Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Biogenic gas nanostructures as ultrasonic molecular reporters  

E-Print Network [OSTI]

Biogenic gas nanostructures as ultrasonic molecular reporters Mikhail G. Shapiro1,2,3 *, Patrick W on the nanoscale. Here, we introduce a new class of reporters for ultrasound based on genetically encoded gas nanostructures from microorganisms, including bacteria and archaea. Gas vesicles are gas-filled protein

Schaffer, David V.

2

Business Case for Compressed Natural Gas in Municipal Fleets...  

Broader source: Energy.gov (indexed) [DOE]

Business Case for Compressed Natural Gas in Municipal Fleets Business Case for Compressed Natural Gas in Municipal Fleets This report describes how NREL used the CNG Vehicle and...

3

Energy, Greenhouse Gas, and Cost Reductions for Municipal Recycling Systems  

Science Journals Connector (OSTI)

Energy, Greenhouse Gas, and Cost Reductions for Municipal Recycling Systems ... An evaluation of the energy, greenhouse gas, and costs savings associated with logistics and infrastructure improvements to a curbside recycling program is presented. ... MSW recycling has been found to be costly for most municipalities compared to landfill disposal. ...

Mikhail Chester; Elliot Martin; Nakul Sathaye

2008-02-08T23:59:59.000Z

4

Wakefield Municipal Gas and Light Department - Residential Conservation  

Broader source: Energy.gov (indexed) [DOE]

Wakefield Municipal Gas and Light Department - Residential Wakefield Municipal Gas and Light Department - Residential Conservation Services Program Wakefield Municipal Gas and Light Department - Residential Conservation Services Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Manufacturing Commercial Lighting Lighting Water Heating Maximum Rebate Energy Audit Recommended Measures: $300 Programmable Thermostats: 2 units Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Energy Audit Recommended Measures: 25% of total cost Refrigerators: $50 Clothes Washer: $50 Dishwasher: $50 Room AC: $50

5

Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European rapeseed and Brazilian soybeans  

E-Print Network [OSTI]

Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European 2008 Abstract Biogenic emissions of carbonaceous greenhouse gases and N2O turn out to be important determinants of life cycle emissions of greenhouse gases linked to the life cycle of biodiesel from European

6

Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?  

SciTech Connect (OSTI)

Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

Paull, C.K.; Ussler, W. III; Borowski, W.S.

1993-09-01T23:59:59.000Z

7

Business Case for Compressed Natural Gas in Municipal Fleets  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Technical Report Technical Report NREL/TP-7A2-47919 June 2010 Business Case for Compressed Natural Gas in Municipal Fleets Caley Johnson National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-7A2-47919 June 2010 Business Case for Compressed Natural Gas in Municipal Fleets C Johnson aley Prepared under Task No. FC08.0032 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

8

Municipal officials’ decisions to lease watershed lands for Marcellus shale gas exploration  

Science Journals Connector (OSTI)

This paper provides insight into municipalities’ decisions to lease watershed lands for Marcellus shale gas exploration in Pennsylvania. The focus was on...

Charles Abdalla; Renata Rimsaite…

2014-03-01T23:59:59.000Z

9

Characterization of Landfill Gas Composition at the Fresh Kills Municipal Solid-Waste Landfill  

Science Journals Connector (OSTI)

Characterization of Landfill Gas Composition at the Fresh Kills Municipal Solid-Waste Landfill ... The most common disposal method in the United States for municipal solid waste (MSW) is burial in landfills. ... Under the New Source Performance Standards and Emission Guidelines for MSW landfills, MSW operators are required to determine the nonmethane organic gas generation rate of their landfill through modeling and/or measurements. ...

Bart Eklund; Eric P. Anderson; Barry L. Walker; Don B. Burrows

1998-06-18T23:59:59.000Z

10

Business Case for Compressed Natural Gas in Municipal Fleets | Open Energy  

Open Energy Info (EERE)

Business Case for Compressed Natural Gas in Municipal Fleets Business Case for Compressed Natural Gas in Municipal Fleets Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Business Case for Compressed Natural Gas in Municipal Fleets Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Fuels & Efficiency Topics: Analysis Tools, Best Practices Website: www.afdc.energy.gov/afdc/pdfs/47919.pdf This report describes how the compressed natural gas (CNG) Vehicle and Infrastructure Cash-Flow Evaluation (VICE) model can be used to establish guidance for fleets making decisions about using CNG. The model assists fleets and businesses in evaluating the profitability of potential CNG projects by demonstrating the relationship between project profitability and fleet operating parameters.

11

Business Case for Compressed Natural Gas in Municipal Fleets  

SciTech Connect (OSTI)

This report describes how NREL used the CNG Vehicle and Infrastructure Cash-Flow Evaluation (VICE) model to establish guidance for fleets making decisions about using compressed natural gas.

Johnson, C.

2010-06-01T23:59:59.000Z

12

Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions  

Science Journals Connector (OSTI)

...common model that reproduces the general features of all...throughout the aerosol life cycle in the atmosphere. Aging can significantly...gas-particle interactions—part 1: General equations, parameters, and terminology . Atmos Chem...steranes) in motor oil and diesel primary organic aerosols with...

Neil M. Donahue; Kaytlin M. Henry; Thomas F. Mentel; Astrid Kiendler-Scharr; Christian Spindler; Birger Bohn; Theo Brauers; Hans P. Dorn; Hendrik Fuchs; Ralf Tillmann; Andreas Wahner; Harald Saathoff; Karl-Heinz Naumann; Ottmar Möhler; Thomas Leisner; Lars Müller; Marc-Christopher Reinnig; Thorsten Hoffmann; Kent Salo; Mattias Hallquist; Mia Frosch; Merete Bilde; Torsten Tritscher; Peter Barmet; Arnaud P. Praplan; Peter F. DeCarlo; Josef Dommen; Andre S.H. Prévôt; Urs Baltensperger

2012-01-01T23:59:59.000Z

13

MSW Biogenic | OpenEI  

Open Energy Info (EERE)

MSW Biogenic MSW Biogenic Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

14

Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and New Mexico - Implications for coalbed gas producibility  

SciTech Connect (OSTI)

The objectives of this paper are to (1) describe the types and the major components of coalbed gases, (2) evaluate the variability of Fruitland coalbed gas composition across the basin, (3) assess factors affecting coalbed gas origin and composition, (4) determine the timing and extent of gas migration and entrapment, and (5) suggest application of these results to coalbed gas producibility. Data from more than 750 Fruitland coalbed gas wells were used to make gas-composition maps and to evaluate factors controlling gas origin. The gas data were divided into overpressured, underpressured, and transitional categories based on regional pressure regime. Also, [delta][sup 13]C isotopic values from 41 methane, 7 ethane and propane, 13 carbon dioxide, and 10 formation-water bicarbonate samples were evaluated to interpret gas origin. The data suggests that only 25-50% of the gas produced in the high-productivity fairway was generated in situ during coalification. 82 refs., 14 figs., 3 tabs.

Scott, A.R.; Kaiser, W.R. (Univ. of Texas, Austin, TX (United States)); Ayers, W.B. Jr. (Taurus Exploration, Inc., Birmingham, AL (United States))

1994-08-01T23:59:59.000Z

15

Municipal Solid Waste:  

U.S. Energy Information Administration (EIA) Indexed Site

Methodology for Allocating Municipal Solid Waste Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy May 2007 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy of the Department of Energy or any other organization. Contact This report was prepared by staff of the Renewable Information Team, Coal, Nuclear, and Renewables Division, Office of Coal, Nuclear, Electric and Alternate Fuels.

16

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic  

Open Energy Info (EERE)

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Climate Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, - Landfill Gas, - Waste to Energy, Greenhouse Gas Phase: Evaluate Options Resource Type: Publications, Guide/manual User Interface: Website Website: www.epa.gov/climatechange/emissions/biogenic_emissions.html Cost: Free References: EPA, 40 CFR Part 60[1] Tailoring Rule[2] Biogenic Emissions[3] The 'EPA Climate Change - Green House Gas Emissions - Carbon Dioxide

17

Fuel-Slurry Integrated Gasifier/Gas Turbine (FSIG/GT) Alternative for Power Generation Applied to Municipal Solid Waste (MSW)  

Science Journals Connector (OSTI)

The gas is cleaned to bring the particle content and size as well alkaline concentration within the acceptable limits for injections into standard gas turbines. ... The proper disposal and use of Municipal Solid Wastes (MSW) for power generation remains among the most pressing problems of medium to large cities. ... Bubble sizes and raising velocities through the gasifier bed (Configuration A). ...

Marcio L. de Souza-Santos; Kevin B. Ceribeli

2013-11-22T23:59:59.000Z

18

"1. Beluga","Gas","Chugach Electric Assn Inc",344 "2. George M Sullivan Generation Plant 2","Gas","Anchorage Municipal Light and Power",220  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska" Alaska" "1. Beluga","Gas","Chugach Electric Assn Inc",344 "2. George M Sullivan Generation Plant 2","Gas","Anchorage Municipal Light and Power",220 "3. North Pole","Petroleum","Golden Valley Elec Assn Inc",144 "4. Bradley Lake","Hydroelectric","Homer Electric Assn Inc",126 "5. Anchorage 1","Gas","Anchorage Municipal Light and Power",88 "6. Snettisham","Hydroelectric","Alaska Electric Light&Power Co",78 "7. Bernice Lake","Gas","Chugach Electric Assn Inc",62 "8. Lemon Creek","Petroleum","Alaska Electric Light&Power Co",58

19

Barnett Shale Municipal Oil and Gas Ordinance Dynamics: A Spatial Perspective  

E-Print Network [OSTI]

with the recent optimization of horizontal drilling, has substantially increased United States oil and gas production. Hydrocarbon firms perfected and use hydraulic fracturing on the Barnett Shale in North Texas; due to the nature of the formation, gas companies...

Murphy, Trey Daniel-Aaron

2013-09-27T23:59:59.000Z

20

Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: A case study of Tianjin, China  

SciTech Connect (OSTI)

The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin's MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further.

Zhao Wei, E-mail: zhaowei.tju@gmail.com [College of Civil Engineering and Architecture, Liaoning University of Technology, 121000 Jinzhou (China); Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands); Huppes, Gjalt, E-mail: huppes@cml.leidenuniv.nl [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands); Voet, Ester van der, E-mail: Voet@cml.leidenuniv.nl [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands)

2011-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

portation and Greenhouse Gas (MUNTAG) model is a macroscopic, highly aggregate model that works at the municipal level and solely  

E-Print Network [OSTI]

identifies the following four sectors: buildings; trans- portation and land use; energy supply; and municipal GHG inventory. This work is part of a project to write a guide called Getting to Car- bon Neutral

Illinois at Chicago, University of

22

Municipal solid waste degradation and landfill gas resources characteristics in self-recirculating sequencing batch bioreactor landfill  

Science Journals Connector (OSTI)

Based on the degradation characteristics of municipal solid waste (MSW) in China, the traditional anaerobic sequencing batch bioreactor landfill (ASBRL) was optimized, and an improved anaerobic sequencing batch b...

Xiao-zhi Zhou ???; Shu-xun Sang ???; Li-wen Cao ???

2012-12-01T23:59:59.000Z

23

Quantification of greenhouse gas emissions from waste management processes for municipalities - A comparative review focusing on Africa  

SciTech Connect (OSTI)

The amount of greenhouse gases (GHG) emitted due to waste management in the cities of developing countries is predicted to rise considerably in the near future; however, these countries have a series of problems in accounting and reporting these gases. Some of these problems are related to the status quo of waste management in the developing world and some to the lack of a coherent framework for accounting and reporting of greenhouse gases from waste at municipal level. This review summarizes and compares GHG emissions from individual waste management processes which make up a municipal waste management system, with an emphasis on developing countries and, in particular, Africa. It should be seen as a first step towards developing a more holistic GHG accounting model for municipalities. The comparison between these emissions from developed and developing countries at process level, reveals that there is agreement on the magnitude of the emissions expected from each process (generation of waste, collection and transport, disposal and recycling). The highest GHG savings are achieved through recycling, and these savings would be even higher in developing countries which rely on coal for energy production (e.g. South Africa, India and China) and where non-motorized collection and transport is used. The highest emissions are due to the methane released by dumpsites and landfills, and these emissions are predicted to increase significantly, unless more of the methane is captured and either flared or used for energy generation. The clean development mechanism (CDM) projects implemented in the developing world have made some progress in this field; however, African countries lag behind.

Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa); Trois, Cristina [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa)

2011-07-15T23:59:59.000Z

24

Community Renewable Energy Deployment: Sacramento Municipal Utility  

Open Energy Info (EERE)

Deployment: Sacramento Municipal Utility Deployment: Sacramento Municipal Utility District Projects Jump to: navigation, search Name Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects Agency/Company /Organization US Department of Energy Focus Area Agriculture, Economic Development, Greenhouse Gas, Renewable Energy, Biomass - Anaerobic Digestion, Solar - Concentrating Solar Power, Solar, - Solar Pv, Biomass - Waste To Energy Phase Bring the Right People Together, Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly available--Free Publication Date 2/2/2011 Website http://www1.eere.energy.gov/co Locality Sacramento Municipal Utility District, CA References Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects[1]

25

O P I N I O N Biogenic vs. geologic carbon emissions and forest  

E-Print Network [OSTI]

greenhouse gas (GHG) accounting of woody biomass energy generation. While there are many other environmental, biogenic carbon, carbon debt, forest biomass, greenhouse gas accounting Received 20 April 2011; revised the amount of car- bon in the cycle'. This view recently has been reiterated by many (e.g. Hale, 2010; Lucier

Vermont, University of

26

Business Case for CNG in Municipal Fleets (Presentation)  

SciTech Connect (OSTI)

Presentation about compressed natural gas in municipal fleets, assessing investment profitability, the VICE model, base-case scenarios, and pressing questions for fleet owners.

Johnson, C.

2010-07-27T23:59:59.000Z

27

Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism  

Science Journals Connector (OSTI)

This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH4 flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 ± 0.014, 0.224 ± 0.012 and 0.237 ± 0.008 l CH4/m2 hr, respectively, compared to an arithmetic mean of 0.24 l/m2 hr. The flux values are within the reported range for closed landfills (0.06–0.89 l/m2 hr), and lower than the reported range for active landfills (0.42–2.46 l/m2 hr). Simulation results matched field measurements for low methane generation potential (L0) values in the range of 19.8–102.6 m3/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

Mutasem El-Fadel; Layale Abi-Esber; Samer Salhab

2012-01-01T23:59:59.000Z

28

Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

El-Fadel, Mutasem, E-mail: mfadel@aub.edu.lb [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon); Abi-Esber, Layale; Salhab, Samer [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon)

2012-11-15T23:59:59.000Z

29

Vehicle Technologies Office: Workplace Charging Challenge Partner: Biogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biogen Idec Inc to someone by E-mail Biogen Idec Inc to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Biogen Idec Inc on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Biogen Idec Inc on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Biogen Idec Inc on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Biogen Idec Inc on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Biogen Idec Inc on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Biogen Idec Inc on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources

30

Formation and Reactivity of Biogenic Iron Microminerals  

SciTech Connect (OSTI)

The overall purpose of the project is to explore and quantify the processes that control the formation and reactivity of biogenic iron microminerals and their impact on the solubility of metal contaminants. The research addresses how surface components of bacterial cells, extracellular organic material, and the aqueous geochemistry of the DIRB microenvironment impacts the mineralogy, chemical state and micromorphology of reduced iron phases.

Beveridge, Terrance J.; Glasauer, Susan; Korenevsky, Anton; Ferris, F. Grant

2000-08-08T23:59:59.000Z

31

Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water  

SciTech Connect (OSTI)

Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

Song Jin

2007-05-31T23:59:59.000Z

32

Municipal Waste Combustion (New Mexico)  

Broader source: Energy.gov [DOE]

This rule establishes requirements for emissions from, and design and operation of, municipal waste combustion units. "Municipal waste" means all materials and substances discarded from residential...

33

Electric power generation using a phosphoric acid cell on a municipal solid waste landfill gas stream. Technology verification report, November 1997--July 1998  

SciTech Connect (OSTI)

The report gives results of tests to verify the performance of a landfill gas pretreatment unit (GPU) and a phosphoric acid fuel cell system. The complete system removes contaminants from landfill gas and produces electricity for on-site use or connection to an electric grid. Performance data were collected at two sites determined to be representative of the U.S. landfill market. The Penrose facility, in Los Angeles, CA, was the first test site. The landfill gas at this site represented waste gas recovery from four nearby landfills, consisting primarily of industrial waste material. It produced approximately 3000 scf of gas/minute, and had a higher heating value of 446 Btu/scf at about 44% methane concentration. The second test site, in Groton, CT, was a relatively small landfill, but with greater heat content gas (methane levels were about 57% and the average heating value was 585 Btu/scf). The verification test addressed contaminant removal efficiency, flare destruction efficiency, and the operational capability of the cleanup system, and the power production capability of the fuel cell system.

Masemore, S.; Piccot, S.

1998-08-01T23:59:59.000Z

34

Biogenic formation of photoactive arsenic-sulfide nanotubes by...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

formation of photoactive arsenic-sulfide nanotubes by Shewanella sp. strain HN-41 . Biogenic formation of photoactive arsenic-sulfide nanotubes by Shewanella sp. strain HN-41 ....

35

Municipal Sludge disposal economics  

Science Journals Connector (OSTI)

Municipal Sludge disposal economics ... Atmospheric emissions of elements on particles from the Parkway sewage-sludge incinerator ... Atmospheric emissions of elements on particles from the Parkway sewage-sludge incinerator ...

Jerry Jones; David Bomberger, Jr.; F Lewis; Joel Jacknow

1977-01-01T23:59:59.000Z

36

Representation in Municipal Government  

E-Print Network [OSTI]

Municipal governments play a vital role in American democracy, as well as in governments around the world. Despite this, little is known about the degree to which cities are responsive to the views of their citizens. In ...

Tausanovitch, Chris

2014-07-30T23:59:59.000Z

37

Ice Nuclei in Marine Air: Biogenic Particles or Dust?  

SciTech Connect (OSTI)

Ice nuclei impact clouds, but their sources and distribution in the atmosphere are still not well known. Particularly little attention has been paid to IN sources in marine environments, although evidence from field studies suggests that IN populations in remote marine regions may be dominated by primary biogenic particles associated with sea spray. In this exploratory model study, we aim to bring attention to this long-neglected topic and identify promising target regions for future field campaigns. We assess the likely global distribution of marine biogenic ice nuclei using a combination of historical observations, satellite data and model output. By comparing simulated marine biogenic immersion IN distributions and dust immersion IN distributions, we predict strong regional differences in the importance of marine biogenic IN relative to dust IN. Our analysis suggests that marine biogenic IN are most likely to play a dominant role in determining IN concentrations in near-surface-air over the Southern Ocean, so future field campaigns aimed at investigating marine biogenic IN should target that region. Climate related changes in the abundance and emission of biogenic marine IN could affect marine cloud properties, thereby introducing previously unconsidered feedbacks that influence the hydrological cycle and the Earth’s energy balance. Furthermore, marine biogenic IN may be an important aspect to consider in proposals for marine cloud brightening by artificial sea spray production.

Burrows, Susannah M.; Hoose, C.; Poschl, U.; Lawrence, M.

2013-01-11T23:59:59.000Z

38

List of Municipal Solid Waste Incentives | Open Energy Information  

Open Energy Info (EERE)

Waste Incentives Waste Incentives Jump to: navigation, search The following contains the list of 172 Municipal Solid Waste Incentives. CSV (rows 1 - 172) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Clean Energy Project Grants (Texas) State Grant Program Texas Commercial Industrial Utility Biomass Municipal Solid Waste No Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes Alternative Energy Law (AEL) (Iowa) Renewables Portfolio Standard Iowa Investor-Owned Utility Anaerobic Digestion

39

ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govCampaignsBiogenic Aerosols - Effects on Clouds and Climate: Snowfall govCampaignsBiogenic Aerosols - Effects on Clouds and Climate: Snowfall Experiment Related Campaigns Biogenic Aerosols- Effects on Clouds and Climate 2014.02.01, Petäjä, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Biogenic Aerosols - Effects on Clouds and Climate: Snowfall Experiment 2014.02.01 - 2014.04.30 Lead Scientist : Dmitri Moisseev Description The snowfall measurement campaign, which will take place during AMF2 deployment in Finland, will focus on understanding snowfall microphysics and characterizing performance of surface based snowfall measurement instruments. This will be achieved by combining triple frequency (X, Ka, W -band) radar observations of vertical structure of the precipitation,

40

ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govCampaignsBiogenic Aerosols - Effects on Clouds and Climate: govCampaignsBiogenic Aerosols - Effects on Clouds and Climate: FIGAERO-ToF-CIMS Instrument in Hyytiala with AMF-2 Related Campaigns Biogenic Aerosols- Effects on Clouds and Climate 2014.02.01, Petäjä, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Biogenic Aerosols - Effects on Clouds and Climate: FIGAERO-ToF-CIMS Instrument in Hyytiala with AMF-2 2014.04.01 - 2014.06.01 Lead Scientist : Joel Thornton Description The ultimate goal of this work is to connect field and laboratory observations of organic aerosol chemical and physical properties during the nascent growth stage to the diurnal and vertical distributions of aerosol abundance measured over the boreal forest by the ARM Mobile Facility 2

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

South Carolina Municipalities - Green Power Purchasing | Department of  

Broader source: Energy.gov (indexed) [DOE]

South Carolina Municipalities - Green Power Purchasing South Carolina Municipalities - Green Power Purchasing South Carolina Municipalities - Green Power Purchasing < Back Eligibility Local Government Savings Category Bioenergy Solar Buying & Making Electricity Wind Program Info State South Carolina Program Type Green Power Purchasing Provider Santee Cooper Santee Cooper's Green Power Program was launched in September of 2001. All of the state's 20 electric cooperatives and the City of Georgetown participate in the Green Power Program, which is Green-e accredited. The renewable resources sold under the Green Power Program are comprised of 99% landfill gas (methane) and less than 1% solar energy. Santee Cooper is currently using landfill gas (methane) to produce electricity at six facilities in South Carolina: Horry Solid Waste

42

Seasonal variations in the stable carbon isotopic signature of biogenic methane in a coastal sediment  

SciTech Connect (OSTI)

Systematic seasonal variations in the stable carbon isotopic signature of methane gas occur in the anoxic sediments of Cape Lookout Bight, a lagoonal basin on North Carolina's Outer Banks. Values for the carbon isotope ratio (delta /sup 13/C) of methane range from -57.3 per mil during summer to -68.5 per mil during winter in gas bubbles with an average methane content of 95%. The variations are hypothesized to result from changes in the pathways of microbial methane production and cycling of key substrates including acetate and hydrogen. The use of stable isotopic signatures to investigate the global methane cycle through mass balance calculations, involving various sediment and soil biogenic sources, appears to require seasonally averaged data from individual sites. 17 references, 2 figures, 2 tables.

Martens, C.S.; Blair, N.E.; Green, C.D.; Des Marais, D.J.

1986-09-19T23:59:59.000Z

43

Watertown Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Watertown Municipal Utilities Jump to: navigation, search Name: Watertown Municipal Utilities Place: South Dakota References: EIA Form EIA-861 Final Data File for 2010 - File1a1...

44

Municipal Solid Waste | Open Energy Information  

Open Energy Info (EERE)

Waste Jump to: navigation, search TODO: Add description List of Municipal Solid Waste Incentives Retrieved from "http:en.openei.orgwindex.php?titleMunicipalSolidWaste&oldid...

45

Illinois Municipal Electric Agency- Electric Efficiency Program  

Broader source: Energy.gov [DOE]

The Illinois Municipal Electric Agency (IMEA) offers rebates to member municipal utilities* (those who purchase wholesale electric service from IMEA) and retail customers for energy efficiency...

46

Draft Powerpoint: Toward Energy Efficient Municipalities, LLC...  

Broader source: Energy.gov (indexed) [DOE]

Powerpoint: Toward Energy Efficient Municipalities, LLC comment Draft Powerpoint: Toward Energy Efficient Municipalities, LLC comment Green Grid Gateway @ North Coast Oregon....

47

Oxidative Dissolution Potential of Biogenic and Abiogenic TcO2...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Potential of Biogenic and Abiogenic TcO2 in Subsurface Sediments. Oxidative Dissolution Potential of Biogenic and Abiogenic TcO2 in Subsurface Sediments. Abstract: Technetium-99...

48

Fossil and biogenic CO{sub 2} from waste incineration based on a yearlong radiocarbon study  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Yearlong radiocarbon study on the share of biogenic CO{sub 2} from waste incineration. Black-Right-Pointing-Pointer Direct approach combining temporal integrating gas sampling and {sup 14}CO{sub 2} analysis by AMS. Black-Right-Pointing-Pointer Significant differences between incinerators with 43% and 54%Fos C. Black-Right-Pointing-Pointer No annual cycle of fossil CO{sub 2} for all, except one, of the included incinerators. - Abstract: We describe the first long-term implementation of the radiocarbon ({sup 14}C) method to study the share of biogenic (%Bio C) and fossil (%Fos C) carbon in combustion CO{sub 2}. At five Swiss incinerators, a total of 24 three-week measurement campaigns were performed over 1 year. Temporally averaged bag samples were analyzed for {sup 14}CO{sub 2} by accelerator mass spectrometry. Significant differences between the plants in the share of fossil CO{sub 2} were observed, with annual mean values from 43.4 {+-} 3.9% to 54.5 {+-} 3.1%. Variations can be explained by the waste composition of the respective plant. Based on our dataset, an average value of 48 {+-} 4%Fos C was determined for waste incineration in Switzerland. No clear annual trend in %Fos C was observed for four of the monitored incinerators, while one incinerator showed considerable variations, which are likely due to the separation and temporary storage of bulky goods.

Mohn, J., E-mail: joachim.mohn@empa.ch [Empa, Laboratory for Air Pollution and Environmental Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Szidat, S. [University of Bern, Department of Chemistry and Biochemistry and Oeschger Center for Climate Change Research, Freiestrasse 3, CH-3012 Berne (Switzerland); Zeyer, K.; Emmenegger, L. [Empa, Laboratory for Air Pollution and Environmental Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

2012-08-15T23:59:59.000Z

49

Recirculation of municipal landfill leachate  

E-Print Network [OSTI]

RECIRCULATION OF MUNICIPAL LANDFILL LEACHATE A Thesis by BRIAN JUDE PINKO4ISKI Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1987 Major Subject...: Civil Engineering RECIRCULATION OF MUNICIPAL LANDFILL LEACHATE A Thesis by BRIAN JUDE PINKOWSKI Approved as to style and content by: Charles P. Giammona (Chair of Committee) Roy . Harm, (Member) Kirk W. Brown (Member) Donald A. Maxwel...

Pinkowski, Brian Jude

2012-06-07T23:59:59.000Z

50

Information Resources: Webcast: Municipal Solid-State Street Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool This April 3, 2012 webcast presented information about the Retrofit Financial Analysis Tool developed by DOE"s Municipal Solid-State Street Lighting Consortium. Doug Elliott of Pacific Northwest National Laboratory provided a guided walk-through of what the tool can do and how to use it to evaluate costs and benefits associated with converting to LED street and roadway lighting. The webcast showed how city and other government agencies, utilities, finance and budget offices, and energy efficiency organizations can use the tool to compute annualized energy-cost savings, maintenance savings, greenhouse gas reductions, net present value, and simple payback, which can be helpful when putting together construction and conservation grant applications, as well as for preparing budgets and comparing incumbent costs to new costs.

51

Waste utilization as an energy source: Municipal wastes. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the utilization of municipal wastes as an energy source. Articles discuss energy derived from incineration/combustion, refuse-derived fuels, co-firing municipal waste and standard fuels, landfill gas production, sewage combustion, and other waste-to-energy technologies. Citations address economics and efficiencies of various schemes to utilize municipal waste products as energy sources. (Contains a minimum of 130 citations and includes a subject term index and title list.)

Not Available

1994-05-01T23:59:59.000Z

52

An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste  

SciTech Connect (OSTI)

This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ({approx}2500 g CO{sub 2} eqvt./kg DS SRF in co-fired cement kilns and {approx}1500 g CO{sub 2} eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( Pounds 95/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.

Garg, A.; Smith, R. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Hill, D. [DPH Environment and Energy Ltd., c/o Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Longhurst, P.J.; Pollard, S.J.T. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Simms, N.J. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)], E-mail: n.j.simms@cranfield.ac.uk

2009-08-15T23:59:59.000Z

53

Reconsidering Municipal Solid Waste as a Renewable Energy Feedstock For many years, opposition to the use of municipal solid waste (MSW) as an energy resource has been nearly universal among  

E-Print Network [OSTI]

Reconsidering Municipal Solid Waste as a Renewable Energy Feedstock July 2009 For many years, opposition to the use of municipal solid waste (MSW) as an energy resource has been nearly universal among of technologies can be used to create energy from MSW: · Landfill Gas Capture -- Waste in landfills naturally

Columbia University

54

Regionalized LCA-Based Optimization of Building Energy Supply: Method and Case Study for a Swiss Municipality  

Science Journals Connector (OSTI)

Regionalized LCA-Based Optimization of Building Energy Supply: Method and Case Study for a Swiss Municipality ... This paper presents a regionalized LCA-based multiobjective optimization model of building energy demand and supply for the case of a Swiss municipality for the minimization of greenhouse gas emissions and particulate matter formation. ... A suitable method for such analyses is life cycle assessment (LCA). ...

