Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems  

E-Print Network [OSTI]

linked with gas transfer. Microbreaking, or the breakdown of small-scale waves that do not entrain airEnvironmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems; accepted 5 April 2007; published 17 May 2007. [1] Air-water gas transfer influences CO2 and other

Ho, David

2

A Laboratory Study of the Schmidt Number Dependency of Air-Water Gas  

E-Print Network [OSTI]

. Sc = /D denotes the Schmidt number, the ratio of kinematic viscosity of water and the tracersA Laboratory Study of the Schmidt Number Dependency of Air-Water Gas Transfer Kerstin Richter1 of exchange hap- pens with an exponent of 1/2 and links this fraction with a physical property of the wave

Jaehne, Bernd

3

Conservation Division regiulations for appliance-efficiency standards relating to refrigerators and freezers, room air conditioners, central air conditioners, gas space heaters, water heaters, plumbing fittings, gas clothes dryers, and gas cooking appliances  

SciTech Connect (OSTI)

The text of the appliance efficiency standards for certain types of new appliances sold in California is presented. Specifications and test methods to identify complying refrigerators, freezers, air conditioners, gas space heaters, water heaters, plumbing fittings, gas clothes dryers, and gas cooking appliances are covered.

Not Available

1981-12-16T23:59:59.000Z

4

Summary of research and development effort on air and water cooling of gas turbine blades  

SciTech Connect (OSTI)

The review on air- and water-cooled gas turbines from the 1904 Lemale-Armengaud water-cooled gas turbine, the 1948 to 1952 NACA work, and the program at GE indicates that the potential of air cooling has been largely exploited in reaching temperatures of 1100/sup 0/C (approx. 2000/sup 0/F) in utility service and that further increases in turbine inlet temperature may be obtained with water cooling. The local heat flux in the first-stage turbine rotor with water cooling is very high, yielding high-temperature gradients and severe thermal stresses. Analyses and tests indicate that by employing a blade with an outer cladding of an approx. 1-mm-thick oxidation-resistant high-nickel alloy, a sublayer of a high-thermal-conductivity, high-strength, copper alloy containing closely spaced cooling passages approx. 2 mm in ID to minimize thermal gradients, and a central high-strength alloy structural spar, it appears possible to operate a water-cooled gas turbine with an inlet gas temperature of 1370/sup 0/C. The cooling-water passages must be lined with an iron-chrome-nickel alloy must be bent 90/sup 0/ to extend in a neatly spaced array through the platform at the base of the blade. The complex geometry of the blade design presents truly formidable fabrication problems. The water flow rate to each of many thousands of coolant passages must be metered and held to within rather close limits because the heat flux is so high that a local flow interruption of only a few seconds would lead to a serious failure.Heat losses to the cooling water will run approx. 10% of the heat from the fuel. By recoverying this waste heat for feedwater heating in a command cycle, these heat losses will give a degradation in the power plant output of approx. 5% relative to what might be obtained if no cooling were required. However, the associated power loss is less than half that to be expected with an elegant air cooling system.

Fraas, A.P.

1980-03-01T23:59:59.000Z

5

B.Jhne and E. Monahan (eds.), Air-Water GasTransfer, 1995 by AEON Verlag I Physical and Chemical Mechanisms  

E-Print Network [OSTI]

W. K. Melville E. Terrill L. Ding Field Measurements of Air Entrainment by Breaking Waves D. FarmerB.Jähne and E. Monahan (eds.), Air-Water GasTransfer, © 1995 by AEON Verlag I Physical and Chemical Mechanisms B. Jähne Impact of Quantitative Visualization and Image Processing on the Study of Small-Scale Air

Jaehne, Bernd

6

Oil and Gas Air Heaters  

E-Print Network [OSTI]

, the relation of hot-air temperature, oil or gas consumption and fresh airflow is determined based on energy equilibrium....

Kou, G.; Wang, H.; Zhou, J.

2006-01-01T23:59:59.000Z

7

air-sea gas exchange: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

were Ho, David 49 AIR-WATER GAS EXCHANGE: MECHANISMS GOVERNING THE COMBINED EFFECTS OF WIND AND RAIN ON THE GAS TRANSFER Geosciences Websites Summary: AIR-WATER GAS EXCHANGE:...

