Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas blue water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Blue Ridge Mountain Electric Membership Corporation - Water Heater Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Blue Ridge Mountain Electric Membership Corporation - Water Heater Rebate Program Blue Ridge Mountain Electric Membership Corporation - Water Heater Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Ventilation Manufacturing Heat Pumps Appliances & Electronics Water Heating Program Info State Georgia Program Type Utility Rebate Program Rebate Amount In-Home Energy Evaluation Program Windows: $500 Duct Repair: $500 Rehabilitation Work: $250 HVAC Replacement: $250/unit HVAC Tune-up: $150/unit Insulation: $500 Water Heater and Pipe Insulation: $50 Air Sealing: $500 Energy Right Program

2

Instantaneous gas water heater  

SciTech Connect

Hot water supply temperature is set by a temperature setting device in response to an instantaneous flow rate signal from a water flow rate sensor arranged in a water supply pipe and a feeding water temperature signal from a feeding water temperature sensor which are compared with a predetermined hot water supply temperature and calculated in a control unit. A proportional valve and other devices in a gas supply pipe are controlled in response to the result of the comparison and calculation to define a required volume of gas for ignition and heating. At the same time, a fan damper is controlled by a damper control device so as to adjust the volume of combustion air. A signal representing discharging hot water temperature from a discharging hot water temperature sensor arranged in a hot water feeding pipe is fed back to the control unit and calculated therein, and a valve in the hot water supply pipe is adjusted in response to the result of calculation to attain the desired hot water supply temperature. In order to prevent freezing in the system in winter season, a signal from a thermostat in the water feeding pipe is transmitted to a heater arranged in an air supply chamber so as to heat a heat exchanger pipe and, at the same time, heaters arranged in the water feeding pipe and the hot water supply pipe are also controlled to prevent freezing.

Tsutsui, O.; Kuwahara, H.; Murakami, Sh.; Yasunaga, Sh.

1985-02-26T23:59:59.000Z

3

"Blue Sky" Approaches to Reduce Greenhouse Gas Emissions: An Initial Assessment of Potential New Types of Greenhouse Gas Emissions Offsets  

Science Conference Proceedings (OSTI)

This report provides an initial assessment of potential new approaches to reducing greenhouse gas (GHG) emissions that might be capable of generating large-scale GHG emissions offsets at relatively low cost compared to other GHG mitigation options. The nine potential blue sky approaches assessed in this report include biochar, destruction of ozone depleting substances, control of natural fugitive methane seeps from coal seams, control of fugitive natural gas emissions associated with hydraulic fracturing...

2011-12-22T23:59:59.000Z

4

Water-Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Water-Gas Sampling (Redirected from Water-Gas Samples) Redirect page Jump to: navigation,...

5

Water-Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Water-Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Water-Gas Sampling edit Details Activities (21) Areas (18) Regions (1)...

6

DOE - Office of Legacy Management -- Blue Water AEC Ore Buying Station - NM  

NLE Websites -- All DOE Office Websites (Extended Search)

Blue Water AEC Ore Buying Station - Blue Water AEC Ore Buying Station - NM 0-02 FUSRAP Considered Sites Site: Blue Water AEC Ore Buying Station (NM.0-02 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were operated during the period late-1949 through the mid-1960s. During this period the AEC established ore-buying stations in new uranium producing areas where it appeared that ore production would be sufficient to support a uranium milling operation. The

7

Method of making water gas  

SciTech Connect

The process of manufacturing water gas by alternate air and steam blasting is discussed. The process consists in providing two separate fuel beds of bituminous fuel in two intercommunicating water-gas generators; hot air blasting from the top part of the fuel bed in one generator to the top portion of the other fuel bed in the second generator; and blasting from the bottom part of the fuel bed in the first generator to the bottom part of the fuel bed in the second generator. By evolving volatile matter in the fuel bed in the first generator, and introducing secondary air between the fuel beds to burn the volatile matter and thereby facilitate the carbonization of raw fuel and to store heat in the fuel bed in the second generator, generation of water gas by steam blasting the heated fuel beds will result.

Evans, O.B.

1931-06-02T23:59:59.000Z

8

Blue Ridge Mountain Electric Membership Corporation - Water Heater...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating & Cooling Cooling Construction Design & Remodeling Ventilation Manufacturing Heat Pumps Appliances & Electronics Water Heating Program Information Georgia Program Type...

9

Shale Gas Development Challenges: Water | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Shale Gas Development Challenges: Water Shale Gas Development Challenges: Water More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas...

10

Dust-to-gas ratio and star formation history of blue compact dwarf galaxies  

E-Print Network (OSTI)

This paper investigates the origin of the observed large variety in dust-to-gas ratio among blue compact dwarf galaxies (BCDs). By applying our chemical evolution model, we find that the dust destruction can largely suppress the dust-to-gas ratio when the metallicity of a BCD reaches $12+\\log{\\rm (O/H)}\\sim 8$, i.e., a typical metallicity level of BCDs. We also show that dust-to-gas ratio is largely varied owing to the change of dust destruction efficiency that has two effects: (i) a significant contribution of Type Ia supernovae to total supernova rate; (ii) variation of gas mass contained in a star-forming region. While mass loss from BCDs was previously thought to be the major cause for the variance of dust-to-gas ratio, we suggest that the other two effects are also important. We finally discuss the intermittent star formation history, which naturally explains the large dispersion of dust-to-gas ratio among BCDs.

H. Hirashita; Y. Y. Tajiri; H. Kamaya

2002-04-18T23:59:59.000Z

11

Recovery of Water from Boiler Flue Gas  

SciTech Connect

This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

2008-09-30T23:59:59.000Z

12

Fluid Metrology Calibration Services - Gas, Water, or Liquid ...  

Science Conference Proceedings (OSTI)

Fluid Metrology Calibration Services - Gas, Water, Natural Gas, or Liquid Hydrocarbon Flows Special Tests. Fluid Metrology ...

2013-01-25T23:59:59.000Z

13

Shale Gas Development Challenges: Water | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Shale Gas Development Challenges: Water Shale Gas Development Challenges: Water Shale Gas...

14

Recovery of Water from Boiler Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

RecoveRy of WateR fRom BoileR flue Gas RecoveRy of WateR fRom BoileR flue Gas Background Coal-fired power plants require large volumes of water for efficient operation, primarily for cooling purposes. Public concern over water use is increasing, particularly in water stressed areas of the country. Analyses conducted by the U.S. Department of Energy's National Energy Technology Laboratory predict significant increases in power plant freshwater consumption over the coming years, encouraging the development of technologies to reduce this water loss. Power plant freshwater consumption refers to the quantity of water withdrawn from a water body that is not returned to the source but is lost to evaporation, while water withdrawal refers to the total quantity of water removed from a water source.

15

Water Management Planning: A Case Study at Blue Grass Army Depot  

Science Conference Proceedings (OSTI)

Executive Order 13123, Greening the Government Through Efficient Energy Management, mandates an aggressive policy for reducing potable water consumption at federal facilities. Implementation guid¬ance from the U.S. Department of Energy (DOE) set a requirement for each federal agency to “reduce potable water usage by implementing life cycle, cost-effective water efficiency programs that include a water management plan, and not less than four Federal Energy Management Program (FEMP) Best Manage¬ment Practices (BMPs).” The objective of this plan is to gain full compliance with Executive Order 13123 and associated DOE implementation guidance on behalf of Blue Grass Army Depot (BGAD), Richmond, Kentucky. In accordance with this plan, BGAD must: • Incorporate the plan as a component of the Installation energy conservation plan • Investigate the water savings potential and life-cycle cost effectiveness of the Operations and Maintenance (O&M) and retrofit/replacement options associated with the ten FEMP BMPs • Put into practice all applicable O&M options • Identify retrofit/replacement options appropriate for implementation (based upon calculation of the simple payback periods) • Establish a schedule for implementation of applicable and cost-effective retrofit/replacement options.

Solana, Amy E.; McMordie-Stoughton, Katherine L.

2006-04-03T23:59:59.000Z

16

Gas, Heat, Water, Sewerage Collection and Disposal, and Street...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies...

17

Special Provisions Affecting Gas, Water, or Pipeline Companies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Savings Special Provisions Affecting Gas, Water, or Pipeline Companies (South Carolina) Special Provisions Affecting Gas, Water, or Pipeline...

18

Gas Water Heater Energy Losses  

E-Print Network (OSTI)

analyses of storage-type water heaters. 2 TANK modelswater heater as part of the DOE rulemaking analysis. We used the most current version of this model--

Biermayer, Peter

2012-01-01T23:59:59.000Z

19

Economics of Residential Gas Furnaces and Water Heaters in United...  

NLE Websites -- All DOE Office Websites (Extended Search)

single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this...

20

Economic Analysis of a Representative Deep-Water Gas Production ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration Natural Gas 1998: Issues and Trends 181 Appendix C Economic Analysis of a Representative Deep-Water Gas Production Project

Note: This page contains sample records for the topic "gas blue water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Session 2A Water and Gas Transport Through Cementitious Materials  

Water and Gas Transport Through Cementitious Materials • State of the art ... – Novel methods for liquid permeability measurement of saturated ...

22

Water-Gas Samples (Klein, 2007) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples (Klein, 2007) Exploration Activity Details Location Unspecified...

23

Water Withdrawals for Development of Marcellus Shale Gas in Pennsylvania  

E-Print Network (OSTI)

Water Withdrawals for Development of Marcellus Shale Gas in Pennsylvania Introduction states where other shale fields are already in full- fledged gas production. The abun- dance of water of precipita- tion. Water is a critical component of the process of removing natural gas from underground shale

Boyer, Elizabeth W.

24

Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction  

E-Print Network (OSTI)

Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas Pennsylvania, ex- amining natural gas concentrations and isotopic signatures with proximity to shale gas wells this transformation, with shale gas and other unconventional sources now yielding more than one- half of all US

Jackson, Robert B.

25

Barges haul LP-gas on inland waterways and the deep-blue sea  

SciTech Connect

Warren Petroleum Co. (Tulsa) owns 23 LP-gas barges and leases another eight to 10, depending on need, for transporting product from Mont Belvieu to terminals on the inland waterways and east to Florida and down into the Caribbean. One of these barges is the Sioux, recently completed by Fredeman Shipyard, located at Carlyss, La. Upon delivery to the owner, M and W Barge Co. of Belle Chasse, La., the barge went on charter to Warren Petroleum. Built under the supervision of project manager Terry T. Frickey, the barge took nine months to complete and provided 20 new jobs at the shipyard. The company is currently negotiating for a similar barge-construction contract.

Not Available

1988-03-01T23:59:59.000Z

26

Southwest Gas Corporation - Smarter Greener Better Solar Water...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program < Back Eligibility Commercial Local Government Nonprofit Residential State Government Savings...

27

Electric, Gas, Water, Heating, Refrigeration, and Street Railways...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Street Railways Facilities and Service (South Dakota) Electric, Gas, Water, Heating, Refrigeration, and Street Railways Facilities and Service (South Dakota) < Back...

28

ŤCharacterizing Natural Gas Hydrates in the Deep Water Gulf...  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities Semi-Annual Report" Report Type: Semi-Annual No:...

29

The Effect of Water on Natural Gas Desulfurization by Adsorption  

Science Conference Proceedings (OSTI)

Oct 15, 2006 ... The Effect of Water on Natural Gas Desulfurization by Adsorption by Ambalavanan Jayaraman, Gokhan Alptekin, Margarita Dubovik, Robert ...

30

Process Optimization of Cast Alloy 718 for Water Cooled Gas ...  

Science Conference Proceedings (OSTI)

FOR WATER COOLED GAS TURBINE APPLICATION. G.K. Bouse+ and P.W. Schilke*. Gene@ Electric Company+ Materials and Processes Laboratory, and.

31

Microsoft Word - Evaluation of Alternate Water Gas Shift for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Alternate Water Gas Shift Configurations for IGCC Systems August 5, 2009 DOENETL-401080509 Disclaimer This report was prepared as an account of work sponsored by an...

32

Management of produced water in oil and gas operations.  

E-Print Network (OSTI)

??Produced water handling has been an issue of concern for oil and gas producers as it is one of the major factors that cause abandonment… (more)

Patel, Chirag V.

2005-01-01T23:59:59.000Z

33

natural gas+ condensing flue gas heat recovery+ water creation+ CO2  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy efficiency+ power plant energy efficiency+ Home Increase Natural Gas Energy Efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas. How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature? Links: The technology of Condensing Flue Gas Heat Recovery natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building

34

natural gas+ condensing flue gas heat recovery+ water creation...  

Open Energy Info (EERE)

efficiency+ commercial building energy efficiency+ industrial energy efficiency+ power plant energy efficiency+ Home Increase Natural Gas Energy Efficiency Description:...

35

Water's Journey Through the Shale Gas Drilling and  

E-Print Network (OSTI)

Water's Journey Through the Shale Gas Drilling and Production Processes in the Mid-Atlantic Region: Marcellus shale drilling in progress, Beaver Run Reservoir, Westmoreland County. Credit: Robert Donnan. Gas in the Marcellus shale natural gas industry in the Mid-Atlantic region. Using publicly available information, we

Maranas, Costas

36

Advanced Water-Gas Shift Membrane Reactor  

DOE Green Energy (OSTI)

The overall objectives for this project were: (1) to identify a suitable PdCu tri-metallic alloy membrane with high stability and commercially relevant hydrogen permeation in the presence of trace amounts of carbon monoxide and sulfur; and (2) to identify and synthesize a water gas shift catalyst with a high operating life that is sulfur and chlorine tolerant at low concentrations of these impurities. This work successfully achieved the first project objective to identify a suitable PdCu tri-metallic alloy membrane composition, Pd{sub 0.47}Cu{sub 0.52}G5{sub 0.01}, that was selected based on atomistic and thermodynamic modeling alone. The second objective was partially successful in that catalysts were identified and evaluated that can withstand sulfur in high concentrations and at high pressures, but a long operating life was not achieved at the end of the project. From the limited durability testing it appears that the best catalyst, Pt-Re/Ce{sub 0.333}Zr{sub 0.333}E4{sub 0.333}O{sub 2}, is unable to maintain a long operating life at space velocities of 200,000 h{sup -1}. The reasons for the low durability do not appear to be related to the high concentrations of H{sub 2}S, but rather due to the high operating pressure and the influence the pressure has on the WGS reaction at this space velocity.

Sean Emerson; Thomas Vanderspurt; Susanne Opalka; Rakesh Radhakrishnan; Rhonda Willigan

2009-01-07T23:59:59.000Z

37

Southwest Gas Corporation - Smarter Greener Better Solar Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Gas Corporation - Smarter Greener Better Solar Water Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program (Arizona) Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program (Arizona) < Back Eligibility Commercial Fed. Government General Public/Consumer Industrial Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate 50% of system cost Program Info State Nevada Program Type Utility Rebate Program Rebate Amount $15.00/therm Provider Southwest Gas Corporation '''''Note: Effective July 15, 2013, Southwest Gas is no longer accepting applications for the current program year. Systems installed during the current program year will not be eligible for a rebate in the next program

38

Regulation of Gas, Electric, and Water Companies (Maryland) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation of Gas, Electric, and Water Companies (Maryland) Regulation of Gas, Electric, and Water Companies (Maryland) Regulation of Gas, Electric, and Water Companies (Maryland) < Back Eligibility Agricultural Commercial Construction Industrial Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Safety and Operational Guidelines Siting and Permitting Provider Maryland Public Service Commission The Public Service Commission is responsible for regulating gas, electric, and water companies in the state. This legislation contains provisions for such companies, addressing planning and siting considerations for electric

39

Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memphis Light, Gas and Water (Electric) - Commercial Efficiency Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and Incentives Program Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and Incentives Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Appliances & Electronics Heat Pumps Commercial Lighting Lighting Commercial Weatherization Maximum Rebate 70% of project cost Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Commercial Dishwashers: $400 - $1500 Commercial Refrigerator: $60 - $100 Ice Machines: $100 - $400 Insulated Holding Cabinets: $250 - $600 Electric Steam Cookers: $400 Electric Convection Ovens: $200 Electric Griddles: $200 Electric Combination Ovens: $2,000

40

Covered Product Category: Gas Storage Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Storage Water Heaters Gas Storage Water Heaters Covered Product Category: Gas Storage Water Heaters October 7, 2013 - 10:43am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including gas storage water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

Note: This page contains sample records for the topic "gas blue water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation applies to public utilities and entities furnishing natural gas, heat, water, sewerage, and street railway services to the public. The legislation addresses rates and services, exemptions, investigations, and records. Article 4 (58-5-400 et seq.) of this

42

Water-Gas Samples At International Geothermal Area, Mexico (Norman...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History View New Pages Recent Changes All Special Pages...

43

Texas Gas Service- Residential Solar Water Heating Rebate Program (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

Texas Gas Service offers a flat rebate of $750 for its residential customers within the Austin and Sunset Valley city limits for the installation and purchase of a new solar water heater with...

44

FEMP Designated Product Assessment for Commercial Gas Water Heaters  

E-Print Network (OSTI)

boilers is 80%. The maximum standby loss is specified usingrate. 8 There is no maximum standby loss specified for gas-of hot water use, standby losses are not a significant part

Lutz, Jim

2012-01-01T23:59:59.000Z

45

Questar Gas- Residential Solar Assisted Water Heating Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

46

Questar Gas- Residential Solar Assisted Water Heating Rebate Program (Idaho)  

Energy.gov (U.S. Department of Energy (DOE))

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

47

Guidelines for Flue Gas Desulfurization (FGD) Water Sampling and Analysis  

Science Conference Proceedings (OSTI)

Flue gas desulfurization (FGD) scrubbers are being installed on coal-fired power plants in response to federal and state air pollution regulations limiting sulfur dioxide emissions. FGD scrubbers produce an aqueous waste stream that contains metals adsorbed from flue gas. At the same time, the U.S. Environmental Protection Agency (EPA) is reviewing, and may tighten, water discharge limits on trace metals. Collection of accurate data on the trace metal composition of FGD water discharges is therefore esse...

2009-03-27T23:59:59.000Z

48

Identification of Unknown Selenium Species in Flue Gas Desulfurization Water  

Science Conference Proceedings (OSTI)

Flue gas desulfurization (FGD) is a process used in the electrical power industry to remove sulfur dioxide (SO2) from flue gas produced by coal-fired power plants. In a wet FGD system, circulating water must be periodically blown down and treated to remove solids and dissolved chemicals. Along with SO2, other substances in flue gas may dissolve in water, including selenium (Se). In addition to the common selenium species selenite and selenate, past research has identified selenium-containing species that...

2008-03-25T23:59:59.000Z

49

Water management practices used by Fayetteville shale gas producers.  

SciTech Connect

Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least three states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.

Veil, J. A. (Environmental Science Division)

2011-06-03T23:59:59.000Z

50

Southwest Gas Corporation - Smarter Greener Better Solar Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Gas Corporation - Smarter Greener Better Solar Water Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program < Back Eligibility Commercial Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential: 30% of system cost or $3,000, whichever is less Small Commercial: 30% of system cost or $7,500, whichever is less Schools, Religious, Non-profit, Public Facilities and Civic and County Facilities: 50% of system cost or $30,000, whichever is less Program Info State Nevada Program Type Utility Rebate Program Rebate Amount Residential and Small Business: $14.50 per therm Schools, Religious, Non-profit, Public Facilities and Civic and County

51

Combination gas producing and waste-water disposal well  

DOE Patents (OSTI)

The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

Malinchak, Raymond M. (McKeesport, PA)

1984-01-01T23:59:59.000Z

52

Commercial Gas Water Heaters, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)  

Science Conference Proceedings (OSTI)

Performance and purchasing specifications for commercial gas water heaters under the FEMP-designated product program.

Not Available

2010-09-01T23:59:59.000Z

53

Hot water system is energized by exhaust gas  

Science Conference Proceedings (OSTI)

The combustion of hydrocarbon fuels (natural gas or oil) results in the formation of carbon dioxide and water (water vapor). This water vapor contains approximately 1000 Btu/lb. as latent heat and amounts to 10% of all the heat input to the boiler (combustion). This means that for an 80% efficient boiler operation, 50% of the heat wasted in the flue gas is latent heat - which can only be recovered by condensing the water vapor. Since the dew point of the flue gases is approximately 130/sup 0/F, it is necessary to cool the gases to ambient temperature for complete heat recovery. By reducing these gases to within 10/sup 0/ of the incoming cold water, this Eldon Corporation heat reclaimer can achieve temperatures as low as 45/sup 0/ in winter.

Not Available

1985-09-01T23:59:59.000Z

54

Zero Discharge Water Management for Horizontal Shale Gas Well Development  

SciTech Connect

Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make-up water for successive fracs. RFW, however, contains dissolved salts, suspended sediment and oils that may interfere with fracking fluids and/or clog fractures. This would lead to impaired well productivity. The major technical constraints to recycling RFW involves: identification of its composition, determination of industry standards for make-up water, and development of techniques to treat RFW to acceptable levels. If large scale RFW recycling becomes feasible, the industry will realize lower transportation and disposal costs, environmental conflicts, and risks of interruption in well development schedules.

Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

2012-03-31T23:59:59.000Z

55

FEMP Designated Product Assessment for Commercial Gas Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

FEMP Designated Product Assessment for Commercial Gas Water Heaters FEMP Designated Product Assessment for Commercial Gas Water Heaters Title FEMP Designated Product Assessment for Commercial Gas Water Heaters Publication Type Report LBNL Report Number LBNL-5514E Year of Publication 2010 Authors Lutz, James D. Subsidiary Authors Energy Analysis Department Document Number LBNL-5514E Pagination 8 Date Published April 1 Publisher Lawrence Berkeley National Laboratory City Berkeley ISBN Number LBNL-5514E Abstract None Notes This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State, and Community Programs, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Attachment Size PDF 240.22 KB Google Scholar BibTex RIS RTF XML Alternate URL: http://eetd.lbl.gov/node/50317

56

Albany Water Gas & Light Comm | Open Energy Information  

Open Energy Info (EERE)

Water Gas & Light Comm Water Gas & Light Comm Jump to: navigation, search Name Albany Water Gas & Light Comm Place Georgia Utility Id 230 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Demand Commercial Commercial Non-Demand Commercial Large Commercial Demand Commercial Residential Residential Security Lights 1000 Watt Metal Halide Metal Pole Lighting Security Lights 1000 Watt Metal Halide Wooden Pole Lighting Security Lights 150 HPSV Fixtures Metal Pole Lighting Security Lights 150 HPSV Fixtures Wooden Pole Lighting

57

Bath Electric Gas & Water Sys | Open Energy Information  

Open Energy Info (EERE)

Electric Gas & Water Sys Electric Gas & Water Sys Jump to: navigation, search Name Bath Electric Gas & Water Sys Place New York Utility Id 1343 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NY Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial (20 KW to 75 KW demand) Commercial Industrial (Over 75 KW demand) Industrial Outdoor Lighting (175W MV-150W HPS) Lighting Outdoor Lighting (250W HPS) Lighting Outdoor Lighting (400W MV/HPS) Lighting Residential Residential Small Commercial ( Under 20 KW demand) Commercial

58

Evaluation of Selenium Species in Flue Gas Desulfurization Waters  

Science Conference Proceedings (OSTI)

Flue gas desulfurization (FGD) is a process used in the electrical power industry to remove sulfur dioxide from flue gas produced by coal-fired power plants. The trace element selenium is found in coal and can become concentrated in the wastewater from the FGD process. Some chemical forms, or species, of selenium are more resistant to removal by water treatment processes than others; thus, understanding the speciation of selenium is important to designing effective wastewater treatment systems. In additi...

2009-03-23T23:59:59.000Z

59

Trace Metals Determination in Flue Gas Desulfurization Water  

Science Conference Proceedings (OSTI)

Flue gas desulfurization (FGD) scrubbers are used on coal-fired power plants to reduce sulfur dioxide emissions to air. While effective for this purpose, wet FGD scrubbers produce an aqueous blowdown stream that contains trace levels of metals adsorbed from flue gas. Power plant owners need to measure concentrations of these metals for purposes of process control, discharge monitoring, or design and operation of wastewater treatment systems. FGD water has proven to be a very difficult matrix to analyze a...

2009-12-28T23:59:59.000Z

60

Analysis of a duo-selecting membrane reactor for the water-gas shift  

E-Print Network (OSTI)

The water-gas shift reaction is an exothermic and reversible catalytic process that converts carbon monoxide and water (steam) to hydrogen and carbon dioxide. In regard to energy-related issues, the water-gas shift is part ...

Hardy, AliciA Jillian Jackson, 1978-

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas blue water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures  

Science Conference Proceedings (OSTI)

A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

Aines, Roger D.; Bourcier, William L.; Viani, Brian

2013-01-29T23:59:59.000Z

62

Water augmented indirectly-fired gas turbine systems and method  

SciTech Connect

An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

Bechtel, Thomas F. (Lebanon, PA); Parsons, Jr., Edward J. (Morgantown, WV)

1992-01-01T23:59:59.000Z

63

Water augmented indirectly-fired gas turbine system and method  

DOE Patents (OSTI)

An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a high driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1000{degrees}C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

Bechtel, T.F.; Parsons, E.J. Jr.

1991-12-31T23:59:59.000Z

64

Water augmented indirectly-fired gas turbine system and method  

DOE Patents (OSTI)

An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a high driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1000[degrees]C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

Bechtel, T.F.; Parsons, E.J. Jr.

1991-01-01T23:59:59.000Z

65

The deep water gas charged accumulator and its possible replacements  

E-Print Network (OSTI)

Blowout preventers are designed to shut in a well under pressure so that formation fluids that have moved into the wellbore can be contained and circulated out while continuous control of the well is maintained. Control Systems for the BOPs are of necessity highly efficient hydraulic systems. The objective is to operate functions, such as closing rams, on the BOP stack in as short a time as possible. Supplying enough volume of pressured hydraulic fluid to operate those emergency functions is essential. To have the necessary quantity of control fluid under pressure requires storing this fluid in accumulators. These accumulators operate by the expansion and compression of nitrogen gas that is separated from hydraulic fluid by either rubber bladders or pistons. Accumulators are used both on the surface and at the seafloor. As long as you use accumulators on the surface or in relatively shallow waters, you may not have a problem with the volume of hydraulic fluid capacity of gas charged accumulators. The problem may arise when the wellhead is at water depth of more than 3500 ft. In deep water drilling, the accumulators should be placed on the subsea blowout preventer stack to reduce hydraulic response times and provide a hydraulic power supply in case of interruption of surface communication. Accumulators are also used in subsea production control systems to provide local storage that allows smaller line sizes in control umbilicals. Hydraulic fluid capacity of an accumulator drops to 15% of its capacity on the surface and even less, depending on the water depth. A large number of accumulators are needed to perform BOP functions that could have been done by just a few of them on the surface or at relatively shallow water depth. Gas inside gas charged accumulators does not behave like an ideal gas as we go to very deep water, due to high hydrostatic pressure at that water depth. The higher the ambient pressure, the more the gas behaves like a real gas rather than an ideal gas and the lower the fluid capacity of the accumulators. Compressed gas has energy in it, and can release this energy at the time desired, thatÂ?s why it is used in accumulators. Now, we have to look for something that is able to store energy, but unlike the nitrogen, its functionality must not be affected by the increasing hydrostatic pressure of water as a function of water depth. Springs and heavy weights will be discussed as two options to replace nitrogen in accumulators. Efficient deep water accumulators would reduce the number of accumulators required in deepwater and cut the cost of the project. With the advent of such efficient accumulators, we can hope that one of the numerous problems of deepwater drilling has been solved and we can think of drilling in even deeper waters.

Mir Rajabi, Mehdi

2004-12-01T23:59:59.000Z

66

Water Extraction from Coal-Fired Power Plant Flue Gas  

Science Conference Proceedings (OSTI)

The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.

Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

2006-06-30T23:59:59.000Z

67

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

appliance_standards/residential/water_ pool_heaters_prelim_Star (2008). Energy star residential water heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

68

Dehydrated Prussian Blues for CO2 Storage and Separation Applications  

Science Conference Proceedings (OSTI)

Adsorption isotherms of pure gases present in flue and natural gas including CO2, N2, CH4 and water were studied using prussian blues of chemical formula M3[Co(CN)6]2 (M = Cu, Ni, Mn). These materials adsorbed 8-12 wt % of CO2 at room temperature and 1 bar of pressure with heats of adsorption ranging from 6 to 16 kcal/mol.

Motkuri, Radha K.; Thallapally, Praveen K.; McGrail, B. Peter; Ghorishi, Behrooz S.

2010-08-13T23:59:59.000Z

69

Untangling the water gas shift from Fischer-Tropsch: a Gordian knot. [185 references  

DOE Green Energy (OSTI)

The water gas shift reaction is an integral part of the Fischer-Tropsch synthesis. Although it may appear convenient to consider the water gas shift a separate reaction, in some cases, a detailed examination of the mechanism indicates theat the water gas shift and other synthesis gas reactions share several elementary reactions. Experimental support for the relevant elementary reactions for the water gas shift on metals, metal oxides, and in homogeneous solution is examined, from both surface and complex chemistry. Multiple paths leading to a net water gas shift reaction may be available; oxygen transfer and reaction through C-H-O intermediates may take place. 185 references, 6 tables.

Rofer-Depoorter, C.K.

1983-01-01T23:59:59.000Z

70

Whole-Home Gas Tankless Water Heaters, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)  

SciTech Connect

Performance and purchasing specifications for whole-home gas water heaters under the FEMP-designated product program.

2010-06-01T23:59:59.000Z

71

Confined boiling rates of liquefied petroleum gas on water  

SciTech Connect

Results of a program to measure the rate of boiling of liquefied petroleum gas (LPG) on water surface and to develop an analytical model to describe the phenomena involved are reported. Primary emphasis was placed on liquid propane or LPG mixtures containing small quantities of ethane or butane or both. A few exploratory tests were, however, made with pure liquid ethane, ethylene, and n-butane. The investigation was conducted to provide quantitative data and analytical models to delineate the rate of vaporization, the spread rate and the degree of fractionation, should an LPG tanker suffer an accident leading to a major spill on water. For propane or LPG spills on water, immediately following the contact, violent boiling commenced. Ice quickly formed; in most cases, ice was even thrown onto the sidewalls of the vessel. In some instances sprays of water/ice and propane were ejected from the calorimeter. Within a few seconds, however, the interaction quieted and the surface was covered by a rough ice sheet. The LPG boiled on the surface of this ice, but large gas bubbles occasionally appeared under the ice shield and were trapped. The boiling rate decreased with time with a concomitant increase in the thickness of the ice shield. In the first second or two, very high boiling heat fluxes were experienced. The mass of LPG lost was approximately half that spilled originally. It is estimated that only 5 to 15% could have been ejected as liquid if the water loss is used as a reference. However, since the water surface is very agitated during this period, it is not possible to obtain reliable quantitative values of the boiling flux. Also, as noted, the mass lost in the very early time period was approximately proportional to the original mass of LPG used. It may be inferred that larger spills lead to more mixing and boiling before the ice shield prevents a direct contact between the LPG and the water.

Reid, R.C.; Smith, K.A.

1978-05-01T23:59:59.000Z

72

On Factors Controlling AirWater Gas Exchange in a Large Tidal River  

E-Print Network (OSTI)

and Estuarine Research Federation 2011 Abstract Air­water gas exchange is an important process in aquatic Introduction In rivers and estuaries, knowledge of air­water gas exchange is important for evaluating how floating domes. The opportunistic gas method relies on gases in the water that either occurred naturally (e

Ho, David

73

Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-Fired Absorption Gas-Fired Absorption Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on AddThis.com...

74

Spin states of para-water and ortho-water molecule in gas and liquid phases  

E-Print Network (OSTI)

Spin degrees of freedom of water molecule in gas and liquid state were investigated in order to provide a reasonable answer about the unsolved problem of a long-term behavior of water spin isomers. The approach used involves an assumption that molecules change their spin state from a pure state to a mixed one when they interact with some sorts of adsorbent surface. Some models and conceptions of the quantum information processing were used.

V. K. Konyukhov

2009-09-23T23:59:59.000Z

75

Zero Discharge Water Management for Horizontal Shale Gas Well Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Discharge Water Management for Discharge Water Management for Horizontal Shale Gas Well Development Final Report Start Date: October 1, 2009 End Date: March 31, 2012 Authors: Paul Ziemkiewicz, PhD Jennifer Hause Raymond Lovett, PhD David Locke Harry Johnson Doug Patchen, PG Report Date Issued: June 2012 DOE Award #: DE-FE0001466 Submitting Organization: West Virginia Water Research Institute West Virginia University PO Box 6064 Morgantown, WV 26506-6064 FilterSure, Inc. PO Box 1277 McLean, VA 22101 ShipShaper, LLP PO Box 2 Morgantown, WV 26507 2 | P a g e Acknowledgment "This material is based upon work supported by the Department of Energy under Award Number DE-FE0001466." Disclaimer "This report was prepared as an account of work sponsored by an agency of the United States

76

Experimental study and parameterization of gas absorption by water drops  

Science Conference Proceedings (OSTI)

Mass transfer between liquid drops and a continuous gas phase occurs in a large number of industrial processes and many engineering disciplines such as chemical and nuclear engineering, atmospheric sciences, environmental engineering, and so on. Liquid-phase mass-transfer coefficients are determined for the absorption of sulfur dioxide by water drops larger than 1.1 mm in dia. A local model based on the large eddy interfacial model proposed for Fortescue and Pearson (1967) is obtained by the characteristic interfacial scaling. In particular, the agitation process of the liquid phase in the interfacial region is characterized by the interfacial liquid friction velocity. Experiments of sulfur dioxide absorption and desorption from large individually free-falling water drops are also carried out in a 5-m rain shaft under various environmental conditions. These experimental results agree well with those from the local model characterizing the interfacial process in water drops greater than 1.1 mm in dia.

Amokrane, H.; Saboni, A.; Caussade, B. (CNRS, Toulouse (France). Inst. de Mecanique des Fluides)

1994-12-01T23:59:59.000Z

77

Methane contamination of drinking water accompanying gas-well drilling and  

E-Print Network (OSTI)

- matically increasing natural-gas extraction. In aquifers overlying the Marcellus and Utica shale formations of drinking water associated with shale- gas extraction. In active gas-extraction areas (one or more gas wells methane sources such as the Marcellus and Utica shales at the active sites and matched gas geochemistry

78

Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling and Analysis Results for 2011  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Legacy Management conducted natural gas sampling for the Gasbuggy, New Mexico, site on June 7 and 8, 2011. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

None

2011-09-01T23:59:59.000Z

79

Evaluation of plant seedling water stress using dynamic fluorescence index with blue LED-based fluorescence imaging  

Science Conference Proceedings (OSTI)

A dynamic fluorescence image index system capable of non-destructive assessment of water stress in cabbage seedlings was developed. The quenching curves of chlorophyll fluorescence characteristic to the plant's water stress status under reduced excitation ... Keywords: Chlorophyll fluorescence, Fluorescence image, Fluorescence index, Water stress

Shih-Chieh Hsiao; Suming Chen; I-Chang Yang; Chia-Tseng Chen; Chao-Yin Tsai; Yung-Kun Chuang; Feng-Jehng Wang; Yu-Liang Chen; Tzong-Shyan Lin; Y. Martin Lo

2010-07-01T23:59:59.000Z

80

Gas phase water in the surface layer of protoplanetary disks  

E-Print Network (OSTI)

Recent observations of the ground state transition of HDO at 464 GHz towards the protoplanetary disk of DM Tau have detected the presence of water vapor in the regions just above the outer disk midplane (Ceccarelli et al 2005). In the absence of non-thermal desorption processes, water should be almost entirely frozen onto the grain mantles and HDO undetectable. In this Letter we present a chemical model that explores the possibility that the icy mantles are photo-desorbed by FUV (6eV water vapor above the disk midplane over the entire disk. Assuming a photo-desorption yield of 10^{-3}, the water abundance in this layer is predicted to be ~ 3 x 10^{-7} and the average H2O column density is ~ 1.6x 10^{15} cm^{-2}. The predictions are very weakly dependent on the details of the model, like the incident FUV radiation field, and the gas density in the disk. Based on this model, we predict a gaseous HDO/H2O ratio in DM Tau of ~1%. In addition, we predict the ground state transition of water at 557 GHz to be undetectable with ODIN and/or HSO-HIFI.