Dominik Saner; Carl Vadenbo; Bernhard Steubing; Stefanie Hellweg

2014-05-27T23:59:59.000Z

55

Chapter 10 - Coal and Coalbed Gas: Outlook  

Science Journals Connector (OSTI)

Abstract The future of coal and coalbed gas future is intertwined as source and reservoir rocks. Coal generates coalbed gas during coalification (e.g. thermogenic gas) and methanogenesis (biogenic gas). These gas types occur as singular and mixed accumulations. Accumulation of biogenic coalbed gas has received worldwide research and development interests on sustaining production. The new coal-to-biogenic coalbed gas technology centers on stimulating indigenous microbes in coal and associated groundwater with bioengineered nutrients and amendments to “farm” gas from abandoned wells and non-gas-producing coals. Coal mainly as a basic fuel for electric power generation since the Industrial Revolution continues to be utilized despite environmental concerns. The outlook of coal is dimmed in the United States where natural gas has replaced power generation. However, in Asia and Europe continued economic growth is going to be fueled by coal and coalbed gas as liquefied natural gas will rely on combustion from more efficient, high-temperature power plants in the future.

Romeo M. Flores

2014-01-01T23:59:59.000Z

56

Analysis of Changes in Landfill Gas Output and the Economic Potential for Development of a Landfill Gas Control Prototype.  

E-Print Network [OSTI]

??The relationship between changes in local atmospheric conditions and the performance of the landfill gas collection system installed at the Rockingham County (NC) municipal solid… (more)

Harrill, David Justin

2014-01-01T23:59:59.000Z

57

Massachusetts Municipal Commercial Industrial Incentive Program |  

Broader source: Energy.gov (indexed) [DOE]

Massachusetts Municipal Commercial Industrial Incentive Program Massachusetts Municipal Commercial Industrial Incentive Program Massachusetts Municipal Commercial Industrial Incentive Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Ventilation Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Maximum Rebate Varies depending on utility Program Info Start Date Varies Expiration Date Varies State Massachusetts Program Type Utility Rebate Program Rebate Amount Varies depending on utility Provider Massachusetts Municipal Wholesale Electric Company Certain municipal utilities in Massachusetts, in cooperation with

58

Mansfield Municipal Electric Department - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Mansfield Municipal Electric Department - Residential Energy Mansfield Municipal Electric Department - Residential Energy Efficiency Rebate Program Mansfield Municipal Electric Department - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Maximum Rebate $100 limit per customer account for appliances purchased in the same calendar year. Program Info Expiration Date 12/31/2014 State Massachusetts Program Type Utility Rebate Program Rebate Amount Central AC: $100 Refrigerators: $100 Clothes Washing Machines: $100 Dishwashers: $75 Dehumidifiers: $50 Window Air Conditioners: $50 Provider Mansfield Municipal Electric Department Mansfield Municipal Electric Department encourages energy efficiency

59

American Municipal Power | Open Energy Information  

Open Energy Info (EERE)

Municipal Power Municipal Power Jump to: navigation, search Name American Municipal Power Place Columbus, Ohio Zip 43219 Product AMP is a non-profit corporation that owns and operates electric facilities. AMP purchases wholesale electric power and energy, and develops alternate power resources for its members. References American Municipal Power[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Municipal Power is a company located in Columbus, Ohio . References ↑ "American Municipal Power" Retrieved from "http://en.openei.org/w/index.php?title=American_Municipal_Power&oldid=342122" Categories: Clean Energy Organizations Companies Organizations Stubs

60

Extracellular Proteins Limit the Dispersal of BiogenicNanoparticles  

SciTech Connect (OSTI)

High spatial-resolution secondaryion microprobespectrometry, synchrotron radiation Fourier-transform infraredspectroscopy and polyacrylamide gel analysis demonstrate the intimateassociation of proteins with spheroidal aggregates of biogenic zincsulfide nanocrystals, an example of extracellular biomineralization.Experiments involving synthetic ZnS nanoparticles and representativeamino acids indicate a driving role for cysteine in rapid nanoparticleaggregation. These findings suggest that microbially-derivedextracellular proteins can limit dispersal of nanoparticulatemetal-bearing phases, such as the mineral products of bioremediation,that may otherwise be transported away from their source by subsurfacefluid flow.

Moreau, John W.; Weber, Peter K.; Martin, Michael C.; Gilbert,Benjamin; Hutcheon, Ian D.; Banfield, Jillian F.

2007-04-27T23:59:59.000Z

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Bacterial contribution to histamine and other biogenic amine content in Juk (Korean Traditional Congee) cooked with seafood  

Science Journals Connector (OSTI)

Eight representative types of juk (Korean traditional congee) cooked with seafood, and plain juk were analyzed for biogenic amine content. Results revealed that while plain juk contains no biogenic amines, juk pr...

Bo Young Byun; Xuezhi Bai; Jae-Hyung Mah

2013-12-01T23:59:59.000Z

62

A Tree's Response to Herbivory: Quantification of Biogenic Volatile Organic Compound Emissions  

E-Print Network [OSTI]

A Tree's Response to Herbivory: Quantification of Biogenic Volatile Organic Compound Emissions an abundant source of Secondary Organic Aerosols (SOA). These emissions are known to vary in quantity and composition due to both biogenic and anthropogenic stressors. In this study, BVOC emissions from bristlecone

Collins, Gary S.

63

Late Quaternary changes in biogenic opal uxes in the Southern Indian Ocean  

E-Print Network [OSTI]

in sediment redis- tribution by currents. In the Southern Ocean, the latter uncertainty is especially signiLate Quaternary changes in biogenic opal £uxes in the Southern Indian Ocean L. Dezileau a;� , J Ocean have been reconstructed from radioisotope and proxy element profiles (biogenic opal and organic

Demouchy, Sylvie

64

Gigantism in unique biogenic magnetite at the Paleocene–Eocene Thermal Maximum  

Science Journals Connector (OSTI)

...by the Ocean Drilling Program...exceptionally large biogenic magnetite...PETM) in a borehole at Ancora...exceptionally large biogenic magnetite...PETM) in a borehole at Ancora...despite their large crystal size...O-16 Ocean Drilling Program oxides...

Dirk Schumann; Timothy D. Raub; Robert E. Kopp; Jean-Luc Guerquin-Kern; Ting-Di Wu; Isabelle Rouiller; Aleksey V. Smirnov; S. Kelly Sears; Uwe Lücken; Sonia M. Tikoo; Reinhard Hesse; Joseph L. Kirschvink; Hojatollah Vali

2008-01-01T23:59:59.000Z

65

Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm  

E-Print Network [OSTI]

Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm Brandy oxides found in streams, wetlands, soils, and aquifers. We investigated the mecha- nisms of Zn sorption experiments were conducted at pH 6.9 to characterize Zn sorption to this biogenic Mn oxide, and to determine

66

I 95 Municipal Landfill Phase I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Municipal Landfill Phase I Biomass Facility Municipal Landfill Phase I Biomass Facility Jump to: navigation, search Name I 95 Municipal Landfill Phase I Biomass Facility Facility I 95 Municipal Landfill Phase I Sector Biomass Facility Type Landfill Gas Location Fairfax County, Virginia Coordinates 38.9085472°, -77.2405153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9085472,"lon":-77.2405153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

67

Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Municipal Alternative Municipal Alternative Fuel Tax Regulation to someone by E-mail Share Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on Facebook Tweet about Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on Twitter Bookmark Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on Google Bookmark Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on Delicious Rank Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on Digg Find More places to share Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Municipal Alternative Fuel Tax Regulation

68

2011 Municipal Consortium Northwest Region Workshop Materials  

Broader source: Energy.gov [DOE]

This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Northwest Region Workshop, held in Seattle July 15, 2011.

69

Denton Municipal Electric- Standard Offer Rebate Program  

Broader source: Energy.gov [DOE]

Within the GreenSense program, Denton Municipal Electric's Standard Offer Program provides rebates to large commercial and industrial customers for lighting retrofits, HVAC upgrades and motor...

70

Municipal Solid Waste Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of municipal solid waste energy resources and technologies supplemented by specific information to apply waste to energy within the Federal sector.

71

The potential of GHG emission savings for programmatic CDM by municipal solid waste composting in the Western Province - Sri Lanka  

Science Journals Connector (OSTI)

The Western Province (WP) of Sri Lanka, as the most populated province in the country is burdened with a high level of municipal solid waste generation. Out of the 48 administrative local authorities within the WP, only 16 local authorities are practicing municipal solid waste composting. All other local authorities are practicing the most common method of MSW disposal; open dumping. The study was aimed at finding the potential of green house gas emission savings by municipal solid waste composting according to Programmatic Clean Development Mechanism in 32 local authorities of the WP which are not currently practicing MSW composting in order to quantify the certified emission reduction. The daily collection rate of municipal solid waste in the entire WP is around 2,000 tons per day. Biodegradable portion dominates the bulk of municipal solid waste in WP as about 76.30%. There is potential of claiming 231 certified emission reductions annually with regard to MSW composting within the WP.

V.K.D.H. Kariyakarawana; N.J.G.J. Bandara; S. Leelarathne

2014-01-01T23:59:59.000Z

72

Guide to Clean Development Mechanism Projects Related to Municipal Solid  

Open Energy Info (EERE)

Guide to Clean Development Mechanism Projects Related to Municipal Solid Guide to Clean Development Mechanism Projects Related to Municipal Solid Waste Management Jump to: navigation, search Tool Summary Name: A Guide to Clean Development Mechanism Projects Related to Municipal Solid Waste Management Agency/Company /Organization: United Nations Economic and Social Commission for Asia and the Pacific Sector: Energy, Land Focus Area: - Landfill Gas, - Waste to Energy Topics: Implementation, Co-benefits assessment Resource Type: Guide/manual, Lessons learned/best practices Website: www.unescap.org/esd/environment/publications/cdm/Guide.pdf UN Region: Central Asia, Eastern Asia, South-Eastern Asia, "Pacific" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

73

Use of Climate Information in Municipal Drought  

E-Print Network [OSTI]

. Kenney W WA Western Water Assessment Report Number WWA01-06 The University of Colorado and the NationalUse of Climate Information in Municipal Drought Planning in Colorado Roberta Klein Douglas S Oceanic and Atmospheric Administration #12;Klein and Kenney: Municipal Drought Planning 2Western Water

Neff, Jason

74

Draft Transcript on Municipal PV Systems  

Broader source: Energy.gov [DOE]

Webinar on navigating the legal, tax, and finance issues associated with the installation of Municipal PV Systems. The following agenda was developed based on Pat Boylston's experience assisting municipalities with their PV projects and the requests for information that the Solar America City technical team leads have received from many of the 25 Solar America Cities since the April 2008 meeting in Tucson.

75

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Open Energy Info (EERE)

Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Pennsylvania Name Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Program Administrator Pennsylvania Department of Environmental Protection

76

Hull Municipal Light Plant | Open Energy Information  

Open Energy Info (EERE)

Municipal Light Plant Municipal Light Plant Jump to: navigation, search Name Hull Municipal Light Plant Place Massachusetts Utility Id 8797 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lights Rate 150 WATT Lighting Area Lights Rate 250 WATT Lighting Area Lights Rate 400 WATT Lighting Large Power Rate 35 Industrial Large Power Taxable Rate 39 Industrial Municipal Lighting Rate 33 Lighting Municipal Rate 36 Commercial Residential Rate 31 Residential

77

Alameda Municipal Power - Residential Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Alameda Municipal Power - Residential Energy Efficiency Program Alameda Municipal Power - Residential Energy Efficiency Program Alameda Municipal Power - Residential Energy Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Program Info State California Program Type Utility Grant Program Rebate Amount Refrigerator Replacement: Up to $100 Second Refrigerator Pickup: $35 CFLs: 3 free replacement bulbs Motors: $0.18/per kWh saved Lighting: $0.20/per kWh saved HVAC: $0.22/per kWh saved Refrigeration: $0.22/per kWh saved Provider Alameda Municipal Power Alameda Municipal Power (AMP) has multiple program in place to help

78

Demonstration of Alternative Fuel, Light and Heavy Duty Vehicles in State and Municipal Vehicle Fleets  

SciTech Connect (OSTI)

This project involved the purchase of two Compressed Natural Gas School Buses and two electric Ford Rangers to demonstrate their viability in a municipal setting. Operational and maintenance data were collected for analysis. In addition, an educational component was undertaken with middle school children. The children observed and calculated how electric vehicles could minimize pollutants through comparison to conventionally powered vehicles.

Kennedy, John H.; Polubiatko, Peter; Tucchio, Michael A.

2002-02-06T23:59:59.000Z

79

Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Municipal Consortium 0 Municipal Consortium Southwest Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on Google Bookmark Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on Delicious Rank Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on AddThis.com... Conferences & Meetings Presentations Publications

80

Municipal Utilities' Investment in Smart Grid Technologies Improves...  

Broader source: Energy.gov (indexed) [DOE]

Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs Municipal Utilities' Investment in Smart Grid Technologies Improves Services and...

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Design Case Summary: Production of Mixed Alcohols from Municipal...  

Office of Environmental Management (EM)

Design Case Summary: Production of Mixed Alcohols from Municipal Solid Waste via Gasification Design Case Summary: Production of Mixed Alcohols from Municipal Solid Waste via...

82

Municipal Bond - Power Purchase Agreement Model Continues to...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Municipal Bond - Power Purchase Agreement Model Continues to Provide Low-Cost Solar Energy Municipal Bond - Power Purchase Agreement Model Continues to Provide Low-Cost Solar...

83

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...  

Office of Environmental Management (EM)

1: Availability of Feedstock and Technology Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology Municipal solid waste (MSW) is...

84

Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Municipal Consortium 1 Municipal Consortium Southeast Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on AddThis.com... Conferences & Meetings Presentations Publications

85

Alternative Fuels Data Center: Municipal Alternative Fuel Vehicle (AFV)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Municipal Alternative Municipal Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Municipal Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Municipal Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Municipal Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Municipal Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Municipal Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Municipal Alternative Fuel Vehicle (AFV) Acquisition Requirements on AddThis.com...

86

Ligand-Gated Chloride Channels Are Receptors for Biogenic Amines in C. elegans  

E-Print Network [OSTI]

Biogenic amines such as serotonin and dopamine are intercellular signaling molecules that function widely as neurotransmitters and neuromodulators. We have identified in the nematode Caenorhabditis elegans three ligand-gated ...

Ringstad, Niels

87

Abundance, size and habitat relation of reef fish on biogenic structures  

E-Print Network [OSTI]

Bight have been well studied. This is particularly true of shallow rocky reefs and sediment sea floors southern California sand flats. Densities of worms on these biogenic reefs can reach several hundred

Love, Milton

88

Formation of nano-crystalline todorokite from biogenic Mn Xiong Han Feng a,1  

E-Print Network [OSTI]

Formation of nano-crystalline todorokite from biogenic Mn oxides Xiong Han Feng a,1 , Mengqiang Zhu oxides in the environment. Additionally this method may be a viable biosynthesis route for porous, nano

Sparks, Donald L.

89

Osage Municipal Utilities Wind | Open Energy Information  

Open Energy Info (EERE)

Osage Municipal Utilities Wind Osage Municipal Utilities Wind Jump to: navigation, search Name Osage Municipal Utilities Wind Facility Osage Municipal Utilities Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Osage Municipal Utilities Developer Osage Municipal Utilities Energy Purchaser Osage Municipal Utilities Location West of Osage IA Coordinates 43.298363°, -92.84096° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.298363,"lon":-92.84096,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

90

Municipal Energy Reduction Fund | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Municipal Energy Reduction Fund Municipal Energy Reduction Fund Municipal Energy Reduction Fund < Back Eligibility Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Buying & Making Electricity Energy Sources Maximum Rebate $400,000 Program Info Start Date 3/17/2010 State New Hampshire Program Type State Loan Program Rebate Amount $5,000 to $400,000 Provider New Hampshire Community Development Finance Authority In March 2010, the New Hampshire Community Development Finance Authority (CDFA) launched a revolving loan program to encourage the state's

91

Waverly Municipal Elec Utility | Open Energy Information  

Open Energy Info (EERE)

Municipal Elec Utility Municipal Elec Utility Jump to: navigation, search Name Waverly Municipal Elec Utility Place Iowa Utility Id 20214 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Commercial Commercial and Municipal time of Use Service Commercial Electric Heat Rate for Residential Service Residential General Service General and Minicipal Demand Time of Use Service Commercial

92

Sacramento Municipal Utility District | Open Energy Information  

Open Energy Info (EERE)

Municipal Utility District Municipal Utility District (Redirected from Sacramento Municipal Utility District (SMUD)) Jump to: navigation, search Name Sacramento Municipal Util Dist Place Sacramento, California Website www.smud.org Utility Id 16534 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration

93

Gowrie Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Gowrie Municipal Utilities Gowrie Municipal Utilities Jump to: navigation, search Name Gowrie Municipal Utilities Place Iowa Utility Id 7424 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Average Rates Residential: $0.0976/kWh Commercial: $0.0900/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Gowrie_Municipal_Utilities&oldid=41075

94

Lawrenceburg Municipal Utils | Open Energy Information  

Open Energy Info (EERE)

Lawrenceburg Municipal Utils Lawrenceburg Municipal Utils Jump to: navigation, search Name Lawrenceburg Municipal Utils Place Indiana Utility Id 10798 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0749/kWh Commercial: $0.1150/kWh Industrial: $0.0597/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Lawrenceburg_Municipal_Utils&oldid=410978

95

Minnesota Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Minnesota Municipal Power Agny) (Redirected from Minnesota Municipal Power Agny) Jump to: navigation, search Name Minnesota Municipal Power Agency Place Minnesota Utility Id 12667 Utility Location Yes Ownership A NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Minnesota_Municipal_Power_Agency&oldid=412260

96

Texas Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

Municipal Power Agency Municipal Power Agency Jump to: navigation, search Name Texas Municipal Power Agency Place Texas Utility Id 18715 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Texas_Municipal_Power_Agency&oldid=411659" Categories:

97

Hudson Municipal Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Municipal Electric Utility Municipal Electric Utility Jump to: navigation, search Name Hudson Municipal Electric Utility Place Iowa Utility Id 8966 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Residential All-Electric Residential School Rate Commercial Average Rates Residential: $0.0993/kWh Commercial: $0.0905/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Hudson_Municipal_Electric_Utility&oldid=410846

98

American Municipal Power (Public Electric Utilities) - Residential  

Broader source: Energy.gov (indexed) [DOE]

American Municipal Power (Public Electric Utilities) - Residential American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) < Back Eligibility Residential Savings Category Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info Funding Source American Municipal Power Start Date 01/2011 Expiration Date 12/31/2013 State Ohio Program Type Utility Rebate Program Rebate Amount Ceiling Fan with Lights: $15 Dehumidifier: $25 Select Clothes Washer: $50 ENERGY STAR Refrigerator: $50 Refrigerator/Freezer Recycling: $50 Furnace Fan with ECM: $100 Heat Pump Water Heaters: $250 CFLs: up to 85% of cost Efficiency Smart (tm) provides energy efficiency incentives to the American

99

Woodstock Municipal Wind | Open Energy Information  

Open Energy Info (EERE)

Municipal Wind Municipal Wind Jump to: navigation, search Name Woodstock Municipal Wind Facility Woodstock Municipal Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind Energy Purchaser Xcel Energy Location Woodstock MN Coordinates 44.009957°, -96.100552° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.009957,"lon":-96.100552,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

100

New London Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

New London Municipal Utilities New London Municipal Utilities Place Iowa Utility Id 13468 Utility Location Yes Ownership M NERC Location MRO Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City All-Electric Residential Residential City Residential Residential General Service and Municipal Commercial Large General Service and Municipal (Demand) Commercial Rural Resident and Farm Residential Rural Resident and Farm All-Electric Residential Security Lights 100w HPS Metered light Lighting

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

2011 Municipal Consortium Southwest Region Workshop Materials  

Broader source: Energy.gov [DOE]

This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Southwest Region Workshop, held in San Jose, California, August 25­–26, 2011.

102

Experimental analysis of municipal solid waste samples  

E-Print Network [OSTI]

In the analysis of municipal solid waste consolidation, large-scale devices are usually used to measure the compression and hydraulic conductivity parameters. The use of those devices is justified due to difficulties in probing undisturbed samples...

Mendoza Sanchez, Itza

2012-06-07T23:59:59.000Z

103

Municipal performance: does mayoral quality matter?  

E-Print Network [OSTI]

This research addresses the question of what explains municipal performance in terms of delivering social services and fiscal performance. While the existing literature explains governmental performance with political, institutional and socio...

Avellaneda, Claudia Nancy

2009-05-15T23:59:59.000Z

104

2011 Municipal Consortium Northeast Region Workshop Materials  

Broader source: Energy.gov [DOE]

This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Northeast Region Workshop, held in Philadelphia, May 19–20, 2011.

105

Concord Municipal Light Plant- Solar Rebate Program  

Broader source: Energy.gov [DOE]

Concord Municipal Light Plant (CMLP) offers rebates to customers who install solar photovoltaic (PV) systems that are designed to offset the customer's electrical needs. Systems must be owned by...

106

2010 Municipal Consortium Southwest Region Workshop Materials  

Broader source: Energy.gov [DOE]

This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Southwest Region Workshop, held in Los Angeles on September 30, 2010.

107

2011 Municipal Consortium Southeast Region Workshop Materials  

Broader source: Energy.gov [DOE]

This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Southeast Region Workshop, held in Tampa, FL, February 17–18, 2011.

108

Estimates of Biogenic Methane Production Rates in Deep Marine Sediments at Hydrate Ridge, Cascadia Margin  

SciTech Connect (OSTI)

Methane hydrate found in marine sediments is thought to contain gigaton quantities of methane and is considered an important potential fuel source and climate-forcing agent. Much of the methane in hydrates is biogenic, so models that predict the presence and distribution of hydrates require accurate rates of in situ methanogenesis. We estimated the in situ methanogenesis rates in Hydrate Ridge (HR) sediments by coupling experimentally derived minimal rates of methanogenesis to methanogen biomass determinations for discrete locations in the sediment column. When starved in a biomass recycle reactor Methanoculleus submarinus produced ca. 0.017 fmol methane/cell/day. Quantitative polymerase chain reaction (QPCR) directed at the methyl coenzyme M reductase subunit A (mcrA) gene indicated that 75% of the HR sediments analyzed contained <1000 methanogens/g. The highest methanogen numbers were mostly from sediments <10 meters below seafloor. By combining methanogenesis rates for starved methanogens (adjusted to account for in situ temperatures) and the numbers of methanogens at selected depths we derived an upper estimate of <4.25 fmol methane produced/g sediment/day for the samples with fewer methanogens than the QPCR method could detect. The actual rates could vary depending on the real number of methanogens and various seafloor parameters that influence microbial activity. However, our calculated rate is lower than rates previously reported from such sediments and close to the rate derived using geochemical modeling of the sediments. These data will help to improve models that predict microbial gas generation in marine sediments and determine the potential influence of this source of methane on the global carbon cycle.

F. S. Colwell; S. Boyd; M. E. Delwiche; D. W. Reed; T. J. Phelps; D. T. Newby

2008-06-01T23:59:59.000Z

109

Influence of oenological practices on the formation of biogenic amines in quality red wines  

Science Journals Connector (OSTI)

Changes in the contents of biogenic amines (histamine, putrescine, tyramine, cadaverine, agmatine, ethylamine, isobutylamine, phenyletilamine, isoamylamine, serotonine and tryptamine) were studied during the winemaking process of quality red wines, including an organic wine. The analytical method used was validated in terms of linearity, precision, coefficient of variation and recovery. The limits of detection and quantification of the amines were also calculated. The method involved pre-column automated derivatisation of the amines by treatment with o-phthalaldehyde, after which the derivatives formed were analysed by reverse-phase HPLC. Results showed that grape must already contains biogenic amines and this content tends to increase throughout winemaking and maturation. The organic wine showed higher levels of biogenic amines than the non-organic wine. The fact that malolactic fermentation occurs spontaneously in organic wines, together with low levels of SO2 because of legal restrictions, could be responsible for the higher levels in biogenic amines found. For the non-organic wine, 2 oenological practices could increase the content in biogenic amines: the addition of press wine to the free run wine, and the treatment with yeast mannoproteins.

Matilde García-Marino; Álvaro Trigueros; Teresa Escribano-Bailón

2010-01-01T23:59:59.000Z

110

Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities  

E-Print Network [OSTI]

Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities ArunArun PurandarePurandare Eco Designs India Pvt. Ltd.Eco Designs India Pvt. Ltd. #12;What is a Landfill? A sanitary landfill refers to an engineered facility for the disposal of MSW designed and operated

Columbia University

111

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

Not Available

1992-10-01T23:59:59.000Z

112

Using Local and Regional Air Quality Modeling and Source Apportionment Tools to Evaluate Vehicles and Biogenic Emission Factors  

E-Print Network [OSTI]

and inventories of CO, NO_(x) and VOCs from on-road vehicles estimated by vehicle emission factor models and biogenic emissions of isoprene estimated by a popular biogenic emission model are evaluated using local and regional scale air quality modeling and source...

Kota, Sri H

2014-07-25T23:59:59.000Z

113

Oklahoma Municipal Power Authority - Commercial and Industrial Energy  

Broader source: Energy.gov (indexed) [DOE]

Oklahoma Municipal Power Authority - Commercial and Industrial Oklahoma Municipal Power Authority - Commercial and Industrial Energy Efficiency Program Oklahoma Municipal Power Authority - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $100,000 Program Info Funding Source American Recovery and Reinvestment Act of 2009 State Oklahoma Program Type Utility Rebate Program Rebate Amount Matching Funds up to $100,000 Provider Oklahoma Municipal Power Authority The Oklahoma Municipal Power Authority (OMPA) offers the Demand and Energy Efficiency Program (DEEP) to eligible commercial, industrial, and municipal

114

Canton Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Canton Municipal Utilities Canton Municipal Utilities Jump to: navigation, search Name Canton Municipal Utilities Place Mississippi Utility Id 2974 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png E01 RESIDENTIAL ALL ELECTRIC Residential E04 COMMERCIAL ELECTRIC Commercial E08 LARGE INDUSTRIAL ELECTRIC Industrial E09 RESIDENTIAL ELECTRIC Residential E12 SMALL INDUSTRIAL ELECTRIC Industrial E13 ELECTRIC WATER HEATER Commercial Average Rates Residential: $0.0978/kWh

115

Delano Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Municipal Utilities Municipal Utilities Jump to: navigation, search Name Delano Municipal Utilities Place Minnesota Utility Id 5015 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commerical Rate Commercial Industrial Rate Industrial Residential Rate Residential Average Rates Residential: $0.1060/kWh Commercial: $0.0995/kWh Industrial: $0.0854/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

116

Illinois Municipal Elec Agency | Open Energy Information  

Open Energy Info (EERE)

Illinois Municipal Elec Agency Illinois Municipal Elec Agency Place Illinois Utility Id 9286 Utility Location Yes Ownership A NERC Location RFC & SERC NERC RFC Yes NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Illinois_Municipal_Elec_Agency&oldid=410862

117

Bancroft Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Bancroft Municipal Utilities Bancroft Municipal Utilities Jump to: navigation, search Name Bancroft Municipal Utilities Place Iowa Utility Id 1172 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Demand Rates Commercial Schedule 1 Residential Schedule 2 Commercial Schedule 3 Residential Average Rates Residential: $0.1020/kWh Commercial: $0.0990/kWh Industrial: $0.0932/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

118

Tipton Municipal Electric Util | Open Energy Information  

Open Energy Info (EERE)

Tipton Municipal Electric Util Tipton Municipal Electric Util Jump to: navigation, search Name Tipton Municipal Electric Util Place Indiana Utility Id 18942 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate A- Residential Electric Service Residential Rate B- Commercial Electric Service Commercial Rate C- General and Industrial Power Service, Single Phase Industrial Rate C- General and Industrial Power Service, Three Phase Industrial Rate CG- Cogeneration Commercial Rate D- Primary Power and Lighting Service

119

Indianola Municipal Utilities - Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Indianola Municipal Utilities - Energy Efficiency Rebate Program Indianola Municipal Utilities - Energy Efficiency Rebate Program Indianola Municipal Utilities - Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Central AC: $250 maximum; 10 unit maximum per customer per year Commercial Lighting: $5,000 per customer per year Air Source Heat Pumps: $500 maximum; 10 units per customer per year Geothermal Heat Pumps: $1,000 maximum, 5 units per customer per year Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Central AC: $100/unit; $50 for each SEER above minimum Commercial Lighting: $2 - $25/fixture depending on type and efficiency

120

Thurmont Municipal Light Co | Open Energy Information  

Open Energy Info (EERE)

Thurmont Municipal Light Co Thurmont Municipal Light Co Jump to: navigation, search Name Thurmont Municipal Light Co Place Maryland Utility Id 18901 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LARGE GENERAL SERVICE Primary Voltage Industrial LARGE GENERAL SERVICE Secondary Voltage Industrial MEDIUM GENERAL SERVICE Industrial OUTDOOR LIGHTING SERVICE(11,000) Lighting OUTDOOR LIGHTING SERVICE(20,000) Lighting OUTDOOR LIGHTING SERVICE(400w) Lighting OUTDOOR LIGHTING SERVICE(7,000) Lighting RESIDENTIAL SERVICE Residential

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Cascade Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Cascade Municipal Utilities Cascade Municipal Utilities Jump to: navigation, search Name Cascade Municipal Utilities Place Iowa Utility Id 3137 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric Rate Residential City/Interdept. Rate Commercial Commercial Rate 3-phase Commercial Commercial Rate Single-phase Commercial Demand Rate Industrial Residential Rates Residential Average Rates Residential: $0.1040/kWh

122

Indianola Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Indianola Municipal Utilities Indianola Municipal Utilities Jump to: navigation, search Name Indianola Municipal Utilities Place Iowa Utility Id 9275 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rates Commercial Electric Heat Source Commercial Government Commercial Large Industrial Industrial Outside City Limits Residential Residential Rates Residential Small Industrial Industrial