8

International Lige Colloquium on Ocean Dynamics, GAS TRANSFER AT WATER SURFACES, May 2 -6 2005 Estimation of air-sea gas and heat fluxes from infrared imagery and  

E-Print Network [OSTI]

2005 Estimation of air-sea gas and heat fluxes from infrared imagery and surface wave measurements and much higher heat fluxes. In addition, the infrared imagery analysis reveals potentially significant the infrared images. It is also shown that the difference in the surface boundary conditions for heat and gas

Jaehne, Bernd

9

Gas Water Heater Energy Losses  

E-Print Network [OSTI]

residential gas-fired storage water heater was modeled underin a typical residential storage water heater that meets thereplace a gas-fired storage water heater with a conventional

Biermayer, Peter

2012-01-01T23:59:59.000Z

10

Natural Gas Heat Pump and Air Conditioner | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Heat Pump and Air Conditioner Natural Gas Heat Pump and Air Conditioner Lead Performer: Thermolift - Stony Brook, NY Partners: -- New York State Energy Research &...

11

Clearing the air with natural gas engines  

SciTech Connect (OSTI)

This article examines the increased popularity of natural gas vehicles which has spurred engine designers to manipulate fuel-air ratios, compression ratios, ignition timing, and catalytic converters in ways to minimize exhaust pollutants. The topics of the article include reducing pollutants, high-octane engineering, diesel to natural gas, and the two-fuel choice.

O'Connor, L.

1993-10-01T23:59:59.000Z

12

Water augmented indirectly-fired gas turbine systems and method  

DOE Patents [OSTI]

An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

Bechtel, Thomas F. (Lebanon, PA); Parsons, Jr., Edward J. (Morgantown, WV)

1992-01-01T23:59:59.000Z

13

Analysis of Water Modeling of Air Entrainment  

E-Print Network [OSTI]

Analysis of Water Modeling of Air Entrainment S.C. Jain Professor and Research Engineer Dept. Civil, C., "Analysis of Water Modeling of Air Entrainment," in Proceedings of the 48th SFSA Technical An analysis is reported of the water modeling experiments of Bates et al. (1994) to study air entrainment

Beckermann, Christoph

14

AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA  

E-Print Network [OSTI]

Gas Industrial Natural Gas Combustion (Unspecified) CO lb/MMcf Commercial Natural Gas Combustion - Water HeatingCommercial Natural Gas Combustion - Space Heating NO X CO

Carerras-Sospedra, Marc

2012-01-01T23:59:59.000Z

15

Design, modelling and control of a gas turbine air compressor .  

E-Print Network [OSTI]

??The production of compressed air constitutes a considerable portion of industrial electrical consumption. An alternative to electrically driven air compression systems is a gas turbine (more)

WIESE, ASHLEY PETER

2014-01-01T23:59:59.000Z

16

IntegratedScienceWorkingforYou Air, Water,  

E-Print Network [OSTI]

IntegratedScienceWorkingforYou Air, Water, and Aquatic Environments Fire, Fuel, and Smoke Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Montana ecosystem restoration treatments . . . . .4 RPA Assessment: U .S . water supply shortage . . .4 Aviationpersonnelexposuretowildfirerisk . . . .5

17

1 Copyright 2006 by ASME A NUMERICAL ANALYSIS OF GROWING WATER DROPLET INSIDE AN AIR  

E-Print Network [OSTI]

1 Copyright © 2006 by ASME A NUMERICAL ANALYSIS OF GROWING WATER DROPLET INSIDE AN AIR SUPPLY is performed to analyze the growth and departure of a water droplet inside a minichannel with air flowing and air coming in through the channel inlet. This is a typical situation encountered in the gas flow

Kandlikar, Satish

18

Global climate change will affect air, water in California  

E-Print Network [OSTI]

Department of Land, Air and Water Resources, UC Davis. Hechange will affect air, water in California Bryan C. Wearelikely to include reduced water availability and quality,

Weare, Bryan C.

2002-01-01T23:59:59.000Z

19

natural gas+ condensing flue gas heat recovery+ water creation...  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

20

Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction  

E-Print Network [OSTI]

fingerprinting | fracking | hydrology and ecology Unconventional sources of gas and oil are transforming energy and horizontal drilling are also growing (4, 5). These concerns include changes in air quality (6), human health the greenhouse gas balance (8, 9). Perhaps the biggest health concern remains the potential for drinking water

Jackson, Robert B.