C. Dominik; C. Ceccarelli; D. Hollenbach; M. Kaufman

2005-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "gas blue water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION  

Science Conference Proceedings (OSTI)

Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperature to improve reaction kinetics. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H{sub 2} removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2}-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. In the first year of the project, we prepared a series of nanostructured Cu- and Fe-containing ceria catalysts by a special gelation/precipitation technique followed by air calcination at 650 C. Each sample was characterized by ICP for elemental composition analysis, BET-N2 desorption for surface area measurement, and by temperature-programmed reduction in H{sub 2} to evaluate catalyst reducibility. Screening WGS tests with catalyst powders were conducted in a flow microreactor at temperatures in the range of 200-550 C. On the basis of both activity and stability of catalysts in simulated coal gas, and in CO{sub 2}-rich gases, a Cu-CeO{sub 2} catalyst formulation was selected for further study in this project. Details from the catalyst development and testing work are given in this report. Also in this report, we present H{sub 2} permeation data collected with unsupported flat membranes of pure Pd and Pd-alloys over a wide temperature window.

Maria Flytzani-Stephanopoulos; Jerry Meldon; Xiaomei Qi

2001-12-01T23:59:59.000Z

82

Detroit blues women.  

E-Print Network (OSTI)

??ABSTRACT DETROIT BLUES WOMEN by Michael Duggan Murphy August 2011 Advisor: Dr. John J. Bukowczyk Major: History Degree: Doctor of Philosophy "Detroit Blues Women" explores… (more)

Murphy, Michael Duggan

2011-01-01T23:59:59.000Z

83

Gas-Liquid Coexistence in the Primitive Model for Water  

E-Print Network (OSTI)

We evaluate the location of the gas-liquid coexistence line and of the associated critical point for the primitive model for water (PMW), introduced by Kolafa and Nezbeda [J. Kolafa and I. Nezbeda, Mol. Phys. 61, 161 (1987)]. Besides being a simple model for a molecular network forming liquid, the PMW is representative of patchy proteins and novel colloidal particles interacting with localized directional short-range attractions. We show that the gas-liquid phase separation is metastable, i.e. it takes place in the region of the phase diagram where the crystal phase is thermodynamically favored, as in the case of articles interacting via short-range attractive spherical potentials. Differently from spherical potentials, we do not observe crystallization close to the critical point. The region of gas-liquid instability of this patchy model is significantly reduced as compared to equivalent models of spherically interacting particles, confirming the possibility of observing kinetic arrest in an homogeneous sample driven by bonding as opposed to packing.

F. Romano; P. Tartaglia; F. Sciortino

2007-03-14T23:59:59.000Z

84

Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling  

E-Print Network (OSTI)

Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling (Updated November 15th in the absence of shale-gas drilling, well owners are strongly encouraged to evaluate their water on a regular testing in order to more specifically document potential impacts of Marcellus Shale gas development

Manning, Sturt

85

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS  

DOE Green Energy (OSTI)

This project involved fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2} -separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams were examined in the project. Cu-cerium oxide was identified as the most promising high-temperature water-gas shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. The high-temperature shift catalyst composition was optimized by proper selection of dopant type and amount in ceria. The formulation 10at%Cu-Ce(30at%La)O{sub x} showed the best performance, and was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The apparent activation energy, measured over aged catalysts, was equal to 70.2 kJ/mol. Reaction orders in CO, H{sub 2}O, CO{sub 2} and H{sub 2} were found to be 0.8, 0.2, -0.3, and -0.3, respectively. This shows that H{sub 2}O has very little effect on the reaction rate, and that both CO{sub 2} and H{sub 2} weakly inhibit the reaction. Good stability of catalyst performance was found in 40-hr long tests. A flat (38 cm{sup 2}) Pd-Cu alloy membrane reactor was used with the catalyst washcoated on oxidized aluminum screens close coupled with the membrane. To achieve higher loadings, catalyst granules were layered on the membrane itself to test the combined HTS activity/ H{sub 2} -separation efficiency of the composite. Simulated coal gas mixtures were used and the effect of membrane on the conversion of CO over the catalyst was evidenced at high space velocities. Equilibrium CO conversion at 400 C was measured at a space velocity of 30,000 h{sup -1} with the 10{micro}m- thick Pd{sub 60}Cu{sub 40} membrane operating under a pressure differential of 100 psi. No carbon deposition took place during operation. The performance of the coupled Cu-ceria catalyst/membrane system at 400 C was stable in {approx} 30 h of continuous operation. The overall conclusion from this project is that Cu-doped ceria catalysts are suitable for use in high-temperature water-gas shift membrane reactors. CO{sub 2}-rich operation does not affect the catalyst activity or stability; neither does it affect hydrogen permeation through the Pd-Cu membrane. Operation in the temperature range of 400-430 C is recommended.

Maria Flytzani-Stephanopoulos; Xiaomei Qi; Scott Kronewitter

2004-02-01T23:59:59.000Z

86

FEMP Designated Product Assessment for Commercial Gas Water Heaters  

E-Print Network (OSTI)

calculated at a federal natural gas price of $.90 per thermaverage commercial price of natural gas using a discount

Lutz, Jim

2012-01-01T23:59:59.000Z

87

Gas-Fired Absorption Heat Pump Water Heater Research Project | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Gas-Fired Absorption Heat Pump Water Emerging Technologies » Gas-Fired Absorption Heat Pump Water Heater Research Project Gas-Fired Absorption Heat Pump Water Heater Research Project The U.S. Department of Energy (DOE) is currently conducting research into carbon gas-fired absorption heat pump water heaters. This project will employ innovative techniques to increase water heating energy efficiency over conventional gas storage water heaters by 40%. Project Description This project seeks to develop a natural gas-fired water heater using an absorption heat. The development effort is targeting lithium bromide aqueous solutions as a working fluid in order to avoid the negative implications of using more toxic ammonia. Project Partners Research is being undertaken through a Cooperative Research and Development

88

Solubility trapping in formation water as dominant CO2 sink in natural gas fields  

E-Print Network (OSTI)

LETTERS Solubility trapping in formation water as dominant CO2 sink in natural gas fields Stuart M removal in nine natural gas fields in North America, China and Europe, using noble gas and carbon isotope tracers. The natural gas fields investigated in our study are dominated by a CO2 phase and provide

Haszeldine, Stuart

89

Geophysical evidence for gas hydrates in the deep water of the South Caspian Basin, Azerbaijan  

E-Print Network (OSTI)

as methane clathrates or clathrate hydrates of natural gas, these substances are similar to ice accumulations of natural gas on Earth are in the form of gas hydrates (Collett, 1994) that occur mainly offshore water, concern over the potential hazard posed by gas hydrates has become an important issue. Chev- ron

Knapp, James Howard

90

Liquid water transport in fuel cell gas diffusion layers Aimy Ming Jii Bazylak  

E-Print Network (OSTI)

Liquid water transport in fuel cell gas diffusion layers by Aimy Ming Jii Bazylak Bachelor means, without the permission of the author. #12;ii Liquid water transport in fuel cell gas diffusion State University) Abstract Liquid water management has a major impact on the performance and durability

Victoria, University of

91

Analysis of Heating Systems and Scale of Natural Gas-Condensing Water Boilers in Northern Zones  

E-Print Network (OSTI)

In this paper, various heating systems and scale of the natural gas-condensing water boiler in northern zones are discussed, based on a technical-economic analysis of the heating systems of natural gas condensing water boilers in northern zones. The analysis shows that the low-temperature radiant floor heating system is more suitable for natural gas- condensing water boilers. It is more comfortable, more economical, and can save more energy than other heating systems.

Wu, Y.; Wang, S.; Pan, S.; Shi, Y.

2006-01-01T23:59:59.000Z

92

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS  

DOE Green Energy (OSTI)

Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperatures to improve reaction kinetics and permeation. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H{sub 2} removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2}-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. The first-year screening studies of WGS catalysts identified Cu-ceria as the most promising high-temperature shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}, and were thus eliminated from further consideration. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. Several catalyst formulations were prepared, characterized and tested in the first year of study. Details from the catalyst development and testing work were given in our first annual technical report. Hydrogen permeation through Pd and Pd-alloy foils was investigated in a small membrane reactor constructed during the first year of the project. The effect of temperature on the hydrogen flux through pure Pd, Pd{sub 60}Cu{sub 40} and Pd{sub 75}Ag{sub 25} alloy membranes, each 25 {micro}m thick, was evaluated in the temperature range from 250 C to 500 C at upstream pressure of 4.4 atm and permeate hydrogen pressure of 1 atm. Flux decay was observed for the Pd-Cu membrane above 500 C. From 350-450 C, an average hydrogen flux value of 0.2 mol H{sub 2}/m{sup 2}/s was measured over this Pd-alloy membrane. These results are in good agreement with literature data. In this year's report, we discuss reaction rate measurements, optimization of catalyst kinetics by proper choice of dopant oxide (lanthana) in ceria, long-term stability studies, and H{sub 2} permeation data collected with unsupported flat, 10 {micro}m-thick Pd-Cu membranes over a wide temperature window and in various gas mixtures. The high-temperature shift catalyst composition was further improved, by proper selection of dopant type and amount. The formulation 10 at%Cu-Ce(30 at%La)Ox was the best; this was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The stability of catalyst performance was examined in 40-hr long tests. A series of hydrogen permeation tests were conducted in a small flat-membrane reactor using the 10 m{micro}-thick Pd-Cu membranes. Small inhibitory effects of CO and CO{sub 2} were found at temperatures above 350 C, while H{sub 2}O vapor had no effect on hydrogen permeation. No carbon deposition took place during many hours of membrane operation. The reaction extent on the blank (catalyst-free) membrane was also negligible. A larger flat-membrane reactor will be used next year with the catalyst wash coated on screens close coupled with the Pd-Cu membrane.

Maria Flytzani-Stephanopoulos, PI; Jerry Meldon, Co-PI; Xiaomei Qi

2002-12-01T23:59:59.000Z

93

Detachment of Liquid-Water Droplets from Gas-Diffusion Layers  

SciTech Connect

A critical issue for optimal water management in proton-exchange-membrane fuel cells at lower temperatures is the removal of liquid water from the cell. This pathway is intimately linked with the phenomena of liquid-water droplet removal from surface of the gas-diffusion layer and into the flow channel. Thus, a good understanding of liquid-water transport and droplet growth and detachment from the gas-diffusion layer is critical. In this study, liquid-water droplet growth and detachment on the gas-diffusion layer surfaces are investigated experimentally to improve the understating of water transport through and removal from gas-diffusion layers. An experiment using a sliding-angle measurement is designed and used to quantify and directly measure the adhesion force for liquid-water droplets, and to understand the droplets? growth and detachment from the gas-diffusion layers.

Das, Prodip K.; Grippin, Adam; Weber, Adam Z.

2011-07-01T23:59:59.000Z

94

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

Experiences of residential consumers and utilities. OakStar (2008). Energy Star Residential Water Heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.

2010-01-01T23:59:59.000Z

95

Transmutation rates in the annulus gas of pressure tube water reactors.  

E-Print Network (OSTI)

??CANDU (CANada Deuterium Uranium) reactor utilizes Pressure Tube (PT) fuel channel design and heavy water as a coolant. Fuel channel annulus gas acts as an… (more)

Ahmad, Mohammad Mateen

2011-01-01T23:59:59.000Z

96

Electric, Gas, Water, Heating, Refrigeration, and Street Railways Facilities and Service (South Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation contains provisions for facilities and service related to electricity, natural gas, water, heating, refrigeration, and street railways. The chapter addresses the construction and...

97

Water Jet Applications for Gas Turbine Manufacturing - State of the Art  

Science Conference Proceedings (OSTI)

Presentation Title, Water Jet Applications for Gas Turbine Manufacturing - State of the Art ... Impact of Materials Selection on the Sustainability of Wind Energy.

98

Water-Gas Samples At Lightning Dock Area (Norman & Moore, 2004...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Lightning Dock Area (Norman & Moore, 2004) Exploration Activity Details...

99

Water-Gas Samples At Black Warrior Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Black Warrior Area (DOE GTP) Exploration Activity Details Location...

100

Water-Gas Samples At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Colrado Area (DOE GTP) Exploration Activity Details Location Colado...

Note: This page contains sample records for the topic "gas blue water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Water-Gas Samples At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Water-Gas Samples At Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL...

102

Water-Gas Samples At Gabbs Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs...

103

Water-Gas Samples At Glass Buttes Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass...

104

Minimization of steam requirements and enhancement of water-gas shift reaction with warm gas temperature CO2 removal  

SciTech Connect

The disclosure utilizes a hydroxide sorbent for humidification and CO.sub.2 removal from a gaseous stream comprised of CO and CO.sub.2 prior to entry into a water-gas-shift reactor, in order to decrease CO.sub.2 concentration and increase H.sub.2O concentration and shift the water-gas shift reaction toward the forward reaction products CO.sub.2 and H.sub.2. The hydroxide sorbent may be utilized for absorbtion of CO.sub.2 exiting the water-gas shift reactor, producing an enriched H.sub.2 stream. The disclosure further provides for regeneration of the hydroxide sorbent at temperature approximating water-gas shift conditions, and for utilizing H.sub.2O product liberated as a result of the CO.sub.2 absorption.

Siriwardane, Ranjani V; Fisher, II, James C

2013-12-31T23:59:59.000Z

105

Ratio of produced gas to produced water from DOE's EDNA Delcambre No. 1 geopressured-geothermal aquifer gas well test  

DOE Green Energy (OSTI)

A paper presented by the Institute of Gas Technology (IGT) at the Third Geopressured-Geothermal Energy Conference hypothesized that the high ratio of produced gas to produced water from the No. 1 sand in the Edna Delcambre No. 1 well was due to free gas trapped in pores by imbibition over geological time. This hypothesis was examined in relation to preliminary test data which reported only average gas to water ratios over the roughly 2-day steps in flow rate. Subsequent public release of detailed test data revealed substantial departures from the previously reported computer simulation results. Also, data now in the public domain reveal the existence of a gas cap on the aquifier tested. This paper describes IGT's efforts to match the observed gas/water production with computer simulation. Two models for the occurrence and production of gas in excess of that dissolved in the brine have been used. One model considers the gas to be dispersed in pores by imbibition, and the other model considers the gas as a nearby free gas cap above the aquifier. The studies revealed that the dispersed gas model characteristically gave the wrong shape to plots of gas production on the gas/water ratio plots such that no reasonable match to the flow data could be achieved. The free gas cap model gave a characteristically better shape to the production plots and could provide an approximate fit to the data of the edge of the free gas cap is only about 400 feet from the well.Because the geological structure maps indicate the free gas cap to be several thousand feet away and the computer simulation results match the distance to the nearby Delcambre Nos. 4 and 4A wells, it appears that the source of the excess free gas in the test of the No. 1 sand may be from these nearby wells. The gas source is probably a separate gas zone and is brought into contact with the No. 1 sand via a conduit around the No. 4 well.

Rogers, L.A.; Randolph, P.L.

1979-01-01T23:59:59.000Z

106

Water management technologies used by Marcellus Shale Gas Producers.  

Science Conference Proceedings (OSTI)

Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

Veil, J. A.; Environmental Science Division

2010-07-30T23:59:59.000Z

107

ŤCharacterizing Natural Gas Hydrates in the Deep Water Gulf...  

NLE Websites -- All DOE Office Websites (Extended Search)

relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas...

108

Spreadsheets for Geothermal Water and Gas Geochemistry | Open...  

Open Energy Info (EERE)

and plots four common ternaries, three3 "YT" gas geothermometer grids and two gas ratio geothermometer grids, mainly derived from the work of Werner Giggenbach. Typical...

109

pH Adjustment of Power Plant Cooling Water with Flue Gas/Fly Ash  

to fossil fuel burning power plants to control mineral precipitation in cooling water. Flue gas, which is 10% CO2, could be diverted into a plant’s cooling water

110

Simulating the Effect of Water on the Fracture System of Shale Gas Wells  

E-Print Network (OSTI)

It was observed that many hydraulically fractured horizontal shale gas wells exhibit transient linear flow behavior. A half-slope on a type curve represents this transient linear flow behavior. Shale gas wells show a significant skin effect which is uncommon in tight gas wells and masks early time linear behavior. Usually 70-85 percent of frac water is lost in the formation after the hydraulic fracturing job. In this research, a shale gas well was studied and simulated post hydraulic fracturing was modeled to relate the effect of frac water to the early significant skin effect observed in shale gas wells. The hydraulically fractured horizontal shale gas well was described in this work by a linear dual porosity model. The reservoir in this study consisted of a bounded rectangular reservoir with slab matrix blocks draining into neighboring hydraulic fractures and then the hydraulic fractures feed into the horizontal well that fully penetrates the entire rectangular reservoir. Numerical and analytical solutions were acquired before building a 3D 19x19x10 simulation model to verify accuracy. Many tests were conducted on the 3D model to match field water production since initial gas production was matching the analytical solutions before building the 3D simulation model. While some of the scenarios tested were artificial, they were conducted in order to reach a better conceptual understanding of the field. Increasing the water saturation in the formation resulted in increasing water production while lowering gas production. Adding a fractured bottom water layer that leaked into the hydraulic fracture allowed the model to have a good match of water and gas production rates. Modeling trapped frac water around the fracture produced approximately the same amount of water produced by field data, but the gas production was lower. Totally surrounding the fracture with frac water blocked all gas production until some of the water was produced and gas was able to pass through. Finally, trapped frac water around the fracture as combined with bottom water showed the best results match. It was shown that frac water could invade the formation surrounding the hydraulic fracture and could cause formation damage by blocking gas flow. It was also demonstrated that frac water could partially block off gas flow from the reservoir to the wellbore and thus lower the efficiency of the hydraulic fracturing job. It was also demonstrated that frac water affects the square root of time plot. It was proven by simulation that the huge skin at early time could be caused by frac water that invades and gets trapped near the hydraulic fractures due to capillary pressure.

Hamam, Hassan Hasan H.

2010-08-01T23:59:59.000Z

111

Sound speed in liquid–gas mixtures: Water–air and water  

E-Print Network (OSTI)

The sound speed of a two-phase fluid, such as a magma-gas, water-air, or water-steam mixture, is dramatically different from the sound speed of either pure component. In numerous geologic situations the sound speed of such two-phase systems may be of interest: in the search for magma reservoirs, in seismic exploration of geothermal areas, in prediction of P wave velocity decreases prior to earthquakes, and in inversion of crustal and upper mantle seismic records. Probably most dramatically, fluid flow characteristics during eruptions of volcanoes and geysers are strongly dependent on the sound speed of erupting two-phase (or multiphase) fluids. In this paper the sound speeds of water, air, steam, water-air mixtures, and water-steam mixtures are calculated. It is demonstrated that sound speeds calculated from classical acoustic and fluid dynamics analyses agree with results obtained from finite amplitude 'vaporization wave ' theory. To the extent that air and steam are represented as perfect gases with an adiabatic exponent •, independent of temperature, their sound speeds vary in a simple manner directly with the square root of the absolute temperature. The sound speed of pure liquid water is a complex function of pressure and temperature and is given here to 8 kbar, 900řC. In pure water at all pressures the sound speed attains a maximum value near 100řC and decreases at higher temperatures; at high pressures the decrease is continuous, but at pressures below 1 kbar the sound speed reaches a minimum value in the

Susan Werner Kieffer

1977-01-01T23:59:59.000Z

112

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

Science Conference Proceedings (OSTI)

The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

Dexin Wang

2012-03-31T23:59:59.000Z

113

Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems  

E-Print Network (OSTI)

climatically important trace gas fluxes on regional and global scales, yet the magnitude of the transfer-generated turbulence in a shallow tidal sea, Nature, 400, 251­254. Raymond, P. A., and J. J. Cole (2001), Gas exchangeEnvironmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems

Ho, David

114

The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling  

E-Print Network (OSTI)

The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling Methane, including shale gas drilling. Monitoring techniques exist for detecting methane and, in some cases detail within the context of shale gas drilling activities in New York, as well as their uses

Wang, Z. Jane

115

Blue-green algae  

NLE Websites -- All DOE Office Websites (Extended Search)

green algae Name: Renee Location: NA Country: NA Date: NA Question: How much oxygen does green-blue algae produce, and how big are they? Replies: Blue-green algae...

116

OpenEI Community - natural gas+ condensing flue gas heat recovery+ water  

Open Energy Info (EERE)

Increase Natural Gas Increase Natural Gas Energy Efficiency http://en.openei.org/community/group/increase-natural-gas-energy-efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas.How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature?gas-energy-efficiency" target="_blank">read more natural gas+ condensing flue gas heat

117

NETL: News Release - DOE's Oil and Gas Produced-Water Program Logs Key  

NLE Websites -- All DOE Office Websites (Extended Search)

July 20, 2007 July 20, 2007 DOE's Oil and Gas Produced-Water Program Logs Key Milestones Cost-Effectively Treating Coproduced Water Boosts U.S. Energy, Water Supplies MORGANTOWN, WV - A research program funded by the U.S. Department of Energy (DOE) is making significant progress in developing new ways to treat and use water coproduced with oil and natural gas. The ultimate benefit is a two-for-one solution that expects to boost domestic energy supplies while enhancing the Nation's water supply. Coproduced water-some of which occurs naturally in subsurface formations, and some that is recovered following injection of water into an oil or gas reservoir to boost production-accounts for 98 percent of all waste generated by U.S. oil and natural gas operations. Produced-water volumes average nine barrels for each barrel of oil produced. Handling, treating, and safely disposing of this produced water has been a tough, costly challenge for oil and natural gas producers for decades. Much of the produced water has high concentrations of minerals or salts that make it unsuitable for beneficial use or surface discharge. An oilfield operator often must reinject such produced water into deep formations, sometimes resorting to costly trucking of the water to deep-injection well sites specially designated by the U.S. Environmental Protection Agency.

118

Status of Blue Ridge Reservoir  

DOE Green Energy (OSTI)

This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Blue Ridge Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports and data available, as well as interview with water resource professionals in various federal, state, and local agencies. Blue Ridge Reservoir is a single-purpose hydropower generating project. When consistent with this primary objective, the reservoir is also operated to benefit secondary objectives including water quality, recreation, fish and aquatic habitat, development of shoreline, aesthetic quality, and other public and private uses that support overall regional economic growth and development. 8 refs., 1 fig.

Not Available

1990-09-01T23:59:59.000Z

119

FEMP Designated Product Assessment for Commercial Gas Water Heaters  

E-Print Network (OSTI)

FEMP Designated Product Assessment for Commercial Gas Waterrequirement for FEMP-designated products is generally set at

Lutz, Jim

2012-01-01T23:59:59.000Z

120

Economics of Residential Gas Furnaces and Water Heaters in United States  

NLE Websites -- All DOE Office Websites (Extended Search)

Economics of Residential Gas Furnaces and Water Heaters in United States Economics of Residential Gas Furnaces and Water Heaters in United States New Construction Market Speaker(s): Alex Lekov Gabrielle Wong-Parodi James McMahon Victor Franco Date: May 8, 2009 - 12:00pm Location: 90-3122 In the new single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this study, the authors use a life-cycle cost analysis approach that accounts for uncertainty and variability of inputs to assess the economic benefits of installing different gas furnace and water heater combinations. Among other factors, it assesses the economic feasibility of eliminating the traditional metal vents and replacing them with vents made of plastic materials used in condensing and power vent

Note: This page contains sample records for the topic "gas blue water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Dexin Wang Dexin Wang Principal Investigator Gas Technology Institute 1700 South Mount Prospect Rd Des Plaines, Il 60018 847-768-0533 dexin.wang@gastechnology.org TransporT MeMbrane Condenser for WaTer and energy reCovery froM poWer planT flue gas proMIs/projeCT no.: nT0005350 Background One area of the U.S. Department of Energy's (DOE) Innovations for Existing Plants (IEP) Program's research is being performed to develop advanced technologies to reuse power plant cooling water and associated waste heat and to investigate methods to recover water from power plant flue gas. Considering the quantity of water withdrawn and consumed by power plants, any recovery or reuse of this water can significantly reduce the plant's water requirements. Coal occurs naturally with water present (3-60 weight %), and the combustion

122

Can Propagation of Gas Bubbles Lead to Detached Solidification? Experiments on Freezing of Water  

E-Print Network (OSTI)

. The ampoules were ap- proximately 30-cm long and were filled to about 12 cm with water. The heater velocity versus heater temperature. The water was saturated with air and the ampoule was coated with TeflonCan Propagation of Gas Bubbles Lead to Detached Solidification? Experiments on Freezing of Water

Regel, Liya L.

123

Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania  

E-Print Network (OSTI)

Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania Nathaniel R compositions of the effluents reflect the composition of Marcellus Shale produced waters. The discharge to concentrations in Marcellus Shale produced waters. Nonetheless, 226 Ra levels in stream sediments (544-8759 Bq

Jackson, Robert B.

124

Developing a water treatment system for Subsea Gas processing plant.  

E-Print Network (OSTI)

??The petroleum industry is currently moving to meet the ever-rising demand for oil and gas production. As onshore fields become depleted and decline in production,… (more)

Honer Badi M Nazhat, Dana

2006-01-01T23:59:59.000Z

125

Energy Cost Calculator for Electric and Gas Water Heaters | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric and Gas Water Heaters Electric and Gas Water Heaters Energy Cost Calculator for Electric and Gas Water Heaters October 8, 2013 - 2:26pm Addthis Vary equipment size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Type of Water Heater Electric Gas Electric Average Daily Usage (gallons per day)* gallons 64* Energy Factor† 0.92 (electric) 0.61 (gas) Energy Cost $ / kWh $0.06 per kWh $.60 per therm Quantity of Water Heaters to be Purchased unit(s) 1 unit * See assumptions for various daily water use totals. † The comparison assumes a storage tank water heater as the input type. To allow demand water heaters as the comparison type, users can specify an input EF of up to 0.85; however, 0.66 is currently the best available EF for storage water heaters.

126

Development of Novel Water-Gas Shift Membrane Reactor  

DOE Green Energy (OSTI)

This report summarizes the objectives, technical barrier, approach, and accomplishments for the development of a novel water-gas-shift (WGS) membrane reactor for hydrogen enhancement and CO reduction. We have synthesized novel CO{sub 2}-selective membranes with high CO{sub 2} permeabilities and high CO{sub 2}/H{sub 2} and CO{sub 2}/CO selectivities by incorporating amino groups in polymer networks. We have also developed a one-dimensional non-isothermal model for the countercurrent WGS membrane reactor. The modeling results have shown that H{sub 2} enhancement (>99.6% H{sub 2} for the steam reforming of methane and >54% H{sub 2} for the autothermal reforming of gasoline with air on a dry basis) via CO{sub 2} removal and CO reduction to 10 ppm or lower are achievable for synthesis gases. With this model, we have elucidated the effects of system parameters, including CO{sub 2}/H{sub 2} selectivity, CO{sub 2} permeability, sweep/feed flow rate ratio, feed temperature, sweep temperature, feed pressure, catalyst activity, and feed CO concentration, on the membrane reactor performance. Based on the modeling study using the membrane data obtained, we showed the feasibility of achieving H{sub 2} enhancement via CO{sub 2} removal, CO reduction to {le} 10 ppm, and high H{sub 2} recovery. Using the membrane synthesized, we have obtained <10 ppm CO in the H{sub 2} product in WGS membrane reactor experiments. From the experiments, we verified the model developed. In addition, we removed CO{sub 2} from a syngas containing 17% CO{sub 2} to about 30 ppm. The CO{sub 2} removal data agreed well with the model developed. The syngas with about 0.1% CO{sub 2} and 1% CO was processed to convert the carbon oxides to methane via methanation to obtain <5 ppm CO in the H{sub 2} product.

Ho, W. S. Winston

2004-12-29T23:59:59.000Z

127

Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Grigsby...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History View New Pages Recent Changes All Special Pages...

128

Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Goff &...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History View New Pages Recent Changes All Special Pages...

129

Water-Gas Samples At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History View New Pages Recent Changes All Special Pages...

130

Water-Gas Samples At Lassen Volcanic National Park Area (Janik...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History View New Pages Recent Changes All Special Pages...

131

Water-Gas Samples At Valles Caldera - Sulphur Springs Area (Goff...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History View New Pages Recent Changes All Special Pages...

132

Sustainable development through beneficial use of produced water for the oil and gas industry.  

E-Print Network (OSTI)

??Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large… (more)

Siddiqui, Mustafa Ashique

2012-01-01T23:59:59.000Z

133

Memphis Light, Gas and Water Division Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Light, Gas and Water Division Smart Grid Project Light, Gas and Water Division Smart Grid Project Jump to: navigation, search Project Lead Memphis Light, Gas and Water Division Country United States Headquarters Location Memphis, Tennessee Recovery Act Funding $5,063,469.00 Total Project Value $13112363 Coverage Area Coverage Map: Memphis Light, Gas and Water Division Smart Grid Project Coordinates 35.1495343°, -90.0489801° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

134

Process for hydrogen isotope concentration between liquid water and hydrogen gas  

DOE Patents (OSTI)

A process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas, wherein liquid water and hydrogen gas are contacted, in an exchange section, with one another and with at least one catalyst body comprising at least one metal selected from Group VIII of the Periodic Table and preferably a support therefor, the catalyst body has a liquid-water-repellent, gas permeable polymer or organic resin coating, preferably a fluorinated olefin polymer or silicone coating, so that the isotope concentration takes place by two simultaneously occurring steps, namely, ##EQU1## WHILE THE HYDROGEN GAS FED TO THE EXCHANGE SECTION IS DERIVED IN A REACTOR VESSEL FROM LIQUID WATER THAT HAS PASSED THROUGH THE EXCHANGE SECTION.

Stevens, William H. (Deep River, CA)

1976-09-21T23:59:59.000Z

135

CERIA-BASED WATER-GAS-SHIFT CATALYSTS S. Swartz, A-M. Azad, M. Seabaugh  

E-Print Network (OSTI)

readings to be taken on humidified (non-reacted) gas, for subsequent conversion calculations. The reactorCERIA-BASED WATER-GAS-SHIFT CATALYSTS S. Swartz, A-M. Azad, M. Seabaugh NexTech Materials, Ltd (motive and/or auxiliary) and stationary (residential) power applications. PEM fuel cells operate either

Azad, Abdul-Majeed

136

June 2011 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site  

SciTech Connect

Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analyses. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. A duplicate produced water sample was collected from well 30-039-21743. Produced water samples were not collected at locations 30-039-30161 and 30-039-21744 because of the lack of water. Samples were not collected from location 30-039-29988 because the well was shut-in.

None

2011-10-01T23:59:59.000Z

137

Energy Efficient Condensing Side-arm Gas Water Heater - Energy ...  

Hydrogen and Fuel Cell; Hydropower, Wave and ... thereby eliminating standby energy losses that occur when heat is transferred from the hot water to ...

138

Economics of Residential Gas Furnaces and Water Heaters in United...  

NLE Websites -- All DOE Office Websites (Extended Search)

driven by first cost considerations and the availability of power vent and condensing water heaters. Little analysis has been performed to assess the economic impacts of the...

139

Life-Cycle Water and Greenhouse Gas Implications of Alternative...  

NLE Websites -- All DOE Office Websites (Extended Search)

of life-cycle assessment and optimization in assessing such questions as: a.) How will future transportation energy production impact water resource availability in the US? b.)...

140

NUMERICAL STUDY OF CO-CURRENT WATER-DRY GAS FLOW IN GAS GATHERING SYSTEMS.  

E-Print Network (OSTI)

??The optimum operation of the surface production system is one of the key elements needed for the successful operation of natural gas well facilities, particularly… (more)

Fernandez Luengo, Juan

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas blue water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Reclamation of potable water from mixed gas streams  

DOE Patents (OSTI)

An apparatus for separating a liquid from a mixed gas stream can include a wall, a mixed gas stream passageway, and a liquid collection assembly. The wall can include a first surface, a second surface, and a plurality of capillary condensation pores. The capillary condensation pores extend through the wall, and have a first opening on the first surface of the wall, and a second opening on the second surface of the wall. The pore size of the pores can be between about 2 nm to about 100 nm. The mixed gas stream passageway can be in fluid communication with the first opening. The liquid collection assembly can collect liquid from the plurality of pores.

Judkins, Roddie R; Bischoff, Brian L; Debusk, Melanie Moses; Narula, Chaitanya

2013-08-20T23:59:59.000Z

142

Geophysical evidence for gas hydrates in the deep water of the South Caspian Basin, Azerbaijan  

E-Print Network (OSTI)

Geophysical evidence for gas hydrates in the deep water of the South Caspian Basin, Azerbaijan C the South Caspian Sea, offshore Azerbaijan, document for the ®rst time in the deep water (up to 650 m Caspian Sea. The Absheron block, named after the nearby Absheron Peninsula in Azerbaijan, is situated

Knapp, Camelia Cristina

143

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

SciTech Connect

Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certification. Consumers, installers, and builders who make decisions about installing space and water heating equipment generally do not perform an analysis to assess the economic impacts of different combinations and efficiencies of space and water heating equipment. Thus, equipment is often installed without taking into consideration the potential life-cycle economic and energy savings of installing space and water heating equipment combinations. Drawing on previous and current analysis conducted for the United States Department of Energy rulemaking on amended standards for furnaces and water heaters, this paper evaluates the extent to which condensing equipment can provide life-cycle cost-effectiveness in a representative sample of single family American homes. The economic analyses indicate that significant energy savings and consumer benefits may result from large-scale introduction of condensing water heaters combined with condensing furnaces in U.S. residential single-family housing, particularly in the Northern region. The analyses also shows that important benefits may be overlooked when policy analysts evaluate the impact of space and water heating equipment separately.

Lekov, Alex; Franco, Victor; Meyers, Steve

2010-05-14T23:59:59.000Z

144

Building America Top Innovations Hall of Fame Profile Â… Tankless Gas Water Heater Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incorporating tankless water heaters was one Incorporating tankless water heaters was one of many energy-efficiency recommendations Building America's research team IBACOS had for San Antonio builder Imagine Homes. Although tankless gas water heaters should save approximately 33% on hot water heating compared to a conventional storage water heater, actual energy savings vary significantly based on individual draw volume. Above 10 gallons per draw, the efficiency approaches the rated energy factor. The greatest savings occur at a daily use quantity of about 50 gallons. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.2 Energy Efficient Components Tankless Gas Water Heater Performance As improved thermal enclosures dramatically reduce heating and cooling loads,

145

A Simple Method to Continuous Measurement of Energy Consumption of Tank Less Gas Water Heaters for Commercial Buildings  

E-Print Network (OSTI)

energy consumptions of hot water supply in restaurants or residential houses are large amount, guidelines for optimal design are not presented. measurements of energy consumption of tank less gas water heaters very difficult unless gas flow meters were installed. however a gas flow meters is hardly installed for individual heater. in this study, a simple method to estimate gas consumption of such appliances form temperature of exhaust gas and electric current was presented. experiments of japanese major hot water gas heaters were conducted change under conditions of various water flow rate at constant output temperature. the empirical equations, which related gas consumption to exhaust gas temperature and operative current, were obtained for each type of water heaters, each manufacturer and overall heaters. verification of the method was conducted at a commercial building. some thresholds to decide status of operation, such as anti-freeze operation, were set, and sufficient accuracy of around 10 % error was achieved.

Yamaha, M.; Fujita, M.; Miyoshi, T.

2006-01-01T23:59:59.000Z

146

Special Provisions Affecting Gas, Water, or Pipeline Companies (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation confers the rights and privileges of telegraph and telephone companies (S.C. Code 58-9) on pipeline and water companies, and contains several additional provisions pertaining to...

147

Gas Absorption into a Moving Spheroidal Water Drop  

Science Conference Proceedings (OSTI)

Theoretical and experimental studies have been carried out to describe the absorption of sulfur dioxide by moving spheroidal water drops under transient flow conditions. These investigations allow the determination of the rate at which SO2 is ...

