Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Recovery of Water from Boiler Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

RecoveRy of WateR fRom BoileR flue Gas RecoveRy of WateR fRom BoileR flue Gas Background Coal-fired power plants require large volumes of water for efficient operation, primarily for cooling purposes. Public concern over water use is increasing, particularly in water stressed areas of the country. Analyses conducted by the U.S. Department of Energy's National Energy Technology Laboratory predict significant increases in power plant freshwater consumption over the coming years, encouraging the development of technologies to reduce this water loss. Power plant freshwater consumption refers to the quantity of water withdrawn from a water body that is not returned to the source but is lost to evaporation, while water withdrawal refers to the total quantity of water removed from a water source.

2

EXHAUST GAS BOILER FIRE PERVENTION  

E-Print Network (OSTI)

Today's demands for better overall usability of fuel oil in large two-stroke low speed marine diesel engines greatly influenced their development, and the purity of their exhaust gases. With this paper we would like to indicate on to factors which directly influence on soot forming, deposition and cause of occurance of fire in exhaust gas boiler (EGB). Due the fact that a fire in the EGB can result in complete destruction of the boiler, and a longer interruption of the vessel commercial operations, crew must be familiar with the main reasons of soot deposition on the boiler tubes and elements and origination of fire, and to have taken proper and timely protection measures 1.

Branko Lali? Dipl. Ing; Mr. Ivan Komar; Dipl. Ing

3

Recovery of Water from Boiler Flue Gas  

SciTech Connect

This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

2008-09-30T23:59:59.000Z

4

New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement  

SciTech Connect

Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Yin, Hongxi [Southeast University, Nanjing, China

2014-01-01T23:59:59.000Z

5

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

6

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

7

Gas turbine cooling system  

DOE Patents (OSTI)

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

8

Standby cooling system for a fluidized bed boiler  

DOE Patents (OSTI)

A system for protecting components including the heat exchangers of a fluidized bed boiler against thermal mismatch. The system includes an injection tank containing an emergency supply of heated and pressurized feedwater. A heater is associated with the injection tank to maintain the temperature of the feedwater in the tank at or about the same temperature as that of the feedwater in the heat exchangers. A pressurized gas is supplied to the injection tank to cause feedwater to flow from the injection tank to the heat exchangers during thermal mismatch.

Crispin, Larry G. (Akron, OH); Weitzel, Paul S. (Canal Fulton, OH)

1990-01-01T23:59:59.000Z

9

Wood Pellets for UBC Boilers Replacing Natural Gas Based on LCA  

E-Print Network (OSTI)

Wood Pellets for UBC Boilers Replacing Natural Gas Based on LCA Submitted to Dr. Bi By Bernard Chan Pellets for UBC Boilers Replacing Natural Gas" By Bernard Chan, Brian Chan, and Christopher Young Abstract This report studies the feasibility of replacing natural gas with wood pellets for UBC boilers. A gasification

10

Gas hydrate cool storage system  

DOE Patents (OSTI)

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

11

Numerical Simulation of Cooling Gas Injection Using  

E-Print Network (OSTI)

Numerical Simulation of Cooling Gas Injection Using Adaptive Multiscale Techniques Wolfgang Dahmen: finite volume method, film cooling, cooling gas injection, multiscale techniques, grid adaptation AMS@igpm.rwth-aachen.de (Thomas Gotzen) #12;Numerical simulation of cooling gas injection using adaptive multiscale techniques

12

Gas Stirling engine ?CHP boiler experimental data driven model for building energy simulation  

Science Journals Connector (OSTI)

Abstract A dynamic model for the simulation of gas micro combined heat and power devices (?CHP boilers) has been developed in order to assess their energy performances. From a literature review and experimental investigations, the new model is designed with the aim of limiting the number of parameters which need to be easily accessible in order to be suitable with annual building energy simulations. At first, this paper focuses on the description of the ?CHP boiler which has been tested, on the development of the test bench and on the experimental results. Then, it focuses on the model description, on its parameterization and on its validation. The modelling approach is based on an energy balance on the device and on empirical expressions for the main inputs and outputs. The model characterizes the ?CHP boiler behaviour for different inlet water flow rates and temperatures. The dynamic phases with the start-up and cooling phases are taken into account. Finally, the models for the Stirling engine and the additional boiler are limited respectively to 28 and 24. Further experimental investigations led to simplify the ?CHP model from 28 to 17 parameters without reducing the accuracy.

J.-B. Bouvenot; B. Andlauer; P. Stabat; D. Marchio; B. Flament; B. Latour; M. Siroux

2014-01-01T23:59:59.000Z

13

Gas cooled traction drive inverter  

SciTech Connect

The present invention provides a modular circuit card configuration for distributing heat among a plurality of circuit cards. Each circuit card includes a housing adapted to dissipate heat in response to gas flow over the housing. In one aspect, a gas-cooled inverter includes a plurality of inverter circuit cards, and a plurality of circuit card housings, each of which encloses one of the plurality of inverter cards.

Chinthavali, Madhu Sudhan

2013-10-08T23:59:59.000Z

14

Gas-cooled nuclear reactor  

DOE Patents (OSTI)

A gas-cooled nuclear reactor includes a central core located in the lower portion of a prestressed concrete reactor vessel. Primary coolant gas flows upward through the core and into four overlying heat-exchangers wherein stream is generated. During normal operation, the return flow of coolant is between the core and the vessel sidewall to a pair of motor-driven circulators located at about the bottom of the concrete pressure vessel. The circulators repressurize the gas coolant and return it back to the core through passageways in the underlying core structure. If during emergency conditions the primary circulators are no longer functioning, the decay heat is effectively removed from the core by means of natural convection circulation. The hot gas rising through the core exits the top of the shroud of the heat-exchangers and flows radially outward to the sidewall of the concrete pressure vessel. A metal liner covers the entire inside concrete surfaces of the concrete pressure vessel, and cooling tubes are welded to the exterior or concrete side of the metal liner. The gas coolant is in direct contact with the interior surface of the metal liner and transfers its heat through the metal liner to the liquid coolant flowing through the cooling tubes. The cooler gas is more dense and creates a downward convection flow in the region between the core and the sidewall until it reaches the bottom of the concrete pressure vessel when it flows radially inward and up into the core for another pass. Water is forced to flow through the cooling tubes to absorb heat from the core at a sufficient rate to remove enough of the decay heat created in the core to prevent overheating of the core or the vessel.

Peinado, Charles O. (La Jolla, CA); Koutz, Stanley L. (San Diego, CA)

1985-01-01T23:59:59.000Z

15

Development and Application of Gas Sensing Technologies to Enable Boiler Balancing  

E-Print Network (OSTI)

01/2004 Development and Application of Gas Sensing Technologies to Enable Boiler Balancing to monitor total NOx (0-1000 ppm), CO (0-1000 ppm) and O2 (1-15%) within the convective pass of the boiler of such sensor systems will dramatically alter how boilers are operated, since much of the emissions creation

Dutta, Prabir K.

16

Second law analysis of a natural gas-fired steam boiler and cogeneration plant.  

E-Print Network (OSTI)

??A second law thermodynamic analysis of a natural gas-fired steam boiler and cogeneration plant at Rice University was conducted. The analysis included many components of… (more)

Conklin, Eric D

2010-01-01T23:59:59.000Z

17

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS  

SciTech Connect

Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

Nsakala ya Nsakala; Gregory N. Liljedahl

2003-05-15T23:59:59.000Z

18

Study of Gas Solid Flow Characteristics in Cyclone Inlet Ducts of A300Mwe CFB Boiler  

Science Journals Connector (OSTI)

Gas solid flow characteristics in cyclone’s inlet duct of a 300MW CFB boiler were studied in a cold circulating fluidized bed (CFB) experimental setup according to a 410t/h CFB boiler with a scale of 10?1....Figs...

J. Y. Tang; X. F. Lu; J. Lai; H. Z. Liu

2010-01-01T23:59:59.000Z

19

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

SciTech Connect

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

Edward Levy; Harun Bilirgen; John DuPoint

2011-03-31T23:59:59.000Z

20

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

SciTech Connect

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

Levy, Edward; Bilirgen, Harun; DuPont, John

2011-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NO, Reduction in a Gas Fired Utility Boiler by Combustion Modifications  

E-Print Network (OSTI)

Data on the effect of several combustion modifications on the for-math of nitrogen oxides and on boiler efficiency were acquired and analyzed for a 110 MW gas fired utility boiler. The results from the study showed that decreasing the oxygen in the flue gas from 2.2% to 0.6 % reduced the NO, formation by 33 % and also gave better boiler efficiencies. Flue gas recirculation through the bottom of the fire4mx WBS founb to be Ineffective. Staged combustion was found to reduce the NO, emlssions by as much as 55 % while decreasing the efficiency by about 5%. Adjustment of the burner air registers reduced the NO, formation by about 20 ppm. The lowest NO, emisdons of 42 ppm (at about 3 % 02) in the stack was obtained for air only to one top burner and 0.5 % oxygen in the flue gas. The reduction of nitrogen oxides (NO,) emissions from steam boilers has been under study for several years. The NO, from boilers consist almost entirely of nitric oxide (NO) and nitrogen dioxide (N02) with NO2 usually only l or 2 % of the total. After leaving the stack, the NO eventually combines with atmospheric oxygen to form NOp. The Environmental Protection Agency has sponsored several studies1-I0 on reducing NO, emissions while maintaining thermal efficiency of boilers. Other studies have been sponsored by The Electric Power Research Institute (EPRI) " and Argonne National

Jerry A. Bullin; Dan Wilkerson

1982-01-01T23:59:59.000Z

22

Hot gas path component cooling system  

DOE Patents (OSTI)

A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

2014-02-18T23:59:59.000Z

23

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers ProMIS/Project No.: DE-NT0005648  

NLE Websites -- All DOE Office Websites (Extended Search)

Edward Levy Edward Levy Principal Investigator Director, Lehigh University Energy Research Center RecoveRy of WateR fRom BoileR flue Gas usinG condensinG Heat excHanGeRs PRomis/PRoject no.: de-nt0005648 Background As the United States' population grows and demand for electricity and water increases, power plants located in some parts of the country will find it increasingly difficult to obtain the large quantities of water needed to maintain operations. Most of the water used in a thermoelectric power plant is used for cooling, and the U.S. Department of Energy (DOE) has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. Many coal-fired power plants operate with stack temperatures in the 300 °F range to minimize fouling and corrosion problems due to sulfuric acid condensation and to

24

COMPARISON OF DIFFERENT APPROACHES FOR THE SIMULATION OF BOILERS USING OIL, GAS, PELLETS OR WOOD CHIPS  

E-Print Network (OSTI)

A detailed model for the simulation of boilers using oil, gas, pellets or wood chips has been developed and compared with measurements. Approaches of different complexity for the simulation of steady state flue gas losses were tested. The more physical approaches are able to reproduce measured data better than the simpler empirical models, but they also require more model parameters to be determined and a higher simulation effort. Cycling behaviour of the simple one-node thermal mass approach of the model was compared with measured cycling behaviour of a pellet boiler. With the proper values for the relevant boiler parameters, cycling behaviour is reproduced well. With the implementation in a FORTRAN-dll that can be called from TRNSYS, a tool is now available that suits the needs of scientists as well as planners and product developers that use energy systems simulation tools.

Michel Haller; Lars Konersmann; Robert Haberl; Angela Dröscher; Elimar Frank

25

Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report  

SciTech Connect

The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

None

1980-11-01T23:59:59.000Z

26

Natural Gas as a Boiler Fuel of Choice in Texas  

E-Print Network (OSTI)

cubic feet (Tcf) of natural gas to price. FIGURE 1 1990 Texas Fuel Mix [From PUCT Fuel Efficiency Report) Coal 24,3'1> Nalural Gas 38,7'1> , Nalural Gas 63,1'1> H yd ro 0.1 'I> Cogenerallon 8.6'1> L1gnlle 12,7'1> Nuclear 8,6'1> Lignite 19... 100 ti mes more polluting than gas. WHERE IS THE GAS? Most people who are even remotely involved with gas production or consumption know that Texas has considerable gas reserves. Figure 2 indicates U.S. natural gas reserve distribution. Since...

Kmetz, W. J.

27

GAS COOLED ELECTRICAL LEADS FOR USE ON FORCED COOLED SUPERCONDUCTING MAGNETS  

E-Print Network (OSTI)

11-14, 1981 GAS COOLED ELECTRICAL LEADS FOR USE ON FORCEDim mumii P mm GAS COOLED ELECTRICAL LEADS FOR USE ON FORCEDD. Henning, "Cryogenic Electrical Leads," Proceedings of the

Smits, R.G.

2010-01-01T23:59:59.000Z

28

Technical and economic analysis: Gas cofiring in industrial boilers. Final report, November 1995-September 1996  

SciTech Connect

This report presents an analysis of the technical and marketing issues associated with the deployment of natural gas cofiring technology in stoker boilers. As part of the work effort, a composite database of stoker boilers was developed using state and federal emission inventories over the years 1985 - 1995. Information sources included the most recent AIRS Facility Subsystem database, the Ozone Transport Region 1990 database, the 1990 Ohio Permit database and the 1985 NAPAP database--all are electronic databases of facilities with air emission permits. The initial data set included almost 3,000 stokers at about 1,500 locations. Stoker facilities were contacted to verify the operating status, capacity, fuel capability, efficiency and other stoker-specific data. The report presents the current stoker boiler distribution by SIC, industrial groups, primary solid fuel (coal, wood, waste, refuse), operating status, and state. Maps are included.

Potter, F.J.

1996-09-01T23:59:59.000Z

29

Gas reburning in tangentially-fired, wall-fired and cyclone-fired boilers  

SciTech Connect

Gas Reburning has been successfully demonstrated for over 4,428 hours on three coal fired utility boilers as of March 31, 1994. Typically, NO{sub x} reductions have been above 60% in long-term, load-following operation. The thermal performance of the boilers has been virtually unaffected by Gas Reburning. At Illinois Power`s Hennepin Station, Gas Reburning in a 71 MWe tangentially-fired boiler achieved an average NO{sub x} reduction of 67% from the original baseline NO{sub x} level of 0.75 lb NO{sub x}/10{sup 6} Btu over a one year period. The nominal natural gas input was 18% of total heat input. Even at 10% gas heat input, NO{sub x} reduction of 55% was achieved. At Public Service Company of Colorado`s Cherokee Station, a Gas Reburning-Low NO{sub x} Burner system on a 172 MWe wall-fired boiler has achieved overall NO{sub x} reductions of 60--73% in parametric and long-term testing, based on the original baseline NO{sub x} level of 0.73 lb/10{sup 6} Btu. NO{sub x} reduction is as high as 60--65% even at relatively low natural gas usage (5--10% of total heat input). The NO{sub x} reduction by Low NO{sub x} Burners alone is typically 30--40%. NO{sub x} reduction has been found to be insensitive to changes in recirculated flue gas (2--7% of total flue gas) injected with natural gas. At City Water, Light and Power Company`s Lakeside Station in Springfield, Illinois, Gas Reburning in a 33 MWe cyclone-fired boiler has achieved an average NO{sub x} reduction of 66% (range 52--77%) at gas heat inputs of 20--26% in long-term testing, based on a baseline NO{sub x} level of 1.0 lb/10{sup 6} Btu (430 mg/MJ). This paper presents a summary of the operating experience at each site and discusses the long term impacts of applying this technology to units with tangential, cyclone and wall-fired (with Low NO{sub x} Burner) configurations.

May, T.J. [Illinois Power Co., Decatur, IL (United States); Rindahl, E.G. [Public Service Co. of Colorado, Denver, CO (United States); Booker, T. [City Water Light and Power, Springfield, IL (United States)] [and others

1994-12-31T23:59:59.000Z

30

Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler  

SciTech Connect

Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, especially NOX. The project involved operating gas reburning technology combined with low NO, burner technology (GR-LNB) on a coal-fired utility boiler. Low NOX burners are designed to create less NOX than conventional burners. However, the NO, control achieved is in the range of 30-60-40, and typically 50%. At the higher NO, reduction levels, CO emissions tend to be higher than acceptable standards. Gas Reburning (GR) is designed to reduce the level of NO. in the flue gas by staged fuel combustion. When combined, GR and LNBs work in harmony to both minimize NOX emissions and maintain an acceptable level of CO emissions. The demonstration was performed at Public Service Company of Colorado's (PSCO) Cherokee Unit 3, located in Denver, Colorado. This unit is a 172 MW. wall-fired boiler that uses Colorado bituminous, low-sulfur coal and had a pre GR-LNB baseline NOX emission of 0.73 lb/1 Oe Btu. The target for the project was a reduction of 70 percent in NOX emissions. Project sponsors included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation (EER). EER conducted a comprehensive test demonstration program over a wide range of boiler conditions. Over 4,000 hours of operation were achieved. Intensive measurements were taken to quantify the reductions in NOX emissions, the impact on boiler equipment and operability, and all factors influencing costs. The results showed that GR-LNB technology achieved excellent emission reductions. Although the performance of the low NOX burners (supplied by others) was somewhat less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 180A. The performance goal of 70% reduction was met on many test runs, but at higher gas heat inputs. The impact on boiler equipment was determined to be very minimal. Toward the end of the testing, the flue gas recirculation (used to enhance gas penetration into the furnace) system was removed and new high pressure gas injectors were installed. Further, the low NOX burners were modified and gave better NO. reduction performance. These modifications resulted in a similar NO, reduction performance (64%) at a reduced level of gas heat input (-13Yo). In addition, the OFA injectors were re-designed to provide for better control of CO emissions. Although not a part of this project, the use of natural gas as the primary fuel with gas reburning was also tested. The gas/gas reburning tests demonstrated a reduction in NOX emissions of 43% (0.30 lb/1 OG Btu reduced to 0.17 lb/1 OG Btu) using 7% gas heat input. Economics are a key issue affecting technology development. Application of GR-LNB requires modifications to existing power plant equipment and as a result, the capital and operating costs depend largely on site-specific factors such as: gas availability at the site, gas to coal delivered price differential, sulfur dioxide removal requirements, windbox pressure, existing burner throat diameters, and reburn zone residence time available. Based on the results of this CCT project, EER expects that most GR-LNB installations will achieve at least 60% NOX control when firing 10-15% gas. The capital cost estimate for installing a GR-LNB system on a 300 MW, unit is approximately $25/kW. plus the cost of a gas pipeline (if required). Operating costs are almost entirely related to the differential cost of the natural gas compared to coal.

None

1998-09-01T23:59:59.000Z

31

Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler  

SciTech Connect

Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18%. The performance goal of 70/40 reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18%.

None

1998-07-01T23:59:59.000Z

32

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network (OSTI)

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen walls. Air Products tasked our team to design an insert to place in the tubes of the WHB to increase flow velocity, thereby reducing fouling of the WHB. Objectives Air Products wishes that our team

Demirel, Melik C.

33

Numerical simulation of cooling gas injection using adaptive multiscale techniques  

E-Print Network (OSTI)

focus on reducing this effects. Only very recently, active cooling strategies have been developed alsoNumerical simulation of cooling gas injection using adaptive multiscale techniques Wolfgang Dahmen Mathematik, RWTH Aachen, Templergraben 55, 52056 Aachen Abstract The interaction of a jet of cooling gas

34

Minimum separation distances for natural gas pipeline and boilers in the 300 area, Hanford Site  

SciTech Connect

The U.S. Department of Energy (DOE) is proposing actions to reduce energy expenditures and improve energy system reliability at the 300 Area of the Hanford Site. These actions include replacing the centralized heating system with heating units for individual buildings or groups of buildings, constructing a new natural gas distribution system to provide a fuel source for many of these units, and constructing a central control building to operate and maintain the system. The individual heating units will include steam boilers that are to be housed in individual annex buildings located at some distance away from nearby 300 Area nuclear facilities. This analysis develops the basis for siting the package boilers and natural gas distribution systems to be used to supply steam to 300 Area nuclear facilities. The effects of four potential fire and explosion scenarios involving the boiler and natural gas pipeline were quantified to determine minimum separation distances that would reduce the risks to nearby nuclear facilities. The resulting minimum separation distances are shown in Table ES.1.

Daling, P.M.; Graham, T.M.

1997-08-01T23:59:59.000Z

35

Evaluation of gas-reburning and low NO sub x burners on a wall fired boiler  

SciTech Connect

This clean coal technology project will demonstrate a combination of two developed technologies to reduce both NO{sub x} and (to some extent) SO{sub x} emissions: Gas reburning and low NO{sub x} burners. The demonstrations will be conducted on a pre-NSPS utility boiler representative of US boilers that contribute significantly to the inventory of acid rain precursor emissions: a wall fired unit. Low NO{sub x} burners operate on the principle of delayed mixing between the coal fuel and burner air, so that less NO{sub x} is burned. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel corresponding to the total heat release in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. The specific goal of this project is to demonstrate NO{sub x} and SO{sub x} emission reductions of 75 percent or more as a result of combining LNB and GR to a utility boiler having the design characteristics mentioned above. A Host Site Agreement has been signed by EER and a utility company in the State of Colorado: Public Service Company of Colorado (Cherokee Unit No. 3, 172 MW{sub e}) front wall fired boiler near Denver.

Not Available

1991-04-26T23:59:59.000Z

36

Chapter 7 - Test Cell Cooling Water and Exhaust Gas Systems  

Science Journals Connector (OSTI)

Part 1 considers the thermodynamics of water cooling systems, water quality, typical cooling water circuits, and engine coolant control units. Also covered are the commissioning cooling circuits, thermal shock, and chilled water systems. Part 2 covers the design of test cell exhaust systems, exhaust silencers, exhaust gas volume flow, exhaust silencers, and exhaust cowls. Part 3 briefly covers the testing of turbochargers.

A.J. Martyr; M.A. Plint

2012-01-01T23:59:59.000Z

37

Evaluation of Gas Reburning and Low-NOx Burners on a Wall-Fired Boiler; a DOE Assessment  

SciTech Connect

The results from the GR-LNB technology demonstrated by EER at Cherokee Station approached, but did not meet, the CCT project's performance objectives. Acceptable unit operability was achieved with both the GR and the LNB components. The gas reburning component of the process appears to be broadly applicable for retrofit NO{sub x} control to most utility boilers and, in particular, to wet-bottom cyclone boilers, which are high NO{sub x} emitters and are difficult to control (LNB technology is not applicable to cyclone boilers). GR-LNB can reduce NO{sub x} to mandated emissions levels under Title IV of the CAAA without significant, adverse boiler impacts. The GR-LNB process may be applicable to boilers significantly larger than the demonstration unit, provided there is adequate dispersion and mixing of injected natural gas. Major results of the demonstration project are summarized as follows: NO{sub x}-emissions reductions averaging 64% were achieved with 12.5% gas heat input in long-term tests on a 158-MWe (net) wall-fired unit. The target reduction level of 70% was achieved only on a short-term basis with higher gas consumption. The thermal performance of coal-fired boilers is not significantly affected by GR-LNB. Convective section steam temperatures can be controlled within acceptable limits. Thermal efficiency is decreased by a small amount (about 0.8%), because of increased dry gas loss and higher moisture in the flue gas as a result of the GR process. Furnace slagging and convective section fouling can be adequately controlled. Because of the higher hydrogen/carbon (H/C) ratio of natural gas compared with coal, use of the GR process results in a modest reduction in CO{sub 2} emissions. SO{sub 2} and particulate emissions are reduced in direct proportion to the fraction of heat supplied by natural gas.

National Energy Technology Laboratory

2001-02-28T23:59:59.000Z

38

Evaluation of gas-reburning and low NO sub x burners on a wall fired boiler  

SciTech Connect

Low NO{sub x} burners operate on the principle of delayed mixing between the coal fuel and burner air, so that less NO{sub x} is formed. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel corresponding to the total heat release in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at the lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. The specific goal of this project is to demonstrate NO{sub x} emission reductions of 75 percent or more as a result of combing Low NO{sub x} Burners and Gas Reburning on a utility boiler having the design characteristics mentioned above. A Host Site Agreement has been signed by EER and a utility company in the State of Colorado: Public Service Company of Colorado (Cherokee Unit No. 3, 172 MW{sub e}) front wall fired boiler near Denver.

Not Available

1992-01-15T23:59:59.000Z

39

ConEd (Gas) - Multi-family Energy Efficiency Incentives Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ConEd (Gas) - Multi-family Energy Efficiency Incentives Program ConEd (Gas) - Multi-family Energy Efficiency Incentives Program ConEd (Gas) - Multi-family Energy Efficiency Incentives Program < Back Eligibility Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Manufacturing Appliances & Electronics Water Heating Maximum Rebate Steam Boiler: $2500 Energy Management System: 70% of total cost Program Info Expiration Date 12/31/2015 State New York Program Type Utility Rebate Program Rebate Amount Hot Water Gas Boilers (85%-89% TE): $1000-$3500/boiler Hot Water Gas Condensing Boilers (90%+ TE): $2000-$15,000/boiler Gas Steam Boilers: $700/boiler (300 MBH) Heating System Clean and Tune: $225/boiler

40

Evaluation of Gas Reburning and Low-NOx Burners on a Wall-Fired Boiler  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Evaluation of Gas Reburning and Low-NO x Burners on a Wall-Fired Boiler A DOE Assessment February 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

User converts gas boiler to fluidized bed to save $1. 5M  

SciTech Connect

Retrofitting a fluidized bed combustion (FBC) system may allow Clayton Foods Inc. to reduce its annual fuel bill by $1.5 million when the system comes on line in 1986. The system will burn low-grade, high-sulfur coal instead of natural gas, and should pay back the $4.1 million investment in under five years. The dual bed design separates the chemical processes of combustion and desulfurization into two chambers, which allows smaller-sized combustors that achieve high efficiencies in less time than conventional, single-bed fluidized bed boilers. Possible limitations prevent other manufacturers from making the dual-bed system. The Wormser unit is the only retrofit application of this technology in an industrial setting.

Springer, N.

1985-07-29T23:59:59.000Z

42

Advances of flue gas desulfurization technology for coal-fired boilers and strategies for sulfur dioxide pollution prevention in China  

SciTech Connect

Coal is one of the most important kinds of energy resources at the present time and in the immediate future in China. Sulfur dioxide resulting from combustion of coal is one of the principle pollutants in the air. Control of SO{sub 2} discharge is still a major challenge for environmental protection in developing China. In this paper, research, development and application of technology of flue gas desulfurization (FGD) for coal-fired boilers in China will be reviewed with emphasis on cost-effective technology, and the development trends of FGD technology, as well as the strategy for SO{sub 2} discharge control in China, will be analyzed. A practical technology for middle-small-sized boilers developed by the primary author and the field investigation results will also be presented. At present, there are four major kinds of FGD technologies that are practical to be applied in China for their cost-effectiveness and efficiency to middle-small-sized boilers. An important development trend of the FGD technology for middle-small-sized boilers for the next decade is improvement of the existing cost-effective wet-type FGD technology, and in the future it will be the development of dry-type FGD technology. For middle-sized generating boilers, the development direction of the FGD technology is the spraying and drying process. For large-sized generating boilers, the wet-type limestone-plaster process will still be applied in the immediate future, and dry-type FGD technologies, such as ammonia with electron beam irradiation, will be developed in the future. State strategies for the control of SO{sub 2} discharge will involve the development and popularization of efficient coal-fired devices, extension of gas coal and liquefied coal, spreading coal washing, and centralized heating systems.

Yang, C.; Zeng, G.; Li, G.; Qiu, J.

1999-07-01T23:59:59.000Z

43

Efficient gas stream cooling in Second-Generation PFBC plants  

SciTech Connect

The coal-fueled Advanced or Second-Generation Pressurized Fluidized Bed Combustor concept (APFBC) is an efficient combined cycle in which coal is carbonized (partially gasified) to fuel a gas turbine, gas turbine exhaust heats feedwater for the steam cycle, and carbonizer char is used to generate steam for a steam turbine while heating combustion air for the gas turbine. The system can be described as an energy cascade in which chemical energy in solid coal is converted to gaseous form and flows to the gas turbine followed by the steam turbine, where it is converted to electrical power. Likewise, chemical energy in the char flows to both turbines generating electrical power in parallel. The fuel gas and vitiated air (PFBC exhaust) streams must be cleaned of entrained particulates by high-temperature equipment representing significant extensions of current technology. The energy recovery in the APFBC cycle allows these streams to be cooled to lower temperatures without significantly reducing the efficiency of the plant. Cooling these streams would allow the use of lower-temperature gas cleanup equipment that more closely approaches commercially available equipment, reducing cost and technological risk, and providing an earlier path to commercialization. This paper describes the performance effects of cooling the two hottest APFBC process gas streams: carbonizer fuel gas and vitiated air. Each cooling variation is described in terms of energy utilization, cycle efficiency, and cost implications.

White, J.S.; Horazak, D.A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States)

1994-07-01T23:59:59.000Z

44

Low NOx burner retrofits and enhancements for a 518 MW oil and gas fired boiler  

SciTech Connect

Low NOx oil/gas burners originally supplied to Jacksonville Electric Authority, Northside No. 3 .500 MW unit, were based on a duplex air register design with lobed spray oil atomizers providing additional fuel staging. Although the burners could meet the targeted NOx levels of 0.3 and 0.2 lbs/10{sup 6} BTU on oil and gas respectively. There was insufficient margin on these NOx levels to enable continuous low NOx operation to be achieved. Further burner development was undertaken based on improved aerodynamic control within the burner design to give an approximate 25% improvement in NOx emission reduction thus providing an adequate operating margin. This `RoBTAS` (Round Burner with Tilted Air Supply) burner design based on techniques developed successfully for front wall coal firing applications achieved the required NOx reductions in full scale firing demonstrations on both heavy fuel oil and natural gas firing. The paper describes the development work and the subsequent application of the `RoBTAS` burners to the Northside No. 3 boiler. The burner will also be test fired on Orimulsion fuel and thus the comparison between heavy fuel oil firing and Orimulsion firing under ultra low NOx conditions will be made.

King, J.J. [Jacksonville Electric Authority, FL (United States); Allen, J.W.; Beal, P.R. [International Combustion Ltd., Derby (United Kingdom). Rolls-Royce Industrial Power Group

1995-12-31T23:59:59.000Z

45

Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program (Pennsylvania) Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program (Pennsylvania) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Program Info Start Date 9/1/2012 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Boiler Size 300-500 (kBtu/h): $800; $2900 Boiler Size 500-700 (kBtu/h): $1400; $3600 Boiler Size 700-900 (kBtu/h): $2000; $4200 Boiler Size 900-1100 (kBtu/h): $2600; $4800 Boiler Size 1100-1300 (kBtu/h): $3200; $5400 Boiler Size 1300-1500 (kBtu/h): $3800; $6000 Boiler Size 1500-1700 (kBtu/h): $4400; $6600 Boiler Size 1700-2000 (kBtu/h): $5200; $7400

46

Old boilers to profitable use with local biofuels  

SciTech Connect

To convert an old plant is often an economically advantageous alternative for a new boiler. The most important sources of biomass in industrial countries are residues from forestry, industry and agriculture. Sludges and wastes from industry, communities and households also contain useful energy. Still in many places there are existing power plants which can be converted to burn biofuels with low investment costs. An efficient and proven way is to convert an existing boiler to fluidized bed combustion (FBC) or use atmospheric circulating fluidized bed biofuel gasification connected to an existing boiler. Modern Fluidized Bed Combustion and Gasification gives us a possibility to burn biomass, sludges and many kinds of wastes in an efficient way with low emissions. Fluidized bed technologies are divided into bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) solutions. When making a boiler conversion to fluidized bed combustion, lower furnace of an existing boiler is converted and fuel receiving, handling and transportation system is installed. In many cases most of the existing boiler heating surfaces and a majority of the existing auxiliary equipment can be utilized. The circulating fluidized bed gasifier consists of the inside refractory-lined steel vessel, where fuel is gasified in a hot fluidized gas solid particle suspension. In the gasifier, the biofuels will be converted to combustible gas at atmospheric pressure at the temperature 800--900 C. The hot gas from the gasifier will be cooled down to 650--750 C in the air preheater. The hot gas is led directly to separate burners, which are located in the existing boiler furnace. The gas is burned in the boiler and replaces a part of the coal used in the boiler. Typical fuels for the FBC-boilers are wet fuels such as bark, wood waste, peat and sludges. These fuels normally contain 40--70% water.

Hankala, J.

1998-07-01T23:59:59.000Z

47

Strong drive compression of a gas-cooled positron plasma  

SciTech Connect

The use of rotating electric fields to control plasmas has found numerous applications in the manipulation and storage of antimatter. When used in strong magnetic fields plasma heating caused by the applied field is mitigated by cyclotron cooling, leading to an efficient broadband mode of compression known as the strong drive regime. We have found that it is possible to access the strong drive regime in a low field trap where cyclotron cooling is negligible and a gas is used for cooling, and we have been able to compress positron plasmas to more than 10% of the Brillouin density limit.

Cassidy, D. B.; Mills, A. P. Jr. [Department of Physics and Astronomy, University of California, Riverside, California 92521-0413 (United States); Greaves, R. G. [First Point Scientific, Inc., 5330 Derry Avenue, Suite J, Agoura Hills, California 91301 (United States); Meligne, V. E. [Department of Physics and Astronomy, University of California, Riverside, California 92521-0413 (United States); First Point Scientific, Inc., 5330 Derry Avenue, Suite J, Agoura Hills, California 91301 (United States)

2010-03-08T23:59:59.000Z

48

Central Hudson Gas and Electric (Gas) - Commercial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Energy Commercial Energy Efficiency Program Central Hudson Gas and Electric (Gas) - Commercial Energy Efficiency Program < Back Eligibility Commercial Installer/Contractor Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Construction Appliances & Electronics Water Heating Maximum Rebate See Program Info State New York Program Type Utility Rebate Program Rebate Amount Furnace: $500 Furnace with ECM Fan: $700 - $900 Water Boiler: $800 - $1,200 Steam Boiler: $800 Boiler Reset Control: $100 Indirect Water Heater: $300 Programmable Thermostats: $25 Provider Central Hudson Gas and Electric The Business Energy SavingsCentral program is for non-residential gas customers of Central Hudson. This includes businesses, local governments,

49

Determining the maximal capacity of a combined-cycle plant operating with afterburning of fuel in the gas conduit upstream of the heat-recovery boiler  

Science Journals Connector (OSTI)

The effect gained from afterburning of fuel in the gas conduit upstream of the heat-recovery boiler used as part of a PGU-450T combined-cycle plant is considered. The results obtained from ... electric and therma...

V. M. Borovkov; N. M. Osmanova

2011-01-01T23:59:59.000Z

50

Cool Gas in the Virgo Cluster?  

Science Journals Connector (OSTI)

...ASTROPHYSICS 32 , 277 ( 1994 ). • LIEU R , Discovery of 0.5 MK gas in the center of the Virgo Cluster , ASTROPHYSICAL JOURNAL...1) using data on the Virgo cluster taken with the Extreme Ultra-violet Explorer (EUVE). They found that the very soft x-ray...

Andrew C. Fabian

1996-03-01T23:59:59.000Z

51

Chapter 26 - The Oxyfuel Baseline: Revamping Heaters and Boilers to Oxyfiring by Cryogenic Air Separation and Flue Gas Recycle  

Science Journals Connector (OSTI)

This feasibility study involves the potential application of oxyfuel technology on a refinery-wide basis at the BP Grangemouth unit in Scotland. A total of seven boilers and 13 process heaters of various types, burning a mixture of refinery fuel gas and fuel oil resulting in the production of approximately 2.0 million tonnes per annum of CO2, form the basis of this study.

Rodney Allam; Vince White; Neil Ivens; Mark Simmonds

2005-01-01T23:59:59.000Z

52

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents (OSTI)

A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

1995-01-01T23:59:59.000Z

53

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents (OSTI)

A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

Viscovich, P.W.; Bannister, R.L.

1995-07-11T23:59:59.000Z

54

Fluid Bed Waste Heat Boiler Operating Experience in Dirty Gas Streams  

E-Print Network (OSTI)

from 13 to 15 million BTU per hour for fired boiler efficiencies of 80% to 70% respectively. The savings represents 85 to 90% of the energy entering the waste heat boiler. Equiva lent furnace efficiency increases from 25% to over 60% on high fire... Fired Boiler Efficiency 0.70 0.75 0.80 Energy Savings Furnace Efficiency Corresponding Peak Fuel Equivalent at High (1) . Savi ngs Fire on Melt 4453 kw (15.1x10 6 BTU/hr) 69% 4156 kw (14.1x10 6 BTU/hr) 66% 3896 kw (13.3x10 6 BTU/hr) 63% (1...

Kreeger, A. H.

55

Oxy-combustion Boiler Material Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-combustion Boiler Material Oxy-combustion Boiler Material Development Background In an oxy-combustion system, combustion air (79 percent nitrogen, 21 percent oxygen) is replaced by oxygen and recycled flue gas (carbon dioxide [CO 2 ] and water), eliminating nitrogen in the flue gas stream. When applied to an existing boiler, the flue gas recirculation rate is adjusted to enable the boiler to maintain its original air-fired heat absorption performance, eliminating the need to derate the boiler

56

BOILERS, BOILER FUEL AND BOILER EFFICIENCY  

E-Print Network (OSTI)

This paper describes the modern boilers in the South African sugar industry. A new equation for the calculation of the net calorific value (NCV) of bagasse is suggested and a distinction is made between boiler design efficiency and boiler operation efficiency. Methods to calculate fuel calorific values and boiler efficiencies from first principles are presented.

A Wienese

57

AGN-stimulated Cooling of Hot Gas in Elliptical Galaxies  

E-Print Network (OSTI)

We study the impact of relatively weak AGN feedback on the interstellar medium of intermediate and massive elliptical galaxies. We find that the AGN activity, while globally heating the ISM, naturally stimulates some degree of hot gas cooling on scales of several kpc. This process generates the persistent presence of a cold ISM phase, with mass ranging between 10$^4$ and $\\gtrsim$ 5 $\\times$ 10$^7$ M$_\\odot$, where the latter value is appropriate for group centered, massive galaxies. Widespread cooling occurs where the ratio of cooling to free-fall time before the activation of the AGN feedback satisfies $t_{cool}/t_{ff} \\lesssim 70$, that is we find a less restrictive threshold than commonly quoted in the literature. This process helps explaining the body of observations of cold gas (both ionized and neutral/molecular) in Ellipticals and, perhaps, the residual star formation detected in many early-type galaxies. The amount and distribution of the off-center cold gas vary irregularly with time. The cold ISM v...

Valentini, Milena

2015-01-01T23:59:59.000Z

58

Cooled turbine blades in the GTÉ-65 gas turbine power unit  

Science Journals Connector (OSTI)

Experience with the development, study, and manufacturing of cooled blades for the GTÉ-65 high temperature gas turbine is described.

V. V. Rtishchev; V. V. Krivonosova; Yu. M. Sundukov…

2009-11-01T23:59:59.000Z

59

Norwich Public Utilities (Gas) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Norwich Public Utilities (Gas) - Residential Energy Efficiency Norwich Public Utilities (Gas) - Residential Energy Efficiency Rebate Program Norwich Public Utilities (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Furnaces: $400 Boilers: $600 Tankless Boiler/Water Heater Combined: $850 - $1050 Indirect Fired/Tankless Water Heaters: $250 - $450 Provider Norwich Public Utilities Norwich Public Utilities (NPU) provides residential natural gas customers rebates for upgrading to energy efficient equipment in eligible homes. NPU offers rebates of between $250 - $1050 for natural gas furnaces, boilers,

60

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a liquid flue gas conditioning system was completed at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Two cohesivity-specific additive formulations, ADA-44C and ADA-51, will be evaluated. In addition, ammonia conditioning will also be compared.

Kenneth E. Baldrey

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Inhomogeneous Cooling of the Rough Granular Gas in Two Dimensions  

E-Print Network (OSTI)

We study the inhomogeneous clustered regime of a freely cooling granular gas of rough particles in two dimensions using large-scale event driven simulations and scaling arguments. During collisions, rough particles dissipate energy in both the normal and tangential directions of collision. In the inhomogeneous regime, translational kinetic energy and the rotational energy decay with time $t$ as power-laws $t^{-\\theta_T}$ and $t^{-\\theta_R}$. We numerically determine $\\theta_T \\approx 1$ and $\\theta_R \\approx 1.6$, independent of the coefficients of restitution. The inhomogeneous regime of the granular gas has been argued to be describable by the ballistic aggregation problem, where particles coalesce on contact. Using scaling arguments, we predict $\\theta_T=1$ and $\\theta_R=1$ for ballistic aggregation, $\\theta_R$ being different from that obtained for the rough granular gas. Simulations of ballistic aggregation with rotational degrees of freedom are consistent with these exponents.

Sudhir N. Pathak; Dibyendu Das; R. Rajesh

2014-07-03T23:59:59.000Z

62

CenterPoint Energy - Business Gas Heating Rebates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CenterPoint Energy - Business Gas Heating Rebates CenterPoint Energy - Business Gas Heating Rebates CenterPoint Energy - Business Gas Heating Rebates < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate Boiler System, Modulating Boiler Burner, and Vent Dampeners: 25% of equipment cost Program Info Expiration Date 12/31/2013 State Arkansas Program Type Utility Rebate Program Rebate Amount Solutions Program: Varies Direct Install Measures: No cost to customers 85% to 91.9% Efficiency Boiler: $1,400/MMBtuh Input 92%+ Efficiency Boiler: $2000/MMBtuh Input Modulating Boiler Burners: $1,000/MMBtuh Input Vent Dampers: $250/boiler Boiler Controls: $150/system Storage Water Heater: $75 Tankless Water Heater: $500

63

Energy Efficiency Opportunities in EPA's Boiler Rules  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities in EPA's Boiler Rules Opportunities in EPA's Boiler Rules On December 20, 2012, the US Environmental Protection Agency (EPA) finalized new regulations to control emissions of hazardous air pollutants (HAP) from commercial, industrial, and institutional boilers and process heaters. These new rules, known as the Boiler MACT (major sources) and Boiler Area Source Rule (smaller sources), will reduce the amount of HAPS such as mercury, heavy metals, and other toxics that enter the environment. Since emissions from boilers are linked to fuel consumption, energy efficiency is an important strategy for complying with the new Boiler rules. Who is affected? Most existing industrial, commercial and institutional (ICI) boilers will not be affected by the Boiler MACT. These unaffected boilers are mostly small natural gas-fired boilers. Only about 14% of all existing

64

High temperature gas cooled reactor steam-methane reformer design  

SciTech Connect

The concept of the long distance transportation of process heat energy from a High Temperature Gas Cooled Reactor (HTGR) heat source, based on the steam-methane reforming reaction, is being evaluated by the Department of Energy as an energy source/application for use early in the 21st century. This paper summaries the design of a helium heated steam reformer utilized in conjunction with an intermediate loop, 850/degree/C reactor outlet temperature, HTGR process heat plant concept. This paper also discusses various design considerations leading to the mechanical design features, the thermochemical performance, the materials selection and the structural design analysis. 12 refs.

Impellezzeri, J.R.; Drendel, D.B.; Odegaard, T.K.

1981-01-01T23:59:59.000Z

65

Heating and cooling gas-gun targets: nuts and bolts  

SciTech Connect

The nuts and bolts of a system used to heat and cool gas-gun targets is described. We have now used the system for more than 35 experiments, all of which have used electromagnetic gauging. Features of the system include a cover which is removed (remotely) just prior to projectile impact and the widespread use of metal/polymer insulations. Both the cover and insulation were required to obtain uniform temperatures in samples with low thermal conductivity. The use of inexpensive video cameras to make remote observations of the cover removal was found to be very useful. A brief catalog of useful glue, adhesive tape, insulation, and seal materials is given.

Gustavsen, Richard L [Los Alamos National Laboratory; Bartram, Brian D [Los Alamos National Laboratory; Gehr, Russell J [HONEYWEL FM& T; Bucholtz, Scott M [HINEYWELL FM& T

2009-01-01T23:59:59.000Z

66

Stirling engines for gas fired micro-cogen and cooling  

SciTech Connect

This paper describes the design and performance of free-piston Stirling engine-alternators particularly suited for use as natural gas fired micro-cogen and cooling devices. Stirling based cogen systems offer significant potential advantages over internal combustion engines in efficiency, to maintain higher efficiencies at lower power levels than than combustion engines significantly expands the potential for micro-cogen. System cost reduction and electric prices higher than the U.S. national average will have a far greater effect on commercial success than any further increase in Stirling engine efficiency. There exist niche markets where Stirling engine efficiency. There exist niche markets where Stirling based cogen systems are competitive. Machines of this design are being considered for production in the near future as gas-fired units for combined heat and power in sufficiently large quantities to assure competitive prices for the final unit.

Lane, N.W.; Beale, W.T. [Sunpower, Inc., Athens, OH (United States)

1996-12-31T23:59:59.000Z

67

Key Thermal Fluid Phenomena In Prismatic Gas-Cooled Reactors  

SciTech Connect

Several types of gas-cooled nuclear reactors have been suggested as part of the international Generation IV initiative with the proposed NGNP (Next Generation Nuclear Plant) as one of the main concepts [MacDonald et al., 2003]. Meaningful studies for these designs will require accurate, reliable predictions of material temperatures to evaluate the material capabilities; these temperatures depend on the thermal convection in the core and in other important components. Some of these reactors feature complex geometries and wide ranges of temperatures, leading to significant variations of the gas thermodynamic and transport properties plus possible effects of buoyancy during normal and reduced power operations and loss-of-flow (LOFA) and loss-of-coolant scenarios. Potential issues identified to date include ''hot streaking'' in the lower plenum evolving from ''hot channels'' in prismatic cores. In order to predict thermal hydraulic behavior of proposed designs effectively and efficiently, it is useful to identify the dominant phenomena occurring.

D. M. McEligot; G. E. McCreery; P. D. Bayless; T. D. Marshall

2005-06-01T23:59:59.000Z

68

Vectren Energy Delivery of Indiana (Gas) - Commercial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vectren Energy Delivery of Indiana (Gas) - Commercial Energy Vectren Energy Delivery of Indiana (Gas) - Commercial Energy Efficiency Rebates Vectren Energy Delivery of Indiana (Gas) - Commercial Energy Efficiency Rebates < Back Eligibility Commercial Fed. Government Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Appliances & Electronics Water Heating Maximum Rebate Boilers: $5,000 Boiler Modulating Burner Control: $5,000 Infrared Heater: $700 Custom: Contact Vectren Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Boilers: $4/MMbtu Boiler Modulating Burner Control: up to $5000 Boiler Reset Control or Tune-Up: $250 Boiler Tune-up: $200 Furnace: $150 - $275 Tank Water Heater: $125 - $150 Tankless Water Heater: $150

69

Analysis of the Reactor Cavity Cooling System for Very High Temperature Gas-cooled Reactors Using Computational Fluid Dynamics Tools  

E-Print Network (OSTI)

The design of passive heat removal systems is one of the main concerns for the modular Very High Temperature Gas-Cooled Reactors (VHTR) vessel cavity. The Reactor Cavity Cooling System (RCCS) is an important heat removal system in case of accidents...

Frisani, Angelo

2011-08-08T23:59:59.000Z

70

A gas-cooled reactor surface power system  

Science Journals Connector (OSTI)

A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed depending on the number of astronauts level of scientific activity and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

Ronald J. Lipinski; Steven A. Wright; Roger X. Lenard; Gary A. Harms

1999-01-01T23:59:59.000Z

71

Citizens Gas - Commercial Efficiency Rebates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Citizens Gas - Commercial Efficiency Rebates Citizens Gas - Commercial Efficiency Rebates Citizens Gas - Commercial Efficiency Rebates < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Construction Commercial Weatherization Appliances & Electronics Water Heating Maximum Rebate Custom Incentives: $25,000 Natural Gas Boiler: $5000 Program Info Start Date 10/01/2008 State Indiana Program Type Utility Rebate Program Rebate Amount Custom Measures: up to 30% of cost Boiler and Boiler Controls: 25% of purchase price Boiler Reset Control: $250 Boiler Tune-Up: $250 Furnace: $250 Programmable Thermostat: $20 Water Heater: $50 - $150 Tankless Water Heater: $150 Steam Trap Service: $50/trap Unit Heater: $200 Low-Flow Pre-Rinese Sprayer: $25 Citizens Gas of Indiana offers rebates to commercial customers for the

72

CenterPoint Energy (Gas) - Commercial Efficiency Rebates (Oklahoma) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Efficiency Rebates (Oklahoma) Commercial Efficiency Rebates (Oklahoma) CenterPoint Energy (Gas) - Commercial Efficiency Rebates (Oklahoma) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Construction Appliances & Electronics Water Heating Maximum Rebate Boilers: 25% of equipment costs Modulating Boiler Controls: 25% Vent Dampers: $250/boiler Boiler Reset Controls: $150/control system Program Info State Oklahoma Program Type Utility Rebate Program Rebate Amount Forced-Air Furnace: $300-$400 Direct Vent Wall Furnace: $200 Hydronic Heating System: $300 Boilers: $1400-$2000/MMBtu input Modulating Boiler Controls: $1,000/MMBtu input Vent Dampers: 25% of cost Boiler Reset/Cut-Out Controls: up to $150/system Tankless Water Heater: $250

73

Numerical Simulation in a Supercirtical CFB Boiler  

Science Journals Connector (OSTI)

The dimension of the hot circulation loop of the supercritical CFB boiler is large, and there are many ... simulation of gas-solid flow in a supercritical CFB boiler was conducted by using FLUENT software. ... th...

Yanjun Zhang; Xiang Gaol; Zhongyang Luo…

2010-01-01T23:59:59.000Z

74

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE  

SciTech Connect

Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in O{sub 2}/CO{sub 2} mixtures. Firing rates in the pilot test facility ranged from 2.2 to 7.9 MM-Btu/hr. Pilot-scale testing was performed at ALSTOM's Multi-use Test Facility (MTF), located in Windsor, Connecticut.

Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

2004-10-27T23:59:59.000Z

75

E-Print Network 3.0 - army gas-cooled reactor Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

ENABLING SUSTAINABLE NUCLEAR POWER Summary: and NRE Design Class., "Advances in the Subcritical, Gas-Cooled Fast Transmutation Reactor Concept", Nucl... . Tedder, J. Lackey, J....

76

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was underway at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. This represents the first long-term full-scale testing of this class of products. Modifications to the flue gas conditioning system at Jim Bridger, including development of alternate injection lances, was also undertaken to improve chemical spray distribution and to avoid spray deposition to duct interior surfaces. Also in this quarter, a firm commitment was received for another long-term test of the cohesivity additives. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

Kenneth E. Baldrey

2002-05-01T23:59:59.000Z

77

Evaluation of Hastelloy X for gas-cooled-reactor applications  

SciTech Connect

Hastelloy X is a potential structural material for use in gas-cooled reactor systems. In this application data are necessary on the mechanical properties of base metals and weldments under realistic service conditions. The test environment studied was helium that contained small amounts of H/sub 2/, CH/sub 4/, and CO. It is shown that this environment is carburizing with the kinetics of this process, becoming rapid above 800/sup 0/C. Suitable weldments of Hastelloy X were prepared by several processes; those weldments generally had properties similar to the base metal except for lower fracture strains under some conditions. Some samples were aged up to 20,000 h in the test gas and tested, and some creep tests on as-received material exceeded 40,000 h. The predominant effect of aging was the significant reduction of the fracture strains at ambient temperature; the strains were lower when the samples were aged in HTGR helium than when aged in inert gas. Under some conditions aging also increased the yield and ultimate tensile strength. Limited impact testing showed that the impact energy at 25/sup 0/C was reduced drastically by aging at 871 and 704/sup 0/C.

McCoy, H.E.; King, J.F.

1982-11-01T23:59:59.000Z

78

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

ADA Environmental Solutions (ADA-ES) has successfully completed a research and development program granted by the Department of Energy National Energy Technology Laboratory (NETL) to develop a family of non-toxic flue gas conditioning agents to provide utilities and industries with a cost-effective means of complying with environmental regulations on particulate emissions and opacity. An extensive laboratory screening of potential additives was completed followed by full-scale trials at four utility power plants. The developed cohesivity additives have been demonstrated on a 175 MW utility boiler that exhibited poor collection of unburned carbon in the electrostatic precipitator. With cohesivity conditioning, opacity spiking caused by rapping reentrainment was reduced and total particulate emissions were reduced by more than 30%. Ammonia conditioning was also successful in reducing reentrainment on the same unit. Conditioned fly ash from the process is expected to be suitable for dry or wet disposal and for concrete admixture.

C. Jean Bustard

2003-12-01T23:59:59.000Z

79

Laclede Gas Company - Commercial and Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laclede Gas Company - Commercial and Industrial Energy Efficiency Laclede Gas Company - Commercial and Industrial Energy Efficiency Rebate Program Laclede Gas Company - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Maximum Rebate Commercial Incentive: Contact Laclede Gas for general program incentive maximum Gas Boilers: 1,000,000 BTU/hr ($3,000) Continuous Modulating Burner: $15,000 cap per burner Gas-fired Boiler Tune Up: $750 per building (non-profit), $500 per boiler (C&I) High Efficiency Air-Forced Furnaces: $200-$250 Vent Dampers: $500 per boiler Steam Trap Replacements: $2,500 Primary Air Dampers: $500 Food Service Gas Steamer: $475 Food Service Gas Fryer: $350

80

[Gas cooled fuel cell systems technology development program  

SciTech Connect

Objective is the development of a gas-cooled phosphoric acid fuel cell for electric utility power plant application. Primary objectives are to: demonstrate performance endurance in 10-cell stacks at 70 psia, 190 C, and 267 mA/cm[sup 2]; improve cell degradation rate to less than 8 mV/1000 hours; develop cost effective criteria, processes, and design configurations for stack components; design multiple stack unit and a single 100 kW fuel cell stack; design a 375 kW fuel cell module and demonstrate average cell beginning-of-use performance; manufacture four 375-kW fuel cell modules and establish characteristics of 1.5 MW pilot power plant. The work is broken into program management, systems engineering, fuel cell development and test, facilities development.

Not Available

1988-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Orange and Rockland Utilities (Gas) - Residential Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orange and Rockland Utilities (Gas) - Residential Efficiency Orange and Rockland Utilities (Gas) - Residential Efficiency Program Orange and Rockland Utilities (Gas) - Residential Efficiency Program < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Water Heating Program Info State New York Program Type Utility Rebate Program Rebate Amount Furnace: $140 - $420 Water Boiler: $350 or $700 Steam Boiler: $350 Boiler Reset Control: $70 Indirect Water Heater: $210 Programmable Thermostat: $18 Duct and Air Sealing: up to $420 Provider Orange and Rockland Utilities, Inc. Orange and Rockland Utilities provides rebates for residential customers

82

Efficiency United (Gas) - Commercial Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency United (Gas) - Commercial Efficiency Program Efficiency United (Gas) - Commercial Efficiency Program Efficiency United (Gas) - Commercial Efficiency Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Other Construction Manufacturing Water Heating Maximum Rebate See Page Four of Utility Application: $100-$50,000/customer/year depending on utility and remaining funding Custom:40% of project cost Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Trap Repair or Replacement: $50/unit Boilers: $1-$1.50/MBH Furnace Replacement: $1.50/MBH or $150/unit Boiler Modulation Burner Control Retrofit: $1000/unit Boiler Water Reset Control: $300/unit

83

Berkshire Gas - Commercial Energy Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Berkshire Gas - Commercial Energy Efficiency Rebate Program Berkshire Gas - Commercial Energy Efficiency Rebate Program Berkshire Gas - Commercial Energy Efficiency Rebate Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Manufacturing Other Sealing Your Home Ventilation Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate See Program Website Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Custom: 50% of cost Furnaces: $500 - $800 Condensing Unit Heaters: $750 Infrared Heaters: $750 Condensing Boilers: $1,000 - $10,000 Boiler Reset Controls: $225 Integrated Water Heater/Condensing Boilers: $1,200

84

Analysis of efficiency of control of operation conditions of air gas cooling devices at compressor stations  

Science Journals Connector (OSTI)

Based on calculations of energy consumption by air gas cooling devices, an analysis has been made of the efficiency of the methods of control of temperature conditions of the transported gas. Two types of air ...

A. V. Krupnikov; A. D. Vanyashov; I. A. Yanvarev

2010-05-01T23:59:59.000Z

85

Multi-Scale Thermal Measurement and Design of Cooling Systems in Gas Turbine  

Science Journals Connector (OSTI)

The present gas turbine technology increases the turbine inlet temperature to a limitation which is very high gas temperature accomplished by recently developed material and cooling technology. In order to overco...

Hyung Hee Cho; Kyung Min Kim; Sangwoo Shin…

2009-01-01T23:59:59.000Z

86

Computational Fluid Dynamics Analysis of Very High Temperature Gas-Cooled Reactor Cavity Cooling System  

SciTech Connect

The design of passive heat removal systems is one of the main concerns for the modular very high temperature gas-cooled reactors (VHTR) vessel cavity. The reactor cavity cooling system (RCCS) is a key heat removal system during normal and off-normal conditions. The design and validation of the RCCS is necessary to demonstrate that VHTRs can survive to the postulated accidents. The computational fluid dynamics (CFD) STAR-CCM+/V3.06.006 code was used for three-dimensional system modeling and analysis of the RCCS. A CFD model was developed to analyze heat exchange in the RCCS. The model incorporates a 180-deg section resembling the VHTR RCCS experimentally reproduced in a laboratory-scale test facility at Texas A&M University. All the key features of the experimental facility were taken into account during the numerical simulations. The objective of the present work was to benchmark CFD tools against experimental data addressing the behavior of the RCCS following accident conditions. Two cooling fluids (i.e., water and air) were considered to test the capability of maintaining the RCCS concrete walls' temperature below design limits. Different temperature profiles at the reactor pressure vessel (RPV) wall obtained from the experimental facility were used as boundary conditions in the numerical analyses to simulate VHTR transient evolution during accident scenarios. Mesh convergence was achieved with an intensive parametric study of the two different cooling configurations and selected boundary conditions. To test the effect of turbulence modeling on the RCCS heat exchange, predictions using several different turbulence models and near-wall treatments were evaluated and compared. The comparison among the different turbulence models analyzed showed satisfactory agreement for the temperature distribution inside the RCCS cavity medium and at the standpipes walls. For such a complicated geometry and flow conditions, the tested turbulence models demonstrated that the realizable k-epsilon model with two-layer all y+ wall treatment performs better than the other k-epsilon and k-omega turbulence models when compared to the experimental results and the Reynolds stress transport turbulence model results. A scaling analysis was developed to address the distortions introduced by the CFD model in simulating the physical phenomena inside the RCCS system with respect to the full plant configuration. The scaling analysis demonstrated that both the experimental facility and the CFD model achieve a satisfactory resemblance of the main flow characteristics inside the RCCS cavity region, and convection and radiation heat exchange phenomena are properly scaled from the actual plant.

Angelo Frisani; Yassin A. Hassan; Victor M. Ugaz

2010-11-02T23:59:59.000Z

87

Low pressure cooling seal system for a gas turbine engine  

DOE Patents (OSTI)

A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

Marra, John J

2014-04-01T23:59:59.000Z

88

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a flue gas conditioning system was completed at PacifiCorp Jim Bridger Power Plant. Performance testing was underway. Results will be detailed in the next quarterly and subsequent technical summary reports. Also in this quarter, discussions were initiated with a prospective long-term candidate plant. This plant fires a bituminous coal and has opacity performance issues related to fly ash re-entrainment. Ammonia conditioning has been proposed here, but there is interest in liquid additives as a safer alternative.

Kenneth E. Baldrey

2002-01-01T23:59:59.000Z

89

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. This quarterly report summarizes project activity for the period April-June, 2003. In this period there was limited activity and no active field trials. Results of ash analysis from the AEP Conesville demonstration were received. In addition, a site visit was made to We Energies Presque Isle Power Plant and a proposal extended for a flue gas conditioning trial with the ADA-51 cohesivity additive. It is expected that this will be the final full-scale evaluation on the project.

Kenneth E. Baldrey

2003-07-30T23:59:59.000Z

90

Furnace and Boiler Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnace and Boiler Basics Furnace and Boiler Basics Furnace and Boiler Basics August 16, 2013 - 2:50pm Addthis Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating. Furnaces Furnaces are the most common heating systems used in homes in the United States. They can be all electric, gas-fired (including propane or natural gas), or oil-fired. Boilers Boilers consist of a vessel or tank where heat produced from the combustion of such fuels as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings have their own boilers, while other buildings have steam or hot water piped in from a central plant. Commercial boilers are manufactured for high- or low-pressure applications.

91

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was completed at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. The product was effective as a flue gas conditioner. However, ongoing problems with in-duct deposition resulting from the flue gas conditioning were not entirely resolved. Primarily these problems were the result of difficulties encountered with retrofit of an existing spray humidification system. Eventually it proved necessary to replace all of the original injection lances and to manually bypass the PLC-based air/liquid feed control. This yielded substantial improvement in spray atomization and system reliability. However, the plant opted not to install a permanent system. Also in this quarter, preparations continued for a test of the cohesivity additives at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

Kenneth E. Baldrey

2002-07-01T23:59:59.000Z

92

Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump Systems and Solutions  

E-Print Network (OSTI)

#12;Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump use of buildings Gas Heat Pump Solution #12;Gas Heat Pump - deserves special attention due to its source in addition to the outside air ·A further essential component of Gas Heat Pump air conditioning

Oak Ridge National Laboratory

93

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, further laboratory-screening tests of additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of fly ash cohesivity. Resistivity was measured for each screening test with a multi-cell laboratory fly ash resistivity furnace constructed for this project. Also during this quarter chemical formulation testing was undertaken to identify stable and compatible resistivity/cohesivity liquid products.

Kenneth E. Baldrey

2001-09-01T23:59:59.000Z

94

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, two cohesivity-specific additive formulations, ADA-44C and ADA-51, were evaluated in a full-scale trial at the American Electric Power Conesville plant. Ammonia conditioning was also evaluated for comparison. ADA-51 and ammonia conditioning significantly reduced rapping and non-rapped particulate re-entrainment based on stack opacity monitor data. Based on the successful tests to date, ADA-51 will be evaluated in a long-term test.

Kenneth E. Baldrey

2003-02-01T23:59:59.000Z

95

Graphite-moderated, gas-cooled, and water-moderated, water-cooled reactors as power units in nuclearelectric power stations  

Science Journals Connector (OSTI)

The present article reviews a number of papers submitted at the Second International Conference on the Peaceful Uses of Atomic Energy bearing on water-cooled, water-moderated, graphite-moderated, and gas-coole...

Yu. I. Koryakin

1960-11-01T23:59:59.000Z

96

Simultaneous use of MRM (maximum rectangle method) and optimization methods in determining nominal capacity of gas engines in CCHP (combined cooling, heating and power) systems  

Science Journals Connector (OSTI)

Abstract Energy, economic, and environmental analyses of combined cooling, heating and power (CCHP) systems were performed here to select the nominal capacities of gas engines by combination of optimization algorithm and maximum rectangle method (MRM). The analysis was performed for both priority of providing electricity (PE) and priority of providing heat (PH) operation strategies. Four scenarios (SELL-PE, SELL-PH, No SELL-PE, No SELL-PH) were followed to specify design parameters such as the number and nominal power of prime movers, heating capacities of both backup boiler and energy storage tank, and the cooling capacities of electrical and absorption chillers. By defining an objective function called the Relative Annual Benefit (RAB), Genetic Algorithm optimization method was used for finding the optimal values of design parameters. The optimization results indicated that two gas engines (with nominal powers of 3780 and 3930 kW) in SELL-PE scenario, two gas engines (with nominal powers of 5290 and 5300 kW) in SELL-PH scenario, one gas engine (with nominal power of 2440 kW) in No SELL-PE scenario provided the maximum value of the objective function. Furthermore in No SELL-PE scenario (which had the lowest RAB value in comparison with that for the above mentioned scenarios), thermal energy storage was not required. Due to very low value of RAB, any gas engine in No SELL-PH scenario was not recommended.

Sepehr Sanaye; Navid Khakpaay

2014-01-01T23:59:59.000Z

97

Evaluation of gas-reburning and low NO{sub x} burners on a wall fired boiler. Progress report, January 1--March 31, 1996  

SciTech Connect

The primary objective of this Clean Coal Technology project is to evaluate the use of Gas Reburning and Low NO{sub x} Burners (GR-LNB) for NO{sub x} emission control from a wall fired boiler. This project is being conducted in three phases at the host site, a 172 MW{sub e} wall fired boiler of Public Service Company of Colorado, Cherokee Unit 3 in Denver, Colorado: Phase I, design and permitting has been completed on June 30, 1992; Phase II, construction and start-up has been completed on September 1991; and Phase III, operation, data collection, reporting and disposition. Phase III activities during this reporting period involved the following: compilation, analysis and assembly of the final report and initiation of restoration activities; restoration of the gas reburning system involving removal of the flue gas recirculation system (permanent Second Generation Gas Reburning); and participants meeting and reburning workshop. Long term testing of the equipment demonstrated an average NO{sub x} reduction of 65% using 18% gas heat input. After removing the flue gas recirculation system, (Second Generation GR), an average NO{sub x} of 64% was achieved using 13% gas heat input. The project goal of 70% reduction was achieved, but no on an average basis due to the load requirements of the utility.

NONE

1996-04-15T23:59:59.000Z

98

Chemistry and cooling in metal-free and metal-poor gas  

E-Print Network (OSTI)

I summarize four of the most important areas of uncertainty in the study of the chemistry and cooling of gas with zero or very low metallicity. These are: i) the importance and effects of HD cooling in primordial gas; ii) the importance of metal-line and dust cooling in low metallicity gas; iii) the impact of the large uncertainties that exist in the rate coefficients of several key reactions involved in the formation of H2; and iv) the effectiveness of grain surface chemistry at high redshifts.

S. C. O. Glover

2007-09-04T23:59:59.000Z

99

Retrofitted coal-fired firetube boiler and method employed therewith  

DOE Patents (OSTI)

A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler, the converted boiler including a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones.

Wagoner, Charles L. (Tullahoma, TN); Foote, John P. (Tullahoma, TN)

1995-01-01T23:59:59.000Z

100

Retrofitted coal-fired firetube boiler and method employed therewith  

DOE Patents (OSTI)

A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler are disclosed. The converted boiler includes a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones. 19 figs.

Wagoner, C.L.; Foote, J.P.

1995-07-04T23:59:59.000Z

Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings  

SciTech Connect

Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

2009-07-15T23:59:59.000Z

102

Techno-Economic Evaluation of Using Different Air Inlet Cooling Systems in Gas Compressor Station  

Science Journals Connector (OSTI)

Abstract The purpose of this paper is to review the state of the art in applications for reducing the gas turbine intake air temperature and examine the merits from integration of the different air-cooling methods for 25 MW gas turbine based pipeline gas station . Four different intake air cooling methods have been applied in two pipeline gas stations. The calculations were performed on a yearly basis of operation. The case study is related to Dehshir and Kashan pipeline gas stations in Iran Gas Trunk line 8. The simulation has been performed in Thermoflex Software. Also, the Matlab code has been developed for thermodynamic simulation and exergoeconomic analysis of different scenarios. Finally, the thermodynamic, economics and exergoeconomic parameters for integration of the different cooling systems were calculated and compared.

V. Mazhari; S. Khamis Abadi; H. Ghalami; M.H. Khoshgoftar Manesh; M. Amidpour

2012-01-01T23:59:59.000Z

103

Mercury control challenge for industrial boiler MACT affected facilities  

SciTech Connect

An industrial coal-fired boiler facility conducted a test program to evaluate the effectiveness of sorbent injection on mercury removal ahead of a fabric filter with an inlet flue gas temperature of 375{sup o}F. The results of the sorbent injection testing are essentially inconclusive relative to providing the facility with enough data upon which to base the design and implementation of permanent sorbent injection system(s). The mercury removal performance of the sorbents was significantly less than expected. The data suggests that 50 percent mercury removal across a baghouse with flue gas temperatures at or above 375{sup o}F and containing moderate levels of SO{sub 3} may be very difficult to achieve with activated carbon sorbent injection alone. The challenge many coal-fired industrial facilities may face is the implementation of additional measures beyond sorbent injection to achieve high levels of mercury removal that will likely be required by the upcoming new Industrial Boiler MACT rule. To counter the negative effects of high flue gas temperature on mercury removal with sorbents, it may be necessary to retrofit additional boiler heat transfer surface or spray cooling of the flue gas upstream of the baghouse. Furthermore, to counter the negative effect of moderate or high SO{sub 3} levels in the flue gas on mercury removal, it may be necessary to also inject sorbents, such as trona or hydrated lime, to reduce the SO{sub 3} concentrations in the flue gas. 2 refs., 1 tab.

NONE

2009-09-15T23:59:59.000Z

104

Alliant Energy Interstate Power and Light (Gas) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas) - Residential Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Design & Remodeling Windows, Doors, & Skylights Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Caulking/Weather Stripping: $200 Ceiling/Foundation/Wall Insulation: $750 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Boilers: $150 - $400 Furnaces: $250 - $400 Efficient Fan Motor: $50 Programmable Thermostats: $25 Furnace or Boiler Clean and Tune: $30

105

Peoples Gas - Residential Rebate Program (Illinois) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peoples Gas - Residential Rebate Program (Illinois) Peoples Gas - Residential Rebate Program (Illinois) Peoples Gas - Residential Rebate Program (Illinois) < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Water Heating Maximum Rebate 100% of project cost Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Furnace: $300 -$500 Boiler: varies, depending on size and efficiency Boiler Controls: $100/unit Complete HVAC System Replacement: $650 - $1,000 Water Heater (Tankless): $450 Water Heater (Indirect): $275 Water Heater (Storage Tank): $100 Attic Insulation: $0.10/sq ft Programmable Thermostat: $50

106

E-Print Network 3.0 - advanced gas-cooled nuclear Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy 9 UNM engineering s p r i N g 2 0 0 6 Summary: Re); the gas cooled Submersion-Subcritical Safe Space reactor (S4) designed to operate with multiple Closed... for reducing...

107

Non-linear Dynamical Reliability Analysis in the Very High Temperature Gas Cooled Reactor  

Science Journals Connector (OSTI)

A dynamic safety assessment has been developed for the passive system in the very high temperature gas cooled reactor (VHTR), where the operational data are deficient. It is needed to make use of the character...

Taeho Woo

2012-01-01T23:59:59.000Z

108

Effect of Cooling Flow on the Operation of a Hot Rotor-Gas Foil Bearing System  

E-Print Network (OSTI)

Gas foil bearings (GFBs) operating at high temperature rely on thermal management procedures that supply needed cooling flow streams to keep the bearing and rotor from overheating. Poor thermal management not only makes systems inefficient...

Ryu, Keun

2012-02-14T23:59:59.000Z

109

Flue-gas sulfur-recovery plant for a multifuel boiler  

SciTech Connect

In October 1991, a Finnish fluting mill brought on stream a flue-gas desulfurization plant with an SO{sub 2} reduction capacity of 99%. The desulfurization plant enabled the mill to discontinue the use of its sulfur burner for SO{sub 2} production. The required makeup sulfur is now obtained in the form of sulfuric acid used by the acetic acid plant, which operates in conjunction with the evaporating plant. The mill`s sulfur consumption has decreased by about 6,000 tons/year (13.2 million lb/year) because of sulfur recycling.

Miettunen, J. [Tampella Power Inc., Tampere (Finland); Aitlahti, S. [Savon Sellu Oy, Kuopio (Finland)

1993-12-01T23:59:59.000Z

110

Cooling system having reduced mass pin fins for components in a gas turbine engine  

DOE Patents (OSTI)

A cooling system having one or more pin fins with reduced mass for a gas turbine engine is disclosed. The cooling system may include one or more first surfaces defining at least a portion of the cooling system. The pin fin may extend from the surface defining the cooling system and may have a noncircular cross-section taken generally parallel to the surface and at least part of an outer surface of the cross-section forms at least a quartercircle. A downstream side of the pin fin may have a cavity to reduce mass, thereby creating a more efficient turbine airfoil.

Lee, Ching-Pang; Jiang, Nan; Marra, John J

2014-03-11T23:59:59.000Z

111

Ultra-low-temperature cooling of two-dimensional electron gas  

Science Journals Connector (OSTI)

A new design has been used for cooling GaAs/AlxGa1?xAs sample to ultra-low-temperatures. The sample, with electrical contacts directly soldered to the sintered silver powder heat exchangers, was immersed in liquid  3He, which was cooled by a PrNI5 nuclear refrigerator. The data analysis shows that the two-dimensional electron gas (2DEG) was cooled to 4.0 mK at the refrigerator base temperature Tb of 2.0 mK. The design with heat exchanger cooling is applicable to any ultra-low-temperature transport measurements of 2DEG system.

J.S Xia; E.D Adams; V Shvarts; W Pan; H.L Stormer; D.C Tsui

2000-01-01T23:59:59.000Z

112

Specifying Waste Heat Boilers  

E-Print Network (OSTI)

, refineries,kilns, incineration systems and cogeneration and combined cycle plants,to mention a few applications.Depending on several factors such as quantity of gas or steam floW,cleanl1ness of gas,gas and steam pressure and space availabilitY,they may... of incinerator.whether fixed bed.rotary kiln or fluid bed.Sla9ging constituents present in the gas can result in bridging of tubes by molten salts if tube spacing is not wide,particularly at the boiler inlet.Ash hoppers ,soot blowers and cleaning lanes...

Ganapathy, V.

113

Vectren Energy Delivery of Ohio (Gas) - Commercial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ohio (Gas) - Commercial Energy Ohio (Gas) - Commercial Energy Efficiency Rebates Vectren Energy Delivery of Ohio (Gas) - Commercial Energy Efficiency Rebates < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Maximum Rebate Boilers: $5,000 Boiler Tune-Up: $250 Custom Incentives: 30% of the total project cost or $25,000/project Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Boilers: 25% of cost Boiler Tune-Up: 50% of cost Furnace: $200 Programmable Thermostat: $20 Custom Incentives: $0.75/therm (less than 7500 therm savings) or $1/therm (greater than 7500 therm savings) calculated based on first year energy savings. Provider Vectren Energy Delivery of Ohio Vectren Energy Delivery offers commercial natural gas customers in Ohio

114

NV Energy (Northern Nevada Gas) - SureBet Business Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NV Energy (Northern Nevada Gas) - SureBet Business Energy NV Energy (Northern Nevada Gas) - SureBet Business Energy Efficiency Rebate Program (Nevada) NV Energy (Northern Nevada Gas) - SureBet Business Energy Efficiency Rebate Program (Nevada) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Installer/Contractor Institutional Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Manufacturing Home Weatherization Insulation Design & Remodeling Appliances & Electronics Water Heating Program Info State Nevada Program Type Utility Rebate Program Rebate Amount High Efficiency Boilers Input MBH $1.25 Boiler Reset Control Boiler $500 Boiler Tune-up Boiler $300 High Efficiency Furnaces Input MBH $1 Commercial Water Heaters Unit $150

115

New England Gas Company - Residential and Commercial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New England Gas Company - Residential and Commercial Energy New England Gas Company - Residential and Commercial Energy Efficiency Rebate Programs New England Gas Company - Residential and Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Heat Pumps Appliances & Electronics Water Heating Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Residential Furnace: $300 - $450 Boilers: $1000 - $1500 Combined High Efficiency Boiler/Water Heater: $1,200 Heat Recovery Ventilator: $500 High Efficiency Indirect Water Heater: $400 Condensing Gas Water Heater: $500 High Efficiency On-Demand, Tankless Water Heater: $500 - $800

116

Columbia Gas of Massachusetts - Residential Energy Efficiency Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Gas of Massachusetts - Residential Energy Efficiency Columbia Gas of Massachusetts - Residential Energy Efficiency Programs Columbia Gas of Massachusetts - Residential Energy Efficiency Programs < Back Eligibility Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate Insulation Weatherization: $2,000 Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Insulation Weatherization: 75% of project cost Energy Star homes: $350 - $8,000, varies by number of units and efficiency Warm Air Furnace: $500 - $800 Gas Boiler: $1,000 - $1,500 Integrated Water Heater/Boiler: $1,200

117

Experimental Investigation of Film Cooling Effectiveness on Gas Turbine Blades  

E-Print Network (OSTI)

of 1.5; a mixture of 15% SF6 and 85% Ar (by volume), from Praxair Inc. is used to obtain an effective density ratio of 2.0. The coolant flow rates are controlled by rotameters. To determine film cooling effectiveness for a given configuration, four...

Li, Shiou-Jiuan

2012-12-07T23:59:59.000Z

118

Evaluation of gas-reburning and low NO{sub x} burners on a wall fired boiler. Technical progress report number 17, October 1--December 31, 1994  

SciTech Connect

The primary objective of this CCT project is to evaluate the use of Gas Reburning and Low NO{sub x} Burners (GR-LNB) for NO{sub x} emission control from a wall fired boiler. Low NO{sub x} burners are designed to delay the mixing of the coal fuel with combustion air to minimize the NO{sub x} formation. With GR, about 80--85% of the coal fuel is fired in the main combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by over fire air addition. SO{sub x} emissions are reduced to the extent that natural gas replaces sulfur-containing coal. The level of NO{sub x} reduction achievable with 15--20% natural gas is on the order of 50--60%. Thus the emission reduction target of the combination of these two developed technologies is about 70%. This project is being conducted in three phases at the host site, a 172 MW wall fired boiler of Public Service Company of Colorado (PSCo), Cherokee Unit 3 in Denver, Colorado: Phase 1--Design and Permitting; Phase 2--Construction and Start-up; and Phase 3--Operation, Data Collection, Reporting and Disposition. Phase 3 activities during this reporting period involved initiation of the second generation gas reburning parametric testing. This technology utilizes enhanced natural gas and overfire air injectors with elimination of the flue gas recirculation system. The objective is to demonstrate NO{sub x} reductions similar to that of long term testing but with a reduced capital cost requirement through elimination of the FGR system.

NONE

1994-12-13T23:59:59.000Z

119

Xcel Energy (Gas) - Business Energy Efficiency Rebate Programs | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Energy Efficiency Rebate Programs Business Energy Efficiency Rebate Programs Xcel Energy (Gas) - Business Energy Efficiency Rebate Programs < Back Eligibility Commercial Industrial Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Manufacturing Appliances & Electronics Water Heating Maximum Rebate Traps, Dampers, Tune-ups: $250/unit Steam Traps: $10,000/facility Modular Burner Control: $2,000/unit Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Hot Water Boilers (New/Non-Working Replacement): $750 - $3500/MMBTUh Hot Water Boilers (Working Replacement): $7000/MMBTUh Boiler Tune-ups: $250/MMBTUh Modular Burner Controls: $750/MMBTUh

120

Evaluation of gas-reburning and low NO{sub x} burners on a wall fired boiler. Technical progress report No. 5, October 1--December 31, 1991  

SciTech Connect

Low NO{sub x} burners operate on the principle of delayed mixing between the coal fuel and burner air, so that less NO{sub x} is formed. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel corresponding to the total heat release in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at the lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. The specific goal of this project is to demonstrate NO{sub x} emission reductions of 75 percent or more as a result of combing Low NO{sub x} Burners and Gas Reburning on a utility boiler having the design characteristics mentioned above. A Host Site Agreement has been signed by EER and a utility company in the State of Colorado: Public Service Company of Colorado (Cherokee Unit No. 3, 172 MW{sub e}) front wall fired boiler near Denver.

Not Available

1992-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Comprehensive report to Congress: Clean Coal Technology program: Evaluation of gas reburning and low-NO sub x burners on a wall-fired boiler  

SciTech Connect

This report briefly describes the Gas Reburning and Low-NO{sub x} Burners technology which is a low-cost technology that can be applied in both retrofit and new applications. This demonstration will be conducted on a utility boiler in Colorado at Cherokee Station {number sign}3; however, the technology is applicable to industrial boilers and other combustion systems. Although this technology is primarily a NO{sub x} reduction technology, some reductions in other emissions will take place. Since 15--20% of the coal is replaced with natural gas, SO{sub 2} and particulate emissions are reduced commensurately. Also the lower carbon-to-hydrogen ratio of natural gas compared to coal reduces CO{sub 2} emissions. The formation of NO{sub x} is controlled by several factors: (1) the amount of nitrogen that is chemically bound in the fuel; (2) the flame temperature; (3) the residence time that combustion products remain at very high temperatures; and (4) the amount of excess oxygen available, especially at the hottest parts of the flame. Decreasing any of these parameters, tends to reduce NO{sub x} formation. 6 figs., 1 tab.

Not Available

1990-09-01T23:59:59.000Z

122

Southwest Gas Corporation - Commercial High-Efficiency Equipment Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Gas Corporation - Commercial High-Efficiency Equipment Southwest Gas Corporation - Commercial High-Efficiency Equipment Rebate Program Southwest Gas Corporation - Commercial High-Efficiency Equipment Rebate Program < Back Eligibility Commercial Industrial Savings Category Other Appliances & Electronics Commercial Weatherization Commercial Heating & Cooling Water Heating Maximum Rebate General: 50% of price Boiler Steam Trap: 25% of price Program Info State Arizona Program Type Utility Rebate Program Rebate Amount Modulating Burner Control: $10,000 Boiler O2 Trim Control Pad: $10,000 Boiler Steam Trap: $250 Non-condensing Boiler: $1/MBtuh Condensing Boiler: $1.25/MBtuh Storage Water Heater: 50% of cost, up to $1,100 Tankless Water Heater: 50% of cost, up to $450 Griddle: 50% of cost, up to $600 Fryer: 50% of cost, up to $1,350

123

Relap5-3d model validation and benchmark exercises for advanced gas cooled reactor application  

E-Print Network (OSTI)

HTTR High Temperature engineering Test Reactor INET Institute of Nuclear Energy Technology LWR Light Water Reactor OKBM Test Design Bureau for Machine Building ORNL Oak Ridge National Laboratory RCCS Reactor Cavity Cooling System... to be at right angles to each other, ignoring an angular distribution of radiant heat.7 MORECA, used by ORNL, simulates accident scenarios for certain gas-cooled reactor types.7 INET conducts their analysis using Thermix, which performs two...

Moore, Eugene James Thomas

2006-08-16T23:59:59.000Z

124

CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications  

SciTech Connect

The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during stead-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the stead-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

Hassan, Yassin; Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

2014-07-14T23:59:59.000Z

125

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

SciTech Connect

In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-02-01T23:59:59.000Z

126

NIPSCO (Gas and Electric) - Residential Natural Gas Efficiency Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NIPSCO (Gas and Electric) - Residential Natural Gas Efficiency NIPSCO (Gas and Electric) - Residential Natural Gas Efficiency Rebates NIPSCO (Gas and Electric) - Residential Natural Gas Efficiency Rebates < Back Eligibility Construction Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Varies Provider Energy Efficiency Programs Group Northern Indiana Public Service Corporation (NIPSCO) offers rebates to residential customers that install energy efficient gas and electric measures in homes through the NIPSCO Energy Efficiency Rebate Program. The program is available to all residential NIPSCO natural gas and electric customers. Flat rebates are offered for natural gas boilers, natural gas

127

Summary of research and development effort on air and water cooling of gas turbine blades  

SciTech Connect

The review on air- and water-cooled gas turbines from the 1904 Lemale-Armengaud water-cooled gas turbine, the 1948 to 1952 NACA work, and the program at GE indicates that the potential of air cooling has been largely exploited in reaching temperatures of 1100/sup 0/C (approx. 2000/sup 0/F) in utility service and that further increases in turbine inlet temperature may be obtained with water cooling. The local heat flux in the first-stage turbine rotor with water cooling is very high, yielding high-temperature gradients and severe thermal stresses. Analyses and tests indicate that by employing a blade with an outer cladding of an approx. 1-mm-thick oxidation-resistant high-nickel alloy, a sublayer of a high-thermal-conductivity, high-strength, copper alloy containing closely spaced cooling passages approx. 2 mm in ID to minimize thermal gradients, and a central high-strength alloy structural spar, it appears possible to operate a water-cooled gas turbine with an inlet gas temperature of 1370/sup 0/C. The cooling-water passages must be lined with an iron-chrome-nickel alloy must be bent 90/sup 0/ to extend in a neatly spaced array through the platform at the base of the blade. The complex geometry of the blade design presents truly formidable fabrication problems. The water flow rate to each of many thousands of coolant passages must be metered and held to within rather close limits because the heat flux is so high that a local flow interruption of only a few seconds would lead to a serious failure.Heat losses to the cooling water will run approx. 10% of the heat from the fuel. By recoverying this waste heat for feedwater heating in a command cycle, these heat losses will give a degradation in the power plant output of approx. 5% relative to what might be obtained if no cooling were required. However, the associated power loss is less than half that to be expected with an elegant air cooling system.

Fraas, A.P.

1980-03-01T23:59:59.000Z

128

Berkshire Gas - Residential Energy Efficiency Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Berkshire Gas - Residential Energy Efficiency Rebate Program Berkshire Gas - Residential Energy Efficiency Rebate Program Berkshire Gas - Residential Energy Efficiency Rebate Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Sealing Your Home Ventilation Construction Manufacturing Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Weatherization: $2,000 Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Weatherization - Single Family: 75% of cost Weatherization - Multi-Family: 50% of cost Weatherization - Low-Income: 100% of cost Furnaces: $500 - $800 Boilers: $1,000 - $1,500 Combined Boiler/Water Heater: $1,200

129

Atmos Energy - Residential Natural Gas and Weatherization Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Residential Natural Gas and Weatherization - Residential Natural Gas and Weatherization Efficiency Program Atmos Energy - Residential Natural Gas and Weatherization Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Sealing Your Home Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Comprehensive Upgrades (Energize Homes): Up to $5,00 Furnace: $200-$300 Boiler: $200-$300 Combination Boiler/Water Heater: $450 Storage Water Heater: $50-$125 Tankless/Condensing Water Heater: $200 Programmable Thermostat $25 Provider Energy Federation Incorporated '''As of August 1, 2012, Missouri energy efficiency programs are offered by

130

Possibility of buffer-gas cooling of paramagnetic carbon to ultracold temperatures R. V. Krems,1,  

E-Print Network (OSTI)

. The temperature of the buffer-gas varies between tens of mK and 1 K. The atoms cooled can be trapped ground state 3 P0 atoms cannot be magnetically trapped. The trapping of carbon atoms at ultra- cold

Krems, Roman

131

Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications  

SciTech Connect

This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

Lee Nelson

2011-09-01T23:59:59.000Z

132

Short-pulse laser interferometric measurement of absolute gas densities from a cooled gas jet  

Science Journals Connector (OSTI)

We report on the use of a novel technique to measure the gas density from a pulsed gas jet. Deuterium gas is fully ionized with an intense picosecond laser, and the resulting...

Ditmire, T; Smith, R A

1998-01-01T23:59:59.000Z

133

Efficiency Maine Business Programs (Unitil Gas) - Commercial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Maine Business Programs (Unitil Gas) - Commercial Energy Efficiency Maine Business Programs (Unitil Gas) - Commercial Energy Efficiency Programs (Maine) Efficiency Maine Business Programs (Unitil Gas) - Commercial Energy Efficiency Programs (Maine) < Back Eligibility Commercial Industrial Institutional Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Program Info State Maine Program Type Utility Rebate Program Rebate Amount Furnaces; $1000 Condensing Boilers: $1500 - $4500 Non-Condensing Boilers: $750-$3,000 Steam Boiler: $800 or $1/MBtuh Infrared Unit Heaters: $500 Natural Gas Warm-Air Unit Heaters: $600 Custom/ECM: Contact Unitil Cooking Equipment: $600-$2000 Provider Rebate Program Efficiency Maine offers natural gas efficiency rebates to Unitil customers.

134

Boilers | Open Energy Information  

Open Energy Info (EERE)

search TODO: Add description List of Boilers Incentives Retrieved from "http:en.openei.orgwindex.php?titleBoilers&oldid267147" Category: Articles with outstanding TODO tasks...

135

Conduction cooled tube supports  

DOE Patents (OSTI)

In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

Worley, Arthur C. (Mt. Tabor, NJ); Becht, IV, Charles (Morristown, NJ)

1984-01-01T23:59:59.000Z

136

Condensing economizers for small coal-fired boilers and furnaces  

SciTech Connect

Condensing economizers increase the thermal efficiency of boilers by recovering sensible and latent heat from exhaust gas. These economizers are currently being used commercially for this purpose in a wide range of applications. Performance is dependent upon application-specific factors affecting the utility of recovered heat. With the addition of a condensing economizer boiler efficiency improvements up to 10% are possible. Condensing economizers can also capture flue gas particulates. In this work, the potential use of condensing economizers for both efficiency improvement and control of particulate emissions from small, coal water slurry-fired boilers was evaluated. Analysis was done to predict heat transfer and particulate capture by mechanisms including: inertial impaction, interception, diffusion, thermophoretic forces, and condensation growth. Shell-and-tube geometries were considered with flue gas on the outside of Teflon-covered tubes. Experimental studies were done with both air- and water-cooled economizers refit to a small boiler. Two experimental arrangements were used including oil-firing with injection of flyash upstream of the economizer and direct coal water slurry firing. Firing rates ranged from 27 to 82 kW (92,000 to 280,000 Btu/hr). Inertial impaction was found to be the most important particulate capture mechanism and removal efficiencies to 95% were achieved. With the addition of water sprays directly on the first row of tubes, removal efficiencies increased to 98%. Use of these sprays adversely affects heat recovery. Primary benefits of the sprays are seen to be the addition of small impaction sites and future design improvements are suggested in which such small impactors are permanently added to the highest velocity regions of the economizer. Predicted effects of these added impactors on particulate removal and pressure drop are presented.

Butcher, T.A.; Litzke, W.

1994-01-01T23:59:59.000Z

137

Questar Gas - Home Builder Gas Appliance Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Program Info State Utah Program Type Utility Rebate Program Rebate Amount Exterior Wall Insulation: $350 (single family), $150 (multifamily) Windows: $2.50/sq. ft. Gas Furnace: $200 - $400 Gas Storage Water Heater: $50-$100 Gas Condensing Water Heater: $350 Gas Boiler: $400 -$600 Tankless Gas Water Heater: $350 Single Family Homes (New Construction): $50 - $500 Multifamily Homes (New Construction): $50 - $300/unit

138

Suspension-fired biomass boilers. Three case studies  

SciTech Connect

A discussion of the conversion of oil-or gas-fired boilers to fire pulverized bark and wood wastes in suspension.

Robinson, L.

1986-01-01T23:59:59.000Z

139

Redistributing hot gas around galaxies: do cool clouds signal a solution to the overcooling problem?  

E-Print Network (OSTI)

We present a pair of high-resolution smoothed particle hydrodynamics (SPH) simulations that explore the evolution and cooling behavior of hot gas around Milky-Way size galaxies. The simulations contain the same total baryonic mass and are identical other than their initial gas density distributions. The first is initialised with a low entropy hot gas halo that traces the cuspy profile of the dark matter, and the second is initialised with a high-entropy hot halo with a cored density profile as might be expected in models with pre-heating feedback. Galaxy formation proceeds in dramatically different fashion depending on the initial setup. While the low-entropy halo cools rapidly, primarily from the central region, the high-entropy halo is quasi-stable for ~4 Gyr and eventually cools via the fragmentation and infall of clouds from ~100 kpc distances. The low-entropy halo's X-ray surface brightness is ~100 times brighter than current limits and the resultant disc galaxy contains more than half of the system's baryons. The high-entropy halo has an X-ray brightness that is in line with observations, an extended distribution of pressure-confined clouds reminiscent of observed populations, and a final disc galaxy that has half the mass and ~50% more specific angular momentum than the disc formed in the low-entropy simulation. The final high-entropy system retains the majority of its baryons in a low-density hot halo. The hot halo harbours a trace population of cool, mostly ionised, pressure-confined clouds that contain ~10% of the halo's baryons after 10 Gyr of cooling. The covering fraction for HI and MgII absorption clouds in the high-entropy halo is ~0.4 and ~0.6, respectively, although most of the mass that fuels disc growth is ionised, and hence would be under counted in HI surveys.

Tobias Kaufmann; James S. Bullock; Ariyeh H. Maller; Taotao Fang; James Wadsley

2008-12-10T23:59:59.000Z

140

ConEd (Gas) - Residential Energy Efficiency Incentives Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ConEd (Gas) - Residential Energy Efficiency Incentives Program ConEd (Gas) - Residential Energy Efficiency Incentives Program ConEd (Gas) - Residential Energy Efficiency Incentives Program < Back Eligibility Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Program Info Start Date 7/1/2009 Expiration Date 12/31/2015 State New York Program Type Utility Rebate Program Rebate Amount Furnace: $200 - $600 Water Boiler: $500 or $1,000 Steam Boiler: $500 Boiler Reset Control: $100 Programmable thermostat: $25 Indirect Water Heater: $300 Duct Sealing: $100/hr Air Sealing: $75/hr Con Edison is offering the Residential HVAC Gas Rebate Program. Through this program, incentives are offered on energy efficient heating and

Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Nicor Gas - Commercial Energy Efficiency Rebates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nicor Gas - Commercial Energy Efficiency Rebates Nicor Gas - Commercial Energy Efficiency Rebates Nicor Gas - Commercial Energy Efficiency Rebates < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Construction Commercial Weatherization Appliances & Electronics Water Heating Maximum Rebate Business Custom Incentive Program: $500,000/year Program Info Expiration Date 5/31/2014 State Illinois Program Type Utility Rebate Program Rebate Amount Space Heating Non-Condensing Steam Boilers: $400 - $2,500 Space Heating Condensing Boilers: $500 - $7,500 Natural Gas Furnaces: $300 - $400 Condensing Unit Heaters: $2.50 per MBH Infrared Heaters: $700 Storage Water Heaters: $150-$200 Steam Trap Repairs/Replacements: $100 - $500/trap Boiler Controls: $0.50/MBTUH

142

MassSAVE (Gas) - Residential Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MassSAVE (Gas) - Residential Rebate Program MassSAVE (Gas) - Residential Rebate Program MassSAVE (Gas) - Residential Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Program Info Start Date 1/1/2012 Expiration Date 12/31/2013 State Massachusetts Program Type Utility Rebate Program Rebate Amount Warm Air Furnaces with Electronic Commutated Motor (ECM): $300-$450 Forced Hot Water Boilers: $1,000-$1500 Programmable/Wi-Fi Thermostats: $25-$100 Indirect Water Heater: $400 Tankless On-Demand Water Heater: $500 or $800 Indirect Water Heater: $400 Condensing Gas Water Heaters: $500 Combined Boiler/Water Heating Unit: $1,200 Storage Water Heater: $100 After-Market Boiler Reset Controls: $225

143

Techno-economic analysis of a coal-fired CHP based combined heating system with gas-fired boilers for peak load compensation  

Science Journals Connector (OSTI)

Combined heat and power (CHP) plants dominate the heating market in China. With the ongoing energy structure reformation and increasing environmental concerns, we propose gas-fired boilers to be deployed in underperforming heating substations of heating networks for peak load compensation, in order to improve both energy efficiency and environmental sustainability. However, due to the relatively high price of gas, techno-economic analysis is required for evaluating different combined heating scenarios, characterized by basic heat load ratio (?). Therefore, we employ the dynamic economics and annual cost method to develop a techno-economic model for computing the net heating cost of the system, considering the current state of the art of cogeneration systems in China. The net heating cost is defined as the investment costs and operations costs of the system subtracted by revenues from power generation. We demonstrate the model in a real-life combined heating system of Daqing, China. The results show that the minimum net heating cost can be realized at ?=0.75 with a cost reduction of 16.8% compared to coal heating alone. Since fuel cost is the dominating factor, sensitivity analyses on coal and gas prices are discussed subsequently.

Hai-Chao Wang; Wen-Ling Jiao; Risto Lahdelma; Ping-Hua Zou

2011-01-01T23:59:59.000Z

144

Unusual refinery boiler tube failures due to corrosion by sulfuric acid induced by steam leaks  

SciTech Connect

Corrosion by sulfuric acid in boilers is a low probability event because gas temperature and metal temperature of boiler tubes are high enough to avoid the condensation of sulfuric acid from flue gases. This degradation mechanism is frequently considered as an important cause of air preheaters materials degradation, where flue gases are cooled by heat transfer to the combustion air. Corrosion is associated to the presence of sulfuric acid, which condensates if metal temperature (or gas temperature) is below of the acid dew point. In economizer tubes, sulfuric acid corrosion is an unlikely event because flue gas and tube temperatures are normally over the acid dewpoint. In this paper, the failure analysis of generator tubes (similar to the economizer of bigger boilers) of two small oil-fired subcritical boilers is reported. It is concluded that sulfuric acid corrosion was the cause of the failure. The sulfuric acid condensation was due to the contact of flue gases containing SO{sub 3} with water-steam spray coming from leaks at the interface of rolled tube to the drum. Considering the information gathered from these two cases studied, an analysis of this failure mechanism is presented including a description of the thermodynamics condition of water leaking from the drum, and an analysis of the factors favoring it.

Lopez-Lopez, D.; Wong-Moreno, A. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

1998-12-31T23:59:59.000Z

145

Overview of environmental control aspects for the gas-cooled fast reactor  

SciTech Connect

Environmental control aspects relating to release of radionuclides have been analyzed for the Gas-Cooled Fast Reactor (GCFR). Information on environmental control systems was obtained for the most recent GCFR designs, and was used to evaluate the adequacy of these systems. The GCFR has been designed by the General Atomic Company as an alternative to other fast breeder reactor designs, such as the Liquid Metal Fast Breeder Reactor (LMFBR). The GCFR design includes mixed oxide fuel and helium coolant. The environmental impact of expected radionuclide releases from normal operation of the GCFR was evaluated using estimated collective dose equivalent commitments resulting from 1 year of plant operation. The results were compared to equivalent estimates for the Light Water Reactor (LWR) and High-Temperature Gas-Cooled Reactor (HTGR). A discussion of uncertainties in system performances, tritium production rates, and radiation quality factors for tritium is included.

Nolan, A.M.

1981-05-01T23:59:59.000Z

146

Reference modular High Temperature Gas-Cooled Reactor Plant: Concept description report  

SciTech Connect

This report provides a summary description of the Modular High Temperature Gas-Cooled Reactor (MHTGR) concept and interim results of assessments of costs, safety, constructibility, operability, maintainability, and availability. Conceptual design of this concept was initiated in October 1985 and is scheduled for completion in 1987. Participating industrial contractors are Bechtel National, Inc. (BNI), Stone and Webster Engineering Corporation (SWEC), GA Technologies, Inc. (GA), General Electric Co. (GE), and Combustion Engineering, Inc. (C-E).

Not Available

1986-10-01T23:59:59.000Z

147

Alternative Liquid Fuel Effects on Cooled Silicon Nitride Marine Gas Turbine Airfoils  

SciTech Connect

With prior support from the Office of Naval Research, DARPA, and U.S. Department of Energy, United Technologies is developing and engine environment testing what we believe to be the first internally cooled silicon nitride ceramic turbine vane in the United States. The vanes are being developed for the FT8, an aeroderivative stationary/marine gas turbine. The current effort resulted in further manufacturing and development and prototyping by two U.S. based gas turbine grade silicon nitride component manufacturers, preliminary development of both alumina, and YTRIA based environmental barrier coatings (EBC's) and testing or ceramic vanes with an EBC coating.

Holowczak, J.

2002-03-01T23:59:59.000Z

148

DOE Webcast: GTI Super Boiler Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Webcast Webcast GTI Super Boiler Technology by Dennis Chojnacki, Senior Engineer by Curt Bermel, Business Development Mgr. R&D > November 20, 2008 November 20, 2008 2 November 20, 2008 2 WHO WE ARE Gas Technology Institute >Leading U.S. research, development, and training organization serving the natural gas industry and energy markets ─ An independent, 501c (3) not-for-profit Serving the Energy Industry Since 1941 > Over 1,000 patents > Nearly 500 products commercialized November 20, 2008 3 November 20, 2008 3 Super Boiler Background > U.S. industrial and commercial steam boilers ─ Consume over 6 quads of natural gas per year ─ Wide range of steam uses from process steam to space heating > Installed base of steam boilers ─ Largely over 30 years old

149

NYSEG (Gas) - Commercial and Industrial Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Efficiency Program Commercial and Industrial Efficiency Program NYSEG (Gas) - Commercial and Industrial Efficiency Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Multi-Family Residential Nonprofit State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Maximum Rebate No maximum per customer rebate; however, NYSEG/RG&E reserve the right to cap the rebate to any one customer. Program Info State New York Program Type Utility Rebate Program Rebate Amount HVAC: Prescriptive incentives vary Condensing Boilers: $1000-$6000 Hydronic Boilers: $500-$4000 Steam Boilers: $200 Furnaces: $100 Programmable Thermostats: $25 Boiler Reset Controls: $150 Provider NYSEG/RGE NYSEG and RG&E offer rebates to non-residential customers installing energy

150

Questar Gas - Home Builder Gas Appliance Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Program Info Start Date 7/1/2009 State Wyoming Program Type Utility Rebate Program Rebate Amount Energy Star Home Certification: $500 Storage Water Heater: $50 Tankless Water Heater: $300 Furnace: $300 Boiler: $400 Provider Questar Gas Questar Gas provides incentives for home builders to construct energy efficient homes. Rebates are provided for both energy efficient gas equipment and whole home Energy Star certification. All equipment and

151

Cascade Natural Gas - Commercial Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cascade Natural Gas - Commercial Efficiency Rebate Program Cascade Natural Gas - Commercial Efficiency Rebate Program Cascade Natural Gas - Commercial Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount HVAC Unit Heater: $1.50-$3 / kBtuh input Warm Air Furnace: $3.00 / kBtuh input Direct Fired Radiant Heating: $6.50 / kBtuh input Boiler: $4.00 / kBtuh input Boiler Vent Damper: $1,000 Boiler Steam Trap: $80 DHW Energy Star Tankless Water Heaters: $60 / gpm Domestic Hot Water Tank: $2.50 / kBtuh input

152

NSTAR (Gas) - Commercial Energy Efficiency Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NSTAR (Gas) - Commercial Energy Efficiency Programs NSTAR (Gas) - Commercial Energy Efficiency Programs NSTAR (Gas) - Commercial Energy Efficiency Programs < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Commercial Weatherization Water Heating Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Forced Hot Water Boilers: $500-$15,000 Boiler Reset Controls: $225 Condensing Unit or Water Heater: $500 On-Demand Unit Heater: $1000 or $1600 Warm Air Furnaces: $400-$800 Indirect Water Heater/Boiler: $400 Tankless Water Heater: $500 or $800 Storage Water Heaters: $50 or $100 Low Intensity Infrared Heating Units: $500 High Efficiency Cooking Equipment: up to $1,000 Steam Traps: $25 Programmable Thermostats: $25

153

Parametric study of a firetube boiler performance  

SciTech Connect

Critical areas in the design of commercial and industrial firetube boilers are burner and furnace configuration, as is the resultant heat transfer from the furnace wall to the water under the various conditions. Furthermore, performance of industrial and commercial boilers is mainly dependent upon their material and geometrical dimensions. In order to investigate boiler performance globally, a relatively simple model which can be processed in a personal computer (PC) is proposed. In this paper, the effects of thermo-physical parameters on the energy and exergy performance of a firetube boiler are studied by using a simple model for the combustion product gas behavior through the boiler passes. For each steady-state condition, the boiler performance is investigated by parametrically changing the degree of inception of nucleate boiling, the tube wall emissivity, the saturation steam pressure, and the fraction of flue gas recirculation (FGR, utilized for NO{sub x} emissions reduction). Results for a set of parameters such as those considered in this work may be used in future firetube boiler design to improve performance and reduce manufacturing costs.

Park, H. [Marquette Univ., Milwaukee, WI (United States). Dept. of Mechanical and Industrial Engineering; Valentino, M.W. [Cleaver-Brooks, Milwaukee, WI (United States)

1995-12-31T23:59:59.000Z

154

Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes  

SciTech Connect

This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

Lee O. Nelson

2011-04-01T23:59:59.000Z

155

Hastelloy-X for high-temperature gas-cooled reactor applications  

SciTech Connect

Hastelloy-X is a potential structural material for use in gas-cooled reactor systems. In this application, data are necessary on the mechanical properties of base metal and weldments under realistic service conditions. The test environment studied was helium that contained small amounts of H/sub 2/, CH/sub 4/, and CO. This environment was found to be carburizing, with the kinetics of this process becoming rapid above 800/sup 0/C. Suitable weldments of Hastelloy-X were prepared by several processes; those weldments generally had the same properties as base metal except for lower fracture strains under some conditions. Some samples were aged for up to 20 000 h in the test gas and tested, and some creep tests on as-received material exceeded 40 000 h. The predominant effects of aging were the significant reduction in the fracture strains at ambient temperature and the lower strains for samples aged in high-temperature gas-cooled reactor (HTGR) helium than for those aged in inert gas. Under some conditions, aging also resulted in increased yield and ultimate tensile strength. Creep tests failed to show the effects of environment, aging, or welding on the creep strength of Hastelloy-X; however, the fracture strains for weldments were generally lower than they were for base metal. Prior aging in inert gas for 20 000 h at 538 and 871/sup 0/C reduced the fatigue life slightly, but no difference was observed in the fatigue properties of samples aged in air and HTGR helium environments.

McCoy, H.E.; King, J.F.; Strizak, J.P.

1984-07-01T23:59:59.000Z

156

Hastelloy-X for high-temperature gas-cooled reactor applications  

SciTech Connect

Hastelloy-X is a potential structural material for use in gas-cooled reactor systems. In this application, data are necessary on the mechanical properties of base metal and weldments under realistic service conditions. The test environment studied was helium that contained small amounts of H/sub 2/, CH/sub 4/, and CO. This environment was found to be carburizing, with the kinetics of this process becoming rapid above 800/sup 0/C. Suitable weldments of Hastelloy-X were prepared by several processes; those weldments generally had the same properties as base metal except for lower fracture strains under some conditions. Some samples were aged for up to 20000 h in the test gas and tested, and some creep tests on as-received material exceeded 40000 h. The predominant effects of aging were the significant reduction in the fracture strains at ambient temperature and the lower strains for samples aged in high-temperature gas-cooled reactor (HTGR) helium than for those aged in inert gas. Under some conditions, aging also resulted in increased yield and ultimate tensile strength. Creep tests failed to show the effects of environment, aging, or welding on the creep strength of Hastelloy-X; however, the fracture strains for weldments were generally lower than they were for base metal. Prior aging in inert gas for 20000 h at 538 and 871/sup 0/C reduced the fatigue life slightly, but no difference was observed in the fatigue properties of samples aged in air and HTGR helium environments.

McCoy, H.E.; King, J.F.; Strizak, J.P.

1984-07-01T23:59:59.000Z

157

Parametric Investigation of Brayton Cycle for High Temperature Gas-Cooled Reactor  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) is investigating a Brayton cycle efficiency improvement on a high temperature gas-cooled reactor (HTGR) as part of Generation-IV nuclear engineering research initiative. In this project, we are investigating helium Brayton cycles for the secondary side of an indirect energy conversion system. Ultimately we will investigate the improvement of the Brayton cycle using other fluids, such as supercritical carbon dioxide. Prior to the cycle improvement study, we established a number of baseline cases for the helium indirect Brayton cycle. These cases look at both single-shaft and multiple-shaft turbomachinary. The baseline cases are based on a 250 MW thermal pebble bed HTGR. The results from this study are applicable to other reactor concepts such as a very high temperature gas-cooled reactor (VHTR), fast gas-cooled reactor (FGR), supercritical water reactor (SWR), and others. In this study, we are using the HYSYS computer code for optimization of the helium Brayton cycle. Besides the HYSYS process optimization, we performed parametric study to see the effect of important parameters on the cycle efficiency. For these parametric calculations, we use a cycle efficiency model that was developed based on the Visual Basic computer language. As a part of this study we are currently investigated single-shaft vs. multiple shaft arrangement for cycle efficiency and comparison, which will be published in the next paper.The ultimate goal of this study is to use supercritical carbon dioxide for the HTGR power conversion loop in order to improve the cycle efficiency to values great than that of the helium Brayton cycle. This paper includes preliminary calculations of the steady state overall Brayton cycle efficiency based on the pebble bed reactor reference design (helium used as the working fluid) and compares those results with an initial calculation of a CO2 Brayton cycle.

Chang Oh

2004-07-01T23:59:59.000Z

158

Modelling and simulating fire tube boiler performance  

E-Print Network (OSTI)

A model for a flue gas boiler covering the flue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been defined for the furnace, the convection zone (split in 2: a zone submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic-Equation system (DAE). Subsequently MatLab/Simulink has been applied for carrying out the simulations. To be able to verify the simulated results an experiments has been carried out on a full scale boiler plant.

Kim Sørensen; Claus M. S. Karstensen; Thomas Condra; Niels Houbak

159

Method for fabricating wrought components for high-temperature gas-cooled reactors and product  

DOE Patents (OSTI)

A method and alloys for fabricating wrought components of a high-temperature gas-cooled reactor are disclosed. These wrought, nickel-based alloys, which exhibit strength and excellent resistance to carburization at elevated temperatures, include aluminum and titanium in amounts and ratios to promote the growth of carburization resistant films while preserving the wrought character of the alloys. These alloys also include substantial amounts of molybdenum and/or tungsten as solid-solution strengtheners. Chromium may be included in concentrations less than 10% to assist in fabrication. Minor amounts of carbon and one or more carbide-forming metals also contribute to high-temperature strength.

Thompson, Larry D. (San Diego, CA); Johnson, Jr., William R. (San Diego, CA)

1985-01-01T23:59:59.000Z

160

Cooling system for a gas turbine using a cylindrical insert having V-shaped notch weirs  

DOE Patents (OSTI)

An improved cooling system for a gas turbine is disclosed. A plurality of V-shaped notch weirs are utilized to meter a coolant liquid from a pool of coolant into a plurality of platform and airfoil coolant channels formed in the buckets of the turbine. The V-shaped notch weirs are formed in a separately machined cylindrical insert and serve to desensitize the flow of coolant into the individual platform and airfoil coolant channels to design tolerances and non-uniform flow distribution.

Grondahl, Clayton M. (Clifton Park, NY); Germain, Malcolm R. (Ballston Lake, NY)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Modular high temperature gas-cooled reactor plant design duty cycle. Revision 3  

SciTech Connect

This document defines the Plant Design Duty Cycle (PCDC) for the Modular High Temperature Gas-cooled Reactor (MHTGR). The duty cycle is a set of events and their design number of occurrences over the life of the plant for which the MHTGR plant shall be designed to ensure that the plant meets all the top-level requirements. The duty cycle is representative of the types of events to be expected in multiple reactor module-turbine plant configurations of the MHTGR. A synopsis of each PDDC event is presented to provide an overview of the plant response and consequence. 8 refs., 1 fig., 4 tabs.

Chan, T.

1989-12-31T23:59:59.000Z

162

The passive safety characteristics of modular high temperature gas-cooled reactor fuel elements  

SciTech Connect

High-Temperature Gas-Cooled Reactors (HTGR) in both the US and West Germany use an all-ceramic, coated fuel particle to retain fission products. Data from irradiation, postirradiation examinations and postirradiation heating experiments are used to study the performance capabilities of the fuel particles. The experimental results from fission product release tests with HTGR fuel are discussed. These data are used for development of predictive fuel performance models for purposes of design, licensing, and risk analyses. During off normal events, where temperatures may reach up to 1600/degree/C, the data show that no significant radionuclide releases from the fuel will occur.

Goodin, D.T.; Kania, M.J.; Nabielek, H.; Schenk, W.; Verfondern, K.

1988-01-01T23:59:59.000Z

163

Fuel performance models for high-temperature gas-cooled reactor core design  

SciTech Connect

Mechanistic fuel performance models are used in high-temperature gas-cooled reactor core design and licensing to predict failure and fission product release. Fuel particles manufactured with defective or missing SiC, IPyC, or fuel dispersion in the buffer fail at a level of less than 5 x 10/sup -4/ fraction. These failed particles primarily release metallic fission products because the OPyC remains intact on 90% of the particles and retains gaseous isotopes. The predicted failure of particles using performance models appears to be conservative relative to operating reactor experience.

Stansfield, O.M.; Simon, W.A.; Baxter, A.M.

1983-09-01T23:59:59.000Z

164

Mechanical properties of welds in commercial alloys for high-temperature gas-cooled reactor components  

SciTech Connect

Weld properties of Hastelloy-X, Incoloy alloy 800H (with and without Inconel-82 cladding), and 2 1/4 Cr-1 Mo are being studied to provide design data to support the development of steam generator, core auxiliary heat exchanger, and metallic thermal barrier components of the high-temperature gas-cooled reactor (HTGR) steam cycle/cogeneration plant. Tests performed include elevated-temperature creep rupture tests and tensile tests. So far, data from the literature and from relatively short-term tests at GA Technologies Inc. indicate that the weldments are satisfactory for HTGR application.

Lindgren, J.R.; Li, C.C.; Ryder, R.H.; Thurgood, B.E.

1984-07-01T23:59:59.000Z

165

Methods for nondestructive testing of austenitic high-temperature gas-cooled reactor components  

SciTech Connect

Safety-relevant components of high-temperature gas-cooled reactor components are mostly fabricated in nickel-based alloys and austenitic materials like Inconel-617, Hastelloy-X, Nimonic-86, or Incoloy-800H. Compared to ferritic steels, these austenitic materials can have a coarse-grained microstructure, especially in weldments and castings. Coarse-grained or elastic anisotropic materials are difficult to inspect with ultrasonics due to strong attenuation, high noise level (scattering, ''grass'' indications), and sound beam distortions (skewing, splitting, and mode conversion). Only few results dealing with the nondestructive testing of nickel-based alloys are known. The problem area, solutions, and first experiences are reported.

Gobbels, K.; Kapitza, H.

1984-09-01T23:59:59.000Z

166

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUID BED BOILERS (Phase II--Evaluation of the Oxyfuel CFB Concept)  

SciTech Connect

The overall project goal is to determine if carbon dioxide can be captured and sequestered at a cost of about $10/ton of carbon avoided, using a newly constructed Circulating Fluidized Bed combustor while burning coal with a mixture of oxygen and recycled flue gas, instead of air. This project is structured in two Phases. Phase I was performed between September 28, 2001 and May 15, 2002. Results from Phase I were documented in a Topical Report issued on May 15, 2003 (Nsakala, et al., 2003), with the recommendation to evaluate, during Phase II, the Oxyfuel-fired CFB concept. DOE NETL accepted this recommendation, and, hence approved the project continuation into Phase II. Phase 2. The second phase of the project--which includes pilot-scale tests of an oxygen-fired circulating fluidized bed test facility with performance and economic analyses--is currently underway at ALSTOM's Power Plant Laboratories, located in Windsor, CT (US). The objective of the pilot-scale testing is to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in oxygen/carbon dioxide mixtures. Results will be used in the design of oxygen-fired CFB boilers--both retrofit and new Greenfield--as well as to provide a generic performance database for other researchers. At the conclusion of Phase 2, revised costs and performance will be estimated for both retrofit and new Greenfield design concepts with CO2 capture, purification, compression, and liquefaction.

John L. Marion; Nsakala ya Nsakala

2003-11-09T23:59:59.000Z

167

High Temperature Gas-Cooled Reactor Program. Modular HTGR systems design and cost summary. [Methane reforming; steam cycle-cogeneration  

SciTech Connect

This report provides a summary description of the preconceptual design and energy product costs of the modular High Temperature Gas-Cooled Reactor (HTGR). The reactor system was studied for two applications: (1) reforming of methane to produce synthesis gas and (2) steam cycle/cogeneration to produce process steam and electricity.

Not Available

1983-09-01T23:59:59.000Z

168

Recovery Boiler Corrosion Chemistry  

E-Print Network (OSTI)

11/13/2014 1 Recovery Boiler Corrosion Chemistry Sandy Sharp and Honghi Tran Symposium on Corrosion of a recovery boiler each cause their own forms of corrosion and cracking Understanding the origin of the corrosive conditions enables us to operate a boiler so as to minimize corrosion and cracking select

Das, Suman

169

Energy Savings Calculator for Commercial Boilers: Closed Loop, Space  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savings Calculator for Commercial Boilers: Closed Loop, Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only Energy Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only October 8, 2013 - 2:23pm Addthis This cost calculator is a screening tool that estimates a product's lifetime energy cost savings at various efficiency levels. Learn more about the base model and other assumptions. Project Type Is this a new installation or a replacement? New Replacement What is the deliverable fluid type? Water Steam What fuel is used? Gas Oil How many boilers will you purchase? unit(s) Performance Factors Existing What is the capacity of the existing boiler? MBtu/hr* What is the thermal efficiency of the existing boiler? % Et New What is the capacity of the new boiler?

170

FEMP Technology Brief: Boiler Combustion Control and Monitoring System |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boiler Combustion Control and Monitoring Boiler Combustion Control and Monitoring System FEMP Technology Brief: Boiler Combustion Control and Monitoring System October 7, 2013 - 9:12am Addthis This composite photo shows technicians observing operation at the monitoring station and making subsequent fine adjustments on combustion system controls Technical staff are making boiler adjustments with the control and monitoring system. Photo courtesy of the Department of Defense's Environmental Security Technology Certification Program. Technology Description A novel combustion control system, along with gas sensors, sets the opening of fuel and air inlets based on flue-gas concentrations. Continuous feedback from measurements of oxygen, carbon monoxide, and nitrogen oxide concentrations enable the control system

171

Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors  

DOE Patents (OSTI)

Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

2013-09-03T23:59:59.000Z

172

Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors  

DOE Patents (OSTI)

Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

Youchison, Dennis L. (Albuquerque, NM); Williams, Brian E. (Pacoima, CA); Benander, Robert E. (Pacoima, CA)

2011-03-01T23:59:59.000Z

173

Mercury Emission and Removal of a 135MW CFB Utility Boiler  

Science Journals Connector (OSTI)

To evaluate characteristic of the mercury emission and removal from a circulating fluidized bed (CFB) boiler, a representative 135 MW CFB utility boiler was selected to take the ... is of majority in flue gas of ...

Y. F. Duan; Y. Q. Zhuo; Y. J. Wang; L. Zhang…

2010-01-01T23:59:59.000Z

174

RG&E (Gas) - Residential Efficiency Program (New York) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RG&E (Gas) - Residential Efficiency Program (New York) RG&E (Gas) - Residential Efficiency Program (New York) RG&E (Gas) - Residential Efficiency Program (New York) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Cannot exceed total installed price. Program Info Funding Source PSC-mandated System Benefits Charge (SBC) State New York Program Type Utility Rebate Program Rebate Amount Furnace: $140-$600 (w/ECM) Water Boiler: $350-$1,000 Steam Boiler: $350 Boiler Reset Control: $100 Indirect Water Heater: $210 Programmable Thermostat: $18 RG&E is offering residential natural gas customers rebates for installing energy efficient equipment. Customers can complete one rebate application for multiple pieces of equipment as long as they are not the same type of

175

SourceGas - Commercial Energy Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Energy Efficiency Rebate Program Commercial Energy Efficiency Rebate Program SourceGas - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Maximum Rebate Hot Water Insulation/Infiltration Measures: minimum purchase of $40 Programmable Thermostats: 2 per account Program Info State Colorado Program Type Utility Rebate Program Rebate Amount '''Small Commercial''' Furnace: $200 - $300 Boiler: $150 Proper Sizing of Boiler/Furnace: $50 Hot Water Heater (Tank): $50 Hot Water Heater (Tankless): $300 Programmable Thermostat: $25 Hot Water Insulation/Infiltration Measures: $25 Integrated Space/Water Heater: $300

176

Avista Utilities (Gas) - Oregon Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oregon Residential Energy Efficiency Oregon Residential Energy Efficiency Rebate Program Avista Utilities (Gas) - Oregon Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Windows, Doors, & Skylights Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Forced Air Furnaces and Boilers: $200 Programmable Thermostats: $50 Windows: $2.25/sq. ft. Insulation: 50% of cost Provider Avista Utilities Avista Utilities offers a variety of equipment rebates to Oregon residential customers. Rebates are available for boilers, furnaces, insulation measures, windows and programmable thermostats. All equipment must meet certain energy efficiency standards listed on the program web

177

SourceGas - Residential Energy Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Residential Energy Efficiency Rebate Program SourceGas - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Maximum Rebate Hot Water Insulation/Infiltration Measures: minimum purchase of $40 Programmable Thermostats: 2 per account Insulation/Air Sealing: $300 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Furnace: $200 - $300 Boiler: $150 Proper Sizing of Boiler/Furnace: $50 Hot Water Heater (Tank): $50 Hot Water Heater (Tankless): $300 Programmable Thermostat: $25 Hot Water Insulation/Infiltration Measures: $25 Insulation/Air Sealing: 30% of cost

178

National Grid (Gas) - Commercial Energy Efficiency Rebate Programs (Upstate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas) - Commercial Energy Efficiency Rebate Programs Gas) - Commercial Energy Efficiency Rebate Programs (Upstate New York) National Grid (Gas) - Commercial Energy Efficiency Rebate Programs (Upstate New York) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Other Sealing Your Home Ventilation Construction Manufacturing Appliances & Electronics Water Heating Windows, Doors, & Skylights Buying & Making Electricity Maximum Rebate Custom Projects: $100,000 Energy Efficiency Engineering Study: $10,000 Steam Trap Survey: $2500 (+$2500 if complete recommended repairs) ENERGY STAR Programmable Thermostats: 5 units Boiler Reset Controls: 2 unit max Pipe Insulation: 500 ln. ft. Building Insulation: $10,000/account for roof, attic and wall insulation

179

Concept of an inherently-safe high temperature gas-cooled reactor  

SciTech Connect

As the challenge to ensure no harmful release of radioactive materials at the accidents by deterministic approach instead to satisfy acceptance criteria or safety goal for risk by probabilistic approach, new concept of advanced reactor, an inherently-safe high temperature gas-cooled reactor, is proposed based on the experience of the operation of the actual High Temperature Gas-cooled Reactor (HTGR) in Japan, High Temperature Engineering Test Reactor (HTTR), and the design of the commercial plant (GTHTR300), utilizing the inherent safety features of the HTGR (i.e., safety features based on physical phenomena). The safety design philosophy of the inherently-safe HTGR for the safety analysis of the radiological consequences is determined as the confinement of radioactive materials is assured by only inherent safety features without engineered safety features, AC power or prompt actions by plant personnel if the design extension conditions occur. Inherent safety features to prevent the loss or degradation of the confinement function are identified. It is proposed not to apply the probabilistic approach for the evaluation of the radiological consequences of the accidents in the safety analysis because no inherent safety features fail for the mitigation of the consequences of the accidents. Consequently, there are no event sequences to harmful release of radioactive materials if the design extension conditions occur in the inherently-safe HTGR concept. The concept and future R and D items for the inherently-safe HTGR are described in this paper.

Ohashi, Hirofumi; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Ogawa, Masuro [Nuclear Hydrogen and Heat Application Research Center, Japan Atomic Energy Agency, Oarai-machi, Ibaraki-ken, 311-1394 (Japan)

2012-06-06T23:59:59.000Z

180

CenterPoint Energy (Gas) - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CenterPoint Energy (Gas) - Residential Energy Efficiency Rebate CenterPoint Energy (Gas) - Residential Energy Efficiency Rebate Program CenterPoint Energy (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate Air Sealing/Weatherization: $350 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Forced-air furnaces: $150-$400 Natural gas boiler: $300 Natural gas condensing boiler: $500 Natural gas water heater: $70-$100 Storage tank indirect water heater: $200 Attic Air Sealing: 50% of cost, up to $200 Attic/Wall Insulation: 50% of cost, up to $150 Energy Audit: Reduced Cost

Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

New Mexico Gas Company - Commercial Efficiency Programs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Efficiency Programs Commercial Efficiency Programs New Mexico Gas Company - Commercial Efficiency Programs < Back Eligibility Commercial Institutional Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Program Info Expiration Date 3/31/2013 State New Mexico Program Type Utility Rebate Program Rebate Amount Storage Water Heater: $550 - 700 Tankless Water Heater: $250 - $300 Commercial Clothes Washer: $100 Furnace: $400 - $500 Boiler: $50 Condensing Boiler: $600 Gas Griddle: $50 Steam Cooker: $50 Gas Convection Oven: $1,000 Fryer: $700 Dish Washer: $150 Custom: $0.75/therm SCORE Pilot Program: Varies, contact New Mexico Gas Company The New Mexico Gas Company Commercial Energy Efficiency programs provide energy savings for businesses using natural gas for cooking and water

182

Safety aspects of the Modular High-Temperature Gas-Cooled Reactor (MHTGR)  

SciTech Connect

The Modular High-Temperature Gas-Cooled Reactor (MHTGR) is an advanced reactor concept under development through a cooperative program involving the US Government, the nuclear industry and the utilities. The design utilizes the basic high-temperature gas-cooled reactor (HTGR) features of ceramic fuel, helium coolant, and a graphite moderator. The qualitative top-level safety requirement is that the plant's operation not disturb the normal day-to-day activities of the public. The MHTGR safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles has been evaluated. A broad range of challenges to core heat removal have been examined which include a loss of helium pressure and a simultaneous loss of forced cooling of the core. The challenges to control of heat generation have considered not only the failure to insert the reactivity control systems, but the withdrawal of control rods. Finally, challenges to control chemical attack of the ceramic coated fuel have been considered, including catastrophic failure of the steam generator allowing water ingress or of the pressure vessels allowing air ingress. The plant's response to these extreme challenges is not dependent on operator action and the events considered encompass conceivable operator errors. In the same vein, reliance on radionuclide retention within the full particle and on passive features to perform a few key functions to maintain the fuel within acceptable conditions also reduced susceptibility to external events, site-specific events, and to acts of sabotage and terrorism. 4 refs., 14 figs., 1 tab.

Silady, F.A.; Millunzi, A.C.

1989-08-01T23:59:59.000Z

183

NOT DEAD YET: COOL CIRCUMGALACTIC GAS IN THE HALOS OF EARLY-TYPE GALAXIES  

SciTech Connect

We report new observations of circumgalactic gas in the halos of early-type galaxies (ETGs) obtained by the COS-Halos Survey with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. We find that detections of H I surrounding ETGs are typically as common and strong as around star-forming galaxies, implying that the total mass of circumgalactic material is comparable in the two populations. For ETGs, the covering fraction for H I absorption above 10{sup 16} cm{sup -2} is {approx}40%-50% within {approx}150 kpc. Line widths and kinematics of the detected material show it to be cold (T {approx}< 10{sup 5} K) in comparison to the virial temperature of the host halos. The implied masses of cool, photoionized circumgalactic medium baryons may be up to 10{sup 9}-10{sup 11} M{sub Sun }. Contrary to some theoretical expectations, strong halo H I absorbers do not disappear as part of the quenching of star formation. Even passive galaxies retain significant reservoirs of halo baryons that could replenish the interstellar gas reservoir and eventually form stars. This halo gas may feed the diffuse and molecular gas that is frequently observed inside ETGs.

Thom, Christopher; Tumlinson, Jason; Sembach, Kenneth R. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Werk, Jessica K.; Xavier Prochaska, J. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Oppenheimer, Benjamin D. [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Peeples, Molly S. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Tripp, Todd M.; Katz, Neal S. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); O'Meara, John M. [Department of Chemistry and Physics, Saint Michael's College, Colchester, VT 05439 (United States); Ford, Amanda Brady; Dave, Romeel [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Weinberg, David H. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States)

2012-10-20T23:59:59.000Z

184

Generation of a Gaseous Fuel by Pyrolysis or Gasification of Biomass for Use as Reburn Gas in Coal-Fired Boilers  

Science Journals Connector (OSTI)

Biofliels attract increasing interest in power plant technology as sources of carbon dioxide neutral fuels. Besides using solid pulverised biomass as an additional fuel in coal-fired boilers a further possibil...

C. Storm; H. Spliethoff; K. R. G. Hein

2002-01-01T23:59:59.000Z

185

NYSEG (Gas) - Residential Efficiency Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Efficiency Program Residential Efficiency Program NYSEG (Gas) - Residential Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate Cannot exceed total installed price Program Info Start Date 4/1/2011 State New York Program Type Utility Rebate Program Rebate Amount Furnace: $140-$600 (w/ECM) Water Boiler: $350-$1,000 Steam Boiler: $350 Boiler Reset Control: $100 Indirect Water Heater: $210 Programmable Thermostat: $18 NYSEG is offering residential natural gas customers rebates for installing energy efficient equipment. Customers can complete one rebate application for multiple pieces of equipment as long as they are not the same type of

186

Liberty Utilities (Gas) - Commercial Energy Efficiency Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liberty Utilities (Gas) - Commercial Energy Efficiency Programs Liberty Utilities (Gas) - Commercial Energy Efficiency Programs Liberty Utilities (Gas) - Commercial Energy Efficiency Programs < Back Eligibility Commercial Industrial Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Construction Manufacturing Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Custom Projects: $100,000 (existing facilities); $250,000 (new construction) Energy Efficiency Engineering Study: $10,000 Steam Traps: $2500 Programmable Thermostats: up to five units Boiler Reset Controls: up to two units Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount

187

SIMPLE, FULLY FEATURED BOILER LOOP MODELLING  

E-Print Network (OSTI)

The performance of hot water space heating systems for mild to warm temperate climates is dominated by the efficiency of boiler operation at low load (i.e. below 25 % of nameplate capacity). This efficiency is influenced by a number of effects that are poorly represented in common modelling approaches, including static thermal losses from the boiler and distribution system, changes in burner efficiency at different firing rates, thermal inertia in the boiler loop and the effects of cyclic operation. In this paper, a simple model that includes these loss mechanisms is developed. An example from an actual project is used to demonstrate that addressing the full range of low-load efficiency effects can increase predicted boiler gas consumption substantially relative to standard simulation approaches.

Erica Kenna; Paul Bannister

188

RG&E (Gas) - Commercial and Industrial Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Efficiency Program Commercial and Industrial Efficiency Program RG&E (Gas) - Commercial and Industrial Efficiency Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Multi-Family Residential Nonprofit State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Maximum Rebate No maximum per customer rebate; however, NYSEG/RG&E reserve the right to cap the rebate to any one customer. Program Info State New York Program Type Utility Rebate Program Rebate Amount HVAC: Prescriptive incentives vary Condensing Boilers: $1000-$6000 Hydronic Boilers: $500-$4000 Steam Boilers: $200 Furnaces: $100 Programmable Thermostats: $25 Boiler Reset Controls: $150 Provider NYSEG/RGE NYSEG and RG&E offer rebates to non-residential customers installing energy

189

Evaluation of gas reburning and low NO{sub x} burners on a wall-fired boiler  

SciTech Connect

An evaluation of Gas Reburning (GR) and Low NO{sub x} Burners (LNB) has been completed at Public Service Company of Colorado`s Cherokee Station Unit 3. The goal of the demonstration was to reduce NO{sub x} emissions by 70%. The reduction was to be achieved from the pre-project level prior to LNB retrofit. The GR system was supplied by Energy and Environmental Research Corporation (EER) and the LNBs were supplied by the Foster Wheeler Energy Corporation. The project was carried out in three phases in which EER designed the GR system and obtained necessary permits (Phase 1), constructed the system and completed start-up tasks (Phase 2), and evaluated its performance with both Optimization Tests and a Long-Term Demonstration (Phase 3). As directed by the Cooperative Agreement, environmental monitoring was conducted in each phase. Measurements were taken by plant personnel and an EER Field Testing Team and were divided into two types. ``Compliance Monitoring`` was conducted by plant personnel to satisfy requirements of regulatory agencies, while ``Supplemental Monitoring`` was conducted by EER personnel to develop a database of environmental impacts of the technology and to ensure environmental acceptability of the project. This document presents environmental monitoring data obtained during the Optimization Testing period, November 11, 1992 to April 23, 1993. Compliance Monitoring was conducted primarily in two areas, air emissions and aqueous discharges. The unit is required to meet an SO{sub 2} limit of 1.2 lb/MBtu and an opacity limit of 20 percent (6 minute average). Therefore, the plant monitors flue gas SO{sub 2} and opacity continuously and submits Excess Emissions Reports to the Colorado Air Pollution Control Division on a quarterly basis. Discharge limits for the aqueous effluent from the plant and monitoring requirements are specified by a permit issued by the Colorado Water Quality Control Division.

NONE

1995-06-01T23:59:59.000Z

190

Helium circulator design considerations for modular high temperature gas-cooled reactor plant  

SciTech Connect

Efforts are in progress to develop a standard modular high temperature gas-cooled reactor (MHTGR) plant that is amenable to design certification and serial production. The MHTGR reference design, based on a steam cycle power conversion system, utilizes a 350 MW(t) annular reactor core with prismatic fuel elements. Flexibility in power rating is afforded by utilizing a multiplicity of the standard module. The circulator, which is an electric motor-driven helium compressor, is a key component in the primary system of the nuclear plant, since it facilitates thermal energy transfer from the reactor core to the steam generator; and, hence, to the external turbo-generator set. This paper highlights the helium circulator design considerations for the reference MHTGR plant and includes a discussion on the major features of the turbomachine concept, operational characteristics, and the technology base that exists in the U.S.

McDonald, C.F.; Nichols, M.K.

1987-01-01T23:59:59.000Z

191

Helium circulator design considerations for modular high temperature gas-cooled reactor plant  

SciTech Connect

Efforts are in progress to develop a standard modular high temperature gas-cooled reactor (MHTGR) plant that is amenable to design certification and serial production. The MHTGR reference design, based on a steam cycle power conversion system, utilizes a 350 MW(t) annular reactor core with prismatic fuel elements. Flexibility in power rating is afforded by utilizing a multiplicity of the standard module. The circulator, which is an electric motor-driven helium compressor, is a key component in the primary system of the nuclear plant, since it facilitates thermal energy transfer from the reactor core to the steam generator; and, hence, to the external turbo-generator set. This paper highlights the helium circulator design considerations for the reference MHTGR plant and includes a discussion on the major features of the turbomachine concept, operational characteristics, and the technology base that exists in the US.

McDonald, C.F.; Nichols, M.K.

1986-12-01T23:59:59.000Z

192

NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions  

SciTech Connect

This document is intended to provide a Next Generation Nuclear Plant (NGNP) Project tool in which to collect and identify key definitions, plant capabilities, and inputs and assumptions to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor (HTGR). These definitions, capabilities, and assumptions are extracted from a number of sources, including NGNP Project documents such as licensing related white papers [References 1-11] and previously issued requirement documents [References 13-15]. Also included is information agreed upon by the NGNP Regulatory Affairs group's Licensing Working Group and Configuration Council. The NGNP Project approach to licensing an HTGR plant via a combined license (COL) is defined within the referenced white papers and reference [12], and is not duplicated here.

Phillip Mills

2012-02-01T23:59:59.000Z

193

High Temperature Gas-Cooled Reactor Projected Markets and Preliminary Economics  

SciTech Connect

This paper summarizes the potential market for process heat produced by a high temperature gas-cooled reactor (HTGR), the environmental benefits reduced CO2 emissions will have on these markets, and the typical economics of projects using these applications. It gives examples of HTGR technological applications to industrial processes in the typical co-generation supply of process heat and electricity, the conversion of coal to transportation fuels and chemical process feedstock, and the production of ammonia as a feedstock for the production of ammonia derivatives, including fertilizer. It also demonstrates how uncertainties in capital costs and financial factors affect the economics of HTGR technology by analyzing the use of HTGR technology in the application of HTGR and high temperature steam electrolysis processes to produce hydrogen.

Larry Demick

2011-08-01T23:59:59.000Z

194

Atmos Energy (Gas) - Residential Efficiency Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Gas) - Residential Efficiency Program (Gas) - Residential Efficiency Program Atmos Energy (Gas) - Residential Efficiency Program < Back Eligibility Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Sealing Your Home Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Furnace lowest $250, $325, or $400 Boiler: $150 or $400 Condensing Water Heater: $300 Storage Water Heater: $75 Tankless Water Heater: $300 Provider Energy Federation Incorporated '''As of August 1, 2012, Iowa energy efficiency programs are offered by Liberty Utilities. ''' Atmos Energy provides rebates for residential natural gas heating equipment through their High Efficiency Rebate Program. When Atmos Receives the

195

Atmos Energy - Natural Gas and Weatherization Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atmos Energy - Natural Gas and Weatherization Efficiency Program Atmos Energy - Natural Gas and Weatherization Efficiency Program Atmos Energy - Natural Gas and Weatherization Efficiency Program < Back Eligibility Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Sealing Your Home Construction Commercial Weatherization Design & Remodeling Ventilation Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Forced Air Furnace: $250 - $400 Boiler: $250 High Efficiency Tank Water Heater: $200 - $300 Tankless Model: $400 Programmable Thermostat: $25 Weatherization Assistance: Up to $3,000 Provider Atmos Energy Kentucky Rebate Offer Atmos Energy provides rebates to residential and commercial for natural gas

196

Vectren Energy Delivery of Ohio (Gas) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vectren Energy Delivery of Ohio (Gas) - Residential Energy Vectren Energy Delivery of Ohio (Gas) - Residential Energy Efficiency Rebates Vectren Energy Delivery of Ohio (Gas) - Residential Energy Efficiency Rebates < Back Eligibility Construction Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Furnace: $150 - $275 Boiler: $300 Storage Water Heater: $125 Tankless Water Heater: $150 Programmable Thermostat: $20 Attic Insulation: Up to $600 Wall Insulation: Up to $700 Air Sealing: Up to $250 Provider Vectren Energy Delivery of Ohio Vectren Energy Delivery offers residential natural gas customers in Ohio

197

Recovery Boiler Modeling  

E-Print Network (OSTI)

, east, e, west, w, bot tom, b, and top, t, neighbors. The neighboring cou pling coefficients (an, a., .. , etc) express the magnitudes of the convection and diffusion which occur across the control volume boundaries. The variable b p represents... represents a model of one half of the recovery boiler. The boiler has three air levels. The North, South and East boundaries of the computational domain represent the water walls of the boiler. The West boundary represents a symmetry plane. It should...

Abdullah, Z.; Salcudean, M.; Nowak, P.

198

Evaluation of Heat Losses in Fire Tube Boiler  

E-Print Network (OSTI)

Abstract – The efficiency of oil fired fire tube boiler was calculated by evaluating the heat losses. Investigation on the performance of the boiler was conducted by examining the heat losses, identifying the reasons for losses, measuring the individual loss and developing a strategy for loss reduction. This study was carried out in Texmaco package horizontal fire tube boiler at Travancore Titanium Products Ltd (TTPL), Trivandrum, Kerala. The boiler efficiency was measured by indirect method. Heat losses in dry flue gas and due to unburned fuel were found to be the major problems. Since they were interrelated, installation of Zirconium oxygen sensor was recommended as a common remedy.

S. Krishnanunni; Josephkunju Paul C; Mathu Potti; Ernest Markose Mathew

199

Evaluation of gas reburning and low NO{sub x} burners on a wall-fired boiler  

SciTech Connect

An evaluation of Gas Reburning (GR) and Low NO{sub x}, Burners (LNB) has been completed at Public Service Company of Colorado`s Cherokee Station Unit 3. The goal of the demonstration, which was carried out in a US DOE Clean Coal Technology Round 3 Program, was to reduce NO{sub x} emissions by 70%. The reduction was to be achieved from the pre-project level, prior to LNB retrofit. The GR system was supplied by Energy and Environmental Research Corporation (EER) and the LNBs were supplied by the Foster Wheeler Energy Corporation. The project was carried out in three phases in which EER designed the GR system and obtained necessary permits (Phase 1), constructed the system and completed start-up tasks (Phase 2), and evaluated its performance with both Optimization Tests and a Long-Term Demonstration (Phase 3). As directed by the cooperative agreement, environmental monitoring was conducted in each phase. Measurements were taken by plant personnel and an EER Field Testing Team and were divided into two types. ``Compliance Monitoring`` was conducted by plant personnel to satisfy requirements of regulatory agencies, while ``Supplemental Monitoring`` was conducted by EER personnel to develop a database of environmental impacts of the technology and to ensure environmental acceptability of the project. This document presents environmental monitoring data obtained during the Long-Term Testing period, April 27, 1993 to January 27, 1995. During this period, ten months of testing of the GR-LNB system was followed by a modification into a ``second-generation`` GR-LNB system, which was evaluated for six months. Compliance Monitoring was conducted primarily in two areas, air emissions and aqueous discharges.

NONE

1995-06-01T23:59:59.000Z

200

Boilers and Fired Systems  

SciTech Connect

This chapter examines how energy is consumed, how energy is wasted, and opportunities for reducing energy consumption and costs in the operation of boilers.

Parker, Steven A.; Scollon, R. B.

2009-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Covered Product Category: Commercial Boiler | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Boiler Commercial Boiler Covered Product Category: Commercial Boiler October 7, 2013 - 10:27am Addthis What's Covered All Federal purchases of hot water or steam boilers (using either oil or gas) with a rated capacity (Btu/h) of 300,000-10,000,000 must meet or exceed FEMP-designated thermal efficiencies. FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial boilers, which is a FEMP-designated product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Meeting Energy Efficiency Requirements for Commercial Boilers Table 1 displays the FEMP-designated minimum efficiency requirements for

202

Influence of combustion parameters on NOx production in an industrial boiler  

E-Print Network (OSTI)

Influence of combustion parameters on NOx production in an industrial boiler M.A. Habib a,*, M pollution using a model furnace of an industrial boiler utilizing fuel gas. The importance of this problem is mainly due to its relation to the pollutants produced by large boiler furnaces used widely in thermal

Aldajani, Mansour A.

203

Commonwealth Small Pellet Boiler Grant Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Small Pellet Boiler Grant Program Commonwealth Small Pellet Boiler Grant Program Commonwealth Small Pellet Boiler Grant Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Bioenergy Maximum Rebate $15,000 Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 03/2013 State Massachusetts Program Type State Rebate Program Rebate Amount Base Grant: $7,000 Automated Conveyance of Fuel Adder: $3,000 Thermal Storage Adder: $2,000 Solar Thermal Hybrid System Adder: $1,000 Moderate Income Adder or Moderate Home Value Adder: $2,000 Maximum Grant: $15,000 Provider Massachusetts Clean Energy Center The Massachusetts Clean Energy Center (MassCEC) and the Department of Energy Resources (DOER) are offering the Commonwealth Small Pellet Boiler

204

CONDENSING ECONOMIZERS FOR SMALL COAL-FIRED BOILERS AND FURNACES PROJECT REPORT - JANUARY 1994  

SciTech Connect

Condensing economizers increase the thermal efficiency of boilers by recovering sensible and latent heat from exhaust gas. These economizers are currently being used commercially for this purpose in a wide range of applications. Performance is dependent upon application-specific factors affecting the utility of recovered heat. With the addition of a condensing economizer boiler efficiency improvements up to 10% are possible. Condensing economizers can also capture flue gas particulates. In this work, the potential use of condensing economizers for both efficiency improvement and control of particulate emissions from small, coal water slurry-fired boilers was evaluated. Analysis was done to predict heat transfer and particulate capture by mechanisms including: inertial impaction, interception, diffusion, thermophoretic forces, and condensation growth. Shell-and-tube geometries were considered with flue gas on the outside of Teflon-covered tubes. Experimental studies were done with both air- and water-cooled economizers refit to a small boiler. Two experimental arrangements were used including oil-firing with injection of flyash upstream of the economizer and direct coal water slurry firing. Firing rates ranged from 27 to 82 kW (92,000 to 280,000 Btu/hr). Inertial impaction was found to be the most important particulate capture mechanism and removal efficiencies to 95% were achieved. With the addition of water sprays directly on the first row of tubes, removal efficiencies increased to 98%. Use of these sprays adversely affects heat recovery. Primary benefits of the sprays are seen to be the addition of small impaction sites and future design improvements are suggested in which such small impacts are permanently added to the highest velocity regions of the economizer. Predicted effects of these added impactors on particulate removal and pressure drop are presented.

BUTCHER,T.A.

1994-01-04T23:59:59.000Z

205

Method and apparatus for maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling  

DOE Patents (OSTI)

An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.

Farthing, William Earl (Pinson, AL) [Pinson, AL; Felix, Larry Gordon (Pelham, AL) [Pelham, AL; Snyder, Todd Robert (Birmingham, AL) [Birmingham, AL

2008-02-12T23:59:59.000Z

206

Method and apparatus maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling  

DOE Patents (OSTI)

An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.

Farthing, William Earl (Pinson, AL); Felix, Larry Gordon (Pelham, AL); Snyder, Todd Robert (Birmingham, AL)

2009-12-15T23:59:59.000Z

207

MidAmerican Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas) - Residential Energy Efficiency Rebate Gas) - Residential Energy Efficiency Rebate Programs MidAmerican Energy (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Program Info Expiration Date 12/31/2013 State Nebraska Program Type Utility Rebate Program Rebate Amount Energy Audit: Free Furnaces: $250-$400 Boilers: $150 or $400 Water Heaters: $50 or $100 Provider Remittance MidAmerican Energy offers basic energy efficiency incentives for residential customers in Nebraska to improve the comfort and savings in participating homes. These incentives include gas heating equipment such as boilers, furnaces, and water heaters. Free energy audits are also available

208

North Shore Gas - Commercial and Industrial Prescriptive Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Shore Gas - Commercial and Industrial Prescriptive Rebate North Shore Gas - Commercial and Industrial Prescriptive Rebate Program North Shore Gas - Commercial and Industrial Prescriptive Rebate Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Maximum Rebate Contact North Shore Gas Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Steam Traps (Low Pressure): $60/unit Steam Traps (High Pressure): $150/unit Industrial/Process Steam Trap (Low Pressure): $150 Industrial/Process Steam Trap (High Pressure): $200 HVAC Steam Trap Test: $5/unit surveyed Condensing Unit Heater: $2/MBH Boilers: $2 - $6.67/MBH Boiler Cutout/Reset Control: $250

209

Minnesota Energy Resources (Gas) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Energy Resources (Gas) - Residential Energy Efficiency Minnesota Energy Resources (Gas) - Residential Energy Efficiency Rebate Program Minnesota Energy Resources (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Construction Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Construction Design & Remodeling Sealing Your Home Ventilation Commercial Lighting Lighting Water Heating Maximum Rebate Level II Audit (For-profit organizations): $400 Level I Audit (For-profit organizations): $250 Programmable Thermostat: 50% of cost Steam Traps: $250 Boiler Tune Up: $500 Vent Damper: $500 O2 Trim Control: $5,000 Gas boiler 300,000 to 9,999,999 Btu/hr output: $750 - $5,000

210

National Fuel (Gas) - Small Commercial Conservation Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Gas) - Small Commercial Conservation Program (Gas) - Small Commercial Conservation Program National Fuel (Gas) - Small Commercial Conservation Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Custom Rebates: $25,000 Program Info State New York Program Type Utility Rebate Program Rebate Amount Custom Rebates: $15/Mcf x the gas savings Unit Heater: $1000 Hot Air Furnace: $500 Low Intensity Infrared Heating: $500 Programmable Thermostat: $25 Hot Water Boiler: $600-$3500 Steam Boiler: $600-$2000 + $2/kBtuh Tankless Water Heaters: $350 Storage Tank Water Heater: $150 Fryer: $750 Convection Oven: $500 Combination Oven: $750 Broiler: $500 Steamer: $750 Griddle: $500 Provider New York State Energy Research and Development Authority

211

Gas-dynamic and thermal processes under film cooling end surfaces of a gas-turbine blade bucket  

Science Journals Connector (OSTI)

Results from an investigation of using swirled coolant jets to obtain efficient film cooling of a turbine bucket while minimizing the total losses in it are presented.

V. V. Lebedev

2010-02-01T23:59:59.000Z

212

Southwest Gas Corporation - Commercial Energy Efficient Equipment Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Energy Efficient Equipment Commercial Energy Efficient Equipment Rebate Program Southwest Gas Corporation - Commercial Energy Efficient Equipment Rebate Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate General: 50% of purchase price Custom: $20,000 Program Info Expiration Date 12/15/2013 State Nevada Program Type Utility Rebate Program Rebate Amount Air Curtain: $1,950 Modulating Burner Control: $10,000 Boiler Steam Trap: $250 Non-condensing Boiler: $1/MBtuh Condensing Boiler: $1.25/MBtuh Clothes Dryer: $30 Custom: $1/therm up to $20,000 Convection Oven: $550 Conveyor Oven: $300-$750 Dishwasher: $1,050-$2,000 Energy Audit: $5,000/facility; $50,000/customer Furnace (Northern Nevada Only): $300-$500

213

Cost-Effective Industrial Boiler Plant Efficiency Advancements  

E-Print Network (OSTI)

Natural gas and electricity are expensive to the extent that annual fuel and power costs can approach the initial cost of an industrial boiler plant. Within this context, this paper examines several cost-effective efficiency advancements that were...

Fiorino, D. P.

214

Selective diagnostics of combustion processes in multi-burner boilers  

Science Journals Connector (OSTI)

The process of gas hydrocarbon combustion was tested in real (industrial) conditions on boilers with many burners. For key operation modes, the main regularities of emission from single flames were studied. Th...

S. M. Borzov; V. V. Garkusha; V. I. Kozik; V. P. Mikheev…

215

Modular High-Temperature Gas-Cooled Reactor short term thermal response to flow and reactivity transients  

SciTech Connect

The analyses reported here have been conducted at the Oak Ridge National Laboratory (ORNL) for the US Nuclear Regulatory Commission's (NRC's) Division of Regulatory Applications of the Office of Nuclear Regulatory Research. The short-term thermal response of the Modular High-Temperature Gas-Cooled Reactor (MHTGR) is analyzed for a range of flow and reactivity transients. These include loss of forced circulation (LOFC) without scram, moisture ingress, spurious withdrawal of a control rod group, hypothetical large and rapid positive reactivity insertion, and a rapid core cooling event. The coupled heat transfer-neutron kinetics model is also described.

Cleveland, J.C.

1988-01-01T23:59:59.000Z

216

Evaluation of coal-derived liquids as boiler fuels. Volume 2: boiler test results. Final report  

SciTech Connect

A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases. The first phase included the combustion tests of the two conventional fuels (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). The second phase involved the evaluation of three additional CDL fuels (H-Coal light distillate, Exxon Donor Solvent full range distillate and Solvent Refined Coal-II middle distillate). The test boiler was a front wall-fired Babcock and Wilcox unit with a rated steam flow of 425,000 lb/h and a generating capacity of 40 MW. Boiler performance and emissions were evaluated with baseline and CDL fuels at 15, 25, 40 MW loads and at various excess air levels. Low NO/sub x/ (staged) combustion techniques were also implemented. Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. The CDL fuels could be handled similarly to No. 2 oil with appropriate safety procedures and materials compatibility considerations. Volume 2 of a five-volume report contains the detailed boiler test results. 96 figs., 26 tabs.

Not Available

1985-09-01T23:59:59.000Z

217

HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS  

SciTech Connect

Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

Gorensek, M.

2011-07-06T23:59:59.000Z

218

Validation of SCALE for High Temperature Gas-Cooled Reactors Analysis  

SciTech Connect

This report documents verification and validation studies carried out to assess the performance of the SCALE code system methods and nuclear data for modeling and analysis of High Temperature Gas-Cooled Reactor (HTGR) configurations. Validation data were available from the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhE Handbook), prepared by the International Reactor Physics Experiment Evaluation Project, for two different HTGR designs: prismatic and pebble bed. SCALE models have been developed for HTTR, a prismatic fuel design reactor operated in Japan and HTR-10, a pebble bed reactor operated in China. The models were based on benchmark specifications included in the 2009, 2010, and 2011 releases of the IRPhE Handbook. SCALE models for the HTR-PROTEUS pebble bed configuration at the PROTEUS critical facility in Switzerland have also been developed, based on benchmark specifications included in a 2009 IRPhE draft benchmark. The development of the SCALE models has involved a series of investigations to identify particular issues associated with modeling the physics of HTGRs and to understand and quantify the effect of particular modeling assumptions on calculation-to-experiment comparisons.

Ilas, Germina [ORNL; Ilas, Dan [ORNL; Kelly, Ryan P [ORNL; Sunny, Eva E [ORNL

2012-08-01T23:59:59.000Z

219

A 50-100 kWe gas-cooled reactor for use on Mars.  

SciTech Connect

In the space exploration field there is a general consensus that nuclear reactor powered systems will be extremely desirable for future missions to the outer solar system. Solar systems suffer from the decreasing intensity of solar radiation and relatively low power density. Radioisotope Thermoelectric Generators are limited to generating a few kilowatts electric (kWe). Chemical systems are short-lived due to prodigious fuel use. A well designed 50-100 kWe nuclear reactor power system would provide sufficient power for a variety of long term missions. This thesis will present basic work done on a 50-100 kWe reactor power system that has a reasonable lifespan and would function in an extraterrestrial environment. The system will use a Gas-Cooled Reactor that is directly coupled to a Closed Brayton Cycle (GCR-CBC) power system. Also included will be some variations on the primary design and their effects on the characteristics of the primary design. This thesis also presents a variety of neutronics related calculations, an examination of the reactor's thermal characteristics, feasibility for use in an extraterrestrial environment, and the reactor's safety characteristics in several accident scenarios. While there has been past work for space reactors, the challenges introduced by thin atmospheres like those on Mars have rarely been considered.

Peters, Curtis D. (.)

2006-04-01T23:59:59.000Z

220

High-temperature gas-cooled-reactor steam-methane reformer design  

SciTech Connect

The concept of the long distance transportation of process heat energy from a High Temperature Gas Cooled Reactor (HTGR) heat source, based on the steam reforming reaction, is currently being evaluated as an energy source/application for use early in the 21st century. The steam-methane reforming reaction is an endothermic reaction at temperatures approximately 700/sup 0/C and higher, which produces hydrogen, carbon monoxide and carbon dioxide. The heat of the reaction products can then be released, after being pumped to industrial site users, in a methanation process producing superheated steam and methane which is then returned to the reactor plant site. In this application the steam reforming reaction temperatures are produced by the heat energy from the core of the HTGR through forced convection of the primary or secondary helium circuit to the catalytic chemical reactor (steam reformer). This paper summarizes the design of a helium heated steam reformer utilized in conjunction with a 1170 MW(t) intermediate loop, 850/sup 0/C reactor outlet temperature, HTGR process heat plant concept. This paper also discusses various design considerations leading to the mechanical design features, the thermochemical performance, materials selection and the structural design analysis.

Impellezzeri, J.R.; Drendel, D.B.; Odegaard, T.K.

1981-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code  

SciTech Connect

The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

Vondy, D.R.

1984-07-01T23:59:59.000Z

222

Black Hills Energy (Gas) - Residential Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy (Gas) - Residential Energy Efficiency Program Black Hills Energy (Gas) - Residential Energy Efficiency Program Black Hills Energy (Gas) - Residential Energy Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate All Incentives: $750/customer Ceiling/Wall/Foundation Insulation: $500 Infiltration Control/Caulking/Weather Stripping: $200 Duct Insulation: $150 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Qualified New Homes (Builders): Contact Black Hills Energy Evaluations: Free or reduced cost Storage Water Heater: $75 or $300 Tankless Water Heater: $300 Furnace/Boiler Maintenance: $30 or $100

223

Efficiency United (Gas) - Residential Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency United (Gas) - Residential Efficiency Program Efficiency United (Gas) - Residential Efficiency Program Efficiency United (Gas) - Residential Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Construction Design & Remodeling Other Ventilation Manufacturing Water Heating Windows, Doors, & Skylights Maximum Rebate Weatherization Measures: 50% of the cost Windows: $150 Water Heaters/Clothes Washers: 1 Pipe Wrap: Limit of 10 linear ft. Faucet Aerators: 2 High Efficiency Shower Head: 2 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Boiler: $200 Furnace: $100 - $200

224

Black Hills Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy (Gas) - Residential Energy Efficiency Rebate Black Hills Energy (Gas) - Residential Energy Efficiency Rebate Programs Black Hills Energy (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Water Heating Maximum Rebate Insulation: $750 Weather-Stripping and Caulking: $200 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Evaluation: Free Clothes Washers: $100 Dishwashers: $20 Replacement Furnaces: $250 - $400 Replacement Boilers: $150 or $400 Duct Repair/Sealing: $200 Duct Insulation (R-8): $150 Insulation/Weather-Stripping/Caulking: 70% of project cost

225

Alliant Energy Interstate Power and Light (Gas) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas) - Residential Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Sealing Your Home Ventilation Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Attic and Wall Insulation: $1000 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount ENERGY STAR New Construction: $600-$3500/home Home Energy Audit: Free Boilers: $150 or $400 depending on AFUE Furnaces: $250 or $400 depending on AFUE Programmable Thermostats: $25

226

Dominion East Ohio (Gas) - Home Performance Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dominion East Ohio (Gas) - Home Performance Program Dominion East Ohio (Gas) - Home Performance Program Dominion East Ohio (Gas) - Home Performance Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Appliances & Electronics Water Heating Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Furnace: $300-$400 Boiler: $250-$300 Duct Sealing: $40/hour Air Sealing: $40/hour Programmable Thermostat: $30/thermostat Storage Water Heater: $100 Tankless Water Heater: $150 Condensing Water Heater: $125 Water Heater Tank Insulation: $10 Attic Access Insulation: $30 Wall/Attic/Duct Insulation: $0.30/sq. ft.

227

Alliant Energy Interstate Power and Light (Gas) - Business Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas) - Business Energy Alliant Energy Interstate Power and Light (Gas) - Business Energy Efficiency Rebate Programs (Minnesota) Alliant Energy Interstate Power and Light (Gas) - Business Energy Efficiency Rebate Programs (Minnesota) < Back Eligibility Commercial Fed. Government Local Government Multi-Family Residential Retail Supplier State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Tank Water Heater: $50 Furnace: $250-$400 Boiler: $150 or $400 Programmable Thermostat: $25 Windows/Sash: $20 Custom: Based on Annual Energy Dollar Savings Provider

228

Ameren Missouri (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ameren Missouri (Gas) - Residential Energy Efficiency Rebate Ameren Missouri (Gas) - Residential Energy Efficiency Rebate Programs Ameren Missouri (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Appliances & Electronics Maximum Rebate Ceiling Insulation: $200 Program Info Start Date 1/1/2013 Expiration Date 12/31/2013 State Missouri Program Type Utility Rebate Program Rebate Amount Furnace: $200 (Owner Occupied); $300 (Landlord) Boiler: $100 - $150 (Owner Occupied); $150 - $300 (Landlord) Programmable Thermostat: $25 or 50% of cost Ceiling Insulation: $0.008 x sq ft Comprehensive Audit Measures: Varies widely

229

Questar Gas - Residential Energy Efficiency Rebate Programs (Idaho) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Programs (Idaho) Programs (Idaho) Questar Gas - Residential Energy Efficiency Rebate Programs (Idaho) < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Limit of one rebate per appliance type Duct Sealing/Insulation: $450 (Single Family); $250 (Multifamily) Program Info State Idaho Program Type Utility Rebate Program Rebate Amount Furnace: $200-$400 Solar Assisted Water Heater: $750 Storage Water Heater: $50-$100 Gas Condensing/Hybrid Water Heater: $350 Tankless Water Heater: $300-$350 Boiler: $400 - $600 Solar Hot Water Heater: $750 Gas Clothes Washer: $50

230

Test research of bed ash coolers for a 50 MWe CFB boiler  

SciTech Connect

CFB boilers have been developed and commercialized in China. As one of the main auxiliaries of FBC boilers, the bed ash cooler plays an important role in regular operation of the boilers. A 50 MWe 2-shaped CFB boiler will be put into operation in North China. Many kinds of bed ash cooling systems for this boiler had been designed and compared. Then the optimum bed ash coolers were determined and made. Experimental research and pilot-scale test for the bed ash coolers were also carried out. The result indicates that the bed ash cooler can be operated reliably and can meet the demand for cooling bed ash of the 50 MWe CFB boiler. The test data are very useful for further improving the performance of ash coolers.

Chen, H.P.; Lu, J.D.; Lin, Z.J.; Liu, D.C. [Huazhong Univ. of Science and Technology, Wuhan, Hubei (China). National Lab. of Coal Combustion; Hu, L.L.; Xie, P.J.; Yan, H.X.; Liu, M.C. [Hubei Boiler Auxiliary Factory, Jingshan, Hubei (China)

1995-12-31T23:59:59.000Z

231

Heating boilers in Krakow, Poland: Options for improving efficiency and reducing emissions  

SciTech Connect

In Krakow, Poland, coal-fired boilers are used to heat single apartment buildings and local heating districts. Tile population includes 2,930 small, hand-fired boilers and 227 larger traveling grate stoker-fired boilers. These boilers are important contributors to air quality problems in Krakow, and an assessment of their efficiency and emissions characteristics was recently undertaken. For the larger, stoker-fired boilers, efficiency was measured using a stack-loss method In addition to the normal baseline fuel, the effects of coal cleaning and grading were evaluated Testing was done at two selected sites. Boiler efficiencies were found to be low-50% to 67%. These boilers operate without combustion controls or instrumentation for flue gas analysis. As a result, excess air levels are very high (up to 400%) leading to poor performance. Emissions were found to be typical for boilers of this type. Using the improved fuels yields reductions in emissions and improvement in efficiency when combined with proper adjustments. In the case of the hand-fired boilers, one set of cast-iron boilers and one set of steel boilers were tested. Efficiency in this case was measured using an input-output method for sets of three boilers taken together as a system. Emissions from these boilers are lowest when low volatile fuels, such as coke or smokeless briquettes, are used.

Cyklis, P.; Wlodkowski, A.; Butcher, T.; Kowalski, J.; Zaczkowski, A.; Kroll, J.; Boron, J.

1995-08-01T23:59:59.000Z

232

ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT  

SciTech Connect

An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

M. G. McKellar; E. A. Harvego; A. M. Gandrik

2010-11-01T23:59:59.000Z

233

Incorporating reliability analysis into the design of passive cooling systems with an application to a gas-cooled reactor  

Science Journals Connector (OSTI)

A time-dependent reliability evaluation of a two-loop passive decay heat removal (DHR) system was performed as part of the iterative design process for a helium-cooled fast reactor. The system was modeled using RELAP5-3D. The uncertainties in input parameters were assessed and were propagated through the model using Latin hypercube sampling. An important finding was the discovery that the smaller pressure loss through the DHR heat exchanger than through the core would make the flow to bypass the core through one DHR loop, if two loops operated in parallel. This finding is a warning against modeling only one lumped DHR loop and assuming that n of them will remove n times the decay power. Sensitivity analyses revealed that there are values of some input parameters for which failures are very unlikely. The calculated conditional (i.e., given the LOCA) failure probability was deemed to be too high leading to the identification of several design changes to improve system reliability. This study is an example of the kinds of insights that can be obtained by including a reliability assessment in the design process. It is different from the usual use of PSA in design, which compares different system configurations, because it focuses on the thermal–hydraulic performance of a safety function.

Francisco J. Mackay; George E. Apostolakis; Pavel Hejzlar

2008-01-01T23:59:59.000Z

234

Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system  

DOE Patents (OSTI)

In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

235

Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C  

SciTech Connect

This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750°C and provides electricity and/or process heat at 700°C to conventional process applications, including the production of hydrogen.

Ian Mckirdy

2010-12-01T23:59:59.000Z

236

Air cooling of a turbine guide vane for a stationary gas-turbine plant (GTP) with a high gas pressure  

Science Journals Connector (OSTI)

A guide vane for a proposed stationary GTP is calculated with ?r=80, 100, and 126 and T g * =1673°K. The unsuitability of the convective blade cooling used up t...

L. L. Volodkin

1978-05-01T23:59:59.000Z

237

National Fuel (Gas) - Residential Energy Efficiency Rebates | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Fuel (Gas) - Residential Energy Efficiency Rebates National Fuel (Gas) - Residential Energy Efficiency Rebates National Fuel (Gas) - Residential Energy Efficiency Rebates < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Rebate amount cannot exceed the purchase price Program Info Start Date 1/1/2013 Expiration Date 3/31/2014 State New York Program Type Utility Rebate Program Rebate Amount Furnace: $250 Forced Air Furnace with ECM: $350 Hot Water Boiler: $350 Steam Boiler: $200 Programmable Thermostat: $25 Indirect Water Heater: $250 Provider Energy Federation Incorporated (EFI) National Fuel offers pre-qualified equipment rebates for the installation of certain energy efficiency measures to residential customers in Western

238

Philadelphia Gas Works - Residential and Small Business Equipment Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Residential and Small Business Equipment Philadelphia Gas Works - Residential and Small Business Equipment Rebate Program Philadelphia Gas Works - Residential and Small Business Equipment Rebate Program < Back Eligibility Commercial Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info Start Date 4/1/2011 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Boiler (Purchase prior to 02/17/12): $1000 Boiler (Purchase 02/17/12 or after): $2000 Furnace (Purchase prior to 02/17/12): $250 Furnace (Purchase prior to 02/17/12): $500

239

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate Custom: 50% of project cost Program Info Start Date 06/09/2011 State Wyoming Program Type Utility Rebate Program Rebate Amount Water Heater: $75 - $300 Furnaces: $250 - $400 Boilers: $150 - $400 Setback Thermostat: $25 - $50 Convection Oven: $100 High Efficiency Range/Oven: $500 Conveyor Oven: $500 Fryer: $500 Broiler: $100 Steam Cooker: $500 Vent Dampers for Boilers: $125 Custom: Two year buy down or 50% of project cost, whichever is less

240

Method to Assess the Radionuclide Inventory of Irradiated Graphite from Gas-Cooled Reactors - 13072  

SciTech Connect

About 17,000 t of irradiated graphite waste will be produced from the decommissioning of the six French gas-cooled nuclear reactors. Determining the radionuclide (RN) content of this waste is of relevant importance for safety reasons and in order to determine the best way to manage them. For many reasons the impurity content that gave rise to the RNs in irradiated graphite by neutron activation during operation is not always well known and sometimes actually unknown. So, assessing the RN content by the use of traditional calculation activation, starting from assumed impurity content, leads to a false assessment. Moreover, radiochemical measurements exhibit very wide discrepancies especially on RN corresponding to precursor at the trace level such as natural chlorine corresponding to chlorine 36. This wide discrepancy is unavoidable and is due to very simple reasons. The level of impurity is very low because the uranium fuel used at that very moment was not enriched, so it was a necessity to have very pure nuclear grade graphite and the very low size of radiochemical sample is a simple technical constraint because device size used to get mineralization product for measurement purpose is limited. The assessment of a radionuclide inventory only based on few number of radiochemical measurements lead in most cases, to a gross over or under-estimation that is detrimental for graphite waste management. A method using an identification calculation-measurement process is proposed in order to assess a radiological inventory for disposal sizing purpose as precise as possible while guaranteeing its upper character. This method present a closer approach to the reality of the main phenomenon at the origin of RNs in a reactor, while also incorporating the secondary effects that can alter this result such as RN (or its precursor) release during reactor operation. (authors)

Poncet, Bernard [EDF-CIDEN, 154 Avenue Thiers, CS 60018, F-69458 LYON cedex 06 (France)] [EDF-CIDEN, 154 Avenue Thiers, CS 60018, F-69458 LYON cedex 06 (France)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Analysis and Development of A Robust Fuel for Gas-Cooled Fast Reactors  

SciTech Connect

The focus of this effort was on the development of an advanced fuel for gas-cooled fast reactor (GFR) applications. This composite design is based on carbide fuel kernels dispersed in a ZrC matrix. The choice of ZrC is based on its high temperature properties and good thermal conductivity and improved retention of fission products to temperatures beyond that of traditional SiC based coated particle fuels. A key component of this study was the development and understanding of advanced fabrication techniques for GFR fuels that have potential to reduce minor actinide (MA) losses during fabrication owing to their higher vapor pressures and greater volatility. The major accomplishments of this work were the study of combustion synthesis methods for fabrication of the ZrC matrix, fabrication of high density UC electrodes for use in the rotating electrode process, production of UC particles by rotating electrode method, integration of UC kernels in the ZrC matrix, and the full characterization of each component. Major accomplishments in the near-term have been the greater characterization of the UC kernels produced by the rotating electrode method and their condition following the integration in the composite (ZrC matrix) following the short time but high temperature combustion synthesis process. This work has generated four journal publications, one conference proceeding paper, and one additional journal paper submitted for publication (under review). The greater significance of the work can be understood in that it achieved an objective of the DOE Generation IV (GenIV) roadmap for GFR Fuel—namely the demonstration of a composite carbide fuel with 30% volume fuel. This near-term accomplishment is even more significant given the expected or possible time frame for implementation of the GFR in the years 2030 -2050 or beyond.

Knight, Travis W

2010-01-31T23:59:59.000Z

242

Comparative evaluation of pebble-bed and prismatic fueled high-temperature gas-cooled reactors  

SciTech Connect

A comparative evaluation has been performed of the HTGR and the Federal Republic of Germany's Pebble Bed Reactor (PBR) for potential commercial applications in the US. The evaluation considered two reactor sizes (1000 and 3000 MW(t)) and three process applications (steam cycle, direct cycle, and process heat, with outlet coolant temperatures of 750, 850, and 950/sup 0/C, respectively). The primary criterion for the comparison was the levelized (15-year) cost of producing electricity or process heat. Emphasis was placed on the cost impact of differences between the prismatic-type HTGR core, which requires periodic refuelings during reactor shutdowns, and the pebble bed PBR core, which is refueled continuously during reactor operations. Detailed studies of key technical issues using reference HTGR and PBR designs revealed that two cost components contributing to the levelized power costs are higher for the PBR: capital costs and operation and maintenance costs. A third cost component, associated with nonavailability penalties, tended to be higher for the PBR except for the process heat application, for which there is a large uncertainty in the HTGR nonavailability penalty at the 950/sup 0/C outlet coolant temperature. A fourth cost component, fuel cycle costs, is lower for the PBR, but not sufficiently lower to offset the capital cost component. Thus the HTGR appears to be slightly superior to the PBR in economic performance. Because of the advanced development of the HTGR concept, large HTGRs could also be commercialized in the US with lower R and D costs and shorter lead times than could large PBRs. It is recommended that the US gas-cooled thermal reactor program continue giving primary support to the HTGR, while also maintaining its cooperative PBR program with FRG.

Kasten, P.R.; Bartine, D.E.

1981-01-01T23:59:59.000Z

243

Fracture mechanics investigations on high-temperature gas-cooled reactor materials  

SciTech Connect

The prototype nuclear process heat plant and the high-temperature gas-cooled reactor need materials that can withstand temperatures up to 1223 K (950/sup 0/C). An elaboration of fracture mechanics concepts that holds for the complete temperature regime must consider all possible phenomena like creep damage and precipitation during exposure, etc. In tests on the Inconel-617, Hastelloy-X, and Nimonic-86 alloys with respect to fatigue crack growth, creep crack growth, and toughness (J integral R curves) up to 1273 K (1000/sup 0/C), the first creep crack growth results were obtained in helium to compare with the air results. It was shown that pure fatigue crack growth behavior can be described by linear elastic fracture mechanics up to 1273 K. An example of Hastelloy-X at 1223 K proves that evaluating fatigue crack growth according to the J intergral concept gives, within a small scatterband, the same results as by following the linear elastic concept. Hastelloy-X shows a decreasing fracture toughness with increasing temperatures. It is emphasized that the J integral concept holds only if creep deformation can be neglected. The experimental evidence at highest temperatures shows that the J integral R curve is not at all similar to that found at lower temperatures under ideal conditions. Creep crack growth for Nimonic-86 at 1073 less than or equal to T/K less than or equal to 1273 shows that crack growth at 1223 K in helium is found to be larger than in air. Problems arise when correlating the creep crack growth results. The application of the energy rate integral C* seems promising, but this has yet to be proven. A combination of long-term creep with fatigue crack growth is presently impossible.

Krompholz, K.; Bodmann, E.; Gnirss, G.K.; Huthmann, H.

1984-08-01T23:59:59.000Z

244

Connecting the second exhaust-heat boiler to the operating first one under the conditions of flow circuits of combined-cycle plants with two gas-turbine units and one steam turbine  

Science Journals Connector (OSTI)

Problems arising with connecting the second exhaust-heat boiler to the first exhaust-heat boiler under load in the case of flow circuits of combined-cycle plants of type PGU-450 are considered. Similar problem...

Yu. A. Radin; I. A. Grishin; T. S. Kontorovich…

2006-03-01T23:59:59.000Z

245

BEHAVIOUR OF BOILER STEEL SA-192 IN OXIDATION AND HOT CORROSION AT DIFFERENT TEMPERATURES  

E-Print Network (OSTI)

The major degradation mechanism occur due to oxidation and hot corrosion which is responsible for failure of boiler and gas turbine components. These failures occur because of the usage of wide range of fuels such as coal, oil at increased temperatures. In current investigation oxidation and hot corrosion performances of bare Boiler Steel SA-192 has been evaluated in air and with aggressive environment. For aggressive environment composition of sodium sulphate and vanadium pentaoxide have been mixed in proper ratio (Na2SO4+60%V2O5) to provide an experimental condition under cyclic conditions at an elevated temperatures of 850 0 C & 950 0 C. The kinetics of the corrosion is approximated by weight change measurements made after each cycle for total duration of 50 cycles. Each cycle consists of keeping the samples for 1 hour duration in Kanthol wire tube furnace at 850 0 C and 950 0 C followed by 20 minute cooling in ambient air. Weight change data has been taken after each cycle by digital electronic balance machine with an accuracy of 1 milligram. Graphs have been plotted between weight gains per surface area to number of cycles. Boiler Steel SA-192 has shown poor performance in oxidising and in hot corrosion environment as the temperature increased. It suffered from intensive spallation in the form of removal of scales.

Vinay Kumar Sahu; Jayant Singh; Mnnit Allahabad

246

Integrated flue gas treatment for simulataneous emission control and heat rate improvement - demonstration project at Ravenswood  

SciTech Connect

Results are presented for electric-utility, residual-oil fired, field demonstration testing of advanced-design, heat-recovery type, flue gas sub-coolers that incorporate sulfite-alkali-based wet scrubbing for efficient removal of volatile and semi-volatile trace elements, sub-micron solid particulate matter, SO{sub 2} and SO{sub 3}. By innovative adaptation of wet collector system operation with methanol injection into the rear boiler cavity to convert flue-gas NO to No{sub 2}, simultaneous removal of NO{sub x} is also achieved. The focus of this integrated flue gas treatment (IFGT) technology development and demonstration-scale, continuous performance testing is an upward-gas-flow, indirectly water-cooled, condensing heat exchanger fitted with acid-proof, teflon-covered tubes and tubesheets and that provides a unique condensing (non-evaporative) wet-scrubbing mode to address air toxics control objectives of new Clean Air Act, Title III. Advantageous trace-metal condensation/nucleation/agglomeration along with substantially enhanced boiler efficiency is accomplished in the IFGT system by use of boiler makeup water as a heat sink in indirectly cooling boiler flue gas to a near-ambient-temperature, low-absolute-humidity, water-saturated state. Moreover, unique, innocuous, stack systems design encountered with conventional high-humidity, wet-scrubber operations. The mechanical design of this advanced flue-gas cooling/scrubbing equipment is based on more than ten years of commercial application of such units is downward-gas-flow design/operation for energy recovery, e.g. in preheating of makeup water, in residual-oil and natural-gas fired boiler operations.

Heaphy, J.; Carbonara, J.; Cressner, A. [Consolidated Edison Company, New York, NY (United States)] [and others

1995-06-01T23:59:59.000Z

247

Dr. Cool  

Science Journals Connector (OSTI)

...replace fossil fuels, and analyses of hydrogen fuel, natural gas...quickly "cut the average rate of global...global cooling effect of large volcanic...dollars—"the price of a Hollywood blockbuster...away from fossil fuels, he concedes...

Eli Kintisch

2013-10-18T23:59:59.000Z

248

Mitsubishi FGD plants for lignite fired boilers  

SciTech Connect

In order to respond to the increasing electric energy demand for sustaining economic growth, construction of coal-fired thermal power plants worldwide is indispensable. As a countermeasure for environmental pollution which otherwise may reach a serious proportion from the operation of these plants, construction of flue gas desulfurization (FGD) plants is being promoted. Among these power stations where lignite fuel is burnt, the FGD plants concerned have to be designed to cope with high gas volume and SO{sub x} concentration as well as violent fluctuations in their values caused by such features of lignite as high sulfur content, low calorific volume, and unstable properties. Mitsubishi Heavy Industries (MHI) has received construction awards for a total of seven (7) FGD plants for lignite-fired boilers in succession starting from that for CEZ as, Czech Republic followed by those for EGAT, Thailand in 1993. All these plants are presently operating satisfactorily since successful completion of their performance tests in 1996. Further, a construction award of three (3) more FGD plants for lignite-fired boilers was received from ENDESA (Spain) in 1995 which are now being outfitted and scheduled to start commercial operation in 1998. In this paper, the authors discuss the outline design of FGD plants for lignite-fired boilers based on experience of FGD plants constructed since 1970 for heavy oil--as well as black coal-fired boilers, together with items confirmed from the operation and design guideline hereafter.

Kotake, Shinichiro; Okazoe, Kiyoshi; Iwashita, Koichiro; Yajima, Satoru

1998-07-01T23:59:59.000Z

249

MORECA: A computer code for simulating modular high-temperature gas-cooled reactor core heatup accidents  

SciTech Connect

The design features of the modular high-temperature gas-cooled reactor (MHTGR) have the potential to make it essentially invulnerable to damage from postulated core heatup accidents. This report describes the ORNL MORECA code, which was developed for analyzing postulated long-term core heatup scenarios for which active cooling systems used to remove afterheat following the accidents can be assumed to the unavailable. Simulations of long-term loss-of-forced-convection accidents, both with and without depressurization of the primary coolant, have shown that maximum core temperatures stay below the point at which any significant fuel failures and fission product releases are expected. Sensitivity studies also have been done to determine the effects of errors in the predictions due both to uncertainties in the modeling and to the assumptions about operational parameters. MORECA models the US Department of Energy reference design of a standard MHTGR.

Ball, S.J. (Oak Ridge National Lab., TN (United States))

1991-10-01T23:59:59.000Z

250

Recovery Boiler Superheater Ash Corrosion Field Study  

SciTech Connect

With the trend towards increasing the energy efficiency of black liquor recovery boilers operated in North America, there is a need to utilize superheater tubes with increased corrosion resistance that will permit operation at higher temperatures and pressures. In an effort to identify alloys with improved corrosion resistance under more harsh operating conditions, a field exposure was conducted that involved the insertion of an air-cooled probe, containing six candidate alloys, into the superheater section of an operating recovery boiler. A metallographic examination, complete with corrosion scale characterization using EMPA, was conducted after a 1,000 hour exposure period. Based on the results, a ranking of alloys based on corrosion performance was obtained.

Keiser, James R [ORNL] [ORNL; Kish, Joseph [McMaster University] [McMaster University; Singbeil, Douglas [FPInnovations] [FPInnovations

2010-01-01T23:59:59.000Z

251

National Grid (Gas) - Commercial Energy Efficiency Rebate Programs (Metro  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Metro New York) Metro New York) National Grid (Gas) - Commercial Energy Efficiency Rebate Programs (Metro New York) < Back Eligibility Commercial Industrial Institutional Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Other Manufacturing Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Custom Incentives including Combined Heat and Power: $250,000 Large Industrial Gas Incentives: $250,000 Energy Efficiency Engineering Study: $10,000 Steam Traps: $2,500 All Insulation: $10,000/account Boiler Controls: 2 units ENERGY STAR Programmable Thermostats: 5 units Pipe Insulation: 500 ft Program Info State New York Program Type

252

Avista Utilities (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Programs Avista Utilities (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Appliances & Electronics Water Heating Maximum Rebate Incentives should not exceed 50% of the actual measure cost Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Natural Gas Furnace/Boiler: $400 Water Heater: $30 Floor and Wall Insulation: $0.50/sq. ft. Attic and Ceiling Insulation: $0.25/sq. ft. ENERGY STAR rated homes: $650 - $900 Replacement of Electric Straight Resistance Space Heat: $750 Provider

253

Effect of Gas/Steam Turbine Inlet Temperatures on Combined Cycle Having Air Transpiration Cooled Gas Turbine  

Science Journals Connector (OSTI)

Worldwide efforts are being made for further improving the gas/steam combined cycle performance by having better ... . The scope of improvement is possible through turbines having higher turbine inlet temperature...

S. Kumar; O. Singh

2012-10-01T23:59:59.000Z

254

Radiant heating and cooling, displacement ventilation with heat recovery and storm water cooling: An environmentally responsible HVAC system  

SciTech Connect

This paper describes the design, operation, and performance of an HVAC system installed as part of a project to demonstrate energy efficiency and environmental responsibility in commercial buildings. The systems installed in the 2180 m{sup 2} office building provide superior air quality and thermal comfort while requiring only half the electrical energy of conventional systems primarily because of the hydronic heating and cooling system. Gas use for the building is higher than expected because of longer operating hours and poor performance of the boiler/absorption chiller.

Carpenter, S.C.; Kokko, J.P. [Enermodal Engineering Ltd., Kitchener, Ontario (Canada)

1998-12-31T23:59:59.000Z

255

Disposal of boiler ash  

SciTech Connect

As more boilers are converted from oil to solid fuels such as coal, the quantity of ash requiring disposal will increase dramatically. The factors associated with the development of land disposal systems for ash landfills are presented, including ash characterization, site selection procedures, design parameters, and costs.

Atwell, J.S.

1981-08-01T23:59:59.000Z

256

Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, January 1, 1980-March 31, 1980  

SciTech Connect

Results are presented of work performed on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Included are the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described, including screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850, and 950/sup 0/C.

Not Available

1980-06-25T23:59:59.000Z

257

Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, July 1, 1979-September 30, 1979  

SciTech Connect

The results of work performed from July 1, 1979 through September 30, 1979 on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment, and gas chemistry analysis instrumentation and equipment. The status of the data management system is presented. In addition, the progress in the screening test program is described.

Not Available

1980-03-07T23:59:59.000Z

258

Operating characteristics of a spray tower for cooling gas at moderate temperatures  

E-Print Network (OSTI)

of multiport gas burners was placed. The top of the tower was fitted with an adapter, a square duct elbow and a reducing duct tying the top of the tower to a cyclone separator. A circular 12-inch elbow out of the top of the cyclone separator led to a venturi..., in the inlet-gas 11 stream, in the outlet-gas stream and in the ventur1. Wet bulb tempera- tures were obtained at top of tower and in the venturi by mercury-column thermometers fitted with wicks. Water-and gas-flow rates were measured by calibrated...

Legler, Bobby

2012-06-07T23:59:59.000Z

259

E-Print Network 3.0 - air-cooled gas turbine Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

State University Collection: Engineering 27 Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using Summary:...

260

Postcombustion and its influences in 135 MWe CFB boilers  

SciTech Connect

In the cyclone of a circulating fluidized bed (CFB) boiler, a noticeable increment of flue gas temperature, caused by combustion of combustible gas and unburnt carbon content, is often found. Such phenomenon is defined as post combustion, and it could introduce overheating of reheated and superheated steam and extra heat loss of exhaust flue gas. In this paper, mathematical modeling and field measurements on post combustion in 135MWe commercial CFB boilers were conducted. A novel one-dimensional combustion model taking post combustion into account was developed. With this model, the overall combustion performance, including size distribution of various ashes, temperature profile, and carbon content profiles along the furnace height, heat release fraction in the cyclone and furnace were predicted. Field measurements were conducted by sampling gas and solid at different positions in the boiler under different loads. The measured data and corresponding model-calculated results were compared. Both prediction and field measurements showed post combustion introduced a temperature increment of flue gas in the cyclone of the 135MWe CFB boiler in the range of 20-50{sup o}C when a low-volatile bituminous coal was fired. Although it had little influence on ash size distribution, post combustion had a remarkable influence on the carbon content profile and temperature profile in the furnace. Moreover, it introduced about 4-7% heat release in the cyclone over the total heat release in the boiler. This fraction slightly increased with total air flow rate and boiler load. Model calculations were also conducted on other two 135MWe CFB boilers burning lignite and anthracite coal, respectively. The results confirmed that post combustion was sensitive to coal type and became more severe as the volatile content of the coal decreased. 15 refs., 11 figs., 4 tabs.

Shaohua Li; Hairui Yang; Hai Zhang; Qing Liu; Junfu Lu; Guangxi Yue [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering

2009-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A New Type Heat Exchanger for Coal Burning Boilers  

Science Journals Connector (OSTI)

To make the best of heat energy in the flue gas exhausted from a coal burning boiler, the design proposal for a new type of heat exchanger was put forward in the paper. Via the new type of heat exchanger, temperature of the flue gas can be decreased ... Keywords: waste heat utilization, energy conservation, special heat exchanger, economizer

Bingwen Zhang; Yingjin Zhang

2010-06-01T23:59:59.000Z

262

Building Energy Monitoring and Analysis  

E-Print Network (OSTI)

heating, and HVAC (chiller, boiler, cooling tower, fan, electric cooling  and gas?boiler heating  Centralized and and  electrical  boilers.   Public  service  includes 

Hong, Tianzhen

2014-01-01T23:59:59.000Z

263

Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications  

SciTech Connect

This report is a preliminary comparison of conventional and potential HTGR-integrated processesa in several common industrial areas: ? Producing electricity via a traditional power cycle ? Producing hydrogen ? Producing ammonia and ammonia-derived products, such as fertilizer ? Producing gasoline and diesel from natural gas or coal ? Producing substitute natural gas from coal, and ? Steam-assisted gravity drainage (extracting oil from tar sands).

Lee Nelson

2009-10-01T23:59:59.000Z

264

Oxy-Combustion Boiler Material Development  

SciTech Connect

Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

2012-01-31T23:59:59.000Z

265

Oxy-Combustion Boiler Material Development  

SciTech Connect

Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

2012-01-31T23:59:59.000Z

266

Laclede Gas Company - Residential High Efficiency Heating Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential High Efficiency Heating Rebate Residential High Efficiency Heating Rebate Program Laclede Gas Company - Residential High Efficiency Heating Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Heating System: 2 maximum Programmable Thermostats: 2 maximum Multi-Family Property Owners: 50 thermostat rebates, 50 furnace rebates over the life of the program Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Gas Furnace: $150 - $200 Gas Boiler: $150 Programmable Setback Thermostat: $25 Gas Water Heater: $50 - $200 Provider Laclede Gas Company Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential

267

An integrated performance model for high temperature gas cooled reactor coated particle fuel  

E-Print Network (OSTI)

The performance of coated fuel particles is essential for the development and deployment of High Temperature Gas Reactor (HTGR) systems for future power generation. Fuel performance modeling is indispensable for understanding ...

Wang, Jing, 1976-

2004-01-01T23:59:59.000Z

268

Enhancement of combined cycle performance using transpiration cooling of gas turbine blades with steam  

Science Journals Connector (OSTI)

Gas/steam combined cycle is synergetic combination of Brayton cycle based topping cycle and Rankine cycle based bottoming cycle, which have capability of operating independently too. Combined cycle performance de...

Sanjay Kumar; Onkar Singh

2014-06-01T23:59:59.000Z

269

Developments of a powder-metallurgy, MZC copper-alloy, water-cooled gas turbine component  

Science Journals Connector (OSTI)

The Department of Energy of the Federal Government has sponsored a technology development and verification testing program. This work is in support of an advanced, watercooled gas turbine firing at 2600 ‡F (1427 ...

L. G. Peterson

1984-06-01T23:59:59.000Z

270

Gas-dynamic characteristics of a noise and heat insulating jacket on a gas turbine in a gas pumping plant on emergency disconnection of the cooling fans  

Science Journals Connector (OSTI)

The paper discusses the operation of a gas turbine plant (GTP) when the fans in ... NHJ by a fan. The operation of gas-pumping plant involves working with brief (10 ... describing the motion of an ideal thermally...

P. V. Trusov; D. A. Charntsev; I. R. Kats…

2008-09-01T23:59:59.000Z

271

Return Condensate to the Boiler  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on returning condensate to boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

272

Improve Your Boiler's Combustion Efficiency  

SciTech Connect

This revised ITP tip sheet on boiler combustion efficiency provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

273

Boiler Stack Economizer Tube Failure  

Science Journals Connector (OSTI)

A metallurgical evaluation was performed to investigate the failure of a type 304 stainless steel tube from a boiler stack economizer. The tube had three distinct degradation mechanisms...

Ryan J. Haase; Larry D. Hanke

2013-10-01T23:59:59.000Z

274

Minimize Boiler Short Cycling Losses  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

275

ORIGEN-ARP Cross-Section Libraries for Magnox, Advanced Gas-Cooled, and VVER Reactor Designs  

SciTech Connect

Cross-section libraries for the ORIGEN-ARP system were extended to include four non-U.S. reactor types: the Magnox reactor, the Advanced Gas-Cooled Reactor, the VVER-440, and the VVER-1000. Typical design and operational parameters for these four reactor types were determined by an examination of a variety of published information sources. Burnup simulation models of the reactors were then developed using the SAS2H sequence from the Oak Ridge National Laboratory SCALE code system. In turn, these models were used to prepare the burnup-dependent cross-section libraries suitable for use with ORIGEN-ARP. The reactor designs together with the development of the SAS2H models are described, and a small number of validation results using spent-fuel assay data are reported.

Murphy, BD

2004-03-10T23:59:59.000Z

276

Mechanical characterization of metallic materials for high-temperature gas-cooled reactors in air and in helium environments  

SciTech Connect

In the French R and D program for high-temperature gas-cooled reactors (HTGRs), three metallic alloys were studied: steel Chromesco-3 with 2.25% chromium, alloy 800H, and Hastelloy-X. The Chromesco-3 and alloy 800H creep behavior is the same in air and in HTGR atmosphere (helium). The tensile tests of Hastelloy-X specimens reveal that aging has embrittlement and hardening effects up to 700/sup 0/C, but the creep tests at 800/sup 0/C show opposite effects. This particular behavior could be due to induced precipitation by aging and the depletion of hardening elements from the matrix. Tests show a low influence of cobalt content on mechanical properties of Hastelloy-X.

Sainfort, G.; Cappelaere, M.; Gregoire, J.; Sannier, J.

1984-07-01T23:59:59.000Z

277

Changes in the mechanical properties of Hastelloy X when exposed to a typical gas-cooled reactor environment  

SciTech Connect

The helium used in a gas-cooled reactor will contain small amounts of H/sub 2/, CO, CH/sub 4/, H/sub 2/O, and N/sub 2/ which can lead to oxidation and carburization/decarburization of structural materials. Long-term creep tests were run on Hastelloy X to 30,000 h at 649 to 871/sup 0/C. It was found that extensive carburization occurred, the minimum creep rate and time to rupture were equal in air and impure helium environments, and the fracture strain was less in helium than in air. Thermal exposure in the temperature range of 538 to 871/sup 0/C resulted in the reduction of ductility in impact and tensile tests at ambient temperature, and this reduction was greater when the exposure was in impure helium rather than in air. A modified alloy with lower chromium and 2% titanium resisted carburization.

McCoy, H.E. Jr.

1981-01-01T23:59:59.000Z

278

[Gas cooled fuel cell systems technology development program]. Quarterly technical progress narrative No. 21, December 1, 1987--February 29, 1988  

SciTech Connect

Objective is the development of a gas-cooled phosphoric acid fuel cell for electric utility power plant application. Primary objectives are to: demonstrate performance endurance in 10-cell stacks at 70 psia, 190 C, and 267 mA/cm{sup 2}; improve cell degradation rate to less than 8 mV/1000 hours; develop cost effective criteria, processes, and design configurations for stack components; design multiple stack unit and a single 100 kW fuel cell stack; design a 375 kW fuel cell module and demonstrate average cell beginning-of-use performance; manufacture four 375-kW fuel cell modules and establish characteristics of 1.5 MW pilot power plant. The work is broken into program management, systems engineering, fuel cell development and test, facilities development.

Not Available

1988-03-01T23:59:59.000Z

279

Boiler Maximum Achievable Control Technology (MACT) Technical...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact Sheet, May 2014 Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact...

280

Covered Product Category: Commercial Boilers | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

be brought online quickly, therefore avoiding the need to keep a boiler on hot standby. Remote monitoring capability: Remote monitoring capability is useful to manage boiler...

Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Small boiler uses waste coal  

SciTech Connect

Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

Virr, M.J. [Spinheat Ltd. (United States)

2009-07-15T23:59:59.000Z

282

Evaluation of the 3D-furnace simulation code AIOLOS by comparing CFD predictions of gas compositions with in-furnace measurements in a 210MW coal-fired utility boiler  

Science Journals Connector (OSTI)

The furnace of a pulverised coal-fired utility boiler with a thermal output of 210MW, with dimensions of 8m x 8m x 29m and 12 burners located on three levels, is considered. Coal combustion is described by a five-step-reaction scheme. The model covers two heterogeneous reactions for pyrolysis and char combustion and three gas phase reactions for the oxidation of volatile matter. A standard k, ?-model is used for the description of turbulence. The interaction of turbulence and chemistry is modelled using the Eddy Dissipation Concept (EDC). The transport equations for mass, momentum, enthalpy and species are formulated in general curvilinear co-ordinates enabling an accurate treatment of boundaries and a very good control over the distribution of the grid lines. The discretisation is based on a non-staggered finite-volume approach and the coupling of velocities and pressure is achieved by the SIMPLEC method. Numerical diffusion is minimised by the use of the higher-order discretisation scheme MLU. The accuracy of the predictions is demonstrated by comparing the computational results with in-furnace measurements of carbon monoxide, carbon dioxide and oxygen concentrations and of temperatures.

Hermann Knaus; Uwe Schnell; Klaus R.G. Hein

2001-01-01T23:59:59.000Z

283

Columbia Gas of Ohio - Home Performance Solutions Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Gas of Ohio - Home Performance Solutions Program Columbia Gas of Ohio - Home Performance Solutions Program Columbia Gas of Ohio - Home Performance Solutions Program < Back Eligibility Installer/Contractor Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Maximum Rebate 70% Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Energy Audit: $50 cost Attic Insulation: $0.30-$0.50/sq. ft. Wall Insulation: $0.40/sq. ft. Air sealing: $40/air sealing hour Furnace: $200 Boiler: $200 Bonus Incentives: Varies by equipment-type Provider Columbia Gas of Ohio Columbia Gas of Ohio (CGO) offers a number of rebates on energy efficient equipment and measures to residential customers. Rebates may be available

284

Vectren Energy Delivery of Indiana (Gas) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vectren Energy Delivery of Indiana (Gas) - Residential Energy Vectren Energy Delivery of Indiana (Gas) - Residential Energy Efficiency Rebates Vectren Energy Delivery of Indiana (Gas) - Residential Energy Efficiency Rebates < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Attic Insulation: 40% of cost, up to $450 Wall/Ceiling Insulation: 40% of cost, up to $450 Duct Sealing: Total cost, up to $400 Boilers: $300 Furnace: $150 - $275 Programmable Thermostat: $20 Provider Vectren Energy Delivery of Indiana Vectren Energy Delivery offers its residential natural gas customers in Indiana rebates for the installation of certain high efficiency natural gas

285

Unitil (Gas) - Residential Energy Efficiency Programs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unitil (Gas) - Residential Energy Efficiency Programs Unitil (Gas) - Residential Energy Efficiency Programs Unitil (Gas) - Residential Energy Efficiency Programs < Back Eligibility Commercial Construction Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Other Ventilation Appliances & Electronics Water Heating Maximum Rebate Home Performance with Energy Star: 50% Utility Rebate up to $4,000 Home Energy Assistance (Low-income residents): $5,000 Program Info Start Date 1/1/2011 Expiration Date 12/31/2011 State New Hampshire Program Type Utility Rebate Program Rebate Amount Natural Gas Warm Air Furnace: $500 or $800 Natural Gas Boiler: $1,000 or $1,500

286

Field evaluation of cofiring gas with coal for quantifying operational benefits and emissions trim in a utility boiler. Volume 2. Topical report, 1989-1990  

SciTech Connect

The volume consists of 14 appendixes to accompany volume 1 of the report, and covers the following test data: analysis of coal, fylash, and bottom ash samples; cleanliness factors; slagging observation record sheets; stack opacity measurements; stack sulphur dioxide and nitrogen oxides measurements; total coal flow; fuel gas flow; furnace exit gas temperature; percent oxygen at economizer outlet; percent excess air; bulk steam temperatures at secondary superheater and reheater outlets; secondary superheater and reheater tube outlet leg temperatures; unit heat rate; and models used for data interpretation.

Clark, K.J.; Torbov, T.S.; Impey, R.J.; Hara, K.G.; Burnett, T.D.

1993-02-01T23:59:59.000Z

287

Xcel Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Programs Residential Energy Efficiency Rebate Programs Xcel Energy (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate Insulation: $300 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Furnace: $80-$120 Boilers: $100 Storage Water Heater: $25-$90 Tankless Water Heater: $100 Attic/Wall Insulation, Sealing and Weatherstripping: 20% of cost Energy Audits: $60-$120 Home Performance with ENERGY STAR: average rebate amount is $710 Provider Xcel Energy Xcel Energy residential customers in Colorado can qualify for cash

288

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Maximum Rebate $6,000 Program Info Funding Source New Hampshire Renewable Energy Fund (FY 2013) Start Date 04/14/2010 Expiration Date When progr State New Hampshire Program Type State Rebate Program Rebate Amount 30% Provider New Hampshire Public Utilities Commission The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The maximum rebate is $6,000. To qualify, systems must (1) become operational on or after May 1,

289

Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study  

SciTech Connect

Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

2006-06-30T23:59:59.000Z

290

Evaluation of Indirect Combined Cycle in Very High Temperature Gas--Cooled Reactor  

SciTech Connect

The U.S. Department of Energy and Idaho National Laboratory are developing a very high temperature reactor to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is twofold: (a) efficient, low-cost energy generation and (b) hydrogen production. Although a next-generation plant could be developed as a single-purpose facility, early designs are expected to be dual purpose, as assumed here. A dual-purpose design with a combined cycle of a Brayton top cycle and a bottom Rankine cycle was investigated. An intermediate heat transport loop for transporting heat to a hydrogen production plant was used. Helium, CO2, and a helium-nitrogen mixture were studied to determine the best working fluid in terms of the cycle efficiency. The relative component sizes were estimated for the different working fluids to provide an indication of the relative capital costs. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the cycle were performed to determine the effects of varying conditions in the cycle. This gives some insight into the sensitivity of the cycle to various operating conditions as well as trade-offs between efficiency and component size. Parametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling.

Chang Oh; Robert Barner; Cliff Davis; Steven Sherman; Paul Pickard

2006-10-01T23:59:59.000Z

291

Heat exchanger design considerations for high temperature gas-cooled reactor (HTGR) plants  

SciTech Connect

Various aspects of the high-temperature heat exchanger conceptual designs for the gas turbine (HTGR-GT) and process heat (HTGR-PH) plants are discussed. Topics include technology background, heat exchanger types, surface geometry, thermal sizing, performance, material selection, mechanical design, fabrication, and the systems-related impact of installation and integration of the units in the prestressed concrete reactor vessel. The impact of future technology developments, such as the utilization of nonmetallic materials and advanced heat exchanger surface geometries and methods of construction, is also discussed.

McDonald, C.F.; Vrable, D.L.; Van Hagan, T.H.; King, J.H.; Spring, A.H.

1980-02-01T23:59:59.000Z

292

Slag monitoring system for combustion chambers of steam boilers  

SciTech Connect

The computer-based boiler performance system presented in this article has been developed to provide a direct and quantitative assessment of furnace and convective surface cleanliness. Temperature, pressure, and flow measurements and gas analysis data are used to perform heat transfer analysis in the boiler furnace and evaporator. Power boiler efficiency is calculated using an indirect method. The on-line calculation of the exit flue gas temperature in a combustion chamber allows for an on-line heat flow rate determination, which is transferred to the boiler evaporator. Based on the energy balance for the boiler evaporator, the superheated steam mass flow rate is calculated taking into the account water flow rate in attemperators. Comparing the calculated and the measured superheated steam mass flow rate, the effectiveness of the combustion chamber water walls is determined in an on-line mode. Soot-blower sequencing can be optimized based on actual cleaning requirements rather than on fixed time cycles contributing to lowering of the medium usage in soot blowers and increasing of the water-wall lifetime.

Taler, J.; Taler, D. [Cracow University of Technology, Krakow (Poland)

2009-07-01T23:59:59.000Z

293

Task 2: Materials for Advanced Boiler and Oxy-combustion Systems  

SciTech Connect

Characterize advanced boiler (oxy-fuel combustion, biomass cofired) gas compositions and ash deposits Generate critical data on the effects of environmental conditions; develop a unified test method with a view to future standardisation

G. R. Holcomb and B. McGhee

2009-05-01T23:59:59.000Z

294

Investigations of the Failure in Boilers Economizer Tubes Used in Power Plants  

Science Journals Connector (OSTI)

In this study, failure of a high pressure economizer tube of a boiler used in gas-...4) and Iron hydroxide sulfate (FeOH(SO4)) phases formed on the steel surface. A considerable amount of Sulfur was also detected...

Roozbeh Siavash Moakhar; Mehrad Mehdipour…

2013-09-01T23:59:59.000Z

295

POWER CYCLE AND STRESS ANALYSES FOR HIGH TEMPERATURE GAS-COOLED REACTOR  

SciTech Connect

The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with three turbines and four compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with three stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and a 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various operating conditions as well as trade offs between efficiency and capital cost. Parametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling. Recommendations on the optimal working fluid for each configuration were made. Engineering analyses were performed for several configurations of the intermediate heat transport loop that transfers heat from the nuclear reactor to the hydrogen production plant. The analyses evaluated parallel and concentric piping arrangements and two different working fluids, including helium and a liquid salt. The thermal-hydraulic analyses determined the size and insulation requirements for the hot and cold leg pipes in the different configurations. Mechanical analyses were performed to determine hoop stresses and thermal expansion characteristics for the different configurations. Economic analyses were performed to estimate the cost of the various configurations.

Oh, Chang H; Davis, Cliff; Hawkes, Brian D; Sherman, Steven R

2007-05-01T23:59:59.000Z

296

Study of Improvement in Boiler Efficiency through Incorporation of Additional Bank of Tubes in the Economiser  

E-Print Network (OSTI)

Abstract: The major efficiency loss of a boiler is caused by the hot stack gases discharging to the atmosphere which is polluting the atmosphere and on other side Pollution Control Board is forcing the norms of Pollution levels in atmosphere. One of the most cost-effective ways of improving the efficiency of a high pressure steam boiler is to install an economizer on the boiler. An economizer is a heat exchanger, which transfers heat from the stack gases to the incoming feedwater. Typically, on a high pressure water tube boiler, the efficiency improvement with an economizer is 2 to 4%, depending on firing rate. On a high pressure fire tube boiler, the improvement is 2 to 3.5%, depending on boiler size and firing rate. The economizers are located in the boiler stack close to the stack gas outlet of the boiler. They may be supported from overhead or from the floor. A feedwater line, which serves the boiler, is piped to the unit. No additional feedwater control valves or stack gas dampers are required. Presently in NTPC stage II units there are banks of tubes in economizer. There was a proposal from management to add another bank of tubes in the economizer so that there will be control of pollutants coming out from boiler. We took that proposal as a task and made a detailed investigation of it. An investigation is conducted on the effect of performance of the boiler by incorporating the additional bank of tubes in the space below the lower bank of tubes. The main idea is to extract maximum amount of heat from the flue gases and increase the heat

P. Ravindra Kumar; B. Sridhar Reddy

297

Assessment of off-design performance of a small-scale combined cooling and power system using an alternative operating strategy for gas turbine  

Science Journals Connector (OSTI)

Abstract A small-scale combined cooling and power (CCP) system usually serves district air conditioning apart from power generation purposes. The typical system consists of a gas turbine and an exhaust gas-fired absorption refrigerator. The surplus heat of the gas turbine is recovered to generate cooling energy. In this way, the CCP system has a high overall efficiency at the design point. However, the CCP system usually runs under off-design conditions because the users’ demand varies frequently. The operating strategy of the gas turbine will affect the thermodynamic performance of itself and the entire CCP system. The operating strategies for gas turbines include the reducing turbine inlet temperature (TIT) and the compressor inlet air throttling (IAT). A CCP system, consisting of an OPRA gas turbine and a double effects absorption refrigerator, is investigated to identify the effects of different operating strategies. The CCP system is simulated based on the partial-load model of gas turbine and absorption refrigerator. The off-design performance of the CCP system is compared under different operating strategies. The results show that the IAT strategy is the better one. At 50% rated power output of the gas turbine, the IAT operating strategy can increase overall system efficiency by 10% compared with the TIT strategy. In general, the IAT operating strategy is suited for other gas turbines. However, the benefits of IAT should be investigated in the future, when different gas turbine is adopted. This study may provide a new operating strategy of small scale gas turbine to improve the off-design performance of CCP system.

Wei Han; Qiang Chen; Ru-mou Lin; Hong-guang Jin

2015-01-01T23:59:59.000Z

298

Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Incentives Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Incentives < Back Eligibility Commercial Industrial Multi-Family Residential Nonprofit Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Appliances & Electronics Water Heating Maximum Rebate General: $600,000 Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Custom: $1.20/therm saved/yr Steamers: $300-$1200 Fryer: $400 Griddle: $50/ln. ft. Ovens: custom Storage Water Heaters: $150/unit Tankless Water Heater: $300/unit Gas Boiler/Furnace Replacement: $400 - $6,000

299

MidAmerican Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas) - Residential Energy Efficiency Rebate Gas) - Residential Energy Efficiency Rebate Programs MidAmerican Energy (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Illinois Program Type Utility Rebate Program Rebate Amount Furnaces: $250 - $400 Boilers: $150 - $400 Water Heaters: $50 - $300 Provider MidAmerican Energy Company '''The availability of rebates through this program is unclear. Contact MidAmerican regarding the availability of gas incentives for residential customers.''' MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of eligible homes. The Residential Equipment Brochure on the program web site above provides specific rebate

300

Vectren Energy Delivery of Ohio (Gas) - Energy Star Home Rebate |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vectren Energy Delivery of Ohio (Gas) - Energy Star Home Rebate Vectren Energy Delivery of Ohio (Gas) - Energy Star Home Rebate Vectren Energy Delivery of Ohio (Gas) - Energy Star Home Rebate < Back Eligibility Construction Installer/Contractor Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Full Adoption of Energy Star (Version 2.5) Standards: $750 Vectren Gold Star - HERS rating of 70 or less: $750 Furnace: $300 Boiler: $500 Tankless Water Heater: $150 Storage Water Heater: $50-$150 Programmable Thermostat: $20 Provider Vectren Energy Delivery of Ohio Vectren Energy Delivery of Ohio offers a flat rebate to builders of residential single-family Energy Star certified homes that receive gas

Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Questar Gas - Commercial Energy Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Questar Gas - Commercial Energy Efficiency Rebate Program Questar Gas - Commercial Energy Efficiency Rebate Program Questar Gas - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Other Water Heating Windows, Doors, & Skylights Maximum Rebate Custom: 50% of the eligible incurred project cost Program Info State Utah Program Type Utility Rebate Program Rebate Amount Custom: $1/therm saved Water Heater: $50-$100 or $2/kBtu/hour input Condensing/Hybrid Water Heater: $350 Clothes Washer: $50-$75 Furnace: $200-$400 Boiler: $2-$3.25/kBtu Tankless Gas Water Heater: $2/kBtu Unit Heater: $1.25-$6/kBtu

302

Formation of ultracold molecules (T?200 ?K) via photoassociation in a gas of laser-cooled atoms  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the formation of ultracold molecules—that is, at temperatures well below 1 mK, the photoassociation scheme in a sample of laser-cooled ultracold atoms is currently the best route, yielding a few millions of molecules at a translational temperature in the microkelvin range, which were successfully trapped. In photoassociation experiments, a pair of ultracold ground-state atoms absorbs a photon slightly (? a fraction of cm-1 to 1000 cm-1) red-detuned relative to the resonance line. Because of the ultracold conditions, the width of the statistical distribution of the kinetic energy Ec is markedly reduced. For a gas of atoms at thermal equilibrium with a temperature T, this width is of the order of kBT. It corresponds to ?200 cm-1 at room temperature (300 K), yielding the well-known appearance of diffuse spectra, but only to ? 2 \\{MHz\\} or 7 × 10–5 cm-1, at 100 ?K yielding well-resolved spectral lines, similar to bound–bound transitions. Besides, only a few partial waves have to be considered in the description of the initial continuum state, so the rotational structure is most often limited to J < 7–10, in contrast with conventional molecular spectra where a much larger number of rotational levels are usually observed.

Françoise Masnou-Seeuws; Pierre Pillet

2001-01-01T23:59:59.000Z

303

Design considerations for CFB boilers  

Science Journals Connector (OSTI)

Since the 1970s, circulating fluidized bed (CFB) technology has been applied to combustion and ... firing of solid fuels. The success of CFB boilers is mainly due to their fuel... x and...

Yam Y. Lee

1997-01-01T23:59:59.000Z

304

Minimize Boiler Short Cycling Losses  

SciTech Connect

This revised ITP tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

305

Techno-economic analysis of wood biomass boilers for the greenhouse industry  

SciTech Connect

The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO2) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespan of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas.

Chau, J. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Bi, X.T. [University of British Columbia, Vancouver; Preto, F. [Natural Resources Canada; Melin, Staffan [University of British Columbia, Vancouver

2009-01-01T23:59:59.000Z

306

Optimization of Gas Nozzles Geometry in Dual-Fuel Burners of Power Stations  

Science Journals Connector (OSTI)

Thermal power required by boilers in steam power stations is supplied through gas or heavy oil fueled burners. Incorrect functioning ... in the boilers of Shazand 325 MW power station in Arak. Gas-fueled nozzles ...

Ebrahim Moussavi Torshizi…

2008-08-01T23:59:59.000Z

307

ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION  

SciTech Connect

This document reviews the work performed during the quarter January-March 2003. The main objectives of the project are: To demonstrate the feasibility of the full-oxy combustion with flue gas recirculation on Babcock & Wilcox's 1.5MW pilot boiler, To measure its performances in terms of emissions and boiler efficiency while selecting the right oxygen injection strategies, To perform an economical feasibility study, comparing this solution with alternate technologies, and To design a new generation, full oxy-fired boiler. The main objective of this quarter was to initiate the project, primarily the experimental tasks. The contractor and its subcontractors have defined a working plan, and the first tasks have been started. Task 1 (Site Preparation) is now in progress, defining the modifications to be implemented to the boiler and oxygen delivery system. The changes are required in order to overcome some current limitations of the existing system. As part of a previous project carried out in 2002, several changes have already been made on the pilot boiler, including the enrichment of the secondary and tertiary air with oxygen or the replacement of these streams with oxygen-enriched recycled flue gas. A notable modification for the current project involves the replacement of the primary air with oxygen-enriched flue gas. Consequently, the current oxygen supply and flue gas recycle system is being modified to meet this new requirement. Task 2 (Combustion and Emissions Performance Optimization) has been initiated with a preliminary selection of four series of tests to be performed. So far, the project schedule is on-track: site preparation (Task 1) should be completed by August 1st, 2003 and the tests (Task 2) are planned for September-October 2003. The Techno-Economic Study (Task 3) will be initiated in the following quarter.

Ovidiu Marin; Fabienne Chatel-Pelage

2003-04-01T23:59:59.000Z

308

Design and modeling of 1–10 MWe liquefied natural gas-fueled combined cooling, heating and power plants for building applications  

Science Journals Connector (OSTI)

Abstract Decentralized, liquefied natural gas-fueled, trigeneration plants are considered as alternatives to centralized, electricity-only generating power plants to improve efficiency and minimize running costs. The proposed system is analyzed in terms of efficiency and cost. Electrical power is generated with a gas turbine, while waste heat is recovered and utilized effectively to cover heating and cooling needs for buildings located in the vicinity of the plant. The high quality of cooling energy carried in the LNG fluid is used to cool the air supply to the air compressor. Waste heat is recovered with heat exchangers to generate useful heating in the winter period, while in the summer period an integrated double-effect absorption chiller converts waste heat to useful cooling. For the base system (10 MWe), net electrical efficiency is up to 36.5%, while the primary energy ratio reaches 90%. The payback period for the base system is 4 years, for a lifecycle cost of 221.6 million euros and an investment cost of 13 million euros. The base system can satisfy the needs of more than 21,000 average households, while an equivalent conventional system can only satisfy the needs of 12,000 average households.

Alexandros Arsalis; Andreas Alexandrou

2015-01-01T23:59:59.000Z

309

Reliability study of a special decay heat removal system of a gas-cooled fast reactor demonstrator  

Science Journals Connector (OSTI)

Abstract The European roadmap toward the development of generation IV concepts addresses the safety and reliability assessment of the special system designed for decay heat removal of a gas-cooled fast reactor demonstrator (GFRD). The envisaged system includes the combination of both active and passive means to accomplish the fundamental safety function. Failure probabilities are calculated on various system configurations, according to either pressurized or depressurized accident events under investigation, and integrated with probabilities of occurrence of corresponding hardware components and natural circulation performance assessment. The analysis suggests the improvement of measures against common cause failures (CCF), in terms of an appropriate diversification among the redundant systems, to reduce the system failure risk. Particular emphasis is placed upon passive system reliability assessment, being recognized to be still an open issue, and the approach based on the functional reliability is adopted to address the point. Results highlight natural circulation as a challenging factor for the decay heat removal safety function accomplishment by means of passive devices. With the models presented here, the simplifying assumptions and the limited scenarios considered according to the level of definition of the design, where many systems are not yet established, one can conclude that attention has to be paid to the functional aspects of the passive system, i.e. the ones not pertaining to the “hardware” of the system. In this article the results of the analysis are discussed, where the effects of the analytical assumptions, design options, accident managements on the reliability are examined. The design diversity of the components undergoing \\{CCFs\\} can be effective for the improvement and some accident management measures are also possible by making use of the long grace period in GFRD.

Luciano Burgazzi

2014-01-01T23:59:59.000Z

310

The Reality and Future Scenarios of Commercial Building Energy Consumption in China  

E-Print Network (OSTI)

mostly attributed to district heating and coal boilers usedcities. In 2004, the District Heating has supplied about 25%Cogen Gas Boiler Boiler District Heating Fig.4 Space Cooling

Zhou, Nan

2008-01-01T23:59:59.000Z

311

MidAmerican Energy (Gas) - Commercial EnergyAdvantage Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MidAmerican Energy (Gas) - Commercial EnergyAdvantage Rebate MidAmerican Energy (Gas) - Commercial EnergyAdvantage Rebate Program MidAmerican Energy (Gas) - Commercial EnergyAdvantage Rebate Program < Back Eligibility Agricultural Commercial Construction Industrial Institutional Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Other Construction Manufacturing Appliances & Electronics Water Heating Maximum Rebate Insulation: 70% of cost Program Info State Illinois Program Type Utility Rebate Program Rebate Amount Furnaces: $250-$350 Boilers: $100-$400 Water Heaters: $50 Programmable Thermostats: $20 Cooking Equipment: Varies widely Attic/Roof/Ceiling Insulation: $0.015/R-value increase per sq. ft. Sidewall Insulation: $0.01/R-value increase per sq. ft.

312

Integrating multi-objective optimization with computational fluid dynamics to optimize boiler combustion process of a coal fired power plant  

Science Journals Connector (OSTI)

Abstract The dominant role of electricity generation and environment consideration have placed strong requirements on coal fired power plants, requiring them to improve boiler combustion efficiency and decrease carbon emission. Although neural network based optimization strategies are often applied to improve the coal fired power plant boiler efficiency, they are limited by some combustion related problems such as slagging. Slagging can seriously influence heat transfer rate and decrease the boiler efficiency. In addition, it is difficult to measure slag build-up. The lack of measurement for slagging can restrict conventional neural network based coal fired boiler optimization, because no data can be used to train the neural network. This paper proposes a novel method of integrating non-dominated sorting genetic algorithm (NSGA II) based multi-objective optimization with computational fluid dynamics (CFD) to decrease or even avoid slagging inside a coal fired boiler furnace and improve boiler combustion efficiency. Compared with conventional neural network based boiler optimization methods, the method developed in the work can control and optimize the fields of flue gas properties such as temperature field inside a boiler by adjusting the temperature and velocity of primary and secondary air in coal fired power plant boiler control systems. The temperature in the vicinity of water wall tubes of a boiler can be maintained within the ash melting temperature limit. The incoming ash particles cannot melt and bond to surface of heat transfer equipment of a boiler. So the trend of slagging inside furnace is controlled. Furthermore, the optimized boiler combustion can keep higher heat transfer efficiency than that of the non-optimized boiler combustion. The software is developed to realize the proposed method and obtain the encouraging results through combining ANSYS 14.5, ANSYS Fluent 14.5 and CORBA C++.

Xingrang Liu; R.C. Bansal

2014-01-01T23:59:59.000Z

313

MassSAVE (Gas) - Commercial Retrofit Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MassSAVE (Gas) - Commercial Retrofit Program MassSAVE (Gas) - Commercial Retrofit Program MassSAVE (Gas) - Commercial Retrofit Program < Back Eligibility Commercial Construction Industrial Installer/Contractor Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Manufacturing Commercial Weatherization Appliances & Electronics Water Heating Maximum Rebate Projects over $25,000 or involve 5 or more equipment units, customers should contact their utility Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Warm Air Furnaces with Electronic Commutated Motor (ECM): $500-$800 Condensed Unit Heaters: $7500 Condensing Boilers: $1,000 - $10,000 Infrared Heaters: $750 Condensing Water Heater: $500 On-Demand Tankless Water Heater: $500 - $800

314

Xcel Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Xcel Energy (Gas) - Residential Energy Efficiency Rebate Programs Xcel Energy (Gas) - Residential Energy Efficiency Rebate Programs Xcel Energy (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate Home Performance with Energy Star:$1,200 Program Info Expiration Date 12/31/2012 State Minnesota Program Type Utility Rebate Program Rebate Amount Home Performance with Energy Star: Up to $1,200 Furnace: $25-$250 Boilers: $100 Tank Water Heater: $40-$200 Tankless Water Heater: $400 Insulation: 20% of labor and product, up to $300 In addition to home energy audits, Xcel Energy offers rebates to its

315

Oxides Emissions from Coal-Fired Boilers TOPICAL REPORT NUMBER 14  

NLE Websites -- All DOE Office Websites (Extended Search)

Reburning Technologies for the Control of Nitrogen Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers TOPICAL REPORT NUMBER 14 MAY 1999 TOPICAL REPORT NUMBER 14 A report on three projects conducted under separate cooperative agreements between: The U.S. Department of Energy and * The Babcock & Wilcox Company * Energy and Environmental Research Corporation * New York State Electric & Gas Corporation MAY 1999 Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers Cover image: Schematic of reburning technology Source: Energy and Environmental Research Corporation Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers Executive Summary ..................................................................................................

316

Furnaces and Boilers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnaces and Boilers Furnaces and Boilers Furnaces and Boilers June 24, 2012 - 4:56pm Addthis Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. What does this mean for me? To maintain your heating system's efficiency and ensure healthy indoor air quality, it's critical to maintain the unit and its venting mechanism. Proper maintenance extends the life of your furnace or boiler and saves you money. Most U.S. homes are heated with either furnaces or boilers. Furnaces heat air and distribute the heated air through the house using ducts. Boilers heat water, and provide either hot water or steam for heating. Steam is distributed via pipes to steam radiators, and hot water can be distributed

317

Latest Development of CFB Boilers in China  

Science Journals Connector (OSTI)

The circulating fluidized bed (CFB) coal-fired boiler has being rapidly developed ... the development history and development status of the CFB boiler in China are introduced. The development history of the CFB b...

G. X. Yue; H. R. Yang; J. F. Lu; H. Zhang

2010-01-01T23:59:59.000Z

318

New Concept of CFB Boiler with FGD  

Science Journals Connector (OSTI)

This paper introduces the technology characteristic of CFB Boiler with CFB-FGD on the basis of the summary of desulfurization principle in CFB boiler. The technology can overcome disadvantage of...

Pan Xueqin

2009-01-01T23:59:59.000Z

319

Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers  

SciTech Connect

The DOE-funded project on materials for industrial heat recovery systems included four research tasks: materials for aluminum melting furnace recuperator tubes, materials and operational changes to prevent cracking and corrosion of the co-extruded tubes that form primary air ports in black liquor recovery boilers, the cause of and means to prevent corrosion of carbon steel tubes in the mid-furnace area of recovery boilers, and materials and operational changes to prevent corrosion and cracking of recovery boiler superheater tubes. Results from studies on the latter two topics are given in this report while separate reports on results for the first two tasks have already been published. Accelerated, localized corrosion has been observed in the mid-furnace area of kraft recovery boilers. This corrosion of the carbon steel waterwall tubes is typically observed in the vicinity of the upper level of air ports where the stainless clad co-extruded wall tubes used in the lower portion of the boiler are welded to the carbon steel tubes that extend from this transition point or “cut line” to the top of the boiler. Corrosion patterns generally vary from one boiler to another depending on boiler design and operating parameters, but the corrosion is almost always found within a few meters of the cut line and often much closer than that. This localized corrosion results in tube wall thinning that can reach the level where the integrity of the tube is at risk. Collection and analysis of gas samples from various areas near the waterwall surface showed reducing and sulfidizing gases were present in the areas where corrosion was accelerated. However, collection of samples from the same areas at intervals over a two year period showed the gaseous environment in the mid-furnace section can cycle between oxidizing and reducing conditions. These fluctuations are thought to be due to gas flow instabilities and they result in an unstable or a less protective scale on the carbon steel tubes. Also, these fluctuating air flow patterns can result in deposition of black liquor on the wall tubes, and during periods when deposition is high, there is a noticeable increase in the concentrations of sulfur-bearing gases like hydrogen sulfide and methyl mercaptan. Laboratory studies have shown that chromized and aluminized surface treatments on carbon steel improve the resistance to sulfidation attack. Studies of superheater corrosion and cracking have included laboratory analyses of cracked tubes, laboratory corrosion studies designed to simulate the superheater environment and field tests to study the movement of superheater tubes and to expose a corrosion probe to assess the corrosion behavior of alternate superheater alloys, particularly alloys that would be used for superheaters operating at higher temperatures and higher pressures than most current boilers. In the laboratory corrosion studies, samples of six alternate materials were immersed in an aggressive, low melting point salt mixture and exposed for times up to 336 h, at temperatures of 510, 530 or 560°C in an inert or reactive cover gas. Using weight change and results of metallographic examination, the samples were graded on their resistance to the various environments. For the superheater corrosion probe studies, samples of the same six materials were exposed on an air-cooled corrosion probe exposed in the superheater section of a recovery boiler for 1000 h. Post exposure examination showed cracking and/or subsurface attack in the samples exposed at the higher temperatures with the attack being more severe for samples 13 exposed above the first melting temperature of the deposits that collected on the superheater tubes. From these superheater studies, a ranking was developed for the six materials tested. The task addressing cracking and corrosion of primary air port tubes that was part of this project produced results that have been extensively implemented in recovery boilers in North America, the Nordic countries and many other parts of the world. By utilizing these results, boilers ar

Keiser, James R.; Kish, Joseph R.; Singh, Preet M.; Sarma, Gorti B.; Yuan, Jerry; Gorog, J. Peter; Frederick, Laurie A.; Jette, Francois R.; Meisner, Roberta A.; Singbeil, Douglas L.

2007-12-31T23:59:59.000Z

320

NOXIOUS GAS EMISSIONS FROM THE CLOSED IRON MINES TO THE BUILT-UP AREAS ON THE SURFACE  

E-Print Network (OSTI)

mine workings, in which some inhabitants observed the dysfunctioning of gas cookers and boilers effects, the observed dysfunctioning of combustion appliances (boiler, gas cooker) due to CO2 polluted

Boyer, Edmond

Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Continuous Measurement of Carbon Monoxide Improves Combustion Efficiency of CO Boilers  

E-Print Network (OSTI)

CONTINUOUS MEASUREMENT OF CARBON MONOXIDE IMPROVES COMBUSTION EFFICIENCY OF CO BOILERS Russell L. Branham ana James J. Prichard Ashland Oil Company Catlettsburg, KY ABSTRACT The paper describes the application of in-situ flue gas CO... measurement in the operation of CO Boilers and details the steps needed to optimize combustion efficiency. INTRODUCTION In the petroleum industry, the efficient operation of a fluid-cata1ytic-cracking unit, produces gases rich in carbon monoxide...

Gilmour, W. A.; Pregler, D. N.; Branham, R. L.; Prichard, J. J.

1981-01-01T23:59:59.000Z

322

Combustion control in boilers. (Latest citations from the EI Compendex*plus database). Published Search  

SciTech Connect

The bibliography contains citations concerning utility and industrial boiler combustion control systems and methods. Topics include methods to meet emission standards, energy savings, and safety. The use of microcomputers, mathematical models, algorithms, artificial intelligence, and fuzzy logic is considered. Citations on boilers and furnaces fueled by coal, oil, gas, refuse, and multiple fuels are included. (Contains a minimum of 128 citations and includes a subject term index and title list.)

Not Available

1994-11-01T23:59:59.000Z

323

Sootblowing optimization for improved boiler performance  

DOE Patents (OSTI)

A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J

2013-07-30T23:59:59.000Z

324

Boiler Combustion Control and Monitoring System  

Energy.gov (U.S. Department of Energy (DOE))

Efficiency of existing boilers can be improved in three ways; replacement with new boilers, replacement of the burner, or installation of a combustion control system. While installation of a new boiler or replacement of the burner can lead to the greatest efficiency gains, the higher costs associated with these measures typically leads to longer payback periods than combustion control systems.

325

An experimental study of combustion and emissions of two types of woody biomass in a 12-MW reciprocating-grate boiler  

Science Journals Connector (OSTI)

Abstract The gaseous emissions of primary concern from biomass combustion are nitrogen oxides (NOX), carbon monoxide, and various unburned gaseous components. Detailed characterization of the gas in the hot reaction zones is necessary to study the release, formation, and evolution of the gas components. In the present study, gas temperature and concentration were measured in a 12-MWth biomass-fired reciprocating-grate boiler operated with over-fire air and flue-gas recirculation. Temperature measurement was combined with flue gas quenching and sample gas extraction using two water-cooled stainless-steel suction pyrometers. The concentration profiles of O2, NO, and CO were experimentally determined throughout the furnace, and the profile gas temperature was measured in several positions inside the furnace for the two types of woody biomass studied. For both fuels, the gas temperature varied between approximately 450 °C (average primary chamber temperature) and 1200 °C (average secondary chamber temperature). The concentration profiles of CO and O2 suggested no conclusive difference between the two types of biomass. However, the local mean concentrations of NO and NOX emission factors (measured in the stack) were higher for Greenery fuel due to its higher nitrogen content than that of Standard fuel.

Hamid Sefidari; Narges Razmjoo; Michael Strand

2014-01-01T23:59:59.000Z

326

Changes in trace element contents in ashes of oil shale fueled PF and CFB boilers during operation  

Science Journals Connector (OSTI)

Abstract Two oil shale combustion technologies, pulverized firing (PF) and circulated fluidized bed (CFB) were compared with respect to partitioning of selected elements (Ba, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Rb, Sb, Sn, Sr, Th, Tl, U, V, and Zn) in the ashes along the flue gas ducts. The ash samples were characterized by high-resolution ICP-MS. The average contents of toxic heavy metals in fly ash samples from the CFB boiler are lower compared to the PF boiler. Main differences in trace element contents between combustion technologies were as follows: Cd content in the fly ash samples of PF boiler was up to 0.9 mg/kg while in CFB boiler it remained below 0.1 mg/kg in all analyzed ash samples; Hg was observed in the ashes of electrostatic precipitator (ESP) of CFB boiler while in the PF boiler it was close to or below detection limit. In the PF boiler content of Sn was detected only in the ashes of ESPs, while in CFB boiler it was evenly distributed between bottom and fly ash samples. Highest content among heavy metals in ash samples was observed for Pb in the last field of ESP of the PF boiler (142 mg/kg).

Janek Reinik; Natalya Irha; Eiliv Steinnes; Gary Urb; Jekaterina Jefimova; Eero Piirisalu; Jüri Loosaar

2013-01-01T23:59:59.000Z

327

THE COMPONENT TEST FACILITY – A NATIONAL USER FACILITY FOR TESTING OF HIGH TEMPERATURE GAS-COOLED REACTOR (HTGR) COMPONENTS AND SYSTEMS  

SciTech Connect

The Next Generation Nuclear Plant (NGNP) and other High-Temperature Gas-cooled Reactor (HTGR) Projects require research, development, design, construction, and operation of a nuclear plant intended for both high-efficiency electricity production and high-temperature industrial applications, including hydrogen production. During the life cycle stages of an HTGR, plant systems, structures and components (SSCs) will be developed to support this reactor technology. To mitigate technical, schedule, and project risk associated with development of these SSCs, a large-scale test facility is required to support design verification and qualification prior to operational implementation. As a full-scale helium test facility, the Component Test facility (CTF) will provide prototype testing and qualification of heat transfer system components (e.g., Intermediate Heat Exchanger, valves, hot gas ducts), reactor internals, and hydrogen generation processing. It will perform confirmation tests for large-scale effects, validate component performance requirements, perform transient effects tests, and provide production demonstration of hydrogen and other high-temperature applications. Sponsored wholly or in part by the U.S. Department of Energy, the CTF will support NGNP and will also act as a National User Facility to support worldwide development of High-Temperature Gas-cooled Reactor technologies.

David S. Duncan; Vondell J. Balls; Stephanie L. Austad

2008-09-01T23:59:59.000Z

328

Covered Product Category: Commercial Boilers  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for commercial boilers, which is a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

329

Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions.  

E-Print Network (OSTI)

??Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers,… (more)

Yang, Dong

2008-01-01T23:59:59.000Z

330

MidAmerican Energy (Gas) - Commercial EnergyAdvantage Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MidAmerican Energy (Gas) - Commercial EnergyAdvantage Rebate MidAmerican Energy (Gas) - Commercial EnergyAdvantage Rebate Program MidAmerican Energy (Gas) - Commercial EnergyAdvantage Rebate Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Furnaces: $250-$400 Fan Motors for Natural Gas Furnaces: $50 Boilers: $150-$400 or $0.80/MBtuh x $0.20/TE over 82 Water Heaters/Tankless Water Heaters: $50-$300 or $0.80/MBtuh x $0.20/TE over 85 Programmable Thermostats: $20

331

PG&E (Gas) - Non-Residential Energy Efficiency Rebates | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PG&E (Gas) - Non-Residential Energy Efficiency Rebates PG&E (Gas) - Non-Residential Energy Efficiency Rebates PG&E (Gas) - Non-Residential Energy Efficiency Rebates < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Construction Manufacturing Appliances & Electronics Program Info Funding Source System Benefits Charge State California Program Type Utility Rebate Program Rebate Amount Equipment Insulation: $2 - $4/sq. ft. Pipe Insulation: $2 - $3/linear ft. Steam Traps: $50 - $290/unit Pool Heating: $2/Mbtuh Attic/Roof/Ceiling Insulation: $0.15/sq. ft. Domestic Hot Water Boiler: $1.50/MBtu/h Natural Gas Storage Water Heaters: $200/unit

332

SoCalGas - Multi-Family Residential Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multi-Family Residential Rebate Program Multi-Family Residential Rebate Program SoCalGas - Multi-Family Residential Rebate Program < Back Eligibility Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Construction Water Heating Program Info State California Program Type Utility Rebate Program Rebate Amount Dishwashers: $30 Insulation: 25% Natural Gas Storage Water Heaters: $30 Tankless Water Heaters: $300 Central Furnaces: $200 Central System Water Heaters: $500 Central System Boilers: $1,500 Central Demand Hot Water Controllers: $700 or $1400 Provider Southern California Gas Company Southern California Gas Company provides incentives to encourage the owners and managers of multi-family residential buildings to increase their energy

333

In-Field Performance of Condensing Boilers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IN-FIELD PERFORMANCE OF CONDENSING IN-FIELD PERFORMANCE OF CONDENSING BOILERS Lois B. Arena Steven Winter Associates, Inc. March 2012 Why Research Hydronic Heating? © 2012 Steven Winter Associates, Inc. All rights reserved Reasons to Research Boilers  Approx. 14 million homes (11%) in the US are heated with a steam or hot water system  Almost 70 percent of existing homes were built prior to 1980  Boilers built prior to 1980 generally have AFUE's of 0.65 or lower  Energy savings of 20+% are possible by simply replacing older boilers with standard boilers & up to 30% with condensing boilers.  Optimizing condensing boilers in new and existing homes could mean the difference of 8-10% savings with little to no

334

Alternate Materials for Recovery Boiler Superheater Tubes  

SciTech Connect

The ever escalating demands for increased efficiency of all types of boilers would most sensibly be realized by an increase in the steam parameters of temperature and pressure. However, materials and corrosion limitations in the steam generating components, particularly the superheater tubes, present major obstacles to boiler designers in achieving systems that can operate under the more severe conditions. This paper will address the issues associated with superheater tube selection for many types of boilers; particularly chemical recovery boilers, but also addressing the similarities in issues for biomass and coal fired boilers. It will also review our recent study of materials for recovery boiler superheaters. Additional, more extensive studies, both laboratory and field, are needed to gain a better understanding of the variables that affect superheater tube corrosion and to better determine the best means to control this corrosion to ultimately permit operation of recovery boilers at higher temperatures and pressures.

Keiser, James R [ORNL; Kish, Joseph [McMaster University; Singbeil, Douglas [FPInnovations

2009-01-01T23:59:59.000Z

335

Miscellaneous comments on boiler control tuning  

SciTech Connect

This article is about boiler control tuning, a task both difficult and important. Why is tuning of the boiler control so difficult Because it is essentially one large, interactive, non-linear control loop, which does not lend itself to automatic tuning. Why is good tuning of the boiler control so important Because it impacts boiler and turbine efficiency, unit ramp rate and generation error, unit turn-down (low load operation), and unit availability (ability to survive process upsets and equipment failures). Can you improve boiler operation through tuning alone Yes, if the practitioner of this art is competent, boiler control tuning can cover-up a multitude of sins. However, it is best to combined tuning with a new control system, appropriate control strategies, good measurements and small deadband actuators. This paper describes the basics of boiler control tuning.

Keller, G.Y. (Burns and Roe Enterprises, Oradell, NJ (United States))

1994-01-01T23:59:59.000Z

336

Final technical report. In-situ FT-IR monitoring of a black liquor recovery boiler  

SciTech Connect

This project developed and tested advanced Fourier transform infrared (FT-IR) instruments for process monitoring of black liquor recovery boilers. The state-of-the-art FT-IR instruments successfully operated in the harsh environment of a black liquor recovery boiler and provided a wealth of real-time process information. Concentrations of multiple gas species were simultaneously monitored in-situ across the combustion flow of the boiler and extractively at the stack. Sensitivity to changes of particulate fume and carryover levels in the process flow were also demonstrated. Boiler set-up and operation is a complex balance of conditions that influence the chemical and physical processes in the combustion flow. Operating parameters include black liquor flow rate, liquor temperature, nozzle pressure, primary air, secondary air, tertiary air, boiler excess oxygen and others. The in-process information provided by the FT-IR monitors can be used as a boiler control tool since species indicative of combustion efficiency (carbon monoxide, methane) and pollutant emissions (sulfur dioxide, hydrochloric acid and fume) were monitored in real-time and observed to fluctuate as operating conditions were varied. A high priority need of the U.S. industrial boiler market is improved measurement and control technology. The sensor technology demonstrated in this project is applicable to the need of industry.

James Markham; Joseph Cosgrove; David Marran; Jorge Neira; Chad Nelson; Peter Solomon

1999-05-31T23:59:59.000Z

337

STOCHASTIC COOLING  

E-Print Network (OSTI)

on Stochastic Cooling i n ICE, IEEE Transaction's in Nucl. SICE studies firmly establishing the stochastic cooling

Bisognano, J.

2010-01-01T23:59:59.000Z

338

Predictive control and thermal energy storage for optimizing a multi-energy district boiler  

E-Print Network (OSTI)

and used when demand is high, instead of engaging the gas-fuel oil boiler. Keywords: multi-energy district believe that by 2015 the supply of oil and natural gas will be unable to keep up with demand [1 of La Rochelle (France) adding to the plant a controlled thermal storage tank. This plant supplies

Paris-Sud XI, Université de

339

The effect of water vapor on the release of fission gas from the fuel elements of high temperature, gas-cooled reactors: A preliminary assessment of experiments HRB-17, HFR-B1, HFR-K6 and KORA  

SciTech Connect

The effect of water vapor on the release of fission gas from the fuel elements of high temperature, gas-cooled reactors has been measured in different laboratories under both irradiation and post irradiation conditions. The data from experiments HRB-17, HFR-B1, HFR-K6, and in the KORA facility are compared to assess their consistency and complimentarily. The experiments are consistent under comparable experimental conditions and reveal two general mechanisms involving exposed fuel kernels embedded in carbonaceous materials. One is manifest as a strong dependence of fission gas release on the partial pressure of water vapor below 1 kPa and the other, as a weak dependence above 1 kPa.

Myers, B.F.

1995-09-01T23:59:59.000Z

340

Emissions-critical charge cooling using an organic rankine cycle  

DOE Patents (OSTI)

The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

Ernst, Timothy C.; Nelson, Christopher R.

2014-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NETL: IEP – Post-Combustion CO2 Emissions Control - Oxy-Combustion Boiler  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Combustion Boiler Material Development Oxy-Combustion Boiler Material Development Project No.: DE-NT0005262 CLICK ON IMAGE TO ENLARGE Foster Wheeler Oxy-combustion CFD Graphic The objectives of this Foster Wheeler Corporation-managed program are to assess the corrosion characteristics of oxy-combustion relative to air-fired combustion; identify the corrosion mechanisms involved; and determine the effects of oxy-combustion on conventional boiler tube materials, conventional protective coatings, and alternative materials and coatings when operating with high to low sulfur coals. The program involves the prediction of oxy-combustion gas compositions by computational fluid dynamic calculations, exposure of coupons of boiler materials and coverings coated with coal ash deposit to simulated oxy-combustion gases in electric

342

Boiler - tuning basics, part 1  

SciTech Connect

Tuning power plant controls takes nerves of steel and an intimate knowledge of plant systems gained only by experience. Tuning controls also requires equal parts art and science, which probably is why there are so few tuning experts in the power industry. In part 1 of a two-part series, the author explores a mix of the theoretical and practical aspects of tuning boiler control. 5 figs.

Leopold, T. [ABB Inc. (United States)

2009-03-15T23:59:59.000Z

343

Fluidized bed boiler feed system  

DOE Patents (OSTI)

A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

Jones, Brian C. (Windsor, CT)

1981-01-01T23:59:59.000Z

344

Regenerative Boiler Feedwater Heater Economics  

E-Print Network (OSTI)

REGENERATIVE BOILER FEEDWATER HEATER ECONOMICS William L. Viar, PE waterland, Viar & Associates, Inc. Wilmington, Delaware ABSTRACT The basic Rankine Vapor Cycle has been r,~peatedly modified to improve efficiency. Always, the objective....g., first and second laws of thermodynamics) have improved and contributed to the evolution. The demands for larger systems with higher performance have been persistent. Progress i ve changes in the app1icat ion of the fundamental Rankine cycle have...

Viar, W. L.

345

Advanced, Low/Zero Emission Boiler Design and Operation  

SciTech Connect

In partnership with the U.S. Department of Energy's National Energy Technology Laboratory, B&W and Air Liquide are developing and optimizing the oxy-combustion process for retrofitting existing boilers as well as new plants. The main objectives of the project is to: (1) demonstrate the feasibility of the oxy-combustion technology with flue gas recycle in a 5-million Btu/hr coal-fired pilot boiler, (2) measure its performances in terms of emissions and boiler efficiency while selecting the right oxygen injection and flue gas recycle strategies, and (3) perform technical and economic feasibility studies for application of the technology in demonstration and commercial scale boilers. This document summarizes the work performed during the period of performance of the project (Oct 2002 to June 2007). Detailed technical results are reported in corresponding topical reports that are attached as an appendix to this report. Task 1 (Site Preparation) has been completed in 2003. The experimental pilot-scale O{sub 2}/CO{sub 2} combustion tests of Task 2 (experimental test performance) has been completed in Q2 2004. Process simulation and cost assessment of Task 3 (Techno-Economic Study) has been completed in Q1 2005. The topical report on Task 3 has been finalized and submitted to DOE in Q3 2005. The calculations of Task 4 (Retrofit Recommendation and Preliminary Design of a New Generation Boiler) has been completed in 2004. In Task 6 (engineering study on retrofit applications), the engineering study on 25MW{sub e} unit has been completed in Q2, 2008 along with the corresponding cost assessment. In Task 7 (evaluation of new oxy-fuel power plants concepts), based on the design basis document prepared in 2005, the design and cost estimate of the Air Separation Units, the boiler islands and the CO{sub 2} compression and trains have been completed, for both super and ultra-supercritical case study. Final report of Task-7 is published by DOE in Oct 2007.

Babcock/Wilcox; Illinois State Geological; Worley Parsons; Parsons Infrastructure/Technology Group

2007-06-30T23:59:59.000Z

346

Boiler tube failures in municipal waste-to-energy plants  

SciTech Connect

Waste-to-energy plants experienced increased boiler tube failures when the design changed from waste-heat boilers to radiant furnace waterwalls using superheat. Fireside attack by chlorine and sulfur compounds in refuse combustion products caused many forced outages in early European plants operating at high steam temperatures and pressures. Despite conservative steam conditions in the first US plants, failures occurred. As steam temperatures increased, corrosion problems multiplied. The problems have been alleviated by covering the waterwalls with either refractory or weld overlays of nickel-based alloys and using high nickel-chromium alloys for superheater tubes. Changes in furnace design to provide uniform combustion and avoid reducing conditions in the waterwall zone and to lower the gas temperature in the superheater also have helped minimize corrosion.

Krause, H.H.; Wright, I.G. [Battelle, Columbus, OH (United States)

1996-01-01T23:59:59.000Z

347

Steam driven centrifugal pump for low cost boiler feed service  

SciTech Connect

This article describes a steam driven centrifugal pump for boiler feed-water and other high pressure water applications, which was awarded Top Honors in the special pumps category of the 1982 Chemical processing Vaaler competition, because the simple design with turbine, pump and controls combined in an integral unit provides high operating efficiency and reliable performance with minimal maintenance. Single source responsibility for all components when the pump may have to be serviced is another advantage. These features meet the requirements for boiler feed pumps that are critical to maintaining a consistent steam supply in a process plant where downtime can be extremely expensive. The annual cost to operate the pump for 8000 hours is about $100,000, if electricity costs 5 cents/kwh. These pumps can be run for about $30,000 on steam, if natural gas costs $4.00/mcf. Cost savings are $70,000 annually.

Not Available

1982-11-01T23:59:59.000Z

348

Formation of acidic sulfates in kraft recovery boilers  

SciTech Connect

Acidic sulfates (NaHSO[sub 4] and Na[sub 2]S[sub 2]O[sub 7]) have been suggested as the cause of corrosive sticky deposits in recovery boilers. Recovery-boiler precipitator dusts and pure Na[sub 2]SO[sub 4] were examined for their tendency to form acidic sulfates in simulated flue gases. Formation was strongly influenced by temperature and by gas-phase concentrations of SO[sub x] and H[sub 2]O. Liquid NaHSO[sub 4] formed readily at 250 C at SO[sub x] concentration above 150 ppm. Formation reactions were hindered by Na[sub 2]CO[sub 3]. Under appropriate conditions, acidic sulfates can exist at tube surfaces near the furnace roof, at the upper screen tubes, and in the generating bank and economizer.

Poon, W.; Barham, D.; Tran, H. (Univ. of Toronto, Ontario (Canada))

1993-07-01T23:59:59.000Z

349

Energy Star Building Upgrade Manual Heating and Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

9. Heating and 9. Heating and Cooling Revised January 2008 9.1 Overview 2 9.2 Central Cooling Systems 3 Chiller Plant Operations and Maintenance 4 Chiller Plant Retrofits 6 9.3 Central Heating Systems 10 Boiler System Operations and Maintenance 11 Boiler System Retrofits 11 Improving Furnace Efficiency 13 9.4 Unitary Systems 14 Packaged Rooftop Units 16 Split-System Packaged Units 18 Air-Source Heat Pumps 18 Ground-Source, Closed-Loop Heat Pumps 19 9.5 Additional Strategies 20 Air-Side Economizer 20 Energy Recovery 20 Desiccant Dehumidification 20 Night Precooling 21 Cool Storage 22 Evaporative Cooling 22 9.6 Summary 22 Bibliography 23 Glossary G-1 1 ENERGY STAR ® Building Manual ENERGY STAR ® Building Manual 9. Heating and Cooling 9.1 Overview Although heating and cooling systems provide a useful service by keeping occupants comfort-

350

Space Heating and Cooling Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

351

Space Heating and Cooling Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

352

Space Heating and Cooling Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

353

Operating experience with industrial packaged FBC boilers  

SciTech Connect

Jonston Boiler company has developed a packaged fluidized bed combustion firetube boiler which burns coal within a bed of inert material (limestone) efficiently and cleanly. The firetube boiler cross section is schematized and explained. After one year demonstration, a sale was made to Central Soya of Marion, Ohio. The control system, drum level control draft, baghouse control system and emissions tests are highlighted. A few incidents of defluidization are noted.

Hutchinson, B.

1982-06-01T23:59:59.000Z

354

Reducing NO[sub x] emissions from magnesium sulfite liquor boilers  

SciTech Connect

The Current design of liquor-combustion boilers is reviewed, along with options for lowering exhaust-gas emissions, particularly NOx. In many cases, modern boilers are being operated at or near optimal conditions for minimum NOx emissions. Possible upgrades to further reduce NOx emissions include addition of a selective noncatalytic reduction step, design modifications to lower the sectional load, a flue-gas recirculation system, and air staging. Calculated and experimental results show that these applications can lower NOx emissions by 40% or more.

Bobik, M. (Austrian Energy and Environment, Graz (Austria))

1993-01-01T23:59:59.000Z

355

Coordinated optimization of the parameters of the cooled gas-turbine flow path and the parameters of gas-turbine cycles and combined-cycle power plants  

Science Journals Connector (OSTI)

In the present paper, we evaluate the effectiveness of the coordinated solution to the optimization problem for the parameters of cycles in gas turbine and combined cycle power plants and to the optimization prob...

A. M. Kler; Yu. B. Zakharov; Yu. M. Potanina

2014-06-01T23:59:59.000Z

356

List of Boilers Incentives | Open Energy Information  

Open Energy Info (EERE)

Boilers Incentives Boilers Incentives Jump to: navigation, search The following contains the list of 550 Boilers Incentives. CSV (rows 1-500) CSV (rows 501-550) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit Schools

357

Quantifying Energy Savings by Improving Boiler Operation  

E-Print Network (OSTI)

firing cycle, resulting in heat losses. Second, heat is lost from the natural convective draft through a boiler when not firing. Third, boilers run less efficiently in high fire than in low fire, since the ratio of heat transfer area to heat input... firing cycle, resulting in heat losses. Second, heat is lost from the natural convective draft through a boiler when not firing. Third, boilers run less efficiently in high fire than in low fire, since the ratio of heat transfer area to heat input...

Carpenter, K.; Kissock, J. K.

2005-01-01T23:59:59.000Z

358

Stress-Assisted Corrosion in Boiler Tubes  

SciTech Connect

A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

Preet M Singh; Steven J Pawel

2006-05-27T23:59:59.000Z

359

Upgrade Boilers with Energy-Efficient Burners  

SciTech Connect

This revised ITP steam tip sheet on upgrading boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

360

Minimize Boiler Blowdown | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blowdown (January 2012) More Documents & Publications Install an Automatic Blowdown-Control System Recover Heat from Boiler Blowdown Consider Installing a Condensing Economizer...

Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Boiler System Efficiency Improves with Effective Water Treatment  

E-Print Network (OSTI)

Water treatment is an important aspect of boiler operation which can affect efficiency or result in damage if neglected. Without effective water treatment, scale can form on boiler tubes, reducing heat transfer, and causing a loss of boiler...

Bloom, D.

362

Novel CFB Boiler Technology with Reconstruction of its Fluidization State  

Science Journals Connector (OSTI)

Compared with a conventional pulverized coal fired boiler, the combustion efficiency of a CFB boiler is lower while the self-consumed ... key research topic for researchers and manufacturers of CFB boilers. Based...

H. R. Yang; H. Zhang; J. F. Lu; Q. Lfu…

2010-01-01T23:59:59.000Z

363

PG&E (Gas) - Multi-Family Residential Energy Efficiency Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PG&E (Gas) - Multi-Family Residential Energy Efficiency Rebates PG&E (Gas) - Multi-Family Residential Energy Efficiency Rebates PG&E (Gas) - Multi-Family Residential Energy Efficiency Rebates < Back Eligibility Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info Funding Source System Benefits Charge Expiration Date 12/31/2013 State California Program Type Utility Rebate Program Rebate Amount Clothes Washers (In-Unit): $50 Clothes Washers (Common Area): $150 Central System Water/Space Heating: $1,500/Unit Storage Water Heater: $200/Unit Boilers: $500/Unit Furnace: $150 - $300/Unit Provider Residential Programs Through the Rebates for Multi-Family Properties Program, PG&E offers prescriptive rebates for owners and managers of multi-family properties of

364

Columbia Gas of Virginia- Business Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Columbia Gas of Virginia offers rebates to commercial customers for the purchase and installation of energy efficient equipment. Water heaters, furnaces, boilers and controls, laundromat clothes...

365

Measure Guideline: Condensing Boilers - Control Strategies for Optimizing Performance and Comfort in Residential Applications  

SciTech Connect

The combination of a gas-fired condensing boiler with baseboard convectors and an indirect water heater has become a common option for high-efficiency residential space heating in cold climates. While there are many condensing boilers available on the market with rated efficiencies in the low to mid 90% efficient range, it is imperative to understand that if the control systems are not properly configured, these heaters will perform no better than their non-condensing counterparts. Based on previous research efforts, it is apparent that these types of systems are typically not designed and installed to achieve maximum efficiency (Arena 2010). It was found that there is a significant lack of information for contractors on how to configure the control systems to optimize overall efficiency. For example, there is little advice on selecting the best settings for the boiler reset curve or how to measure and set flow rates in the system to ensure that the return temperatures are low enough to promote condensing. It has also been observed that recovery from setback can be extremely slow and, at times, not achieved. Recovery can be affected by the outdoor reset control, the differential setting on the boiler and over-sizing of the boiler itself. This guide is intended for designers and installers of hydronic heating systems interested in maximizing the overall system efficiency of condensing boilers when coupled with baseboard convectors. It is applicable to new and retrofit applications.

Arena, L.

2013-05-01T23:59:59.000Z

366

Biomass Boiler and Furnace Emissions and Safety Regulations in...  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Boiler and Furnace Emissions...

367

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment  

E-Print Network (OSTI)

the demand for cooling energy, urban trees indirectly reducesurfaces and shade trees to reduce energy use and improvethe energy savings and GHG benefits of cool roofs and tree

Akbari, Hashem

2011-01-01T23:59:59.000Z

368

METHANE de-NOX FOR UTILITY PC BOILERS  

SciTech Connect

The project seeks to develop and validate a new pulverized coal combustion system to reduce utility PC boiler NOx emissions to 0.15 lb/million Btu or less without post-combustion flue gas cleaning. Work during previous reporting periods completed the design, installation, shakedown and initial PRB coal testing of a 3-million Btu/h pilot system at BBP's Pilot-Scale Combustion Facility (PSCF) in Worcester, MA. Based on these results, modifications to the gas-fired preheat combustor and PC burner were defined, along with a modified testing plan and schedule. During the current reporting period, BBP's subcontract was modified to reflect changes in the pilot testing program, and the modifications to the gas-fired preheat combustor were completed. The Computational Fluid Dynamics (CFD) modeling approach was defined for the combined PC burner and 3-million Btu/h pilot system. Modeling of the modified gas-fired preheat combustor was also started.

Joseph Rabovitser; Bruce Bryan; Serguei Nester; Stan Wohadlo

2002-04-29T23:59:59.000Z

369

Turbine cooling waxy oil  

SciTech Connect

A process for pipelining a waxy oil to essentially eliminate deposition of wax on the pipeline wall is described comprising: providing a pressurized mixture of the waxy oil and a gas; effecting a sudden pressure drop of the mixture of the oil and the gas through an expansion turbine, thereby expanding the gas and quickly cooling the oil to below its cloud point in the substantial absence of wax deposition and forming a slurry of wax particles and oil; and pipelining the slurry.

Geer, J.S.

1987-10-27T23:59:59.000Z

370

Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input  

SciTech Connect

A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

Monado, Fiber, E-mail: fiber.monado@gmail.com [Nuclear Physics and Biophysics Research Group, Dept. of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia and Dept. of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University (Indonesia); Ariani, Menik [Dept. of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University (Indonesia); Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik [Nuclear Physics and Biophysics Research Group, Dept. of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung (Indonesia); Aziz, Ferhat [National Nuclear Energy Agency of Indonesia (BATAN) (Indonesia); Sekimoto, Hiroshi [CRINES, Tokyo Institute of Technology, O-okoyama, Meguro-ku, Tokyo 152-8550 (Japan)

2014-02-12T23:59:59.000Z

371

Representative Source Terms and the Influence of Reactor Attributes on Functional Containment in Modular High-Temperature Gas-Cooled Reactors  

SciTech Connect

Modular high-temperature gas-cooled reactors (MHTGRs) offer a high degree of passive safety. The low power density of the reactor and the high heat capacity of the graphite core result in slow transients that do not challenge the integrity of the robust TRISO fuel. Another benefit of this fuel form and the surrounding graphite is their superior ability to retain fission products under all anticipated normal and off-normal conditions, which limits reactor accident source terms to very low values. In this paper, we develop estimates of the source term for a generic MHTGR to illustrate the performance of the radionuclide barriers that comprise the MHTGR functional containment. We also examine the influence of initial fuel quality, fuel performance/failure, reactor outlet temperature, and retention outside of the reactor core on the resultant source term to the environment.

D. A. Petti; Hans Gougar; Dick Hobbins; Pete Lowry

2013-11-01T23:59:59.000Z

372

A Methodology for Optimizing Boiler Operating Strategy  

E-Print Network (OSTI)

Among the many ways by which an energy manager can conserve energy is the establishment of a strategy for operation of fired boilers. In particular, he can effect total fuel consumption by his decision on how much on-line boiler surplus is required...

Jones, K. C.

1983-01-01T23:59:59.000Z

373

Turbomachine rotor with improved cooling  

DOE Patents (OSTI)

A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn. 5 figs.

Hultgren, K.G.; McLaurin, L.D.; Bertsch, O.L.; Lowe, P.E.

1998-05-26T23:59:59.000Z

374

Turbomachine rotor with improved cooling  

DOE Patents (OSTI)

A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn.

Hultgren, Kent Goran (Winter Park, FL); McLaurin, Leroy Dixon (Winter Springs, FL); Bertsch, Oran Leroy (Titusville, FL); Lowe, Perry Eugene (Oviedo, FL)

1998-01-01T23:59:59.000Z

375

Ketchikan Pulp's hog-fuel-boiler energy retrofits  

SciTech Connect

Ketchikan Pulp Co. (KPC) is a 600-b.d. Ton/day sulfite mill located 679 Alaska Airlines miles north of Seattle on the island of Revillagigedo. Designed to produce 860 psig steam at 825[degrees]F, each of the boilers is fired off a combination of No. 6 oil and waste wood. This paper reports that in 1984, a rotary bark dyer was installed in series between the existing boiler I.D. fans and the boiler stack. This system consists of a direct-contact rotary dryer unit followed by an additional I.D. fan and four cyclone separators. The combustion gases then return to the existing stack by way of the existing I.D. fan discharge ducting. This unit was designed to operate at a flue-gas inlet temperature of 550[degrees]F and maintained a discharge temperature of 300[degrees]F. The unit was designed to process approximately 360 units of hog fuel per day, drying it from 60% moisture to 40% moisture in a single-pass operation.

Sweet, R.N. (Howard Needles Tammen and Bergendoff, Bellevue, WA (United States))

1991-09-01T23:59:59.000Z

376

Stochastic Cooling  

SciTech Connect

Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

Blaskiewicz, M.

2011-01-01T23:59:59.000Z

377

MidAmerican Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliances & Electronics Appliances & Electronics Water Heating Program Info Expiration Date 12/31/2013 State Iowa Program Type Utility Rebate Program Rebate Amount Natural Gas Furnace: $250 - $400 Efficient Furnace Fan Motor: $50 Natural Gas Boiler: $150 - $400 Natural Gas Water Heater: $50 - $300 Programmable thermostat: $20 Provider MidAmerican Energy MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of eligible homes. The Residential Equipment Brochure on the program web site above provides specific rebate amounts, efficiency requirements and further details. After installing qualifying equipment, customers should submit a completed Equipment Rebate Application and a detailed invoice to MidAmerican. Heating and cooling

378

Selection of Materials for Superheater Recovery Boiler Harold Nikoue: Georgia Tech, SURF 2009 Fellow  

E-Print Network (OSTI)

Selection of Materials for Superheater Recovery Boiler Harold Nikoue: Georgia Tech, SURF 2009 the situation, the high pressure gas flow is both oxidizing and sulfidizing at this temperature Materials that form a protective coating can withstand this harsh environment, and therefore permit higher efficiency

Li, Mo

379

METHANE DE-NOX FOR UTILITY PC BOILERS  

SciTech Connect

The project seeks to develop and validate a new pulverized coal combustion system to reduce utility PC boiler NO{sub x} emissions to 0.15 lb/million Btu or less without post-combustion flue gas cleaning. Work during the quarter included completion of the equipment fabrication and installation efforts for the 3-million Btu/h pilot system at BBP's Pilot-Scale Combustion Facility (PSCF) in Worcester, MA. Selection and procurement of the first two test coals and preliminary selection of the final two test coals were completed. Shakedown and commissioning activities were finished and PC Preheat pilot scale tests commenced with PRB coal.

Joseph Rabovitser; Bruce Bryan; Serguei Nester; Stan Wohadlo

2002-01-31T23:59:59.000Z

380

Advanced gas cooled nuclear reactor materials evaluation and development program. Progress report, October 1, 1979-December 31, 1979  

SciTech Connect

This report presents the results of work performed from October 1, 1979 through December 31, 1979. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described. This includes: screening creep results, weight gain and post-exposure mechanical properties for materials thermally exposed at 750/sup 0/ and 850/sup 0/C (1382/sup 0/ and 1562/sup 0/F). In addition, the status of the data management system is described.

Not Available

1980-04-18T23:59:59.000Z

Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Startup, Commissioning and Operation of Fenyi 100MW CFB Boiler  

Science Journals Connector (OSTI)

The first 100MW CFB boiler, designed by the Thermal Power Research ... burn out are used in the 100 MW CFB boiler. The results of the 100MW CFB boiler shows that the CFB boiler can run in 30% MCR and ... got afte...

Zhiwei Wang; Wugao Yu; Shi Bo

2010-01-01T23:59:59.000Z

382

MidAmerican Energy (Gas) - Commercial EnergyAdvantage Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial EnergyAdvantage Rebate Commercial EnergyAdvantage Rebate Program MidAmerican Energy (Gas) - Commercial EnergyAdvantage Rebate Program < Back Eligibility Agricultural Commercial Construction Industrial Institutional Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Other Construction Manufacturing Appliances & Electronics Water Heating Program Info State South Dakota Program Type Utility Rebate Program Rebate Amount Attic/Roof/Ceiling Insulation: $0.015 x R-value increase x sq. ft. Wall Insulation: $0.01 x R-value increase x sq. ft. Furnaces: $250-$400 Fan Motors for Furnaces: $50 Boilers: $150-$400 or ($0.80+($0.20 x TE) x MBtuh Water Heaters: $75 or ($0.80+($0.20 x TE) x MBtuh Programmable Thermostats: $25

383

Building Technologies Office: Residential Furnaces and Boilers Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Furnaces Residential Furnaces and Boilers Framework Meeting to someone by E-mail Share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Facebook Tweet about Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Twitter Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Google Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Delicious Rank Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Digg Find More places to share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement

384

Thermally sprayed coatings for boiler protection  

SciTech Connect

FBC boilers are large, expensive installations which suffer enormously from wear caused by corrosion, aggravated by high temperatures. The exact type of wear experienced varies from one part of a boiler to another and is influenced by the overall design of the boiler and the type of fuel burnt in it. Boiler manufacturers and users face a difficult choice in selecting materials to fight these problems. Inexpensive and easily worked metals, unfortunately, offer little resistance to the types of wear experienced in boilers, while alloys which are resistant to erosion and corrosion are very costly as well as being difficult to form and join. This paper presents a number of ways in which these material losses and related costs in boiler systems can be reduced by application of thermally sprayed coatings which lead to significant increases in service life. The selection of the coating material and of the correct deposition process can, today, be based on the results of laboratory tests (elevated temperature corrosion and erosion), small scale in-situ test coatings and on full scale FBC boiler protection coating utilization. Practical examples are given of thermal spray coatings which have been successfully applied to different kinds of FBC boilers including those burning coal, waste (chemical, industrial, household) and wood chips. The paper describes the procedures for applying coatings to boiler components, the properties of the resulting coatings and how best to select coating materials for use in some specific wear and corrosion environmentals. In addition, future trends in the utilization of thermally sprayed coatings are discussed.

Gustafsson, S.; Steine, H.T. [Eutectic and Castolin, Lausanne (Switzerland); Ridgway, W.F. [Eutectic and Castolin, New York, NY (United States)

1995-12-31T23:59:59.000Z

385

Regeneratively cooled coal combustor/gasifier with integral dry ash removal  

DOE Patents (OSTI)

A coal combustor/gasifier is disclosed which produces a low or medium combustion gas for further combustion in modified oil or gas fired furnaces or boilers. Two concentric shells define a combustion volume within the inner shell and a plenum between them through which combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

Beaufrere, Albert H. (Huntington, NY)

1983-10-04T23:59:59.000Z

386

Resource recovery waste heat boiler upgrade  

SciTech Connect

The waste heat boilers installed in a 360 TPD waste to energy plant were identified as the bottle neck for an effort to increase plant capacity. These boilers were successfully modified to accommodate the increase of plant capacity to 408 TPD, improve steam cycle performance and reduce boiler tube failures. The project demonstrated how engineering and operation can work together to identify problems and develop solutions that satisfy engineering, operation, and financial objectives. Plant checking and testing, design review and specification development, installation and operation results are presented.

Kuten, P.; McClanahan, D.E. [Fluor Daniel, Inc., Houston, TX (United States); Gehring, P.R.; Toto, M.L. [SRRI, Springfield, MA (United States); Davis, J.J. [Deltak, Minon, MN (United States)

1996-09-01T23:59:59.000Z

387

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

3 3 Residential Boiler Efficiencies (1) Gas-Fired Boilers Oil-Fired Boilers Average shipped in 1985 (2): 74% AFUE Average shipped in 1985 (2): 79% AFUE Best Available in 1981: 81% AFUE Best Available in 1981: 86% AFUE Best Available in 2007: 96% AFUE Best Available in 2007: 89% AFUE Note(s): Source(s): 1) Federal appliance standards effective Jan. 1, 1992, require a minimum of 80% AFUE (except gas-fired steam boiler, which must have a 75% AFUE or higher). 2) Includes furnaces. GAMA, Consumer's Directory of Certified Efficiency Ratings for Residential Heating and Water Heating Equipment, Aug. 2005, p. 88 and 106 for best- available AFUE; and GAMA for 1985 average AFUEs; GAMA Tax Credit Eligible Equipment: Gas- and Oil-Fired Boilers 95% AFUE or Greater, May 2007; and GAMA Consumer's Directory of Certified Efficiency Ratings for Heating and Water Heating Equipment, May 2007

388

ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION  

SciTech Connect

This document reviews the work performed during the quarter October-December 2003. Task 1 (Site Preparation) had been completed in the previous reporting period. In this reporting period, one week of combustion parameters optimization has been performed in Task 2 (experimental test performance) of the project. Under full-oxy conditions (100% air replacement with O{sub 2}-enriched flue gas) in 1.5MW{sub th} coal-fired boiler, the following parameters have been varied and their impact on combustion characteristics measured: the recirculated flue gas flow rate has been varied from 80% to 95% of total flue gas flow, and the total oxygen flow rate into the primary air zone of the boiler has been set to levels ranging from 15% to 25% of the total oxygen consumption in the overall combustion. In current reporting period, significant progress has also been made in Task 3 (Techno-Economic Study) of the project: mass and energy balance calculations and cost assessment have been completed on plant capacity of 533MW{sub e} gross output while applying the methodology described in previous reporting periods. Air-fired PC Boiler and proposed Oxygen-fired PC Boiler have been assessed, both for retrofit application and new unit. The current work schedule is to review in more details the experimental data collected so far as well as the economics results obtained on the 533MWe cases, and to develop a work scope for the remainder of the project. Approximately one week of pilot testing is expected during the first quarter of 2004, including mercury emission measurement and heat transfer characterization. The project was on hold from mid-November through December 2003 due to non-availability of funds. Out of the {approx}$785k allocated DOE funds in this project, $497k have been spent to date ($480 reported so far), mainly in site preparation, test performance and economics assessment. In addition to DOE allocated funds, to date approximately $330k has been cost-shared by the participants, bringing the total project cost up to $827k ($810k reported so far) as on December 31st, 2003.

Fabienne Chatel-Pelage

2004-01-01T23:59:59.000Z

389

Evolution of cool-roof standards in the United States  

E-Print Network (OSTI)

PGE. 2007. Pacific Gas & Electric cool-roof rebate program.at http://www.pge.com/res/rebates/cool_roof/ . ROH. 2001.California Edison cool-roof rebate program. Online at

Akbari, Hashem

2008-01-01T23:59:59.000Z

390

Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, April 1, 1980-June 30, 1980  

SciTech Connect

Objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described; this includes: screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850 and 950/sup 0/C. The initiation of air creep-rupture testing in the intensive screening test program is discussed. In addition, the status of the data management system is described.

Not Available

1980-11-14T23:59:59.000Z

391

Weldability and weld performance of a special grade Hastelloy-X modified for high-temperature gas-cooled reactors  

SciTech Connect

The characteristics of weld defects in the electron beam (EB) welding and the tungsten inert gas (TIG) arc welding for Hastelloy-XR, a modified version of Hastelloy-X, are clarified through the bead-on-plate test and the Trans-Varestraint test. Based on the results, weldabilities on EB and TIG weldings for Hastelloy-XR are discussed and found to be almost the same as Hastelloy-X. The creep rupture behaviors of the welded joints are evaluated by employing data on creep properties of the base and the weld metals. According to the evaluation, the creep rupture strength of the EB-welded joint may be superior to that of the TIG-welded joint. The corrosion test in helium containing certain impurities is conducted for the weld metals. There is no significant difference of such corrosion characteristics as weight gain, internal oxidation, depleted zone, and so on between the base and the weld metals. Those are superior to Hastelloy-X.

Shimizu, S.; Mutoh, Y.

1984-07-01T23:59:59.000Z

392

METHANE de-NOX for Utility PC Boilers  

SciTech Connect

The overall project objective is the development and validation of an innovative combustion system, based on a novel coal preheating concept prior to combustion, that can reduce NO{sub x} emissions to 0.15 lb/million Btu or less on utility pulverized coal (PC) boilers. This NO{sub x} reduction should be achieved without loss of boiler efficiency or operating stability, and at more than 25% lower levelized cost than state-of-the-art SCR technology. A further objective is to ready technology for full-scale commercial deployment to meet the market demand for NO{sub x} reduction technologies. Over half of the electric power generated in the U.S. is produced by coal combustion, and more than 80% of these units utilize PC combustion technology. Conventional measures for NOx reduction in PC combustion processes rely on combustion and post-combustion modifications. A variety of combustion-based NO{sub x} reduction technologies are in use today, including low-NO{sub x} burners (LNBs), flue gas recirculation (FGR), air staging, and natural gas or other fuel reburning. Selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR) are post-combustion techniques. NO{sub x} reduction effectiveness from these technologies ranges from 30 to 60% and up to 90-93% for SCR. Typically, older wall-fired PC burner units produce NO{sub x} emissions in the range of 0.8-1.6 lb/million Btu. Low-NO{sub x} burner systems, using combinations of fuel staging within the burner and air staging by introduction of overfire air in the boiler, can reduce NO{sub x} emissions by 50-60%. This approach alone is not sufficient to meet the desired 0.15 lb/million Btu NO{sub x} standard with a range of coals and boiler loads. Furthermore, the heavy reliance on overfire air can lead to increased slagging and corrosion in furnaces, particularly with higher-sulfur coals, when LNBs are operated at sub-stoichiometric conditions to reduce fuel-derived NOx in the flame. Therefore, it is desirable to minimize the need for overfire air by maximizing NO{sub x} reduction in the burner. The proposed combustion concept aims to greatly reduce NO{sub x} emissions by incorporating a novel modification to conventional or low-NO{sub x} PC burners using gas-fired coal preheating to destroy NO{sub x} precursors and prevent NO{sub x} formation. A concentrated PC stream enters the burner, where flue gas from natural gas combustion is used to heat the PC up to about 1500 F prior to coal combustion. Secondary fuel consumption for preheating is estimated to be 3 to 5% of the boiler heat input. This thermal pretreatment releases coal volatiles, including fuel-bound nitrogen compounds into oxygen-deficient atmosphere, which converts the coal-derived nitrogen compounds to molecular N{sub 2} rather than NO. Design, installation, shakedown, and testing on Powder River Basin (PRB) coal at a 3-million Btu/h pilot system at RPI's (Riley Power, Inc.) pilot-scale combustion facility (PSCF) in Worcester, MA demonstrated that the PC PREHEAT process has a significant effect on final O{sub x} formation in the coal burner. Modifications to both the pilot system gas-fired combustor and the PC burner led to NO{sub x} reduction with PRB coal to levels below 0.15 lb/million Btu with CO in the range of 35-112 ppmv without any furnace air staging.

Bruce Bryan; Serguei Nester; Joseph Rabovitser; Stan Wohadlo

2005-09-30T23:59:59.000Z

393

Stress corrosion cracking of power boiler drums  

Science Journals Connector (OSTI)

This paper deals with the study, analysis and technical diagnosis fundamentals concerning damage induced by stress corrosion cracking. The main repair and safe operation methods for power boiler drums are described; this work being based on plant experience.

Alecsandru Pavel; Alexandru Pelle; Alexandru Epure; Cornel Radulescu; Petric? Baciu; Alexandru Bogdan; Mihai Stefanescu

1991-01-01T23:59:59.000Z

394

Boiler House and Power Station Chemistry  

Science Journals Connector (OSTI)

... and power stations". It provides a useful background of information on the properties and combustion of ... of coals, and on such subjects as the treatment of boiler feed water, types of oil ...

A. PARKER

1949-01-01T23:59:59.000Z

395

Clean Boiler Waterside Heat Transfer Surfaces  

SciTech Connect

This revised ITP tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

396

Clean Boiler Waterside Heat Transfer Surfaces  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

397

Improved water-cooled cyclone constructions in CFBs  

SciTech Connect

The construction of CFB boilers has advanced in comparison with early designs. One improvement has been the use of water or steam cooled cyclones, which allows the use of thin refractories and minimizes maintenance needs. Cooled cyclones are also tolerant of wide load variations when the main fuel is biologically based, and coal or some other fuel is used as a back-up. With uncooled cyclones, load changes with high volatile fuels can mean significant temperature transients in the refractory, due to post-combustion phenomena in the cyclone. Kvaerner's development of water-cooled cyclones for CFBs began in the early 1980s. The first boiler with this design was delivered in 1985 in Sweden. Since then, Kvaerner Pulping has delivered over twenty units with cooled cyclones, in capacity ranging from small units up to 400 MW{sub th}. Among these units, Kvaerner has developed unconventional solutions for CFBs, in order to simplify the constructions and to increase the reliability for different applications. The first of them was CYMIC{reg{underscore}sign}, which has its water-cooled cyclone built inside the boiler furnace. There are two commercial CYMIC boilers in operation and one in project stages. The largest CYMIC in operation is a 185 MW{sub th} industrial boiler burning various fuels. For even larger scale units Kvaerner developed the Integrated Cylindrical Cyclone and Loopseal (ICCL) assembly. One of these installations is in operation in USA, having steaming capacity of over 500 t/h. The design bases of these new solutions are quite different in comparison with conventional cyclones. Therefore, an important part of the development has been cold model testing and mathematical modeling of the cyclones. This paper reviews the state-of-the-art in water-cooled cyclone construction. The new solutions, their full-scale experience, and a comparison of the actual experience with the preliminary modeling work are introduced.

Alliston, M.G.; Luomaharju, T.; Kokko, A.

1999-07-01T23:59:59.000Z

398

Evaluation of coal-derived liquids as boiler fuels. Volume 1. Comprehensive report. Final report  

SciTech Connect

A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases which are distinguished by the level of the test effort. The first phase included the combustion tests of the two conventional fuels used at the station (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. In general, no adverse boiler performance effects were encountered with the combustion of the CDL fuels. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. With the exception of NO/sub x/ emissions, the CDL fuels will be expected to have lower levels of stack emissions compared to a conventional No. 6 fuel oil. NO/sub x/ emissions will be controllable to EPA standards with the application of conventional combustion modification techniques. Volume 1, of a five-volume report, contains a comprehensive report of the entire test program. 43 figs., 19 tabs.

Not Available

1985-09-01T23:59:59.000Z

399

Heat-activated cooling devices: A guidebook for general audiences  

SciTech Connect

Heat-activated cooling is refrigeration or air conditioning driven by heat instead of electricity. A mill or processing facility can us its waste fuel to air condition its offices or plant; using waste fuel in this way can save money. The four basic types of heat-activated cooling systems available today are absorption cycle, desiccant system, steam jet ejector, and steam turbine drive. Each is discussed, along with cool storage and biomass boilers. Steps in determining the feasibility of heat-activated cooling are discussed, as are biomass conversion, system cost and integration, permits, and contractor selection. Case studies are given.

Wiltsee, G.

1994-02-01T23:59:59.000Z

400

NOx Control Options and Integration for US Coal Fired Boilers  

SciTech Connect

This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected in a pilot scale furnace and soot behavior predicted by the CFD model showed good agreement. Field and laboratory tests were performed for SCR catalysts used for coal and biomass co-firing applications. Fundamental laboratory studies were performed to better understand mechanisms involved with catalyst deactivation. Field tests with a slip stream reactor were used to create catalyst exposed to boiler flue gas for firing coal and for co-firing coal and biomass. The field data suggests the mechanisms leading to catalyst deactivation are, in order of importance, channel plugging, surface fouling, pore plugging and poisoning. Investigations were performed to better understand the mechanisms involved with catalyst regeneration through mechanical or chemical methods. A computer model was developed to predict NOx reduction across the catalyst in a SCR. Experiments were performed to investigate the fundamentals of ammonia/fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. Measurements were performed for ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes. This work resulted in the first fundamental ammonia isotherms on carbon-containing fly ash samples. This work confirms industrial reports that aqueous solution chemistry takes place upon the introduction of even very small amounts of water, while the ash remains in a semi-dry state.

Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

2006-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NOx Control Options and Integration for US Coal Fired Boilers  

SciTech Connect

This is the fifteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. At AEP's Gavin Plant, data from the corrosion probes showed that corrosion rate increased as boiler load was increased. During an outage at the plant, the drop in boiler load, sensor temperature and corrosion rate could all be seen clearly. Restarting the boiler saw a resumption of corrosion activity. This behavior is consistent with previous observations made at a 600MWe utility boiler. More data are currently being examined for magnitudes of corrosion rates and changes in boiler operating conditions. Considerable progress was made this quarter in BYU's laboratory study of catalyst deactivation. Surface sulfation appears to partially suppress NO adsorption when the catalyst is not exposed to NH3; NH3 displaces surface-adsorbed NO on SCR catalysts and surface sulfation increases the amount of adsorbed NH3, as confirmed by both spectroscopy and TPD experiments. However, there is no indication of changes in catalyst activity despite changes in the amount of adsorbed NH3. A monolith test reactor (MTR), completed this quarter, provided the first comparative data for one of the fresh and field-exposed monolith SCR catalysts yet developed in this project. Measurements of activity on one of the field-exposed commercial monolith catalysts do not show significant changes in catalyst activity (within experimental error) as compared to the fresh catalyst. The exposed surface of the sample contains large amounts of Ca and Na, neither of which is present in the fresh sample, even after removal of visibly obvious fouling deposits. However, these fouling compounds do not deactivate the catalyst to the extent that these same poisons do in the deliberately wet-impregnated laboratory-prepared samples (1%V{sub 2}O{sub 5}-9%WO{sub 3}/TiO{sub 2}). At least in this case, the fouling deposits generated by field exposure present little if any chemical deactivation or barrier to mass transfer. During this quarter, the slipstream reactor at Rockport operated for 1000 hours on flue gas. Periodic NO{sub x} reduction measurements were made, showing some decrease in activity relative to fresh catalyst samples. Plans are being made to take the reactor out of service at the Rockport plant and move it to Plant Gadsden. At Gadsden, inlet and outlet ports were installed on Unit 1 for the slipstream reactor during an outage.

Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

2004-03-31T23:59:59.000Z

402

Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant  

SciTech Connect

Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok [Engineering Center of the Ural Power Industry (Russian Federation)

2007-01-15T23:59:59.000Z

403

Desiccant Cooling Systems - A Review  

E-Print Network (OSTI)

Desiccant cooling systems have been investigated extensively during the past decade as alternatives to electrically driven vapor compression systems because regeneration temperatures of the desiccant - about 160°F, can be achieved using natural gas...

Kettleborough, C. F.; Ullah, M. R.; Waugaman, D. G.

1986-01-01T23:59:59.000Z

404

Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report  

SciTech Connect

The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

None

1980-11-01T23:59:59.000Z

405

METHANE de-NOX for Utility PC Boilers  

SciTech Connect

The project seeks to develop and validate a new pulverized coal combustion system to reduce utility PC boiler NO{sub x} emissions to 0.15 lb/million Btu or less without post-combustion flue gas cleaning. Work during the quarter included continuation of the equipment fabrication effort for pilot system components. Successful proof-of-performance testing of the IGT-designed pilot-scale natural gas-fired coal preheat combustor was completed by IGT during the quarter. The combustor was then disassembled and shipped for installation in the pilot-scale test system in BBP's Coal Burner Test Facility (CBTF) in Worcester, MA. Delivery of the balance of the pilot system components from the fabricator began near the end of the quarter, with components being installed in the pilot test facility as they were received.

Joseph Rabovitser; Bruce Bryan; Serguei Nester; Stan Wohadlo

2001-06-30T23:59:59.000Z

406

Dynamic simulation of a circulating fluidized bed boiler of low circulating ratio with wide particle size distributions  

SciTech Connect

A steady state model of a coal fired CFB boiler considering the hydrodynamics, heat transfer and combustion is presented. This model predicts the flue gas temperature, the chemical gas species (O{sub 2}, H{sub 2}O, CO, CO{sub 2} and SO{sub 2}) and char concentration distributions in both the axial and radial location along the furnace including the bottom and upper portion. The model was validated against experimental data generated in a 35 t/h commercial CFB boiler with low circulating ratio.

Lu Huilin; Yang Lidan; Bie Rushan; Zhao Guangbo

1999-07-01T23:59:59.000Z

407

Absorption Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Basics Cooling Basics Absorption Cooling Basics August 16, 2013 - 2:26pm Addthis Absorption coolers use heat rather than electricity as their energy source. Because natural gas is the most common heat source for absorption cooling, it is also referred to as gas-fired cooling. Other potential heat sources include propane, solar-heated water, or geothermal-heated water. Although mainly used in industrial or commercial settings, absorption coolers are commercially available for large residential homes. How Absorption Cooling Works An absorption cooling cycle relies on three basic principles: When a liquid is heated it boils (vaporizes) and when a gas is cooled it condenses Lowering the pressure above a liquid reduces its boiling point Heat flows from warmer to cooler surfaces.

408

Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

FEMP Technology FEMP Technology Brief: Boiler Combustion Control and Monitoring System to someone by E-mail Share Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Facebook Tweet about Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Twitter Bookmark Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Google Bookmark Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Delicious Rank Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Digg Find More places to share Federal Energy Management Program: FEMP

409

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

5 5 Commercial Equipment Efficiencies Equipment Type Chiller Screw COP(full-load / IPLV) 2.80 / 3.05 2.80 / 3.05 3.02 / 4.45 Scroll COP 2.80 / 3.06 2.96 / 4.40 N.A. Reciprocating COP(full-load / IPLV) 2.80 / 3.05 2.80 / 3.05 3.52 / 4.40 Centrifugal COP(full-load / IPLV) 5.0 / 5.2 6.1 / 6.4 7.3 / 9.0 Gas-Fired Absorption COP 1.0 1.1 N.A. Gas-Fired Engine Driven COP 1.5 1.8 N.A. Rooftop A/C EER 10.1 11.2 13.9 Rooftop Heat Pump EER (cooling) 9.8 11.0 12.0 COP (heating) 3.2 3.3 3.4 Boilers Gas-Fired Combustion Efficiency 77 80 98 Oil-Fired Thermal Efficiency 80 84 98 Electric Thermal Efficiency 98 98 98 Furnace AFUE 77 80 82 Water Heater Gas-Fired Thermal Efficiency 78 80 96 Oil-Fired Thermal Efficiency 79 80 85 Electric Resistance Thermal Efficiency 98 98 98 Gas-Fired Instantaneous Thermal Efficiency 77 84 89 Source(s): Parameter Efficiency

410

Collisional Cooling of Pure Electron Plasmas W. Bertsche  

E-Print Network (OSTI)

Department, U. C. Berkeley Abstract. Inelastic collisions with CO2 buffer gas cool a pure electron gas cross-sections [3], work done with gas-cooling in positron experiments [4] and ease of use, CO2 seemed. 235 #12;0.6 eV for these experiments. The buffer gas was 99.9% dry CO2 . Gas was introduced

Fajans, Joel

411

The Windscale Advanced Gas Cooled Reactor (WAGR) Decommissioning Project A Close Out Report for WAGR Decommissioning Campaigns 1 to 10 - 12474  

SciTech Connect

The reactor core of the Windscale Advanced Gas-Cooled Reactor (WAGR) has been dismantled as part of an ongoing decommissioning project. The WAGR operated until 1981 as a development reactor for the British Commercial Advanced Gas cooled Reactor (CAGR) power programme. Decommissioning began in 1982 with the removal of fuel from the reactor core which was completed in 1983. Subsequently, a significant amount of engineering work was carried out, including removal of equipment external to the reactor and initial manual dismantling operations at the top of the reactor, in preparation for the removal of the reactor core itself. Modification of the facility structure and construction of the waste packaging plant served to provide a waste route for the reactor components. The reactor core was dismantled on a 'top-down' basis in a series of 'campaigns' related to discrete reactor components. This report describes the facility, the modifications undertaken to facilitate its decommissioning and the strategies employed to recognise the successful decommissioning of the reactor. Early decommissioning tasks at the top of the reactor were undertaken manually but the main of the decommissioning tasks were carried remotely, with deployment systems comprising of little more than crane like devices, intelligently interfaced into the existing structure. The tooling deployed from the 3 tonne capacity (3te) hoist consisted either purely mechanical devices or those being electrically controlled from a 'push-button' panel positioned at the operator control stations, there was no degree of autonomy in the 3te hoist or any of the tools deployed from it. Whilst the ATC was able to provide some tele-robotic capabilities these were very limited and required a good degree of driver input which due to the operating philosophy at WAGR was not utilised. The WAGR box proved a successful waste package, adaptable through the use of waste box furniture specific to the waste-forms generated throughout the various decommissioning campaigns. The use of low force compaction for insulation and soft wastes provided a simple, robust and cost effective solution as did the direct encapsulation of LLW steel components in the later stages of reactor decommissioning. Progress through early campaigns was good, often bettering the baseline schedule, especially when undertaking the repetitive tasks seen during Neutron Shield and Graphite Core decommissioning, once the operators had become experienced with the equipment, though delays became more pronounced, mainly as a result of increased failures due to the age and maintainability of the RDM and associated equipment. Extensive delays came about as a result of the unsupported insulation falling away from the pressure vessel during removal and the inability of the ventilation system to manage the sub micron particulate generated during IPOPI cutting operations, though the in house development of revised and new methodologies ultimately led to the successful completion of PV and I removal. In a programme spanning over 12 years, the decommissioning of the reactor pressure vessel and core led to the production 110 ILW and 75 LLW WAGR boxes, with 20 LLW ISO freight containers of primary reactor wastes, resulting in an overall packaged volume of approximately 2500 cubic metres containing the estimated 460 cubic metres of the reactor structure. (authors)

Halliwell, Chris [Sellafield Ltd, Sellafield (United Kingdom)

2012-07-01T23:59:59.000Z

412

Black liquor combustion validated recovery boiler modeling, five-year report  

SciTech Connect

The objective of this project was to develop a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The project originated in October 1990 and was scheduled to run for four years. At that time, there was considerable emphasis on developing accurate predictions of the physical carryover of macroscopic particles of partially burnt black liquor and smelt droplets out of the furnace, since this was seen as the main cause of boiler plugging. This placed a major emphasis on gas flow patterns within the furnace and on the mass loss rates and swelling and shrinking rates of burning black liquor drops. As work proceeded on developing the recovery boiler furnace model, it became apparent that some recovery boilers encounter serious plugging problems even when physical carryover was minimal. After the original four-year period was completed, the project was extended to address this issue. The objective of the extended project was to improve the utility of the models by including the black liquor chemistry relevant to air emissions predictions and aerosol formation, and by developing the knowledge base and computational tools to relate furnace model outputs to fouling and plugging of the convective sections of the boilers. The work done to date includes CFD model development and validation, acquisition of information on black liquor combustion fundamentals and development of improved burning models, char bed model development, and model application and simplification.

Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

1996-08-01T23:59:59.000Z

413

Evaluation of Alternate Materials for Coated Particle Fuels for the Gas-Cooled Fast Reactor. Laboratory Directed Research and Development Program FY 2006 Final Report  

SciTech Connect

Candidate ceramic materials were studied to determine their suitability as Gas-Cooled Fast Reactor particle fuel coatings. The ceramics examined in this work were: TiC, TiN, ZrC, ZrN, AlN, and SiC. The studies focused on (i) chemical reactivity of the ceramics with fission products palladium and rhodium, (ii) the thermomechanical stresses that develop in the fuel coatings from a variety of causes during burnup, and (iii) the radiation resiliency of the materials. The chemical reactivity of TiC, TiN, ZrC, and ZrN with Pd and Rh were all found to be much lower than that of SiC. A number of important chemical behaviors were observed at the ceramic-metal interfaces, including the formation of specific intermetallic phases and a variation in reaction rates for the different ceramics investigated. Based on the data collected in this work, the nitride ceramics (TiN and ZrN) exhibit chemical behavior that is characterized by lower reaction rates with Pd and Rh than the carbides TiC and ZrC. The thermomechanical stresses in spherical fuel particle ceramic coatings were modeled using finite element analysis, and included contributions from differential thermal expansion, fission gas pressure, fuel kernel swelling, and thermal creep. In general the tangential stresses in the coatings during full reactor operation are tensile, with ZrC showing the lowest values among TiC, ZrC, and SiC (TiN and ZrN were excluded from the comprehensive calculations due to a lack of available materials data). The work has highlighted the fact that thermal creep plays a critical role in the development of the stress state of the coatings by relaxing many of the stresses at high temperatures. To perform ion irradiations of sample materials, an irradiation beamline and high-temperature sample irradiation stage was constructed at the University of Wisconsin’s 1.7MV Tandem Accelerator Facility. This facility is now capable of irradiating of materials to high dose while controlling sample temperature up to 800ºC.

Paul A. Demkowicz; Karen Wright; Jian Gan; David Petti; Todd Allen; Jake Blanchard

2006-09-01T23:59:59.000Z

414

Simulation of Combustion and Thermal Flow in an Industrial Boiler  

E-Print Network (OSTI)

Industrial boilers that produce steam or electric power represent a crucial facility for overall plant operations. To make the boiler more efficient, less emission (cleaner) and less prone to tube rupture problems, it is important to understand...

Saripalli, R.; Wang, T.; Day, B.

2005-01-01T23:59:59.000Z

415

EECBG Success Story: Biomass Boiler to Heat Oregon School | Department...  

Energy Savers (EERE)

EECBG Success Story: Biomass Boiler to Heat Oregon School EECBG Success Story: Biomass Boiler to Heat Oregon School April 26, 2011 - 3:56pm Addthis Oregon Governor Kulongoski...

416

Laser cooling to quantum degeneracy  

E-Print Network (OSTI)

We report on Bose-Einstein condensation (BEC) in a gas of strontium atoms, using laser cooling as the only cooling mechanism. The condensate is formed within a sample that is continuously Doppler cooled to below 1\\muK on a narrow-linewidth transition. The critical phase-space density for BEC is reached in a central region of the sample, in which atoms are rendered transparent for laser cooling photons. The density in this region is enhanced by an additional dipole trap potential. Thermal equilibrium between the gas in this central region and the surrounding laser cooled part of the cloud is established by elastic collisions. Condensates of up to 10^5 atoms can be repeatedly formed on a timescale of 100ms, with prospects for the generation of a continuous atom laser.

Stellmer, Simon; Grimm, Rudolf; Schreck, Florian

2013-01-01T23:59:59.000Z

417

NOx Control Options and Integration for US Coal Fired Boilers  

SciTech Connect

This is the twentieth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NO{sub x} control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. At the beginning of this quarter, the corrosion probes were removed from Gavin Station. Data analysis and preparation of the final report continued this quarter. This quarterly report includes further results from the BYU catalyst characterization lab and the in-situ FTIR lab, and includes the first results from tests run on samples cut from the commercial plate catalysts. The SCR slipstream reactor at Plant Gadsden was removed from the plant, where the total exposure time on flue gas was 350 hours. A computational framework for SCR deactivation was added to the SCR model.

Mike Bockelie; Kevin Davis; Martin Denison; Connie Senior; Hong-Shig Shim; Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker

2005-06-30T23:59:59.000Z

418

Direct contact, binary fluid geothermal boiler  

DOE Patents (OSTI)

Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

Rapier, Pascal M. (Richmond, CA)

1982-01-01T23:59:59.000Z

419

Conceptual Design of Oxygen-Based PC Boiler  

SciTech Connect

Coal is presently the world's primary fuel for generating electrical power and, being more abundant and less expensive than oil or natural gas, is expected to continue its dominance into the future. Coal, however, is more carbon intensive than natural gas and oil and consequently coal-fired power plants are large point source emitters of carbon dioxide (CO{sub 2}). Since CO{sub 2} is a greenhouse gas, which may have an adverse impact on the world's climate/weather patterns, studies have been conducted to determine the feasibility and economic impact of capturing power plant CO{sub 2} emissions for pipeline transport to a sequestration/storage site. The stack gas that exhausts from a modern coal-fired power plant typically contains about 15% CO{sub 2} on a dry volume basis. Although there are numerous processes available for removing CO{sub 2} from gas streams, gas scrubbing with amine solvent is best suited for this application because of the large gas volumes and low CO{sub 2} concentrations involved. Unfortunately the energy required to regenerate the solvent for continued use as a capturing agent is large and imposes a severe energy penalty on the plant. In addition this ''back end'' or post combustion cleanup requires the addition of large vessels, which, in retrofit applications, are difficult to accommodate. As an alternative to post combustion scrubbing, Foster Wheeler (FW) has proposed that the combustion process be accomplished with oxygen rather than air. With all air nitrogen eliminated, a CO{sub 2}-water vapor rich flue gas will be generated. After condensation of the water vapor, a portion of the flue gas will be recirculated back to the boiler to control the combustion temperature and the balance of the CO{sub 2} will be processed for pipeline transport. This proposed oxygen-carbon dioxide (O{sub 2}/CO{sub 2}) combustion process eliminates the need for CO{sub 2} removal/separation and reduces the cost of supplying a CO{sub 2} rich stream for sequestration. FW has developed a conceptual design of an O{sub 2} fired boiler to determine overall plant performance and economics. Five subtasks were conducted: (1) a literature review, (2) a system design and analysis, (3) a low NOx burner design and analysis, (4) a furnace and heat recovery area design analysis, and (5) an economic analysis. The objective of the literature search is to locate any data/information relevant to the Oxygen-Based PC Boiler conceptual design. The objective of the system design and analysis task is to optimize the PC boiler plant by maximizing system efficiency within practical considerations. Simulations of the oxygen-fired plant with CO{sub 2} sequestration were conducted using Aspen Plus and were compared to a reference air-fired 460 MW plant. Flue gas recycle is used in the O{sub 2}-fired PC to control the flame temperature. Parametric runs were made to determine the effect of flame temperature on system efficiency and required waterwall material and thickness. The degree of improvement on system efficiency of various modifications including hot gas recycle, purge gas recycle, flue gas feedwater recuperation, and recycle purge gas expansion were investigated. The selected O{sub 2}-fired design case has a system efficiency of 30.6% compared to the air-fired system efficiency of 36.7%. The design O{sub 2}-fired case requires T91 waterwall material and has a waterwall surface area of only 65% of the air-fired reference case. The objective of the low NOx burner design and analysis task is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent CFD computer program. Four burner designs were developed: (1) with no OFG and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas sw

Andrew Seltzer; Zhen Fan

2005-09-01T23:59:59.000Z

420

Electron CoolingElectron Cooling Sergei Nagaitsev  

E-Print Network (OSTI)

Electron CoolingElectron Cooling Sergei Nagaitsev FNAL - AD April 28, 2005 #12;Electron Cooling methods must "get around the theorem" e.g. by pushing phase-space around. #12;Electron Cooling - Nagaitsev 3 TodayToday''s Menus Menu What is cooling? Types of beam cooling Electron cooling Conclusions #12

Fermilab

Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Density-Enthalpy Phase Diagram 0D Boiler Simulation  

E-Print Network (OSTI)

Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research Finite Transitions #12;Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research;Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research Goal

Vuik, Kees

422

Using HYTECH to Synthesize Control Parameters for a Steam Boiler ?;??  

E-Print Network (OSTI)

Using HYTECH to Synthesize Control Parameters for a Steam Boiler ?;?? Thomas A. Henzinger 1 Howard model a steam­boiler control system using hybrid au­ tomata. We provide two abstracted linear models of the nonlinear be­ havior of the boiler. For each model, we define and verify a controller that maintains

Henzinger, Thomas A.

423

An Object-Oriented Algebraic Steam-Boiler Control Specification  

E-Print Network (OSTI)

An Object-Oriented Algebraic Steam-Boiler Control Specification Peter Csaba ()lveczky, Poland Abstract. In this paper an object-oriented algebraic solution of the steam-boiler specification Introduction The steam-boiler control specification problem has been proposed as a challenge for different

Ã?lveczky, Peter Csaba

424

Streams of Steam The Steam Boiler Specification Case Study  

E-Print Network (OSTI)

Streams of Steam ­ The Steam Boiler Specification Case Study Manfred Broy, Franz Regensburger-tuned con- cepts of FOCUS by its application of the requirements specification of a steam boiler, see [Abr96-studies. In this context, applying FOCUS to the steam boiler case study ([Abr96]) led us to a couple of questions re- #12

425

Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ??  

E-Print Network (OSTI)

Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ?? Thomas A. Henzinger1 Howard model a steam-boiler control system using hybrid au- tomata. We provide two abstracted linear models of the nonlinear be- havior of the boiler. For each model, we de ne and verify a controller that maintains the safe

Henzinger, Thomas A.

426

Waterside Stress Assisted Corrosion (SAC) of Boiler Tubes  

E-Print Network (OSTI)

Waterside Stress Assisted Corrosion (SAC) of Boiler Tubes School of Materials Science Boiler Areas Susceptible to SAC · Generally SAC initiates near weld joints on cold side of tubes · SAC cracks are difficult to detect inaccessibility · Failures Detected at Various Locations in Boilers

Das, Suman

427

Nanotube Boiler 1 Abstract--Controlled copper evaporation at attogram  

E-Print Network (OSTI)

Nanotube Boiler 1 Abstract-- Controlled copper evaporation at attogram level from individual carbon nanotube (CNT) vessels, which we call nanotube boilers, is investigated experimentally, and ionization in these CNT boilers, which can serve as sources for mass transport and deposition in nanofluidic

Paris-Sud XI, Université de

428

FAQs Manhattanville Campus Central Energy Plant Boiler Stacks  

E-Print Network (OSTI)

FAQs Manhattanville Campus Central Energy Plant Boiler Stacks Installation Frequently Asked Questions What is happening? Columbia University is installing two (2) boiler stacks on top of the Jerome L, a below-grade facility which will consist four (4) 45,000 lbs/hr steam boilers and related equipment

Kim, Philip

429

Steam boiler control speci cation problem: A TLA solution  

E-Print Network (OSTI)

Steam boiler control speci cation problem: A TLA solution Frank Le ke and Stephan Merz Institut fur of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed between the physi- cal state of the steam boiler and the model maintained by the controller and discuss

430

Steam boiler control specification problem: A TLA solution  

E-Print Network (OSTI)

Steam boiler control specification problem: A TLA solution Frank Le�ke and Stephan Merz Institut f of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed between the physi­ cal state of the steam boiler and the model maintained by the controller and discuss

Merz, Stephan

431

1 | P a g e Boiler Gold Rush  

E-Print Network (OSTI)

1 | P a g e Boiler Gold Rush VISION STATEMENT The vision of BGR is twofold: first, help all new by participating in the premiere orientation program in the nation, Boiler Gold Rush. Second, enhance upper leaders for the betterment of the university. PROGRAM GOALS Boiler Gold Rush will provide the following

Ginzel, Matthew

432

An Object-Oriented Algebraic Steam-Boiler Control Specification  

E-Print Network (OSTI)

An Object-Oriented Algebraic Steam-Boiler Control Specification.In this paper an object-oriented algebraic solution of the steam-boiler specification problem is presented computations cannot happen. 1 Introduction The steam-boiler control specification problem has been

Ã?lveczky, Peter Csaba

433

Guide for the Extension of Boiler Internal Inspections  

E-Print Network (OSTI)

Under T.C.A. §68-122-110(a), each boiler used or proposed to be used within this state, except boilers exempt in §68-122-105, shall be thoroughly inspected as to their construction, installation, condition and operation as follows: (1) Power boilers shall be inspected annually both internally and externally while not under pressure, and

Tennessee Board; Boiler Rules

434

Pre-Inspection Checklist for High Pressure Boilers  

E-Print Network (OSTI)

Notice: This checklist reflects the most common violations our field inspectors encounter when performing an inspection on a high-pressure steam boiler installation. It’s suggested that boiler industry personnel have access to a current set of applicable codebooks/jurisdictional laws. Such as: Section I of the ASME Boiler Code:

unknown authors

435

A new blowdown compensation scheme for boiler leak detection  

E-Print Network (OSTI)

considers the blowdown effect in industrial boiler operation. This adds to the efficiency of recent advances tubes. In utility boilers, early de- tection of leaks is primarily a financial issue. High velocityA new blowdown compensation scheme for boiler leak detection A. M. Pertew ,1 X. Sun ,1 R. Kent

Marquez, Horacio J.

436

Project Recap Humanitarian Engineering Biodiesel Boiler System for Steam Generator  

E-Print Network (OSTI)

Project Recap Humanitarian Engineering ­ Biodiesel Boiler System for Steam Generator Currently 70 biodiesel boiler system to drive a steam engine generator. This system is to provide electricity the customer needs, a boiler fueled by biodiesel and outputting to a steam engine was decided upon. The system

Demirel, Melik C.

437

BOILER BLOW-DOWN FLASH RECOVERY  

E-Print Network (OSTI)

Malelane’s boiler blow-down flash, which was previously rejected to atmosphere, is now recovered into the turbo-alternator exhaust steam range and used for process heating duty. Various flash vapour recovery options have been evaluated for operability, maintainability and cost effectiveness. The design considerations for the blow-down vessel and the valve and piping configuration, which resulted from a Hazop Study, are explained. The recovery of 1.6 tons per hour of boiler blowdown flash equates to R260 000 per annum in coal savings.

I Singh; F Weyers

438

Circulating Fluidized Bed Combustion Boiler Project  

E-Print Network (OSTI)

or turndown so we delayed consideration of installation of a FBC boil r. CIRCULATING FBC In early 1980 we became aware of the work by the Ahlstrom Company of Helsinki, Finland in the development of the circulating FBC boiler design. The PYROFLOW... layer is a lightweight insulating refractory. In 1979, Ahlstrom started up a 45,000 pound per hour PYROFLOW unIt at Pihlava, Finland. In 1981, 200,000 pound per hour boiler was started up 1 Kauttua, Finland as le b se load steam supply for paper...

Farbstein, S. B.; Moreland, T.

1984-01-01T23:59:59.000Z

439

Emission reduction of NOx and CO by optimization of the automatic control system in a coal-fired stoker boiler  

SciTech Connect

To date research on NO, and CO emission reduction in stoker-fired boilers has been devoted to combustion modification to the overfire air, diverting air to a selected set of burners, using modified low-NOx, burners, using flue gas recirculation or flue gas treatment with specially controlled catalyst and additives. This study introduces a concept that focuses on the dynamics of the boiler and the automatic control system. The objective of this study was to reduce the NO and CO emissions by restructuring the automatic control system and then tuning the control system with parameters that have been optimized with emission reduction as the objective. Dynamic data were obtained from a step-input test of either the underfire air or the overfire air. These data were used to model the boiler with a transfer function describing the emissions. The analyzer dynamic response was included in the overall model. The control parameters were determined from this overall emissions transfer function by mathematical optimization. These control parameters constituted the initial values in the automatic control system used for the final tests in the boiler. Additional adjustments to reduce the emissions were carried out during boiler operation. A low controller gain and a fast reset time were found to be the most suitable setting for the control system. The NO emissions controlled by the overfire air and CO emissions controlled by the underfire air produced the best results.

Schnelle, K.B.; Laungphairojana, A.; Debelak, K.A. [Vanderbilt University, Nashville, TN (United States). Dept. of Chemical Engineering

2006-07-15T23:59:59.000Z

440

METHANE de-NOX FOR UTILITY PC BOILERS  

SciTech Connect

The project seeks to develop and validate a new pulverized coal combustion system to reduce utility PC boiler NOx emissions to 0.15 lb per million Btu or less without post-combustion flue gas cleaning. Work during previous reporting periods completed the design, installation, shakedown and initial PRB coal testing of a 3-million Btu/h pilot system at BBP's Pilot-Scale Combustion Facility (PSCF) in Worcester, MA. Based on these results, modifications to the gas-fired preheat combustor and PC burner were defined, along with a modified testing plan and schedule. A revised subcontract was executed with BBP to reflect changes in the pilot testing program. Modeling activities were continued to develop and verify revised design approaches for both the Preheat gas combustor and PC burner. Reactivation of the pilot test system was then begun with BBP personnel. During the previous reporting period, reactivation of the pilot test system was completed with the modified Preheat gas combustor. Following shakedown of the modified gas combustor alone, a series of successful tests of the new combustor with PRB coal using the original PC burner were completed. NOx at the furnace exit was reduced significantly with the modified gas combustor, to as low as 150 ppm with only 36 ppm CO (both corrected to 3% O2). Concurrent with testing, GTI and BBP collaborated on development of two modified designs for the PC burner optimized to fire preheated char and pyrolysis products from the Preheat gas combustor. During the current reporting period, one of the two modified PC burner designs was fabricated and installed in the pilot test facility. Testing of the modified pilot system (modified gas combustor and modified PC burner) during the quarter included 38 tests with PRB coal. NOx reduction was significantly improved to levels as low as 60-100 ppmv with CO in the range of 35-112 ppmv without any furnace air staging.

Joseph Rabovitser; Bruce Bryan; Serguei Nester; Stan Wohadlo

2002-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas boiler cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

cooling | OpenEI  

Open Energy Info (EERE)

cooling cooling Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

442

SoCalGas - Non-Residential Energy Efficiency Rebate Programs | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Rebate Programs Energy Efficiency Rebate Programs SoCalGas - Non-Residential Energy Efficiency Rebate Programs < Back Eligibility Agricultural Commercial Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Water Heating Maximum Rebate Energy Efficiency Rebates for Businesses: $200,000/customer/year; $50,000 for greenhouse curtains, $25,000 for boilers and water heaters Savings By Design Program: $150,000/year Program Info Start Date 1/1/2010 Expiration Date 12/31/2012 State California Program Type Utility Rebate Program Rebate Amount Business Energy Efficiency Program: $1/therm saved annually or 50% of cost Furnaces: Varies

443

natural gas+ condensing flue gas heat recovery+ water creation...  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

444

FOCUS COOLING  

NLE Websites -- All DOE Office Websites (Extended Search)

www.datacenterdynamics.com www.datacenterdynamics.com FOCUS COOLING Issue 28, March/April 2013 LBNL'S NOVEL APPROACH TO COOLING Lawrence Berkeley National Laboratory and APC by Schneider Electric test a unique double-exchanger cooling system LBNL program manager Henry Coles says can cut energy use by half A s part of a demonstration sponsored by the California Energy Commission in support of the Silicon Valley Leadership Group's data center summit, Lawrence Berkeley National Laboratory (LBNL) collaborated with APC by Schneider Electric to demonstrate a novel prototype data center cooling device. The device was installed at an LBNL data center in Berkeley, California. It included two air-to-water heat exchangers. Unlike common single-heat-exchanger configurations, one of these was supplied with

445

Ventilative cooling  

E-Print Network (OSTI)

This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

Graça, Guilherme Carrilho da, 1972-

1999-01-01T23:59:59.000Z

446

National Industrial Energy Technology Conference, New Orleans, LA, May 11-12, 2005 1 Quantifying Savings From Improved Boiler Operation  

E-Print Network (OSTI)

energy savings from switching to modulation control mode and reducing excess air in natural gas firedNational Industrial Energy Technology Conference, New Orleans, LA, May 11-12, 2005 1 Quantifying/off operation and excess combustion air reduce boiler energy efficiency. This paper presents methods to quantify

Kissock, Kelly

447

Boiler and steam generator corrosion. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers and nuclear powered steam generators. Corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures are presented. Water treatment, chemical cleaning, and descaling methods are considered. Although emphasis is placed on large-scale power generation systems, residential and commercial heating systems are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-11-01T23:59:59.000Z

448

Boiler and steam generator corrosion. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers and nuclear powered steam generators. Corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures are presented. Water treatment, chemical cleaning, and descaling methods are considered. Although emphasis is placed on large-scale power generation systems, residential and commercial heating