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA  

E-Print Network [OSTI]

4: Modeling Emissions from Natural Gas-Related Sources 4.1Penetration of Liquefied Natural Gas Table ES2: Impacts ontypical summer demand of natural gas in the South Coast Air

Carerras-Sospedra, Marc

2012-01-01T23:59:59.000Z

22

Air bubbles clean produced water for reinjection  

SciTech Connect (OSTI)

The reuse of produced water in a waterflood may be hazardous to the health and wealth of the reservoir. Disposal of produced water and finding a new source of water for a waterflood can double your costs. Air flotation is being tested to rehabilitate produced water on a lease in eastern Kansas. The use of air flotation in the oil field is at least forty years old. However, many operators are reluctant to spend the capital for surface equipment to assure a supply of good quality water for their waterflood operation. Before the installation of the air flotation unit only the produced water was filtered through a 75-micron bag and the filter water was then added to the make-up water. Seventy-five micron cartridge filters were used at the wellhead. Both the plant and wellhead filters required frequent replacement. Injection wells averaged more than one cleaning and acidization per year. Since installation of the air flotation unit, the combined produced and makeup water is passed through either a 25-or 10-micron bag filter in the plant and a 10-micron cartridge at the wellhead. The results of the test being conducted by an independent oil operator show a reduction in the cost for the water injection system. This study is part of the Department of Energy Class I PONS with independent oil operators.

Michnick, M.J. [Univ. of Kansas, Lawrence, KS (United States)

1995-12-31T23:59:59.000Z

23

Coaxial fuel and air premixer for a gas turbine combustor  

DOE Patents [OSTI]

An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.

York, William D; Ziminsky, Willy S; Lacy, Benjamin P

2013-05-21T23:59:59.000Z

24

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge  

E-Print Network [OSTI]

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge K 73019 Received October 11, 2002 In this study, synthesis gas production in an AC electric gas discharge of methane and air mixtures at room temperature and ambient pressure was investigated. The objective

Mallinson, Richard

25

Oil and Gas CDT Coupled flow of water and gas  

E-Print Network [OSTI]

Oil and Gas CDT Coupled flow of water and gas during hydraulic fracture in shale The University of Oxford http://www.earth.ox.ac.uk/people/profiles/academic/joec Key Words Shale gas, hydraulic fracture, groundwater contamination, transport in porous media Overview Recovery of natural gas from mudstone (shale

Henderson, Gideon

26

Air and water cooled modulator  

DOE Patents [OSTI]

A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

Birx, Daniel L. (Oakley, CA); Arnold, Phillip A. (Livermore, CA); Ball, Don G. (Livermore, CA); Cook, Edward G. (Livermore, CA)

1995-01-01T23:59:59.000Z

27

Air and water cooled modulator  

DOE Patents [OSTI]

A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

1995-09-05T23:59:59.000Z

28

Saving Money with Air and Gas Leak Surveys  

E-Print Network [OSTI]

uncorrected air leaks and gas leaks cost your businesses time and money as well as being environmentally unfriendly. ? Air Leak Surveys ? Nitrogen Leak Surveys ? Gas Leak Survey (H2, O2, Natural Gas) ? Steam Leak Surveys ? Steam Trap Surveys ? Safe... costly problems ? Are caused by dozens, perhaps hundreds of hard to pinpoint outflows which are caused by vibrations and a corrosive atmosphere. ?We can find your leaks in areas that that would be unnoticed and undetected to the human ear ? Details...

Woodruff, D.

2010-01-01T23:59:59.000Z

29

Recovery of Water from Boiler Flue Gas  

SciTech Connect (OSTI)

This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

2008-09-30T23:59:59.000Z

30

Correlation of Oil-Water and Air-Water Contact Angles of Diverse...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil-Water and Air-Water Contact Angles of Diverse Silanized Surfaces and Relationship to Fluid Interfacial Correlation of Oil-Water and Air-Water Contact Angles of Diverse...

31

Tankless Gas Water Heater Performance - Building America Top...  

Energy Savers [EERE]

Tankless Gas Water Heater Performance - Building America Top Innovation Tankless Gas Water Heater Performance - Building America Top Innovation This photo shows a hot water heater...