H. Amokrane; B. Caussade

1999-06-01T23:59:59.000Z

148

Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations  

Science Conference Proceedings (OSTI)

The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with the specific projects and regions, which increases the productive life of wells and increases the ultimate recoverable reserves in the ground. A case study was conducted in Wyoming to validate the applicability of the GIS analysis tool for watershed evaluations under real world conditions. Results of the partnered research will continue to be shared utilizing proven methods, such as on the IGOCC Web site, preparing hard copies of the results, distribution of documented case studies, and development of reference and handbook components to accompany the interactive internet-based GIS watershed analysis tool. Additionally, there have been several technology transfer seminars and presentations. The goal is to maximize the recovery of our nation's energy reserves and to promote water conservation.

Rachel Henderson

2007-09-30T23:59:59.000Z

149

Deep Blue No. 1-A Slimhole Geothermal Discovery at Blue Mountain, Humboldt  

Open Energy Info (EERE)

No. 1-A Slimhole Geothermal Discovery at Blue Mountain, Humboldt No. 1-A Slimhole Geothermal Discovery at Blue Mountain, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Deep Blue No. 1-A Slimhole Geothermal Discovery at Blue Mountain, Humboldt County, Nevada Abstract The purpose of this paper is to provide a summary of the geology, drilling operations, and down-hole measurements obtained during the drilling of Deep Blue No.1. This well was sited on the basis of proximity to numerous gold exploration holes that indicated thermal water, high temperature gradients recorded in the 12 shallow gradient holes, and low resistivity values associated with certain interpreted major faults. The well was targeted to intersect fracture zones associated with the West and Central Faults, two

150

Deep Blue No 1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt  

Open Energy Info (EERE)

1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt 1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt County, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Deep Blue No 1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt County, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: The purpose of this paper is to provide a summary of the geology, drilling operations, and down-hole measurements obtained during the drilling of Deep Blue No.1. This well was sited on the basis of proximity to numerous gold exploration holes that indicated thermal water, high temperature gradients recorded in the 12 shallow gradient holes, and low resistivity values associated with certain interpreted major faults. The well was targeted to intersect fracture zones associated with the West and

151

Economics of residential gas furnaces and water heaters in United States new construction market  

SciTech Connect

New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2009-05-06T23:59:59.000Z

152

BRANCHED ALKANES FROM BLUE-GREEN ALGAE  

DOE Green Energy (OSTI)

Branched alkanes from blue-green algae were separated on a 750 feet high resolution capillary gas chromatographic column. The mixture was found to be 90% of 1:1 ratio 7-methyl, and 8-methyl-heptadecane, and 10% of 6-methylheptadecane. An optical rotation of +2.5 {+-} 0.5 was obtained on a 5 mg of mixture.

Han, Jerry; Calvin, Melvin.

1970-08-01T23:59:59.000Z

153

Effects of Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability  

DOE Green Energy (OSTI)

Demonstrating effective treatment technologies and beneficial uses for oil and gas produced water is essential for producers who must meet environmental standards and deal with high costs associated with produced water management. Proven, effective produced-water treatment technologies coupled with comprehensive data regarding blending ratios for productive long-term irrigation will improve the state-of-knowledge surrounding produced-water management. Effective produced-water management scenarios such as cost-effective treatment and irrigation will discourage discharge practices that result in legal battles between stakeholder entities. The goal of this work is to determine the optimal blending ratio required for irrigating crops with CBNG and conventional oil and gas produced water treated by ion exchange (IX), reverse osmosis (RO), or electro-dialysis reversal (EDR) in order to maintain the long term physical integrity of soils and to achieve normal crop production. The soils treated with CBNG produced water were characterized with significantly lower SAR values compared to those impacted with conventional oil and gas produced water. The CBNG produced water treated with RO at the 100% treatment level was significantly different from the untreated produced water, while the 25%, 50% and 75% water treatment levels were not significantly different from the untreated water. Conventional oil and gas produced water treated with EDR and RO showed comparable SAR results for the water treatment technologies. There was no significant difference between the 100% treated produced water and the control (river water). The EDR water treatment resulted with differences at each level of treatment, which were similar to RO treated conventional oil and gas water. The 100% treated water had SAR values significantly lower than the 75% and 50% treatments, which were similar (not significantly different). The results of the greenhouse irrigation study found the differences in biomass production between each soil were significant for Western Wheatgrass and Alfafla. The Sheridan sandy loam soil resulted in the highest production for western wheatgrass and alfalfa while the X-ranch sandy loam had the lowest production rate for both plants. Plant production levels resulting from untreated CBNG produced water were significantly higher compared to untreated conventional oil and gas produced water. However, few differences were found between water treatments. The biomass produced from the greenhouse study was analyzed for elemental composition and for forage value. Elemental composition indentified several interesting findings. Some of the biomass was characterized with seemly high boron and sodium levels. High levels of boron found in some of the biomass was unexpected and may indicate that alfalfa and western wheatgrass plants may have been impacted by either soil or irrigation water containing high boron levels. Plants irrigated with water treated using EDR technology appeared to contain higher levels of boron with increased levels of treatment. Forage evaluations were conducted using near infrared reflectance spectroscopy. The data collected show small differences, generally less than 10%, between produced water treatments including the no treatment and 100% treatment conditions for each plant species studied. The forage value of alfalfa and western wheatgrass did not show significant tendencies dependent on soil, the amount of produced water treatment, or treatment technology.

Terry Brown; Jeffrey Morris; Patrick Richards; Joel Mason

2010-09-30T23:59:59.000Z

154

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

Science Conference Proceedings (OSTI)

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

Levy, Edward; Bilirgen, Harun; DuPont, John

2011-03-31T23:59:59.000Z

155

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

Science Conference Proceedings (OSTI)

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

Edward Levy; Harun Bilirgen; John DuPoint

2011-03-31T23:59:59.000Z

156

Combination gas-producing and waste-water disposal well. [DOE patent application  

DOE Patents (OSTI)

The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

Malinchak, R.M.

1981-09-03T23:59:59.000Z

157

Aalborg Universitet Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas  

E-Print Network (OSTI)

Aalborg Universitet Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil &, B. (2013). Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas, 2013 #12;Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production

Yang, Zhenyu

158

Development Water, Gas, and Electric Energy Use Projection  

E-Print Network (OSTI)

2. In addition to the sewage flow demand created by the building development, parking drainage and pool backwash may also create additional sanitary sewer flow. These additional flows are assumed to be negligible compared to the rest of the project. B. Sanitary Sewage Discharge 1. The daily sanitary sewer flow will be near the daily building cold water usage as detailed above.

unknown authors

2007-01-01T23:59:59.000Z

159

Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report  

SciTech Connect

For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

2013-01-21T23:59:59.000Z

160

Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report  

DOE Green Energy (OSTI)

The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

Not Available

1980-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas blue water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Photoacoustic infrared spectroscopy for conducting gas tracer tests and measuring water saturations in landfills  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Photoacoustic infrared spectroscopy tested for measuring tracer gas in landfills. Black-Right-Pointing-Pointer Measurement errors for tracer gases were 1-3% in landfill gas. Black-Right-Pointing-Pointer Background signals from landfill gas result in elevated limits of detection. Black-Right-Pointing-Pointer Technique is much less expensive and easier to use than GC. - Abstract: Gas tracer tests can be used to determine gas flow patterns within landfills, quantify volatile contaminant residence time, and measure water within refuse. While gas chromatography (GC) has been traditionally used to analyze gas tracers in refuse, photoacoustic spectroscopy (PAS) might allow real-time measurements with reduced personnel costs and greater mobility and ease of use. Laboratory and field experiments were conducted to evaluate the efficacy of PAS for conducting gas tracer tests in landfills. Two tracer gases, difluoromethane (DFM) and sulfur hexafluoride (SF{sub 6}), were measured with a commercial PAS instrument. Relative measurement errors were invariant with tracer concentration but influenced by background gas: errors were 1-3% in landfill gas but 4-5% in air. Two partitioning gas tracer tests were conducted in an aerobic landfill, and limits of detection (LODs) were 3-4 times larger for DFM with PAS versus GC due to temporal changes in background signals. While higher LODs can be compensated by injecting larger tracer mass, changes in background signals increased the uncertainty in measured water saturations by up to 25% over comparable GC methods. PAS has distinct advantages over GC with respect to personnel costs and ease of use, although for field applications GC analyses of select samples are recommended to quantify instrument interferences.

Jung, Yoojin; Han, Byunghyun; Mostafid, M. Erfan; Chiu, Pei [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States); Yazdani, Ramin [Yolo County Planning and Public Works Department, Division of Integrated Waste Management, Yolo County, 44090 County Rd. 28H, Woodland, CA 95776 (United States); Imhoff, Paul T., E-mail: imhoff@udel.edu [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States)

2012-02-15T23:59:59.000Z

162

ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION GAS  

Open Energy Info (EERE)

ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION GAS ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION GAS ANALYSES Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION GAS ANALYSES Details Activities (1) Areas (1) Regions (0) Abstract: Measurement of organic compounds in Karaha- Telaga Bodas and Coso fluid inclusions shows there are strong relationships between H2 concentrations and alkane/alkene ratios and benzene concentrations. Inclusion analyses that indicate H2 concentrations > 0.001 mol % typically have ethane > ethylene, propane > propylene, and butane > butylene. There are three end member fluid compositions: type 1 fluids in which alkane compounds predominate, type 2 fluids that have ethane and propylene and no

163

Distribution System Reliability Practices: Noteworthy Practices at Memphis Light, Gas and Water  

Science Conference Proceedings (OSTI)

In 2010, EPRI initiated a multiyear effort to identify and illustrate noteworthy practices that utilities are using to meet the service reliability expectations of their customers. EPRI research focused on four host utilities: Ameren Corporation, Central Hudson Gas & Electric Corporation, Alabama Power Company, and We Energies. In 2011, EPRI completed research at American Electric Power Company (AEP) and initiated research with Memphis Light, Gas and Water (MLGW) and Duke Energy. In 2012, EPRI ...

2012-11-14T23:59:59.000Z

164

Characterization and control of exhaust gas from diesel engine firing coal-water mixture  

DOE Green Energy (OSTI)

Exhaust from the GE-TS single cylinder diesel engine, fitted with hardened metal, and diamond-tipped metal fuel injection nozzles, and firing coal-water mixture (CWM) has been characterized with respect to gas composition, particulate size distribution, and particulate filtration characteristics. The measured flue gas compositions are roughly in keeping with results from combustion calculations. The time variations of the hydrocarbon, CO, and NO[sub x] concentrations are also understood in terms of known reaction mechanisms.

Samuel, E.A.; Gal, E.; Mengel, M.; Arnold, M.

1990-03-01T23:59:59.000Z

165

Characterization and control of exhaust gas from diesel engine firing coal-water mixture  

DOE Green Energy (OSTI)

Exhaust from the GE-TS single cylinder diesel engine, fitted with hardened metal, and diamond-tipped metal fuel injection nozzles, and firing coal-water mixture (CWM) has been characterized with respect to gas composition, particulate size distribution, and particulate filtration characteristics. The measured flue gas compositions are roughly in keeping with results from combustion calculations. The time variations of the hydrocarbon, CO, and NO{sub x} concentrations are also understood in terms of known reaction mechanisms.

Samuel, E.A.; Gal, E.; Mengel, M.; Arnold, M.

1990-03-01T23:59:59.000Z

166

Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia  

E-Print Network (OSTI)

The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field, Colombia. Experimental and simulation studies were conducted to achieve these objectives. The experimental study consisted of injecting reconstituted gas into a cell containing sand and "live" San Francisco oil. Experimental runs were made with injection of (i) the two field gases and their 50-50 mixture, (ii) the two field gases enriched with propane, and (iii) WAG with the two field gases enriched with propane. Produced oil volume, density, and viscosity; and produced gas volume and composition were measured and analyzed. A 1D 7-component compositional simulation model of the laboratory injection cell and its contents was developed. After a satisfactory history-match of the results of a WAG run, the prediction runs were made using the gas that gave the highest oil recovery in the experiments, (5:100 mass ratio of propane:Balcon gas). Oil production results from simulation were obtained for a range of WAG cycles and gas injection rate. The main results of the study may be summarized as follows. For all cases studied, the lowest oil recovery is obtained with injection of San Francisco gas, (60% of original oil-in-place OOIP), and the highest oil recovery (84% OOIP) is obtained with a WAG 7.5-7.5 (cycle of 7.5 minutes water injection followed by 7.5 minutes of gas injection at 872 ml/min). This approximately corresponds to WAG 20-20 in the field (20 days water injection followed by 20 days gas injection at 6.8 MMSCF/D). Results clearly indicate increase in oil recovery with volume of the gas injected. Lastly, of the three injection schemes studied, WAG injection with propane-enriched gas gives the highest oil recovery. This study is based on the one-dimensional displacement of oil. The three-dimensional aspects and other reservoir complexities that adversely affect oil recovery in reality have not been considered. A 3D reservoir simulation study is therefore recommended together with an economic evaluation of the cases before any decision can be made to implement any of the gas or WAG injection schemes.

Rueda Silva, Carlos Fernando

2003-01-01T23:59:59.000Z

167

Catalytic membranes for facilitating the water-gas shift reaction  

DOE Green Energy (OSTI)

This program is directed at furthering the development of a metal- membrane-based process for economically producing pure hydrogen from the raw gasifier stream. A related program is directed at developing a metal-membrane-based process for cleanly and efficiently removing hydrogen sulfide from the hot gas stream. Both of these processes would be accomplished at 500{degree}C to 800{degree}C and are based on a novel hydrogen-permeable composite-metal membrane. Specific program objectives include (1) design, fabrication, and demonstration of pre-prototype membrane modules; (2) improving the membrane composition to increase the hydrogen flux; (3) evaluating membrane lifetime; and (4) conducting engineering and economic analyses of the processes.

Edlund, D.J. [Bend Research, Inc., OR (United States)

1993-08-01T23:59:59.000Z

168

Water formation on bare grains: When the chemistry on dust impacts interstellar gas  

E-Print Network (OSTI)

Context. Water together with O2 are important gas phase ingredients to cool dense gas in order to form stars. On dust grains, H2 O is an important constituent of the icy mantle in which a complex chemistry is taking place, as revealed by hot core observations. The formation of water can occur on dust grain surfaces, and can impact gas phase composition. Aims. The formation of molecules such as OH, H2 O, HO2, H2 O2, as well as their deuterated forms and O2 and O3 is studied in order to assess how the chemistry varies in different astrophysical environments, and how the gas phase is affected by grain surface chemistry. Methods. We use Monte Carlo simulations to follow the formation of molecules on bare grains as well as the fraction of molecules released into the gas phase. We consider a surface reaction network, based on gas phase reactions, as well as UV photo-dissociation of the chemical species. Results. We show that grain surface chemistry has a strong impact on gas phase chemistry, and that this chemistry...

Cazaux, S; Marseille, M; Spaans, M; Caselli, P

2010-01-01T23:59:59.000Z

169

Experimentation and application of directional solvent extraction for desalination of seawater and shale gas 'frac' flowback water  

E-Print Network (OSTI)

A recently demonstrated directional solvent technique for desalination of water has been tested for desalting seawater and shale gas 'frac' flowback water. The premise behind directional solvent extraction is that when ...

Kleinguetl, Kevin (Kevin G.)

2011-01-01T23:59:59.000Z

170

Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction  

Science Conference Proceedings (OSTI)

Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of 375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?{sub Sr}{sup SW} = +13.8 to +41.6, where ?{sub Sr}{sup SW} is the deviation of the {sup 87}Sr/{sup 86}Sr ratio from that of seawater in parts per 10{sup 4}); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

Chapman, Elizabeth C; Capo, Rosemary C.; Stewart, Brian W.; Kirby, Carl S.; Hammack, Richard W.; Schroeder, Karl T.; Edenborn, Harry M.

2012-03-20T23:59:59.000Z

171

Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction  

SciTech Connect

Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ?375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?Sr SW = +13.8 to +41.6, where ?Sr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

Elizabeth C. Chapman,† Rosemary C. Capo,† Brian W. Stewart,*,† Carl S. Kirby,‡ Richard W. Hammack,§ Karl T. Schroeder,§ and Harry M. Edenborn

2012-02-24T23:59:59.000Z

172

Decarb/Desal: Separation of Carbon Dioxide from Flue Gas with Simultaneous Fresh Water Production  

Science Conference Proceedings (OSTI)

If fossil fuels continue to be a major part of the world's energy supply, effective means must be developed to deal with the carbon emissions. Geologic sequestration of supercritical CO{sub 2} is expected to play a major role in mitigating this problem. Separating carbon dioxide from other gases is the most costly aspect of schemes for geologic sequestration. That cost is driven by the complexity and energy intensity of current chemical-stripping methods for separating carbon dioxide. Our experience in water treatment technology indicated that an entirely new approach could be developed, taking advantage of water's propensity to separate gases that ionize in water (like CO{sub 2}) from those that do not (like N{sub 2}). Even though water-based systems might not have the extreme selectivity of chemicals like substituted amines used in industrial systems today, they have the potential to tolerate NO{sub x}, SO{sub x}, and particulates while also producing clean drinking water as a valuable byproduct. Lower capital cost, broader range of applicability, environmental friendliness, and revenue from a second product stream give this approach the potential to significantly expand the worldwide application of carbon separation for geologic sequestration. Here we report results for separation of CO{sub 2} from flue gas by two methods that simultaneously separate carbon dioxide and fresh water: ionic pumping of carbonate ions dissolved in water, and thermal distillation. The ion pumping method dramatically increases dissolved carbonate ion in solution and hence the overlying vapor pressure of CO{sub 2} gas, allowing its removal as a pure gas. We have used two common water treatment methods to drive the ion pumping approach, reverse osmosis and electrodialysis to produce pure CO{sub 2}. This novel approach to increasing the concentration of the extracted gas permits new approaches to treating flue gas, because the slightly basic water used as the extraction medium is impervious to trace acid gases that destroy existing solvents, and no pre-separation is necessary. Thermal distillation uses boiling water to steam strip solid sorbents - the steam is recovered as fresh water. We anticipate that our method will compete favorably with current chemical stripping systems used for CO{sub 2} separation at power plants, which incur a 35% energy penalty. Thus we expect to offer a dramatically improved solution for removing carbon from hydrocarbon combustion. Our method can be demonstrated on small sources, which will enable us to conduct the demonstrations required to build confidence in the method. If successful, we will be in a position to advance a follow-on proposal for a demonstration at the 10-MW scale.

Aines, R; Bourcier, W

2009-10-21T23:59:59.000Z

173

Blue-eyed Babies  

NLE Websites -- All DOE Office Websites (Extended Search)

Blue-eyed Babies Blue-eyed Babies Name: Jill Location: N/A Country: N/A Date: N/A Question: One of my students asked me the other day why all babies are born with blue eyes, even though they are truly brown-eyed, once their eyes change colour. What causes this phenomenon? Exposure to air, maybe? Replies: Hi, First of all not all babies are born with blue eyes. This is especially evident in the Asian/ Indian continents. The cause for the delay is nothing more than a delay in the enzymes that bring on the darker color proteins. You are probably aware that eye color is determined by more than one gene. The darker colors have blue coloration as part of their make-up and that may be the only protein of the color exposed at birth for many individuals. The proteins that give the darker colors usually turn on within a year of birth and this timing varies with individuals.

174

RELAP5/MOD3 modeling of water column rejoining and a water slug propelled by noncondensable gas  

SciTech Connect

The capability of the RELAP5/MOD3 computer code to analyze water hammer transients due to water column rejoining and a water slug propelled by noncondensable gas is investigated. The code-calculated results have been compared with those obtained from simple ideal analytical models. Good agreement is obtained between the calculation and analytical results in the initial period of the transient during which the water column or slug retains its sharp interface and suffers from little breakup or dissipation. As the transient proceeds, the code-calculated hydrodynamic loads are generally less than those implied by the analytical models. This is most likely due to the breakup of the water phase, which is not taken into account in the analytical models. Effects of time step and mesh sizes have also been studied. The results show that the usual Courant time limit applies. Finally, a sample calculation, corresponding to a water hammer transient in a typical Westinghouse four-loop reactor head vent system piping, is presented. The transient is induced by the opening of a relief valve and accelerating a trapped water slug through the pipeline. Hydrodynamic loads (i.e., force-time curves) on various pipe segments have been evaluated by appropriate postprocessing of the transient results. The calculated peak forces at selected pipe segments compare favorably with those estimated from the analytical models.

Yeung, W.S.; Shirkov, J.; Seifaee, F. (Yankee Atomic Electric Co., Bolton, MA (United States))

1994-12-01T23:59:59.000Z

175

Chemical composition of water and gas from five nearshore subaqueous springs in Clear Lake, northern California  

SciTech Connect

In 1971 The Geysers-Clear Lake area was selected by the US Geological Survey geothermal research program as a region for extensive investigation. Under this program thermal water samples were first collected in December, 1974 during a winter of normal rainfall; the last samples were collected in February, 1977 during a period of drought. The drought exposed many springs which normally are submerged by Clear Lake. It was demonstrated that gas and water samples can be collected from shallow submerged springs relatively simply using a peristaltic, battery powered pump. Qualitatively sulfate, ammonia, chloride and lithium concentrations may be used to estimate the amount of lake water contamination. The gas sampling technique, using an inverted funnel and long tube to the surface only where visibility was greater than 2 to 3 m. Analyses of near surface compared to deeper submerged gas indicates air contamination in the near surface sample. Thus gas samples should be collected deep underwater or as near the spring vent or gas orifice as possible.

Thompson, J.M.; Sims, J.D.; Yadav, S.; Rymer, M.J.

1979-01-01T23:59:59.000Z

176

Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations  

SciTech Connect

Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

David B. Burnett; Mustafa Siddiqui

2006-12-29T23:59:59.000Z

177

Preliminary Modeling, Testing, and Analysis of a Gas Tankless Water Heater: Preprint  

DOE Green Energy (OSTI)

Today's gas tankless water heaters offer significant energy savings over conventional gas storage tank water heaters, but savings depends on the draw pattern. A one-node model incorporating heat exchanger mass is used to address this and other issues. Key model parameters are determined from least-squares regression on short-term data, including burner efficiency, thermal capacitance, and thermal loss coefficient. The calibrated model agrees with data to ~5% on Qgas, with temperature RMS deviation of ~4..deg..C. Efficiency with a standard realistic draw is 71%, compared to 81% predicted from standard energy-factors. Adding a small tank controlled by the tankless heater solves issues of oscillations with solar pre-heat, low-flow and hot-water-delay issues. Future work includes model refinements and developing optimal data protocols for model parameter extraction.

Burch, J.; Hoeschele, M.; Springer, D.; Rudd, A.

2008-05-01T23:59:59.000Z

178

Water-Gas Samples At Lightning Dock Area (Norman, Et Al., 2002) | Open  

Open Energy Info (EERE)

2002) 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Lightning Dock Area (Norman, Et Al., 2002) Exploration Activity Details Location Lightning Dock Area Exploration Technique Water-Gas Samples Activity Date Usefulness not indicated DOE-funding Unknown Notes The Lightning Dock, Animas Valley, New Mexico geothermal area was discovered when a rancher found boiling water while drilling a shallow stock tank welt (Elston, Deal, et. al, 1983). There are no surface manifestations of present or past geothermal activity in the Animas Valley. Norman and Bernhart (1982) analyzed the gases in the discovery well and 15 stock tank wells nearby (Figure 1). References David Norman, Nigel Blarney, Lynne Kurilovitch (2002) New

179

Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine  

SciTech Connect

This study is developing a comprehensive study of what is involved in the desalination of oil field produced brine and the technical developments and regulatory changes needed to make the concept a commercial reality. It was originally based on ''conventional'' produced water treatment and reviewed (1) the basics of produced water management, (2) the potential for desalination of produced brine in order to make the resource more useful and available in areas of limited fresh water availability, and (3) the potential beneficial uses of produced water for other than oil production operations. Since we have begun however, a new area of interest has appeared that of brine water treatment at the well site. Details are discussed in this technical progress report. One way to reduce the impact of O&G operations is to treat produced brine by desalination. The main body of the report contains information showing where oil field brine is produced, its composition, and the volume available for treatment and desalination. This collection of information all relates to what the oil and gas industry refers to as ''produced water management''. It is a critical issue for the industry as produced water accounts for more than 80% of all the byproducts produced in oil and gas exploration and production. The expense of handling unwanted waste fluids draws scarce capital away for the development of new petroleum resources, decreases the economic lifetimes of existing oil and gas reservoirs, and makes environmental compliance more expensive to achieve. More than 200 million barrels of produced water are generated worldwide each day; this adds up to more than 75 billion barrels per year. For the United States, the American Petroleum Institute estimated about 18 billion barrels per year were generated from onshore wells in 1995, and similar volumes are generated today. Offshore wells in the United States generate several hundred million barrels of produced water per year. Internationally, three barrels of water are produced for each barrel of oil. Production in the United States is more mature; the US average is about 7 barrels of water per barrel of oil. Closer to home, in Texas the Permian Basin produces more than 9 barrels of water per barrel of oil and represents more than 400 million gallons of water per day processed and re-injected.

David B. Burnett

2005-09-29T23:59:59.000Z

180

Blue Ridge Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Blue Ridge Biofuels LLC Jump to: navigation, search Name Blue Ridge Biofuels LLC Place Asheville, North Carolina Zip 28801 Sector Biofuels Product Blue Ridge Biofuels is a worker...

Note: This page contains sample records for the topic "gas blue water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A simulation study to verify Stone's simultaneous water and gas injection performance in a 5-spot pattern  

E-Print Network (OSTI)

Water alternating gas (WAG) injection is a proven technique to enhance oil recovery. It has been successfully implemented in the field since 1957 with recovery increase in the range of 5-10% of oil-initially-in-place (OIIP). In 2004, Herbert L. Stone presented a simultaneous water and gas injection technique. Gas is injected near the bottom of the reservoir and water is injected directly on top at high rates to prevent upward channeling of the gas. Stone's mathematical model indicated the new technique can increase vertical sweep efficiency by 3-4 folds over WAG. In this study, a commercial reservoir simulator was used to predict the performance of Stone's technique and compare it to WAG and other EOR injection strategies. Two sets of relative permeability data were considered. Multiple combinations of total injection rates (water plus gas) and water/gas ratios as well as injection schedules were investigated to find the optimum design parameters for an 80 acre 5-spot pattern unit. Results show that injecting water above gas may result in better oil recovery than WAG injection though not as indicated by Stone. Increase in oil recovery with SSWAG injection is a function of the gas critical saturation. The more gas is trapped in the formation, the higher oil recovery is obtained. This is probably due to the fact that areal sweep efficiency is a more dominant factor in a 5-spot pattern. Periodic shut-off of the water injector has little effect on oil recovery. Water/gas injection ratio optimization may result in a slight increase in oil recovery. SSWAG injection results in a steady injection pressure and less fluctuation in gas production rate compared to WAG injection.

Barnawi, Mazen Taher

2008-05-01T23:59:59.000Z

182

TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE  

Science Conference Proceedings (OSTI)

Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of potentially hazardous chemicals, and could be readily adapted to an automated system.

Lynn E. Katz; R.S. Bowman; E.J. Sullivan

2003-11-01T23:59:59.000Z

183

Classic Template - Blue  

Science Conference Proceedings (OSTI)

... Fire detecting and extinguishing equipment – Liquefied Petroleum Gas (LPG) utilization equipment (commercial and industrial) ...

2012-10-30T23:59:59.000Z

184

Coalbed Methane Procduced Water Treatment Using Gas Hydrate Formation at the Wellhead  

Science Conference Proceedings (OSTI)

Water associated with coalbed methane (CBM) production is a significant and costly process waste stream, and economic treatment and/or disposal of this water is often the key to successful and profitable CBM development. In the past decade, advances have been made in the treatment of CBM produced water. However, produced water generally must be transported in some fashion to a centralized treatment and/or disposal facility. The cost of transporting this water, whether through the development of a water distribution system or by truck, is often greater than the cost of treatment or disposal. To address this economic issue, BC Technologies (BCT), in collaboration with Oak Ridge National Laboratory (ORNL) and International Petroleum Environmental Consortium (IPEC), proposed developing a mechanical unit that could be used to treat CBM produced water by forming gas hydrates at the wellhead. This process involves creating a gas hydrate, washing it and then disassociating hydrate into water and gas molecules. The application of this technology results in three process streams: purified water, brine, and gas. The purified water can be discharged or reused for a variety of beneficial purposes and the smaller brine can be disposed of using conventional strategies. The overall objectives of this research are to develop a new treatment method for produced water where it could be purified directly at the wellhead, to determine the effectiveness of hydrate formation for the treatment of produced water with proof of concept laboratory experiments, to design a prototype-scale injector and test it in the laboratory under realistic wellhead conditions, and to demonstrate the technology under field conditions. By treating the water on-site, producers could substantially reduce their surface handling costs and economically remove impurities to a quality that would support beneficial use. Batch bench-scale experiments of the hydrate formation process and research conducted at ORNL confirmed the feasibility of the process. However, researchers at BCT were unable to develop equipment suitable for continuous operation and demonstration of the process in the field was not attempted. The significant achievements of the research area: Bench-scale batch results using carbon dioxide indicate >40% of the feed water to the hydrate formation reactor was converted to hydrate in a single pass; The batch results also indicate >23% of the feed water to the hydrate formation reactor (>50% of the hydrate formed) was converted to purified water of a quality suitable for discharge; Continuous discharge and collection of hydrates was achieved at atmospheric pressure. Continuous hydrate formation and collection at atmospheric conditions was the most significant achievement and preliminary economics indicate that if the unit could be made operable, it is potentially economic. However, the inability to continuously separate the hydrate melt fraction left the concept not ready for field demonstration and the project was terminated after Phase Two research.

BC Technologies

2009-12-30T23:59:59.000Z

185

Breach and safety analysis of spills over water from large liquefied natural gas carriers.  

SciTech Connect

In 2004, at the request of the Department of Energy, Sandia National Laboratories (Sandia) prepared a report, ''Guidance on the Risk and Safety Analysis of Large Liquefied Natural Gas (LNG) Spills Over Water''. That report provided framework for assessing hazards and identifying approaches to minimize the consequences to people and property from an LNG spill over water. The report also presented the general scale of possible hazards from a spill from 125,000 m3 o 150,000 m3 class LNG carriers, at the time the most common LNG carrier capacity.

Hightower, Marion Michael; Luketa-Hanlin, Anay Josephine; Attaway, Stephen W.

2008-05-01T23:59:59.000Z

186

NETL: Gasification- Water-Gas Shift (WGS) Tests to Reduce Steam Use  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Processing Systems Syngas Processing Systems Water-Gas Shift (WGS) Tests to Reduce Steam Use National Carbon Capture Center at the Power Systems Development Facility Southern Company Services, Inc. Project Number: NT0000749 Project Description The National Carbon Capture Center is testing commercial water-gas shift (WGS) catalysts from multiple vendors in support of developing WGS reactor systems which will reduce the cost of carbon dioxide (CO2) capture from the production of syngas using coal. These tests have revealed that steam-to-carbon monoxide (CO) ratios can be reduced, resulting in a substantial increase in the net power output and significantly reducing the cost of electricity from an integrated gasification combined cycle (IGCC) plant with CO2 capture. Several commercially available WGS catalysts have been tested, and the results are being provided to the manufacturers to aid them in specifying future WGS systems for IGCC plants incorporating CO2 capture.

187

Life-Cycle Water and Greenhouse Gas Implications of Alternative Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Life-Cycle Water and Greenhouse Gas Implications of Alternative Fuel Life-Cycle Water and Greenhouse Gas Implications of Alternative Fuel Production Speaker(s): Corinne Scown Date: January 31, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Michael Sohn If the goal of science is to understand the structure and behavior of the physical and natural world, and the goal of engineering is to design, build, and manage systems that serve society's needs, then the study of civil infrastructure systems acts as a link between the two. Understanding the reliance of engineered systems on constrained natural resources, as well as their impact on human well-being and the environment, is key to building and maintaining infrastructure that is sustainable in the broader sense. This talk will explore the important role of life-cycle assessment and optimization in assessing such questions as: a.)

188

WATER-GAS SHIFT KINETICS OVER IRON OXIDE CATALYSTS AT MEMBRANE REACTOR CONDITIONS  

DOE Green Energy (OSTI)

This report covers the second year of a project investigating water-gas shift catalysts for use in membrane reactors. It has been established that a simple iron high temperature shift catalyst becomes ineffective in a membrane reactor because the reaction rate is severely inhibited by the build-up of the product CO{sub 2}. During the past year, an improved microkinetic model for water-gas shift over iron oxide was developed. Its principal advantage over prior models is that it displays the correct asymptotic behavior at all temperatures and pressures as the composition approaches equilibrium. This model has been used to explore whether it might be possible to improve the performance of iron high temperature shift catalysts under conditions of high CO{sub 2} partial pressure. The model predicts that weakening the surface oxygen bond strength by less than 5% should lead to higher catalytic activity as well as resistance to rate inhibition at higher CO{sub 2} partial pressures. Two promoted iron high temperature shift catalysts were studied. Ceria and copper were each studied as promoters since there were indications in the literature that they might weaken the surface oxygen bond strength. Ceria was found to be ineffective as a promoter, but preliminary results with copper promoted FeCr high temperature shift catalyst show it to be much more resistant to rate inhibition by high levels of CO{sub 2}. Finally, the performance of sulfided CoMo/Al{sub 2}O{sub 3} catalysts under conditions of high CO{sub 2} partial pressure was simulated using an available microkinetic model for water-gas shift over this catalyst. The model suggests that this catalyst might be quite effective in a medium temperature water-gas shift membrane reactor, provided that the membrane was resistant to the H{sub 2}S that is required in the feed.

Carl R.F. Lund

2001-08-10T23:59:59.000Z

189

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

190

Development of an advanced water-gas shift conversion system. Final report  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory has completed initial exploratory research to investigate the chemistry and use of a pressurized aqueous catalyst system for conducting the water-gas shift reaction. The research was done under sponsorship of the USDOE Morgantown Energy Technology Center. A 1.0 liter continuous bench scale reactor system was built and operated to investigate water-gas shift chemistry at high pressure. Details regarding the chemistry of the aqueous, base-catalyzed system in both batch and continuous reactors are presented for a temperature range of 200 to 350/sup 0/C and pressures from 500 to 3000 psig. The catalyst choice is sodium carbonate at a concentration of 6% in water, but any material which can generate hydroxide ions at the process conditions will effectively catalyze the reaction. This report summarizes the results of the bench-scale research on the concept and presents a discussion of optimum operating conditions, pressure effects and limitations, kinetic data, effects of gas flow rates, catalyst type, and preliminary concept evaluation. 16 refs., 29 figs., 8 tabs.

Sealock, L.J. Jr.; Elliott, D.C.; Butner, R.S.

1985-04-01T23:59:59.000Z

191

Impact of Pilot Light Modeling on the Predicted Annual Performance of Residential Gas Water Heaters: Preprint  

SciTech Connect

Modeling residential water heaters with dynamic simulation models can provide accurate estimates of their annual energy consumption, if the units? characteristics and use conditions are known. Most gas storage water heaters (GSWHs) include a standing pilot light. It is generally assumed that the pilot light energy will help make up standby losses and have no impact on the predicted annual energy consumption. However, that is not always the case. The gas input rate and conversion efficiency of a pilot light for a GSWH were determined from laboratory data. The data were used in simulations of a typical GSWH with and without a pilot light, for two cases: 1) the GSWH is used alone; and 2) the GSWH is the second tank in a solar water heating (SWH) system. The sensitivity of wasted pilot light energy to annual hot water use, climate, and installation location was examined. The GSWH used alone in unconditioned space in a hot climate had a slight increase in energy consumption. The GSWH with a pilot light used as a backup to an SWH used up to 80% more auxiliary energy than one without in hot, sunny locations, from increased tank losses.

Maguire, J.; Burch, J.