123

Chillicothe Municipal Utils | Open Energy Information  

Open Energy Info (EERE)

Chillicothe Municipal Utils Chillicothe Municipal Utils Jump to: navigation, search Name Chillicothe Municipal Utils Place Missouri Utility Id 3486 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL (NON DEMAND)SERVICE SCHEDULE - CO Commercial LARGE COMMERCIAL SERVICE SCHEDULE - LP Commercial LARGE INDUSTRIAL SERVICE SCHEDULE - LI-01 Industrial RESIDENTIAL SERVICE SCHEDULE Residential SMALL INDUSTRIAL (NON DEMAND) SERVICE SCHEDULE - CO-06 Industrial Average Rates

124

Marblehead Municipal Light Department - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Marblehead Municipal Light Department - Residential Energy Marblehead Municipal Light Department - Residential Energy Efficiency Rebate Program Marblehead Municipal Light Department - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Maximum Rebate Insulation: $1,600 Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Refrigerators: $100, plus $25 for disposal of old refrigerator Clothes Washers: $50 - $100 Dishwashers: $25 - $50 Room A/C Units: 50% of purchase price up to $50 Central A/C: $325 - $525, varies by efficiency and technology Heat Pumps: $325 - $675, varies by efficiency and technology Programmable Thermostat: up to 50% of the purchase price

125

Dublin Municipal Electric Util | Open Energy Information  

Open Energy Info (EERE)

Dublin Municipal Electric Util Dublin Municipal Electric Util Jump to: navigation, search Name Dublin Municipal Electric Util Place Indiana Utility Id 5392 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Power Rate OL: Outdoor Lighting (Security Lights) Lighting Rate SL: Street Lighting, All Public Street Lighting Lighting Rate SL: Street Lighting, State Highway Stoplight Lighting Residential Residential Residential: Space Heating and/or Air Conditioning Service Residential

126

Kenyon Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Kenyon Municipal Utilities Kenyon Municipal Utilities Jump to: navigation, search Name Kenyon Municipal Utilities Place Minnesota Utility Id 10179 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Rate Commercial Large Commercial/Demand Service Rate Commercial Residential Service Rate Residential Security Lights Lighting Street Lights Lighting Average Rates Residential: $0.1200/kWh Commercial: $0.1100/kWh

127

Winner Municipal Utility | Open Energy Information  

Open Energy Info (EERE)

Winner Municipal Utility Winner Municipal Utility Jump to: navigation, search Name Winner Municipal Utility Place South Dakota Utility Id 20823 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Rate Commercial Mutiple Dwelling Rate Residential Residential Rate Residential Security Lighting Rate Lighting Small Commercial Rate Commercial Average Rates Residential: $0.0929/kWh Commercial: $0.0845/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

128

Rock Rapids Municipal Utility | Open Energy Information  

Open Energy Info (EERE)

Rapids Municipal Utility Rapids Municipal Utility Jump to: navigation, search Name Rock Rapids Municipal Utility Place Iowa Utility Id 16206 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Power (Single-Phase) Commercial Commercial Power (Three-Phase) Commercial Residential Power Residential Average Rates Residential: $0.0807/kWh Commercial: $0.0633/kWh Industrial: $0.0899/kWh

129

Albertville Municipal Utils Bd | Open Energy Information  

Open Energy Info (EERE)

Albertville Municipal Utils Bd Albertville Municipal Utils Bd Jump to: navigation, search Name Albertville Municipal Utils Bd Place Alabama Utility Id 241 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Rate - SGSC Commercial General Power Rate - SGSD Industrial General Power Rate(Schedule GSA)-Part 1 Commercial General Power Rate(Schedule GSA)-Part 2 Commercial General Power Rate(Schedule GSA)-Part 3 Commercial Manufacturing Service Rate - SMSB Industrial Manufacturing Service Rate - SMSC Industrial

130

Madisonville Municipal Utils | Open Energy Information  

Open Energy Info (EERE)

Madisonville Municipal Utils Madisonville Municipal Utils Jump to: navigation, search Name Madisonville Municipal Utils Place Kentucky Utility Id 11488 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Service-less than 50 KW Commercial Demand Commercial Electric Service-50 KW per month or more Commercial Residential Electric Service Residential Security Lights Overhead Flood Light HPS 400 W Lighting Security Lights Overhead Flood Light MH 400 W Lighting Security Lights Overhead HPS 150 W Lighting

131

Trenton Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Trenton Municipal Utilities Trenton Municipal Utilities Jump to: navigation, search Name Trenton Municipal Utilities Place Missouri Utility Id 19150 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Church Rate Commercial Commercial All Electric Rate Commercial Commercial General Electric Rate Commercial Commercial Power Rate Commercial Grundy Electric Rate for City Line Usage Commercial

132

Philippi Municipal Electric | Open Energy Information  

Open Energy Info (EERE)

Philippi Municipal Electric Philippi Municipal Electric Place West Virginia Utility Id 14954 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Economic Development Rate Industrial General Service Commercial Large Power Commercial Outdoor Lighting- 175W High Pressure Sodium Lighting Residential Residential Average Rates Residential: $0.0904/kWh Commercial: $0.0800/kWh Industrial: $0.0976/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Philippi_Municipal_Electric&oldid=411361

133

Rancho Cucamonga Municipal Utility | Open Energy Information  

Open Energy Info (EERE)

Rancho Cucamonga Municipal Utility Rancho Cucamonga Municipal Utility Jump to: navigation, search Name Rancho Cucamonga Municipal Utility Place California Utility Id 56224 Utility Location Yes Ownership M NERC WECC Yes ISO CA Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Irrigation Systems Commercial Large Commercial Commercial Medium Commercial Commercial Medium Commercial (Time-Of-Use) Commercial Net Energy Metering Commercial Outdoor Area Lighting Lighting Small Comercial Commercial Small Commercial Three Phase Commercial

134

Wyoming Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

Wyoming Municipal Power Agency Wyoming Municipal Power Agency Place Wyoming Utility Id 40603 Utility Location Yes Ownership A NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Wyoming_Municipal_Power_Agency&oldid=412214

135

Mohawk Municipal Comm | Open Energy Information  

Open Energy Info (EERE)

Municipal Comm Municipal Comm Jump to: navigation, search Name Mohawk Municipal Comm Place New York Utility Id 12759 Utility Location Yes Ownership M NERC Location NPCC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Rate Industrial Large Commercial Commercial Public Street Lighting Lighting Security Lighting 150 w lamp Lighting Security Lighting 175 w lamp Lighting Security Lighting 250 w lamp Lighting Security Lighting 400 w lamp Lighting Single-Phase Residential Residential Small Commercial Business Commercial Average Rates Residential: $0.0366/kWh

136

Lassen Municipal Utility District | Open Energy Information  

Open Energy Info (EERE)

Municipal Utility District Municipal Utility District Jump to: navigation, search Name Lassen Municipal Utility District Place California Utility Id 10724 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agricultural Pumping Commercial Domestic Residential General Service (Non-Demand) Commercial General Service Metered Demand Commercial Industrial Industrial Outdoor Area Lighting 100W Lighting Outdoor Area Lighting 200W Lighting Standby Reactive Rate Commercial Average Rates

137

Willmar Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Municipal Utilities Municipal Utilities Jump to: navigation, search Name Willmar Municipal Utilities Place Minnesota Website wmu.willmar.mn.us/main/ Utility Id 20737 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General service rate Commercial Heat pump rate Commercial Industrial(≥500KW;Primary Service) Industrial Industrial;≥500KW(Secondary Service) Industrial

138

Price Municipal Corporation | Open Energy Information  

Open Energy Info (EERE)

Municipal Corporation Municipal Corporation Jump to: navigation, search Name Price Municipal Corporation Place Utah Utility Id 14198 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electrical substation delivery discount Commercial General Service- Large Industrial General service-small Industrial Residential Residential Security area lighting-250 watts and up Lighting Security area lighting-Less than 250 watts Lighting Special service-Non profit charitable organization Commercial

139

Rochelle Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Municipal Utilities Municipal Utilities Jump to: navigation, search Name Rochelle Municipal Utilities Place Illinois Utility Id 16179 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General Service Commercial Large General Service Time of Day Commercial

140

Edinburg Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Edinburg Municipal Utilities Edinburg Municipal Utilities Jump to: navigation, search Name Edinburg Municipal Utilities Place Indiana Utility Id 5655 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric Residential and Farm Residential Electric Commercial Commercial Electric General Power Industrial Industrial Power(Transformer capacity Greater than 999kVA) Industrial Residential Residential Rural Commercial Commercial Rural Residential and Farm Residential Average Rates Residential: $0.0912/kWh

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Indiana Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

Municipal Power Agency Municipal Power Agency Place Indiana Utility Id 9234 Utility Location Yes Ownership A NERC Location RFC NERC RFC Yes RTO PJM Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Indiana_Municipal_Power_Agency&oldid=41086

142

Alameda Municipal Power - Residential Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Residential Energy Efficiency Program Residential Energy Efficiency Program Alameda Municipal Power - Residential Energy Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Maximum Rebate Single family, duplex, or triplex: $960 per unit Multi-family dwelling (four or more units): $480 per unit. Program Info State California Program Type Utility Grant Program Rebate Amount Weatherization: 80% of the cost Do-It-Yourself Weatherization: 70% of the cost Provider Alameda Municipal Power Alameda Municipal Power (AMP) offers a grant to help its residential customers who have electric heat weatherize homes to increase efficiency.

143

UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) Project Title: Exploring the petroleum potential of a frontier province: Cretaceous stratigraphy and  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) Project Title: Exploring Myanmar. It has been shown that gas and oil exists in the basin and that a considerable unconventional biogenic gas system exists in the deep-waters offshore. The sediments of the Rakhine Basin were deposited

Henderson, Gideon

144

Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) |  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage of Natural Gas and Liquefied Petroleum Gas Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Nebraska Oil and Gas Conservation Commission This statute declares underground storage of natural gas and liquefied petroleum gas to be in the public interest if it promotes the conservation

145

Long-term behavior of municipal solid waste landfills  

Science Journals Connector (OSTI)

A method is presented to predict the long-term behavior of element concentrations (non-metals and metals) in the leachate of a municipal solid waste (MSW) landfill. It is based on water flux and concentration measurements in leachates over one year, analysis of drilled cores from MSW landfills and leaching experiments with these samples. A mathematical model is developed to predict the further evolution of annual flux-weighted mean element concentrations in leachates after the “intensive reactor phase”, i.e. after the gas production has dropped to a very low level. The results show that the organic components are the most important substances to control until the leachate is compatible with the environment. This state of low emissions, the so-called “final storage quality”, will take many centuries to be achieved in a moderate climate.

H. Belevi; P. Baccini

1989-01-01T23:59:59.000Z

146

Solid-State Lighting: 2011 Municipal Consortium North Central Region  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2011 Municipal Consortium North 2011 Municipal Consortium North Central Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on AddThis.com... Conferences & Meetings

147

Georgia: Data Center and Historic Municipal Building Go Green...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Municipal Building Go Green Georgia: Data Center and Historic Municipal Building Go Green August 21, 2013 - 9:45am Addthis Data centers can consume 100 to 200 times more...

148

Federal, Municipal, Universities and Other ESPC Case Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of various federal, municipal, and university case Energy Savings Performance Contracting implementation case studies. Author: National Association of Energy Service...

149

Biogenic emissions from Citrus species in California Silvano Fares a,b,*, Drew R. Gentner c  

E-Print Network [OSTI]

Biogenic emissions from Citrus species in California Silvano Fares a,b,*, Drew R. Gentner c , Jeong May 2011 Accepted 26 May 2011 Keywords: BVOC emissions OVOC Terpene Basal emission rate Citrus a b such as the Central Valley of California. Moreover, the BVOC emissions from Citrus species have not been characterized

Silver, Whendee

150

Operation of Marine Diesel Engines on Biogenic Fuels: Modification of Emissions and Resulting Climate Effects  

Science Journals Connector (OSTI)

The modification of emissions of climate-sensitive exhaust compounds such as CO2, NOx, hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference ...

Andreas Petzold; Peter Lauer; Uwe Fritsche; Jan Hasselbach; Michael Lichtenstern; Hans Schlager; Fritz Fleischer

2011-11-01T23:59:59.000Z

151

Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol in the Amazon  

Science Journals Connector (OSTI)

...potassium and sulfur has been attributed to local biogenic sources (24–26), which is...A description of the advanced research WRF version 3” [National Center for Atmospheric...the Weather Research and Forecasting (WRF) model simulations. We gratefully acknowledge...

Christopher Pöhlker; Kenia T. Wiedemann; Bärbel Sinha; Manabu Shiraiwa; Sachin S. Gunthe; Mackenzie Smith; Hang Su; Paulo Artaxo; Qi Chen; Yafang Cheng; Wolfgang Elbert; Mary K. Gilles; Arthur L. D. Kilcoyne; Ryan C. Moffet; Markus Weigand; Scot T. Martin; Ulrich Pöschl; Meinrat O. Andreae

2012-08-31T23:59:59.000Z

152

Nitrous Oxide Emissions from a Municipal Landfill  

Science Journals Connector (OSTI)

Nitrous Oxide Emissions from a Municipal Landfill ... Due to the small area of landfills as compared to other land-use classes, the total N2O emissions from landfills are estimated to be of minor importance for the total emissions from Finland. ...

Janne Rinne; Mari Pihlatie; Annalea Lohila; Tea Thum; Mika Aurela; Juha-Pekka Tuovinen; Tuomas Laurila; Timo Vesala

2005-09-21T23:59:59.000Z

153

Philadelphia Gas Works Looking for a challenge and ready to power up your career?  

E-Print Network [OSTI]

Philadelphia Gas Works Looking for a challenge and ready to power up your career? The Philadelphia Gas Works (PGW) is the largest municipally-owned gas utility in the nation, supplying gas service into the large, modern facility that exists today. As one of the nation's leading natural gas providers, PGW

Plotkin, Joshua B.

154

River Falls Municipal Utilities - Renewable Energy Finance Program |  

Broader source: Energy.gov (indexed) [DOE]

River Falls Municipal Utilities - Renewable Energy Finance Program River Falls Municipal Utilities - Renewable Energy Finance Program River Falls Municipal Utilities - Renewable Energy Finance Program < Back Eligibility Residential Savings Category Other Buying & Making Electricity Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info State Wisconsin Program Type PACE Financing Provider River Falls Municipal Utilities River Falls Municipal Utilities (RFMU) offers loans of $2,500 - $50,000 to its residential customers for the installation of photovoltaic (PV), solar thermal, geothermal, wind electric systems. The program will also support the installation of energy efficiency measures in connection with a qualifying renewable energy project, provided that the renewable energy

155

Simulation of Syngas Production from Municipal Solid Waste Gasification in a Bubbling Fluidized Bed Using Aspen Plus  

Science Journals Connector (OSTI)

Simulation of Syngas Production from Municipal Solid Waste Gasification in a Bubbling Fluidized Bed Using Aspen Plus ... When the reaction kinetics is not known, a rigorous reactor and multiphase equilibrium based on the minimization of the total Gibbs free energy of the product mixture (an RGibbs block) is preferred to predict the equilibrium composition of the produced syngas. ... Catalytic steam gasification of municipal solid waste (MSW) to produce hydrogen-rich gas or syngas (H2 + CO) with calcined dolomite as a catalyst in a bench-scale downstream fixed bed reactor was investigated. ...

Miaomiao Niu; Yaji Huang; Baosheng Jin; Xinye Wang

2013-09-06T23:59:59.000Z

156

Municipal Energy Plan Program (Ontario, Canada) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Municipal Energy Plan Program (Ontario, Canada) Municipal Energy Plan Program (Ontario, Canada) Municipal Energy Plan Program (Ontario, Canada) < Back Eligibility Municipal/Public Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Maximum Rebate 90,000 Program Info Expiration Date 11/29/2013 State Ontario Program Type Grant Program Rebate Amount 50 percent of eligible costs Ontario is supporting local energy planning by introducing the Municipal Energy Plan (MEP) program. The MEP program is designed to help municipalities better understand their local energy needs and conservation opportunities, set goals and develop implementation plans. A MEP takes an integrated approach to energy planning by aligning energy, infrastructure and land use planning. MEPs will help municipalities:

157

Valley Center Municipal Water District | Open Energy Information  

Open Energy Info (EERE)

Municipal Water District Municipal Water District Jump to: navigation, search Name Valley Center Municipal Water District Place Valley Center, California Zip 92082 Product VCMWD is the second largest water provider in San Diego County behind the City of San Diego. References Valley Center Municipal Water District[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Valley Center Municipal Water District is a company located in Valley Center, California . References ↑ "Valley Center Municipal Water District" Retrieved from "http://en.openei.org/w/index.php?title=Valley_Center_Municipal_Water_District&oldid=352717" Categories: Clean Energy Organizations Companies Organizations

158

Cap May County Municipal Utilities Authority | Open Energy Information  

Open Energy Info (EERE)

Cap May County Municipal Utilities Authority Cap May County Municipal Utilities Authority Jump to: navigation, search Name Cap May County Municipal Utilities Authority Place Cape May Court House, New Jersey Zip 8210 Product The CMCMUA was created to design, construct and operate efficient wastewater treatment facilities. References Cap May County Municipal Utilities Authority[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Cap May County Municipal Utilities Authority is a company located in Cape May Court House, New Jersey . References ↑ "Cap May County Municipal Utilities Authority" Retrieved from "http://en.openei.org/w/index.php?title=Cap_May_County_Municipal_Utilities_Authority&oldid=343207"

159

Shawano Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Shawano Municipal Utilities Shawano Municipal Utilities Place Wisconsin Utility Id 17011 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Field Lighting Service Lighting General Single Phase Commercial General Single Phase TOD Commercial General Single Phase TOD 2 Commercial General Single Phase TOD 3 Commercial General Three Phase Commercial General Three Phase TOD Commercial General Three Phase TOD 2 Commercial General Three Phase TOD 3 Commercial Industrial Time-of-day Industrial Interdepartmental Commercial

160

Wyandotte Municipal Serv Comm | Open Energy Information  

Open Energy Info (EERE)

Wyandotte Municipal Serv Comm Wyandotte Municipal Serv Comm Place Michigan Utility Id 21048 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png HEATING STEAM RATE Residential HOT WATER DISTRICT HEATING RATE Commercial LARGE GENERAL SERVICE RATE Commercial Commercial LARGE GENERAL SERVICE RATE Commercial (Time-Differentiated Meter) Commercial LARGE GENERAL SERVICE RATE Industrial (Time-Differentiated Meter)

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Atlantic Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Atlantic Municipal Utilities Atlantic Municipal Utilities Place Iowa Utility Id 965 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All- Electric Residential (Single Phase) Residential All- Electric Residential (Three Phase) Residential Commercial All- Electric Commercial Commercial Supplemental Electric Heat Commercial Industrial Electric Service (over 2,000kW) Industrial

162

Oklahoma Municipal Power Auth | Open Energy Information  

Open Energy Info (EERE)

Auth Auth Jump to: navigation, search Name Oklahoma Municipal Power Auth Place Oklahoma Utility Id 14077 Utility Location Yes Ownership S NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Oklahoma_Municipal_Power_Auth&oldid=411268

163

Energy utilization: municipal waste incineration. Final report  

SciTech Connect (OSTI)

An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

LaBeck, M.F.

1981-03-27T23:59:59.000Z

164

Biogas From Municipal WWTPs: Fuel Cells Viewed as a Value Proposition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

From Municipal WWTPs From Municipal WWTPs Fuel Cells Viewed as a Value Proposition Biogas and Fuel Cells Workshop National Renewable Energy Laboratory Golden, Colorado June 12, 2012 WWTP Anaerobic Digestion * Common method of processing sludge to reduce volume of solids & volatile content * Reduces sludge disposal cost & increases outlets for disposal * Since motivation is disposal rather than digester gas (DG) production, the DG is available at no cost * This is unlike many other organic waste digestion facilities, where the energy project must bear cost of the digester(s) WWTP Anaerobic Digestion * WWTP anaerobic digesters require heat * Typically a portion of the DG is used to produce steam or hot water to provide the heat * The heat required varies seasonally,

165

Ni(II) Sorption on Biogenic Mn-Oxides with Varying Mn  

E-Print Network [OSTI]

Ni(II) Sorption on Biogenic Mn-Oxides with Varying Mn Octahedral Layer Structure M E N G Q I A N G(II) sorption mechanisms were determined at pH 7 and at different Ni(II) loadings, using isotherm and extended X in the interlayer of the BioMnOx and the maximum Ni(II) sorption capacity increases as the formation pH of Bio

Sparks, Donald L.

166

Heating and cooling of municipal buildings with waste heat from ground water  

SciTech Connect (OSTI)

The feasibility of using waste heat from municipal water wells to replace natural gas for heating of the City Hall, Fire Station, and Community Hall in Wilmer, Texas was studied. At present, the 120/sup 0/F well water is cooled by dissipating the excess heat through evaporative cooling towers before entering the distribution system. The objective of the study was to determine the pumping cycle of the well and determine the amount of available heat from the water for a specified period. This data were correlated with the heating and cooling demand of the City's buildings, and a conceptual heat recovery system will be prepared. The system will use part or all of the excess heat from the water to heat the buildings, thereby eliminating the use of natural gas. The proposed geothermal retrofit of the existing natural gas heating system is not economical because the savings in natural gas does not offset the capital cost of the new equipment and the annual operating and maintenance costs. The fuel savings and power costs are a virtual trade-off over the 25-year period. The installation and operation of the system was estimated to cost $105,000 for 25 years which is an unamortized expense. In conclusion, retrofitting the City of Wilmer's municipal buildings is not feasible based on the economic analysis and fiscal projections as presented.

Morgan, D.S.; Hochgraf, J.

1980-10-01T23:59:59.000Z

167

Evaluating the contribution of cooperative sector recycling to the reduction of greenhouse gas emissions: an opportunity for recycling cooperatives in São Paulo to engage in the carbon credit market.  

E-Print Network [OSTI]

??Greenhouse gas emissions can be reduced through recovery and recycling of resources from the municipal solid waste stream. In São Paulo, Brazil, recycling cooperatives play… (more)

King, Megan Frances

2012-01-01T23:59:59.000Z

168

Municipal Solid Waste Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies October 7, 2013 - 9:28am Addthis Black and white photo of a bulldozer pushing a large mound of trash in a landfill. The National Renewable Energy Laboratory's high-solids digester converts wastes to biogas and compost for energy production. This page provides a brief overview of municipal solid waste energy resources and technologies supplemented by specific information to apply waste to energy within the Federal sector. Overview Municipal solid waste, also known as waste to energy, generates electricity by burning solid waste as fuel. This generates renewable electricity while also incinerating landfill and other municipal waste products such as trash, yard clippings and debris, furniture, food scraps, and other

169

Mandatory Green Power Option for Large Municipal Utilities | Department of  

Broader source: Energy.gov (indexed) [DOE]

Green Power Option for Large Municipal Utilities Green Power Option for Large Municipal Utilities Mandatory Green Power Option for Large Municipal Utilities < Back Eligibility Municipal Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Wind Program Info State Colorado Program Type Mandatory Utility Green Power Option Provider Colorado Public Utilities Commission Municipal electric utilities serving more than 40,000 customers in Colorado must offer an optional green-power program that allows retail customers the choice of supporting emerging renewable technologies. This policy complements Colorado's renewable portfolio standard (RPS), which requires municipal utilities serving more than 40,000 customers to use renewable energy and energy recycling to account for 10% of retail sales by 2020.

170

Solid-State Lighting: 2011 Municipal Consortium North Central Region  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Consortium North Consortium North Central Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on AddThis.com... LED Lighting Facts CALiPER Program

171

Solid-State Lighting: 2011 Municipal Consortium Northeast Region Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Northeast Region Workshop Materials to someone by E-mail Northeast Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Municipal Consortium Northeast Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Municipal Consortium Northeast Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Municipal Consortium Northeast Region Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Municipal Consortium Northeast Region Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Municipal Consortium Northeast Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Municipal Consortium Northeast Region Workshop Materials on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network

172

Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Los Angeles, CA to someone Los Angeles, CA to someone by E-mail Share Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Facebook Tweet about Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Twitter Bookmark Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Google Bookmark Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Delicious Rank Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Digg Find More places to share Solid-State Lighting: Municipal Consortium

173

Municipal Solid Waste Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies October 7, 2013 - 9:28am Addthis Black and white photo of a bulldozer pushing a large mound of trash in a landfill. The National Renewable Energy Laboratory's high-solids digester converts wastes to biogas and compost for energy production. This page provides a brief overview of municipal solid waste energy resources and technologies supplemented by specific information to apply waste to energy within the Federal sector. Overview Municipal solid waste, also known as waste to energy, generates electricity by burning solid waste as fuel. This generates renewable electricity while also incinerating landfill and other municipal waste products such as trash, yard clippings and debris, furniture, food scraps, and other

174

A Municipal Official's Guide to Diesel Idling Reduction | Open Energy  

Open Energy Info (EERE)

A Municipal Official's Guide to Diesel Idling Reduction A Municipal Official's Guide to Diesel Idling Reduction Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Municipal Official's Guide to Diesel Idling Reduction Agency/Company /Organization: United States Environmental Protection Agency Partner: New York Planning Federation Sector: Climate, Energy Focus Area: Transportation Resource Type: Lessons learned/best practices Website: www.nyserda.org/publications/09-06GuidetoDieselIdlingReduction.pdf Language: English References: A Municipal Official's Guide to Diesel Idling Reduction[1] References ↑ "A Municipal Official's Guide to Diesel Idling Reduction" Retrieved from "http://en.openei.org/w/index.php?title=A_Municipal_Official%27s_Guide_to_Diesel_Idling_Reduction&oldid=390471"

175

Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ to someone by E-mail Share Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ on Facebook Tweet about Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ on Twitter Bookmark Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ on Google Bookmark Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ on Delicious Rank Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ on Digg

176

Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Northwest Region Workshop Materials to someone by E-mail Northwest Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network

177

Reading Municipal Light Department - Business Lighting Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Reading Municipal Light Department - Business Lighting Rebate Reading Municipal Light Department - Business Lighting Rebate Program Reading Municipal Light Department - Business Lighting Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Commercial Customers: $10,000 per calendar year Municipal Customers: $15,000 per calendar year Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount T-8/T-5 Lamp with Electronic Ballasts: $11 - $35/fixture Interior High Output Lamp with Electronic Ballasts: $100/fixture De-lamping: $4 - $9/lamp Lighting Sensors: $20/sensor LED Exit Signs: $20/fixture Provider Incentive Programs

178

Wellesley Municipal Light Plant - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Wellesley Municipal Light Plant - Residential Energy Efficiency Wellesley Municipal Light Plant - Residential Energy Efficiency Rebate Program Wellesley Municipal Light Plant - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Maximum Rebate Two equipment rebates per customer per calendar year Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Refrigerator: $100 Clothes Washing Machine: $75 Central AC: $100 Room AC Unit: $50 Dishwasher: $75 Dehumidifier: $50 Provider Appliance Rebate Program Wellesley Municipal Light Plant (WMLP) offers a number of appliance rebates to residential customers who purchase and install energy efficient equipment. Rebates are available for refrigerators, dishwashers, clothes

179

New York City - Green Building Requirements for Municipal Buildings |  

Broader source: Energy.gov (indexed) [DOE]

Green Building Requirements for Municipal Buildings Green Building Requirements for Municipal Buildings New York City - Green Building Requirements for Municipal Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Commercial Lighting Lighting Bioenergy Solar Windows, Doors, & Skylights Buying & Making Electricity Water Water Heating Wind Program Info State New York Program Type Energy Standards for Public Buildings Provider Mayor's Office of Operations In 2005 New York City passed a law (Local Law No. 86) making a variety of green building and energy efficiency requirements for municipal buildings and other projects funded with money from the city treasury. The building

180

Municipal Water Pollution Control (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Municipal Water Pollution Control (Minnesota) Municipal Water Pollution Control (Minnesota) Municipal Water Pollution Control (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This statute applies to a city, sanitary district, or other governmental subdivision or public corporation. The statute gives the Pollution Control Agency the authority to prepare and enforce a long-range plan pertaining to

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Broader source: Energy.gov (indexed) [DOE]

Municipal Waste Planning, Recycling and Waste Reduction Act Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Pennsylvania Program Type Environmental Regulations

182

Municipal Consortium Annual Meeting Presentations and Materials—Phoenix, AZ  

Broader source: Energy.gov [DOE]

This page provides links to presentations and materials from the DOE Municipal Solid-State Street Lighting Consortium Annual Meeting held in Phoenix on September 11, 2013.

183

Anchorage Municipal Light and Power (Alaska) EIA Revenue and...  

Open Energy Info (EERE)

Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAnchorageMunicipalLightandPower(Alaska)EIARevenueandSales-December2008&oldid19263...

184

Patterns in Trash: Factors that Drive Municipal Solid Waste Recycling.  

E-Print Network [OSTI]

??Municipal recycling is driven by a variety of factors. Yet how these factors change over time is not well understood. I analyze a suite of… (more)

Starr, Jared

2014-01-01T23:59:59.000Z

185

February 19, 2013 Webinar: Exploring How Municipal Utilities...  

Broader source: Energy.gov (indexed) [DOE]

Projects This webinar was held February 19, 2013, and provided information on Concord Light, the municipal electric utility serving Concord, Massachusetts, and their solar...

186

Elk River Municipal Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

[http://www.elkriverutilities.com/index.php Elk River Municipal Utilities] provides rebates to their residential electric customers who purchase and install Energy Star rated appliances and HVAC...

187

Reading Municipal Light Department - Business Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Reading Municipal Light Department - Business Energy Efficiency Reading Municipal Light Department - Business Energy Efficiency Rebate Program Reading Municipal Light Department - Business Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Heat Pumps Manufacturing Appliances & Electronics Buying & Making Electricity Energy Sources Solar Wind Maximum Rebate $50,000 Program Info Expiration Date 04/30/2013 State Massachusetts Program Type Utility Rebate Program Rebate Amount Up to $50,000 Provider Incentive Programs Reading Municipal Light Department (RMLD) offers energy efficiency incentives to eligible commercial and industrial customers. Rebates of up to $50,000 are available to customers who wish to reduce energy consumption

188

Attachment A RANCHO CUCAMONGA MUNICIPAL UTILITY'S  

E-Print Network [OSTI]

) Current Resources Fortistar Methane (PCC 1) Mid-Valley Landfill Gas Jan 2013 ­ Dec 2017 5 2013 - 2017 CA BA Fortistar Methane (PCC 1) Milliken Landfill Gas Jan 2013 ­ Dec 2017 5 2013 - 2017 CA BA Brookfield two landfill gas contracts with Fortistar in 2013. The following table below provides additional

189

Municipal landfill leachate treatment by SBBGR technology  

Science Journals Connector (OSTI)

The paper reports the results of a laboratory-scale investigation aimed at evaluating the performance of a periodic biofilter with granular biomass (SBBGR) for treating leachate coming from a mature municipal landfill. The results show that the SBBGR was able to remove roughly 80% of COD in leachate. The remaining 20% of COD were, therefore, presumably owing to the presence in the leachate of recalcitrant compounds. Ammonia removal efficiency was low because of the presence of high salinity and inhibitory compounds in the investigated leachate. The process was characterised by very low sludge production (lower than 0.02 kg TSS/kg CODremoved).

Claudio Di Iaconi; Guido Del Moro; Michele Pagano; Roberto Ramadori

2009-01-01T23:59:59.000Z

190

Municipal solid waste disposal in Portugal  

SciTech Connect (OSTI)

In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day.

Magrinho, Alexandre [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Didelet, Filipe [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Semiao, Viriato [Mechanical Engineering Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: ViriatoSemiao@ist.utl.pt

2006-07-01T23:59:59.000Z

191

Hydrogen production by gasification of municipal solid waste  

SciTech Connect (OSTI)

As fossil fuel reserves run lower and lower, and as their continued widespread use leads toward numerous environmental problems, the need for clean and sustainable energy alternatives becomes ever clearer. Hydrogen fuel holds promise as such as energy source, as it burns cleanly and can be extracted from a number of renewable materials such as municipal solid waste (MSW), which can be considered largely renewable because of its high content of paper and biomass-derived products. A computer model is being developed using ASPEN Plus flow sheeting software to simulate a process which produces hydrogen gas from MSW; the model will later be used in studying the economics of this process and is based on an actual Texaco coal gasification plant design. This paper gives an overview of the complete MSW gasification process, and describes in detail the way in which MSW is modeled by the computer as a process material. In addition, details of the gasifier unit model are described; in this unit modified MSW reacts under pressure with oxygen and steam to form a mixture of gases which include hydrogen.

Rogers, R. III

1994-05-20T23:59:59.000Z

192

Nonlinear Model Predictive Control of Municipal Solid Waste Combustion Plants  

E-Print Network [OSTI]

. Also, the energy that results from waste combustion is often used to produce heat and/or electricityNonlinear Model Predictive Control of Municipal Solid Waste Combustion Plants M. Leskens , R.h.Bosgra@tudelft.nl, p.m.j.vandenhof@tudelft.nl Keywords : nonlinear model predictive control, municipal solid waste

Van den Hof, Paul

193

THERMODYNAMIC STUDY OF HEAVY METALS BEHAVIOUR DURING MUNICIPAL WASTE INCINERATION  

E-Print Network [OSTI]

, heat and mass transfer, drying, pyrolysis, combustion of pyrolysis gases, combustion and gasificationTHERMODYNAMIC STUDY OF HEAVY METALS BEHAVIOUR DURING MUNICIPAL WASTE INCINERATION Y. ME´ NARD, A Me´tallurgie (LSG2M) Nancy, France T he incineration of municipal solid waste (MSW) contributes

Boyer, Edmond

194

Aluminum Reactions and Problems in Municipal Solid Waste Landfills  

E-Print Network [OSTI]

Aluminum Reactions and Problems in Municipal Solid Waste Landfills G. Vincent Calder, Ph.D.1 ; and Timothy D. Stark, Ph.D., P.E., F.ASCE2 Abstract: Aluminum enters municipal solid waste MSW landfills from problematic for landfill operations by generating undesirable heat, liquid leachate, and gases

195

Lassen Municipal Utility District - PV Rebate Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Lassen Municipal Utility District - PV Rebate Program Lassen Municipal Utility District - PV Rebate Program Lassen Municipal Utility District - PV Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $5,000 or 50% of system cost, whichever is less Commercial: $23,000 or 50% of system cost, whichever is less. Program Info State California Program Type Utility Rebate Program Rebate Amount Residential: $3.00/W-AC Commercial: $2.10/W-AC Provider Lassen Municipal Utility District Lassen Municipal Utility District (LMUD) is providing incentives for its customers to purchase solar electric photovoltaic (PV) systems. Rebate levels will decrease annually over the life of the program. Through June 30, 2014, rebates of $3.00 per watt-AC up to $5,000 are available for

196

River Falls Municipal Utilities - Distributed Solar Tariff | Department of  

Broader source: Energy.gov (indexed) [DOE]

River Falls Municipal Utilities - Distributed Solar Tariff River Falls Municipal Utilities - Distributed Solar Tariff River Falls Municipal Utilities - Distributed Solar Tariff < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info State Wisconsin Program Type Performance-Based Incentive Rebate Amount $0.30/kWh Provider River Falls Municipal Utilities River Falls Municipal Utilities (RFMU), a member of WPPI Energy, offers a special energy purchase rate to its customers that generate electricity using solar photovoltaic (PV) systems. The special rate, $0.30/kilowatt-hour (kWh), is available to all the RFMU customers on a first-come, first-served basis for systems up to 4 kilowatts (kW). The RFMU

197

Hercules Municipal Utility - PV Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hercules Municipal Utility - PV Rebate Program Hercules Municipal Utility - PV Rebate Program Hercules Municipal Utility - PV Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Systems 10 kW or less: 10,000 Program Info State California Program Type Utility Rebate Program Rebate Amount '''2012:''' Systems up to 10 kW: 2.25/watt AC Systems larger than 10 kW: 0.17/kWh for 5 years'''''' Provider Hercules Municipal Utility '''''Note: This program has been temporarily suspended. Contact the utility for more information.''''' Hercules Municipal Utility offers a $2.25-per-watt AC rebate (2012 rebate level) to its residential and commercial customers who purchase and install solar photovoltaic (PV) systems smaller than 10 kilowatts (kW). Systems 10

198

Anoka Municipal Utility - Commercial Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Anoka Municipal Utility - Commercial Energy Efficiency Rebate Anoka Municipal Utility - Commercial Energy Efficiency Rebate Program Anoka Municipal Utility - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate 60% of the project cost or 100,000, whichever is less Program Info Expiration Date 3/31/13 State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting: Varies, See Program Website Motors: $200 - $5,400 Variable Speed Drives: $400 - $8,000 Provider Anoka Municipal Utility Anoka Municipal Utility (AMU) offers the Commercial and Industrial Lighting and Motor Rebate Program for commercial and industrial customers who

199

FirstEnergy (Potomac Edison) - Municipal and Street Lighting Program  

Broader source: Energy.gov (indexed) [DOE]

FirstEnergy (Potomac Edison) - Municipal and Street Lighting FirstEnergy (Potomac Edison) - Municipal and Street Lighting Program (Maryland) FirstEnergy (Potomac Edison) - Municipal and Street Lighting Program (Maryland) < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State Maryland Program Type Utility Rebate Program Rebate Amount '''Street Lighting'''br/> High Pressure Sodium Fixtures: $10 - $50/unit LED/Induction Fixtures: $50 '''Traffic/Pedestrian Signals''' Lamp/Signal/Arrows: $35/unit Provider FirstEnergy (Potomac Edison) FirstEnergy offers several incentives for non-residential and municipal customers to upgrade traffic signals, pedestrian signals, street lights to more efficient fixtures. The Municipal Lighting Incentive Program offers

200

Willmar Municipal Utilities - Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Willmar Municipal Utilities - Residential Energy Efficiency Rebate Willmar Municipal Utilities - Residential Energy Efficiency Rebate Program Willmar Municipal Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Water Heating Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Refrigerator: 50 Clothes Washer: 50 Dishwasher: 50 Central A/C: 200 Water Heater: 1.25/gallon (bonus 100 to convert to an electric water heater from another fuel source) Provider Willmar Municipal Utilities Willmar Municipal Utilities offer rebates on Energy Star rated appliances and air conditioners and Marathon water heaters. In addition to these rebates, WMU also offers a Load Sharing Program. Participating customers

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Program Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Program < Back Eligibility Agricultural Commercial Industrial Residential Maximum Rebate 1,000/ton Program Info Funding Source American Recovery and Reinvestment Act of 2009 State Oklahoma Program Type Utility Rebate Program Rebate Amount $800 - $1,000/ton Provider Oklahoma Municipal Power Authority Program funds currently exhausted, additional funds have been requested. Visit the program website for the most up to date information on fund availability and to register for the waiting list for this program. The Oklahoma Municipal Power Authority (OMPA) and the Oklahoma Department of Commerce currently offer the Oklahoma Comfort Program for geothermal

202

PSNH - Municipal Smart Start Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PSNH - Municipal Smart Start Program PSNH - Municipal Smart Start Program PSNH - Municipal Smart Start Program < Back Eligibility Local Government Savings Category Other Maximum Rebate Not specified Program Info State New Hampshire Program Type Utility Loan Program Rebate Amount No up front costs: Payments made over time with the savings obtained from lower energy costs. Provider Public Service of New Hampshire Public Service of New Hampshire (PSNH), an electric utility, offers the Smart Start Program to Municipal customers. This program assists municipalities in reducing energy consumption and electric bills at facilities by installing energy-saving measures. Payment for services and products will be made over time with the savings obtained from lower energy costs. Under the Smart Start Program, PSNH pays all of the costs associated

203

Oklahoma Municipal Power Authority - WISE Energy Efficiency Loan Program |  

Broader source: Energy.gov (indexed) [DOE]

Oklahoma Municipal Power Authority - WISE Energy Efficiency Loan Oklahoma Municipal Power Authority - WISE Energy Efficiency Loan Program Oklahoma Municipal Power Authority - WISE Energy Efficiency Loan Program < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Cooling Commercial Heating & Cooling Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Program Info Funding Source American Recovery and Reinvestment Act of 2009 State Oklahoma Program Type Utility Loan Program Rebate Amount Unsecured Loan: $5,000 - $35,000 Home Equity Loan: $1,000 - $100,000 Provider Oklahoma Municipal Power Authority The Oklahoma Municipal Power Authority (OMPA) offers loans for a variety of

204

Emissions of PCDD/Fs from municipal solid waste incinerators in China Yuwen Ni, Haijun Zhang, Su Fan, Xueping Zhang, Qing Zhang, Jiping Chen *  

E-Print Network [OSTI]

Emissions of PCDD/Fs from municipal solid waste incinerators in China Yuwen Ni, Haijun Zhang, Su February 2009 Available online 21 March 2009 Keywords: MSWIs PCDD/Fs Congener patterns Emission factor a b s t r a c t Gas emission of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD

Columbia University

205

Reactivity of biogenic manganese oxide for metal sequestration and photochemistry: Computational solid state physics study  

SciTech Connect (OSTI)

Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.

Kwon, K.D.; Sposito, G.

2010-02-01T23:59:59.000Z

206

E-Print Network 3.0 - antimony sbfrom municipal Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

municipal... solid waste in a municipal waste combustor (MWC). In an attempt to "turn the tide", officials from Polk Source: Columbia University - Waste-to-Energy Research and...

207

E-Print Network 3.0 - art municipal waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion of Municipal Solid Waste," Second Conference... on Municipal, Hazardous and Coal ... Source: Columbia University, Department of Earth and Environmental Engineering,...

208

Modeling and simulation of landfill gas production from pretreated MSW landfill simulator  

Science Journals Connector (OSTI)

The cumulative landfill gas (LFG) production and its rate ... simulated for pretreated municipal solid waste (MSW) landfill using four models namely first order exponential ... . Considering the behavior of the p...

Rasool Bux Mahar; Abdul Razaque Sahito…

2014-04-01T23:59:59.000Z

209

Sacramento Municipal Utility District | Open Energy Information  

Open Energy Info (EERE)

District District (Redirected from SMUD) Jump to: navigation, search Name Sacramento Municipal Util Dist Place Sacramento, California Website www.smud.org Utility Id 16534 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration

210

Minnesota Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

Place Minnesota Place Minnesota Utility Id 12667 Utility Location Yes Ownership A NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Minnesota_Municipal_Power_Agency&oldid=412260" Categories: EIA Utility Companies and Aliases

211

Aqueous alteration of municipal solid waste ash  

SciTech Connect (OSTI)

Municipal solid waste (MSW) ash is composed largely of amorphous oxides and approximately 20% minerals including halite, magnetite, hematite, quartz, gypsum, calcite, and rutile. It is also enriched in toxic trace metals by up to three orders of magnitude over average soil. The thermodynamic stabilities and rates of dissolution of the minerals and glasses in MSW ash will determine whether the ash is an environmental problem. The authors have used batch reactors at 20, 40, and 60 C over time periods up to 60 days to simulate longer reaction times for ash under cooler landfill conditions. Soluble salts are most quickly dissolved, giving solutions dominated by Ca[sup 2+], Na[sup +], K[sup +], SO[sub 2][sup 2[minus

Kirby, C.S.; Rimstidt, J.D. (Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States))

1992-01-01T23:59:59.000Z

212

Wall Lake Municipal Utilities Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wall Lake Municipal Utilities Wind Farm Wall Lake Municipal Utilities Wind Farm Jump to: navigation, search Name Wall Lake Municipal Utilities Wind Farm Facility Wall Lake Municipal Utilities Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wall Lake Municipal Utilities Developer Wall Lake Municipal Utilities Energy Purchaser Wall Lake Municipal Utilities Location Wall Lake IA Coordinates 42.281965°, -95.094098° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.281965,"lon":-95.094098,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

213

Lenox Municipal Utilities Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lenox Municipal Utilities Wind Farm Lenox Municipal Utilities Wind Farm Jump to: navigation, search Name Lenox Municipal Utilities Wind Farm Facility Lenox Municipal Utilities Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Lenox Municipal Utilities Developer Lenox Municipal Utilities Energy Purchaser Lenox Municipal Utilities Location Lenox IA Coordinates 40.880592°, -94.559029° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.880592,"lon":-94.559029,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

214

Stuart Municipal Utilities Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Stuart Municipal Utilities Wind Farm Stuart Municipal Utilities Wind Farm Jump to: navigation, search Name Stuart Municipal Utilities Wind Farm Facility Stuart Municipal Utilities Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Stuart Municipal Utilities Developer Stuart Municipal Utilities Energy Purchaser Stuart Municipal Utilities Location Stuart IA Coordinates 41.493988°, -94.327403° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.493988,"lon":-94.327403,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Marshall Municipal Utilities - Commercial Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Marshall Municipal Utilities - Commercial Energy Efficiency Rebate Marshall Municipal Utilities - Commercial Energy Efficiency Rebate Program Marshall Municipal Utilities - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Appliances & Electronics Construction Heating Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Custom Measures: 75% of the incremental cost of the measure Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting: Varies by fixture type, wattage and application Central A/C: $100/ton Air-Source Heat Pumps: $150/ton Geothermal Heat Pumps: $200/ton Commercial Refrigeration: See Program Website

216

Local Option - Municipal Sustainable Energy Programs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Municipal Sustainable Energy Programs Municipal Sustainable Energy Programs Local Option - Municipal Sustainable Energy Programs < Back Eligibility Agricultural Commercial Industrial Institutional Multi-Family Residential Nonprofit Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Other Windows, Doors, & Skylights Appliances & Electronics Commercial Lighting Lighting Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Water Heating Wind Program Info State New York Program Type PACE Financing '''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July

217

Northern Municipal Power Agency - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Northern Municipal Power Agency - Residential Energy Efficiency Northern Municipal Power Agency - Residential Energy Efficiency Rebate Program (Minnesota) Northern Municipal Power Agency - Residential Energy Efficiency Rebate Program (Minnesota) < Back Eligibility Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heating Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate $10,000 per customer per year Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Home Energy Assessment: discounted price Compact Fluorescent Lights: $2/light bulb LED Screw-In: $7/bulb LED Recessed Downlights: $15 - $25/install Clothes Washers: $50 Water Heaters: $150 Programmable Thermostat: $25 Supplemental Heating Source for Air-Source Heat Pump: $500

218

River Falls Municipal Utilities - Business Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

River Falls Municipal Utilities - Business Energy Efficiency Rebate River Falls Municipal Utilities - Business Energy Efficiency Rebate Program (Wisconsin) River Falls Municipal Utilities - Business Energy Efficiency Rebate Program (Wisconsin) < Back Eligibility Commercial Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Construction Design & Remodeling Manufacturing Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount Shared Savings Program: $2,500 - $50,000 Energy Improvement Incentive: Varies, Contact WPPI RFP for Energy Efficiency: Varies, Contact WPPI Efficient Lighting Program: Will match Focus on Energy incentive to $5,000

219

Alameda Municipal Power - Commercial Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Alameda Municipal Power - Commercial Energy Efficiency Rebate Alameda Municipal Power - Commercial Energy Efficiency Rebate Program Alameda Municipal Power - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Manufacturing Home Weatherization Windows, Doors, & Skylights Maximum Rebate Contact utility regarding maximum incentive amounts Program Info State California Program Type Utility Rebate Program Rebate Amount Custom Rebates (Motors): $0.09/kWh Custom Rebates (Lighting): $0.15/kWh Custom Rebates (HVAC, Refrigeration, Networks): $0.11/kWh HVAC System: 50% of the difference in cost between Title 24 required

220

Denton Municipal Electric - GreenSense Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Denton Municipal Electric - GreenSense Energy Efficiency Rebate Denton Municipal Electric - GreenSense Energy Efficiency Rebate Program Denton Municipal Electric - GreenSense Energy Efficiency Rebate Program < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Heat Pumps Windows, Doors, & Skylights Maximum Rebate Solar Screens: $200 Energy Efficient Windows: $500 Programmable Thermostat: $50 Attic Insulation (Retrofit): $400 Attic Insulation (New Construction): $400 Program Info State Texas Program Type Utility Rebate Program Rebate Amount Central AC: $600/unit Central Heat Pumps: $700/unit Geothermal Heat Pumps: $700/unit Attic Reflective Radiant Barrier: $200 - $300

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hercules Municipal Utility - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Hercules Municipal Utility - Residential Energy Efficiency Rebate Hercules Municipal Utility - Residential Energy Efficiency Rebate Program Hercules Municipal Utility - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate Sunscreens: 50% of cost, Maximum rebate of $100 Insulation (ceiling): Up to $150 per home Insulation (walls): Up to $200 per home Insulation (floor): Up to $75 per home Program Info State California Program Type Utility Rebate Program Rebate Amount Windows: $1 per sq. ft. Insulation (ceiling): $150 per home Insulation (walls): $200 per home Insulation (floor): $75 per home Sunscreens: $1 per sq. ft. Refrigerators: $100 Clothes Washers: $75

222

Stability of natural gas in the deep subsurface  

SciTech Connect (OSTI)

Natural gas is becoming increasingly important as a fuel because of its widespread occurrence and because it has a less significant environmental impact than oil. Many of the known gas accumulations were discovered by accident during exploration for oil, but with increasing demand for gas, successful exploration will require a clearer understanding of the factors that control gas distribution and gas composition. Natural gas is generated by three main processes. In oxygen-deficient, sulfate-free, shallow (few thousand feet) environments bacteria generate biogenic gas that is essentially pure methane with no higher hydrocarbons ({open_quotes}dry gas{close_quotes}). Gas is also formed from organic matter ({open_quotes}kerogen{close_quotes}), either as the initial product from the thermal breakdown of Type III, woody kerogens, or as the final hydrocarbon product from all kerogen types. In addition, gas can be formed by the thermal cracking of crude oil in the deep subsurface. The generation of gas from kerogen requires higher temperatures than the generation of oil. Also, the cracking of oil to gas requires high temperatures, so that there is a general trend from oil to gas with increasing depth. This produces a well-defined {open_quotes}floor for oil{close_quotes}, below which crude oil is not thermally stable. The possibility of a {open_quotes}floor for gas{close_quotes} is less well documented and understanding the limits on natural gas occurrence was one of the main objectives of this research.

Barker, C.

1996-07-01T23:59:59.000Z

223

Cost of Gas Adjustment for Gas Utilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cost of Gas Adjustment for Gas Utilities (Maine) Cost of Gas Adjustment for Gas Utilities (Maine) Cost of Gas Adjustment for Gas Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Generation Disclosure Provider Public Utilities Commission This rule, applicable to gas utilities, establishes rules for calculation of gas cost adjustments, procedures to be followed in establishing gas cost adjustments and refunds, and describes reports required to be filed with

224

Frequently Asked Questions About the Municipal Solid-State Street Lighting Consortium  

Broader source: Energy.gov [DOE]

This page addresses many of the questions about the Municipal Solid-State Street Lighting Consortium.

225

Taunton Municipal Lighting Plant - Residential and Non-Profit  

Broader source: Energy.gov (indexed) [DOE]

Taunton Municipal Lighting Plant - Residential and Non-Profit Taunton Municipal Lighting Plant - Residential and Non-Profit Weatherization Program (Massachusetts) Taunton Municipal Lighting Plant - Residential and Non-Profit Weatherization Program (Massachusetts) < Back Eligibility Nonprofit Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Maximum Rebate General: $500 Each customer will be eligible for one rebate per the three year project window. Program Info Start Date 1/1/2012 Expiration Date 12/31/2012 State Massachusetts Program Type Utility Rebate Program Rebate Amount Up to 50% of total cost: Attic insulation Wall insulation Rim joist insulation Air-sealing measures Window treatments Pipe/duct insulation Provider Customer Care Taunton Municipal Lighting Plant (TMLP) offers the 'House N Home' Thermal

226

Taunton Municipal Lighting Plant - Residential Energy Star Appliance Rebate  

Broader source: Energy.gov (indexed) [DOE]

Taunton Municipal Lighting Plant - Residential Energy Star Taunton Municipal Lighting Plant - Residential Energy Star Appliance Rebate Program Taunton Municipal Lighting Plant - Residential Energy Star Appliance Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Refrigerator: $75 Clothes Washer: $50 Room A/C: $25 Dishwashers: $25 Customers of Taunton Municipal Lighting Plant (TMLP) are eligible for rebates on energy efficient appliances for the home. Clothes washers, dishwashers, refrigerators and room AC units are eligible for these incentives, which range from $25 - $75. All equipment must be Energy Star to qualify. View the rebate brochure for more information on procedures and equipment. Customers should send rebate forms to the address provided on

227

City of Berea Municipal Utility, Kentucky | Open Energy Information  

Open Energy Info (EERE)

Berea Municipal Utility, Kentucky Berea Municipal Utility, Kentucky (Redirected from City of Berea Municipal Utilities, Kentucky) Jump to: navigation, search Name City of Berea Municipal Utility Place Kentucky Utility Id 49998 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Rate Commercial Industrial and Large Commercial Electric Rate Industrial Large Commercial Electric Rate Commercial Net Metering Rate Commercial Primary Metering Customer Owned/Leased Transformers Industrial

228

Sacramento Municipal Utility District Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sacramento Municipal Utility District Projects Sacramento Municipal Utility District Projects Sacramento Municipal Utility District Projects November 13, 2013 - 10:45am Addthis The Sacramento Municipal Utility District (SMUD) in Sacramento, California, is looking to local renewable resources to help meet its aggressive renewable energy retail sales goal of 37% by 2020. To help achieve this goal, the U.S. Department of Energy (DOE) provided more than $5 million in funding for five SMUD Community Renewable Energy Deployment (CommRE) projects. Simply Solar SMUD's CommRE portfolio of projects included one solar project. Initially, the utility intended to team with CalTrans and SolFocus to deploy the Sacramento Solar Highways effort. SMUD released a solicitation for a developer for the Solar Highways effort and did not receive an economically

229

Marblehead Municipal Light Department Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Marblehead Municipal Light Department Smart Grid Project Marblehead Municipal Light Department Smart Grid Project Jump to: navigation, search Project Lead Marblehead Municipal Light Department Country United States Headquarters Location Marblehead, Massachusetts Recovery Act Funding $1,346,175.00 Total Project Value $2,692,350.00 Coverage Area Coverage Map: Marblehead Municipal Light Department Smart Grid Project Coordinates 42.500096°, -70.8578253° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

230

River Falls Municipal Utilities - Non-Profit Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

River Falls Municipal Utilities - Non-Profit Energy Efficiency River Falls Municipal Utilities - Non-Profit Energy Efficiency Rebate Program (Wisconsin) River Falls Municipal Utilities - Non-Profit Energy Efficiency Rebate Program (Wisconsin) < Back Eligibility Nonprofit Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Construction Design & Remodeling Appliances & Electronics Sealing Your Home Windows, Doors, & Skylights Heat Pumps Commercial Lighting Lighting Manufacturing Maximum Rebate 60% of project cost, up to $5,000 Program Info Funding Source POWERful Choices Initiative Expiration Date 12/31/2012 State Wisconsin Program Type Utility Rebate Program Rebate Amount Incentive equal to Focus on Energy Incentive River Falls Municipal Utility (RFMU) provides matching rebates to

231

Local Option Municipal Economic Development Act (Nebraska) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Local Option Municipal Economic Development Act (Nebraska) Local Option Municipal Economic Development Act (Nebraska) Local Option Municipal Economic Development Act (Nebraska) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Nebraska Program Type Bond Program Grant Program Loan Program Provider Economic Development This act gives local governments the option to provide direct and indirect assistance to business enterprises in their communities, whether for expansion of existing operations, the creation of new businesses, or the provision of new services, by the use of funds raised by local taxation when the voters of the municipality decide it is in their best interest. The act gives local governments broad freedoms to determine the specifics

232

City of Greensburg - Green Building Requirement for New Municipal Buildings  

Broader source: Energy.gov (indexed) [DOE]

Greensburg - Green Building Requirement for New Municipal Greensburg - Green Building Requirement for New Municipal Buildings City of Greensburg - Green Building Requirement for New Municipal Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Wind Program Info State Kansas Program Type Energy Standards for Public Buildings Provider Greensburg City Hall In the aftermath of a May 2007 tornado that destroyed 95% of the city, the Greensburg City Council passed an ordinance requiring that all newly constructed or renovated municipally owned facilities larger than 4,000

233

Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Facility Ouray Municipal Pool Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716°, -107.6714487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

234

East Bay Municipal Util Dist | Open Energy Information  

Open Energy Info (EERE)

Bay Municipal Util Dist Bay Municipal Util Dist Jump to: navigation, search Name East Bay Municipal Util Dist Place California Utility Id 5571 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=East_Bay_Municipal_Util_Dist&oldid=41061

235

Exploring How Municipal Utilities Fund Solar Energy Projects Webinar |  

Broader source: Energy.gov (indexed) [DOE]

Exploring How Municipal Utilities Fund Solar Energy Projects Exploring How Municipal Utilities Fund Solar Energy Projects Webinar Exploring How Municipal Utilities Fund Solar Energy Projects Webinar February 19, 2013 1:00PM MST Webinar This free webinar presented by the DOE Office of Energy Efficiency and Renewable Energy will take place on February 19, 2013, from 1-2:15 p.m. MST. It will provide information on Concord Light, the municipal electric utility serving Concord, Massachusetts, and their solar photovoltaic (PV) rebate program. Austin Energy will also discuss their innovative "Residential Solar Rate," which replaced net energy metering based on a value of solar analysis. Funding Solar PV Rebates with Utility Cost Savings Concord Light provides rebates to customers who install rooftop or ground-mounted solar systems on their property. The utility funds these

236

February 19, 2013 Webinar: Exploring How Municipal Utilities Fund Solar  

Broader source: Energy.gov (indexed) [DOE]

February 19, 2013 Webinar: Exploring How Municipal Utilities Fund February 19, 2013 Webinar: Exploring How Municipal Utilities Fund Solar Energy Projects February 19, 2013 Webinar: Exploring How Municipal Utilities Fund Solar Energy Projects This webinar was held February 19, 2013, and provided information on Concord Light, the municipal electric utility serving Concord, Massachusetts, and their solar photovoltaic (PV) rebate program. Austin Energy also discussed their innovative "Residential Solar Rate," which replaced net energy metering based on a value of solar analysis. Download the presentations below, watch the webinar (WMV 148 MB), or view the text version. Find more CommRE webinars. Funding Solar PV Rebates with Utility Cost Savings Concord Light provides rebates to customers who install rooftop or ground-mounted solar systems on their property. The utility funds these

237

State Clean Energy Policies Analysis: State, Utility, and Municipal Loan  

Open Energy Info (EERE)

Analysis: State, Utility, and Municipal Loan Analysis: State, Utility, and Municipal Loan Programs Jump to: navigation, search Name State Clean Energy Policies Analysis: State, Utility, and Municipal Loan Programs Agency/Company /Organization National Renewable Energy Laboratory Partner Eric Lantz Focus Area People and Policy, Renewable Energy Phase Evaluate Options Resource Type Guide/manual Availability Publicly available--Free Publication Date 5/1/2010 Website http://www.nrel.gov/docs/fy10o References State Clean Energy Policies Analysis: State, Utility, and Municipal Loan Programs[1] Contents 1 Overview 2 Highlights 3 Related Tools 4 References Overview This report is a continued and collaborative effort with the Department of Energy's Energy Efficiency and Renewable Energy (DOE-EERE) to analyze the

238

City of Houston- Green Building Requirements for New Municipal Structures  

Broader source: Energy.gov [DOE]

In June 2004 the Houston City Council passed a resolution requiring adherence to the Leadership in Energy and Environmental Design (LEED) guidelines in the construction or renovation of municipal...