32

Influence of rain on air-sea gas exchange: Lessons from a model ocean David T. Ho,1,2  

E-Print Network [OSTI]

Influence of rain on air-sea gas exchange: Lessons from a model ocean David T. Ho,1,2 Christopher J-sea gas exchange: Lessons from a model ocean, J. Geophys. Res., 109, C08S18, doi:10.1029/2003JC001806. 1; published 1 July 2004. [1] Rain has been shown to significantly enhance the rate of air-water gas exchange

Ho, David

33

FEMP Designated Product Assessment for Commercial Gas Water Heaters  

E-Print Network [OSTI]

the CFR as being storage water heaters, instantaneous watersupply boilers. Storage water heater means a water heaterAppliance Gas storage water heaters Definition a water

Lutz, Jim

2012-01-01T23:59:59.000Z

34

Gas Water Heater Energy Losses  

E-Print Network [OSTI]

Input Screens SCREEN D1: WATER HEATER SPECIFICATIONS 1. Tankthe house. Supply pipe this is the water heater inlet pipewith refills the water heater with cold water Note: The TANK

Biermayer, Peter

2012-01-01T23:59:59.000Z

35

SIMULATION, MODELING AND ANALYSIS OF A WATER TO AIR  

E-Print Network [OSTI]

SIMULATION, MODELING AND ANALYSIS OF A WATER TO AIR HEAT PUMP By ARUN SHENOY Bachelor December, 2004 #12;SIMULATION, MODELING AND ANALYSIS OF A WATER TO AIR HEAT PUMP Thesis Approved................................................................3 2.1. Equation fit water to air heat pump and chiller models...............................3 2

36

Water Modeling of Steel Flow, Air Entrainment and Filtration  

E-Print Network [OSTI]

Water Modeling of Steel Flow, Air Entrainment and Filtration Christoph Beckermann Associate Beckermann, C., "Water Modeling of Steel Flow, Air Entrainment and Filtration," in Proceedings of the 46th, 1992. #12;Abstract This paper presents an analysis of water modeling of steel pouring to study (1) air

Beckermann, Christoph

37

Gas Powered Air Conditioning Absorption vs. Engine-Drive  

E-Print Network [OSTI]

It used to be that the only alternative to costly electric air conditioning was the double-effect gas-fired absorption chiller/heaters. Beginning in the 1980's, they were the "star" equipment promoted by gas companies throughout the nation. Although...

Phillips, J. N.

1996-01-01T23:59:59.000Z

38

Dynamic characteristics of gas-water interfacial plasma under water  

SciTech Connect (OSTI)

Gas-water interfacial plasmas under water were generated in a compact space in a tube with a sandglass-like structure, where two metal wires were employed as electrodes with an applied 35 kHz ac power source. The dynamic behaviors of voltage/current were investigated for the powered electrode with/without water cover to understand the effect of the gas-water interface. It is found that the discharge exhibits periodic pulsed currents after breakdown as the powered electrode is covered with water, whereas the electrical current reveals a damped oscillation with time with a frequency about 10{sup 6} Hz as the powered electrode is in a vapor bubble. By increasing water conductivity, a discharge current waveform transition from pulse to oscillation presents in the water covering case. These suggest that the gas-water interface has a significant influence on the discharge property.

Zheng, S. J.; Zhang, Y. C.; Ke, B.; Ding, F.; Tang, Z. L.; Yang, K.; Zhu, X. D. [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

2012-06-15T23:59:59.000Z

39

DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS  

SciTech Connect (OSTI)

Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected VOC soil gas concentrations during ASVE. Five (5) SVE wells that were located closest to the air injection wells were used as monitoring points during the air sparging tests. The air sparging tests lasted 48 hours. Soil gas sample results indicate that sparging did not affect VOC concentrations in four of the five sparging wells, while results from one test did show an increase in soil gas concentrations.

Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

2012-09-20T23:59:59.000Z

40

SOLAS Mid Term Strategy Initiative "Air-sea gas fluxes at Eastern boundary upwelling and Oxygen Minimum Zone (OMZ) systems"  

E-Print Network [OSTI]

of SOLAS and to the Workshop Véronique Garçon 09:50 Surface (energy and water) fluxes at the air1 SOLAS Mid Term Strategy Initiative "Air-sea gas fluxes at Eastern boundary upwelling and Oxygen

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Covered Product Category: Residential Gas Storage Water Heaters...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Water Heaters Covered Product Category: Residential Gas Storage Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for gas storage...