2013-08-01T23:59:59.000Z

192

Assessments of Water Ingress Accidents in a Modular High-Temperature Gas-Cooled Reactor  

Science Conference Proceedings (OSTI)

Severe water ingress accidents in the 200-MW HTR-module were assessed to determine the safety margins of modular pebble-bed high-temperature gas-cooled reactors (HTR-module). The 200-MW HTR-module was designed by Siemens under the criteria that no active safety protection systems were necessary because of its inherent safe nature. For simulating the behavior of the HTR-module during severe water ingress accidents, a water, steam, and helium multiphase cavity model was developed and implemented in the dynamic simulator for nuclear power plants (DSNP) simulation system. Comparisons of the DSNP simulations incorporating these models with experiments and with calculations using the time-dependent neutronics and temperature dynamics code were made to validate the simulation. The analysis of the primary circuit showed that the maximum water concentration increase in the reactor core was deaerator to the steam generator. A comprehensive simulation of the HTR-module power plant showed that the water inventory in the primary circuit was limited to {approx}3000 kg. The nuclear reactivity increase caused by the water ingress would lead to a fast power excursion, which would be inherently counterbalanced by negative feedback effects. The integrity of the fuel elements, because the safety-relevant temperature limit of 1600 deg. C is not reached in any case, is not challenged.

Zhang Zuoyi [Tsinghua University (China); Dong Yujie [Tsinghua University (China); Scherer, Winfried [Forschungszentrum Juelich (Germany)

2005-03-15T23:59:59.000Z

193

WATER-GAS SHIFT KINETICS OVER IRON OXIDE CATALYSTS AT MEMBRANE REACTOR CONDITIONS  

DOE Green Energy (OSTI)

The kinetics of water-gas shift were studied over ferrochrome catalysts under conditions with high carbon dioxide partial pressures, such as would be expected in a membrane reactor. The catalyst activity is inhibited by increasing carbon dioxide partial pressure. A microkinetic model of the reaction kinetics was developed. The model indicated that catalyst performance could be improved by decreasing the strength of surface oxygen bonds. Literature data indicated that adding either ceria or copper to the catalyst as a promoter might impart this desired effect. Ceria-promoted ferrochrome catalysts did not perform any better than unpromoted catalyst at the conditions tested, but copper-promoted ferrochrome catalysts did offer an improvement over the base ferrochrome material. A different class of water-gas shift catalyst, sulfided CoMo/Al{sub 2}O{sub 3} is not affected by carbon dioxide and may be a good alternative to the ferrochrome system, provided other constraints, notably the requisite sulfur level and maximum temperature, are not too limiting. A model was developed for an adiabatic, high-temperature water-gas shift membrane reactor. Simulation results indicate that an excess of steam in the feed (three moles of water per mole of CO) is beneficial even in a membrane reactor as it reduces the rate of adiabatic temperature rise. The simulations also indicate that much greater improvement can be attained by improving the catalyst as opposed to improving the membrane. Further, eliminating the inhibition by carbon dioxide will have a greater impact than will increasing the catalyst activity (assuming inhibition is still operative). Follow-up research into the use of sulfide catalysts with continued kinetic and reactor modeling is suggested.

Carl R.F. Lund

2002-08-02T23:59:59.000Z

194

Techno-economic analysis of water management options for unconventional natural gas developments in the Marcellus Shale  

E-Print Network (OSTI)

The emergence of large-scale hydrocarbon production from shale reservoirs has revolutionized the oil and gas sector, and hydraulic fracturing has been the key enabler of this advancement. As a result, the need for water ...

Karapataki, Christina

2012-01-01T23:59:59.000Z

195

SIC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION  

DOE Green Energy (OSTI)

In the first two years of this project, we focused on the membrane synthesis, characterization and optimization. In the past year, we have concentrated on the product development for improving the efficiency of hydrogen recovery from coal gasifier off-gas via water-gas-shift (WGS) reaction. A mathematical simulation study has been performed to compare the performance of the membrane reactor (MR) vs conventional packed bed rector for WGS reaction. Our result demonstrates that >99.999% conversion can be accomplished via WGS-MR using the hydrogen selective membrane developed by us. Further, water/CO ratio can be reduced, and >97% hydrogen recovery and <200 ppm CO can be accomplished according to the mathematical simulation. Thus, we believe that the operating economics of WGS can be improved significantly based upon the proposed MR concept. In parallel, gas separations and hydrothermal and long-term-storage stability of the hydrogen selected membrane have been experimentally demonstrated using a pilot-scale tubular membrane under a simulated WGS environment. For the remaining period of this project, we will conduct experimental study using the hydrogen selective membrane to verify the performance projected by the mathematical simulation.

Paul K.T. Liu

2002-10-31T23:59:59.000Z

196

Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process  

Science Conference Proceedings (OSTI)

Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

2011-10-16T23:59:59.000Z

197

Deep Blue No 1- A Slimhole Geothermal Discovery At Blue Mountain...  

Open Energy Info (EERE)

DOI: Unavailable Core Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Blue Mountain Geothermal...

198

Treating Coalbed Natural Gas Produced Water for Beneficial Use By MFI Zeolite Membranes  

SciTech Connect

Desalination of brines produced from oil and gas fields is an attractive option for providing potable water in arid regions. Recent field-testing of subsurface sequestration of carbon dioxide for climate management purposes provides new motivation for optimizing efficacy of oilfield brine desalination: as subsurface reservoirs become used for storing CO{sub 2}, the displaced brines must be managed somehow. However, oilfield brine desalination is not economical at this time because of high costs of synthesizing membranes and the need for sophisticated pretreatments to reduce initial high TDS and to prevent serious fouling of membranes. In addition to these barriers, oil/gas field brines typically contain high concentrations of multivalent counter cations (eg. Ca{sup 2+} and SO{sub 4}{sup 2-}) that can reduce efficacy of reverse osmosis (RO). Development of inorganic membranes with typical characteristics of high strength and stability provide a valuable option to clean produced water for beneficial uses. Zeolite membranes have a well-defined subnanometer pore structure and extreme chemical and mechanical stability, thus showing promising applicability in produced water purification. For example, the MFI-type zeolite membranes with uniform pore size of {approx}0.56 nm can separate ions from aqueous solution through a mechanism of size exclusion and electrostatic repulsion (Donnan exclusion). Such a combination allows zeolite membranes to be unique in separation of both organics and electrolytes from aqueous solutions by a reverse osmosis process, which is of great interest for difficult separations, such as oil-containing produced water purification. The objectives of the project 'Treating Coalbed Natural Gas Produced Water for Beneficial Use by MFI Zeolite Membranes' are: (1) to conduct extensive fundamental investigations and understand the mechanism of the RO process on zeolite membranes and factors determining the membrane performance, (2) to improve the membranes and optimize operating conditions to enhance water flux and ion rejection, and (3) to perform long-term RO operation on tubular membranes to study membrane stability and to collect experimental data necessary for reliable evaluations of technical and economic feasibilities. Our completed research has resulted in deep understanding of the ion and organic separation mechanism by zeolite membranes. A two-step hydrothermal crystallization process resulted in a highly efficient membrane with good reproducibility. The zeolite membranes synthesized therein has an overall surface area of {approx}0.3 m{sup 2}. Multichannel vessels were designed and machined for holding the tubular zeolite membrane for water purification. A zeolite membrane RO demonstration with zeolite membranes fabricated on commercial alpha-alumina support was established in the laboratory. Good test results were obtained for both actual produced water samples and simulated samples. An overall 96.9% ion rejection and 2.23 kg/m{sup 2}.h water flux was achieved in the demonstration. In addition, a post-synthesis modification method using Al{sup 3+}-oligomers was developed for repairing the undesirable nano-scale intercrystalline pores. Considerable enhancement in ion rejection was achieved. This new method of zeolite membrane modification is particularly useful for enhancing the efficiency of ion separation from aqueous solutions because the modification does not need high temperature operation and may be carried out online during the RO operation. A long-term separation test for actual CBM produced water has indicated that the zeolite membranes show excellent ion separation and extraordinary stability at high pressure and produced water environment.

Robert Lee; Liangxiong Li

2008-03-31T23:59:59.000Z

199

The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device  

DOE Green Energy (OSTI)

This project is in response to a requirement for a system that combines water gas shift technology with separation technology for coal derived synthesis gas. The justification of such a system would be improved efficiency for the overall hydrogen production. By removing hydrogen from the synthesis gas stream, the water gas shift equilibrium would force more carbon monoxide to carbon dioxide and maximize the total hydrogen produced. Additional benefit would derive from the reduction in capital cost of plant by the removal of one step in the process by integrating water gas shift with the membrane separation device. The answer turns out to be that the integration of hydrogen separation and water gas shift catalysis is possible and desirable. There are no significant roadblocks to that combination of technologies. The problem becomes one of design and selection of materials to optimize, or at least maximize performance of the two integrated steps. A goal of the project was to investigate the effects of alloying elements on the performance of vanadium membranes with respect to hydrogen flux and fabricability. Vanadium was chosen as a compromise between performance and cost. It is clear that the vanadium alloys for this application can be produced, but the approach is not simple and the results inconsistent. For any future contracts, large single batches of alloy would be obtained and rolled with larger facilities to produce the most consistent thin foils possible. Brazing was identified as a very likely choice for sealing the membranes to structural components. As alloying was beneficial to hydrogen transport, it became important to identify where those alloying elements might be detrimental to brazing. Cataloging positive and negative alloying effects was a significant portion of the initial project work on vanadium alloying. A water gas shift catalyst with ceramic like structural characteristics was the second large goal of the project. Alumina was added as a component of conventional high temperature water gas shift iron oxide based catalysts. The catalysts contained Fe-Al-Cr-Cu-O and were synthesized by co-precipitation. A series of catalysts were prepared with 5 to 50 wt% Al{sub 2}O{sub 3}, with 8 wt% Cr{sub 2}O{sub 3}, 4 wt% CuO, and the balance Fe{sub 2}O{sub 3}. All of the catalysts were compared to a reference WGS catalyst (88 wt% FeO{sub x}, 8 wt% Cr{sub 2}O{sub 3}, and 4 wt% CuO) with no alumina. Alumina addition to conventional high temperature water gas shift catalysts at concentrations of approximately 15 wt% increased CO conversion rates and increase thermal stability. A series of high temperature water gas shift catalysts containing iron, chromia, and copper oxides were prepared with small amounts of added ceria in the system Fe-Cr-Cu-Ce-O. The catalysts were also tested kinetically under WGS conditions. 2-4 wt% ceria addition (at the expense of the iron oxide content) resulted in increased reaction rates (from 22-32% higher) compared to the reference catalyst. The project goal of a 10,000 liter per day WGS-membrane reactor was achieved by a device operating on coal derived syngas containing significant amounts of carbon monoxide and hydrogen sulfide. The membrane flux was equivalent to 52 scfh/ft{sup 2} based on a 600 psi syngas inlet pressure and corresponded to membranes costing $191 per square foot. Over 40 hours of exposure time to syngas has been achieved for a double membrane reactor. Two modules of the Chart reactor were tested under coal syngas for over 75 hours with a single module tested for 50 hours. The permeance values for the Chart membranes were similar to the REB reactor though total flux was reduced due to significantly thicker membranes. Overall testing of membrane reactors on coal derived syngas was over 115 hours for all reactors tested. Testing of the REB double membrane device exceeded 40 hours. Performance of the double membrane reactor has been similar to the results for the single reactor with good maintenance of flux even after these long exposures to hydrogen sulfide. Of special in

Thomas Barton; Tiberiu Popa

2009-06-30T23:59:59.000Z

200

A catalytic membrane reactor for facilitating the water-gas shift reaction at high temperature  

DOE Green Energy (OSTI)

This program is directed toward the development of a metal-membrane-based process for the economical production of hydrogen at elevated temperature by the reaction of carbon monoxide with steam--i.e., the water-gas shift (WGS) reaction. Key to achieving this objective is the development of an inexpensive and durable metal-membrane module. The specific program objectives include the following: design, fabrication, and demonstration of prototype membrane modules; improving the membrane composition to increase the hydrogen flux; demonstrating that membrane lifetime {ge}2 years is likely to be achieved; and conducting engineering and economic analyses of the process. Results to date are given and discussed.

Edlund, D.J.

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas blue water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Assessment of a water-cooled gas-turbine concept. Final report  

SciTech Connect

A program for development of Ultra-High Temperature (UHT) 2800/sup 0/F firing temperature, water-cooled turbine technology began in 1967. In 1973 it was decided to design and build a full-scale gas turbine to demonstrate the feasibility and evaluate the performance and economics of a complete utility-size machine. The preliminary design phase, performed from June 1974 to March 1975 is reported here with information on the definition of the baseline cycle for the UHT machine in a combined cycle power plant; turbine aerodynamics; design of turbine, its cooling system, and the combustor; materials selection; controls; cost estimates; heat flux experiments, and program planning. (LCL)

1975-08-01T23:59:59.000Z

202

Effect of shale-water recharge on brine and gas recovery from geopressured reservoirs  

DOE Green Energy (OSTI)

The concept of shale-water recharge has often been discussed and preliminary assessments of its significance in the recovery of geopressured fluids have been given previously. The present study uses the Pleasant Bayou Reservoir data as a base case and varies the shale formation properties to investigate their impact on brine and gas recovery. The parametric calculations, based on semi-analytic solutions and finite-difference techniques, show that for vertical shale permeabilities which are at least of the order of 10/sup -5/ md, shale recharge will constitute an important reservoir drive mechanism and will result in much larger fluid recovery than that possible in the absence of shale dewatering.

Riney, T.D.; Garg, S.K.; Wallace, R.H. Jr.

1985-01-01T23:59:59.000Z

203

Pt loaded carbon aerogel catalyst for catalytic exchange reactions between water and hydrogen gas  

Science Conference Proceedings (OSTI)

We report development and characterization of platinum doped carbon aerogel catalyst for catalytic exchange reactions between water and hydrogen gas. The carbon aerogel with uniformly dispersed platinum nanoparticles was prepared by adding platinum precursor during the sol-gel process. Thereafter colloidal PTFE was mixed with the platinum doped carbon aerogel powder and coated on Dixon rings to obtain hydrophobic catalyst with required mechanical strength. Detailed studies have been carried out to observe the effect of physical characteristics of the catalyst powder (surface area and pore size of aerogels

P. K. Gupta

2013-01-01T23:59:59.000Z

204

Microsoft Word - Evaluation of Alternate Water Gas Shift for Carbon Capture Final Final Report .doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Alternate Water Evaluation of Alternate Water Gas Shift Configurations for IGCC Systems August 5, 2009 DOE/NETL-401/080509 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States

205

Water-Steel Canister Interaction and H2 Gas Pressure Buildup in aNuclear Waste Repository  

DOE Green Energy (OSTI)

Corrosion of steel canisters, stored in a repository forspent fuel and high-level waste, leads to hydrogen gas generation in thebackfilled emplacement tunnels, which may significantly affect long-termrepository safety. Previous modeling studies used a constant H2generation rate. However, iron corrosion and H2 generation rates varywith time, depending on factors such as water chemistry, wateravailability, and water contact area. To account for these factors andfeedback mechanisms, we developed a chemistry model related to ironcorrosion, coupled with two-phase (liquid and gas) flow phenomena thatare driven by gas pressure buildup and water consumption. Resultsindicate that if H2 generation rates are dynamically calculated based ona chemistry model, the degree and extent of gas pressure buildup are muchsmaller compared to a simulation in which the coupling between flow andreactive transport mechansism is neglected.

Xu, Tianfu; Senger, Rainer; Finstele, Stefan

2007-01-02T23:59:59.000Z

206

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

market research on solar water heaters. National Renew- ablecom- bined space/water heaters, solar water heaters,combined solar space/water heater, electric water heaters

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

207

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

market research on solar water heaters. National Renewabletankless combined space/water heaterds, solar water heaters,combined solar space/water heater, electric water heaters

Lekov, Alex B.

2010-01-01T23:59:59.000Z

208

Impacts from oil and gas produced water discharges on the gulf of Mexico hypoxic zone.  

Science Conference Proceedings (OSTI)

Shallow water areas of the Gulf of Mexico continental shelf experience low dissolved oxygen (hypoxia) each summer. The hypoxic zone is primarily caused by input of nutrients from the Mississippi and Atchafalaya Rivers. The nutrients stimulate the growth of phytoplankton, which leads to reduction of the oxygen concentration near the sea floor. During the renewal of an offshore discharge permit used by the oil and gas industry in the Gulf of Mexico, the U.S. Environmental Protection Agency (EPA) identified the need to assess the potential contribution from produced water discharges to the occurrence of hypoxia. The EPA permit required either that all platforms in the hypoxic zone submit produced water samples, or that industry perform a coordinated sampling program. This paper, based on a report submitted to EPA in August 2005 (1), describes the results of the joint industry sampling program and the use of those results to quantify the relative significance of produced water discharges in the context of other sources on the occurrence of hypoxia in the Gulf of Mexico. In the sampling program, 16 facilities were selected for multiple sampling - three times each at one month intervals-- and another 34 sites for onetime sampling. The goal of the sampling program was to quantify the sources and amount of oxygen demand associated with a variety of Gulf of Mexico produced waters. Data collected included direct oxygen demand measured by BOD5 (5-day biochemical oxygen demand) and TOC (total organic carbon) and indirect oxygen demand measured by nitrogen compounds (ammonia, nitrate, nitrate, and TKN [total Kjeldahl nitrogen]) and phosphorus (total phosphorus and orthophosphate). These data will serve as inputs to several available computer models currently in use for forecasting the occurrence of hypoxia in the Gulf of Mexico. The output of each model will be compared for consistency in their predictions and then a semi-quantitative estimate of the relative significance of produced water inputs to hypoxia will be made.

Parker, M. E.; Satterlee, K.; Veil, J. A.; Environmental Science Division; ExxonMobil Production Co.; Shell Offshore

2006-01-01T23:59:59.000Z

209

Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst  

DOE Green Energy (OSTI)

A Co/MgO/SiO[sub 2] Fischer-Tropsch catalyst was operated simultaneously with a Cu/ZnO/Al[sub 2]O[sub 3] water-gas-shift catalyst in a slurry reactor for over 400 hours. The process conditions were held constant at a temperature of 240[degrees]C, a pressure of 0.79 MPa, and a 1.1 H[sub 2]/CO feed of 0.065 Nl/min-g.cat. The Fischer-Tropsch activity remained constant at the level predicted by the operation of the Co/MgO/SiO[sub 2] catalyst alone. The water-gas-shift reaction was near equilibrium. The hydrocarbon product distribution of the combined catalyst system was stable and matched that of the CO/MgO/SiO[sub 2] operating alone under similar conditions. The combined catalyst system exhibited a high selectivity to n-alkanes. Neither catalysts's operation appeared to have a detrimental effect on that of the other, showing promise for future option.

Chanenchuk, C.A.; Yates, I.C.; Satterfield, C.N.

1990-01-01T23:59:59.000Z

210

Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst  

DOE Green Energy (OSTI)

A cobalt Fischer-Tropsch catalyst (CO/MgO/silica) was reduced and slurried in combination with reduced Cu/ZnO/Al[sub 2]0[sub 3] water-gas-shift catalyst. Combined catalyst system was run at fixed process conditions for more than 400 hours. The system showed stable selectivity. The Cu/ZnO/Al[sub 2]0[sub 3] water-gas-shift catalyst remained reasonably active in the presence of the cobalt catalyst. Hydrocarbon selectivity of the cobalt and Cu/ZnO/Al[sub 2]0[sub 3] catalyst system compared favorably to selectivity of iron-based catalysts. Methane selectivity was slightly higher for the cobalt-based system, but C[sub 5][sup +] selectivity was essentially the same. The hydrocarbon product distribution appeared to exhibit a double-a behavior. a[sub 1] was near 0.80 which is higher than that of iron catalysts, while a[sub 2] was calculated to be 0.86 which is somewhat lower than would be typical for an iron-based catalyst.

Yates, I.C.; Satterfield, C.N.

1988-01-01T23:59:59.000Z

211

Combustion of ultrafine coal/water mixtures and their application in gas turbines: Final report  

Science Conference Proceedings (OSTI)

The feasibility of using coal-water fuels (CWF) in gas turbine combustors has been demonstrated in recent pilot plant experiments. The demands of burning coal-water fuels with high flame stability, complete combustion, low NO/sub x/ emission and a resulting fly ash particle size that will not erode turbine blades represent a significant challenge to combustion scientists and engineers. The satisfactory solution of these problems requires that the variation of the structure of CWF flames, i.e., the fields of flow, temperature and chemical species concentration in the flame, with operating conditions is known. Detailed in-flame measurements are difficult at elevated pressures and it has been proposed to carry out such experiments at atmospheric pressure and interpret the data by means of models for gas turbine combustor conditions. The research was carried out in five sequential tasks: cold flow studies; studies of conventional fine-grind CWF; combustion studies with ultrafine CWF fuel; reduction of NO/sub x/ emission by staged combustion; and data interpretation-ignition and radiation aspects. 37 refs., 61 figs., 9 tabs.

Toqan, M.A.; Srinivasachar, S.; Staudt, J.; Varela, F.; Beer, J.M.

1987-10-01T23:59:59.000Z

212

Forced Dispersion of Liquefied Natural Gas Vapor Clouds with Water Spray Curtain Application  

E-Print Network (OSTI)

There has been, and will continue to be, tremendous growth in the use and distribution of liquefied natural gas (LNG). As LNG poses the hazard of flammable vapor cloud formation from a release, which may result in a massive fire, increased public concerns have been expressed regarding the safety of this fuel. In addition, regulatory authorities in the U.S. as well as all over the world expect the implementation of consequence mitigation measures for LNG spills. For the effective and safer use any safety measure to prevent and mitigate an accidental release of LNG, it is critical to understand thoroughly the action mechanisms. Water spray curtains are generally used by petro-chemical industries to prevent and mitigate heavier-than-air toxic or flammable vapors. It is also used to cool and protect equipment from heat radiation of fuel fires. Currently, water spray curtains are recognized as one of the economic and promising techniques to enhance the dispersion of the LNG vapor cloud formed from a spill. Usually, water curtains are considered to absorb, dilute, disperse and warm a heavier-than-air vapor cloud. Dispersion of cryogenic LNG vapor behaves differently from other dense gases because of low molecular weight and extremely low temperature. So the interaction between water curtain and LNG vapor is different than other heavier vapor clouds. Only two major experimental investigations with water curtains in dispersing LNG vapor clouds were undertaken during the 1970s and 1980s. Studies showed that water spray curtains enhanced LNG vapor dispersion from small spills. However, the dominant phenomena to apply the water curtain most effectively in controlling LNG vapor were not clearly demonstrated. The main objective of this research is to investigate the effectiveness of water spray curtains in controlling the LNG vapor clouds from outdoor experiments. A research methodology has been developed to study the dispersion phenomena of LNG vapor by the action of different water curtains experimentally. This dissertation details the research and experiment development. Small scale outdoor LNG spill experiments have been performed at the Brayton Fire Training Field at Texas A&M University. Field test results regarding important phenomena are presented and discussed. Results have determined that the water curtains are able to reduce the concentration of the LNG vapor cloud, push the vapor cloud upward and transfer heat to the cloud. These are being identified due to the water curtain mechanisms of entrainment of air, dilution of vapor with entrained air, transfer of momentum and heat to the gas cloud. Some of the dominant actions required to control and disperse LNG vapor cloud are also identified from the experimental tests. The gaps are presented as the future work and recommendation on how to improve the experiments in the future. This will benefit LNG industries to enhance its safety system and to make LNG facilities safer.

Rana, Morshed A.

2009-12-01T23:59:59.000Z

213

BRANCHED ALKANES FROM BLUE-GREEN ALGAE  

E-Print Network (OSTI)

ALKANES FROM BLUE-GREEN ALGAE RECEIV r -· LAWREW RADIATIONAlkanes From Blue-Green Algae by Jerry Han and Oep~rtment l~alkanes from blue-green algae were separated on a The

Han, Jerry; Calvin, Melvin.

2008-01-01T23:59:59.000Z

214

Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer  

Science Conference Proceedings (OSTI)

Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been utilized to randomize the noise introduced from potential etalons. It is expected that all original specifications contained within the initial proposal will be met. We are currently in the beginning stages of assembling the first generation prototypes and finalizing the remaining design elements. The first prototypes will initially be tested in our environmental calibration chamber in which specific gas concentrations, temperature and humidity levels can be controlled. Once operation in this controlled setting is verified, the prototypes will be deployed at LI-COR�¢����s Experimental Research Station (LERS). Deployment at the LERS site will test the instrument�¢����s robustness in a real-world situation.

Liukang, Xu; Dayle, McDermitt; Tyler, Anderson; Brad, Riensche; Anatoly, Komissarov; Julie, Howe

2012-05-01T23:59:59.000Z

215

Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst  

DOE Green Energy (OSTI)

This report details experiments performed on three different copper-based catalysts: Cu/Cr[sub 2]O[sub 3], Cu/MnO/Cr[sub 2]O[sub 3] and Cu/ZnO/Al[sub 2]O[sub 3]. Of these three catalysts, the Cu/ZnO/Al[sub 2]O[sub 3] exhibits the greatest stability when slurried in octacosane. More than 1000 hours-on-stream indicate that the catalyst activity is not detrimentally affected by high pressure, high H[sub 2]/CO ratio, or the presence of alkenes. All of these are necessary stability characteristics for the water-gas shift catalyst, if it is to be used in combination with a cobalt Fischer-Tropsch catalyst. A review of documented reduction procedures for cobalt-based Fischer-Tropsch catalysts is presented.

Yates, I.C.; Satterfield, C.N.

1988-01-01T23:59:59.000Z

216

Pacific Gas and Electric Company’s Comments on the State Water Resources Control Board’s Proposed Policy Water Quality Control Policy on the Use of  

E-Print Network (OSTI)

Pacific Gas and Electric Company (PG&E) supports the protection of California’s marine resources through development of a consistent statewide policy implementing Section 316(b) of the Clean Water Act. As we have previously stated, we support efforts to transition away from once through cooling and have clearly demonstrated that support through the

Estuarine Waters; Power Plant Cooling

2009-01-01T23:59:59.000Z

217

Alpha and gamma radiation effects on air-water systems at high gas/liquid ratios  

SciTech Connect

Radiolysis tests were conducted on air-water systems to examine the effects of radiation on liquid phase chemistry under high gas/liquid volume (G/L) ratios that are characteristic of an unsaturated nuclear waste repository setting. Test parameters included temperatures of 25, 90, and 200{degrees}C; gamma vs. alpha radiation; dose rates of {approximately}3500 and 50,000 rad/h; and G/L ratios of 10 and 100. Formate, oxalate, and total organic carbon contents increased during irradiation of the air-water systems in gamma and alpha tests at low-dose rate ({approximately}3500 rad/h). Increases in organic components were not observed for tests run at 200{degrees}C or high-dose rates (50,000 rad/h). In the tests where increases in organics occurred, the formate and oxalate were preferentially enriched in solutions that were rinsed from the test vessel walls. Nitrate (NO{sub 3}{sup {minus}}) is the dominant anion produced during the radiolysis reactions. Significant nitrite (NO{sub 2}{sup {minus}}) also occurs in some high-dose rate tests, with the reduced form of nitrogen possibly resulting from reactions with the test vessels. These results indicate that nitrogen acids are being produced and concentrated in the limited quantities of solution present in the tests. Nitrate + nitrite production varied inversely with temperature, with the lowest quantities being detected for the higher temperature tests. The G(NO{sub 3}{sup {minus}} + NO{sub 2}{sup {minus}}) values for the 25, 90, and 200{degrees}C experiments with gamma radiation are 3.2 {+-} 0.7, 1.3 {+-} 1.0, and 0.4 {+-} 0.3, respectively. Thus, the elevated temperatures expected early in the life of a repository may counteract pH decreases resulting from nitrogen acid production. Little variation was observed in G values as a function of dose rate or gas/liquid ratio.

Wronkiewicz, D.J.; Bates, J.K.

1993-08-01T23:59:59.000Z

218

Wetland treatment of oil and gas well waste waters. Final report  

SciTech Connect

Constructed wetlands are small on-site systems that possess three of the most desirable components of an industrial waste water treatment scheme: low cost, low maintenance and upset resistance. The main objective of the present study is to extend the knowledge base of wetland treatment systems to include processes and substances of particular importance to small, on-site systems receiving oil and gas well wastewaters. A list of the most relevant and comprehensive publications on the design of wetlands for water quality improvement was compiled and critically reviewed. Based on our literature search and conversations with researchers in the private sector, toxic organics such as Phenolics and b-naphthoic acid, (NA), and metals such as CU(II) and CR(VI) were selected as target adsorbates. A total of 90 lysimeters equivalent to a laboratory-scale wetland were designed and built to monitor the uptake and transformation of toxic organics and the immobilization of metal ions. Studies on the uptake of toxic organics such as phenol and b-naphthoic acid (NA) and heavy metals such as Cu(II) and Cr(VI), the latter two singly or as non-stoichiometric mixtures by laboratory-type wetlands (LWs) were conducted. These LWs were designed and built during the first year of this study. A road map and guidelines for a field-scale implementation of a wetland system for the treatment of oil and gas wastewaters have been suggested. Two types of wetlands, surface flow (SF) and sub surface flow (SSF), have been considered, and the relative merits of each configuration have been reviewed.

Kadlec, R.; Srinivasan, K.

1995-08-01T23:59:59.000Z

219

Emission spectroscopy of a microhollow cathode discharge plasma in helium-water gas mixtures  

Science Conference Proceedings (OSTI)

A dc microhollow cathode discharge (MHCD) plasma was generated inflowing helium gas containing water vapor. The cathode hole diameters were 0.3, 0.7, 1.0, and 2.0 mm, each with a length of 2.0 mm. Emission spectroscopy was carried out to investigate the discharge mode and to determine the plasma parameters. For the 0.3-mm cathode, stable MHCDs in an abnormal glow mode existed at pressures up to 100 kPa, whereas for larger diameters, a plasma was not generated at atmospheric pressure. An analysis of the lineshapes relevant to He at 667.8 nm and to H{alpha} at 656.3 nm implied an electron density and gas temperature of 2 x 10{sup 14} cm{sup -3} and 1100 K, respectively, for a 100-kPa discharge in the negative glow region. The dependence of the OH band, and H{alpha} intensities on the discharge current exhibited different behaviors. Specifically, the OH spectrum had a maximum intensity at a certain current, while the H atom intensity kept increasing with the discharge current. This observation implies that a high concentration of OH radicals results in quenching, leading to the production of H atoms via the reaction OH + e{sup -}{yields} O + H + e{sup -}.

Namba, S.; Yamasaki, T.; Hane, Y.; Fukuhara, D.; Kozue, K.; Takiyama, K. [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan)

2011-10-01T23:59:59.000Z

220

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

11 shows the monthly natural gas price forecast for 2010 forthe winter when the natural gas prices are lower compared toSep Oct Nov Dec Fig 11 Natural gas price forecast for 2010

Lekov, Alex B.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas blue water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

11 shows the monthly natural gas price forecast for 2010 forwinter when the natural gas prices are lower compared to theannual prices. Nat. Gas Price (2007$ / MMBtu) New England

Lekov, Alex B.

2010-01-01T23:59:59.000Z

222

Blue Ng | Open Energy Information  

Open Energy Info (EERE)

Ng Jump to: navigation, search Name Blue-Ng Place Bath, United Kingdom Zip BA1 1SR Sector Biomass Product UK-based company that constructs and operates combined heat and...

223

Evaluation of EOR Potential by Gas and Water Flooding in Shale Oil Reservoirs.  

E-Print Network (OSTI)

??The demand for oil and natural gas will continue to increase for the foreseeable future; unconventional resources such as tight oil, shale gas, shale oil… (more)

Chen, Ke

2013-01-01T23:59:59.000Z

224

Evaluation of water production in tight gas sands in the Cotton Valley formation in the Caspiana, Elm Grove and Frierson fields  

E-Print Network (OSTI)

Normally in tight gas sands, water production is not a problem but in such low permeability reservoirs it is difficult to produce gas at commercial flow rates. Since water is more viscous than gas, very little water is normally produced in low permeability reservoirs. The production of large volumes of water from tight gas sands, say 50-100 bbls of water per MMcf of gas constitutes a cause for concern. High water production (>200 bbls of water per MMcf of gas) has been observed in the low permeability Cotton Valley sands in the Caspiana, Elm Grove and Frierson fields of North Louisiana. This research evaluates water production in the above tight gas sands using field data provided by Matador Resource, a member of the Crisman Institute in Texas A&M university. The research is aimed at providing realistic reservoir scenarios of excess water production in tight gas sands. Log analysis, property trends and well production profiles have been used in establishing the different scenarios. The reservoir simulation results and the production trends show a possible water source from faults and fractures connecting the Travis Peak/Smackover sands to the Cotton Valley sands. An improved understanding of the reservoir would help in further field development.

Ozobeme, Charles Chinedu

2006-12-01T23:59:59.000Z

225

Geologic, geochemical, and geographic controls on NORM in produced water from Texas oil, gas, and geothermal reservoirs. Final report  

DOE Green Energy (OSTI)

Water from Texas oil, gas, and geothermal wells contains natural radioactivity that ranges from several hundred to several thousand Picocuries per liter (pCi/L). This natural radioactivity in produced fluids and the scale that forms in producing and processing equipment can lead to increased concerns for worker safety and additional costs for handling and disposing of water and scale. Naturally occurring radioactive materials (NORM) in oil and gas operations are mainly caused by concentrations of radium-226 ({sup 226}Ra) and radium-228 ({sup 228}Ra), daughter products of uranium-238 ({sup 238}U) and thorium-232 ({sup 232}Th), respectively, in barite scale. We examined (1) the geographic distribution of high NORM levels in oil-producing and gas-processing equipment, (2) geologic controls on uranium (U), thorium (Th), and radium (Ra) in sedimentary basins and reservoirs, (3) mineralogy of NORM scale, (4) chemical variability and potential to form barite scale in Texas formation waters, (5) Ra activity in Texas formation waters, and (6) geochemical controls on Ra isotopes in formation water and barite scale to explore natural controls on radioactivity. Our approach combined extensive compilations of published data, collection and analyses of new water samples and scale material, and geochemical modeling of scale Precipitation and Ra incorporation in barite.

Fisher, R.

1995-08-01T23:59:59.000Z

226

Geohydrologic study of the Michigan Basin for the applicability of Jack W. McIntyre`s patented process for simultaneous gas recovery and water disposal in production wells  

Science Conference Proceedings (OSTI)

Geraghty & Miller, Inc. of Midland, Texas conducted a geohydrologic study of the Michigan Basin to evaluate the applicability of Jack McIntyre`s patented process for gas recovery and water disposal in production wells. A review of available publications was conducted to identify, (1) natural gas reservoirs which generate large quantities of gas and water, and (2) underground injection zones for produced water. Research efforts were focused on unconventional natural gas formations. The Antrim Shale is a Devonian gas shale which produces gas and large quantities of water. Total 1992 production from 2,626 wells was 74,209,916 Mcf of gas and 25,795,334 bbl of water. The Middle Devonian Dundee Limestone is a major injection zone for produced water. ``Waterless completion`` wells have been completed in the Antrim Shale for gas recovery and in the Dundee Limestone for water disposal. Jack McIntyre`s patented process has potential application for the recovery of gas from the Antrim Shale and simultaneous injection of produced water into the Dundee Limestone.

Maryn, S.

1994-03-01T23:59:59.000Z

227

Blue Ruthenium Dimer Catalysis for Hydrogen Generation | Advanced Photon  

NLE Websites -- All DOE Office Websites (Extended Search)

A High-Pressure Nano-imaging Breakthrough A High-Pressure Nano-imaging Breakthrough Protein Structure Could Lead to Better Treatments for HIV, Early Aging The Superpower behind Iron Oxyfluoride Battery Electrodes Watching a Protein as it Functions Shedding Light on Chemistry with a Biological Twist Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Blue Ruthenium Dimer Catalysis for Hydrogen Generation APRIL 15, 2013 Bookmark and Share Key intermediates in the water oxidation catalytic cycle of the blue dimer characterized by x-ray spectroscopy. Optimization of the reactivity toward water (purple arrow) and oxidation of the resulting peroxo-intermediate (blue arrow) are needed for improved catalytic activity.

228

Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States  

DOE Green Energy (OSTI)

Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

Denholm, P.

2007-03-01T23:59:59.000Z

229

Preliminary technical data report: WyCoalGas project water system. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project, Converse County, Wyoming  

SciTech Connect

The WyCoalGas, Inc. Proposed coal gasification plant site is approximately 16 miles north of Douglas, Wyoming, located generally in Sections 27 and 34, T35N, R70W of the sixth prinicpal meridian. The plant site is located in typical high plateau plains of central Wyoming. Climate in the area is typical of semi-arid central Wyoming and is subject to wide variations in temperature. Precipitation in the area averages about 14 inches per year, of which about 10 inches fall during the April-September irrigation season. Projected water requirements at the plant site are 6020 acre-feet per year. Since the proposed plant site is not near any major streams or rivers, water must be transported to it. Water will be supplied from four sources - two surface water and two groundwater. The two surface water sources are LaPrele Reservoir and flood flows from the North Platte River with a 1974 appropriations date. LaPrele Reservoir is located approximately 14 miles west of Douglas, Wyoming, and is shown on Figure A-1. Water will be released from LaPrele Reservoir and flow down LaPrele Creek to the North Platte River. Water from the North Platte River will be diverted at a point in Section 7 of T33N, R71W. The LaPrele water and excess water from the North Platte will be pumped from the river and stored in Panhandle Reservoir No. 1, which is also referred to as Combs Reservoir. A pipeline will convey water from Panhandle Reservoir No. 1 to the coal gasification plant site. The two groundwater sources are located north of Douglas and west of Douglas.

1982-01-01T23:59:59.000Z

230

The Integration of a Structural Water-Gas-Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 The InTegraTIon of a STrucTural WaTer- gaS-ShIfT caTalyST WITh a VanadIum alloy hydrogen TranSporT deVIce Description The purpose of this project is to produce a scalable device that simultaneously performs both water-gas-shift (WGS) and hydrogen separation from a coal-derived synthesis gas stream. The justification of such a system is the improved efficiency for the overall production of hydrogen. Removing hydrogen from the synthesis gas (syngas) stream allows the WGS reaction to convert more carbon monoxide (CO) to carbon dioxide (CO 2 ) and maximizes the total hydrogen produced. An additional benefit is the reduction in capital cost of plant construction due to the removal of one step in the process by integrating WGS with the membrane separation device.

231

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network (OSTI)

market research on solar water heaters. National Renewablespace heaters, and solar water heaters, as well as other

Lekov, Alex

2011-01-01T23:59:59.000Z

232

CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES  

Science Conference Proceedings (OSTI)

In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During April-September 2002, the JIP concentrated on: Reviewing the tasks and subtasks on the basis of the information generated during the three workshops held in March and May 2002; Writing Requests for Proposals (RFPs) and Cost, Time and Resource (CTRs) estimates to accomplish the tasks and subtasks; Reviewing proposals sent in by prospective contractors; Selecting four contractors; Selecting six sites for detailed review; and Talking to drill ship owners and operators about potential work with the JIP.

Steve Holditch; Emrys Jones

2003-01-01T23:59:59.000Z

233

CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES  

Science Conference Proceedings (OSTI)

In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During the first six months of operation, the primary activities of the JIP were to conduct and plan Workshops, which were as follows: (1) Data Collection Workshop--March 2002 (2) Drilling, Coring and Core Analyses Workshop--May 2002 (3) Modeling, Measurement and Sensors Workshop--May 2002.

Steve Holditch; Emrys Jones

2003-01-01T23:59:59.000Z

234

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers ProMIS/Project No.: DE-NT0005648  

NLE Websites -- All DOE Office Websites (Extended Search)

Edward Levy Edward Levy Principal Investigator Director, Lehigh University Energy Research Center RecoveRy of WateR fRom BoileR flue Gas usinG condensinG Heat excHanGeRs PRomis/PRoject no.: de-nt0005648 Background As the United States' population grows and demand for electricity and water increases, power plants located in some parts of the country will find it increasingly difficult to obtain the large quantities of water needed to maintain operations. Most of the water used in a thermoelectric power plant is used for cooling, and the U.S. Department of Energy (DOE) has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. Many coal-fired power plants operate with stack temperatures in the 300 °F range to minimize fouling and corrosion problems due to sulfuric acid condensation and to

235

Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process  

DOE Patents (OSTI)

In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

Schilke, Peter W. (4 Hempshire Ct., Scotia, NY 12302); Muth, Myron C. (R.D. #3, Western Ave., Amsterdam, NY 12010); Schilling, William F. (301 Garnsey Rd., Rexford, NY 12148); Rairden, III, John R. (6 Coronet Ct., Schenectady, NY 12309)

1983-01-01T23:59:59.000Z

236

Gas Well Drilling and Water Resources Regulated by the Pennsylvania Oil and  

E-Print Network (OSTI)

! Background of Marcellus Shale Gas Play ! Current Events: The Case of PA ! Geography of Fracking in Study

Boyer, Elizabeth W.

237

Sustainability and Energy Development: Influences of Greenhouse Gas Emissions Reduction Options on Water Use in Energy Production  

Science Conference Proceedings (OSTI)

Climate change mitigation strategies cannot be evaluated solely in terms of energy cost and greenhouse gas (GHG) mitigation potential. Maintaining GHGs at a 'safe' level will require fundamental change in the way we approach energy production, and a number of environmental, economic, and societal factors will come into play. Water is an essential component of energy production, and water resource constraints (e.g., insufficient supplies and competing ecological and anthropogenic needs) will limit our options for producing energy and for reducing GHG emissions. This study evaluates these potential constraints from a global perspective by revisiting the 'climate wedges' proposal of Pacala and Sokolow [1], and evaluating the potential water impacts of the 'wedges' associated with energy production. Results indicate that there is a range of water impacts, with some options reducing water demand while others increase water demand. Mitigation options that improve energy conversion and end-use efficiency have the greatest potential for reducing water resources impacts. These options provide 'win-win-win' scenarios for reducing GHG emissions, lowering energy costs and reducing water demand. Thet may merit higher priority than alternative options that emphasize deploying new low-carbon energy facilities or modifying existing facilities with energy intensive GHG mitigation technologies to reduce GHG emissions. While the latter can reduce GHG emissions, they will typically increase energy costs and water impacts.

D. Craig Cooper; Gerald Sehlke

2012-01-01T23:59:59.000Z

238

Blue-green upconversion laser  

DOE Patents (OSTI)

A blue-green laser (450--550 nm) uses a host crystal doped with Tm[sup 3+]. The Tm[sup 3+] is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP. 3 figs.

Nguyen, D.C.; Faulkner, G.E.

1990-08-14T23:59:59.000Z

239

Blue-green upconversion laser  

DOE Patents (OSTI)

A blue-green laser (450-550 nm) uses a host crystal doped with Tm{sup 3+}. The Tm{sup 3+} is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconducting laser, e.g., GaAlAs and InGaAlP.

Nguyen, Dinh C.; Faulkner, G.E.

1989-08-25T23:59:59.000Z

240

Blue-green upconversion laser  

DOE Patents (OSTI)

A blue-green laser (450-550 nm) uses a host crystal doped with Tm.sup.3+. The Tm.sup.+ is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP.

Nguyen, Dinh C. (Los Alamos, NM); Faulkner, George E. (Los Alamos, NM)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas blue water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Blue light emitting thiogallate phosphor  

DOE Patents (OSTI)

A crystalline blue emitting thiogallate phosphor of the formula RGa.sub.2 S.sub.4 :Ce.sub.x where R is selected from the group consisting of calcium, strontium, barium and zinc, and x is from about 1 to 10 atomic percent, the phosphor characterized as having a crystalline microstructure on the size order of from about 100 .ANG. to about 10,000 .ANG. is provided together with a process of preparing a crystalline blue emitting thiogallate phosphor by depositing on a substrate by CVD and resultant thin film electroluminescent devices including a layer of such deposited phosphor on an ordinary glass substrate.

Dye, Robert C. (Los Alamos, NM); Smith, David C. (Los Alamos, NM); King, Christopher N. (Portland, OR); Tuenge, Richard T. (Hillsboro, OR)

1998-01-01T23:59:59.000Z

242

Convergence of a Finite Volume Scheme for Gas Water Flow in a Multi-Dimensional Porous Media  

E-Print Network (OSTI)

A classical model for water-gas flows in porous media is considered. The degenerate coupled system of equations obtained by mass conservation is usually approximated by finite volume schemes in the oil reservoir simulations. The convergence properties of these schemes are only known for incompressible fluids. This chapter deals with construction and convergence analysis of a finite volume scheme for compressible and immiscible flow in porous media. In comparison with incompressible fluid, compressible fluids requires more powerful techniques. We present a new result of convergence in a two or three dimensional porous medium and under the only modification that the density of gas depends on global pressure.

Bendahmane, Mostafa; Saad, Mazen

2011-01-01T23:59:59.000Z

243

Blue Marble Energy | Open Energy Information  

Open Energy Info (EERE)

Energy Energy Jump to: navigation, search Name Blue Marble Energy Address P.O. Box 9190 Place Seattle, Washington Zip 98109 Sector Biomass Product Aims to turn algae and other cellulosic biomass into natural gas Website http://www.bluemarbleenergy.ne Coordinates 47.6163159°, -122.3463563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6163159,"lon":-122.3463563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

244

SIC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION  

DOE Green Energy (OSTI)

A hydrogen selective membrane as a membrane reactor (MR) can significantly improve the power generation efficiency with a reduced capital and operating cost for the waster-gas-shift reaction. Existing hydrogen selective ceramic membranes are not suitable for the proposed MR due to their poor hydrothermal stability. In this project we have focused on the development of innovative silicon carbide (SiC) based hydrogen selective membranes, which can potentially overcome this technical barrier. SiC macro-porous membranes have been successfully fabricated via extrusion of commercially available SiC powder. Also, an SiC hydrogen selective thin film was prepared via our CVD/I technique. This composite membrane demonstrated excellent hydrogen selectivity at high temperature ({approx}600 C). More importantly, this membrane also exhibited a much improved hydrothermal stability at 600 C with 50% steam (atmospheric pressure) for nearly 100 hours. In parallel, we have explored an alternative approach to develop a H{sub 2} selective SiC membrane via pyrolysis of selected pre-ceramic polymers and sol-gel techniques. Building upon the positive progress made in the membrane development study, we conducted an optimization study to develop an H{sub 2} selective SiC membrane with sufficient hydrothermal stability suitable for the WGS environment. In addition, mathematical simulation has been performed to compare the performance of the membrane reactor (MR) vs conventional packed bed reactor for WGS reaction. Our result demonstrates that >99.999% conversion can be accomplished via WGS-MR using the hydrogen selective membrane developed by us. Further, water/CO ratio can be reduced, and >97% hydrogen recovery and <200 ppm CO can be accomplished according to the mathematical simulation. Thus, we believe that the operating economics of WGS can be improved significantly based upon the proposed MR concept. In parallel, gas separations and hydrothermal and long-term-storage stability of the hydrogen selected membrane have been experimentally demonstrated using a pilot-scale tubular membrane under a simulated WGS environment.

Paul K.T. Liu

2003-12-01T23:59:59.000Z

245

Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge  

DOE Green Energy (OSTI)

Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen generation by no more than a factor of three while disodium phosphate increased the corrosion and hydrogen generation rates slightly. U(VI) showed some promise in attenuating hydrogen but only initial testing was completed. Uranium metal corrosion rates also were measured. Under many conditions showing high hydrogen gas attenuation, uranium metal continued to corrode at rates approaching those observed without additives. This combination of high hydrogen attenuation with relatively unabated uranium metal corrosion is significant as it provides a means to eliminate uranium metal by its corrosion in water without the accompanying hazards otherwise presented by hydrogen generation.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2010-01-29T23:59:59.000Z

246

Potential of solar domestic hot water systems in rural areas for greenhouse gas emission reduction in Poland  

SciTech Connect

Application of solar energy for preparing domestic hot water is one of the easiest methods of utilization of this energy. At least part of the needs for warm tap water could be covered by solar systems. At present, mainly coal is used for water heating at dwellings in rural areas in Poland. Warm tap water consumption will increase significantly in the future as standards of living are improved. This can result in the growth of electricity use and an increase in primary fuel consumption. Present and future methods of warm sanitary water generation in rural areas in Poland is discussed, and associated greenhouse gas (GHG) emissions are estimated. It is predicted that the emission of CO{sub 2} and NOx will increase. The emission of CO and CH{sub 4} will decrease because of changes in the structure of the final energy carriers used. The economic and market potentials of solar energy for preparing warm water in rural areas are discussed. It is estimated that solar systems can meet 30%-45% of the energy demand for warm water generation in rural areas at a reasonable cost, with a corresponding CO{sub 2} emission reduction. The rate of realization of the economic potential of solar water heaters depends on subsidies for the installation of equipment. 13 refs., 9 tabs.

Skowronski, P. [Polish Foundation for Energy Efficiency, Warsaw (Poland); Wisniewski, G. [Institute for Building, Mechanization and Electrification of Agriculture, Warsaw (Poland)

1996-09-01T23:59:59.000Z

247

Parametric Gasification of Oak and Pine Feedstocks Using the TCPDU and Slipstream Water-Gas Shift Catalysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Parametric Gasification of Oak Parametric Gasification of Oak and Pine Feedstocks Using the TCPDU and Slipstream Water-Gas Shift Catalysis Jason Hrdlicka, Calvin Feik, Danny Carpenter, and Marc Pomeroy Technical Report NREL/TP-510-44557 December 2008 Parametric Gasification of Oak and Pine Feedstocks Using the TCPDU and Slipstream Water-Gas Shift Catalysis Jason Hrdlicka, Calvin Feik, Danny Carpenter, and Marc Pomeroy Prepared under Task No. H2713B13 Technical Report NREL/TP-510-44557 December 2008 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC

248

SiC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION  

DOE Green Energy (OSTI)

This technical report summarizes our activities conducted in Yr II. In Yr I we successfully demonstrated the feasibility of preparing the hydrogen selective SiC membrane with a chemical vapor deposition (CVD) technique. In addition, a SiC macroporous membrane was fabricated as a substrate candidate for the proposed SiC membrane. In Yr II we have focused on the development of a microporous SiC membrane as an intermediate layer between the substrate and the final membrane layer prepared from CVD. Powders and supported thin silicon carbide films (membranes) were prepared by a sol-gel technique using silica sol precursors as the source of silicon, and phenolic resin as the source of carbon. The powders and films were prepared by the carbothermal reduction reaction between the silica and the carbon source. The XRD analysis indicates that the powders and films consist of SiC, while the surface area measurement indicates that they contain micropores. SEM and AFM studies of the same films also validate this observation. The powders and membranes were also stable under different corrosive and harsh environments. The effects of these different treatments on the internal surface area, pore size distribution, and transport properties, were studied for both the powders and the membranes using the aforementioned techniques and XPS. Finally the SiC membrane materials are shown to have satisfactory hydrothermal stability for the proposed application. In Yr III, we will focus on the demonstration of the potential benefit using the SiC membrane developed from Yr I and II for the water-gas-shift (WGS) reaction.

Paul K.T. Liu

2001-10-16T23:59:59.000Z

249

Program on Technology Innovation - Use of Natural Peat to Remediate Contaminated Water at Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

This report describes the use of natural peat to remediate contaminated groundwater, including its potential use in permeable reactive barriers (PRBs) at manufactured gas plant (MGP) sites. Readers will find descriptions of peat's properties and the mechanisms by which it removes contaminants from water, results of laboratory and field studies using natural peat to remove specific environmental contaminants, and recommendations for modifications that can enhance peat's removal efficiency.

2008-04-24T23:59:59.000Z

250

`blue-sky' science Spending review  

E-Print Network (OSTI)

. Cooling Towers Fiddlers Ferry #12;What are the benefits of `blue-sky' science? At a time where every penny

251

EVALUATION OF A METHOD USING COLLOIDAL GAS APHRONS TO REMEDIATE METALS-CONTAMINATED MINE DRAINAGE WATERS  

SciTech Connect

Experiments were conducted in which three selected metals-contaminated mine drainage water samples were treated by chemical precipitation followed by flotation using colloidal gas aphrons (CGAs) to concentrate the precipitates. Drainage water samples used in the experiments were collected from an abandoned turn-of-the-century copper mine in south-central Wyoming, an inactive gold mine in Colorado's historic Clear Creek mining district, and a relatively modern gold mine near Rapid City, South Dakota. The copper mine drainage sample was nearly neutral (pH 6.5) while the two gold mine samples were quite acidic (pH {approx}2.5). Metals concentrations ranged from a few mg/L for the copper mine drainage to several thousand mg/L for the sample from South Dakota. CGAs are emulsions of micrometer-sized soap bubbles generated in a surfactant solution. In flotation processes the CGA microbubbles provide a huge interfacial surface area and cause minimal turbulence as they rise through the liquid. CGA flotation can provide an inexpensive alternative to dissolved air flotation (DAF). The CGA bubbles are similar in size to the bubbles typical of DAF. However, CGAs are generated at ambient pressure, eliminating the need for compressors and thus reducing energy, capital, and maintenance costs associated with DAF systems. The experiments involved precipitation of dissolved metals as either hydroxides or sulfides followed by flotation. The CGAs were prepared using a number of different surfactants. Chemical precipitation followed by CGA flotation reduced contaminant metals concentrations by more than 90% for the copper mine drainage and the Colorado gold mine drainage. Contaminant metals were concentrated into a filterable sludge, representing less than 10% of the original volume. CGA flotation of the highly contaminated drainage sample from South Dakota was ineffective. All of the various surfactants used in this study generated a large sludge volume and none provided a significant concentration factor with this sample. For the two samples where CGA flotation was effective, the separation was very rapid and the concentrate volume was reduced when compared to gravity separation under similar conditions. Effective separations were achieved with very low chemical dosages and low residence times, suggesting the possibility of economic viability for processes based on this concept. The CGA flotation experiments described in the following report were conducted to provide preliminary data with which to assess the technical feasibility of using the method for remediation of metals-contaminated mine drainage waters. The experiments were conducted using common, low-cost, precipitating reagents and CGA prepared from several surfactants. Results were evaluated in terms of metals concentration reduction, reagent consumption, and concentrate volume. The results of these preliminary experiments indicate that CGA flotation may be a useful tool for the treatment of some types of mine drainage.

R. Williams Grimes

2002-06-01T23:59:59.000Z

252

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO RECOVER HEAVY HYDROCARBONS AND TO REMOVE WATER FROM NATURAL GAS  

SciTech Connect

The objective of this project is to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world conditions would convince industry users of the efficiency and reliability of the process. The system has been designed and fabricated by Membrane Technology and Research, Inc. (MTR) and will be installed and operated at British Petroleum (BP)-Amoco's Pascagoula, MS plant. The Gas Research Institute will partially support the field demonstration and BP-Amoco will help install the unit and provide onsite operators and utilities. The gas processed by the membrane system will meet pipeline specifications for dewpoint and Btu value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. At the end of this demonstration project the process will be ready for commercialization. The route to commercialization will be developed during this project and may involve collaboration with other companies already servicing the natural gas processing industry.

R. Baker; R. Hofmann; K.A. Lokhandwala

2003-02-14T23:59:59.000Z

253

Field Demonstration of a Membrane Process to Recover Heavy Hydrocarbons and to Remove Water from Natural Gas  

SciTech Connect

The objective of this project is to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world conditions would convince industry users of the efficiency and reliability of the process. The system has been designed and fabricated by Membrane Technology and Research, Inc. (MTR) and will be installed and operated at British Petroleum (BP)-Amoco's Pascagoula, MS plant. The Gas Research Institute will partially support the field demonstration and BP-Amoco will help install the unit and provide onsite operators and utilities. The gas processed by the membrane system will meet pipeline specifications for dewpoint and BTU value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. At the end of this demonstration project the process will be ready for commercialization. The route to commercialization will be developed during this project and may involve collaboration with other companies already servicing the natural gas processing industry.

R. Baker; T. Hofmann; K. A. Lokhandwala

2004-09-29T23:59:59.000Z

254

Field Demonstration of a Membrane Process to Recover Heavy Hydrocarbons and to Remove Water from Natural Gas  

SciTech Connect

The objective of this project is to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world high-pressure conditions is being conducted to convince industry users of the efficiency and reliability of the process. The system was designed and fabricated by Membrane Technology and Research, Inc. (MTR) and installed and operated at BP Amoco's Pascagoula, MS plant. The Gas Research Institute is partially supporting the field demonstration and BP-Amoco helped install the unit and provided onsite operators and utilities. The gas processed by the membrane system meets pipeline specifications for dewpoint and BTU value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. During the course of this project, MTR has sold 11 commercial units related to the field test technology, and by the end of this demonstration project the process will be ready for broader commercialization. A route to commercialization has been developed during this project and involves collaboration with other companies already servicing the natural gas processing industry.

R. Baker; T. Hofmann; K. A. Lokhandwala

2005-09-29T23:59:59.000Z

255

Field Demonstration of a Membrane Process to Recover Heavy Hydrocarbons and to Remove Water from Natural Gas  

SciTech Connect

The objective of this project was to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world high-pressure conditions was conducted to convince industry users of the efficiency and reliability of the process. The system was designed and fabricated by Membrane Technology and Research, Inc. (MTR) and installed and operated at BP Amoco's Pascagoula, MS plant. The Gas Research Institute partially supported the field demonstration and BP-Amoco helped install the unit and provide onsite operators and utilities. The gas processed by the membrane system meets pipeline specifications for dew point and BTU value and can be delivered without further treatment to the pipeline. During the course of this project, MTR has sold thirteen commercial units related to the field test technology. Revenue generated from new business is already more than four times the research dollars invested in this process by DOE. The process is ready for broader commercialization and the expectation is to pursue the commercialization plans developed during this project, including collaboration with other companies already servicing the natural gas processing industry.

Kaaeid Lokhandwala

2007-03-30T23:59:59.000Z

256

Field Demonstration of a Membrane Process to Recover Heavy Hydrocarbons and to Remove Water from Natural Gas  

Science Conference Proceedings (OSTI)

The objective of this project is to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world high-pressure conditions is being conducted to convince industry users of the efficiency and reliability of the process. The system was designed and fabricated by Membrane Technology and Research, Inc. (MTR) and installed and operated at BP Amoco's Pascagoula, MS plant. The Gas Research Institute is partially supporting the field demonstration and BP-Amoco helped install the unit and provides onsite operators and utilities. The gas processed by the membrane system meets pipeline specifications for dew point and BTU value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. During the course of this project, MTR has sold 13 commercial units related to the field test technology, and by the end of this demonstration project the process will be ready for broader commercialization. A route to commercialization has been developed during this project and involves collaboration with other companies already servicing the natural gas processing industry.

R. Baker; T. Hofmann; K. A. Lokhandwala

2006-09-29T23:59:59.000Z

257

MathematicalGeology, Vol. 11,No. I,1979 Modeling and Optimizing a Gas-Water Reservoir  

E-Print Network (OSTI)

Recovery with waterflooding'*- Mark E.Johnson,2EllisA. Mona&: and Michael S. Watermad Accepted practice the optimal production strategy. Essentially, this strategy is to refrain from waterflooding until the minimum strategy to be optimal. THE GAS-WATERFLOOD RESERVOIR MODEL The mathematical details of the gas-waterflood

Waterman, Michael S.

258

Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating  

SciTech Connect

Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

Kingston, T.; Scott, S.

2013-03-01T23:59:59.000Z

259

Statistical thermodynamics of supercapacitors and blue engines  

E-Print Network (OSTI)

We study the thermodynamics of electrode-electrolyte systems, for instance supercapacitors filled with an ionic liquid or blue-energy devices filled with river- or sea water. By a suitable mapping of thermodynamic variables, we identify a strong analogy with classical heat engines. We introduce several Legendre transformations and Maxwell relations. We argue that one should distinguish between the differential capacity at constant ion number and at constant ion chemical potential, and derive a relation between them that resembles the standard relation between heat capacity at constant volume and constant pressure. Finally, we consider the probability distribution of the electrode charge at a given electrode potential, the standard deviation of which is given by the differential capacity.

René van Roij

2012-11-06T23:59:59.000Z

260

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

D. Winiarski. (1999). WHAM: Simplified tool for calculatingDepartment of Energy 2009b). WHAM yields total water heaterWater Heater Analysis Model (WHAM) method (Lutz et al. 1999)

Lekov, Alex B.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas blue water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

Winiarski, D. (1999). WHAM: Simplified tool for calculatingDepartment of Energy 2009b). WHAM yields total water-heaterWater Heater Analysis Model (WHAM) method (Lutz et al. 1999)

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

262

Blue Summit | Open Energy Information  

Open Energy Info (EERE)

Summit Summit Jump to: navigation, search Name Blue Summit Facility Blue Summit Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Undisclosed PPA Location Vernon TX Coordinates 34.304837°, -99.376873° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.304837,"lon":-99.376873,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

heating appliances 3 , solar water heating, district heatingOther includes solar, wood, no heating c Electric resistance

Lekov, Alex B.

2010-01-01T23:59:59.000Z

264

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

heating appliances, 3 solar water heating, district heating,Other includes solar, wood, and no heating b Table 2 US

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

265

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

Refrigeration Institute 2008a). The efficiency of water heaters, depending on the rated volume and other design

Lekov, Alex B.

2010-01-01T23:59:59.000Z

266

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

Refrigeration Institute 2008a). The efficiency of water heaters, depending on the rated volume and other design

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

267

Production-management techniques for water-drive gas reservoirs. Annual report, August 1, 1990-July 31, 1991  

SciTech Connect

The research work, during the period of the report, can be divided into three main categories, the first category being the NE Hitchcock reservoir characterization review task. NE Hitchcock field production and log data were acquired. Well by well review of production was performed and cross-correlated with geologic interpretations. The second category is the reservoir selection task. In the process of selecting two water-drive gas reservoir candidates, over 150 fields located in the Rockies, New Mexico, West Texas, Mid Continent, Michigan and offshore Louisiana were searched. The reservoir selection criteria is: water-drive gas reservoir, location near a geologic outcrop (if possible), field size of 5-40 wells, and availability of core and modern well logs. Accordingly, the Vermejo/Moore-Hooper Fusselman and the Grand Isle PD sand fields were selected to be studied. The third category is the laboratory investigations. The task includes rock mechanical properties, phase behavior and sand control portions. In the rock mechanical properties segment, laboratory measurements were made on several Berea Core plugs. The equation of state and an empirical approach are being used to predict initial reservoir gas composition from current production data for the phase behavior part. The sand control part was completed with conclusions regarding the ability to predict the existence of plastic failure region of an unconsolidated sand near a wellbore. The project is continuing to accomplish its goals to evaluate different production management strategies on the two chosen water-drive gas reservoirs through reservoir engineering, geologic interpretation, experimental work and reservoir simulation studies.

Crafton, J.W.; Davis, D.; Graves, R.; Poettmann, F.; Thompson, R.

1991-08-01T23:59:59.000Z

268

Gas purification  

SciTech Connect

Natural gas having a high carbon dioxide content is contacted with sea water in an absorber at or near the bottom of the ocean to produce a purified natural gas.

Cook, C.F.; Hays, G.E.

1982-03-30T23:59:59.000Z

269

Metal/ceria water-gas shift catalysts for automotive polymer electrolyte fuel cell system.  

DOE Green Energy (OSTI)

Polymer electrolyte fuel cell (PEFC) systems are a leading candidate for replacing the internal combustion engine in light duty vehicles. One method of generating the hydrogen necessary for the PEFC is reforming a liquid fuel, such as methanol or gasoline, via partial oxidation, steam reforming, or autothermal reforming (a combination of partial oxidation and steam reforming). The H{sub 2}-rich reformate can contain as much as 10% carbon monoxide. Carbon monoxide has been shown to poison the platinum-based anode catalyst at concentrations as low as 10 ppm,1 necessitating removal of CO to this level before passing the reformate to the fuel cell stack. The water-gas shift (WGS) reaction, CO + H{sub 2}O {rightleftharpoons} CO{sub 2} + H{sub 2}, is used to convert the bulk of the reformate CO to CO{sub 2}. Industrially, the WGS reaction is conducted over two catalysts, which operate in different temperature regimes. One catalyst is a FeCr mixed oxide, which operates at 350-450 C and is termed the high-temperature shift (HTS) catalyst. The second catalyst is a CuZn mixed oxide, which operates at 200-250 C and is termed the low-temperature shift (LTS) catalyst. Although these two catalysts are used industrially in the production of H{sub 2} for ammonia synthesis, they have major drawbacks that make them unsuitable for transportation applications. Both the LTS and the HTS catalysts must first be ''activated'' before being used. For example, the copper in the copper oxide/zinc oxide LTS catalyst must first be reduced to elemental copper in situ before it becomes active for the WGS reaction. This reduction reaction is exothermic and must be carried out under well- controlled conditions using a dilute hydrogen stream (1 vol% H{sub 2}) to prevent high catalyst temperatures, which can result in sintering (agglomeration) of the copper particles and loss of active surface area for the WGS reaction. Also, once the catalyst has been activated by reduction, it must be protected from exposure to ambient air to prevent re-oxidation of the copper. The activated catalyst must also be protected from the condensation of liquids, for example, during start-up or transient operation. For these reasons, a more thermally rugged catalyst is needed which has sufficient activity to operate at the low temperatures that are thermodynamically necessary to achieve low CO concentrations.

Myers, D. J.; Krebs, J. F.; Carter, J. D.; Kumar, R.; Krumpelt, M.

2002-01-11T23:59:59.000Z

270

NIST Blue Ribbon Commission on Management and Safety ? ...  

Science Conference Proceedings (OSTI)

NIST Blue Ribbon Commission on Management and Safety – II. The NIST Blue Ribbon Commission on Management and ...

2012-08-27T23:59:59.000Z

271

NIST Blue Ribbon Commission on Management and Safety ...  

Science Conference Proceedings (OSTI)

... See NIST Blue Ribbon Commission on Management and Safety – II. NIST Blue Ribbon Commission on Management and Safety. ...

2010-10-05T23:59:59.000Z

272

Stratospheric Aerosol and Gas Experiment II CD-ROM Atlas of Global Monthly Aerosols, Ozone, NO2, Water, Vapor, and Relative Humitidy (1985–1993)  

Science Conference Proceedings (OSTI)

Individual profile measurements from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument aboard the Earth Radiation Budget Satellite have been used to create latitude-longitude maps of monthly mean aerosols, ozone, water vapor, ...

D. Rind; X. Liao

1997-01-01T23:59:59.000Z

273

Economic benefits of R and D on gas supply technologies. [Unconventioal natural gas resources which are tight sands, Devonian shale, coal seam gas, and gas co-produced with water  

SciTech Connect

Advanced natural gas supply technologies, if successful, could lower the average cost of gas to consumers by 18% and increase the expected gas demand by 2 quads/year by the year 2000. Advanced production techniques for unconventional gas will have by far the greatest impact on future gas prices, providing economic benefits of between $200 billion and $320 billion. Advanced SNG from coal will provide only a $9 billion benefit if unconventional gas meets all of its performance targets. However, higher demand and failure of unconventional gas R and D could raise the benefits of SNG research to $107 billion. SNG research provides a hedge value that increases the likelihood of receiving a positive payoff from gas supply R and D. Changing the performance goals for SNG research to emphasize cost reduction rather than acceleration of the date of commercialization would greatly increase the potential benefits of the program. 9 references, 8 figures, 5 tables.

Darrow, K.G.; Ashby, A.B.; Nesbitt, D.M.; Marshalla, R.A.

1985-01-01T23:59:59.000Z

274

Water Heaters and Hot Water Distribution Systems  

E-Print Network (OSTI)

The effect on water and gas usage from cross-flow betweencontrols have on water and gas usage over a large number ofsystems, and their water and gas usage. Hourly schedules for

Lutz, Jim

2012-01-01T23:59:59.000Z

275

Deep, water-free gas potential is upside to New Albany shale play  

Science Conference Proceedings (OSTI)

The New Albany shale of the Illinois basin contains major accumulations of Devonian shale gas, comparable both to the Antrim shale of the Michigan basin and the Ohio shale of the Appalachian basin. The size of the resource originally assessed at 61 tcf has recently been increased to between 323 tcf and 528 tcf. According to the 1995 US Geological Survey appraisal, New Albany shale gas represents 52% of the undiscovered oil and gas reserves of the Illinois basin, with another 45% attributed to coalbed methane. New Albany shale gas has been developed episodically for over 140 years, resulting in production from some 40 fields in western Kentucky, 20 fields in southern Indiana, and at least 1 field in southern Illinois. The paper describes two different plays identified by a GRI study and prospective areas.

Hamilton-Smith, T. [Hamilton-Smith LLC, Lexington, KY (United States)

1998-02-16T23:59:59.000Z

276

Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping  

SciTech Connect

Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

2010-01-01T23:59:59.000Z

277

Performance and economic evaluation of the seahorse natural gas hot water heater conversion at Fort Stewart. Final report  

SciTech Connect

The Federal government is the largest single energy consumer in the United States with consumption of nearly 1.5 quads/year of energy (10{sup 15} quad = 1015 Btu) and cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP) seeks to evaluate new energy -- saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate in the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studied under that program. This report provides the results of a field evaluation that PNL conducted for DOE/FEMP with funding support from the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of 4 candidate energy-saving technology-a water heater conversion system to convert electrically powered water heaters to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.

Winiarski, D.W.

1995-12-01T23:59:59.000Z

278

Performance and economic evaluation of the seahorse natural gas hot water heater conversion at Fort Stewart. Interim report, 1994 Summer  

Science Conference Proceedings (OSTI)

The federal government is the largest single energy consumer in the United States cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate in the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studied under that program. This interim report provides the results of a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology-a hot water heater conversion system to convert electrically heated hot water tanks to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.

Winiarski, D.W.

1995-01-01T23:59:59.000Z

279

Influence of Atmospheric Pressure and Water Table Fluctuations on Gas Phase Flow and Transport of Volatile Organic Compounds (VOCs) in Unsaturated Zones  

E-Print Network (OSTI)

Understanding the gas phase flow and transport of volatile organic compounds (VOCs) in unsaturated zones is indispensable to develop effective environmental remediation strategies, to create precautions for fresh water protection, and to provide guidance for land and water resources management. Atmospheric pressure and water table fluctuations are two important natural processes at the upper and lower boundaries of the unsaturated zone, respectively. However, their significance has been neglected in previous studies. This dissertation systematically investigates their influence on the gas phase flow and transport of VOCs in soil and ground water remediation processes using analytically and numerically mathematical modeling. New semi-analytical and numerical solutions are developed to calculate the subsurface gas flow field and the gas phase transport of VOCs in active soil vapor extraction (SVE), barometric pumping (BP) and natural attenuation taking into account the atmospheric pressure and the water table fluctuations. The accuracy of the developed solutions are checked by comparing with published analytical solutions under extreme conditions, newly developed numerical solutions in COMSOL Multiphysics and field measured data. Results indicate that both the atmospheric pressure and the tidal-induced water table fluctuations significantly change the gas flow field in active SVE, especially when the vertical gas permeability is small (less than 0.4 Darcy). The tidal-induced downward moving water table increases the depth-averaged radius of influence (ROI) for the gas pumping well. However, this downward moving water table leads to a greater vertical pore gas velocity away from the gas pumping well, which is unfavorable for removing VOCs. The gas flow rate to/from the barometric pumping well can be accurately calculated by our newly developed solutions in both homogeneous and multi-layered unsaturated zones. Under natural unsaturated zone conditions, the time-averaged advective flux of the gas phase VOCs induced by the atmospheric pressure and water table fluctuations is one to three orders of magnitude less than the diffusive flux. The time-averaged advective flux is comparable with the diffusive flux only when the gas-filled porosity is very small (less than 0.05). The density-driven flux is negligible.

You, Kehua

2013-05-01T23:59:59.000Z

280

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

gy.gov/buildings/appliance_standards/residential/water_Efficiency in Domestic Appliances and Lighting (EEDAL 06).http://www1.eere.energy.gov/ buildings/appliance_standards/

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas blue water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Performance calculations and research direction for a water enhanced regenerative gas turbine cycle  

DOE Green Energy (OSTI)

A cycle has been conceived that combines compressor cooling, humidification, and regenerative air heating with the added enhancement of direct injection of water into the air flow. In this cycle it is proposed that a fine mist of water be injected into the compressor air stream and a spray or film of water into the regenerator air stream. Water injection into the compressor air flow realizes several benefits: it cools the air flow, reducing the power required for compression and increasing the potential for exhaust heat recovery; it adds mass to the air stream, increasing the power produced by expansion; and it reduces the amount of cooling bleed air required by increasing the specific heat and decreasing the temperature of the cooling air stream. The greatest benefit would be derived from spraying a fine mist of water directly into the existing air flow into or before the compressor so that cooling and compression would occur simultaneously. This may be accomplished by entraining the water droplets in the inlet air flow or by introducing the water in stages during compression. An alternative and less technically challenging approach is to extract the air stream to a saturation chamber and then reintroduce the air stream into the compressor. This approach is not as desirable because it would increase the equipment cost and add a significant pressure drop penalty. The second use of water in this cycle is in water-assisted regeneration.

Rogers, L.H. [USDOE Morgantown Energy Technology Center, WV (United States); Archer, D.H. [Carnegie-Mellon Univ., Pittsburgh, PA (United States)

1993-09-01T23:59:59.000Z

282

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network (OSTI)

seds.html. USDOE. 2009. Residential Energy ConsumptionUSEPA) 2008. Energy Star Residential Water Heaters: FinalExperiences of residential consumers and utilities. Oak

Lekov, Alex

2011-01-01T23:59:59.000Z

283

pH Adjustment of Power Plant Cooling Water with Flue Gas/ Fly ...  

The discovery represents a cost-effective way to utilize materials indigenous to fossil fuel burning power platns to control mineral precipitation is cooling water.

284

Deep Blue No. 2-A Resource in the Making at Blue Mountain | Open Energy  

Open Energy Info (EERE)

Deep Blue No. 2-A Resource in the Making at Blue Mountain Deep Blue No. 2-A Resource in the Making at Blue Mountain Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Deep Blue No. 2-A Resource in the Making at Blue Mountain Abstract This paper provides a summary of the drilling operations, flow and injection testing and downhole measurements obtained during the drilling and testing of Deep Blue No.2. This well was sited as a step out to Deep Blue No.1 which measured 145°C at a depth of 645 meters. The maximum temperature recorded in Deep Blue No.2 while drilling was 167.5°C at a depth of 585 meters. Preliminary geothermometry from the short rigon flow test conducted last April 2004 indicated a parent reservoir temperature of 240°C. The results from the November 2004 flow and injection testing

285

Iron-ceria Aerogels Doped with Palladium as Water-gas Shift Catalysts for the Production of Hydrogen  

Science Conference Proceedings (OSTI)

Mixed 4.5% iron oxide-95.5% cerium oxide aerogels doped with 1% and 2% palladium (Pd) by weight have been synthesized, and their activities for the catalysis of water-gas shift (WGS) reaction have been determined. The aerogels were synthesized using propylene oxide as the proton scavenger for the initiation of hydrolysis and polycondensation of a homogeneous alcoholic solution of cerium(III) chloride heptahydrate and iron(III) chloride hexahydrate precursor. Palladium was doped onto some of these materials by gas-phase incorporation (GPI) using ({eta}{sup 3}-allyl)({eta}{sup 5}-cyclopentadienyl)palladium as the volatile Pd precursor. Water-gas shift catalytic activities were evaluated in a six-channel fixed-bed reactor at atmospheric pressure and reaction temperatures ranging from 150 to 350 C. Both 1% and 2% Pd-doped 4.5% iron oxide-95.5% cerium oxide aerogels showed WGS activities that increased significantly from 150 to 350 C. The activities of 1% Pd-doped 4.5% iron oxide-95.5% cerium oxide aerogels were also compared with that of the 1% Pd-doped ceria aerogel without iron. The WGS activity of 1% Pd on 4.5% iron oxide-95.5% cerium oxide aerogels is substantially higher (5 times) than the activity of 1% Pd-doped ceria aerogel without iron. The gas-phase incorporation results in a better Pd dispersion. Ceria aerogel provides a nonrigid structure wherein iron is not significantly incorporated inside the matrix, thereby resulting in better contact between the Fe and Pd and thus enhancing the WGS activity. Further, neither Fe nor Pd is reduced during the ceria-aerogel-catalyzed WGS reaction. This behavior contrasts with that noted for other Fe-based WGS catalysts, in which the original ferric oxide is typically reduced to a nonstoichiometric magnetite form.

Bali, S.; Huggins, F; Ernst, R; Pugmire, R; Huffman, G; Eyring, E

2010-01-01T23:59:59.000Z

286

Parametric Gasification of Oak and Pine Feedstocks Using the TCPDU and Slipstream Water-Gas Shift Catalysis  

DOE Green Energy (OSTI)

With oak and pine feedstocks, the Gasification of Biomass to Hydrogen project maximizes hydrogen production using the Full Stream Reformer during water-gas shift fixed-bed reactor testing. Results indicate that higher steam-to-biomass ratio and higher thermal cracker temperature yield higher hydrogen concentration. NREL's techno-economic models and analyses indicate hydrogen production from biomass may be viable at an estimated cost of $1.77/kg (current) and $1.47/kg (advanced in 2015). To verify these estimates, NREL used the Thermochemical Process Development Unit (TCPDU), an integrated system of unit operations that investigates biomass thermochemical conversion to gaseous and liquid fuels and chemicals.

Hrdlicka, J.; Feik, C.; Carpenter, D.; Pomeroy, M.

2008-12-01T23:59:59.000Z

287

Development of a gas backup heater for solar domestic hot-water systems. Final report, April 1978-April 1980  

DOE Green Energy (OSTI)

A comprehensive program was undertaken to develop a unique gas fired backup for solar domestic hot water systems. Detailed computer design tools were written. A series of heat transfer experiments were performed to characterize the performance of individual components. A full scale engineering prototype, including the solar preheat tank and solar heat exchanger, was designed, fabricated and subjected to limited testing. Firing efficiency for the backup system was found to be 81.4% at a firing rate of 50,000 Btu/h. Long term standby losses should be negligible.

Morrison, D.J.; Grunes, H.E.; de Winter, F.; Armstrong, P.R.

1980-06-01T23:59:59.000Z

288

Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Laws Envirosearch Institutional Controls NEPA Activities RCRA RQ*Calculator Water HSS Logo Water Laws Overview of water-related legislation affecting DOE sites Clean...

289

Guidance on risk analysis and safety implications of a large liquefied natural gas (LNG) spill over water.  

Science Conference Proceedings (OSTI)

While recognized standards exist for the systematic safety analysis of potential spills or releases from LNG (Liquefied Natural Gas) storage terminals and facilities on land, no equivalent set of standards or guidance exists for the evaluation of the safety or consequences from LNG spills over water. Heightened security awareness and energy surety issues have increased industry's and the public's attention to these activities. The report reviews several existing studies of LNG spills with respect to their assumptions, inputs, models, and experimental data. Based on this review and further analysis, the report provides guidance on the appropriateness of models, assumptions, and risk management to address public safety and property relative to a potential LNG spill over water.

Wellman, Gerald William; Melof, Brian Matthew; Luketa-Hanlin, Anay Josephine; Hightower, Marion Michael; Covan, John Morgan; Gritzo, Louis Alan; Irwin, Michael James; Kaneshige, Michael Jiro; Morrow, Charles W.

2004-12-01T23:59:59.000Z

290

Investigation of Effects of Coal and Biomass Contaminants on the Performance of Water-Gas-Shift and Fischer-Tropsch Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of Coal Effects of Coal and Biomass Contaminants on the Performance of Water-Gas-Shift and Fischer-Tropsch Catalysts Background Coal-Biomass-to-Liquids (CBTL) processes gasify coal, biomass, and mixtures of coal/ biomass to produce synthesis gas (syngas) that can be converted to liquid hydrocarbon fuels. Positive benefits of these processes include the use of feedstocks from domestic sources and lower greenhouse gas production than can be achieved from using conventional petroleum-based fuels. However, syngas generated by coal and biomass co-gasification contains a myriad of trace contaminants that may poison the water- gas-shift (WGS) and Fischer-Tropsch (FT) catalysts used in the gas-to-liquid processes. While the effect of coal contaminants on FT processes is well studied, more research

291

Molecular studies of the structural properties of hydrogen gas in bulk water.  

DOE Green Energy (OSTI)

We report on our studies of the structural properties of a hydrogen molecule dissolved in liquid water. The radial distribution function, coordination number and coordination number distribution are calculated using different representations of the interatomic forces within molecular dynamics (MD), Monte Carlo (MC) and ab initio molecular dynamics (AIMD) simulation frameworks. Although structural details differ in the radial distribution functions generated from the different force fields, all approaches agree that the average and most probable number of water molecules occupying the inner hydration sphere around hydrogen is 16. Furthermore, all results exclude the possibility of clathrate-like organization of water molecules around the hydrophobic molecular hydrogen solute.

Rempe, Susan L.; Sabo, Dubravko; Greathouse, Jeffery A.; Martin, Marcus Gary

2006-02-01T23:59:59.000Z

292

Simultaneous boiling and spreading of liquefied petroleum gas on water. Final report, December 12, 1978-March 31, 1981  

SciTech Connect

An experimental and theoretical investigation was carried out to study the boiling and spreading of liquid nitrogen, liquid methane and liquefied petroleum gas (LPG) on water in a one-dimensional configuration. Primary emphasis was placed on the LPG studies. Experimental work involved the design and construction of a spill/spread/boil apparatus which permitted the measurement of spreading and local boil-off rates. With the equations of continuity and momentum transfer, a mathematical model was developed to describe the boiling-spreading phenomena of cryogens spilled on water. The model accounted for a decrease in the density of the cryogenic liquid due to bubble formation. The boiling and spreading rates of LPG were found to be the same as those of pure propane. An LPG spill was characterized by the very rapid and violent boiling initially and highly irregular ice formation on the water surface. The measured local boil-off rates of LPG agreed reasonably well with theoretical predictions from a moving boundary heat transfer model. The spreading velocity of an LPG spill was found to be constant and determined by the size of the distributor opening. The maximum spreading distance was found to be unaffected by the spilling rate. These observations can be explained by assuming that the ice formation on the water surface controls the spreading of LPG spills. While the mathematical model did not predict the spreading front adequately, it predicted the maximum spreading distance reasonably well.

Chang, H.R.; Reid, R.C.

1981-04-01T23:59:59.000Z

293

A Combined Passive Water Vapor Exchanger and Exhaust Gas Diffusion Barrier for Fuel Cell Applications  

Science Conference Proceedings (OSTI)

Fuel cells operating on hydrocarbon fuels require water vapor injection into the fuel stream for fuel reforming and the prevention of carbon fouling. Compared to active water recovery systems, a passive approach would eliminate the need for a separate water source, pumps, and actuators, and thus reduce parasitic thermal losses. The passive approach developed in this paper employs a capillary pump that recovers the water vapor from the exhaust, while providing a diffusion barrier that prevents exhaust gases from entering the fuel stream. Benchtop proof tests have proven the feasibility of the passive fuel humidifier concept, and have provided a calibration factor for a computational design tool that can be used for industrial applications

Williford, Rick E. (BATTELLE (PACIFIC NW LAB)); Hatchell, Brian K. (BATTELLE (PACIFIC NW LAB)); Singh, Prabhakar (BATTELLE (PACIFIC NW LAB))

2002-11-14T23:59:59.000Z

294

PWR Primary-Side Gas Management in Advanced Light Water Reactors  

Science Conference Proceedings (OSTI)

The designs for advanced light water reactors (ALWRs) have incorporated new water chemistry controls that have been developed over the past few decades to improve material and equipment reliability and fuel performance and to minimize radionuclide production and transport. It is important to ensure that the new designs operate within ranges that are considered safe based on current knowledge and that industry guidance for normal operation, startup, and shutdown are updated to account for expanding ...

2013-07-17T23:59:59.000Z

295

Blue Sun Biodiesel | Open Energy Information  

Open Energy Info (EERE)

held Blue Sun Biodiesel is a breakthrough agriculture energy company, developing oilseed energy crops and production and distribution networks to bring high-performance biodiesel...

296

Blue Green Capital | Open Energy Information  

Open Energy Info (EERE)

Capital Jump to: navigation, search Name Blue Green Capital Place Spain Zip 8860 Sector Renewable Energy, Solar Product String representation "Spanish develop ... their projects."...

297

Blue Planet Solar | Open Energy Information  

Open Energy Info (EERE)

Solar Product Belgium-based firm that offers installation, operating, developing and investment services for solar projects. References Blue Planet Solar1 LinkedIn Connections...

298

Blue C Ltd | Open Energy Information  

Open Energy Info (EERE)

Zip 98104 Sector Renewable Energy Product An advisory firm providing project and investment advice to renewable energy projects. References Blue C, Ltd.1 LinkedIn Connections...

299

On the stellar and baryonic mass fractions of central blue and red galaxies  

E-Print Network (OSTI)

By means of the abundance matching technique, we infer the local stellar and baryonic mass-halo mass (Ms-Mh and Mb-Mh) relation for central blue and red galaxies separately in the mass range Ms~10^8.5-10^12.0 Msun. The observational inputs are the SDSS central blue and red Galaxy Stellar Mass Functions reported in Yang et al. 2009, and the measured local gas mass-Ms relations for blue and red galaxies. For the Halo Mass Function associated to central blue galaxies, the distinct LCDM one is used and set up to exclude: (i) the observed group/cluster mass function (blue galaxies are rare as centers of groups/clusters), and (ii) halos with a central major merger at resdshifts z10^11.5 Msun, the Ms's of red galaxies tend to be higher than those of blue ones for a given Mh, the difference not being larger than 1.7. For Mh<10^11.5 Msun, this trend is inverted. For blue (red) galaxies: (a) the maximum value of fs=Ms/Mh is 0.021^{+0.016}_{-0.009} (0.034{+0.026}_{-0.015}) and it is attained atlog(Mh/Msun)~12.0 (log(...

Rodriguez-Puebla, A; Firmani, C; Colin, P

2011-01-01T23:59:59.000Z

300

Evaluation of cover gas impurities and their effects on the dry storage of LWR (light-water reactor) spent fuel  

DOE Green Energy (OSTI)

The purposes of this report are to (1) identify the sources of impurity gases in spent fuel storage casks; (2) identify the expected concentrations and types of reactive impurity gases from these sources over an operating lifetime of 40 years; and (3) determine whether these impurities could significantly degrade cladding or exposed fuel during this period. Four potential sources of impurity gases in the helium cover gas in operating casks were identified and evaluated. Several different bounding cases have been considered, where the reactive gas inventory is either assumed to be completely gettered by the cladding or where all oxygen is assumed to react completely with the exposed fuel. It is concluded that the reactive gas inventory will have no significant effect on the cladding unless all available oxygen reacts with the UO/sub 2/ fuel to produce U/sub 3/O/sub 8/ at one or two cladding breaches. Based on Zircaloy oxidation data, the oxygen inventory in a fully loaded pressurized water reactor cask such as the Castor-V/21 will be gettered by the Zircaloy cladding in about 1 year if the peak cladding temperature within the task is greater than or equal to300/sup 0/C. Only a negligible decrease in the thickness of the cladding would result. 24 refs., 4 tabs.

Knoll, R.W.; Gilbert, E.R.

1987-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas blue water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Blue Mountain, Humboldt County, Nevada, U.S.A  

SciTech Connect

The report documents the drilling of well Deep Blue No.2, the second deep geothermal test hole at the Blue Mountain Geothermal Area, Humboldt County, Nevada. The well was drilled by Noramex Corp, a Nevada company, with funding support from the US Department of Energy, under the DOE’s GRED II Program. Deep Blue No.2 was drilled as a ‘step-out’ hole from Deep Blue No.1, to further evaluate the commercial potential of the geothermal resource. Deep Blue No.2 was designed as a vertical, slim observation test hole to a nominal target depth of 1000 meters (nominal 3400 feet). The well tests an area of projected high temperatures at depth, from temperature gradients measured in a group of shallow drill holes located approximately one kilometer to the northeast of observation hole Deep Blue No.1. The well is not intended for, or designed as, a commercial well or a production well. Deep Blue No.2 was spudded on March 25, 2004 and completed to a total depth of 1127.76m (3700 ft) on April 28, 2004. The well was drilled using conventional rotary drilling techniques to a depth of 201.17 m (660 ft), and continuously cored from 201.17m (660 ft) to 1127.76m (3700 ft). A brief rig-on flow-test was conducted at completion to determine basic reservoir parameters and obtain fluid samples. A permeable fracture zone with measured temperatures of 150 to 167°C (302 to 333°F) occurs between 500 to 750m (1640 to 2461ft). The well was left un-lined in anticipation of the Phase III - Flow and Injection Testing. A further Kuster temperature survey was attempted after the well had been shut in for almost 3 weeks. The well appears to have bridged off at 439m (1440ft) as the Kuster tool was unable to descend past this point. Several attempts to dislodge the obstruction using tube jars were unsuccessful. Deep Blue No.2 encountered variably fractured and veined, fine-grained rocks of the Singas Formation, and intruded by minor strongly altered fine-grained felsic dikes, and less altered fineto medium-grained felsic to intermediate dikes. Widespread open fractures and extensive of quartz veining in many intervals of the core indicate a high degree of fracturing and flow of silica-bearing fluids, almost certainly hotter than 200°C (392°F), at some time, but these fractures are now partially sealed. Intervals of soft shaly mudstone, common clay gouge, and rocks with generally low permeability (few veins and fractures) may also form a seal or ‘cap’ above the main high temperature reservoir at Blue Mountain. The encouraging results from Deep Blue No.2 support further drilling at Blue Mountain. Higher temperature fluids can be expected where fractures providing channels for the circulation of hot water from depth have not been sealed extensively by silica deposition.

Ted Fitzpatrick, Brian D. Fairbank

2005-04-01T23:59:59.000Z

302

Water Heaters and Hot Water Distribution Systems  

E-Print Network (OSTI)

gas water heaters; and pressure loss calculations for residentialgas water heaters; and pressure loss calculations for residential

Lutz, Jim

2012-01-01T23:59:59.000Z

303

A shallow water model for dense gas simulation in urban areas  

SciTech Connect

Large quantities of toxic chemicals are stored at industrial facilities and transported around the country via train and truck. In the event of an accidental release, many of these chemicals are released as heavier-than-air gases that stay low to the ground as they are transported by the wind . Breathing height concentrations can remain high due to reduced vertical mixing and hazard zone coverage area can be larger due to near-source gravitational slumping . A number of fast-response dense gas dispersion models have been developed and are routinely used to deal with heavier-than-air releases over unobstructed terrain. If a release were to occur in a built-up environment, however, the effects of buildings and other obstacles will significantly alter the initial spreading, the transport direction, and the amount of mixing of the dense gas cloud . We have developed a new fast-running dense gas dispersion model that is intended for handling releases in cities and at large industrial facilities. In this paper we describe the scheme employed and how the model has been integrated into the Quick Urban & Industrial Complex (QUIC) dispersion modeling system.

Brown, Michael [Los Alamos National Laboratory; Williams, Mike D [Los Alamos National Laboratory; Gowardhan, Akshay [Los Alamos National Laboratory; Brambilla, Sara [POLITECNICO DI MILANO; Manca, Davide [POLITECNICO DI MILANO

2009-01-01T23:59:59.000Z

304

Preliminary Modeling, Testing and Analysis of a Gas Tankless Water Heater  

SciTech Connect

Tankless water heaters offer significant energy savings over conventional storage-tank water heaters, because thermal losses to the environment are much less. Although standard test results are available to compare tankless heaters with storage tank heaters, actual savings depend on the draw details because energy to heat up the internal mass depends on the time since the last draw. To allow accurate efficiency estimates under any assumed draw pattern, a one-node model with heat exchanger mass is posed here. Key model parameters were determined from test data. Burner efficiency showed inconsistency between the two data sets analyzed. Model calculations show that efficiency with a realistic draw pattern is {approx}8% lower than that resulting from using only large {approx}40 liter draws, as specified in standard water-heater tests. The model is also used to indicate that adding a small tank controlled by the tankless heater ameliorates unacceptable oscillations that tankless with feedback control can experience with pre-heated water too hot for the minimum burner setting. The added tank also eliminates problematic low-flow cut-out and hot-water-delay, but it will slightly decrease efficiency. Future work includes model refinements and developing optimal protocols for parameter extraction.

Burch, J.; Thornton, J.; Hoeschele, M.; Springer, D.; Rudd, A.

2008-01-01T23:59:59.000Z

305

Blue LED for RS Monitor  

E-Print Network (OSTI)

Abstract We report on a design of RS gain monitor system based on blue LED. Gain of each RS PMT is monitored by a LED, which is mounted in front of the PMT window in its _-metal shield. The blue LED well simulates scintillation light with its short pulse and wavelength. The LED is as small as 3 mmOE. The light yield is stable and has small temperature dependence. These are nice properties to install in present RS system with small modification and to operate without air conditioning. In this note we will present outline of our design and test results which demonstrate its desirable properties. 1 Introduction RS gain monitor has been carried out with K_2 events at E787. They are sat- isfactory to monitor long and medium term stability but it is not satisfactory to monitor short term stability and to check PMT and related electronics quickly and frequently. These capabilities are important to reduce setup time and loss time in long E949 run. For these purpose triggerable and stable light source is required at RS system. We consider two types of monitoring system. One is the system which consists of one light source and its light distribution network, such as a Xe lamp with a optical fiber network. It has the advantage that light intensity of the source itself can be monitored and be corrected. But, practically, it is not easy to estimate light output of individual fiber correctly by checking light source and to handle optical fibers, and we have to think out a solution how we introduce lights to RS or its PMT. Also the system is rather expensive and it will take long time to

unknown authors

2000-01-01T23:59:59.000Z

306

Gas Scavenging of Soluble and Insoluble Organic Vapors by Levitated Water Drops  

Science Conference Proceedings (OSTI)

Three-millimeter-diameter drops of water were levitated with a standing acoustic wave centered in the jet of a small wind tunnel and the volume changes as the drop evaporates in the presence of 1-propanol vapor were measured. The results are ...

Mark Seaver; Amy Barrett

1994-07-01T23:59:59.000Z

307

Multi-class blue noise sampling  

Science Conference Proceedings (OSTI)

Sampling is a core process for a variety of graphics applications. Among existing sampling methods, blue noise sampling remains popular thanks to its spatial uniformity and absence of aliasing artifacts. However, research so far has been mainly focused ... Keywords: blue noise, dart throwing, multi-class, poisson hard/soft disk, relaxation, sampling

Li-Yi Wei

2010-07-01T23:59:59.000Z

308

Scalable Time Warp on Blue Gene Supercomputers  

Science Conference Proceedings (OSTI)

n this paper we illustrate scalable parallel performance for the TimeWarp synchronization protocol on the L and P variants of the IBM BlueGene supercomputer. Scalable Time Warp performance for models that communicate a large percentage of the event population ... Keywords: Time Warp, Blue Gene Supercomputer

David W. Bauer Jr.; Christopher D. Carothers; Akintayo Holder

2009-06-01T23:59:59.000Z

309

Research into the Characterization of Brackish Water and Disposal of Desalination Reject Water in Saline Aquifers and Depleted Oil and Gas Reservoirs  

E-Print Network (OSTI)

Brackish groundwater is a valuable “drought-proof” resource that is plentiful in much of Texas. If treated by available desalination technologies, brackish groundwater resources could help many regions of Texas cope with pressing water shortages. If put to non-potable uses such as waterflooding, streamflow augmentation, and landscape irrigation, brackish groundwater could free up substantial amounts of drinking water supplies now dedicated to these uses. In 2007, the Texas Legislature passed landmark legislation that should provide greatly expanded opportunities to beneficially use concentrates from the desalination of brackish groundwater or to streamline the disposal as a waste product. House Bill 2654 (passed in the 80th Legislative session) has the promise of making it substantially easier to manage concentrates that result from the desalination of brackish groundwater. The bill authorizes the Texas Commission on Environmental Quality to issue a general statewide permit that allows disposal of nonhazardous brine from desalination operations into Class I injection wells. The bill also streamlines the process of using the concentrates in Class II injection wells for enhanced oil and gas recovery operations. However, more still needs to be done in two key areas: * Learning more about the chemical traits of brackish groundwater in specific circumstances to ensure that concentrates from desalting these resources are not a hazardous waste, * Continuing to develop and implement technologies and management strategies that make these programs most cost-efficient.

Jensen, R.

2008-01-01T23:59:59.000Z

310

Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst  

DOE Green Energy (OSTI)

The rate of synthesis gas consumption over a cobalt FischerTropsch catalyst was measured in a well-mixed, continuous-flow, slurry reactor at 220 to 240[degrees]C, 0.5 to 1.5 MPa, H[sub 2]/CO feed ratios of 1.5 to 3.5 and conversions of 7 to 68% of hydrogen and 11 to 73% of carbon monoxide. The inhibiting effect of carbon monoxide was determined quantitatively and a Langmuir-Hinshelwood-type equation of the following form was found to best represent the results: -R[sub H[sub 2+Co

Yates, I.C.; Satterfield, C.N.

1989-01-01T23:59:59.000Z

311

Geopressured-geothermal test of the EDNA Delcambre No. 1 well, Tigre Lagoon Field, Vermilion Parish, Louisiana: analysis of water an dissolved natural gas. Final report  

DOE Green Energy (OSTI)

The Edna Delcambre et al. No. 1 gas well, shut-in since June 1975, was made available for the project. Two geopressured sand-bed aquifers were tested: sand No. 3 at a depth of 12,900 feet and sand No. 1 at a depth of 12,600 feet. Each aquifer was subjected to flow tests which lasted approximately three weeks in each case. Water samples were obtained during flow testing of the two geopressured aquifers. The water contained 11.3 to 13.3% dissolved solids. Several radioactive species were measured. Radium-226 was found to be approximately 10 times more concentrated than the average amount observed in surface waters. No appreciable amount of heavy metals was detected. Recombination studies at bottom-hole conditions indicate the solubility of natural gas per barrel of water to be about 24 SCF. The methane content was 93 to 95%, and the gas had a heating value in the range of 1020 to 1070 Btu/cu.ft. During the flow tests, the gas/water ratio at the well-head was observed to be 45 to 88 SCF/Bbl water produced. (MHR)

Hankins, B.E.; Karkalits, O.C.

1978-09-01T23:59:59.000Z

312

Blue Flint Ethanol | Open Energy Information  

Open Energy Info (EERE)

Flint Ethanol Flint Ethanol Jump to: navigation, search Name Blue Flint Ethanol Place Underwood, North Dakota Zip ND 58576 Product Joint Venture bentween Great River Energy and Headwaters Incorporated, was established to build and operate a 50 million gallon per year dry mill ethanol plant in Underwood, North Dakota. References Blue Flint Ethanol[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Blue Flint Ethanol is a company located in Underwood, North Dakota . References ↑ "Blue Flint Ethanol" Retrieved from "http://en.openei.org/w/index.php?title=Blue_Flint_Ethanol&oldid=342914" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

313

Blue Marble Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

Energy Corporation Energy Corporation Jump to: navigation, search Name Blue Marble Energy Corporation Place Seattle, Washington Zip 98108 Sector Bioenergy Product Washington State-based firm developing technology to convert biowaste into bioenergy and biochemicals. References Blue Marble Energy Corporation[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Blue Marble Energy Corporation is a company located in Seattle, Washington . References ↑ "Blue Marble Energy Corporation" Retrieved from "http://en.openei.org/w/index.php?title=Blue_Marble_Energy_Corporation&oldid=380764" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

314

Big Blue Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Big Blue Wind Farm Big Blue Wind Farm Jump to: navigation, search Name Big Blue Wind Farm Facility Big Blue Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Xcel Energy Location Blue Earth MN Coordinates 43.64324946°, -94.22179699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.64324946,"lon":-94.22179699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Deep Blue No 2- A Resource In The Making At Blue Mountain | Open Energy  

Open Energy Info (EERE)

2- A Resource In The Making At Blue Mountain 2- A Resource In The Making At Blue Mountain Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Deep Blue No 2- A Resource In The Making At Blue Mountain Details Activities (1) Areas (1) Regions (0) Abstract: This paper provides a summary of the drilling operations, flow and injection testing and downhole measurements obtained during the drilling and testing of Deep Blue No.2. This well was sited as a step out to Deep Blue No.1 which measured 145°C at a depth of 645 meters. The maximum temperature recorded in Deep Blue No.2 while drilling was 167.5°C at a depth of 585 meters. Preliminary geothermometry from the short rigon flow test conducted last April 2004 indicated a parent reservoir temperature of 240°C. The results from the November 2004 flow and

316

Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate  

DOE Patents (OSTI)

The present invention relates to a method of removing of nitrogen monoxide from a nitrogen monoxide-containing gas which method comprises contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate complex. The NO absorption efficiency of ferrous urea-dithiocarbamate and ferrous diethanolamine-xanthate as a function of time, oxygen content and solution ph is presented. 3 figs., 1 tab.

Liu, D. Kwok-Keung; Chang, Shih-Ger

1987-08-25T23:59:59.000Z

317

Science at LLNL with IBM Blue Gene/Q  

Science Conference Proceedings (OSTI)

Lawrence Livermore National Laboratory (LLNL) has a long history of working with IBM on Blue Gene® supercomputers. Beginning in November 2001 with the joint announcement of a partnership to expand the Blue Gene research project (including Blue Gene®/L ...

B. Carnes, B. Chan, E. W. Draeger, J.-L. Fattebert, L. Fried, J. Glosli, W. D. Krauss, S. H. Langer, R. McCallen, A. A. Mirin, F. Najjar, A. L. Nichols, T. Oppelstrup, J. A. Rathkopf, D. Richards, F. Streitz, P. M. Vranas, J. J. Rice, J. A. Gunnels, V. Gurev, C. Kim, J. Magerlein, M. Reumann, H.-F. Wen

2013-01-01T23:59:59.000Z

318

BlueFire Ethanol, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BlueFire Ethanol, Inc. BlueFire Ethanol, Inc. A proposal issued by BlueFire Ethanol Inc,describing a project that will give DOE understanding of a new biological fermentation...

319

An innovative catalyst system for slurry-phase Fischer-Tropsch synthesis: Cobalt plus a water-gas-shift catalyst  

SciTech Connect

The feasibility of using a mechanical mixture of a Co/MgO/SiO{sub 2} Fischer-Tropsch catalyst and a Cu-ZnO/Al{sub 2}O{sub 3} water-gas-shift (WGS) catalyst for hydrocarbon synthesis in a slurry reactor has been established. Such a mixture can combine the superior product distribution from cobalt with the high activity for the WGS reaction characteristic of iron. Weight ratios of Co/MgO/SiO{sub 2} to Cu-ZnO/Al{sub 2}O{sub 3} of 0.27 and 0.51 for the two catalysts were studied at 240{degrees}C, 0.79 MPa, and in situ H{sub 2}/CO ratios between 0.8 and 3.0. Each catalyst mixture showed stable Fischer-Tropsch activity for about 400 hours-on-stream at a level comparable to the cobalt catalyst operating alone. The Cu-ZnO/Al{sub 2}O{sub 3} catalyst exhibited a very slow loss of activity under these conditions, but when operated alone it was stable in a slurry reactor at 200--220{degrees}C, 0.79--1.48 MPa, and H{sub 2}/CO in situ ratios between 1.0 and 2.0. The presence of the water-gas-shift catalyst did not affect the long-term stability of the primary Fischer-Tropsch selectivity, but did increase the extent of secondary reactions, such as l-alkene hydrogenation and isomerization.

Satterfield, C.N.; Yates, I.C.; Chanenchuk, C.

1991-07-01T23:59:59.000Z

320

Determination of the Effect of Coal/Biomass-Derived Syngas Contaminants on the Performance of Fischer-Tropsch and Water-Gas-Shift Catalysts  

DOE Green Energy (OSTI)

To investigate the impact of CB gasification on the production of transportation fuels by FT synthesis, RTI International conducted thermodynamic studies to identify trace contaminants that will react with water-gas-shift and FT catalysts and built several automated microreactor systems to investigate the effect of single components and the synergistic effects of multiple contaminants on water-gas-shift and FT catalyst performance. The contaminants investigated were sodium chloride (NaCl), potassium chloride (KCl), hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), ammonia (NH{sub 3}), and combinations thereof. This report details the thermodynamic studies and the individual and multi-contaminant results from this testing program.

Trembly, Jason; Cooper, Matthew; Farmer, Justin; Turk, Brian; Gupta, Raghubir

2010-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas blue water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Massively-parallel electrical-conductivity imaging of hydrocarbons using the Blue Gene/L supercomputer  

E-Print Network (OSTI)

of potential offshore oil and gas reservoirs. To cope within hydrocarbon, i.e. oil and gas, exploration, and aresuch as brines, water, oil and gas. This has encouraged the

2008-01-01T23:59:59.000Z

322

Feasibility and Treatment of Oil and Gas Produced Water as a Medium for Nannochloropsis Salina cultivation  

DOE Green Energy (OSTI)

Some conclusions of this paper are: (1) How much PW is available - (a) Lots, but probably not enough to support the largest estimates of algae production needed, (b) Diluent water is likely needed to support cultivation in some cases, (c) An assessment of how much PW is really available for use is needed; (2) Where is it available - (a) In many places near other resources (land, CO{sub 2}, sunlight, nutrients) and infrastructure (pipelines, refineries, disposal operations/wells); (3) Is the water chemistry acceptable for use - (a) Yes, in many cases with minimal treatment, (b) Additional constituents of value exist in PW for media; (4) Does it need treatment prior to use - (a) Yes, it may often need treatment for organics, some metals, and biological contaminants, (b) Source control and monitoring can reduce need for treatment; (5) How much does it cost to treat it - (a) If desalination is not needed, from <$0.01-$0.60 per m3 is a starting estimate; and (6) Can you grow algae in it - (a) Yes, but we need more experimentation to optimize field conditions, media mixing, and algae types.

Sullivan, Enid J. [Los Alamos National Laboratory; Dean, Cynthia A. [Los Alamos National Laboratory; Yoshida, Thomas M. [Los Alamos National Laboratory; Steichen, Seth A. [Los Alamos National Laboratory; Laur, Paul A. [Eldorado Biofuels; Visolay, Alfonz [VM Technologies

2012-06-06T23:59:59.000Z

323

Update on Blue Ribbon Commission for America's Nuclear Future...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Future Update on Blue Ribbon Commission for America's Nuclear Future BRC-SEAB-October-12%202011.pdf More Documents & Publications Blue Ribbon Commission on America's...

324

Changes related to "Blue Spark Technologies formerly Thin Battery...  

Open Energy Info (EERE)

icon Twitter icon Changes related to "Blue Spark Technologies formerly Thin Battery Technologies Inc" Blue Spark Technologies formerly Thin Battery Technologies Inc...

325

Pages that link to "Blue Spark Technologies formerly Thin Battery...  

Open Energy Info (EERE)

icon Twitter icon Pages that link to "Blue Spark Technologies formerly Thin Battery Technologies Inc" Blue Spark Technologies formerly Thin Battery Technologies Inc...

326

Comprehensive Lifecycle Planning and Management System For Addressing Water Issues Associated With Shale Gas Development In New York, Pennsylvania, And West Virginia  

Science Conference Proceedings (OSTI)

The objective of this project is to develop a modeling system to allow operators and regulators to plan all aspects of water management activities associated with shale gas development in the target project area of New York, Pennsylvania, and West Virginia (â??target areaâ?ť), including water supply, transport, storage, use, recycling, and disposal and which can be used for planning, managing, forecasting, permit tracking, and compliance monitoring. The proposed project is a breakthrough approach to represent the entire shale gas water lifecycle in one comprehensive system with the capability to analyze impacts and options for operational efficiency and regulatory tracking and compliance, and to plan for future water use and disposition. It will address all of the major water-related issues of concern associated with shale gas development in the target area, including water withdrawal, transport, storage, use, treatment, recycling, and disposal. It will analyze the costs, water use, and wastes associated with the available options, and incorporate constraints presented by permit requirements, agreements, local and state regulations, equipment and material availability, etc. By using the system to examine the water lifecycle from withdrawals through disposal, users will be able to perform scenario analysis to answer "what if" questions for various situations. The system will include regulatory requirements of the appropriate state and regional agencies and facilitate reporting and permit applications and tracking. These features will allow operators to plan for more cost effective resource production. Regulators will be able to analyze impacts of development over an entire area. Regulators can then make informed decisions about the protections and practices that should be required as development proceeds. This modeling system will have myriad benefits for industry, government, and the public. For industry, it will allow planning all water management operations for a project or an area as one entity to optimize water use and minimize costs subject to regulatory and other constraints. It will facilitate analysis of options and tradeoffs, and will also simplify permitting and reporting to regulatory agencies. The system will help regulators study cumulative impacts of development, conserve water resources, and manage disposal options across a region. It will also allow them to track permits and monitor compliance. The public will benefit from water conservation, improved environmental performance as better system wide decisions are made, and greater supply of natural gas, with attendant lower prices, as costs are reduced and development is assisted through better planning and scheduling. Altogether, better economics and fewer barriers will facilitate recovery of the more than 300 trillion cubic feet of estimated recoverable natural gas resource in the Marcellus Shale in a manner that protects the environment.

J. Daniel Arthur

2012-03-31T23:59:59.000Z

327

Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production  

SciTech Connect

Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

Colmenares, L.B.; Zoback, M.D. [Stanford University, Stanford, CA (United States). Dept. of Geophysics

2007-01-15T23:59:59.000Z

328

Ethanol synthesis and water gas shift over bifunctional sulfide catalysts. Final technical progress report, September 12, 1991--December 11, 1994  

DOE Green Energy (OSTI)

The objective of this research was to investigate sulfur-resistant catalysts for the conversion of synthesis gas having H{sub 2}/CO {le} 1 into C{sub 1}--C{sub 4} alcohols, especially ethanol, by a highly selective and efficient pathway, while also promoting the water gas shift reaction (WGSR). The catalysts chosen are bifunctional, base-hydrogenation, sulfur-tolerant transition metal sulfides with heavy alkali, e.g. Cs{sup +}, promoter dispersed on their surfaces. The modes of activation of H{sub 2} and CO on MoS{sub 2} and alkali-doped MoS{sub 2} were considered, and computational analyses of the thermodynamic stability of transition metal sulfides and of the electronic structure of these sulfide catalysts were carried out. In the preparation of the cesium-promoted MoS{sub 2} catalysts, a variety of preparation methods using CsOOCH were examined. In all cases, doping with CsOOCH led to a lost of surface area. The undoped molybdenum disulfide catalyst only produced hydrocarbons. Cs-doped MoS{sub 2} catalysts all produced linear alcohols, along with smaller amounts of hydrocarbons. With a 20 wt% CsOOCH/MoS{sub 2} catalyst, temperature, pressure, and flow rate dependences of the synthesis reactions were investigated in the presence and absence of H{sub 2}S in the H{sub 2}/CO = 1/1 synthesis gas during short term testing experiments. It was shown that with a carefully prepared 10 wt% CsOOCH/MoS{sub 2} catalyst, reproducible and high alcohol synthesis activity could be obtained. For example, at 295 C with H{sub 2}/CO = 1 synthesis gas at 8.3 MPa and with GHSV = 7,760 l/kg cat/hr, the total alcohol space time yield was ca 300 g/kg cat/hr (accompanied with a hydrocarbon space time yield of ca 60 g/kg cat/hr). Over a testing period of ca 130 hr, no net deactivation of the catalyst was observed. 90 refs., 82 figs., 14 tabs.

Klier, K.; Herman, R.G.; Deemer, M.; Richards-Babb, M.; Carr, T.

1995-07-01T23:59:59.000Z

329

SiC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION  

DOE Green Energy (OSTI)

A hydrogen selective membrane as a membrane reactor (MR) can significantly improve the power generation efficiency with a reduced capital and operating cost for the waster-gas-shift reaction. Existing hydrogen selective ceramic membranes are not suitable for the proposed MR due to their poor hydrothermal stability. In this project we have focused on the development of innovative silicon carbide (SiC) based hydrogen selective membranes, which can potentially overcome this technical barrier. During Year I, we have successfully fabricated SiC macro porous membranes via extrusion of commercially available SiC powder, which were then deposited with thin, micro-porous (6 to 40{angstrom} in pore size) films via sol-gel technique as intermediate layers. Finally, an SiC hydrogen selective thin film was deposited on this substrate via our CVD/I technique. The composite membrane thus prepared demonstrated excellent hydrogen selectivity at high temperature ({approx}600 C). More importantly, this membrane also exhibited a much improved hydrothermal stability at 600 C with 50% steam (atmospheric pressure) for nearly 100 hours. In parallel, we have explored an alternative approach to develop a H{sub 2} selective SiC membrane via pyrolysis of selected pre-ceramic polymers. Building upon the positive progress made in the Year I preliminary study, we will conduct an optimization study in Year II to develop an optimized H{sub 2} selective SiC membrane with sufficient hydrothermal stability suitable for the WGS environment.

Unknown

2000-12-01T23:59:59.000Z

330

Blue Star Energy Services | Open Energy Information  

Open Energy Info (EERE)

BlueStar) BlueStar) Jump to: navigation, search Name Blue Star Energy Services Place Illinois Utility Id 55722 Utility Location Yes Ownership R NERC Location RFC NERC RFC Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1180/kWh Commercial: $0.0687/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Blue_Star_Energy_Services&oldid=409064" Categories: EIA Utility Companies and Aliases

331

CA-TRIBE-BLUE LAKE RANCHERIA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CA-TRIBE-BLUE LAKE RANCHERIA CA-TRIBE-BLUE LAKE RANCHERIA Location: Tribe CA-TRIBE-BLUE CA LAKE RANCHERIA American Recovery and Reinvestment Act: Proposed Action or Project Description The Blue Lake Rancheria Tribe of California proposes to hire a technical consultant to gather additional information and make recommendations as to the best energy efficiency and conservation project or projects to utilize energy efficiency and conservation block grant funds. Following these recommendations, a decision will be made on building retrofits, and the specific retrofits will be identified and submitted for NEPA review. Conditions: None Categorical Exclusion(s) Applied: A9, A11 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21

332

The California Economy: Singing the Housing Blues  

E-Print Network (OSTI)

THE CALIFORNIA ECONOMY: SINGING THE HOUSING  BLUES Many  parts  of  the  economy  are  doing  better  than towards 2007 the entire economy is being threatened by the 

Thornberg, Christopher

2007-01-01T23:59:59.000Z

333

Blue Star Energy Services | Open Energy Information  

Open Energy Info (EERE)

Blue Star Energy Services Place Illinois Utility Id 55722 Utility Location Yes Ownership R NERC Location RFC NERC RFC Yes Activity Retail Marketing Yes References EIA Form EIA-861...

334

Robust Low-Cost Water-Gas Shift Membrane Reactor for High-Purity Hydrogen Production form Coal-Derived Syngas  

DOE Green Energy (OSTI)

This report details work performed in an effort to develop a low-cost, robust water gas shift membrane reactor to convert coal-derived syngas into high purity hydrogen. A sulfur- and halide-tolerant water gas shift catalyst and a sulfur-tolerant dense metallic hydrogen-permeable membrane were developed. The materials were integrated into a water gas shift membrane reactor in order to demonstrate the production of >99.97% pure hydrogen from a simulated coal-derived syngas stream containing 2000 ppm hydrogen sulfide. The objectives of the program were to (1) develop a contaminant-tolerant water gas shift catalyst that is able to achieve equilibrium carbon monoxide conversion at high space velocity and low steam to carbon monoxide ratio, (2) develop a contaminant-tolerant hydrogen-permeable membrane with a higher permeability than palladium, (3) demonstrate 1 L/h purified hydrogen production from coal-derived syngas in an integrated catalytic membrane reactor, and (4) conduct a cost analysis of the developed technology.

James Torkelson; Neng Ye; Zhijiang Li; Decio Coutinho; Mark Fokema

2008-05-31T23:59:59.000Z

335

Novel Bacterial Diversity in an Anchialine Blue Hole on Abaco Island, Bahamas  

E-Print Network (OSTI)

Anchialine blue holes found in the interior of the Bahama Islands have distinct fresh and salt water layers, with vertical mixing, and dysoxic to anoxic conditions below the halocline. Scientific cave diving exploration and microbiological investigations of Cherokee Road Extension Blue Hole on Abaco Island have provided detailed information about the water chemistry of the vertically stratified water column. Hydrologic parameters measured suggest that circulation of seawater is occurring deep within the platform. Dense microbial assemblages which occurred as mats on the cave walls below the halocline were investigated through construction of 16S rRNA clone libraries, finding representatives across several bacterial lineages including Chlorobium and OP8. In many blue holes, microbial metabolism of organic matter in the presence of seawater sulfate leads to anoxic and sulfidic conditions at or below halocline. Sunlight penetrating this sulfidic layer allows for in situ primary production to be dominated by bacterial anoxygenic phototrophs. Although water column chemistry and molecular genetic diversity of microbial mats in Cherokee Road Extension Blue Hole were investigated in this study, the full scope of the biogeochemistry of inland blue holes throughout the Bahamas Archipelago is complex and poorly understood. However, these microbial communities are clearly influenced by several factors including solar insolation, terrestrial and marine inputs of oxygen, carbon, and nutrients, water residence times, depth to the halo/chemocline, and cave passage geometry. The biogeochemistry of inland blue holes throughout the Bahamas is so distinctive which makes Abaco Island and the rest of the archipelago valuable as natural experiments, repositories of microbial diversity, and analogs for stratified and sulfidic oceans present early in Earth's history.

Gonzalez, Brett Christopher

2010-12-01T23:59:59.000Z

336

Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah  

Science Conference Proceedings (OSTI)

Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utahâ??s total crude oil production and 71 percent of Utahâ??s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water â?? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquiferâ??s areal extent, thickness, water chemistry, and relationship to Utahâ??s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utahâ??s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

2012-04-30T23:59:59.000Z

337

Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah  

SciTech Connect

Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

2012-04-30T23:59:59.000Z

338

Austin Using Green Innovation to Beat the Utility Blues | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Using Green Innovation to Beat the Utility Blues Austin Using Green Innovation to Beat the Utility Blues Austin Using Green Innovation to Beat the Utility Blues January 17, 2012 - 1:03pm Addthis An aerial view of the Hornsby Bend Biosolids Management Plant in Austin, Texas. | Photo courtesy of Austin Water. An aerial view of the Hornsby Bend Biosolids Management Plant in Austin, Texas. | Photo courtesy of Austin Water. Todd G. Allen Project Officer, Golden Field Office What does this project do? New biogas generators harness the methane produced during the production of a soil conditioner called "Dillo Dirt" to power the entire production plant. Sewage treatment has always been a dirty business, dating back to the frontier days when "waste management" meant the guy who followed after the

339

Alabama Gas Corporation - Residential Natural Gas Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Gas Corporation - Residential Natural Gas Rebate Program Alabama Gas Corporation - Residential Natural Gas Rebate Program Alabama Gas Corporation - Residential Natural Gas Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Alabama Program Type Utility Rebate Program Rebate Amount Furnace (Replacement): $200 Dryer (Replacement): $100 Natural Gas Range/Cooktop (Replacement): $100 Water Heaters (Replacement): $200 Tankless Water Heaters (Replacement): $200 Provider Alabama Gas Corporation Alabama Gas Corporation (Alagasco) offers various rebates to its residential customers who replace older furnaces, water heaters, cooktops, ranges and clothes dryers with new, efficient equipment. All equipment

340

CO2 SELECTIVE CERAMIC MEMBRANE FOR WATER-GAS SHIFT REACTION WITH CONCOMITANT RECOVERY OF CO2  

DOE Green Energy (OSTI)

Two process schemes have been investigated by us for the use of hydrotalcites we prepared as CO{sub 2} adsorbents to enhance water gas shift (WGS) reaction: Case I involves the adsorption enhanced WGS packed bed reactor and Case II involves the adsorption enhanced WGS membrane reactor. Both cases will achieve the same objective as the hydrotalcite membrane reactor: i.e., improving the WGS reactor efficiency via the concomitant removal of CO{sub 2} for sequestration. In this report a detailed investigation of the design characteristics and performance of Case II, termed the Hybrid Adsorbent-Membrane Reactor (HAMR), is presented. The HAMR system includes a packed-bed catalytic membrane reactor (hydrogen selective) coupling the WGS reaction (in a porous hydrogen selective membrane) with CO{sub 2} removal with an adsorbent in the permeate side. The reactor characteristics have been investigated for a range of permeance and selectivity relevant to the aforementioned application. The HAMR system shows enhanced CO conversion, hydrogen yield, and product purity, and provides good promise for reducing the hostile operating conditions of conventional WGS reactors, and for meeting the CO{sub 2} sequestration objective. In the next quarterly report we will present the simulation result for Case I as well as the progress on hydrotalcite membrane synthesis.

Paul K. T. Liu

2004-02-19T23:59:59.000Z

Note: This page contains sample records for the topic "gas blue water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Synthesis and characterization of blue emitting ZnSe quantum dots  

Science Conference Proceedings (OSTI)

In this work we show a new experimental methodology to obtain ZnSe nanocrystals in aqueous solution aiming their application as biophotonic probes. The nanocrystals were obtained using a simple procedure based on the arrested precipitation of ZnSe in ... Keywords: Blue emission, Colloidal synthesis, Water soluble quantum dots, ZnSe

J. J. Andrade; A. G. Brasil, Jr.; P. M. A. Farias; A. Fontes; B. S. Santos

2009-03-01T23:59:59.000Z

342

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas Gas Technology Institute (GTI) will develop a membrane separation technology to recover water...

343

BlueFire Ethanol | Open Energy Information  

Open Energy Info (EERE)

BlueFire Ethanol BlueFire Ethanol Jump to: navigation, search Name BlueFire Ethanol Place Irvine, California Zip 92618 Sector Hydro Product US biofuel producer that utilises a patented concentrated acid hydrolysis technology to process various cellulosic waste materials into ethanol. Coordinates 41.837752°, -79.268594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.837752,"lon":-79.268594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

344

Blue Valley Energy | Open Energy Information  

Open Energy Info (EERE)

Blue Valley Energy Blue Valley Energy Name Blue Valley Energy Address 3075 75th Street Place Boulder, Colorado Zip 80301 Sector Efficiency Product Geothermal heating and cooling systems Website http://www.bluevalleyenergy.co Coordinates 40.030298°, -105.179643° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.030298,"lon":-105.179643,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts  

Science Conference Proceedings (OSTI)

Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investing in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H{sub 2}S, NH{sub 3}, HCN, AsH{sub 3}, PH{sub 3}, HCl, NaCl, KCl, AS{sub 3}, NH{sub 4}NO{sub 3}, NH{sub 4}OH, KNO{sub 3}, HBr, HF, and HNO{sub 3}) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts; ferrochrome-based high-temperature WGS catalyst (HT-WGS, Shiftmax 120�, Süd-Chemie), low-temperature Cu/ZnO-based WGS catalyst (LT-WGS, Shiftmax 230�, Süd-Chemie), and iron- and cobalt-based Fischer-Trospch synthesis catalysts (Fe-FT & Co-FT, UK-CAER). In this project, TDA Research, Inc. collaborated with a team at the University of Kentucky Center for Applied Energy Research (UK-CAER) led by Dr. Burt Davis. We first conducted a detailed thermodynamic analysis. The three primary mechanisms whereby the contaminants may deactivate the catalyst are condensation, deposition, and reaction. AsH{sub 3}, PH{sub 3}, H{sub 2}S, HCl, NH{sub 3} and HCN were found to have a major impact on the Fe-FT catalyst by producing reaction products, while NaCl, KCl and PH{sub 3} produce trace amounts of deposition products. The impact of the contaminants on the activity, selectivity, and deactivation rates (lifetime) of the catalysts was determined in bench-scale tests. Most of the contaminants appeared to adsorb onto (or react with) the HT- and LT-WGS catalysts were they were co-fed with the syngas: � 4.5 ppmv AsH{sub 3} or 1 ppmv PH{sub 3} in the syngas impacted the selectivity and CO conversion of both catalysts; � H{sub 2}S slowly degraded both WGS catalysts; - A binary mixture of H{sub 2}S (60 ppmv) and NH{sub 3} (38 ppmv) impacted the activity of the LT-WGS catalyst, but not the HT-WGS catalyst � Moderate levels of NH{sub 3} (100 ppmv) or HCN (10 ppmv) had no impact � NaCl or KCl had essentially no effect on the HT-WGS catalyst, but the activity of the LT-WGS catalyst decreased very slowly Long-term experiments on the Co-FT catalyst at 260 and 270 °C showed that all of the contaminants impacted it to some extent with the exception of NaCl and HF. Irrespective of its source (e.g., NH{sub 3}, KNO{sub 3}, or HNO{sub 3}), ammonia suppressed the activity of the Co-FT catalyst to a moderate degree. There was essentially no impact the Fe-FT catalyst when up to 100 ppmw halide compounds (NaCl and KCl), or up to 40 ppmw alkali bicarbonates (NaHCO{sub 3} and KHCO{sub 3}). After testing, BET analysis showed that the surface areas, and pore volumes and diameters of both WGS catalysts decreased during both single and binary H2S and NH3 tests, which was attributed to sintering and pore filling by the impurities. The HT-WGS catalyst was evaluated with XRD after testing in syngas that contained 1 ppmv PH{sub 3}, or 2 ppmv H{sub 2}S, or both H{sub 2}S (60 ppmv) and NH{sub 3} (38 ppmv). The peaks became sharper during testing, which was indicative of crystal growth and sintering, but no new phases were detected. After LT-WGS tests (3-33 ppmv NH{sub 3} and/or 0-88 ppmv H{sub 2}S) there were a few new phases that appeared, including sulfides. The fresh Fe-FT catalyst was nanocrystalline and amorphous. ICP-AA spectroscopy and other methods (e.g., chromatography) were used to analyze for

Gokhan Alptekin

2012-09-30T23:59:59.000Z

346

Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report  

Science Conference Proceedings (OSTI)

A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

NONE

1996-03-01T23:59:59.000Z

347

Water-Gas Shift and CO Methanation Reactions over Ni-CeO2(111) Catalysts  

Science Conference Proceedings (OSTI)

X-ray and ultraviolet photoelectron spectroscopies were used to study the interaction of Ni atoms with CeO2(111) surfaces. Upon adsorption on CeO2(111) at 300 K, nickel remains in a metallic state. Heating to elevated temperatures (500 800 K) leads to partial reduction of the ceria substrate with the formation of Ni2? species that exists as NiO and/or Ce1-xNixO2-y. Interactions of nickel with the oxide substrate significantly reduce the density of occupied Ni 3d states near the Fermi level. The results of core-level photoemission and near-edge X-ray absorption fine structure point to weakly bound CO species on CeO2(111) which are clearly distinguishable from the formation of chemisorbed carbonates. In the presence of Ni, a stronger interaction is observed with chemisorption of CO on the admetal. When the Ni is in contact with Ce?3 cations, CO dissociates on the surface at 300 K forming NiCx compounds that may be involved in the formation of CH4 at higher temperatures. At medium and large Ni coverages ([0.3 ML), the Ni/CeO2(111) surfaces are able to catalyze the production of methane from CO and H2, with an activity slightly higher than that of Ni(100) or Ni(111). On the other hand, at small coverages of Ni (\\0.3 ML), the Ni/CeO2(111) surfaces exhibit a very low activity for CO methanation but are very good catalysts for the water gas shift reaction.

Senanayake, Sanjaya D [ORNL; Evans, Jaime [Universidad Central de Venezuela; Agnoli, Stefano [Brookhaven National Laboratory (BNL); Barrio, Laura [Brookhaven National Laboratory (BNL); Chen, Tsung-Liang [ORNL; Hrbek, Jan [Brookhaven National Laboratory (BNL); Radriguez, Jose [Brookhaven National Laboratory (BNL)

2011-01-01T23:59:59.000Z

348

Pilot-Scale and Full-Scale Evaluation of Treatment Technologies for the Removal of Mercury and Selenium in Flue Gas Desulphurization Water  

Science Conference Proceedings (OSTI)

This report presents an overall evaluation of the various advanced treatment technologies that the Electric Power Research Institute (EPRI) has tested for removal of mercury and selenium from flue gas desulfurization (FGD) water. EPRI conducted a literature survey followed by a preliminary laboratory-scale evaluation to screen promising technologies. For the technologies that were selected based on the success of laboratory-scale testing, EPRI worked with treatment vendors to further evaluate these techn...

2010-05-11T23:59:59.000Z

349

Central Hudson Gas & Electric (Gas) - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of energy efficient equipment. Natural gas rebates apply to water heaters, natural gas boilers, steam boilers, boiler controls, furnaces, programmable thermostats, and duct and air...

350

NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Act) and numerous state and local environmental and public health laws apply to shale gas and other unconventional oil and gas development. Consequently, the fracturing...

351

Blue Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blue Mountain Geothermal Area Blue Mountain Geothermal Area (Redirected from Blue Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blue Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41,"lon":-118.13,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

352

Blue Sun Biodiesel LLC | Open Energy Information  

Open Energy Info (EERE)

Blue Sun Biodiesel LLC Blue Sun Biodiesel LLC Jump to: navigation, search Logo: Blue Sun Energy, Inc. Name Blue Sun Energy, Inc. Address 14143 Denver West Parkway Place Golden, Colorado Zip 80401 Sector Biofuels Product Biofuels marketer and distributor Year founded 2001 Number of employees 11-50 Phone number 303-865-7700 Website http://www.gobluesun.com/ Coordinates 39.7438336°, -105.1614242° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7438336,"lon":-105.1614242,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

353

Blue Cross and Blue Shield of Illinois, a Division of Health Care Service Corporation,  

E-Print Network (OSTI)

Intelligence and Counterintelligence Operations, April 2002. #12; FM 2 COUNTERINTELLIGENCE INTENT Degrade Red's Visualization of Blue TARGET · Adversary Intelligence Activities FUNCTIONSFM 2-22.3 (FM 34-52) HUMAN INTELLIGENCE COLLECTOR OPERATIONS HEADQUARTERS, DEPARTMENT OF THE ARMY

Shull, Kenneth R.

354

IBM Blue Gene Parallel Supercomputer, Brookhaven National Laboratory, (BNL)  

NLE Websites -- All DOE Office Websites (Extended Search)

How to Login How to Login Please note, New York Blue/L has been decommissioned and these web pages have not yet been updated to reflect its removal from service. The New York Blue/P is now one rack and remains in service. The BNL Blue Gene/Q also remains in service. Introduction Accessing the Blue Gene SSH Gateways Accessing the Blue Gene Front-End Nodes Accessing the Visualization Cluster Accessing the CSC GPU Cluster SSH Tunneling Introduction The only way to access Blue Gene computing resources remotely (outside the Blue Gene network enclave) is through the Blue Gene ssh gateways. Even users connecting from inside the BNL campus network need to go through the gateways. Outside the BNL campus the gateways are known as: ssh.bluegene.bnl.gov Inside the BNL campus they are known as: ssh.bluegene.bnl.local

355

Account Request Form | IBM Blue Gene Parallel Supercomputer,...  

NLE Websites -- All DOE Office Websites (Extended Search)

(check all that apply) Please make at least one selection Brookhaven Blue GeneQ Argonne Leadership Computing Facility (based on Blue GeneQ) What is the name of the code? Do you...

356

BlueSol Solar Energy | Open Energy Information  

Open Energy Info (EERE)

BlueSol Solar Energy Jump to: navigation, search Name BlueSol - Solar Energy Place Sao Paulo, Sao Paulo, Brazil Zip 04551-060 Sector Solar Product Sao Paulo-based sole distributor...

357

CO2 SELECTIVE CERAMIC MEMBRANE FOR WATER-GAS-SHIFT REACTION WITH CONCOMITANT RECOVERY OF CO2  

DOE Green Energy (OSTI)

A high temperature membrane reactor (MR) has been developed to enhance the water-gas-shift (WGS) reaction efficiency with concomitant CO{sub 2} removal for sequestration. This improved WGS-MR with CO{sub 2} recovery capability is ideally suitable for integration into the Integrated Gasification Combined-Cycle (IGCC) power generation system. Two different CO{sub 2}-affinity materials were selected in this study. The Mg-Al-CO{sub 3}-layered double hydroxide (LDH) was investigated as an adsorbent or a membrane for CO{sub 2} separation. The adsorption isotherm and intraparticle diffusivity for the LDH-based adsorbent were experimentally determined, and suitable for low temperature shift (LTS) of WGS. The LDH-based membranes were synthesized using our commercial ceramic membranes as substrate. These experimental membranes were characterized comprehensively in terms of their morphology, and CO{sub 2} permeance and selectivity to demonstrate the technical feasibility. In parallel, an alternative material-base membrane, carbonaceous membrane developed by us, was characterized, which also demonstrated enhanced CO{sub 2} selectivity at the LTS-WGS condition. With optimization on membrane defect reduction, these two types of membrane could be used commercially as CO{sub 2}-affinity membranes for the proposed application. Based upon the unique CO{sub 2} affinity of the LDHs at the LTS/WGS environment, we developed an innovative membrane reactor, Hybrid Adsorption and Membrane Reactor (HAMR), to achieve {approx}100% CO conversion, produce a high purity hydrogen product and deliver a concentrated CO{sub 2} stream for disposal. A mathematical model was developed to simulate this unique one -step process. Finally a benchtop reactor was employed to generate experimental data, which were consistent with the prediction from the HAMR mathematical model. In summary, the project objective, enhancing WGS efficiency for hydrogen production with concomitant CO{sub 2} removal for sequestration, has been theoretically and experimentally demonstrated via the developed one-step reactor, HAMR. Future development on reactor scale up and field testing is recommended.

Paul K.T. Liu

2005-07-15T23:59:59.000Z

358

Video - Microbial Bebop - Blues for Elle | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Blues for Elle Share Topic Environment Biology Computational biology Environmental biology Metagenomics Molecular biology Environmental science & technology Ecology This musical...

359

Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Exploration...

360

Ground Gravity Survey At Blue Mountain Area (Fairbank Engineering...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Blue Mountain Area (Fairbank Engineering, 2006) Exploration Activity...

Note: This page contains sample records for the topic "gas blue water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Laboratory Shuttle Bus Routes: Blue Route  

NLE Websites -- All DOE Office Websites (Extended Search)

Blue Route Map (On-Site/Off-Site) Blue Route Map (On-Site/Off-Site) Scroll down or click here for schedule ↓ Printable Map Blue Route map Blue Route Schedule Effective May 3, 2013 Text Box: BLUE SHUTTLE SCHEDULE BLUE Route # 65 DOWNHILL BART 65 UPHILL 62/66 1 6:20 AM 6:30 AM 6:40 AM 6:52 AM 2 6:30 AM 6:40 AM 6:50 AM 7:02 AM 3 6:40 AM 6:50 AM 7:00 AM 7:12 AM 4 6:50 AM 7:00 AM 7:10 AM 7:22 AM 1 7:04 AM 7:16 AM 7:28 AM 7:40 AM 2 7:16 AM 7:28 AM 7:40 AM 7:52 AM 3 7:28 AM 7:40 AM 7:52 AM 8:04 AM 4 7:40 AM 7:52 AM 8:04 AM 8:16 AM 1 7:52 AM 8:04 AM 8:16 AM 8:28 AM 2 8:04 AM 8:16 AM 8:28 AM 8:40 AM 3 8:16 AM 8:28 AM 8:40 AM 8:52 AM 4 8:28 AM 8:40 AM 8:52 AM 9:04 AM 1 8:40 AM 8:52 AM 9:04 AM 9:16 AM 2 8:52 AM 9:04 AM 9:16 AM 9:28 AM 3 9:04 AM 9:16 AM 9:28 AM 9:40 AM 4 9:16 AM 9:28 AM 9:40 AM 9:52 AM 1 9:28 AM 9:40 AM 9:52 AM 10:04 AM 2 9:40 AM 9:52 AM 10:04 AM 10:16 AM 3 9:52 AM 10:04 AM

362

Central Hudson Gas & Electric (Gas) - Residential Energy Efficiency...  

Open Energy Info (EERE)

depending on efficiency Natural Gas Water Boiler: 350 - 700, depending on efficiency Steam Boiler: 350 Boiler Reset Control: 70 Indirect Water Heater: 210 Programmable...

363

Summit Blue Consulting | Open Energy Information  

Open Energy Info (EERE)

Summit Blue Consulting Summit Blue Consulting Place Boulder, Colorado Zip 80302 Sector Efficiency, Renewable Energy Product String representation "Consulting firm ... egy development" is too long. Coordinates 42.74962°, -109.714163° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.74962,"lon":-109.714163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

Blue Sky Bio Fuels | Open Energy Information  

Open Energy Info (EERE)

Bio Fuels Bio Fuels Jump to: navigation, search Name Blue Sky Bio-Fuels Place Oakland, California Zip 94602 Product Blue Sky owns and operates a biodiesel plant in Idaho with a capacity of 37.9mLpa (10m gallons annually). Coordinates 37.805065°, -122.273024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.805065,"lon":-122.273024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

Blue Ribbon Commission on America's Nuclear Future  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blue Ribbon Commission on America's Nuclear Future Blue Ribbon Commission on America's Nuclear Future Agenda March 25 - 26, 2010 Willard Intercontinental Hotel, Washington, DC Thursday, March 25, 2010 Open Meeting - Grand Ballroom 11:00 a.m. Open meeting/review agenda Tim Frazier 11:10 a.m. Opening comments from Secretary Chu 11:25 a.m. Opening discussion - Co-chairs Honorable Lee Hamilton General Brent Scowcroft 11:35 a.m. Opening discussion - members Honorable Pete Domenici Honorable Chuck Hagel Honorable Phil Sharp Mr. Mark H. Ayers Honorable Vicky Bailey Dr. Albert Carnesale Ms. Susan Eisenhower Mr. Jonathan Lash Dr. Allison Macfarlane Dr. Richard A. Meserve Dr. Ernie Moniz Mr. John Rowe Dr. Per F. Peterson 12:30 p.m. Lunch

366

Blue Canyon VI | Open Energy Information  

Open Energy Info (EERE)

VI VI Jump to: navigation, search Name Blue Canyon VI Facility Blue Canyon VI Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EDP Renewables North America LLC Developer EDP Renewables North America LLC Energy Purchaser Merchant Location Lawton OK Coordinates 34.8582°, -98.54752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8582,"lon":-98.54752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Blue Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Farm Farm Jump to: navigation, search Name Blue Creek Wind Farm Facility Blue Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser First Energy Solutions Location Van Wert County OH Coordinates 41.018286°, -84.615355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.018286,"lon":-84.615355,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

Blue Sky Optimum Energy | Open Energy Information  

Open Energy Info (EERE)

Optimum Energy Optimum Energy Jump to: navigation, search Name Blue Sky Optimum Energy Place Buffalo, New York Product Blue Sky offers a processing system to produce biodiesel at a cheaper price. Coordinates 42.88544°, -78.878464° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.88544,"lon":-78.878464,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

369

Process for the elimination of waste water produced upon the desulfurization of coking oven gas by means of wash solution containing organic oxygen-carrier, with simultaneous recovery of elemental sulfur  

Science Conference Proceedings (OSTI)

A process is disclosed for the elimination of waste water falling out with the desulfurization of coking oven gas by means of an organic oxygen carrier-containing washing solution with simultaneous recovery of elemental sulfur. The waste water is decomposed in a combustion chamber in a reducing atmosphere at temperatures between about 1000/sup 0/ and 1100/sup 0/ C. under such conditions that the mole ratio of H/sub 2/S:SO/sub 2/ in the exhaust gas of the combustion chamber amounts to at least 2:1. Sulfur falling out is separated and the sensible heat of the exhaust gas is utilized for steam generation. The cooled and desulfurized exhaust gas is added to the coking oven gas before the pre-cooling. Sulfur falling out from the washing solution in the oxidizer is separated out and lead into the combustion chamber together with the part of the washing solution discharged as waste water from the washing solution circulation. Preferred embodiments include that the sulfur loading of the waste water can amount to up to about 370 kg sulfur per m/sup 3/ waste water; having the cooling of sulfur-containing exhaust gas leaving the combustion chamber follow in a waste heat boiler and a sulfur condenser heated by pre-heated boiler feed water, from which condenser sulfur is discharged in liquid state.

Diemer, P.; Brake, W.; Dittmer, R.

1985-04-16T23:59:59.000Z

370

An energy equivalency analysis of trade-offs between thermal efficiency and standby loss requirements for commercial gas service water heaters  

SciTech Connect

The American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) Standing Standard Project Committee 90.1 has approved an addendum (90.lb) to ASHRAE/IES Standard 90.1-1989. The addendum specifies an increase in the minimum thermal efficiency requirement (from 77% to 78%), accompanied by an easing of the standby loss requirements, for commercial gas-fired service water heaters. The Pacific Northwest Laboratory performed an energy equivalency analysis to assess the impact of trade-offs between the improved thermal efficiency and the less stringent standby loss requirements. The analysis objective was to estimate whether the energy savings during firing would offset the increased energy losses during standby periods. The primary focus of this report is to summarize the major results of the analysis and provide a recommendation for minimum energy-efficiency commercial gas-fired service water heaters. Limitations to the availability of detailed performance and energy-use data for these commercial water heaters are also pointed out.

Somasundaram, S.; Jarnagin, R.E.; Keller, J.M.; Schliesing, J.S.

1992-06-01T23:59:59.000Z

371

Evaluation of C-14 as a natural tracer for injected fluids at theAidlin sector of The Geysers geothermal system through modeling ofmineral-water-gas Reactions  

DOE Green Energy (OSTI)

A reactive-transport model for 14C was developed to test its applicability to the Aidlin geothermal system. Using TOUGHREACT, we developed a 1-D grid to evaluate the effects of water injection and subsequent water-rock-gas interaction on the compositions of the produced fluids. A dual-permeability model of the fracture-matrix system was used to describe reaction-transport processes in which the permeability of the fractures is many orders of magnitude higher than that of the rock matrix. The geochemical system included the principal minerals (K-feldspar, plagioclase, calcite, silica polymorphs) of the metagraywackes that comprise the geothermal reservoir rocks. Initial simulation results predict that the gas-phase CO2 in the reservoir will become more enriched in 14C as air-equilibrated injectate water (with a modern carbon signature) is incorporated into the system, and that these changes will precede accompanying decreases in reservoir temperature. The effects of injection on 14C in the rock matrix will be lessened somewhat because of the dissolution of matrix calcite with ''dead'' carbon.

Dobson, Patrick; Sonnenthal, Eric; Lewicki, Jennifer; Kennedy, Mack

2006-06-01T23:59:59.000Z

372

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Projects Exploration and Production Technologies Coalbed Natural Gas Produced-Water Treatment Using Gas Hydrate Formation at the Wellhead DE-FC26-05NT15551...

373

Influence of wettability on liquid water transport in gas diffusion layer of proton exchange membrane fuel cells (PEMFC)  

E-Print Network (OSTI)

Water management is a key factor that limits PEFC's performance. We show how insights into this problem can be gained from pore-scale simulations of water invasion in a model fibrous medium. We explore the influence of contact angle on the water invasion pattern and water saturation at breakthrough and show that a dramatic change in the invasion pattern, from fractal to compact, occurs as the system changes from hydrophobic to hydrophilic. Then, we explore the case of a system of mixed wettability, i.e. containing both hydrophilic and hydrophobic pores. The saturation at breakthrough is studied as a function of the fraction of hydrophilic pores. The results are discussed in relation with the water management problem, the optimal design of a GDL and the fuel cell performance degradation mechanisms. We outline how the study could be extended to 3D systems, notably from binarised images of GDLs obtained by X ray microtomography.

Hamza Chraibi; L. Ceballos; M. Prat; Michel Quintard; Alexandre Vabre

2009-09-16T23:59:59.000Z

374

Questar Gas - Home Builder Gas Appliance Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Program Info State Utah Program Type Utility Rebate Program Rebate Amount Exterior Wall Insulation: $350 (single family), $150 (multifamily) Windows: $2.50/sq. ft. Gas Furnace: $200 - $400 Gas Storage Water Heater: $50-$100 Gas Condensing Water Heater: $350 Gas Boiler: $400 -$600 Tankless Gas Water Heater: $350 Single Family Homes (New Construction): $50 - $500 Multifamily Homes (New Construction): $50 - $300/unit

375

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

CEC). 2000. California Natural Gas Analysis and Issues.2002. Average Price of Natural Gas Sold to Electric Utilityfor investments in natural gas and renewables to complement

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

376

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

Against Volatile Natural Gas Prices." Proceedings: ACEEEM W h . Appendix C. California Natural Gas Price ForecastScenarios California Natural Gas Price Forecast Scenarios

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

377

Core Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) | Open Energy  

Open Energy Info (EERE)

Fairbank & Neggemann, 2004) Fairbank & Neggemann, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Exploration Activity Details Location Blue Mountain Area Exploration Technique Core Holes Activity Date Usefulness useful DOE-funding Unknown Notes Drilling took longer than scheduled due to severe losses of circulation in the shallow subsurface causing considerable disruptions with the drilling and difficulty with cementing the 7 inch and 4.5 inch casing. An artesian flow of hot water was encountered at 163ft (49.7m) but efforts to obtain an uncontaminated sample of the water were frustrated by unstable hole conditions. In contrast, the 3.782" HQ interval of the well, continuously

378

Water and Energy Interactions  

E-Print Network (OSTI)

History 4 Water Used For Fuel Production.. 4 Coal Production .. 6 Carbon Capture and Sequestration .. 7 Natural Gas

McMahon, James E.

2013-01-01T23:59:59.000Z

379

Chemical Evolution of Dwarf Spheroidal and Blue Compact Galaxies  

E-Print Network (OSTI)

We studied the chemical evolution of Dwarf Spheroidal (dSph) and Blue Compact Galaxies (BCGs) by means of comparison between the predictions of chemical evolution models and several observed abundance ratios. Detailed models with up to date nucleosynthesis taking into account the role played by supernovae of different types (II, Ia) were developed for both types of galaxies allowing us to follow the evolution of several chemical elements. The models are specified by the prescriptions of the star formation (SF) and galactic wind efficiencies chosen to reproduce the main features of these galaxies. We also investigated a possible connection in the evolution of dSph and BCGs and compared the predictions of the models to the abundance ratios observed in Damped Lyman alpha Systems (DLAs). The main conclusions are: i) the observed distribution of [alpha/Fe] vs. [Fe/H] in dSph is mainly a result of the SF rate coupled with the wind efficiency; ii) a low SF efficiency and a high wind efficiency are required to reproduce the observational data for dSph; iii) the low gas content of these galaxies is the result of the combined action of gas consumption by SF and gas removal by galactic winds; iv) the BCGs abundance ratios are reproduced by models with 2 to 7 bursts of SF with low efficiencies ; v) the low values of N/O observed in BCGs are the natural result of a bursting SF; vi) a connection between dSph and BCGs in an unified evolutionary scenario is unlikely; vii) the models for the dSph and BCGs imply different formation scenarios for the DLAs; viii) a suitable amount of primary N produced in massive stars can be perhaps an explanation for the low plateau in the [N/$\\alpha$] distribution observed in DLAs, if real.

Gustavo A. Lanfranchi; Francesca Matteucci

2003-06-23T23:59:59.000Z

380

Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst. [Quarterly] report, July 1, 1990--September 30, 1990  

DOE Green Energy (OSTI)

A Co/MgO/SiO{sub 2} Fischer-Tropsch catalyst was operated simultaneously with a Cu/ZnO/Al{sub 2}O{sub 3} water-gas-shift catalyst in a slurry reactor for over 400 hours. The process conditions were held constant at a temperature of 240{degrees}C, a pressure of 0.79 MPa, and a 1.1 H{sub 2}/CO feed of 0.065 Nl/min-g.cat. The Fischer-Tropsch activity remained constant at the level predicted by the operation of the Co/MgO/SiO{sub 2} catalyst alone. The water-gas-shift reaction was near equilibrium. The hydrocarbon product distribution of the combined catalyst system was stable and matched that of the CO/MgO/SiO{sub 2} operating alone under similar conditions. The combined catalyst system exhibited a high selectivity to n-alkanes. Neither catalysts`s operation appeared to have a detrimental effect on that of the other, showing promise for future option.

Chanenchuk, C.A.; Yates, I.C.; Satterfield, C.N.

1990-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas blue water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst. [Quarterly] report, October 1, 1988--December 31, 1988  

DOE Green Energy (OSTI)

A cobalt Fischer-Tropsch catalyst (CO/MgO/silica) was reduced and slurried in combination with reduced Cu/ZnO/Al{sub 2}0{sub 3} water-gas-shift catalyst. Combined catalyst system was run at fixed process conditions for more than 400 hours. The system showed stable selectivity. The Cu/ZnO/Al{sub 2}0{sub 3} water-gas-shift catalyst remained reasonably active in the presence of the cobalt catalyst. Hydrocarbon selectivity of the cobalt and Cu/ZnO/Al{sub 2}0{sub 3} catalyst system compared favorably to selectivity of iron-based catalysts. Methane selectivity was slightly higher for the cobalt-based system, but C{sub 5}{sup +} selectivity was essentially the same. The hydrocarbon product distribution appeared to exhibit a double-a behavior. a{sub 1} was near 0.80 which is higher than that of iron catalysts, while a{sub 2} was calculated to be 0.86 which is somewhat lower than would be typical for an iron-based catalyst.

Yates, I.C.; Satterfield, C.N.

1988-12-31T23:59:59.000Z

382

Blue, green, orange, and red upconversion laser  

DOE Patents (OSTI)

A laser for outputting visible light at the wavelengths of blue, green, orange and red light. This is accomplished through the doping of a substrate, such as an optical fiber or waveguide, with Pr.sup.3+ ions and Yb.sup.3+ ions. A light pump such as a diode laser is used to excite these ions into energy states which will produce lasing at the desired wavelengths. Tuning elements such as prisms and gratings can be employed to select desired wavelengths for output.

Xie, Ping (San Jose, CA); Gosnell, Timothy R. (Sante Fe, NM)

1998-01-01T23:59:59.000Z

383

Blue, green, orange, and red upconversion laser  

DOE Patents (OSTI)

A laser is disclosed for outputting visible light at the wavelengths of blue, green, orange and red light. This is accomplished through the doping of a substrate, such as an optical fiber or waveguide, with Pr{sup 3+} ions and Yb{sup 3+} ions. A light pump such as a diode laser is used to excite these ions into energy states which will produce lasing at the desired wavelengths. Tuning elements such as prisms and gratings can be employed to select desired wavelengths for output. 11 figs.

Xie, P.; Gosnell, T.R.

1998-09-08T23:59:59.000Z

384

FINE WATER SPRAY FIRE SUPPRESSION ALTERNATIVE ...  

Science Conference Proceedings (OSTI)

... different products, ie, chemicals, gases, water, etc., being ... of an AB6 STAL GT-35 Jupiter gas turbine. ... to the use of water on operating gas turbines. ...

2011-10-27T23:59:59.000Z

385

IBM Blue Gene Parallel Supercomputer, Brookhaven National Laboratory, (BNL)  

NLE Websites -- All DOE Office Websites (Extended Search)

L L Overview Simple Example: Compile, Link, Run Compiler Invocation Compile and Link Tips Batch Job Submission Applications Support Math Libraries MPI Version IBM Fortran Blue Gene & Linux Manuals (IBM Redbooks) Much of the info you need will be in the Linux manual, but there is also some Blue Gene-specific info in the Blue Gene manual. Current Fortran compiler version number can be determined on fen by typing: ls /opt/ibmcmp/xlf/bg, will be highest number listed. IBM C/C++ Blue Gene & Linux Manuals (IBM Redbooks) Much of the info you need will be in the Linux manual, but there is also some Blue Gene-specific info in the Blue Gene manual. Linux Manual: Go to XL C/C++ for Linux, choose the Product Library link, then select current version number in tab at page top. (Current C/C++

386

A Preliminary Structural Model for the Blue Mountain Geothermal Field,  

Open Energy Info (EERE)

Structural Model for the Blue Mountain Geothermal Field, Structural Model for the Blue Mountain Geothermal Field, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Preliminary Structural Model for the Blue Mountain Geothermal Field, Humboldt County, Nevada Abstract The Blue Mountain geothermal field is a blind geothermalprospect (i.e., no surface hot springs) along the west flank of BlueMountain in southern Humboldt County, Nevada. Developmentwells in the system have high flow rates and temperatures above190°C at depths of ~600 to 1,070 m. Blue Mountain is a small~8-km-long east-tilted fault block situated between the EugeneMountains and Slumbering Hills. The geothermal field occupiesthe intersection between a regional NNE- to ENE-striking,west-dipping

387

Blue Oak Energy | Open Energy Information  

Open Energy Info (EERE)

Energy Energy Jump to: navigation, search Logo: Blue Oak Energy Name Blue Oak Energy Address 4614 Second Street Place Davis, California Zip 95618 Sector Solar Product photovoltaics, design and engineering, feasibility studies, turn-key installation, system maintenance, PV products Year founded 2003 Number of employees 11-50 Phone number (530) 747-2026 Website http://www.blueoakenergy.com Coordinates 38.5509256°, -121.7069073° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5509256,"lon":-121.7069073,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

388

Blue Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Blue Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blue Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41,"lon":-118.13,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

Blue Hill Partners LLC | Open Energy Information  

Open Energy Info (EERE)

Logo: Blue Hill Partners LLC Name Blue Hill Partners LLC Address 40 W. Evergreen Ave. Place Philadelphia, Pennsylvania Zip 19118 Region Northeast - NY NJ CT PA Area Product Invests equity capital in venture-stage companies in the advanced industrial technology sector Phone number (215) 247-2400 Website http://www.bluehillpartners.co Coordinates 40.075493°, -75.208266° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.075493,"lon":-75.208266,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

Monitored natural attenuation of manufactured gas plant tar mono- and polycyclic aromatic hydrocarbons in ground water: a 14-year field study  

Science Conference Proceedings (OSTI)

Site 24 was the subject of a 14-year (5110-day) study of a ground water plume created by the disposal of manufactured gas plant (MGP) tar into a shallow sandy aquifer approximately 25 years prior to the study. The ground water plume in 1988 extended from a well-defined source area to a distance of approximately 400 m down gradient. A system of monitoring wells was installed along six transects that ran perpendicular to the longitudinal axis of the plume centerline. The MGP tar source was removed from the site in 1991 and a 14-year ground water monitored natural attenuation (MNA) study commenced. The program measured the dissolved mono- and polycyclic aromatic hydrocarbons (MAHs and PAHs) periodically over time, which decreased significantly over the 14-year period. Naphthalene decreased to less than 99% of the original dissolved mass, with mass degradation rates of 0.30 per year (half-life 2.3 years). Bulk attenuation rate constants for plume centerline concentrations over time ranged from 0.33 {+-} 0.09 per year (half-life 2.3 {+-} 0.8 years) for toluene and 0.45 {+-} 0.06 per year (half-life 1.6 {+-} 0.2 years) for naphthalene. The hydrogeologic setting at Site 24, having a sandy aquifer, shallow water table, clay confining layer, and aerobic conditions, was ideal for demonstrating MNA. However, these results demonstrate that MNA is a viable remedial strategy for ground water at sites impacted by MAHs and PAHs after the original source is removed, stabilized, or contained.

Neuhauser, E.F.; Ripp, J.A.; Azzolina, N.A.; Madsen, E.L.; Mauro, D.M.; Taylor, T. [Foth Infrastructure & Environment LLC, Green Bay, WI (United States)

2009-07-01T23:59:59.000Z

391

Observation Wells At Blue Mountain Area (Warpinski, Et Al., 2004...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Blue Mountain Area (Warpinski, Et Al., 2004) Exploration Activity Details Location...

392

Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) | Open  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) Exploration Activity Details Location Blue Mountain Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding

393

Update on Blue Ribbon Commission for America's Nuclear Future...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Summary Minutes of the Secretary of Energy Advisory Board Public Meeting on October 12, 2011 Blue Ribbon Commission on...

394

Epithermal Gold Mineralization and a Geothermal Resource at Blue...  

Open Energy Info (EERE)

1991 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain,...

395

Blue Crane Holdings Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Blue Crane Holdings Pvt. Ltd. Place Mumbai, Maharashtra, India Zip 400023 Sector Efficiency, Solar, Wind energy Product Mumbai-based firm involved...

396

Energy Materials Blue Ribbon Panel Releases Vision Report  

Science Conference Proceedings (OSTI)

Jun 22, 2010 ... Said Blue Ribbon Panel member Michael J. Dolan, senior vice ... Solar technology, while being designated as a moderately important MSE ...

397

Jazz and Blues Legends Rock the Northeast, Help Save Louisiana ...  

U.S. Energy Information Administration (EIA)

Jazz and Blues Legends Rock the Northeast, Help Save Louisiana's Coastal Wetlands. 6.8.2006 Neville Brothers, Dr. John and Mavis Staples Highlight the ...

398

Energy Materials Blue Ribbon Panel Report June 2010 - TMS  

Science Conference Proceedings (OSTI)

Jun 22, 2010 ... The Energy Materials Blue Ribbon Panel convened by TMS has released “ Linking Transformational Materials and Processing for an Energy- ...

399

Blue Hill Investment Partners LLC | Open Energy Information  

Open Energy Info (EERE)

Investment Partners LLC Jump to: navigation, search Name Blue Hill Investment Partners LLC Place Philadelphia, Pennsylvania Zip PA 19118 Sector Renewable Energy Product A...

400

Improved Performance of a Fluorescent Blue Organic Light Emitting ...  

Science Conference Proceedings (OSTI)

Presentation Title, Improved Performance of a Fluorescent Blue Organic Light Emitting Diode with Hole Blocking Materials as Dopants for Transport Layers.

Note: This page contains sample records for the topic "gas blue water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Pages that link to "Aeromagnetic Survey At Blue Mountain Area...  

Open Energy Info (EERE)

wikiSpecial:WhatLinksHereAeromagneticSurveyAtBlueMountainArea(FairbankEngineering,2004)" Special pages About us Disclaimers Energy blogs Developer services...

402

Pages that link to "Aeromagnetic Survey At Blue Mountain Area...  

Open Energy Info (EERE)

wikiSpecial:WhatLinksHereAeromagneticSurveyAtBlueMountainArea(FairbankEngineering,2003)" Special pages About us Disclaimers Energy blogs Developer services...

403

Determination of the Effect of Coal/Biomass-Derived Syngas Contaminants on the Performance of Fischer-Tropsch and Water-Gas-Shift Catalysts  

SciTech Connect

Today, nearly all liquid fuels and commodity chemicals are produced from non-renewable resources such as crude oil and natural gas. Because of increasing scrutiny of carbon dioxide (CO{sub 2}) emissions produced using traditional fossil-fuel resources, the utilization of alternative feedstocks for the production of power, hydrogen, value-added chemicals, and high-quality hydrocarbon fuels such as diesel and substitute natural gas (SNG) is critical to meeting the rapidly growing energy needs of modern society. Coal and biomass are particularly attractive as alternative feedstocks because of the abundant reserves of these resources worldwide. The strategy of co-gasification of coal/biomass (CB) mixtures to produce syngas for synthesis of Fischer-Tropsch (FT) fuels offers distinct advantages over gasification of either coal or biomass alone. Co-feeding coal with biomass offers the opportunity to exploit economies of scale that are difficult to achieve in biomass gasification, while the addition of biomass to the coal gasifier feed leverages proven coal gasification technology and allows CO{sub 2} credit benefits. Syngas generated from CB mixtures will have a unique contaminant composition because coal and biomass possess different concentrations and types of contaminants, and the final syngas composition is also strongly influenced by the gasification technology used. Syngas cleanup for gasification of CB mixtures will need to address this unique contaminant composition to support downstream processing and equipment. To investigate the impact of CB gasification on the production of transportation fuels by FT synthesis, RTI International conducted thermodynamic studies to identify trace contaminants that will react with water-gas-shift and FT catalysts and built several automated microreactor systems to investigate the effect of single components and the synergistic effects of multiple contaminants on water-gas-shift and FT catalyst performance. The contaminants investigated were sodium chloride (NaCl), potassium chloride (KCl), hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), ammonia (NH{sub 3}), and combinations thereof. This report details the thermodynamic studies and the individual and multi-contaminant results from this testing program.

Trembly, Jason; Cooper, Matthew; Farmer, Justin; Turk, Brian; Gupta, Raghubir

2010-12-31T23:59:59.000Z

404

Hydrogen adsorption in thin films of Prussian blue analogue  

DOE Green Energy (OSTI)

Quartz crystal microbalance with dissipation (QCM-D) measurement was used to investigate the kinetics of the molecular hydrogen adsorption into thin films of prussian blue analogues - Cu{sub 3}[Co(CN){sub 6}]{sub 2} at ambient conditions. Although the equilibrium adsorption seems to be independent of the thickness, the adsorption rate substantially decreases with the thickness of the films. In addition, the reversibility of H{sub 2} adsorption into the Cu{sub 3}[Co(CN){sub 6}]{sub 2} films was investigated. The results indicate that the Cu{sub 3}[Co(CN){sub 6}]{sub 2} maily interacts with H{sub 2} molecules physically. The highest H{sub 2} uptake by the Cu{sub 3}[Co(CN){sub 6}]{sub 2} films is obtained when the gas phase is stagnant inside the testing cell. However, the unusual high H{sub 2} uptake obtained from the QCM-D measurement makes us question how reliable this analytic methodology is.

Yang, Dali [Los Alamos National Laboratory; Ding, Vivian [Los Alamos National Laboratory; Luo, Junhua [Los Alamos National Laboratory; Currier, Robert P [Los Alamos National Laboratory; Obrey, Steve [Los Alamos National Laboratory; Zhao, Yusheng [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

405

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Produced Water Treatment Using Gas Hydrate Formation at the Wellhead Produced Water Treatment Using Gas Hydrate Formation at the Wellhead Authors: John and Deidre Boysen Venue:...

406

Enhanced Gas Recovery Using Pressure and Displacement Management.  

E-Print Network (OSTI)

??The work contained in this thesis combines two previous enhanced gas recovery techniques; coproduction of water and gas from water-drive reservoirs and waterflooding of low… (more)

Walker, Thomas

2005-01-01T23:59:59.000Z

407

Gas processing/The boiling behavior of LPG and liquid ethane, ethylene, propane, and n-butane spilled on water  

SciTech Connect

Boiling-rate calorimeter studies showed that unlike liquid nitrogen, methane, and LNG, LPG (84.7% propane, 6.0% ethane, and 9.3% n-butane; 442/sup 0/C bp), or pure propane, when rapidly spilled on water, reacted violently, ejecting water and ice into the vapor space; but in 1-2 sec, a coherent ice layer was formed and further boiloff was quiet and well predicted by a simple one-dimensional, moving-boundary-value, heat transfer model with a growing ice shield. Increasing the content of ethane and butane in LPG to 20% and 10%, respectively, had almost no effect on the LPG boiling, indicating that boiling may be modeled by using pure propane. Ethane, ethylene, and n-butane behaved quite differently from LPG. In spills of pure liquid propane on solid ice, the boiloff rate was almost identical to that predicted by the moving-boundary model.

Reid, R.C.; Smith, K.A.

1978-04-01T23:59:59.000Z

408

CONTENTS Water Issues Dominate Oil and  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Issues Dominate Oil and Gas Production ...1 Editor's Letter ...2 Zero Discharge Water Management for Horizontal Shale...

409

Pacific Blue Energy | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Pacific Blue Energy Place Flagstaff, Arizona Zip 86001 Sector Solar Product Arizona-based solar project developer. Coordinates 45.238793°, -70.330276° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.238793,"lon":-70.330276,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Blue Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Facility Blue Canyon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown/Horizon Developer Zilkha Renewable/Kirmart Corp. Energy Purchaser Western Farmers' Electric Cooperative Location North of Lawton OK Coordinates 34.852678°, -98.551807° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.852678,"lon":-98.551807,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

411

Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst. [Quarterly] report, June 30, 1988--September 30, 1988  

DOE Green Energy (OSTI)

This report details experiments performed on three different copper-based catalysts: Cu/Cr{sub 2}O{sub 3}, Cu/MnO/Cr{sub 2}O{sub 3} and Cu/ZnO/Al{sub 2}O{sub 3}. Of these three catalysts, the Cu/ZnO/Al{sub 2}O{sub 3} exhibits the greatest stability when slurried in octacosane. More than 1000 hours-on-stream indicate that the catalyst activity is not detrimentally affected by high pressure, high H{sub 2}/CO ratio, or the presence of alkenes. All of these are necessary stability characteristics for the water-gas shift catalyst, if it is to be used in combination with a cobalt Fischer-Tropsch catalyst. A review of documented reduction procedures for cobalt-based Fischer-Tropsch catalysts is presented.

Yates, I.C.; Satterfield, C.N.

1988-12-31T23:59:59.000Z

412

An innovative catalyst system for slurry-phase Fischer-Tropsch synthesis: Cobalt plus a water-gas-shift catalyst. Final technical report  

SciTech Connect

The feasibility of using a mechanical mixture of a Co/MgO/SiO{sub 2} Fischer-Tropsch catalyst and a Cu-ZnO/Al{sub 2}O{sub 3} water-gas-shift (WGS) catalyst for hydrocarbon synthesis in a slurry reactor has been established. Such a mixture can combine the superior product distribution from cobalt with the high activity for the WGS reaction characteristic of iron. Weight ratios of Co/MgO/SiO{sub 2} to Cu-ZnO/Al{sub 2}O{sub 3} of 0.27 and 0.51 for the two catalysts were studied at 240{degrees}C, 0.79 MPa, and in situ H{sub 2}/CO ratios between 0.8 and 3.0. Each catalyst mixture showed stable Fischer-Tropsch activity for about 400 hours-on-stream at a level comparable to the cobalt catalyst operating alone. The Cu-ZnO/Al{sub 2}O{sub 3} catalyst exhibited a very slow loss of activity under these conditions, but when operated alone it was stable in a slurry reactor at 200--220{degrees}C, 0.79--1.48 MPa, and H{sub 2}/CO in situ ratios between 1.0 and 2.0. The presence of the water-gas-shift catalyst did not affect the long-term stability of the primary Fischer-Tropsch selectivity, but did increase the extent of secondary reactions, such as l-alkene hydrogenation and isomerization.

Satterfield, C.N.; Yates, I.C.; Chanenchuk, C.

1991-07-01T23:59:59.000Z

413

Advanced Flue Gas Desulfurization (AFGD) Demonstration Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the WES, which involves injection into the flue gas duct upstream of the existing electrostatic 11 precipitator (ESP). The hot flue gas evaporates the water and the...

414

Gas production from hydrate-bearing sediments.  

E-Print Network (OSTI)

??Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane… (more)

Jang, Jaewon

2011-01-01T23:59:59.000Z

415

Piedmont Natural Gas- Commercial Equipment Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Piedmont Natural Gas offers rebates to commercial customers for purchasing and installing high-efficiency natural gas tankless water heaters. Customers on the 202-Small General Service Standard...

416

Assistance to Oil and Gas State Agencies and Industry through Continuation of Environmental and Production Data Management and a Water Regulatory Initiative  

SciTech Connect

This grant project was a major step toward completion of the Risk Based Data Management System (RBDMS) project. Additionally the project addresses the needs identified during the projects initial phases. By implementing this project, the following outcomes were sought: (1) State regulatory agencies implemented more formalized environmental risk management practices as they pertain to the production of oil and gas, and injection via Class II wells. (2) Enhancement of oil and gas production by implementing a management system supporting the saving of abandoned or idle wells located in areas with a relatively low environmental risk of endangering underground sources of drinking water (USDWs) in a particular state. (3) Verification that protection of USDWs is adequate and additional restrictions of requirements are not necessary in areas with a relatively low environmental risk. (4) Standardization of data and information maintained by state regulatory agencies and decrease the regulatory cost burden on producers operating in multiple states, and (5) Development of a system for electronic data transfer among operators and state regulatory agencies and reduction of overall operator reporting burdens.

Grunewald, Ben; Arthur, Dan; Langhus, Bruce; Gillespie, Tom; Binder, Ben; Warner, Don; Roberts, Jim; Cox, D.O.

2002-05-31T23:59:59.000Z

417

Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample  

DOE Patents (OSTI)

A system is described for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample. 11 figs.

Maerefat, N.L.; Parmeswar, R.; Brinkmeyer, A.D.; Honarpour, M.

1994-08-23T23:59:59.000Z

418

Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample  

DOE Patents (OSTI)

A system for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample.

Maerefat, Nicida L. (Sugar Land, TX); Parmeswar, Ravi (Marlton, NJ); Brinkmeyer, Alan D. (Tulsa, OK); Honarpour, Mehdi (Bartlesville, OK)

1994-01-01T23:59:59.000Z

419

BlueTorrent: Cooperative content sharing for Bluetooth users  

Science Conference Proceedings (OSTI)

People wish to enjoy their everyday lives in various ways, among which entertainment plays a major role. In order to improve lifestyle with more ready access to entertainment content, we propose BlueTorrent, a P2P file sharing application based on ubiquitous ... Keywords: BlueTorrent, Bluetooth, P2P

Sewook Jung; Uichin Lee; Alexander Chang; Dae-Ki Cho; Mario Gerla

2007-12-01T23:59:59.000Z

420

EnsemBlue: integrating distributed storage and consumer electronics  

Science Conference Proceedings (OSTI)

EnsemBlue is a distributed file system for personal multimedia that incorporates both general-purpose computers and consumer electronic devices (CEDs). Ensem-Blue leverages the capabilities of a few general-purpose computers to make CEDs first class ...

Daniel Peek; Jason Flinn

2006-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas blue water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

BlueGene/L applications: Parallelism On a Massive Scale  

Science Conference Proceedings (OSTI)

BlueGene/L (BG/L), developed through a partnership between IBM and Lawrence Livermore National Laboratory (LLNL), is currently the world's largest system both in terms of scale, with 131,072 processors, and absolute performance, with a peak rate of ... Keywords: BlueGene/L, application scalability, massively parallel architectures, performance study and optimization

Bronis R. De Supinski; Martin Schulz; Vasily V. Bulatov; William Cabot; Bor Chan; Andrew W. Cook; Erik W. Draeger; James N. Glosli; Jeffrey A. Greenough; Keith Henderson; Alison Kubota; Steve Louis; Brian J. Miller; Mehul V. Patel; Thomas E. Spelce; Frederick H. Streitz; Peter L. Williams; Robert K. Yates; Andy Yoo; George Almasi; Gyan Bhanot; Alan Gara; John A. Gunnels; Manish Gupta; Jose Moreira; James Sexton; Bob Walkup; Charles Archer; Francois Gygi; Timothy C. Germann; Kai Kadau; Peter S. Lomdahl; Charles Rendleman; Michael L. Welcome; William Mclendon; Bruce Hendrickson; Franz Franchetti; Stefan Kral; Jürgen Lorenz; Christoph W. Überhuber; Edmond Chow; Ümit Çatalyürek

2008-02-01T23:59:59.000Z

422

Early Experience on the Blue Gene/Q Supercomputing System  

Science Conference Proceedings (OSTI)

The Argonne Leadership Computing Facility (ALCF) is home to Mira, a10 PF Blue Gene/Q (BG/Q) system. The BG/Q system is the third generation in Blue Gene architecture from IBM and like its predecessors combines system-on-chip technology with a proprietary ... Keywords: supercomputing, performance, multi-core, scalability, applications

Vitali Morozov, Kalyan Kumaran, Venkatram Vishwanath, Jiayuan Meng, Michael E. Papka

2013-05-01T23:59:59.000Z

423

Petascale Debugging via Allinea DDT for IBM Blue Gene /P  

E-Print Network (OSTI)

@allinea.com> Senior Systems Engineer, Allinea Software Inc. ALCF L2P Workshop, May 23, 2012 #12;Outline ExperienceArchitecture #12;Current Status IBM Blue Gene /P Acceptance testing at ALCF (Allinea DDT 3.1) ­ Scale (Allinea DDT 3.2) ­ Early access for IBM Blue Gene /Q expected July 2012 ALCF requirement ­ Scale for Mira

Kemner, Ken

424

Parallel volume rendering on the IBM Blue Gene/P  

Science Conference Proceedings (OSTI)

Parallel volume rendering is implemented and tested on an IBM Blue Gene distributed-memory parallel architecture. The goal of studying the cost of parallel rendering on a new class of supercomputers such as the Blue Gene/P is not necessarily to achieve ...

Tom Peterka; Hongfeng Yu; Robert Ross; Kwan-Liu Ma

2008-04-01T23:59:59.000Z

425

Southwest Gas Corporation - Southwest Gas Corporation - Residential...  

Open Energy Info (EERE)

Insulation: 0.15sq ft Floor Insulation: 0.30sq ft Builders Energy Star Certified Home: 450 Natural Gas Tankless Water Heater: 450 Attic Insulation: 0.15sq ft Equipment...

426

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

term contract for natural gas supply, by agreeing with thethe risk of a "normal" natural gas supply or transportationinterruption of natural gas supply to a power plant (e.g. an

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

427

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

amount of new natural gas power plants, which willconstruction of new natural-gas power plants, and perhapsrisk that a new natural-gas power plant will not be built on

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

428

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

of new natural gas power plants, which will presumablyof new natural-gas power plants, and perhaps notrisk that a new natural-gas power plant will not be built on

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

429

Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel  

Open Energy Info (EERE)

the Vicinity of Blue Mountain and Pumpernickel the Vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, North-Central Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, North-Central Nevada Abstract From May 2008 to September 2009, the U.S. Geological Survey (USGS) collected data from more than 660 gravity stations, 100 line-km of truck-towed magnetometer traverses, and 260 physical-property sites in the vicinity of Blue Mountain and Pumpernickel Valley, northern Nevada (fig. 1). Gravity, magnetic, and physical-property data were collected to study regional crustal structures as an aid to understanding the geologic framework of the Blue Mountain and Pumpernickel Valley areas, which in

430

Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering,  

Open Energy Info (EERE)

Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding

431

Static Temperature Survey At Blue Mountain Area (Fairbank Engineering,  

Open Energy Info (EERE)

Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, 2010) Exploration Activity Details Location Blue Mountain Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Using a precision thermistor probe, EGI, University of Utah, obtained detailed temperature logs of eleven new mineral exploration holes drilled at Blue Mountain. The holes, ranging in depth from 99 to 244 meters (325 to 800 feet), were drilled in areas to the northeast, northwest and southwest of, and up to distances of two kilometers from, the earlier mineral exploration drill holes that encountered hot artesian flows. Unfortunately,

432

The Blue Ribbon Commission Offers Strong Step Forward | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Blue Ribbon Commission Offers Strong Step Forward The Blue Ribbon Commission Offers Strong Step Forward The Blue Ribbon Commission Offers Strong Step Forward July 29, 2011 - 12:27pm Addthis Damien LaVera Damien LaVera Deputy Director, Office of Public Affairs Today, the Blue Ribbon Commission on America's Nuclear Future issued a draft of its recommendations. The Obama Administration continues to believe that nuclear energy has an important role to play as America moves to a clean energy future. As part of our commitment to restarting the American nuclear industry and creating thousands of new jobs and export opportunities in the process, we are committed to finding a sustainable approach to assuring safe, secure long-term disposal of used nuclear fuel and nuclear waste. Secretary Chu appreciates the hard work done by the members of the Blue

433

Blue Lake Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Blue Lake Plant Biomass Facility Blue Lake Plant Biomass Facility Jump to: navigation, search Name Blue Lake Plant Biomass Facility Facility Blue Lake Plant Sector Biomass Location Blue Lake, California Coordinates 40.8829072°, -123.9839488° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8829072,"lon":-123.9839488,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

434

Building Energy Software Tools Directory: BlueSol  

NLE Websites -- All DOE Office Websites (Extended Search)

BlueSol BlueSol tool_bluesol BlueSol is a software for the design of photovoltaic systems in every country in the world. It allows you to perform the entire process of designing a PV system, from the preliminary assessment of producibility to the realization of the project documentation. Screen Shots Keywords PV system sizing, PV system simulation, grid-connected PV systems, electrical components, shading, economic analysis. Validation/Testing N/A Expertise Required No special expertise or training needed. Users BlueSol runs in English language and has been released in may 2013. BlueSol originates from his Italian version: over 2100 copies of Italian version dowloaded since it was first release in november 2009. Audience PV specialists, energy and electrical engineers, system installers, energy

435

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

Coal prices are also less variable than natural gas prices,coal-fired power plants are more often fixed-price than contracts for natural gas-

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

436

Effect of thermal barrier coatings on the performance of steam- and water-cooled gas turbine: steam turbine combined cycle systems  

SciTech Connect

An analytical study was made of the performance of air-, steam-, and water-cooled gas-turbine/steam-turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal-barrier coatings permit an increase in the turbine inlet temperature from 1205/sup 0/C to 1370/sup 0/C, resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4% when the turbine inlet temperature is increased from 1425/sup 0/C to 1675/sup 0/C and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683/sup 0/C and the maximum specific power improvement is 36.6% by increasing the turbine inlet temperature from 1425/sup 0/C to 1730/sup 0/C and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air-cooling at a turbine inlet temperature of 1205/sup 0/C. The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.

Nainiger, J.J.

1978-12-01T23:59:59.000Z

437

Solar energy system case study: Telex Communications, Blue Earth, Minnesota  

DOE Green Energy (OSTI)

A study is made of a solar energy system for space heating a 97,000-square-foot office, factory, and warehouse building owned by Telex Communications, Inc. in Blue Earth, Minnesota. The solar system has 11,520 square feet of ground-oriented flat-plate collectors and a 20,000-gallon storage tank inside the building. Freeze protection is by drainback. Solar heated water from the storage tank circulates around the clock throughout the heating season to heating coils in the ducts. The system achieves its design solar fraction, is efficient, and generally reliable, but not cost-effective. Performance data for the solar system was collected by the National Solar Data Network for three heating seasons from 1978 to 1981. Because of a freeze-up of the collector array in December 1978, the solar system was only partially operational in the 1978 to 1979 heating season. The data in this report were collected in the 1979 to 1980 and 1980 to 1981 heating seasons.

Raymond, M.G.

1984-09-01T23:59:59.000Z

438

Ethanol synthesis and water gas shift over bifunctional sulfide catalysts. Technical progress report, June 1993--August 1993  

DOE Green Energy (OSTI)

Various preparation methods of synthesizing molybdenum disulfide and various alkali doping procedures were studied to determine if various preparation paramenters affected catalyst activity. Testing was performed on an undoped molybdenum disulfide sample with H{sub 2}/CO = 1 synthesis gas at 8.1 MPa and at temperatures of 245, 255, 265, 275, 280, 300, 320, and 295C, and only hydrocarbons were formed. A methanol injection experiment with undoped catalyst showed that homologation of methanol did not occur over the undoped MOS{sub 2}. Catalytic testing on a cesium formate doped molybdenum disulfide catalyst corresponding to 9 wt% Cs/MoS{sub 2} at 8.1 MPa and temperatures of 245, 255, 265, 275, 285, and 295C, mostly linear alcohols. The CS/MOS{sub 2} sample was protected from air exposure during preparation and testiag. As with the other recently tested alkali-promoted MOS{sub 2} catalysts, this cataylst was not as active as previous CS/MOS{sub 2} catalysts [1], and some deactivation during these systematic studies was observed. X-Ray powder diffraction and BET surface area measurements are being used to characterize the catalysts, and electron microscopy analyses are being carried out.

Klier, K.; Herman, R.G.; Deemer, M.; Carr, T.

1993-09-01T23:59:59.000Z

439

Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms  

DOE Green Energy (OSTI)

Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Tests were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable ad