239

Municipal Solid-State Street Lighting Consortium Kickoff Webcast  

Broader source: Energy.gov [DOE]

This May 6, 2010 webcast served as the first official meeting of the new DOE Municipal Solid-State Street Lighting Consortium. Ed Smalley of Seattle City Light and Bruce Kinzey of Pacific Northwest...

240

Mora Municipal Utilities- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Southern Minnesota Municipal Power Agency ([http://www.smmpa.com SMMPA]) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit,...

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

City of Dallas- Green Building Requirements for Municipal Buildings  

Broader source: Energy.gov [DOE]

In 2003 the Dallas City Council passed a resolution requiring that all new municipal buildings larger than 10,000 square feet be constructed to meet LEED Silver Certification standards. In 2006...

242

Iowa Association of Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Association of Municipal Utilities Place: Ankeny, IA Website: http:www.iamu.org References: SGIC1 This article is a stub. You can help OpenEI by expanding it. Iowa Association...

243

Marshall Municipal Utilities- Solar Thermal Water Heater Rebate Program  

Broader source: Energy.gov [DOE]

Marshall Municipal Utilities (MMU) offers residential customers rebates for installing a ENERGY STAR Solar Thermal Water Heater. Rebates are based on the size of the system; MMU offers $20 per...

244

2011 Municipal Consortium North Central Region Workshop Materials  

Broader source: Energy.gov [DOE]

This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium North Central Region Workshop, held in Detroit, June 16–17, 2011.

245

2011 Municipal Consortium North Central Region Workshop Materials  

Broader source: Energy.gov [DOE]

This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium North Central Region Workshop, held in Kansas City, MO, March 8–9, 2011.

246

Taunton Municipal Lighting Plant- Residential PV Rebate Program  

Broader source: Energy.gov [DOE]

Customers of Taunton Municipal Lighting Plant (TMLP) may be eligible for $2.00/watt rebate on solar photovoltaic (PV) installations. The minimum system size eligible for this rebate is 1 kilowatt ...

247

Reading Municipal Light Department- Residential Renewable Energy Rebates  

Broader source: Energy.gov [DOE]

Reading Municipal Light Department (RMLD) offers rebates of $1.00/watt for solar photovoltaic and small wind installations for residential customers. A $0.25/watt adder is available for using local...

248

Municipal wireless mesh networks as a competitive broadband delivery platform  

E-Print Network [OSTI]

Recently there has been a growing interest in deploying Wireless Mesh Networks by municipalities. This interest stems from the desire to provide broadband connectivity to users lacking access to broadband alternatives. The ...

Hassan-Ali, Mudhafar

2007-01-01T23:59:59.000Z

249

Acute and Genetic Toxicity of Municipal Landfill Leachate  

E-Print Network [OSTI]

Municipal solid waste (MSW) landfills have been found to contain many of the same hazardous constituents as found in hazardous waste landfills. Because of the large number of MSW landfills, these sites pose a serious environmental threat...

Brown, K.W.; Schrab, G.E.; Donnelly, K.C.

250

Concord Municipal Light Plant - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Concord Municipal Light Plant - Residential Energy Efficiency Concord Municipal Light Plant - Residential Energy Efficiency Rebate Program Concord Municipal Light Plant - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Commercial Lighting Lighting Maximum Rebate Electric Heat Weatherization: $1,000 Central Air Conditioners: $1,500 CFLs/LEDs/Exit Signs: 30 bulbs or signs Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Electric Heat Weatherization: $1,000 Central Air Conditioners: $1,500 CFLs/LEDs/Exit Signs: 30 bulbs or signs Provider Customer Service Concord Municipal Light Plant (CMLP) offers its residential customers

251

Municipal solid waste effective stress analysis  

SciTech Connect (OSTI)

The mechanical behavior of municipal solid waste (MSW) has attracted the attention of many researchers in the field of geo-environmental engineering in recent years and several aspects of waste mechanical response under loading have been elucidated. However, the mechanical response of MSW materials under undrained conditions has not been described in detail to date. The knowledge of this aspect of the MSW mechanical response is very important in cases involving MSW with high water contents, seismic ground motion and in regions where landfills are built with poor operation conditions. This paper presents the results obtained from 26 large triaxial tests performed both in drained and undrained conditions. The results were analyzed taking into account the waste particles compressibility and the deformation anisotropy of the waste samples. The waste particles compressibility was used to modify the Terzaghi effective stress equation, using the Skempton (1961) proposition. It is shown that the use of the modified effective stress equation led to much more compatible shear strength values when comparing Consolidated-Drained (CD) and Consolidated-Undrained (CU), results, explaining the high shear strength values obtained in CU triaxial tests, even when the pore pressure is almost equal to the confining stress.

Shariatmadari, Nader, E-mail: shariatmadari@iust.ac.i [Dept. of Civil Engineering, Iran University of Science and Technology, Narmak, 16846-13114 Teharn (Iran, Islamic Republic of); Machado, Sandro Lemos, E-mail: smachado@ufba.b [Dept. of Materials Science and Technology, Federal University of Bahia, 02 Aristides Novis St., 40210-630 Salvador-BA (Brazil); Noorzad, Ali, E-mail: noorzad@pwut.ac.i [Faculty of Water Engineering, Power and Water University of Technology, Tehranpars, 1719-16765 Tehran (Iran, Islamic Republic of); Karimpour-Fard, Mehran, E-mail: karimpour_mehran@iust.ac.i [Dept. of Civil Engineering, Iran University of Science and Technology, Narmak, 16846-13114 Teharn (Iran, Islamic Republic of)

2009-12-15T23:59:59.000Z

252

Application of Municipal Sewage Sludge to Forest and Degraded Land  

SciTech Connect (OSTI)

The paper summarizes research done over a decade at the Savannah River Site and elsewhere in the South evaluating the benefits of land application of municipal wastes. Studies have demonstrated that degraded lands, ranging from borrow pits to mine spoils can be successfully revegetated using a mixture of composed municipal sewage sludge and other amendments. The studies have demonstrated a practical approach to land application and restoration.

D.H. Marx, C. R. Berry, and P. P. Kormanik

1995-09-30T23:59:59.000Z

253

Conversion of municipal solid waste to hydrogen  

SciTech Connect (OSTI)

LLNL and Texaco are cooperatively developing a physical and chemical treatment method for the conversion of municipal solid waste (MSW) to hydrogen via the steps of hydrothermal pretreatment, gasification and purification. LLNL`s focus has been on hydrothermal pretreatment of MSW in order to prepare a slurry of suitable viscosity and heating value to allow efficient and economical gasification and hydrogen production. The project has evolved along 3 parallel paths: laboratory scale experiments, pilot scale processing, and process modeling. Initial laboratory-scale MSW treatment results (e.g., viscosity, slurry solids content) over a range of temperatures and times with newspaper and plastics will be presented. Viscosity measurements have been correlated with results obtained at MRL. A hydrothermal treatment pilot facility has been rented from Texaco and is being reconfigured at LLNL; the status of that facility and plans for initial runs will be described. Several different operational scenarios have been modeled. Steady state processes have been modeled with ASPEN PLUS; consideration of steam injection in a batch mode was handled using continuous process modules. A transient model derived from a general purpose packed bed model is being developed which can examine the aspects of steam heating inside the hydrothermal reactor vessel. These models have been applied to pilot and commercial scale scenarios as a function of MSW input parameters and have been used to outline initial overall economic trends. Part of the modeling, an overview of the MSW gasification process and the modeling of the MSW as a process material, was completed by a DOE SERS (Science and Engineering Research Semester) student. The ultimate programmatic goal is the technical demonstration of the gasification of MSW to hydrogen at the laboratory and pilot scale and the economic analysis of the commercial feasibility of such a process.

Richardson, J.H.; Rogers, R.S.; Thorsness, C.B. [and others

1995-04-01T23:59:59.000Z

254

Mercury emissions from municipal solid waste combustors  

SciTech Connect (OSTI)

This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

Not Available

1993-05-01T23:59:59.000Z

255

Liquefied Natural Gas (Iowa) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Liquefied Natural Gas (Iowa) Liquefied Natural Gas (Iowa) Liquefied Natural Gas (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Public Safety This document adopts the standards promulgated by the National Fire Protection Association as rules for the transportation, storage, handling,

256

Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm Ii | Open  

Open Energy Info (EERE)

Agency (SMMPA) Wind Farm Ii Agency (SMMPA) Wind Farm Ii Jump to: navigation, search Name Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm Ii Facility Southern Minnesota Municipal Power Agency (SMMPA) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Southern Minnesota Municipal Power Agency Developer Southern Minnesota Municipal Power Agency Energy Purchaser Southern Minnesota Municipal Power Agency Location Redwood Falls MN Coordinates 44.5407°, -95.1098° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5407,"lon":-95.1098,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions  

E-Print Network [OSTI]

The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1) is a modeling framework for estimating fluxes of biogenic compounds between terrestrial ecosystems and the atmosphere using simple mechanistic ...

Guenther, A. B.

258

Regulations For Gas Companies (Tennessee) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Regulations For Gas Companies (Tennessee) Regulations For Gas Companies (Tennessee) Regulations For Gas Companies (Tennessee) < Back Eligibility Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Tennessee Program Type Environmental Regulations Safety and Operational Guidelines Provider Tennessee Regulatory Authority The Regulations for Gas Companies, implemented by the Tennessee Regulatory Authority (Authority) outline the standards for metering, distribution and electricity generation for utilities using gas. They follow the same equipment, metering reporting and customer relations standards as the Regulations for Electric Companies. In addition to these requirements these regulations outline purity requirements, pressure limits, piping

259

Natural Gas Transmission Pipeline Siting Act (Florida) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Transmission Pipeline Siting Act (Florida) Natural Gas Transmission Pipeline Siting Act (Florida) Natural Gas Transmission Pipeline Siting Act (Florida) < Back Eligibility Commercial Construction Developer Fed. Government Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Environmental Protection This Act establishes a centralized and coordinated permitting process for the location of natural gas transmission pipeline corridors and the construction and maintenance of natural gas transmission pipelines. The Act intends to achieve a reasonable balance between the need for the natural

260

Gas Companies Program (Tennessee) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas Companies Program (Tennessee) Gas Companies Program (Tennessee) Gas Companies Program (Tennessee) < Back Eligibility Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Regulatory Authority The Gas Companies program is a set of rules that encourage the development of the natural gas industry in Tennessee. They empower gas companies to lay piped and extend conductors through the streets, lanes and alleys, of any town, city or village, as to produce the least possible inconvenience and to take up pavements and sidewalks provided that they shall repair the same

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Gas Utilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas Utilities (Maine) Gas Utilities (Maine) Gas Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Siting and Permitting Provider Public Utilities Commission Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one customer when any portion

262

Marshall Municipal Utilities - Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Marshall Municipal Utilities - Residential Energy Efficiency Rebate Marshall Municipal Utilities - Residential Energy Efficiency Rebate Program Marshall Municipal Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Commercial Lighting Lighting Water Heating Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting: $0.20/watt Holiday Light String: $3.50/string Clothes Washer: $100 Dishwasher: $50 Refrigerator/Freezer: $50 Room A/C: $25 Dehumidifier: $10 Central A/C: $100/ton Air-source Heat Pump: $150/ton Geothermal Heat Pump: $200/ton Electric Water Heater: $50; $100 (new construction or conversion)

263

Northern Municipal Power Agency - Commercial Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Northern Municipal Power Agency - Commercial Energy Efficiency Northern Municipal Power Agency - Commercial Energy Efficiency Rebate Program (Minnesota) Northern Municipal Power Agency - Commercial Energy Efficiency Rebate Program (Minnesota) < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Other Heating Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate $15,000 per customer, per calendar year. Incentives over $10,000 need pre-approval from the utility Total incentive not to exceed 75% of the project cost Geothermal Heat Pumps: $7,500 (open loop); $15,000 (closed loop) Programmable Thermostats: $2,500 per facility, up to 50% of the unit cost

264

Saint Peter Municipal Utilities - Commercial and Industrial Energy  

Broader source: Energy.gov (indexed) [DOE]

Saint Peter Municipal Utilities - Commercial and Industrial Energy Saint Peter Municipal Utilities - Commercial and Industrial Energy Efficiency Rebate Program Saint Peter Municipal Utilities - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Appliances & Electronics Heat Pumps Commercial Lighting Lighting Program Info Expiration Date 12/31/2012 State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: varies widely, see program website HVAC: see program website Replacement Motors: $15 - $2,700, varies by HP and efficiency Variable Speed Drives: $60 - $3,600, varies by HP and intended use Lodging Guestroom Energy Management Systems: $75 - $85

265

Cape Light Compact - Commercial, Industrial and Municipal Buildings Energy  

Broader source: Energy.gov (indexed) [DOE]

Cape Light Compact - Commercial, Industrial and Municipal Buildings Cape Light Compact - Commercial, Industrial and Municipal Buildings Energy Efficiency Rebate Program Cape Light Compact - Commercial, Industrial and Municipal Buildings Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Commercial Weatherization Water Heating Maximum Rebate Retrofit: 50% of cost of upgraded equipment, or an amount that buys down the cost of the project to a 1.5 year simple payback. New Construction: 70% of incremental cost of higher efficiency equipment, or an amount that buys down the incremental investment to a 1.5 year simple

266

Municipal Energy Plan Program (Ontario, Canada) | Open Energy Information  

Open Energy Info (EERE)

Municipal Energy Plan Program (Ontario, Canada) Municipal Energy Plan Program (Ontario, Canada) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on August 29, 2013. EZFeed Policy Place Ontario Applies to States or Provinces Ontario Name Municipal Energy Plan Program (Ontario, Canada) Policy Category Financial Incentive Policy Type Grant Program Affected Technologies Biomass/Biogas, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Solar Photovoltaics, Tidal Energy, Wave Energy, Wind energy Active Policy Yes Implementing Sector State/Province Amount 50 percent of eligible costs Expiration Date 11/29/2013 Maximum Incentive 90,000 Program Administrator Ontario Ministry of Energy

267

Keosauqua Municipal Light & Pwr | Open Energy Information  

Open Energy Info (EERE)

Keosauqua Municipal Light & Pwr Keosauqua Municipal Light & Pwr Jump to: navigation, search Name Keosauqua Municipal Light & Pwr Place Iowa Utility Id 10181 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes ISO Other Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Public Commercial Demand Rate Industrial Industrial Rate Industrial Residential Residential Security Light Lighting Average Rates Residential: $0.1040/kWh Commercial: $0.0858/kWh Industrial: $0.1190/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

268

Elk River Municipal Utilities - Commercial Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Elk River Municipal Utilities - Commercial Energy Efficiency Rebate Elk River Municipal Utilities - Commercial Energy Efficiency Rebate Program Elk River Municipal Utilities - Commercial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Other Maximum Rebate 50% of the project cost up to $100,000 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Compressed Air: 50% of cost, up to $15,000 Motors (New): $5 - $15/hp Motors (Retrofit): $15/hp Variable Frequency Drives: $30/HP Chillers: $10 - $20/ton, plus $2 per 0.01 kW/ton below base Cooling Towers: $3/nominal tower ton Air Handling Systems: $170/VAV box

269

Sacramento Municipal Utility District Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Sacramento Municipal Utility District Sacramento Municipal Utility District Country United States Headquarters Location Sacramento, California Recovery Act Funding $127506261 Total Project Value $308406477 Coverage Area Coverage Map: Sacramento Municipal Utility District Smart Grid Project Coordinates 38.5815719°, -121.4943996° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

270

Mora Municipal Utilities - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Mora Municipal Utilities - Residential Energy Efficiency Rebate Mora Municipal Utilities - Residential Energy Efficiency Rebate Program Mora Municipal Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting: See program website Room A/C: $25, plus $25 for recycling an old, working unit Central A/C: $100 - $200, plus additional rebate for efficiency ratings above 14.5 SEER Air Source Heat Pump: $100 - $200, plus additional rebate for efficiency ratings above 14.5 SEER Geothermal Heat Pump: $200/ton, plus $25/ton for every 1 EER above minimum required EER

271

Municipal Support of Projects (Iowa) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Support of Projects (Iowa) Support of Projects (Iowa) Municipal Support of Projects (Iowa) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Multi-Family Residential Municipal/Public Utility Nonprofit Residential Rural Electric Cooperative Schools Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board Municipalities may choose to support projects, such as those which will generate electricity through the use of a renewable energy source, by tax-exempt bond financing; easements for roads, water mains and pipes, power lines, and pipelines; and by other means. This statute contains

272

Municipal Energy Agency of NE | Open Energy Information  

Open Energy Info (EERE)

Municipal Energy Agency of NE Municipal Energy Agency of NE Jump to: navigation, search Name Municipal Energy Agency of NE Place Nebraska Utility Id 21352 Utility Location Yes Ownership P NERC Location MRO NERC MRO Yes NERC SPP Yes NERC WECC Yes RTO SPP Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

273

Wind Energy for Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wind Energy for Municipal Utilities Jump to: navigation, search Four 1.8-MW Vestas turbines owned by AMP-Ohio in Bowling Green, Ohio. Photo from Ohio Office of Energy Efficiency, NREL 14070 In the face of new and emerging market conditions, municipal utilities across the country find themselves at a crossroads. Load requirements are expected to continue increasing, while in many cases, existing supply contracts will end within the next few years. Further, customers throughout municipal utility service territories express consistently high levels of interest in renewable energy alternatives. In most cases, the preferred

274

River Falls Municipal Utilities - Energy Star Appliance Rebates |  

Broader source: Energy.gov (indexed) [DOE]

River Falls Municipal Utilities - Energy Star Appliance Rebates River Falls Municipal Utilities - Energy Star Appliance Rebates River Falls Municipal Utilities - Energy Star Appliance Rebates < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Construction Design & Remodeling Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Other Program Info Start Date 05/01/2010 Expiration Date 12/31/12 State Wisconsin Program Type Utility Rebate Program Rebate Amount Tree Planting: 50% of cost up to $50 (limit 3 trees) Freezer Recycling: $30 Refrigerator Recycling: $30 Energy Star Home Performance: 33.3% up to $1,500 15% Energy Savings from Installed Measures: $200

275

Community Renewable Energy Success Stories Webinar: Exploring How Municipal  

Broader source: Energy.gov (indexed) [DOE]

Exploring How Exploring How Municipal Utilities Fund Solar Energy Projects (text version) Community Renewable Energy Success Stories Webinar: Exploring How Municipal Utilities Fund Solar Energy Projects (text version) Below is the text version of the webinar titled "Exploring How Municipal Utilities Fund Solar Energy Projects," originally presented on February 19, 2013. Operator: The broadcast is now starting. All attendees are in listen-only mode. Sarah Busche: Good afternoon, everyone, and welcome to today's webinar sponsored by the U.S. Department of Energy. I'm Sarah Busche and I'm here with Devin Egan broadcasting live from the National Renewable Energy Lab here in Golden, Colorado. We're going to give everyone a few minutes to call in and log on, but while we do that, Devin's going to go over some of the logistics to

276

Alameda Municipal Power - Solar Photovoltaics Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Solar Photovoltaics Rebate Program Solar Photovoltaics Rebate Program Alameda Municipal Power - Solar Photovoltaics Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Program Info Expiration Date December 31, 2017 State California Program Type Utility Rebate Program Rebate Amount Program is closed Provider Alameda Power and Telecom '''''Note: Alameda Municipal Power had a budget of $4.2 million to support this program. The utility has allocated the full budget and is no longer accepting applications. The information below is provided for historical purposes. ''''' Alameda Municipal Power offers an incentive program to customers who install solar photovoltaic (PV) systems. Rebates will be provided to commercial and residential customers on a per-watt AC basis, which, in

277

Anoka Municipal Utility - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Anoka Municipal Utility - Residential Energy Efficiency Rebate Anoka Municipal Utility - Residential Energy Efficiency Rebate Program Anoka Municipal Utility - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Room Air Conditioner: limit of 2 units per account Lighting: limit of $15 per customer per year Program Info Expiration Date 03/31/2013 State Minnesota Program Type Utility Rebate Program Rebate Amount Ceiling Fan: $25 Clothes Washer: $25 Refrigerator: $50 Freezer: $50 Refrigerator/Freezer Recycling: $25 Freezer: $50 Dishwasher: $25 Dehumidifier: $25 Air Conditioner Tune-Up: $25 Room Air Conditioner: $25/unit Central A/C: $225 - $400, varies by efficiency

278

Saint Peter Municipal Utilities - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Saint Peter Municipal Utilities - Residential Energy Efficiency Saint Peter Municipal Utilities - Residential Energy Efficiency Rebate Program Saint Peter Municipal Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting: See program website Room A/C: $25, plus $25 for recycling an old, working unit Central A/C: $100 - $200, plus additional rebate for efficiency ratings above 14.5 SEER Air Source Heat Pump:$100 - $200, plus additional rebate for efficiency ratings above 14.5 SEER Geothermal Heat Pump:$200/ton, plus $25/ton for every 1 EER above minimum

279

Local Option - Municipal Energy Districts | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Local Option - Municipal Energy Districts Local Option - Municipal Energy Districts Local Option - Municipal Energy Districts < Back Program Info State California Program Type PACE Financing ''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs. In response to the FHFA statement, most local PACE programs have been suspended until further clarification is provided.'''' Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessment on the property over a period of years. California has authorized local governments to establish such

280

Lassen Municipal Utility District - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Lassen Municipal Utility District - Residential Energy Efficiency Lassen Municipal Utility District - Residential Energy Efficiency Rebate Program Lassen Municipal Utility District - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Windows: $500 Duct Insulation/Sealing: $500 Radiant Barrier: $1,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Refrigerator: $50 Freezer: $50 Clothes Washer: $35 Dishwasher: $35 Room AC: $75 Air Source Heat Pumps: $100 - $400 per ton Ground Source Heat Pump: $1,000 per ton Central A/C: $25 - $150 per ton Evaporative Cooled A/C: $175 per ton Evaporative Coolers: $75 - $200 per 1,000 sq. ft.

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Central Minnesota Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

Central Minnesota Municipal Power Agency Central Minnesota Municipal Power Agency Jump to: navigation, search Name Central Minnesota Municipal Power Agency Place Minnesota Utility Id 3519 Utility Location Yes Ownership P NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

282

Toward Energy Efficient Municipalities: General Comments on Policy and  

Broader source: Energy.gov (indexed) [DOE]

Toward Energy Efficient Municipalities: General Comments on Policy Toward Energy Efficient Municipalities: General Comments on Policy and Logistical Challenges to Smart Grid Implementation Toward Energy Efficient Municipalities: General Comments on Policy and Logistical Challenges to Smart Grid Implementation I am seeking to develop America's first Smart Grid R&D Testing business campus on 200 near-enterprise zone acres owned by Clatsop County Oregon zoned and master-planned as North Coast Business Park. This campus will feature a private sector-owned substation specifically designed for SG R&D testing that is currently being designed by SAIC firm RW Beck. Public Submission Draft Comments: Policy and Logistical Challenges to Smart Grid Implementation More Documents & Publications CenterPoint Comments City Utilities of Springfield Missouri Comments on Smart Grid RFI:

283

La Farge Municipal Electric Co | Open Energy Information  

Open Energy Info (EERE)

Farge Municipal Electric Co Farge Municipal Electric Co Jump to: navigation, search Name La Farge Municipal Electric Co Place Wisconsin Utility Id 10525 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 30kW and 75kW Demand with Parallel Generation(20kW or less) Commercial Cp-1 Small Power Service between 30kW and 75kW Demand Commercial Cp-2 Large Power Service above 75kW Demand with Parallel Generation(20kW or less) Industrial

284

City of Berea Municipal Utility, Kentucky | Open Energy Information  

Open Energy Info (EERE)

Berea Municipal Utility, Kentucky Berea Municipal Utility, Kentucky Jump to: navigation, search Name City of Berea Municipal Utility Place Kentucky Utility Id 49998 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Rate Commercial Industrial and Large Commercial Electric Rate Industrial Large Commercial Electric Rate Commercial Net Metering Rate Commercial Primary Metering Customer Owned/Leased Transformers Industrial Primary Metering Non-Owned/Leased Transformers Industrial

285

Municipalities and Renewable Energy Opportunities | Open Energy Information  

Open Energy Info (EERE)

Municipalities and Renewable Energy Opportunities Municipalities and Renewable Energy Opportunities Jump to: navigation, search BUILDING COMMUNITIES WITH RENEWABLE ENERGY --Rsiegent 20:06, 20 January 2010 (UTC) BC communities and renewable energy walk hand-in-hand. "Investments made today in established renewable energy technologies can reduce building operating costs, the savings of which can be allocated [for instance] to community programs." Municipal buildings are ideally suited, as they are built for the long-term with quality and durability, and social and environmental responsibility in mind. Renewable energy systems such as GeoExchange (geothermal heat pumps) and Solar Hot Water ("Solar") are common renewable energy technologies used in commercial scale buildings. They are durable, proven, and low

286

Connecticut Municipal Electric Energy Cooperative | Open Energy Information  

Open Energy Info (EERE)

Municipal Electric Energy Cooperative Municipal Electric Energy Cooperative Jump to: navigation, search Name Connecticut Mun Elec Engy Coop Place Norwich, Connecticut Utility Id 4180 Utility Location Yes Ownership A NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Connecticut Municipal Electric Energy Cooperative Smart Grid Project was awarded $9,188,050 Recovery Act Funding with a total project value of $18,376,100. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available

287

North Branch Municipal Water and Light - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

North Branch Municipal Water and Light - Residential Energy North Branch Municipal Water and Light - Residential Energy Efficiency Rebate Program North Branch Municipal Water and Light - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting: See program website Room A/C: $25, plus $25 for recycling an old, working unit Central A/C: $100 - $200, plus additional rebate for efficiency ratings above 14.5 SEER Air Source Heat Pump:$100 - $200, plus additional rebate for efficiency ratings above 14.5 SEER Geothermal Heat Pump:$200/ton, plus $25/ton for every 1 EER above minimum

288

Landfill Gas Sequestration in Kansas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Road Road P.O. Box 880 Morgantown, WV 26505-0880 304-285-4132 Heino.beckert@netl.doe.gov David newell Principal Investigator Kansas Geological Survey 1930 Constant Avenue Lawrence, KS 66045 785-864-2183 dnewall@kgs.uk.edu LandfiLL Gas sequestration in Kansas Background Municipal solid waste landfills are the largest source of anthropogenic methane emissions in the United States, accounting for about 34 percent of these emissions in 2004. Most methane (CH 4 ) generated in landfills and open dumps by anaerobic decomposition of the organic material in solid-waste-disposal landfills is either vented to the atmosphere or converted to carbon dioxide (CO 2 ) by flaring. The gas consists of about 50 percent methane (CH 4 ), the primary component of natural gas, about 50 percent carbon dioxide (CO

289

SOUTHEASTERN FEDERAL POWER ALLIANCE Municipal Electric Authority of Georgia  

Broader source: Energy.gov (indexed) [DOE]

SOUTHEASTERN FEDERAL POWER ALLIANCE SOUTHEASTERN FEDERAL POWER ALLIANCE Municipal Electric Authority of Georgia 1470 Riveredge Parkway NW, Atlanta, Georgia October 9, 2013 October 8, 2013: Meet in Wyndham Hotel lobby at 6:30 p.m. to travel to Dutch-treat dinner at Copeland's October 9, 2013: Meeting will begin at 8:30 a.m. in the offices of the Municipal Electric Authority of Georgia. *************************************** 1. Welcome, Announcements & MEAG 101 ................................................... Chart Bonham 2. Opening Comments ......................................... BG Ed Jackson, Alan Williford, Ken Legg 3. Washington Update ....................................................................................... Kamau Sadiki 4. American Public Power Association ............................................................. Will Coffman

290

Reading Municipal Light Department - Residential ENERGY STAR Appliance  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Reading Municipal Light Department - Residential ENERGY STAR Appliance Rebate Program Reading Municipal Light Department - Residential ENERGY STAR Appliance Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Heat Pumps Water Heating Maximum Rebate One rebate per Energy Star appliance or two rebates on the purchase of programmable thermostats Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Electric Heat Pump Water Heater: $250 Air Source Heat Pump: $100 Central AC: $100 Refrigerator: $50 Washing Machine: $50 Dishwasher: $50 Room A/C: $25 Dehumidifier: $25 Programmable Thermostat:$15 (limit 2) Ceiling Fan: $10

291

Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer This study evaluates the effects of co-gasification of MSW with MSW bottom ash. Black-Right-Pointing-Pointer No significant difference between MSW treatment with and without MSW bottom ash. Black-Right-Pointing-Pointer PCDD/DFs yields are significantly low because of the high carbon conversion ratio. Black-Right-Pointing-Pointer Slag quality is significantly stable and slag contains few hazardous heavy metals. Black-Right-Pointing-Pointer The final landfill amount is reduced and materials are recovered by DMS process. - Abstract: This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling.

Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@nsc-eng.co.jp [Nippon Steel Engineering Co., Ltd. (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan); Manako, Kazutaka [Nippon Steel Engineering Co., Ltd., 46-59, Nakabaru, Tobata-ku, Kitakyushu, Fukuoka 804-8505 (Japan); Osada, Morihiro [Nippon Steel Engineering Co., Ltd. (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan)

2012-04-15T23:59:59.000Z

292

Wind Power for Municipal Utilities. Office of Energy Efficiency and Renewable Energy (EERE) Brochure.  

Wind Powering America (EERE)

Clean energy has a bright future. Today a growing number Clean energy has a bright future. Today a growing number of public utilities are harvesting a new source of homegrown energy. From Massachusetts to California, more than two dozen municipal utilities have wind power in their energy mix. Wind energy is attractive for many reasons: * Wind energy is clean and renewable. * Wind energy is economically competitive. * Wind energy reduces energy price risks. Unlike coal, natural gas, or oil, the "fuel" for a wind turbine will always be free. * Wind energy is popular with the public. A RECORD YEAR - Wind power is booming. Worldwide, a record 3,800 megawatts (MW) were installed in 2001. These sleek, impressive wind turbines have closed the cost gap with conventional power plants. Depending on size and location, wind farms produce electricity for 3-6

293

Risk assessment of gaseous emissions from municipal solid waste landfill: case study Rafah landfill, Palestine  

Science Journals Connector (OSTI)

This article describes the risk assessment of gaseous emissions from the municipal solid waste at Rafah landfill, Palestine. In this study, Gas-Sim model was used to quantify the gaseous emissions from the landfill and the Land-Gem model was used to verify the results. Risk assessment of both carcinogens and non-carcinogens were performed. Two scenarios were conducted namely with plant uptake and without plant uptake. The scenario with plant uptake revealed that the risk to residents is acceptable for non-carcinogens (risk value 0.45 > 1.0), while the risk to residents is not acceptable for carcinogens (risk value 2.69 × 10?6 risk to residents is acceptable for non-carcinogens (risk value 0.42 > 1.0), while the risk to residents is acceptable for carcinogens (risk value 2.855 × 10?7 > 10?6).

Ahmad A. Foul; Mazen Abualtayef; Basel Qrenawi

2014-01-01T23:59:59.000Z

294

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending December 31, 1995  

SciTech Connect (OSTI)

The objective of this project is to demonstrate that cocombustion of municipal solid waste and oil shale can reduce emissions of gaseous pollutants (SO{sub 2} and HCl) to acceptable levels. Tests in 6- and 15-inch units showed that the oil shale absorbs acid gas pollutants and produces an ash which could be, at the least, disposed of in a normal landfill. Further analysis of the results are underway to estimate scale-up to commercial size. Additional work will be done to evaluate the cementitious properties of oil shale ash.

NONE

1996-01-01T23:59:59.000Z

295

Solid-State Lighting: Text-Alternative Version: Municipal Solid-State  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Municipal Solid-State Street Lighting Consortium Kickoff to someone by Municipal Solid-State Street Lighting Consortium Kickoff to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Google Bookmark Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Delicious Rank Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Digg Find More places to share Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on

296

Solid-State Lighting: Municipal Solid-State Street Lighting Consortium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Municipal Solid-State Street Municipal Solid-State Street Lighting Consortium Kickoff Webcast to someone by E-mail Share Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Facebook Tweet about Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Twitter Bookmark Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Google Bookmark Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Delicious Rank Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Digg Find More places to share Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on AddThis.com... Conferences & Meetings

297

Does it have to be so complicated? : municipal renewable energy projects in Massachusetts  

E-Print Network [OSTI]

This thesis examines municipal implementation of renewable energy projects in Massachusetts. It explores projects that have been planned and completed, drivers for municipal adoption of renewable energy, the implementation ...

Riberio, Lori A. (Lori Ann)

2006-01-01T23:59:59.000Z

298

Feasibility of Municipal Water Mains as Heat Sink for Residential Air-Conditioning  

E-Print Network [OSTI]

It has been proposed that municipal water mains be used as the heat sink or the heat source for air-conditioning or heating, respectively. This paper addresses the extent of thermal contamination associated with the use of municipal water...

Vliet, G. C.

1994-01-01T23:59:59.000Z

299

Optimal management of a eutrophied coastal ecosystem: balancing agricultural and municipal abatement measures  

Science Journals Connector (OSTI)

Agriculture and municipal wastewater are the principal sources of eutrophying nutrients in many water ecosystems. We develop a model which considers the characteristics of agricultural and municipal nutrient a...

Marita Laukkanen; Anni Huhtala

2008-02-01T23:59:59.000Z

300

Biogenic silver nanoparticles synthesised from Zingiber officinale and its antifungal properties  

Science Journals Connector (OSTI)

A silver particle at the nanoscale level behaves as an effective antimicrobial agent and offers numerous applications in biosensing and medicine. The current study unveils the effect of rhizome of Zingiber officinale and its silver nanoparticles against the growth and hydrolytic enzyme of two lethal moulds, Alternaria alternata and Curvularia lunata. The rhizome of Zingiber officinale was extracted under aseptic conditions to get cold distilled water and silver nanoparticle extracts in order to check the effect on inhibition of cell mass formation and protease activity of Curvularia lunata and Alternaria alternata. The formation of silver nanoparticles was confirmed by UV-Vis absorption spectroscopy and scanning electron microscopy. The obtained results showed that the highest tested concentration (2%) of Zingiber officinale in cold distilled water and silver nanoparticle extracts strongly inhibited the cell mass formation as well as protease activity in test organisms. The silver nanoparticle extract showed potent antifungal activity when compared to cold distilled water extract. The study unravels the antifungal property of Zingiber officinale and its biogenically synthesised silver nanoparticles that can be exploited further for therapeutical and other industrial applications.

Malini Soundararajan; Neha Deora; Lynette Lincoln; Purandhi Roopmani; Shikha Gupta; Rajatha Shambu

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Landfill gas emission prediction using Voronoi diagrams and importance sampling  

Science Journals Connector (OSTI)

Municipal solid waste (MSW) landfills are among the nation's largest emitters of methane, a key greenhouse gas, and there is considerable interest in quantifying the surficial methane emissions from landfills. There are limitations in obtaining accurate ... Keywords: Air dispersion modeling, Delaunay tessellation, Kriging, Least squares, MSW landfill, Voronoi diagram

K. R. Mackie; C. D. Cooper

2009-10-01T23:59:59.000Z

302

Enhancing landfill gas recovery  

Science Journals Connector (OSTI)

The landfilling of municipal solid waste (MSW) may cause potential environmental impacts like global warming (GW), soil contaminations, and groundwater pollution. The degradation of MSW in anaerobic circumstances generates methane emissions, and can hence contribute the GW. As the GW is nowadays considered as one of the most serious environmental threats, the mitigation of methane emissions should obviously be aimed at on every landfill site where methane generation occurs. In this study, the treatment and utilization options for the generated LFG at case landfills which are located next to each other are examined. The yearly GHG emission balances are estimated for three different gas management scenarios. The first scenario is the combined heat and power (CHP) production with a gas engine. The second scenario is the combination of heat generation for the asphalt production process in the summer and district heat production by a water boiler in the winter. The third scenario is the LFG upgrading to biomethane. The estimation results illustrate that the LFG collection efficiency affects strongly on the magnitudes of GHG emissions. According to the results, the CHP production gives the highest GHG emission savings and is hence recommended as a gas utilization option for case landfills. Furthermore, aspects related to the case landfills' extraction are discussed.

Antti Niskanen; Hanna Värri; Jouni Havukainen; Ville Uusitalo; Mika Horttanainen

2013-01-01T23:59:59.000Z

303

Municipal solid waste characteristics and management in Allahabad, India  

E-Print Network [OSTI]

by political, legal, socio-cultural, environmental and economic factors, as well as available resources on a suitable management plan (Shimura et al., 2001). More than 90% of MSW in India is directly disposedMunicipal solid waste characteristics and management in Allahabad, India Mufeed Sharholy a , Kafeel

Columbia University

304

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

Not Available

1992-10-01T23:59:59.000Z

305

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

Not Available

1992-10-01T23:59:59.000Z

306

BERNAL and RESTREPO Key issues for decentralization in municipal  

E-Print Network [OSTI]

BERNAL and RESTREPO Key issues for decentralization in municipal wastewater treatment Diana Paola, the inadequate management and disposal of wastewater and the implementation of sophisticated treatment systems is the decentralisation in wastewater treatment. In this article, it is proposed an overview of the state of the art

Boyer, Edmond

307

Treated wastewater discharged from municipal wastewater treatment plants (WWTPs) contains  

E-Print Network [OSTI]

Treated wastewater discharged from municipal wastewater treatment plants (WWTPs) contains to provide rapid, field-ready, inexpen- sive testing of these chemicals in wastewater is also needed estrogenic chemicals, and 2) develop sensor technology for the rapid measure- ment in wastewater of two key

Fay, Noah

308

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill  

E-Print Network [OSTI]

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum, may react with liquid in a landfill and cause uncontrolled temperature increases, significant changes

309

Seismic Response Analysis of Municipal Solid Waste Landfill  

Science Journals Connector (OSTI)

According to the engineering practice of municipal solid waste landfill, the dynamic response of landfill based on the finite element method is implemented. The equivalent linearization method is used to consider the non-linear dynamic response characteristics. ... Keywords: Dynamic response, Ground motion input, Finite element method

Zhang Guodong; Li Yong; Jin Xing; Li Rongbin; Chen Fei

2009-10-01T23:59:59.000Z

310

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.

Not Available

1992-10-01T23:59:59.000Z

311

The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons in the  

E-Print Network [OSTI]

The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons of Geophysics #12;2 #12;The Municipal Solid Waste Landfill as a Source of Montreal Protocol municipal solid waste (MSW) landfills. With several hundred MSW landfills in both the US and UK, estimating

312

Natural Gas Regulations (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Regulations (Kentucky) Natural Gas Regulations (Kentucky) Natural Gas Regulations (Kentucky) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Program Info State Kentucky Program Type Environmental Regulations Siting and Permitting Provider Department For Natural Resources Kentucky Administrative Regulation title 805 promulgates the rules and regulations pertaining to natural gas production in Kentucky. In addition to KAR title 405, chapter 30, which pertains to any oil shale operation, these regulations govern natural gas operations throughout the state. The following information is found in KAR title 404 chapter 30: Oil shale operations or related activity require a valid permit covering

313

Evaluation of the geological relationships to gas hydrate formation and stability  

SciTech Connect (OSTI)

The summaries of regional basin analyses document that potentially economic accumulations of gas hydrates can be formed in both active and passive margin settings. The principal requirement for gas hydrate formation in either setting is abundant methane. Passive margin sediments with high sedimentation rates and sufficient sedimentary organic carbon can generate large quantities of biogenic methane for hydrate formation. Similarly, active margin locations near a terrigenous sediment source can also have high methane generation potential due to rapid burial of adequate amounts of sedimentary organic matter. Many active margins with evidence of gas hydrate presence correspond to areas subject to upwelling. Upwelling currents can enhance methane generation by increasing primary productivity and thus sedimentary organic carbon. Structural deformation of the marginal sediments at both active and passive sites can enhance gas hydrate formation by providing pathways for migration of both biogenic and thermogenic gas to the shallow gas hydrate stability zone. Additionally, conventional hydrocarbon traps may initially concentrate sufficient amounts of hydrocarbons for subsequent gas hydrate formation.

Krason, J.; Finley, P.

1988-01-01T23:59:59.000Z

314

Safety of Gas Transmission and Distribution Systems (Maine) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Provider Public Utilities Commission These regulations describe requirements for the participation of natural gas utilities in the Underground Utility Damage Prevention Program,

315

Gas and Electric Utilities Regulation (South Dakota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Institutional Systems Integrator Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Generation Disclosure Provider South Dakota Public Utilities Commission This legislation contains provisions for gas and electric utilities. As part of these regulations, electric utilities are required to file with the

316

Underground Gas Storage Reservoirs (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas Storage Reservoirs (West Virginia) Gas Storage Reservoirs (West Virginia) Underground Gas Storage Reservoirs (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Safety and Operational Guidelines Provider West Virginia Department of Commerce Lays out guidelines for the conditions under which coal mining operations must notify state authorities of intentions to mine where underground gas

317

Transportation of Natural Gas and Petroleum (Nebraska) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Transportation of Natural Gas and Petroleum (Nebraska) Transportation of Natural Gas and Petroleum (Nebraska) Transportation of Natural Gas and Petroleum (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Oil and Gas Conservation Commission This statute enables and regulates the exercise of eminent domain by persons, companies, corporations, or associations transporting crude oil,

318

Natural Gas Pipeline Utilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Public Utilities Commission These regulations apply to entities seeking to develop and operate natural gas pipelines and provide construction requirements for such pipelines. The regulations describe the authority of the Public Utilities Commission with

319

Public health assessment for Seattle Municipal Landfill/Kent Highlands, Kent, King County, Washington, Region 10. Cerclis No. WAD980639462. Final report  

SciTech Connect (OSTI)

The Seattle Municipal Landfill, better known as the Kent Highlands Landfill, is located in the City of Kent, approximately 14 miles south of the City of Seattle, Washington, at 23076 Military Road South. Surface water settling ponds, a leachate collection system, and gas collection system have been constructed. Only one completed pathway exists, which is the use of Midway Creek by recreationists. However, worst case scenarios were evaluated and there did not appear to be a human health threat. Two potential pathways were analyzed, for landfill gas and ground water. Again the worst case scenarios did not reveal any imminent human health threat.

Not Available

1994-11-23T23:59:59.000Z

320

Greenhouse Gas Emissions (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

(Minnesota) (Minnesota) Greenhouse Gas Emissions (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Climate Policies This statute sets goals for the reduction of statewide greenhouse gas emissions by at least 15 percent by 2015, 30 percent by 2025, and 80

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The impact of biogenic carbon emissions on aerosol absorption inMexico City  

SciTech Connect (OSTI)

In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption angstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from {sup 14}C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The {sup 13}C/{sup 12}C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

Marley, N; Gaffney, J; Tackett, M J; Sturchio, N; Hearty, L; Martinez, N; Hardy, K D; Machany-Rivera, A; Guilderson, T P; MacMillan, A; Steelman, K

2009-02-24T23:59:59.000Z

322

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

323

Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium to someone by E-mail Share Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Facebook Tweet about Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Twitter Bookmark Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Google Bookmark Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Delicious Rank Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Digg Find More places to share Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on AddThis.com... LED Lighting Facts

324

Solar EnerTech PAIS Jin Yu Silicon Wuhai Municipal Gvrnt JV | Open Energy  

Open Energy Info (EERE)

PAIS Jin Yu Silicon Wuhai Municipal Gvrnt JV PAIS Jin Yu Silicon Wuhai Municipal Gvrnt JV Jump to: navigation, search Name Solar EnerTech, PAIS, Jin Yu Silicon, & Wuhai Municipal Gvrnt JV Place Inner Mongolia Autonomous Region, China Sector Solar Product A solar silicon processing joint venture between Solar EnerTech, PAIS, Jin Yu Silicon, and the Wuhai Municipal Government was formed. References Solar EnerTech, PAIS, Jin Yu Silicon, & Wuhai Municipal Gvrnt JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar EnerTech, PAIS, Jin Yu Silicon, & Wuhai Municipal Gvrnt JV is a company located in Inner Mongolia Autonomous Region, China . References ↑ "[ Solar EnerTech, PAIS, Jin Yu Silicon, & Wuhai Municipal

325

Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Webcast: Municipal Solid-State Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool to someone by E-mail Share Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool on Facebook Tweet about Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool on Twitter Bookmark Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool on Google Bookmark Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool on Delicious Rank Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool on Digg

326

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

Environment Environment Emissions of Greenhouse Gases in the U. S. Release Date: March 31, 2011 | Next Release Date: Report Discontinued | Report Number: DOE/EIA-0573(2009) Greenhouse Gas Emissions Overview Diagram Notes [a] CO2 emissions related to petroleum consumption (includes 64 MMTCO2 of non-fuel-related emissions). [b] CO2 emissions related to coal consumption (includes 0.3 MMTCO2 of non-fuel-related emissions). [c] CO2 emissions related to natural gas consumption (includes 13 MMTCO2 of non-fuel-related emissions). [d] Excludes carbon sequestered in nonfuel fossil products. [e] CO2 emissions from the plastics portion of municipal solid waste (11 MMTCO2) combusted for electricity generation and very small amounts (0.4 MMTCO2) of geothermal-related emissions.

327

EIA - Natural Gas Pipeline System - Southwest Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southwest Region Southwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southwest Region Overview | Export Transportation | Intrastate | Connection to Gulf of Mexico | Regional Pipeline Companies & Links Overview Most of the major onshore interstate natural gas pipeline companies (see Table below) operating in the Southwest Region (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas) are primarily exporters of the region's natural gas production to other parts of the country and Mexico, while an extensive Gulf of Mexico and intrastate natural gas pipeline network is the main conduit for deliveries within the region. More than 56,000 miles of natural gas pipeline on more than 66 intrastate natural gas pipeline systems (including offshore-to-onshore and offshore Gulf of Mexico pipelines) deliver natural gas to the region's local natural gas distribution companies and municipalities and to the many large industrial and electric power facilities located in the region.

328

Connecticut Municipal Electric Energy Cooperative Smart Grid Project | Open  

Open Energy Info (EERE)

Smart Grid Project Smart Grid Project Jump to: navigation, search Project Lead Connecticut Municipal Electric Energy Cooperative Country United States Headquarters Location Norwich, Connecticut Recovery Act Funding $9,188,050.00 Total Project Value $18,376,100.00 Coverage Area Coverage Map: Connecticut Municipal Electric Energy Cooperative Smart Grid Project Coordinates 41.5242649°, -72.0759105° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

329

New Castle Municipal Serv Comm | Open Energy Information  

Open Energy Info (EERE)

New Castle Municipal Serv Comm New Castle Municipal Serv Comm Place Delaware Utility Id 13424 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Space Heating (Grandfathered) Commercial Large General Service Commercial Demand Rate (Primary) Commercial Large General Service Commercial Demand Rate (Secondary) Commercial Medium General Service Commercial Demand Rate Commercial Residential Service Residential Residential Space Heating Residential Small General Service Commercial Non-Demand Rate Commercial

330

Iowa Association of Municipal Utilities Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Smart Grid Project Smart Grid Project Jump to: navigation, search Project Lead Iowa Association of Municipal Utilities Country United States Headquarters Location Ankeny, Iowa Recovery Act Funding $5,000,000.00 Total Project Value $12,531,203.00 Coverage Area Coverage Map: Iowa Association of Municipal Utilities Smart Grid Project Coordinates 41.726377°, -93.6052178° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

331

Transparent Prices for Municipal Water: Impact of Pricing and Billing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transparent Prices for Municipal Water: Impact of Pricing and Billing Transparent Prices for Municipal Water: Impact of Pricing and Billing Practices on Residential Water Use Speaker(s): Sylvestre Gaudin Date: November 29, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: John Busch Jr. Economic Research shows overwhelmingly that residential consumers do not pay much attention to price changes when they make decisions about water use. This weak price sensitivity is often attributed to the intrinsic nature of water as a necessity. However, a large part of water use is the result of choices that could easily be altered without affecting basic welfare. Economic theory points to at least two other reasons why consumers would not be responsive to price changes for water use: the fact that water bills constitute a small portion of their budgets, and the fact that price

332

Municipal Electric Authority of Georgia Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Georgia Smart Grid Project Georgia Smart Grid Project Jump to: navigation, search Project Lead Municipal Electric Authority of Georgia Country United States Headquarters Location Atlanta, Georgia Recovery Act Funding $12,267,350.00 Total Project Value $24,534,700.00 Coverage Area Coverage Map: Municipal Electric Authority of Georgia Smart Grid Project Coordinates 33.7489954°, -84.3879824° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

333

Development of risk assessment methodology for municipal sludge incineration  

SciTech Connect (OSTI)

This is one of a series of reports that present methodologies for assessing the potential risks to humans or other organisms from the disposal or reuse of municipal sludge. The sludge management practices addressed by the series include land application practices, distribution and marketing programs, landfilling, surface disposal, incineration and ocean disposal. In particular, these reports provide methods for evaluating potential health and environmental risks from toxic chemicals that may be present in sludge. The document addresses risks from chemicals associated with incineration of municipal sludge. These proposed risk assessment procedures are designed as tools to assist in the development of regulations for sludge management practices. The procedures are structured to allow calculation of technical criteria for sludge disposal/reuse options based on the potential for adverse health or environmental impacts. The criteria may address management practices (such as site design or process control specifications), limits on sludge disposal rates or limits on toxic chemical concentrations in the sludge.

Not Available

1990-10-01T23:59:59.000Z

334

Data Summary of Municipal Solid Waste Management Alternatives. Volume VIII: Appendix F - Landfills  

SciTech Connect (OSTI)

While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community's solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a transition'' document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

None

1992-10-01T23:59:59.000Z

335

Data summary of municipal solid waste management alternatives. Volume 8, Appendix F, Landfills  

SciTech Connect (OSTI)

While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community`s solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a ``transition`` document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

none,

1992-10-01T23:59:59.000Z

336

El Teatro Municipal de Asunción, Paraguay: Historia y reflexión  

E-Print Network [OSTI]

, extranjeros en su mayoría, radicados en el país, van formando grupos: incluso en los años 50 Don Roque Centurión Miranda y Doña Josefina Plá fundan la Escuela Municipal de Arte Escénico. Sin ningún tipo de ayuda económica, dando a la enseñanza de teatro su... tiempo libre, ya que todos tienen actividades paralelas, hombres como Fernando Oca Delvalle, Josefina Plá, Roque Centurión Miranda, los Hermanos Karr-Prandi (más conocidos posteriormente por su verdadero apellido, De los Ríos), Arturo Alsina, Francisco...

Rí os, Edda de los

1987-10-01T23:59:59.000Z

337

Effect of Thermal Hydrolysis on Rheological Behavior of Municipal Sludge  

Science Journals Connector (OSTI)

Effect of Thermal Hydrolysis on Rheological Behavior of Municipal Sludge ... Fenton oxidation facilitated sludge filterability resulting in capillary suction time values which were approximately 50% of the raw sludges, whereas ultrasonication with high input energy deteriorated the filterability. ... Bingham's parameters seem to be able to detect the evolution in sludges quality and in floc strength even at low total suspended solid as the one's usually found in activated sludge processes (less than 10 g l-1). ...

Guohong Feng; Liyan Liu; Wei Tan

2014-06-12T23:59:59.000Z

338

The biogenic content of process streams from mechanical–biological treatment plants producing solid recovered fuel. Do the manual sorting and selective dissolution determination methods correlate?  

Science Journals Connector (OSTI)

The carbon emissions trading market has created a need for standard methods for the determination of biogenic content (?B) in solid recovered fuels (SRF). We compare the manual sorting (MSM) and selective dissolution methods (SDM), as amended by recent research, for a range of process streams from a mechanical–biological treatment (MBT) plant. The two methods provide statistically different biogenic content values, as expressed on a dry mass basis, uncorrected for ash content. However, they correlate well (r2 > 0.9) and the relative difference between them was <5% for ?B between 21% w/wd and 72% w/wd (uncorrected for ash content). This range includes the average SRF biogenic content of ca. 68% w/wd. Methodological improvements are discussed in light of recent studies. The repeatability of the SDM is characterised by relative standard deviations on triplicates of <2.5% for the studied population.

Mélanie Séverin; Costas A. Velis; Phil J. Longhurst; Simon J.T. Pollard

2010-01-01T23:59:59.000Z

339

Sacramento Municipal Utility District SMUD | Open Energy Information  

Open Energy Info (EERE)

Sacramento Municipal Utility District SMUD Sacramento Municipal Utility District SMUD Jump to: navigation, search Name Sacramento Municipal Utility District (SMUD) Place Sacramento, California Zip 95817 Sector Renewable Energy Product Sacramento-based public utility providing electricity to Sacramento County and Placer County. Active in many renewable energy projects and are on the advisory board of PHEV Research Center. Coordinates 38.579065°, -121.491014° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.579065,"lon":-121.491014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

340

Measuring in All the Right Places: Themes in International Municipal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measuring in All the Right Places: Themes in International Municipal Measuring in All the Right Places: Themes in International Municipal Eco-City Index Systems Title Measuring in All the Right Places: Themes in International Municipal Eco-City Index Systems Publication Type Conference Proceedings Year of Publication 2012 Authors Williams, Christopher J., Nan Zhou, Gang He, and Mark D. Levine Conference Name 2012 ACEEE Study on Energy Efficiency in Buildings Date Published 06/12 Publisher the American Council for an Energy-Efficient Economy Conference Location Pacific Grove, California, U.S.A Keywords co2 emissions, eco-city, energy Abstract Over the past 100 years, urban planners have been promoting a variety of new urban forms, called inter alia Sustainable, Green, Low Carbon, Livable, and Eco-cities, to improve the quality of life of citizens and the local and global environment. Numerous indicator systems have been developed to evaluate the implementation of these theories. The popularity of indicator systems is increasing as local and global constituents give greater attention to mitigating and adapting to climate change, environmental damage and resource constraints. However, no two systems are alike. Each system differentially includes, categorizes and prioritizes indicators, making it difficult to define an eco-city and evaluate the status and progress of developments.

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Sacramento Municipal Utility District Solar Array | Open Energy Information  

Open Energy Info (EERE)

Utility District Solar Array Utility District Solar Array Jump to: navigation, search Name Sacramento Municipal Utility District Solar Array Facility Sacramento Municipal Utility District Solar Array Sector Solar Facility Type Ground-mounted fixed tilt Owner EnXco Developer EnXco Energy Purchaser Sacramento Municipal Utility District Location Sacramento County, California Coordinates 38.47467°, -121.3541631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.47467,"lon":-121.3541631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

342

Gas and Oil (Maryland) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Oil (Maryland) and Oil (Maryland) Gas and Oil (Maryland) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of the Environment The Department of the Environment has the authority to enact regulations pertaining to oil and gas production, but it cannot prorate or limit the output of any gas or oil well. A permit from the Department is required prior to the drilling of a well for exploration, production, or underground storage of oil or gas. An environmental assessment must be submitted along with the permit application, and the Department may deny permits that propose drilling which may pose a substantial threat to public safety or

343

Aerosols in Amazonia: Natural biogenic particles and large scale biomass burning Paulo Artaxo, Henrique M. J. Barbosa, Luciana V. Rizzo, Joel F. Brito, Elisa T. Sena, Glauber G. Cirino, and  

E-Print Network [OSTI]

Aerosols in Amazonia: Natural biogenic particles and large scale biomass burning impacts Paulo Particles and Large Scale Biomass Burning Impacts Paulo Artaxoa , Henrique M. J. Barbosa a , Luciana V visible: The natural biogenic emissions of aerosols and VOCs, and the biomass burning emissions. A large

Barbosa, Henrique

344

Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware) |  

Broader source: Energy.gov (indexed) [DOE]

Greenhouse Gas Reduction Projects Grant Program (Delaware) Greenhouse Gas Reduction Projects Grant Program (Delaware) Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware) < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info Funding Source Greenhouse Gas Reduction Projects Fund State Delaware Program Type Grant Program Provider Delaware Department of Natural Resources and Environmental Control The Delaware Greenhouse Gas Reduction Projects Grant Program is funded by the Greenhouse Gas Reduction Projects Fund, established by the Act to Amend Title 7 of the Delaware Code Relating to a Regional Greenhouse Gas

345

Interstate Oil and Gas Conservation Compact (Multiple States) | Department  

Broader source: Energy.gov (indexed) [DOE]

Interstate Oil and Gas Conservation Compact (Multiple States) Interstate Oil and Gas Conservation Compact (Multiple States) Interstate Oil and Gas Conservation Compact (Multiple States) < Back Eligibility Commercial Developer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Alabama Program Type Environmental Regulations Provider Interstate Oil and Gas Compact Commission The Interstate Oil and Gas Compact Commission assists member states efficiently maximize oil and natural gas resources through sound regulatory practices while protecting the nation's health, safety and the environment. The Commission serves as the collective voice of member governors on oil and gas issues and advocates states' rights to govern petroleum resources within their borders. The Commission formed the Geological CO2 Sequestration Task Force, which

346

Natural Gas Regulation - Delaware Public Service Commission (Delaware) |  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Regulation - Delaware Public Service Commission Natural Gas Regulation - Delaware Public Service Commission (Delaware) Natural Gas Regulation - Delaware Public Service Commission (Delaware) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Fuel Distributor Program Info State Delaware Program Type Generating Facility Rate-Making Provider Delaware Public Service Commission The Delaware Public Service Commission regulates only the distribution of natural gas to Delaware consumers. The delivery and administrative costs associated with natural gas distribution are determined in base rate proceedings before the Commission. The recovery of costs associated with the natural gas used by customers is determined annually as part of fuel adjustment proceedings. As a result of this process, rates for natural gas

347

Interstate Oil and Gas Conservation Compact (Maryland) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Interstate Oil and Gas Conservation Compact (Maryland) Interstate Oil and Gas Conservation Compact (Maryland) Interstate Oil and Gas Conservation Compact (Maryland) < Back Eligibility Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Program Info State Maryland Program Type Siting and Permitting Provider Interstate Oil and Gas Compact Commission This legislation authorizes the State to join the Interstate Compact for the Conservation of Oil and Gas. The Compact is an agreement that has been entered into by 30 oil- and gas-producing states, as well as eight associate states and 10 international affiliates (including seven Canadian provinces). Members participate in the Interstate Oil and Gas Compact

348

Virginia Gas and Oil Act (Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Virginia Gas and Oil Act (Virginia) Virginia Gas and Oil Act (Virginia) Virginia Gas and Oil Act (Virginia) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Program Info State Virginia Program Type Safety and Operational Guidelines Siting and Permitting Provider Virginia Department of Mines, Minerals, and Energy The Gas and Oil Act addresses the exploration, development, and production of oil and gas resources in the Commonwealth of Virginia. It contains provisions pertaining to wells and well spacing, permits and fees, ownership of coalbed methane gas, and land leases. No county, city, town or other political subdivision of the Commonwealth may impose any condition, or require any other local license, permit, fee or bond to perform any gas,

349

Solid-State Lighting: Text-Alternative Version: Municipal Solid-State  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Webcast to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Webcast on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Webcast on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Webcast on Google Bookmark Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Webcast on Delicious Rank Solid-State Lighting: Text-Alternative Version: Municipal

350

Evaluation of the geological relationships to gas hydrate formation and stability. Progress report, June 16--September 30, 1988  

SciTech Connect (OSTI)

The summaries of regional basin analyses document that potentially economic accumulations of gas hydrates can be formed in both active and passive margin settings. The principal requirement for gas hydrate formation in either setting is abundant methane. Passive margin sediments with high sedimentation rates and sufficient sedimentary organic carbon can generate large quantities of biogenic methane for hydrate formation. Similarly, active margin locations near a terrigenous sediment source can also have high methane generation potential due to rapid burial of adequate amounts of sedimentary organic matter. Many active margins with evidence of gas hydrate presence correspond to areas subject to upwelling. Upwelling currents can enhance methane generation by increasing primary productivity and thus sedimentary organic carbon. Structural deformation of the marginal sediments at both active and passive sites can enhance gas hydrate formation by providing pathways for migration of both biogenic and thermogenic gas to the shallow gas hydrate stability zone. Additionally, conventional hydrocarbon traps may initially concentrate sufficient amounts of hydrocarbons for subsequent gas hydrate formation.

Krason, J.; Finley, P.

1988-12-31T23:59:59.000Z

351

Oil and Gas Conservation (South Dakota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Conservation (South Dakota) Conservation (South Dakota) Oil and Gas Conservation (South Dakota) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Department of Environment and Natural Resources The Minerals and Mining Program oversees the regulation of oil and gas exploration, recovery, and reclamation activities in South Dakota. Permits are required for drilling of oil or gas wells, and the SD Codified Laws contain provisions pertaining to well testing, classification, metering, operation, and spacing. Additional regulations are contained in the SD

352

Reduction of Greenhouse Gas Emissions (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reduction of Greenhouse Gas Emissions (Connecticut) Reduction of Greenhouse Gas Emissions (Connecticut) Reduction of Greenhouse Gas Emissions (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Climate Policies Provider Department of Energy and Environmental Protection

353

Greenhouse Gas Emissions Reduction Act (Maryland) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reduction Act (Maryland) Reduction Act (Maryland) Greenhouse Gas Emissions Reduction Act (Maryland) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Environmental Regulations Provider Maryland Department of the Environment The Greenhouse Gas Emissions Reduction Act requires the Department of the Environment to publish and update an inventory of statewide greenhouse gas emissions for calendar year 2006 and requires the State to reduce statewide

354

Pacific Gas and Electric Company Presentation by Steve Metague  

Broader source: Energy.gov (indexed) [DOE]

Metague Metague Sr. Director, Project Development Pacific Gas & Electric Co. 2012 National Electric Transmission Congestion Study Western Regional Workshop December 13, 2011 - Portland, Oregon California Transmission Planning Group (CTPG) * CTPG is a voluntary organization comprised of all the entities within California responsible for transmission planning: - California Independent System Operator (ISO) - Imperial Irrigation District (IID) - Los Angeles Department of Water and Power (LADWP) - Pacific Gas and Electric (PG&E) - Southern California Edison (SCE) - Southern California Public Power Authority (SCPPA) - San Diego Gas and Electric (SDG&E) - Sacramento Municipal Utility District (SMUD) - Transmission Agency of Northern California (TANC) - Turlock Irrigation District (TID)

355

Oil and Gas Exploration, Drilling, Transportation, and Production (South  

Broader source: Energy.gov (indexed) [DOE]

Exploration, Drilling, Transportation, and Production Exploration, Drilling, Transportation, and Production (South Carolina) Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina) < Back Eligibility Commercial Construction Industrial Institutional Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Buying & Making Electricity Program Info State South Carolina Program Type Environmental Regulations Siting and Permitting Provider South Carolina Department of Health and Environmental Control This legislation prohibits the waste of oil or gas and the pollution of water, air, or land. The Department of Health and Environmental Control is authorized to implement regulations designed to prevent the waste of oil and gas, promote environmental stewardship, and regulate the exploration,

356

Oil and Gas Conservation (Nebraska) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Conservation (Nebraska) Conservation (Nebraska) Oil and Gas Conservation (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Nebraska Oil and Gas Conservation Commission This section establishes the state's interest in encouraging the development, production, and utilization of natural gas and oil resources in a manner which will prevent waste and lead to the greatest ultimate

357

Anthropogenic and Biogenic Carbon Dioxide Fluxes From Typical Land Uses in Houston, Texas  

E-Print Network [OSTI]

photosynthetically active radiation (PAR) sensor (Apogee) to measure incoming solar radiation, a heat flux plate sensor installed on a nearby shingle roof, and a rain gauge. Raw 3-D wind data and data from the gas analyzers were recorded in binary format on a CR... photosynthetically active radiation (PAR) sensor (Apogee) to measure incoming solar radiation, a heat flux plate sensor installed on a nearby shingle roof, and a rain gauge. Raw 3-D wind data and data from the gas analyzers were recorded in binary format on a CR...

Werner, Nicholas D

2013-04-29T23:59:59.000Z

358

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

359

E-Print Network 3.0 - akwapim south municipality Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Ecology 2 Vineyard Boulevard Vineyard Boulevard Summary: - Kalanimoku basement, enter off Punchbowl F - Municipal building off of South Beretania G - Lot behind bus... stop...

360

E-Print Network 3.0 - anaerobically digested municipal Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This publication provides a general overview of anaero- Summary: . Scrubbing the biogas with iron-impregnated wood chips has been used in anaerobic digesters in municipal......

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Community Renewable Energy Success Stories Webinar: Exploring How Municipal Utilities Fund Solar Energy Projects (text version)  

Office of Energy Efficiency and Renewable Energy (EERE)

Below is the text version of the webinar titled "Exploring How Municipal Utilities Fund Solar Energy Projects," originally presented on February 19, 2013.

362

Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff  

Broader source: Energy.gov [DOE]

Below is the text-alternative version of the Municipal Solid-State Street Lighting Consortium Kickoff webcast, held May 6, 2010.

363

Labor-Management Cooperation on Teaching and Learning Cleveland Municipal School District  

E-Print Network [OSTI]

The Cleveland Municipal School District and the Cleveland Teachers Union have established a collaborative relationship that has enabled them to work jointly on a ...

Peace, Nancy E.

2003-06-27T23:59:59.000Z

364

Municipal Consortium LED Street Lighting Workshop Presentations and Materials—Boston, MA  

Broader source: Energy.gov [DOE]

This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Workshop held in Boston August 2–3, 2012.

365

Municipal Consortium LED Street Lighting Workshop Presentations and Materials—Los Angeles, CA  

Broader source: Energy.gov [DOE]

This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Workshop held in Los Angeles April 19–20, 2012.

366

An Ultra-Scalable Broadband Architecture for Municipal Hybrid Wireless Access Using Optical Grid Network  

Science Journals Connector (OSTI)

A novel broadband architecture suitable for municipal hybrid wireless access is proposed. This architecture, called GROW-Net, is ultra-scalable in bandwidth support and infrastructure...

Shaw, Wei-Tao; Wong, Shing-Wa; Yen, She-Hwa; Kazovsky, Leonid G

367

Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Webcast  

Broader source: Energy.gov [DOE]

Below is the text-alternative version of the "Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool" webcast, held April 3, 2012.

368

Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards  

Broader source: Energy.gov [DOE]

The Energy Department and the American Public Power Association named Oklahoma Municipal Power Authority and Silicon Valley Power as the winners of the 2014 Public Power Wind Awards.

369

Removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant.  

E-Print Network [OSTI]

??Reject water, the liquid fraction produced after dewatering of anaerobically digested activated sludge on a municipal wastewater treatment plant (MWWTP), contains from 750 to 1500… (more)

Guo, Chenghong

2011-01-01T23:59:59.000Z

370

Municipal Consortium LED Street Lighting Workshop Presentations and Materials—Dallas, TX  

Broader source: Energy.gov [DOE]

This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Workshop held in Dallas March 15–16, 2012.

371

February 19, 2013 Webinar: Exploring How Municipal Utilities Fund Solar Energy Projects  

Broader source: Energy.gov [DOE]

This webinar was held February 19, 2013, and provided information on Concord Light, the municipal electric utility serving Concord, Massachusetts, and their solar photovoltaic (PV) rebate program....

372

American Municipal Power (Public Electric Utilities)- Commercial Efficiency Smart Program (Ohio)  

Broader source: Energy.gov [DOE]

Efficiency Smart™ provides energy efficiency incentives and technical assistance to the American Municipal Power, Inc (AMP) network of public power communities. The Efficiency Smart service...

373

Comprehensive Municipal Solid Waste Management, Resource Recovery, and Conservation Act (Texas)  

Broader source: Energy.gov [DOE]

This Act encourages the establishment of regional waste management facilities and the cooperation of local waste management entities in order to streamline the management of municipal solid waste...

374

Gas Turbines  

Science Journals Connector (OSTI)

... the time to separate out the essentials and the irrelevancies in a text-book. The gas ...gasturbine ...

H. CONSTANT

1950-10-21T23:59:59.000Z

375

A legislator`s guide to municipal solid waste management  

SciTech Connect (OSTI)

The purpose of this guide is to allow individual state legislators to gain a better understanding of municipal solid waste (MSW) management issues in general, and examine the applicability of these concerns to their state. This guide incorporates a discussion of MSW management issues and a comprehensive overview of the components of an integrated solid waste management system. Major MSW topics discussed include current management issues affecting states, federal activities, and state laws and local activities. Solid waste characteristics and management approaches are also detailed.

Starkey, D.; Hill, K.

1996-08-01T23:59:59.000Z

376

Estimates of Biogenic Methane Production Rates in Deep Marine Sediments at Hydrate Ridge, Cascadia Margin  

Science Journals Connector (OSTI)

...fluids associated with a large gas hydrate reservoir...USA. Proc. Ocean Drilling Progr. Sci. Results...initial reports. Ocean Drilling Program, College Station...p. 18-22. Ocean Drilling Program, College Station...material turnover and large methane plumes at the...

F. S. Colwell; S. Boyd; M. E. Delwiche; D. W. Reed; T. J. Phelps; D. T. Newby

2008-03-14T23:59:59.000Z

377

Evidence for natural gas hydrate occurrences in Colombia Basin  

SciTech Connect (OSTI)

Multichannel and selected single-channel seismic lines of the continental margin sediments of the Colombia basin display compelling evidence for large accumulations of natural gas hydrate. Seismic bottom simulating reflectors (BSRs), interpreted to mark the base of the hydrate stability zone, are pronounced and very widespread along the entire Panama-Colombia lower continental slope. BSRs have also been identified at two locations on the abyssal plain. Water depths for these suspected hydrate occurrences range from 900 to 4000 m. Although no gas hydrate samples have been recovered from this area, biogenic methane is abundant in Pliocene turbidites underlying the abyssal plain. More deeply buried rocks beneath the abyssal plain are thermally mature. Thermogenic gas from these rocks may migrate upward along structural pathways into the hydrate stability zone and form hydrate. Impermeable hydrate layers may form caps over large accumulations of free gas, accounting for the very well-defined BSRs in the area. The abyssal plain and the deformed continental margin hold the highest potential for major economic accumulations of gas hydrate in the basin. The extensive continuity of BSRs, relatively shallow water depths, and promixity to onshore production facilities render the marginal deformed belt sediments the most favorable target for future economic development of the gas hydrate resource within the Colombia basin. The widespread evidence of gas hydrates in the Colombia basin suggests a high potential for conventional hydrocarbon deposits offshore of Panama and Colombia.

Finley, P.D.; Krason, J.; Dominic, K.

1987-05-01T23:59:59.000Z

378

Georgia Underground Gas Storage Act of 1972 (Georgia) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Georgia Underground Gas Storage Act of 1972 (Georgia) Georgia Underground Gas Storage Act of 1972 (Georgia) Georgia Underground Gas Storage Act of 1972 (Georgia) < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Gas Storage Act, which permits the building of reserves for withdrawal in periods of peak demand, was created to promote the economic development of the State of Georgia and provide for more economical distribution of gas to the domestic, commercial, and industrial consumers of the State. Any gas utility desiring to utilize or operate an

379

Oil and Gas Wells: Regulatory Provisions (Kansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil and Gas Wells: Regulatory Provisions (Kansas) Oil and Gas Wells: Regulatory Provisions (Kansas) Oil and Gas Wells: Regulatory Provisions (Kansas) < Back Eligibility Commercial Fuel Distributor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Kansas Program Type Environmental Regulations Provider Health and Environment It shall be unlawful for any person, firm or corporation having possession or control of any natural gas well, oil well or coalbed natural gas well, whether as a contractor, owner, lessee, agent or manager, to use or permit the use of gas by direct well pressure. Any person or persons, firm, company or corporation violating any of the provisions of this act shall be deemed guilty of a misdemeanor, and upon conviction shall be fined in any

380

Oil and Gas Program (Tennessee) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil and Gas Program (Tennessee) Oil and Gas Program (Tennessee) Oil and Gas Program (Tennessee) < Back Eligibility Commercial Construction Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Department Of Environment and Conservation The Oil and Gas section of the Tennessee Code, found in Title 60, covers all regulations, licenses, permits, and laws related to the production of natural gas. The laws create the Oil and Gas Board, composed of the commissioner of environment and conservation or the commissioner's designee, who shall act as chair, the designee of the commissioner of

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

KRS Chapter 278: Natural Gas (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

KRS Chapter 278: Natural Gas (Kentucky) KRS Chapter 278: Natural Gas (Kentucky) KRS Chapter 278: Natural Gas (Kentucky) < Back Eligibility Commercial Investor-Owned Utility Municipal/Public Utility Transportation Utility Program Info State Kentucky Program Type Safety and Operational Guidelines Provider Kentucky Public Service Commission The Public Service Commission may, by rule or order, authorize and require the transportation of natural gas in intrastate commerce by intrastate pipelines, or by local distribution companies with unused or excess capacity not needed to meet existing obligations of the pipeline or distribution company, for any person for one (1) or more uses, as defined by the commission by rule, in the case of:(a) Natural gas sold by a producer, pipeline or other seller to such person; or(b) Natural gas

382

Oil and Gas Production (Missouri) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Production (Missouri) Production (Missouri) Oil and Gas Production (Missouri) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Program Info State Missouri Program Type Siting and Permitting Provider Missouri Department of Natural Resources A State Oil and Gas Council regulates and oversees oil and gas production in Missouri, and conducts a biennial review of relevant rules and regulations. The waste of oil and gas is prohibited. This legislation contains additional information about the permitting, establishment, and operation of oil and gas wells, while additional regulations address oil and gas drilling and production and well spacing and unitization

383

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

384

California Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

385

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

386

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

387

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

388

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

389

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

390

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

391

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

392

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

393

Illinois Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

394

Missouri Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

395

Mississippi Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

396

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

397

Energy recovery and cogeneration from an existing municipal incinerator: Phase IIA progress report on final design  

SciTech Connect (OSTI)

A feasibility study was prepared on energy recovery and cogeneration from and existing municipal incinerator in Wayne County, Michigan. The mechanical, electrical, structural, and instruments an controls equipment designs were established in sufficient depth to arrive at a construction cost estimate. The designs are described. All of the flue gas generated from each incinerator is directed into a waste heat boiler that will generate steam. A waste heat boiler will be provided for each of the three incinerators. Steam from these waste heat boilers will supply energy to two turbine-generators, which, in turn, will supply auxiliary power to the incinerator plant; the balance of the power will be sold to Detroit Edison Company (DEC). Exhaust steam from each turbine will be directed into a surface condenser operating under vacuum. The water to be supplied to each condenser will be recirculated water that has been cooled by means of a cooling tower. Other cooling water that could be subjected to oil contamination will be supplied from a separate recirculating water system. The water in this system will be cooled by an evaporative condenser. The main steam, boiler feedwater, and condensate systems will be similar to those used in central power stations. Flow diagrams for all systems, together with heat balances, electrical one-line diagrams, and plant layouts, are included in the Appendix. Also included in the Appendix are instruments and controls logic diagrams. (MCW)

Not Available

1982-02-01T23:59:59.000Z

398

An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors  

SciTech Connect (OSTI)

This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.

Townsend, Aaron K., E-mail: aarontownsend@utexas.edu [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States); Webber, Michael E. [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States)

2012-07-15T23:59:59.000Z

399

Effect of air flow rate and fuel moisture on the burning behaviours of biomass and simulated municipal solid wastes in packed beds  

Science Journals Connector (OSTI)

Combustion of biomass and municipal solid wastes is one of the key areas in the global cleaner energy strategy. But there is still a lack of detailed and systematically theoretical study on the packed bed burning of biomass and municipal solid wastes. The advantage of theoretical study lies in its ability to reveal features of the detailed structure of the burning process inside a solid bed, such as reaction zone thickness, combustion staging, rates of individual sub-processes, gas emission and char burning characteristics. These characteristics are hard to measure by conventional experimental techniques. In this paper, mathematical simulations as well as experiments have been carried out for the combustion of wood chips and the incineration of simulated municipal solid wastes in a bench-top stationary bed and the effects of primary air flow rate and moisture level in the fuel have been assessed over wide ranges. It is found that volatile release as well as char burning intensifies with an increase in the primary air flow until a critical point is reached where a further increase in the primary air results in slowing down of the combustion process; a higher primary airflow also reduces the char fraction burned in the final char-burning-only stage, shifts combustion in the bed to a more fuel-lean environment and reduces CO emission at the bed top; an increase in the moisture level in the fuel produces a higher flame front temperature in the bed at low primary air flow rates.

Y.B Yang; V.N Sharifi; J Swithenbank

2004-01-01T23:59:59.000Z

400

Geologic setting and natural gas potential of Niobrara formation, Williston Basin  

SciTech Connect (OSTI)

Chalk units in the Niobrara Formation (Upper Cretaceous) have potential for generation and accumulation of shallow, biogenic gas in the central and eastern Williston basin. Similar to area of Niobrara gas production in the eastern Denver basin, Niobrara chalks in South and North Dakota were deposited on carbonate ramps sloping westward off the stable eastern platform of the Western Interior seaway. Within the Williston basin, the Niobrara of the western Dakotas, eastern North Dakota, and central South Dakota has different stratigraphic relationships. These three areas can be further subdivided and ranked into six areas that have different exploration potential. The south margin of the Williston basin in central South Dakota is the most attractive exploration area. Niobrara chalk reservoirs, source rocks, and structural traps in the southern Williston basin are similar to those in the eastern Denver basin. Chalk porosities are probably adequate for gas production, although porosity is controlled by burial depth. Organic carbon content of the chalk is high and shows of biogenic gas are reported. Large, low-relief structural features, which could serve as traps, are present.

Shurr, G.W.; Rice, D.D.

1985-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs  

Broader source: Energy.gov [DOE]

OE has released a new Smart Grid report describing the activities of three municipal utilities that received funding through the Recovery Act Smart Grid Investment Grant program. "Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs" reports on the benefits of the cities' investments, including improved operating efficiencies, lower costs, shorter outages, and reduced peak demands and electricity consumption.

402

Composition of Municipal Solid Waste-Need for Thermal Treatment in the present Indian context  

E-Print Network [OSTI]

Composition of Municipal Solid Waste- Need for Thermal Treatment in the present Indian context of estimating heat value of municipal wastes, from the view point of assessing the waste's amenability for thermal treatment in the Indian context at the present juncture. The paper also seeks to reason out

Columbia University

403

Seepage Test Loss Results The Main Canal Valley Municipal Utility District No. 2  

E-Print Network [OSTI]

TR-326 2008 Seepage Test Loss Results The Main Canal Valley Municipal Utility District No. 2 Eric Leigh Texas AgriLife Extension Associate, Biological and Agricultural Engineering, College Station Guy... Fipps Texas AgriLife Extension Professor and Extension Agricultural Engineer, Biological and Agricultural Engineering, College Station January 21, 2004 SEEPAGE LOSS TEST RESULTS THE MAIN CANAL VALLEY MUNICIPAL UTILITY DISTRICT...

Leigh, E.; Fipps, G.

404

Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills  

E-Print Network [OSTI]

Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills Yucel Guney1 ; Savas in municipal solid waste landfills. However, natural clays may not always provide good contaminant sorption necessitates addition of kaolinite before being used as a landfill material. The valence of the salt solutions

Aydilek, Ahmet

405

Feasibility study for alternate fuels production: unconventional natural gas from wastewater treatment plants. Volume II, Appendix D. Final report  

SciTech Connect (OSTI)

Data are presented from a study performed to determined the feasibility of recovering methane from sewage at a typical biological secondary wastewater treatment plant. Three tasks are involved: optimization of digester gas; digester gas scrubbing; and application to the East Bay Municipal Utility District water pollution control plant. Results indicate that excess digester gas can be used economically at the wastewater treatment plant and that distribution and scrubbing can be complex and costly. (DMC) 193 references, 93 figures, 26 tables.

Overly, P.; Tawiah, K.

1981-12-01T23:59:59.000Z

406

The role of cemeteries in the development of municipal and national military parks: the cemetery-park connection  

E-Print Network [OSTI]

This thesis examines how cemeteries, both municipal and military, have developed in America based on internal and external influences and the role that they have played in the development of municipal and national military parks, respectively...

White, Carlton J

2012-06-07T23:59:59.000Z

407

A New ACS Audio Course to help you understand and solve industrial and municipal waste-water problems ....  

Science Journals Connector (OSTI)

A New ACS Audio Course to help you understand and solve industrial and municipal waste-water problems .... ...

1982-08-01T23:59:59.000Z

408

Anchorage Municipal Light and Power | Open Energy Information  

Open Energy Info (EERE)

Light and Power Light and Power Jump to: navigation, search Name Anchorage Municipal Light and Power Place Alaska Utility Id 599 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting Service 1000 W Lighting Area Lighting Service 150 W Lighting Area Lighting Service 175 W Lighting Area Lighting Service 250 W Lighting Area Lighting Service 400 W Lighting

409

Alameda Municipal Power - Commercial New Construction Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Commercial New Construction Rebate Commercial New Construction Rebate Program Alameda Municipal Power - Commercial New Construction Rebate Program < Back Eligibility Commercial Construction Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Assistance cannot exceed the actual cost of the project Program Info State California Program Type Utility Rebate Program Rebate Amount Design Assistance Grants: Up to $10,000/project Whole Building Approach Rebates: $0.10/kWh for buildings exceeding Title 24 by 10% $0.15/kWh for buildings exceeding Title 24 by 15% $0.20/kWh for buildings exceeding Title 24 by 20%

410

Effects of biodrying process on municipal solid waste properties  

Science Journals Connector (OSTI)

In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14 d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,779 ± 2,074 kJ kg?1 wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290 g kg?1 VS), reduced of about 28% the total producible biogas.

F. Tambone; B. Scaglia; S. Scotti; F. Adani

2011-01-01T23:59:59.000Z

411

Differential-ground-motion array at Hollister Municipal Airport, California  

SciTech Connect (OSTI)

This report describes the differential array of seismometers recently installed at the Hollister, California, Municipal Airport. Such an array of relatively closely spaced seismometers has already been installed in El Centro and provided useful information for both engineering and seismological applications from the 1979 Imperial Valley earthquake. Differential ground motions, principally due to horizontally propagating surface waves, are important in determining the stresses in such extended structures as large mat foundations for nuclear power stations, dams, bridges and pipelines. Further, analyses of the records of the 1979 Imperial Valley earthquake from the differential array have demonstrated the utility of short-baseline array data in tracking the progress of the rupture wave front of an earthquake. 5 refs., 4 figs.

Bycroft, G.N.

1983-01-01T23:59:59.000Z

412

Process modeling of hydrogen production from municipal solid waste  

SciTech Connect (OSTI)

The ASPEN PLUS commercial simulation software has been used to develop a process model for a conceptual process to convert municipal solid waste (MSW) to hydrogen. The process consists of hydrothermal treatment of the MSW in water to create a slurry suitable as feedstock for an oxygen blown Texaco gasifier. A method of reducing the complicated MSW feed material to a manageable set of components is outlined along with a framework for modeling the stoichiometric changes associated with the hydrothermal treatment process. Model results indicate that 0.672 kmol/s of hydrogen can be produced from the processing of 30 kg/s (2600 tonne/day) of raw MSW. A number of variations on the basic processing parameters are explored and indicate that there is a clear incentive to reduce the inert fraction in the processed slurry feed and that cofeeding a low value heavy oil may be economically attractive.

Thorsness, C.B.

1995-01-01T23:59:59.000Z

413

Control of air pollution emissions from municipal waste combustors  

SciTech Connect (OSTI)

The November 1990 Clear Air Act Amendments (CAAAs) directed EPA to establish municipal waste combustor (MWC) emissions limits for particulate matter, opacity, hydrogen chloride, sulfur dioxide, nitrogen oxides, carbon monoxide, dioxins, dibenzofurans, cadmium, lead, and mercury. Revised MWC air pollution regulations were subsequently proposed by EPA on September 20, 1994, and promulgated on December 19, 1995. The MWC emission limits were based on the application of maximum achievable control technology (MACT). This paper provides a brief overview of MWC technologies, a summary of EPA`s revised air pollution rules for MWCs, a review of current knowledge concerning formation and control of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, and a discussion of the behavior and control of mercury in MWC flue gases. 56 refs., 11 figs., 3 tabs.

Kolgroe, J.D. [Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Lab.; Licata, A. [Licata Energy and Environmental Consultants, Inc., Yonkers, NY (United States)

1996-09-01T23:59:59.000Z

414

DOE Municipal Solid-State Street Lighting Consortium  

Broader source: Energy.gov [DOE]

The DOE Municipal Solid-State Street Lighting Consortium shares technical information and experiences related to LED street and area lighting demonstrations and serves as an objective resource for evaluating new products on the market intended for those applications. Cities, power providers, and others who invest in street and area lighting are invited to join the Consortium and share their experiences. The goal is to build a repository of valuable field experience and data that will significantly accelerate the learning curve for buying and implementing high-quality, energy-efficient LED lighting. Consortium members are part of an international knowledge base and peer group, receive updates on Consortium tools and resources, receive the Consortium E-Newsletter, and help steer the work of the Consortium by participating on a committee. Learn more about the Consortium.

415

RECIPIENT:Hull Municipal Light Plant STATE: MA PROJECT TITLE:  

Broader source: Energy.gov (indexed) [DOE]

: : Page 1 01 :L RECIPIENT:Hull Municipal Light Plant STATE: MA PROJECT TITLE: Hull Offshore Wind Research and Development Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number 09EE0000326 DE-EE0000326 GFO-OO00326-001 0 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the foUowing determination: CX, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply and demand studies), and dissemination (including, but not limited to, document mailings, publication, and distribution; and

416

Coal seam natural gas producing areas (Louisiana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Coal seam natural gas producing areas (Louisiana) Coal seam natural gas producing areas (Louisiana) Coal seam natural gas producing areas (Louisiana) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Louisiana Program Type Environmental Regulations Siting and Permitting Provider Louisiana Department of Natural Resources In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is authorized, as provided in this law, to establish a single unit to be served by one or more wells for a coal seam natural gas producing area. Without in any way modifying the authority granted to the commissioner to establish a drilling unit or

417

State Natural Gas Regulation Act (Nebraska) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

State Natural Gas Regulation Act (Nebraska) State Natural Gas Regulation Act (Nebraska) State Natural Gas Regulation Act (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Public Service Commisssion This act gives the Nebraska Public Service Commission authority to regulate natural gas utilities and pipelines within the state, except as provided for in the Nebraska Natural Gas Pipeline Safety Act of 1969. Some

418

Gas Code of Conduct (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas Code of Conduct (Connecticut) Gas Code of Conduct (Connecticut) Gas Code of Conduct (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Safety and Operational Guidelines Provider Public Utilities Regulatory Authority The Gas Code of Conduct sets forth the standard of conduct for transactions, direct or indirect, between gas companies and their affiliates. The purpose of these regulations is to promote competitive

419

Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide  

Broader source: Energy.gov (indexed) [DOE]

storage of natural gas, liquid hydrocarbons, and carbon storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Louisiana Program Type Environmental Regulations Siting and Permitting The Louisiana Department of Environmental Quality regulates the underground storage of natural gas or liquid hydrocarbons and carbon dioxide. Prior to the use of any underground reservoir for the storage of natural gas and prior to the exercise of eminent domain by any person, firm, or corporation having such right under laws of the state of Louisiana, the commissioner, shall have found all of the following:

420

Regulation of Oil and Gas Resources (Florida) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Regulation of Oil and Gas Resources (Florida) Regulation of Oil and Gas Resources (Florida) Regulation of Oil and Gas Resources (Florida) < Back Eligibility Commercial Construction Developer Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Utility Program Info State Florida Program Type Safety and Operational Guidelines Provider Florida Department of Environmental Protection It is the public policy of the state to conserve and control the natural resources of oil and gas, and their products; to prevent waste of oil and gas; to provide for the protection and adjustment of the rights of landowners, producers, and interested parties; and to safeguard the health,

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

422

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

423

Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm I | Open Energy  

Open Energy Info (EERE)

Minnesota Municipal Power Agency (SMMPA) Wind Farm I Minnesota Municipal Power Agency (SMMPA) Wind Farm I Jump to: navigation, search Name Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm I Facility Southern Minnesota Municipal Power Agency (SMMPA) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Southern Minnesota Municipal Power Agency Developer Southern Minnesota Municipal Power Agency Energy Purchaser Southern Minnesota Municipal Power Agency Location Fairmont MN Coordinates 43.656024°, -94.460506° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.656024,"lon":-94.460506,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

Natural Gas Pipe Line Companies (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pipe Line Companies (Connecticut) Pipe Line Companies (Connecticut) Natural Gas Pipe Line Companies (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Public Utilities Regulatory Authority These regulations list standards and considerations for the design, construction, compression, metering, operation, and maintenance of natural gas pipelines, along with procedures for records, complaints, and service

425

Using treated municipal wastewater in a linerboard mill -- legal, political, and technical issues  

SciTech Connect (OSTI)

When plans to expand production at an antiquated mill were jeopardized by an inadequate source of process water, the mill explored the possibility of producing first-quality linerboard using treated municipal wastewater. This paper outlines the legal, technical, and political issues encountered in developing a plan that would allow the mill to use effluent from a municipal wastewater treatment system. The technology is available to make reuse of municipal wastewater feasible, as evidence by the closed-loop delivery and discharge system describe in this report. Nevertheless, legal and political concerns make the implementation process arduous and time consuming.

Bowen, W. (Montville Water Pollution Control Authority, Montville, CT (United States)); Scogin, R. (Rand-Whitney Containerboard, L.P., Montville, CT (United States)); Cobery, J.E. (Bingham, Dana and Gould, Boston, MA (United States))

1994-10-01T23:59:59.000Z

426

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Oil Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)","Missouri Natural...

427

"1. Hay Road","Gas","Calpine Mid-Atlantic Generation LLC",1130  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware" Delaware" "1. Hay Road","Gas","Calpine Mid-Atlantic Generation LLC",1130 "2. Indian River Operations","Coal","Indian River Operations Inc",795 "3. Edge Moor","Gas","Calpine Mid-Atlantic Generation LLC",723 "5. McKee Run","Gas","NAES Corporation",136 "6. NRG Energy Center Dover","Coal","NRG Energy Center Dover LLC",100 "7. Warren F Sam Beasley Generation Station","Gas","Delaware Municipal Electric Corp",48 "8. Christiana","Petroleum","Calpine Mid-Atlantic Generation LLC",45 "9. Van Sant Station","Gas","NAES Corporation",39

428

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

429

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

430

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

431

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

432

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

433

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

434

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

435

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

436

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

437

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

438

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

439

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

440

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

442

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

443

Gas vesicles.  

Science Journals Connector (OSTI)

...in the suspending water, of concentration...MPa and balances the atmospheric pressure. Note that...versely, liquid water could not form by condensation inside the gas vesicle...presumably surrounded by water on all sides. At...

A E Walsby

1994-03-01T23:59:59.000Z

444

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

445

Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years  

SciTech Connect (OSTI)

The Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) together with the Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields were used to create a global emission dataset of biogenic VOCs available on a monthly basis for the time period of 1980 - 2010. This dataset is called MEGAN-MACC. The model estimated mean annual total BVOC emission of 760 Tg(C) yr1 consisting of isoprene (70%), monoterpenes (11%), methanol (6%), acetone (3%), sesquiterpenes (2.5%) and other BVOC species each contributing less than 2 %. Several sensitivity model runs were performed to study the impact of different model input and model settings on isoprene estimates and resulted in differences of * 17% of the reference isoprene total. A greater impact was observed for sensitivity run applying parameterization of soil moisture deficit that led to a 50% reduction of isoprene emissions on a global scale, most significantly in specific regions of Africa, South America and Australia. MEGAN-MACC estimates are comparable to results of previous studies. More detailed comparison with other isoprene in ventories indicated significant spatial and temporal differences between the datasets especially for Australia, Southeast Asia and South America. MEGAN-MACC estimates of isoprene and*-pinene showed a reasonable agreement with surface flux measurements in the Amazon andthe model was able to capture the seasonal variation of emissions in this region.

Sindelarova, K.; Granier, Claire; Bouarar, I.; Guenther, Alex B.; Tilmes, S.; Stavrakou, T.; Muller, J. F.; Kuhn, U.; Stefani, P.; Knorr, W.

2014-09-09T23:59:59.000Z

446

Local action for the global environment : municipal government participation in a voluntary climate protection program  

E-Print Network [OSTI]

The Cities for Climate ProtectionTM (CCP) campaign is a voluntary environmental program for municipalities, which is increasingly being applied around the world by local governments taking action on climate change. This ...

Ravin, Amelia L., 1977-

2004-01-01T23:59:59.000Z

447

Urinary tract infection (UTI) and infection control in municipal nursing homes  

Science Journals Connector (OSTI)

A formalized infection control organization does not exist in the Danish municipal sector. The prevalence of infections among residents in nursing homes is unknown and knowledge is sparse on...

A-M Andersen; B Kristensen

2011-06-01T23:59:59.000Z

448

Energy Department Works with Sacramento Municipal Utility District on Renewable Electricity Generation and Delivery  

Office of Energy Efficiency and Renewable Energy (EERE)

The Sacramento Municipal Utility District (SMUD) in Sacramento, California, is looking to local renewable resources to help meet its aggressive goal of supplying 37% of its power from renewables in 2020.

449

The role of SCADA in developing a lean enterprise for municipal wastewater operations  

E-Print Network [OSTI]

Central to optimizing a wastewater system's operations is the collection of alarm and operational data from various remote locations throughout a municipality, hence the basic need for supervisory control and data acquisition ...

Prutz, Stanley J

2005-01-01T23:59:59.000Z

450

Chlorella minutissima—A Promising Fuel Alga for Cultivation in Municipal Wastewaters  

Science Journals Connector (OSTI)

It is imperative to slash the cost of algal oil to less than $50 bbl?1 for successful algal biofuel production. Use of municipal wastewater for algal cultivation could obviate the need for freshwater and the nutr...

Ashish Bhatnagar; Monica Bhatnagar…

2010-05-01T23:59:59.000Z

451

North Branch Municipal Water and Light- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Southern Minnesota Municipal Power Agency ([http://www.smmpa.com SMMPA]) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit,...

452

Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool  

Broader source: Energy.gov [DOE]

This April 3, 2012 webcast presented information about the Retrofit Financial Analysis Tool developed by DOE"s Municipal Solid-State Street Lighting Consortium. Doug Elliott of Pacific Northwest...

453

Municipal District Heating and Cooling Co-generation System Feasibility Research  

E-Print Network [OSTI]

In summer absorption refrigerating machines provide cold water using excess heat from municipal thermoelectric power plant through district heating pipelines, which reduces peak electric load from electricity networks in summer. The paper simulates...

Zhang, W.; Guan, W.; Pan, Y.; Ding, G.; Song, X.; Zhang, Y.; Li, Y.; Wei, H.; He, Y.

2006-01-01T23:59:59.000Z

454

Understanding local adoption of tax credits to promote solar-thermal energy: Spanish municipalities' case  

Science Journals Connector (OSTI)

Abstract Spanish local governments may offer, in accordance with Royal Decree 2/2004, tax credits up to 50% in Real Estate Tax for those with installed solar powered thermal or electrical energy systems. This paper analyzes by logistic regression estimation which factors influence the decision of governments to implement this tax credit. Factors included as explanatory variables are related to the characteristics of municipalities, fiscal stress, environmental stress, the environmentally friendly nature of municipalities, the neighboring effect, and economic motivations. Results show that municipalities applying these measures are mostly large in size, with high solar potential, with predominantly collective-housing buildings, with low fiscal stress, mainly rural, environmentally friendly, surrounded by municipalities implementing similar measures and with higher unemployment rates.

José Manuel González-Limón; María del P. Pablo-Romero; Antonio Sánchez-Braza

2013-01-01T23:59:59.000Z

455

Ticks species (Ixodida) in the Summit Municipal Park and adjacent areas, Panama City, Panama  

Science Journals Connector (OSTI)

From September 2007 to September 2009, we studied the species of ticks present in the Summit Municipal Park. Ticks were extracted from zoo animals, free-living wild mammals and reptiles trapped, dead mammals o...

Sergio E. Bermúdez C.; Roberto J. Miranda C.…

2010-12-01T23:59:59.000Z

456

Pyrolysis of Municipal Solid Waste for Syngas Production by Microwave Irradiation  

Science Journals Connector (OSTI)

In the present study, we discuss the application of microwave-irradiated pyrolysis of municipal solid waste (MSW) for total recovery of useful gases and energy. The MSW pyrolysis under microwave irradiation hi...

Vidyadhar V. Gedam; Iyyaswami Regupathi

2012-03-01T23:59:59.000Z

457

Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste  

Science Journals Connector (OSTI)

Biomass and municipal solid waste offer sustainable sources ... form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil ... an integrated, sustainable waste managemen...

René Laryea-Goldsmith; John Oakey; Nigel J Simms

2011-02-01T23:59:59.000Z

458

Overburden effects on waste compaction and leachate generation in municipal landfills  

E-Print Network [OSTI]

This thesis presents a model to predict the effects of overburden pressure on the formation of leachate within municipal solid waste landfills. In addition, it estimates the compaction and subsequent settlement that the waste will undergo due...

Mehevec, Adam Wade

2012-06-07T23:59:59.000Z

459

Business model innovation for sustainable energy: how German municipal utilities invest in offshore wind energy  

Science Journals Connector (OSTI)

Offshore wind energy is considered to have tremendous potential for Germany's future electricity supply. Due to the technology's capital intensity, however, offshore wind energy has so far been considered the domain of large utilities. Municipal utilities on the contrary traditionally have strong ties to their community and conduct low risk business models at the regional and local level. Recently, however, German municipal utilities started to invest in offshore wind energy. Based on a series of interviews with municipal utility executives, the present study identifies two innovative business models and ten key drivers for municipal utilities' engagement in offshore wind energy. It is found that the new business models may have significant further potential and help to stimulate the German market. The present study contributes to the industry debate by identifying business model blueprints for offshore wind and to the academic debate by suggesting three generic types of business model innovation with different characteristics.

Mario Richter

2013-01-01T23:59:59.000Z

460

Standards for Municipal Small Wind Regulations and Small Wind Model Wind  

Broader source: Energy.gov (indexed) [DOE]

Standards for Municipal Small Wind Regulations and Small Wind Model Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State New Hampshire Program Type Solar/Wind Permitting Standards In July 2008, New Hampshire enacted legislation designed to prevent municipalities from adopting ordinances or regulations that place unreasonable limits or hinder the performance of wind energy systems up to 100 kilowatts (kW) in capacity. Such wind turbines must be used primarily to produce energy for on-site consumption. The law identifies a several

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Landfarming of municipal sewage sludge at Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The City of Oak Ridge, Tennessee, has been applying municipal sanitary sludge to 9 sites comprising 90 ha on the US Department of Energy (DOE) Oak Ridge Reservation (ORR) since 1983. Approximately 13,000,000 L are applied annually by spraying sludge (2 to 3% solids) under pressure from a tanker. Under an ongoing monitoring program, both the sludge and the soil in the application areas are analyzed for organic, inorganic, and radioactive parameters on a regular basis. Organic pollutants are analyzed in sludge on a semiannual basis and in the soil application areas on an annual basis. Inorganic parameters are analyzed daily (e.g., pH, total solids) or monthly (e.g., nitrogen, manganese) in sludge and annually in soil in application areas. Radionuclides (Co-60, Cs-137, I-131, Be-7, K-40, Ra-228, U-235, U-238) are scanned daily during application by the sewage treatment plant and analyzed weekly in composite sludge samples and annually in soil. Additionally, data on radioactive body burden for maximally exposed workers who apply the sludge show no detectable exposures. This monitoring program is comprehensive and is one of the few in the United States that analyzes radionuclides. Results from the monitoring program show heavy metals and radionuclides are not accumulating to levels in the soil application areas.

Tischler, M.L.; Pergler, C.; Wilson, M.; Mabry, D.; Stephenson, M.

1995-12-01T23:59:59.000Z

462

Energy efficiency in municipal wastewater treatment plants: Technology assessment  

SciTech Connect (OSTI)

The New York State Energy Research and Development Authority (NYSERDA) estimates that municipal wastewater treatment plants (WWTPs) in New York State consume about 1.5 billion kWh of electricity each year for sewage treatment and sludge management based on the predominant types of treatment plants, the results of an energy use survey, and recent trends in the amounts of electricity WWTPs use nationwide. Electric utilities in New York State have encouraged demand-side management (DSM) to help control or lower energy costs and make energy available for new customers without constructing additional facilities. This report describes DSM opportunities for WWTPs in New York State; discusses the costs and benefits of several DSM measures; projects energy impact statewide of the DSM technologies; identifies the barrier to implementing DSM at WWTPs; and outlines one possible incentive that could stimulate widespread adoption of DSM by WWTP operators. The DSM technologies discussed are outfall hydropower, on-site generation, aeration efficiency, time-of-day electricity pricing, and storing wastewater.

NONE

1995-11-01T23:59:59.000Z

463

Integrated facility for municipal solid waste disposal, electrical generation, and desalination. Master`s thesis  

SciTech Connect (OSTI)

A preliminary design was completed for a facility that uses municipal solid waste as fuel for generating electricity and cogeneration steam for a seawater desalination unit. An average city of 100,000 population is the basis of the design. The design showed that heat from the combustion of municipal solid waste will provide nearly 2% of per capita electrical power needs and 7% of fresh water requirements. This thesis proposes a new arrangement of known technologies for use in Public Works.

Hanby, G.F.

1995-12-31T23:59:59.000Z

464

The importance of public relations to municipal parks and recreation departments in the State of Texas  

E-Print Network [OSTI]

THE IMPORTANCE OF PUBLIC RELATIONS TO MUNICIPAL PARKS AND RECREATION DEPARTMENTS IN THE STATE OF TEXAS A Thesis by WILLIAM JON EDWARD HILDEBRANDT Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1982 Major Subjects Recreation and Resources Development THE IMPORTANCE OF PUBLIC RELATIONS TO MUNICIPAL PARKS AND RECREATION DEPARTMENTS IN THE STATE OF TEXAS A Thesis by WILLIAM JON EDWARD...

Hildebrandt, William Jon Edward

2012-06-07T23:59:59.000Z

465

Use of Municipal Assistance Programs to Advance the Adoption of Solar Technologies (Note: Real One)  

Broader source: Energy.gov [DOE]

This report serves as a tool for municipalities and organizations that are exploring programs to facilitate the installation of solar energy technologies at the local level. The report discusses programs being implemented in Berkeley, San Francisco, and Madison. Program design considerations, lessons learned from program administrators, and recommendations to consider when designing a municipal assistance program are included, but no program design is prescribed. Recommendations should be customized to serve the needs of a specific market.

466

Field versus laboratory characterization of clay deposits for use as in situ municipal landfill liners  

E-Print Network [OSTI]

FIELD VERSUS LABORATORY CHARACTERIZATION OF CLAY DEPOSITS FOR USE AS IN SITU MUNICIPAL LANDFILL LINERS A Thesis by SHARON ELIZABETH WECHSLER Submitted to the Office of Graduate Studies Texas Aa? University in partial fulfillment... of the requirement for the degree of . KASTER OF SCIENCE Nay 1990 Major Subject: Geology FIELD VERSUS LABORATORY CHARACTERIZATION OF CLAY DEPOSITS FOR USE AS IN SITU MUNICIPAL LANDFILL LINERS A Thesis by SHARON ELIZABETH WECHSLER Approved as to style...

Wechsler, Sharon Elizabeth

2012-06-07T23:59:59.000Z

467

A new technique to monitor ground-water quality at municipal solid waste landfills  

E-Print Network [OSTI]

A NEW TECHNIQUE TO MONITOR GROUND-WATER EQUALITY AT MUNICIPAL SOLID WASTE LANDFILLS A Thesis by STEVEN CHARLES HART Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1989 Major Subject: Geology A NEW TECHNIIIUE TO MONITOR GROUND-WATER IIUALITY AT MUNICIPAL SOLID WASTE LANDFILLS A Thesis by STEVEN CHARLES HART Approved as to style and content by: Christo her C. Mathewson (Chair...

Hart, Steven Charles

2012-06-07T23:59:59.000Z

468

Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES  

SciTech Connect (OSTI)

The Carbonaceous Aerosols and Radiative Effects Study (CARES) took place in the Sacramento Valley of California in summer 2010. We present results obtained at Cool, CA, the T1 site of the project ({approx}40 km downwind of urban emissions from Sacramento), where we deployed an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) in parallel with complementary instrumentation to characterize the sources and processes of submicron particles (PM1). Cool is located at the foothill of the Sierra Nevada Mountains, where intense biogenic emissions are periodically mixed with urban outflow transported by daytime southwesterly winds from the Sacramento metropolitan area. The particle mass loading was low (3.0 {micro}gm{sup -3} on average) and dominated by organics (80% of the PM1 mass) followed by sulfate (9.9 %). Organics and sulfate appeared to be externally mixed, as suggested by their different time series (r2 = 0.13) and size distributions. Sulfate showed a bimodal distribution with a droplet mode peaking at {approx}400nm in vacuum aerodynamic diameter (Dva), and a condensation mode at {approx}150 nm, while organics generally displayed a broad distribution in 60-600nm (Dva). New particle formation and growth events were observed almost every day, emphasizing the roles of organics and sulfate in new particle growth, especially that of organics. The organic aerosol (OA) had a nominal formula of C{sub 1}H{sub 1.38}N{sub 0.004}O{sub 0.44}, thus an average organic mass-to-carbon (OM/OC) ratio of 1.70. Two different oxygenated OA (OOA, 90% of total OA mass) and a hydrocarbon-like OA (HOA, 10 %) were identified by Positive matrix factorization (PMF) of the high resolution mass spectra. The more oxidized MO-OOA (O/C = 0.54) corresponded to secondary OA (SOA) primarily influenced by biogenic emissions, while the less oxidized LO-OOA (O/C = 0.42) corresponded to SOA associated with urban transport. The HOA factor corresponded to primary emissions mainly due to local traffic. Twenty three periods of urban plumes from T0 (Sacramento) to T1 (Cool) were identified using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). The average PM1 mass loading was much higher in urban plumes (3.9 {micro}gm{sup -3}) than in air masses dominated by biogenic SOA (1.8 {micro}gm{sup -3}). The change in OA mass relative to CO ({Delta}OA/{Delta}CO) varied in the range of 5-196 {micro}gm{sup -3} ppm{sup -1}, reflecting large variability in SOA production. The highest {Delta}OA/{Delta}CO were reached when urban plumes arrived at Cool in the presence of a high concentration of biogenic volatile organic compounds (BVOCs=isoprene+monoterpenes+2-methyl-3-buten-2- ol [MBO]+methyl chavicol). This ratio, which was 77 {micro}gm{sup -3} ppm{sup -1} on average when BVOCs > 2 ppb, is much higher than when urban plumes arrived in a low biogenic VOCs environment (28 {micro}gm{sup -3} ppm{sup -1} when BVOCs < 0.7 ppb) or during other periods dominated by biogenic SOA (40 {micro}gm{sup -3} ppm{sup -1}). The results from this study demon10 strate that SOA formation is enhanced when anthropogenic emissions interact with biogenic precursors.

Setyan, Ari; Zhang, Qi; Merkel, M.; Knighton, Walter B.; Sun, Y.; Song, Chen; Shilling, John E.; Onasch, Timothy B.; Herndon, Scott C.; Worsnop, Douglas R.; Fast, Jerome D.; Zaveri, Rahul A.; Berg, Larry K.; Wiedensohler, A.; Flowers, B. A.; Dubey, Manvendra K.; Subramanian, R.

2012-09-11T23:59:59.000Z

469

The Natural Gas Competition and Regulation Act of 1998 (Georgia) |  

Broader source: Energy.gov (indexed) [DOE]

The Natural Gas Competition and Regulation Act of 1998 (Georgia) The Natural Gas Competition and Regulation Act of 1998 (Georgia) The Natural Gas Competition and Regulation Act of 1998 (Georgia) < Back Eligibility Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Investor-Owned Utility Low-Income Residential Municipal/Public Utility Residential Rural Electric Cooperative Utility Program Info State Georgia Program Type Generating Facility Rate-Making Industry Recruitment/Support The Natural Gas Competition and Deregulation Act's stated intent and purposes are to: promote competition; protect the consumer during and after the transition to competition; maintain and encourage safe and reliable service; deregulate those components of the industry subject to actual competition; continue to regulate those services subject to monopoly power;

470

Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten  

Broader source: Energy.gov (indexed) [DOE]

Electric Transmission and Fuel Gas Transmission Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York) Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York) < Back Eligibility Commercial Fuel Distributor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New York Program Type Siting and Permitting Provider New York State Public Service Commission Any person who wishes to construct an electric or gas transmission line that is more than ten miles long must file documents describing the construction plans and potential land use and environmental impacts of the proposed transmission line. The regulations describe application and review

471

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway  

Broader source: Energy.gov (indexed) [DOE]

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation applies to public utilities and entities furnishing natural gas, heat, water, sewerage, and street railway services to the public. The legislation addresses rates and services, exemptions, investigations, and records. Article 4 (58-5-400 et seq.) of this

472

Regulation of Gas, Electric, and Water Companies (Maryland) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Regulation of Gas, Electric, and Water Companies (Maryland) Regulation of Gas, Electric, and Water Companies (Maryland) Regulation of Gas, Electric, and Water Companies (Maryland) < Back Eligibility Agricultural Commercial Construction Industrial Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Safety and Operational Guidelines Siting and Permitting Provider Maryland Public Service Commission The Public Service Commission is responsible for regulating gas, electric, and water companies in the state. This legislation contains provisions for such companies, addressing planning and siting considerations for electric

473

Canada Oil and Gas Operations Act (Canada) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Canada Oil and Gas Operations Act (Canada) Canada Oil and Gas Operations Act (Canada) Canada Oil and Gas Operations Act (Canada) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info Start Date 1985 Program Type Environmental Regulations Equipment Certification Fees Generating Facility Rate-Making Generation Disclosure Industry Recruitment/Support Safety and Operational Guidelines Siting and Permitting Provider Canada National Energy Board The purpose of this Act is to promote safety, the protection of the environment, the conservation of oil and gas resources, joint production arrangements, and economically efficient infrastructures.

474

Natural Gas Utility Conservation Programs (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Natural Gas Utility Conservation Programs (Maine) Natural Gas Utility Conservation Programs (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Mandatory Utility Green Power Option Provider Public Utilities Commission This Chapter describes how natural gas utilities serving more than 5,000 residential customers must implement natural gas energy conservation programs. The regulations describe

475

Oil and Gas Environmental Review and Approval Processes (New Brunswick,  

Broader source: Energy.gov (indexed) [DOE]

Oil and Gas Environmental Review and Approval Processes (New Oil and Gas Environmental Review and Approval Processes (New Brunswick, Canada) Oil and Gas Environmental Review and Approval Processes (New Brunswick, Canada) < Back Eligibility Commercial Developer Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State New Jersey Program Type Environmental Regulations Provider New Brunswick Natural Resources Oil and natural gas companies engaged in exploration, development and production in New Brunswick will be required by the Department of Environment to undergo a Phased Environmental Impact Assessment (EIA) process. The process will identify potential environmental impacts at the early stages before a project is implemented so that negative environmental impacts can be avoided.

476

Ground Gas Handbook  

Science Journals Connector (OSTI)

...pathways of least resistance to gas transport, and applications are discussed, such as migrating landfill gas emissions, also from leaking landfill gas collection systems, as well as natural gas and oil-field gas leakage from abandoned production...

Allen W Hatheway

477

Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales  

Science Journals Connector (OSTI)

...two previously normal wells that displayed increased...tectonic (e.g., geothermal springs) or microbial...subset of drinking water wells near Marcellus shale...Domestic and Municipal Water Wells for Dissolved Gas Analysis...nitrate flux to the Gulf of Mexico. Ground Water 42...

Thomas H. Darrah; Avner Vengosh; Robert B. Jackson; Nathaniel R. Warner; Robert J. Poreda

2014-01-01T23:59:59.000Z

478

Gas Delivered  

Gasoline and Diesel Fuel Update (EIA)

. Average . Average Price of Natural Gas Delivered to Residential Consumers, 1980-1996 Figure 1980 1982 1984 1986 1988 1990 1992 1994 1996 0 2 4 6 8 10 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Feet Dollars per Thousand Cubic Meters Nominal Dollars Constant Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 1995 dollars using the chain-type price indexes for Gross Domestic Product (1992 = 1.0) as published by the U. S. Department of Commerce, Bureau of Economic Analysis. Residential: Prices in this publication for the residential sector cover nearly all of the volumes of gas delivered. Commercial and Industrial: Prices for the commercial and industrial sectors are often associated with

479

Geological evolution and analysis of confirmed or suspected gas hydrate localities: Volume 6, Basin analysis, formation and stability of gas hydrates in the Panama Basin  

SciTech Connect (OSTI)

This report presents a geological description of the Panama Basin, including regional and local structural settings, geomorphology, geological history, stratigraphy, and physical properties. It provides the necessary regional and geological background for more in-depth research of the area. Detailed discussion of bottom simulating acoustic reflectors, sediment acoustic properties, distribution of hydrates within the sediments, and the relation of hydrate distribution to other features such as salt diapirism are also included. The formation and stabilization of gas hydrates in sediments are considered in terms of phase relations, nucleation, and crystallization constraints, gas solubility, pore fluid chemistry, inorganic diagenesis, and sediment organic content. Together with a depositional analysis of the area, this report is a better understanding of the thermal evolution of the locality. It should lead to an assessment of the potential for both biogenic and thermogenic hydrocarbon generation. 63 refs., 38 figs., 7 tabs.

Krason, J.; Ciesnik, M.

1986-03-01T23:59:59.000Z

480

Geological evolution and analysis of confirmed or suspected gas hydrate localities: Volume 9, Formation and stability of gas hydrates of the Middle America Trench  

SciTech Connect (OSTI)

This report presents a geological description of the Pacific margin of Mexico and Central America, including regional and local structural settings, geomorphology, geological history, stratigraphy, and physical properties. It provides the necessary regional and geological background for more in-depth research of the area. Detailed discussion of bottom simulating acoustic reflectors, sediment acoustic properties, and distribution of hydrates within the sediments are also included in this report. The formation and stabilization of gas hydrates in sediments are considered in terms of phase relations, nucleation, and crystallization constraints, gas solubility, pore fluid chemistry, inorganic diagenesis, and sediment organic content. Together with a depositional analysis of the area, this report is a better understanding of the thermal evolution of the locality. It should lead to an assessment of the potential for both biogenic and thermogenic hydrocarbon generation. 150 refs., 84 figs., 17 tabs.

Finley, P.; Krason, J.

1986-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas biogenic municipal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Utilization of municipal wastewater for cooling in thermoelectric power plants  

SciTech Connect (OSTI)

A process simulation model has been developed using Aspen Plus(R) with the OLI (OLI System, Inc.) water chemistry model to predict water quality in the recirculating cooling loop utilizing secondary- and tertiary-treated municipal wastewater as the source of makeup water. Simulation results were compared with pilot-scale experimental data on makeup water alkalinity, loop pH, and ammonia evaporation. The effects of various parameters including makeup water quality, salt formation, NH{sub 3} and CO{sub 2} evaporation mass transfer coefficients, heat load, and operating temperatures were investigated. The results indicate that, although the simulation model can capture the general trends in the loop pH, experimental data on the rates of salt precipitation in the system are needed for more accurate prediction of the loop pH. It was also found that stripping of ammonia and carbon dioxide in the cooling tower can influence the cooling loop pH significantly. The effects of the NH{sub 3} mass transfer coefficient on cooling loop pH appear to be more significant at lower values (e.g., k{sub NH3}< 4×10{sup -3} m/s) when the makeup water alkalinity is low (e.g., <90 mg/L as CaCO{sub 3}). The effect of the CO{sub 2} mass transfer coefficient was found to be significant only at lower alkalinity values (e.g., k{sub CO2}<4×10{{sup -6} m/s).

Safari, Iman; Walker, Michael E.; Hsieh, Ming-Kai; Dzombak, David A.; Liu, Wenshi; Vidic, Radisav D.; Miller, David C.; Abbasian, Javad

2013-09-01T23:59:59.000Z

482

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

483

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

484

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

485

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

486

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

487

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

488

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

489

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

490

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

491

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

492

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

493

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

494

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

495

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

496

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

497

Gas vesicles.  

Science Journals Connector (OSTI)

...the gas vesicles simply reduce their sinking rates and...remaining suspended in the water column. A microorganism...phenomena as stratification, water- bloom formation, and...the many proteins that make up the phycobilisome (73...flagellate bacteria in natural waters. The natural selection...

A E Walsby

1994-03-01T23:59:59.000Z

498

Gas vesicles.  

Science Journals Connector (OSTI)

...these costs can be compared is in units of energy expenditure per time (joules per second...requires 7.24 x 10-18 kg of Gvp. The energy cost of making this protein, Eg, is...Eg = 2.84 x 101- o J. The rate of energy expenditure in gas vesicle synthesis then...

A E Walsby

1994-03-01T23:59:59.000Z

499

Gas sensor  

DOE Patents [OSTI]

A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

2014-09-09T23:59:59.000Z

500

Liquid Natural Gas  

Science Journals Connector (OSTI)

Liquid Natural Gas ... IN A new technique for storing natural gas at the East Ohio Gas Co. plant, Cleveland, Ohio, the gas is liquefied before passing to the gas holders. ... Natural gas contains moisture and carbon dioxide, both of which liquefy before the natural gas and are somewhat of a nuisance because upon solidification they clog the pipes. ...

W. F. SCHAPHORST

1941-04-25T23:59:59.000Z