42

2 15.10.2013 Joachim Dietle Optimisation of Air-Water HP's Optimisation of Air-Water Heat Pumps  

E-Print Network [OSTI]

-Water Heat Pumps Ziehl-Abegg SE System boundary Improve Air Flow of Fan Improve System Joachim Dietle.10.2013 Joachim Dietle Optimisation of Air-Water HP's System boundary Air Flow in Heat Pumps V q d p st p P P L fan )( 1 Relevant for cooling or heating! Optimise heat pump: reduce pressure drop increase

Oak Ridge National Laboratory

43

Gas Water Heater Energy Losses  

E-Print Network [OSTI]

hr) 2. Pilot Input Rate (Btu/hr) 3. Excess Air (%) 4. Off-atm) 14. Higher Heating Value (Btu/SCF) 1028.0 15. SpecificProtection Tubes R (hr*ft2*F/Btu)? Fitting Emissivity SCREEN

Biermayer, Peter

2012-01-01T23:59:59.000Z

44

Air Impacts of Increased Natural Gas Acquisition, Processing, and Use: A Critical Review  

E-Print Network [OSTI]

Air Impacts of Increased Natural Gas Acquisition, Processing, and Use: A Critical Review to rapid and intensive development of many unconventional natural gas plays (e.g., shale gas, tight sand understanding of local and regional air quality impacts of natural gas extraction, production, and use. Air

Jackson, Robert B.

45

New Air and Water-Resistive Barrier Technologies for Commercial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Air and Water-Resistive Barrier Technologies for Commercial Buildings Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: 3M - Minneapolis, MN DOE Funding:...

46

Determining Air Quality and Greenhouse Gas Impacts of  

E-Print Network [OSTI]

Determining Air Quality and Greenhouse Gas Impacts of Hydrogen Infrastructure and Fuel Cell of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen

Dabdub, Donald

47

EA-1752: Pacific Gas & Electric Company (PG&E), Compressed Air...  

Broader source: Energy.gov (indexed) [DOE]

52: Pacific Gas & Electric Company (PG&E), Compressed Air Energy Storage (CAES) Compression Testing Phase Project, San Joaquin County, California EA-1752: Pacific Gas & Electric...

48

Chapter Four Assessing the Air Pollution, Greenhouse Gas, Air Quality, and Health Benefits of Clean Energy Initiatives  

E-Print Network [OSTI]

Many states and localities are exploring or implementing clean energy policies to achieve greenhouse gas (GHG) and criteria air pollutant1 emission reductions. Document map Chapter one

unknown authors

49

Covered Product Category: Commercial Gas Water Heaters  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial gas water heaters, which are covered by the ENERGY STAR program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

50

E-Print Network 3.0 - air-to-water heat pump Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fossil Fuels 20 piwf AFR ( )piwttp AkR Summary: for simulating refrigeration and air conditioning equipment of all types: air-to-air, air-to-water, water... flow is...

51

ENVXR 202: EARTH, AIR, WATER EXPERIMENTAL PROJECTS for Water (W) 25 Feb 2003  

E-Print Network [OSTI]

ENVXR 202: EARTH, AIR, WATER EXPERIMENTAL PROJECTS for Water (W) 25 Feb 2003 As we said about water and in deep water, watching the increase in amplitude of the motion when waves approach a shore...and make waves in deep water (at least 25 cm deep). How do they differ from waves in shallower water, say 5

52

Air entrainment in transient flows in closed water pipes: a two-layer approach  

E-Print Network [OSTI]

In this paper, we first construct a model for transient free surface flows that takes into account the air entrainment by a sytem of 4 partial differential equations. We derive it by taking averaged values of gas and fluid velocities on the cross surface flow in the Euler equations (incompressible for the fluid and compressible for the gas). Then, we propose a mathematical kinetic interpretation of this system to finally construct a well-balanced kinetic scheme having the properties of conserving the still water steady state and possesing an energy. Finally, numerical tests on closed uniforms water pipes are performed and discussed.

Bourdarias, Christian; Gerbi, Stphane

2009-01-01T23:59:59.000Z

53

Florida Air and Water Pollution Control Act (Florida)  

Broader source: Energy.gov [DOE]

It is the policy of the state of Florida to protect, maintain, and improve the quality of the air and waters of the state. This Act authorizes the Department of Environmental Protection to enact...

54

Environmental Regulations, Air and Water Pollution, & Infant Mortality in India  

E-Print Network [OSTI]

Using the most comprehensive data file ever compiled on air pollution, water pollution, environmental regulations, and infant mortality from a developing country, the paper examines the effectiveness of Indias environmental ...

Greenstone, Michael

2011-07-01T23:59:59.000Z

55

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network [OSTI]

develop condensing gas storage water heaters to qualify forgas furnace and gas storage water heater. This study focusesis predominantly storage water heaters. Regionally, gas-

Lekov, Alex

2011-01-01T23:59:59.000Z

56

Adaptive Air Charge Estimation for Turbocharged Diesel Engines without Exhaust Gas Recirculation  

E-Print Network [OSTI]

Adaptive Air Charge Estimation for Turbocharged Diesel Engines without Exhaust Gas Recirculation an adaptive observer for in-cylinder air charge estimation for turbocharged diesel engines without exhaust gas (734) 764-4256 1 #12;Storset et al.- Adaptive Air Charge Est. for TC Diesel Engines 2 1 Introduction

Stefanopoulou, Anna

57

Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California. Final report  

SciTech Connect (OSTI)

Residential space and water heating accounts for approximately 12% of California`s and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

Ganji, A. [San Francisco State Univ., CA (United States). Div. of Engineering

1992-07-01T23:59:59.000Z

58

Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California  

SciTech Connect (OSTI)

Residential space and water heating accounts for approximately 12% of California's and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

Ganji, A. (San Francisco State Univ., CA (United States). Div. of Engineering)

1992-07-01T23:59:59.000Z

59

Use of exhaust gas as sweep flow to enhance air separation membrane performance  

DOE Patents [OSTI]

An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

Dutart, Charles H. (Washington, IL); Choi, Cathy Y. (Morton, IL)

2003-01-01T23:59:59.000Z

60

FEMP Designated Product Assessment for Commercial Gas Water Heaters  

E-Print Network [OSTI]

price for a condensing commercial water heater is $1,579.For condensing commercial water heaters with a thermalFound products for water heater in any product field and gas

Lutz, Jim

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Applying a Domestic Water-cooled Air-conditioner in Subtropical Cities  

E-Print Network [OSTI]

Water-cooled air-conditioning systems (WACS) are in general more energy efficient than air-cooled air-conditioning systems (AACS), especially in subtropical climates where the outdoor air is hot and humid. Related studies focused on evaluating...

Lee, W.; Chen, H.

2006-01-01T23:59:59.000Z

62

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION  

SciTech Connect (OSTI)

Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperature to improve reaction kinetics. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H{sub 2} removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2}-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. In the first year of the project, we prepared a series of nanostructured Cu- and Fe-containing ceria catalysts by a special gelation/precipitation technique followed by air calcination at 650 C. Each sample was characterized by ICP for elemental composition analysis, BET-N2 desorption for surface area measurement, and by temperature-programmed reduction in H{sub 2} to evaluate catalyst reducibility. Screening WGS tests with catalyst powders were conducted in a flow microreactor at temperatures in the range of 200-550 C. On the basis of both activity and stability of catalysts in simulated coal gas, and in CO{sub 2}-rich gases, a Cu-CeO{sub 2} catalyst formulation was selected for further study in this project. Details from the catalyst development and testing work are given in this report. Also in this report, we present H{sub 2} permeation data collected with unsupported flat membranes of pure Pd and Pd-alloys over a wide temperature window.

Maria Flytzani-Stephanopoulos; Jerry Meldon; Xiaomei Qi

2001-12-01T23:59:59.000Z

63

Volcanic gas emissions and their effect on ambient air character  

SciTech Connect (OSTI)

This bibliography was assembled to service an agreement between Department of Energy and the USGS to provide a body of references and useful annotations for understanding background gas emissions from Kilauea volcano. The current East Rift Zone (ERZ) eruption of Kilauea releases as much as 500,000 metric tonnes of SO{sub 2} annually, along with lesser amounts of other chemically and radiatively active species including H{sub 2}S, HCl, and HF. Primary degassing locations on Kilauea are located in the summit caldera and along the middle ERZ. The effects of these emissions on ambient air character are a complex function of chemical reactivity, source geometry and effusivity, and local meteorology. Because of this complexity, we organized the bibliography into three main sections: (1) characterizing gases as they leave the edifice; (2) characterizing gases and chemical reaction products away from degassing sources; and (3) Hawaii Island meteorology.

Sutton, A.J. [Geological Survey, Menlo Park, CA (United States); Elias, T. [Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory

1994-01-01T23:59:59.000Z

64

affect gas exchange: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

were Ho, David 15 AIR-WATER GAS EXCHANGE: MECHANISMS GOVERNING THE COMBINED EFFECTS OF WIND AND RAIN ON THE GAS TRANSFER Geosciences Websites Summary: AIR-WATER GAS EXCHANGE:...

65

affects gas exchange: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

were Ho, David 15 AIR-WATER GAS EXCHANGE: MECHANISMS GOVERNING THE COMBINED EFFECTS OF WIND AND RAIN ON THE GAS TRANSFER Geosciences Websites Summary: AIR-WATER GAS EXCHANGE:...

66

Determination of Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests  

SciTech Connect (OSTI)

Soil desiccation (drying), involving water evaporation induced by dry air injection and extraction, is a potentially robust remediation process to slow migration of inorganic or radionuclide contaminants through the vadose zone. The application of gas-phase partitioning tracer tests has been proposed as a means to estimate initial water volumes and to monitor the progress of the desiccation process at pilot-test and field sites. In this paper, tracer tests have been conducted in porous medium columns with various water saturations using sulfur hexafluoride as the conservative tracer and tricholorofluoromethane and difluoromethane as the water-partitioning tracers. For porous media with minimal silt and/or organic matter fractions, tracer tests provided reasonable saturation estimates for saturations close to zero. However, for sediments with significant silt and/or organic matter fractions, tracer tests only provided satisfactory results when the water saturation was at least 0.1 - 0.2. For dryer conditions, the apparent tracer retardation increases due to air soil sorption, which is not included in traditional retardation coefficients derived from advection-dispersion equations accounting only for air water partitioning and water soil sorption. Based on these results, gas-phase partitioning tracer tests may be used to determine initial water volumes in sediments, provided the initial water saturations are sufficiently large. However, tracer tests are not suitable for quantifying moisture content in desiccated sediments.

Oostrom, Martinus; Tartakovsky, Guzel D.; Wietsma, Thomas W.; Truex, Michael J.; Dane, Jacob H.

2011-04-15T23:59:59.000Z

67

Regulation of Gas, Electric, and Water Companies (Maryland)  

Broader source: Energy.gov [DOE]

The Public Service Commission is responsible for regulating gas, electric, and water companies in the state. This legislation contains provisions for such companies, addressing planning and siting...

68

HYDROGEN PRODUCTION THROUGH WATER GAS SHIFT REACTION OVER NICKEL CATALYSTS.  

E-Print Network [OSTI]

??The progress in fuel cell technology has resulted in an increased interest towards hydrogen fuel. Consequently, water gas shift reaction has found a renewed significance. (more)

Haryanto, Agus

2008-01-01T23:59:59.000Z

69

Water-Gas Samples At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Valles Caldera - Redondo Geothermal Area (Janik & Goff, 2002)...

70

Estimation of Air-Sea Gas Transfer Using Conically Scanning SeaWinds Scatterometer Normalized Backscatter  

E-Print Network [OSTI]

Backscatter David M. Glover Department of Marine Chemistry and Geochemistry Woods Hole Oceanographic 2001 -- 31 March 2005 FINAL REPORT #12;Estimation of Air-Sea Gas Transfer from Scatterometry; Glover et . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-23 #12;Estimation of Air-Sea Gas Transfer from Scatterometry; Glover et al. ii B Daily Non

Glover, David M.

71

Water-to-Air Heat Pump Performance with Lakewater  

E-Print Network [OSTI]

The performance of water-to-air heat pumps using lakewater as the heat source and sink has been investigated. Direct cooling with deep lakewater has also been considered. Although the emphasis of the work was with southern lakes, many results also...

Kavanaugh, S.; Pezent, M. C.

1989-01-01T23:59:59.000Z

72

The AIR, the WATER, the SUN, the DUST,  

E-Print Network [OSTI]

to chemicals on the job or elsewhere in the environment. Researchers at The National Institute of Environmental#12;The AIR, the WATER, the SUN, the DUST, PLANTS and ANIMALS, and the CHEMICALS and METALS of our also make some people sick.Here are some diseases that are related to your Allergies and Asthma (AZ

Bandettini, Peter A.

73

Seasonal Variation in Monthly Average Air Change Rates Using Passive Tracer Gas Measurements  

E-Print Network [OSTI]

of indoor air pollution sources. Concurrently, great efforts are made to make buildings energy efficient 1970s, while less attention has been paid to IAQ. Insufficient venting of indoor air pollutantsSeasonal Variation in Monthly Average Air Change Rates Using Passive Tracer Gas Measurements Marie

Hansen, René Rydhof

74

AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA  

E-Print Network [OSTI]

Emissions 7.3 Impacts of LNG on Air Quality 8. References 9.El Paso at Blythe. Chapter 3: Air Quality Impact AssessmentRespect to the South Coast Air Quality Management District

Carerras-Sospedra, Marc

2012-01-01T23:59:59.000Z

75

Advanced Water-Gas Shift Membrane Reactor  

SciTech Connect (OSTI)

The overall objectives for this project were: (1) to identify a suitable PdCu tri-metallic alloy membrane with high stability and commercially relevant hydrogen permeation in the presence of trace amounts of carbon monoxide and sulfur; and (2) to identify and synthesize a water gas shift catalyst with a high operating life that is sulfur and chlorine tolerant at low concentrations of these impurities. This work successfully achieved the first project objective to identify a suitable PdCu tri-metallic alloy membrane composition, Pd{sub 0.47}Cu{sub 0.52}G5{sub 0.01}, that was selected based on atomistic and thermodynamic modeling alone. The second objective was partially successful in that catalysts were identified and evaluated that can withstand sulfur in high concentrations and at high pressures, but a long operating life was not achieved at the end of the project. From the limited durability testing it appears that the best catalyst, Pt-Re/Ce{sub 0.333}Zr{sub 0.333}E4{sub 0.333}O{sub 2}, is unable to maintain a long operating life at space velocities of 200,000 h{sup -1}. The reasons for the low durability do not appear to be related to the high concentrations of H{sub 2}S, but rather due to the high operating pressure and the influence the pressure has on the WGS reaction at this space velocity.

Sean Emerson; Thomas Vanderspurt; Susanne Opalka; Rakesh Radhakrishnan; Rhonda Willigan

2009-01-07T23:59:59.000Z

76

Air-sea gas exchange of CO 2 and DMS in the North Atlantic by eddy covariance  

E-Print Network [OSTI]

measurements of the air/sea flux of dimethylsulfide over the2008a), Open ocean DMS air/sea fluxes over the eastern SouthE. S. Saltzman (2008b), DMS air/sea flux and gas transfer

Miller, Scott D; Marandino, Christa A; De Bruyn, Warren; Saltzman, Eric S; McCormick, C.

2009-01-01T23:59:59.000Z

77

Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations  

E-Print Network [OSTI]

August 2006. [1] The SOLAS Air-Sea Gas Exchange (SAGE) Experiment was conducted in the western Pacific of air-sea gas exchange. Globally, the dominant control of air-sea gas exchange is turbulent energy as the primary source of energy for the atmospheric and oceanic molecular boundary layers have been derived from

Ho, David

78

Air and water flows in a large sand box with a two-layer aquifer system  

E-Print Network [OSTI]

Air and water flows in a large sand box with a two-layer aquifer system Xingxing Kuang & Jiu Jimmy negative air pressure can be generated in the vadose zone during pumping. The negative air pressure. The initial water-table depth has a significant effect on the generated negative air pressure. The shallower

Jiao, Jiu Jimmy

79

A study on an air-water Stirling engine  

SciTech Connect (OSTI)

A two-phase two-component Stirling engine using an air-water mixture as a working fluid is presently constructed and tested. This choice of working fluid, instead of usually adopted gases such as hydrogen and helium, is aimed to realize a high volumetric efficiency by high heat transfer coefficients of evaporation and condensation in the heat exchangers. Based upon the results of the performance test of the engine, the effects of the air-water mixture ratio and the heat input are mainly studied and discussed. It is concluded that using a condensable working fluid is an effective measure to improve the performance of the Stirling engine for a comparatively low temperature heat source.

Akayawa, H.; Hirata, M.; Kasayi, N.

1983-08-01T23:59:59.000Z

80

Direct Gas Fired Air Heating For 40 to 50% Fuel Savings  

E-Print Network [OSTI]

the safety aspects of direct gas fired air heating, the most important qUe~tion is whether there would be a harmful build up of carbon monoxide within the building as a result of!the products of combustion being released directly into the air stream.... The unvented infrared heaterslhave long been proven safe from this standpoint. By looking at the fundamental chemistry of combustion! of natural gas, the direct gas-fired make-up air heaters can be shown to produce lower concentrationsII of carbon monoxide...

Searcy, J. A.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Air/fuel supply system for use in a gas turbine engine  

SciTech Connect (OSTI)

A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

2014-06-17T23:59:59.000Z

82

E-Print Network 3.0 - air soil water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

iii. Soil-Plant Relationships iv. Cation exchange IV. Pollution of Water, Soil, and Air: (Lecture... unsaturated unsteady water flow X. Gaseous Phase of Soils (Hillel pages...

83

E-Print Network 3.0 - air water soil Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

iii. Soil-Plant Relationships iv. