591,673 591,673 591,673 591,673 2006 591,673 591,673 591,673 591,673 591,673 591,673 591,673 591,673 591,673 593,740 593,740 593,740 2007 593,740 593,740 593,740 593,740 593,740 593,740 593,740 593,740 599,165 599,869 599,869 599,869 2008 599,869 599,869 599,869 599,869 599,869 599,869 599,869 599,869 599,869 606,369 605,361 605,361

429

Oregon Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 17,755 21,080 21,080 21,080 21,080 21,080 21,080 21,080 22,042 22,042 22,042 22,042 2003 22,042 22,042 22,042 22,042 22,042 23,676 23,676 23,676 23,676 23,676 23,676 23,676 2004 23,676 23,676 23,676 23,676 23,676 23,676 23,676 23,676 23,676 23,796 23,796 23,796 2005 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,603 2006 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,034 24,034 24,034 2007 24,034 24,034 24,034 24,034 24,034 24,034 24,034 24,034 26,703 26,703 26,703 29,165 2008 22,310 22,310 22,310 22,310 22,310 22,310 22,310 22,310 22,310 22,310 29,415 29,415

430

Virginia Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 4,967 4,967 4,967 4,967 4,967 4,967 4,967 4,967 4,967 4,967 2,992 2,992 2003 2,992 2,992 2,992 2,992 2,992 5,100 5,100 6,344 6,344 6,344 6,344 6,344 2004 6,344 6,344 6,344 6,344 6,344 6,344 6,344 6,344 6,344 8,024 8,024 8,024 2005 8,024 8,024 8,024 8,024 8,024 8,024 8,024 8,024 8,024 8,024 8,024 8,024 2006 8,024 8,024 8,024 8,024 8,024 8,024 8,024 8,024 8,024 9,035 9,035 9,035 2007 9,035 9,035 9,035 9,035 9,035 9,035 9,035 9,035 9,692 9,692 9,692 9,692 2008 9,692 9,692 9,692 6,260 9,677 9,677 9,677 9,677 9,677 9,677 9,677 9,677 2009 9,677 9,677 9,677 9,677 9,677 9,677 9,677 9,677 9,677 9,677 9,677 9,500

431

Maryland Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 2003 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 2004 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 2005 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 2006 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 2007 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 64,000 64,000 64,000 64,000 2008 64,000 64,000 64,000 64,000 64,000 64,000 64,000 64,000 64,000 64,000 64,000 64,000

432

Utah Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 2003 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 2004 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 2005 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 2006 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 2007 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 2008 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480

433

New York Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 175,496 175,496 175,496 175,496 175,496 175,496 175,496 175,496 175,496 175,496 189,267 189,267 2003 189,267 189,267 189,267 189,267 189,267 190,157 190,157 190,157 190,157 190,157 190,157 190,157 2004 190,157 190,157 190,157 190,157 190,157 190,157 190,157 190,157 190,157 203,265 203,265 203,265 2005 203,265 203,265 203,265 203,265 203,265 203,265 203,265 204,265 204,265 204,265 204,265 204,265 2006 204,265 204,265 204,265 204,265 212,165 212,165 212,165 212,165 212,165 212,755 212,755 212,755 2007 212,755 212,755 212,755 212,755 212,755 212,755 212,755 212,755 213,225 213,225 213,225 213,225 2008 213,225 213,225 213,225 213,225 213,225 213,225 213,225 213,225 213,225 213,225 229,013 229,013

434

Washington Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 37,300 37,300 37,300 37,300 37,300 37,300 37,300 37,300 37,300 37,300 37,720 37,720 2003 37,720 37,720 37,720 37,720 37,720 38,969 38,969 38,969 39,628 39,628 39,628 39,628 2004 39,628 39,628 39,628 39,628 39,628 39,628 39,628 39,628 39,628 40,247 40,247 40,247 2005 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247 2006 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247 42,191 42,191 42,191 2007 42,191 42,191 42,191 42,191 42,191 42,191 42,191 42,191 43,316 43,316 43,316 43,316 2008 43,316 43,316 43,316 43,316 43,316 43,316 43,316 43,316 43,316 43,316 39,341 39,341

435

California Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 388,480 475,720 475,720 475,720 475,720 475,720 475,720 475,720 475,720 475,720 474,920 474,920 2003 474,920 474,920 474,920 474,920 474,920 478,995 478,995 478,995 478,995 478,995 478,995 478,995 2004 478,995 478,995 478,995 478,995 478,995 478,995 486,095 446,095 446,095 454,095 454,095 454,095 2005 474,095 474,095 474,095 474,095 474,095 474,095 474,095 474,095 474,095 474,095 474,095 474,095 2006 474,095 474,095 474,095 474,095 474,095 474,095 481,095 481,095 481,095 484,726 484,726 484,726 2007 484,726 484,726 484,726 484,726 484,726 484,726 484,726 484,726 484,711 476,711 476,711 476,711 2008 476,711 476,711 476,711 476,711 476,711 476,711 476,711 476,711 476,711 477,911 488,911 488,911

436

Nebraska Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 2003 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 2004 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 2005 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 2006 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 2007 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 2008 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 34,850 34,850

437

Colorado Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100,227 100,227 100,227 100,227 100,227 100,227 100,227 100,227 100,227 100,227 100,227 100,227 2003 100,227 100,227 100,227 100,227 100,227 101,055 101,055 101,055 101,055 101,055 101,055 101,055 2004 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 2005 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 2006 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 98,068 98,068 98,068 2007 93,474 93,474 93,474 93,474 93,474 93,474 93,474 93,474 98,068 98,068 98,068 98,068 2008 98,068 98,068 98,068 98,068 98,068 98,068 98,068 98,068 98,068 98,068 98,068 98,068

438

Montana Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 371,510 371,510 371,510 371,510 371,510 371,510 371,510 371,510 371,510 371,510 374,125 374,125 2003 374,125 374,125 374,125 374,125 374,125 374,201 374,201 374,201 374,201 374,201 374,201 374,201 2004 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 2005 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 2006 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 2007 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 2008 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201

439

Alabama Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 2003 5,280 5,280 5,280 5,280 5,280 8,520 8,520 8,520 8,520 8,520 8,520 8,520 2004 8,520 8,520 8,520 8,520 8,520 8,520 8,520 8,520 8,520 11,015 11,015 11,015 2005 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 2006 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 2007 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 19,300 19,300 19,300 19,300 2008 19,300 19,300 19,300 19,300 19,300 19,300 19,300 19,300 19,300 19,300 19,300 19,300 2009 19,300 19,300 19,300 19,300 19,300 19,300 19,300 19,300 19,300 19,300 19,300 26,900

440

Ohio Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 573,784 573,784 573,784 573,784 573,784 573,784 573,784 573,784 573,784 573,784 575,959 575,959 2003 575,959 575,959 575,959 575,959 575,959 573,709 573,709 573,709 573,709 573,709 573,709 573,709 2004 573,709 573,709 573,709 573,709 573,709 573,709 573,709 573,709 573,709 572,404 572,404 572,404 2005 572,404 572,404 572,329 572,404 572,404 572,404 572,404 572,404 572,404 572,404 572,404 572,404 2006 572,404 572,404 572,404 572,404 572,404 572,404 572,404 572,404 572,404 572,477 572,477 572,477 2007 572,477 572,477 572,477 572,477 572,477 572,477 572,477 572,477 572,477 572,477 572,477 572,477 2008 572,477 572,477 572,477 572,477 572,477 572,477 572,477 572,477 572,477 572,477 572,477 572,477

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

West Virginia Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 733,126 733,126 733,126 733,126 733,126 733,126 496,796 496,796 496,796 496,796 497,996 497,996 2003 497,996 497,996 497,996 497,996 497,996 509,836 509,836 509,836 509,836 509,758 494,458 494,458 2004 492,025 492,025 492,025 492,025 492,025 492,025 492,025 492,025 492,025 510,827 510,827 510,827 2005 510,827 510,827 510,827 510,827 510,827 510,827 510,827 510,827 510,827 510,827 510,827 510,827 2006 510,827 510,827 510,827 510,827 510,827 510,827 510,827 510,827 510,827 512,377 512,377 512,377 2007 512,377 512,377 541,977 541,977 541,977 541,977 541,977 541,977 543,016 543,016 543,016 543,016 2008 543,016 543,016 543,016 543,016 543,016 543,016 543,016 543,016 543,016 543,016 536,702 536,702

442

Colorado Natural Gas Underground Storage Capacity (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 82,662 82,662 1990's 98,999 98,999 105,790 105,790 105,583 108,837 99,599 99,599 99,599 99,599...

443

U.S. Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico...

444

The Capacity of States to Govern Shale Gas Development Risks  

Science Journals Connector (OSTI)

Seismic equipment deployed near disposal wells could detect potential induced earthquake activity, and monitors placed at various points could pick up indications of soil erosion. ... Department of the Interior, Fish & Wildlife Service,50 C.F.R. Part 17, Docket No. FWS-R5-ES-2012-0045, Endangered andThreatened Wildlife and Plants; Endangered Species Status for DiamondDarter, Final Rule, July 26, ( 2013. ...

Hannah J. Wiseman

2014-03-10T23:59:59.000Z

445

Arkansas Natural Gas Underground Storage Capacity (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Year-8 Year-9 1980's 36,147 31,447 1990's 31,277 31,277 31,277 31,277 31,277 38,347 31,871 31,871 24,190 24,190 2000's 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000...

446

EIA - Natural Gas Pipeline System - Western Region  

U.S. Energy Information Administration (EIA) Indexed Site

Western Region Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving any region (see Table below). Slightly more than half the capacity entering the region is on natural gas pipeline systems that carry natural gas from the Rocky Mountain area and the Permian and San Juan basins. These latter systems enter the region at the New Mexico-Arizona and Nevada-Utah State lines. The rest of the capacity arrives on natural gas pipelines that access Canadian natural gas at the Idaho and Washington State border crossings with British Columbia, Canada.

447

Appendix C Selected Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Recurring Recurring Natural Gas Reports * Natural Gas Monthly, DOE/EIA-0130. Published monthly. Other Reports Covering Natural Gas, Natural Gas Liquids, and Other Energy Sources * Monthly Energy Review, DOE/EIA-0035. Published monthly. Provides national aggregate data for natural gas, natural gas liquids, and other energy sources. * Short-Term Energy Outlook, DOE/EIA-0202. Published quarterly. Provides forecasts for next six quarters for natural gas and other energy sources. * Natural Gas 1996: Issues and Trends, DOE/EIA- 0560(96), December 1996. * U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves -1996 Annual Report, DOE/EIA-0216(96)/Ad- vance Summary, September 1997. * Annual Energy Review 1996, DOE/ EIA-0384(96), July 1997. Published annually. * State Energy Data Report, Consumption Estimates, 1960- 1994, DOE/EIA-0214(94), October 1996. * Annual

448

Economic Dispatch of Electric Generation Capacity | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Dispatch of Electric Generation Capacity Economic Dispatch of Electric Generation Capacity A report to congress and the states pursuant to sections 1234 and 1832 of the...

449

production capacity | OpenEI  

Open Energy Info (EERE)

production capacity production capacity Dataset Summary Description No description given. Source Oak Ridge National Laboratory Date Released November 30th, 2009 (4 years ago) Date Updated Unknown Keywords biodiesel ethanol location production capacity transportation Data application/zip icon Biorefineries.zip (zip, 7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments If you rate this dataset, your published comment will include your rating.

450

Hybrid Zero-capacity Channels  

E-Print Network (OSTI)

There are only two known kinds of zero-capacity channels. The first kind produces entangled states that have positive partial transpose, and the second one - states that are cloneable. We consider the family of 'hybrid' quantum channels, which lies in the intersection of the above classes of channels and investigate its properties. It gives rise to the first explicit examples of the channels, which create bound entangled states that have the property of being cloneable to the arbitrary finite number of parties. Hybrid channels provide the first example of highly cloneable binding entanglement channels, for which known superactivation protocols must fail - superactivation is the effect where two channels each with zero quantum capacity having positive capacity when used together. We give two methods to construct a hybrid channel from any binding entanglement channel. We also find the low-dimensional counterparts of hybrid states - bipartite qubit states which are extendible and possess two-way key.

Sergii Strelchuk; Jonathan Oppenheim

2012-07-04T23:59:59.000Z

451

Building Regulatory Capacity for Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Capacity for Regulatory Capacity for Change PRESENTED BY Sarah Spencer-Workman, LEED AP July 27, 2011 "How to identify and review laws relevant to buildings and find places and opportunities that can accept changes that would support building energy objectives" Presentation Highlights Rulemaking Community and Stakeholder Identification To Support Code Changes Engagement: Building Capacity for Change Pay It Forward RULEMAKING : Plan Development and Research of Laws Relevant to Buildings How is it conducted? 'Landscape' Review Key words or phrases to look for Identify "home rule" jurisdictions Update and review cycle built in 'Landscape' Review:

452

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas" "Net Summer Capacity (megawatts)",15404,29 "..Electric Utilities",12691,21 "..IPP & CHP",2713,33 "Net Generation (megawatthours)",54584295,28 "..Electric Utilities",41844010,2...

453

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",2119,48 "Electric Utilities",1946,39 "IPP & CHP",172,50 "Net Generation (megawatthours)",6946419,49 "Electric...

454

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",23485,17 "Electric Utilities",17148,17 "IPP & CHP",6337,17 "Net Generation (megawatthours)",77896588,19 "Electric...

455

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",14321,31 "Electric Utilities",991,42 "IPP & CHP",13330,7 "Net Generation (megawatthours)",36198121,36 "Electric...

456

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",38488,7 "Electric Utilities",29293,3 "IPP & CHP",9195,10 "Net Generation (megawatthours)",122306364,9 "Electric...

457

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",1781,49 "Electric Utilities",8,50 "IPP & CHP",1773,38 "Net Generation (megawatthours)",8309036,48 "Electric...

458

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",32547,9 "Electric Utilities",23615,7 "IPP & CHP",8933,11 "Net Generation (megawatthours)",152878688,6 "Electric...

459

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",39520,6 "Electric Utilities",10739,26 "IPP & CHP",28781,5 "Net Generation (megawatthours)",135768251,7 "Electric...

460

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",10476,34 "Electric Utilities",7807,30 "IPP & CHP",2669,34 "Net Generation (megawatthours)",35173263,39 "Electric...

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",59139,3 "Electric Utilities",51373,1 "IPP & CHP",7766,15 "Net Generation (megawatthours)",221096136,3 "Electric...

462

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",71329,2 "Electric Utilities",30294,2 "IPP & CHP",41035,3 "Net Generation (megawatthours)",199518567,4 "Electric...

463

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",3357,46 "Electric Utilities",98,47 "IPP & CHP",3259,29 "Net Generation (megawatthours)",8633694,47 "Electric...

464

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",109568,1 "Electric Utilities",28463,4 "IPP & CHP",81106,1 "Net Generation (megawatthours)",429812510,1 "Electric...

465

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant  

Science Journals Connector (OSTI)

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant ... A natural gas combined cycle (NGCC) power plant with capacity of about 430 MW integrated to a chemical solvent absorber/stripping capture plant is investigated. ... The natural gas combined cycle (NGCC) is an advanced power generation technology that improves the fuel efficiency of natural gas. ...

Mehdi Karimi; Magne Hillestad; Hallvard F. Svendsen

2012-01-19T23:59:59.000Z

466

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture  

SciTech Connect

The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

Alptekin, Gokhan

2012-09-30T23:59:59.000Z

467

Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Sampling Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Sampling Details Activities (7) Areas (7) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Gas composition and source of fluids. Thermal: Anomalous flux is associated with active hydrothermal activity. Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Gas Sampling: Gas sampling is done to characterize the chemical, thermal, and hydrological properties of a surface or subsurface hydrothermal system.

468

EIS-0164: Pacific Gas Transmission/Pacific Gas and Electric and Altamont Natural Gas Pipeline Project  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Regulatory Commission (FERC) has prepared the PGT/PG&E and Altamont Natural Gas Pipeline Projects Environmental Impact Statement to satisfy the requirements of the National Environmental Policy Act. This project addresses the need to expand the capacity of the pipeline transmission system to better transfer Canadian natural gas to Southern California and the Pacific Northwest. The U.S. Department of Energy cooperated in the preparation of this statement because Section 19(c) of the Natural Gas Act applies to the Department’s action of authorizing import/export of natural gas, and adopted this statement by the spring of 1992. "

469

Electrical Generating Capacities of Geothermal Slim Holes  

SciTech Connect

Theoretical calculations are presented to estimate the electrical generating capacity of the hot fluids discharged from individual geothermal wells using small wellhead generating equipment over a wide range of reservoir and operating conditions. The purpose is to appraise the possibility of employing slim holes (instead of conventional production-size wells) to power such generators for remote off-grid applications such as rural electrification in developing countries. Frequently, the generating capacity desired is less than one megawatt, and can be as low as 100 kilowatts; if slim holes can be usefully employed, overall project costs will be significantly reduced. This report presents the final results of the study. Both self-discharging wells and wells equipped with downhole pumps (either of the ''lineshaft'' or the ''submersible'' type) are examined. Several power plant designs are considered, including conventional single-flash backpressure and condensing steam turbines, binary plants, double-flash steam plants, and steam turbine/binary hybrid designs. Well inside diameters from 75 mm to 300 mm are considered; well depths vary from 300 to 1200 meters. Reservoir temperatures from 100 C to 240 C are examined, as are a variety of reservoir pressures and CO2 contents and well productivity index values.

Pritchett, J.W.

1998-10-01T23:59:59.000Z

470

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

471

Multimodal Traffic at Isolated Signalized Intersections: New Management Strategies to Increase Capacity  

E-Print Network (OSTI)

passenger car equivalents (pce’s): buses are counted as 1.7phase; 7 and then combined to obtain a single pce value.estimates of maximum pce counts per cycle (capacities) are

Xuan, Yiguang; Gayah, Vikash; Daganzo, Carlos; Cassidy, Michael

2009-01-01T23:59:59.000Z

472

Underground coal gasification (UCG) gas to methanol and MTG-gasoline: an economic and sensitivity study, Task B  

SciTech Connect

This report, identified as Task B, examines the technical and economic aspects of the production of methanol and MTG-Gasoline using gas from an underground coal gasification (UCG) facility. The report is a sequel to a previous study performed in 1981 and identified as Task A. The Task A report, titled Cost Saving Concepts on the Production of Methanol from Underground Gasified Coal, examined the economics of producing fuel grade methanol using UCG gas. In this study we examine the economics of producing MTG-Gasoline as well as a number of other aspects of the economics of upgrading UCG gas. Capital and operating costs for three different capacities of MTG-Gasoline plant are presented. These are 1600 BPD, 4800 BPD, and 9600 BPD. These capacities are equivalent to fuel grade methanol plants having capacities of 4000 BPD, 12,000 BPD, and 24,000 BPD - the methanol capacities considered in the previous studies. The economics of the MTG-Gasoline plant were developed using published information and our best estimate of the processing steps in the MTG-Gasoline process. As part of this study, several sensitivity studies were undertaken to examine the sensitivity of both methanol and MTG-Gasoline product cost to changes in technical and economic parameters. Table 1.1 lists the various sensitivity studies undertaken. All cost figures are in first quarter 1982 dollars.

Not Available

1982-06-01T23:59:59.000Z

473

Landfill Gas | OpenEI  

Open Energy Info (EERE)

Landfill Gas Landfill Gas Dataset Summary Description The UK Department of Energy and Climate Change (DECC) publishes annual renewable energy generation and capacity by region (9 regions in England, plus Wales, Scotland and Northern Ireland). Data available 2003 to 2009. Data is included in the DECC Energy Trends: September 2010 Report (available: http://www.decc.gov.uk/assets/decc/Statistics/publications/trends/558-tr...) Source UK Department of Energy and Climate Change (DECC) Date Released September 30th, 2010 (4 years ago) Date Updated Unknown Keywords Energy Generation Hydro Landfill Gas Other Biofuels Renewable Energy Consumption Sewage Gas wind Data application/zip icon 2 Excel files, 1 for generation, 1 for capacity (zip, 24.9 KiB) Quality Metrics Level of Review Peer Reviewed

474

Capacity Allocation with Competitive Retailers Masabumi Furuhata  

E-Print Network (OSTI)

to uncertainty of market demands, costly capacity construction and time consuming capacity expansion. This makes the market to be unstable and malfunc- tioning. Such a problem is known as the capacity allocation investigate the properties of capacity allocation mechanisms for the markets where a sin- gle supplier

Zhang, Dongmo

475

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Impact of Interruptible Natural Gas Service A Snapshot of California Natural Gas Market: Status and Outlook EIA's Testimony on Natural Gas Supply and Demand Residential Natural Gas Price Brochure Status of Natural Gas Pipeline System Capacity Previous Issues of Natural Gas Weekly Update Natural Gas Homepage Overview: Monday, June 04, 2001 Stock builds slowed from their recent pace, even though spot prices continued their downward trend to end the week at the Henry Hub at $3.71 per MMBtu, which is a Friday-to-Friday decline of $0.14 per MMBtu. The NYMEX contract price for June delivery at the Henry Hub settled Tuesday at $3.738, the lowest close-out of a near month contract since the May 2000 contract. The July contract price was $3.930 per MMBtu on Friday, $0.103 lower than a week earlier. Mild weather in the Northeast and Midwest continued to suppress prices on the Eastern Seaboard, while a short burst of warm temperatures in southern California early in the week had the opposite effect on prices in that region. (See Temperature Map) (See Deviation from Normal Temperatures Map) Net injections to storage for the week ended Friday, May 25 were 99 Bcf, breaking a 4-week string of 100-plus net injections.

476

EIA - AEO2010 - Natural Gas Demand  

Gasoline and Diesel Fuel Update (EIA)

Gas Demand Gas Demand Annual Energy Outlook 2010 with Projections to 2035 Natural Gas Demand Figure 68. Regional growth in nonhydroelectric renewable electricity capacity including end-use capacity, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 69. Annual average lower 48 wellhead and Henry Hub spot market prices for natural gas, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 70. Ratio of low-sulfur light crude oil price to Henry Hub natural gas price on an energy equivalent basis, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 71. Annual average lower 48 wellhead prices for natural gas in three technology cases, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 72. Annual average lower 48 wellhead prices for natural gas in three oil price cases, 1990-2035

477

A high capacity microplate rack  

Science Journals Connector (OSTI)

A microplate rack has been designed for use with in vitro biological assays. The microplate rack can hold up to 15, 96-well ... gas diffusion) surrounding microplates arranged in the rack are more uniform than wh...

Glynn T. Faircloth; David Newman; Michael Young

1989-01-01T23:59:59.000Z

478

Uncertainty Quantification and Calibration in Well Construction Cost Estimates  

E-Print Network (OSTI)

or to individual cost components. Application of the methodology to estimation of well construction costs for horizontal wells in a shale gas play resulted in well cost estimates that were well calibrated probabilistically. Overall, average estimated...

Valdes Machado, Alejandro

2013-08-05T23:59:59.000Z

479

U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report  

SciTech Connect

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

NONE

1996-11-01T23:59:59.000Z

480

US crude oil, natural gas, and natural gas liquids reserves 1996 annual report  

SciTech Connect

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

NONE

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas capacity estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A New Global Unconventional Natural Gas Resource Assessment  

E-Print Network (OSTI)

. Very little is known publicly about technically recoverable unconventional gas resource potential on a global scale. Driven by a new understanding of the size of gas shale resources in the United States, we estimated original gas in place (OGIP...

Dong, Zhenzhen

2012-10-19T23:59:59.000Z

482

Russia’s Natural Gas Export Potential up to 2050  

E-Print Network (OSTI)

Recent increases in natural gas reserve estimates and advances in shale gas technology make natural gas a fuel with good prospects to serve a bridge to a low-carbon world. Russia is an important energy supplier as it holds ...

Paltsev, Sergey

483

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O'Sullivan, Francis

484

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

485

Beam-Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Gas and Thermal Photon Scattering in the NLC Main Linac as a Source of Beam Halo P. Tenenbaum LCC-Note-0051 12-JAN-2001 Abstract Scattering of primary beam electrons off of residual gas molecules or blackbody radiation photons in the NLC main linac has been identified as a potential source of beam haloes which must be collimated in the beam delivery system. We consider the contributions from four scat- tering mechanisms: inelastic thermal-photon scattering, elastic beam-gas (Coulomb) scattering inelastic beam-gas (Bremsstrahlung) scattering, and atomic-electron scattering. In each case we develop the formalism necessary to estimate the backgrounds generated in the main linac, and determine the expected number of off-energy or large-amplitude particles from each process, assuming a main linac injection energy of 8 GeV and extraction energy of 500 GeV. 1 Introduction The

486

Natural gas monthly, November 1997  

SciTech Connect

This issue of the Natural Gas Monthly presents the most recent estimates of natural gas data from the Energy Information Administration. Estimates extend through November for many data series, and through August for most natural gas prices. Highlights of the most recent data estimates are: (1) Preliminary estimates of dry natural gas production and total consumption available through November 1997 indicate that both series are on track to end the year at levels close to those of 1996. Cumulative dry production is one-half percent higher than in 1996 and consumption is one-half percent lower. (2) Natural gas production is estimated to be 52.6 billion cubic feet per day in November 1997, the highest rate since March 1997. (3) After falling 8 percent in July 1997, the national average wellhead price rose 10 percent in August 1997, reaching an estimated $2.21 per thousand cubic feet. (4) Milder weather in November 1997 compared to November 1996 has resulted in significantly lower levels of residential consumption of natural gas and net storage withdrawls than a year ago. The November 1997 estimates of residential consumption and net withdrawls are 9 and 20 percent lower, respectively, than in November 1996.

NONE

1997-11-01T23:59:59.000Z

487

Comparison of Capacity Value Methods for Photovoltaics in the Western United States  

SciTech Connect

This report compares different capacity value estimation techniques applied to solar photovoltaics (PV). It compares more robust data and computationally intense reliability-based capacity valuation techniques to simpler approximation techniques at 14 different locations in the western United States. The capacity values at these locations are computed while holding the underlying power system characteristics fixed. This allows the effect of differences in solar availability patterns on the capacity value of PV to be directly ascertained, without differences in the power system confounding the results. Finally, it examines the effects of different PV configurations, including varying the orientation of a fixed-axis system and installing single- and double-axis tracking systems, on the capacity value. The capacity value estimations are done over an eight-year running from 1998 to 2005, and both long-term average capacity values and interannual capacity value differences (due to interannual differences in solar resource availability) are estimated. Overall, under the assumptions used in the analysis, we find that some approximation techniques can yield similar results to reliability-based methods such as effective load carrying capability.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2012-07-01T23:59:59.000Z

488

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

Small cogen Stove District heating Heat pump Central AC Roomin heat delivery (district heating), heat management (poorInstalled Capacity) District Heating Boiler Gas Boiler Small

Fridley, David G.

2008-01-01T23:59:59.000Z

489

Life-cycle analysis of shale gas and natural gas.  

SciTech Connect

The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

2012-01-27T23:59:59.000Z

490

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-01-28T23:59:59.000Z

491

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-04-26T23:59:59.000Z

492

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 1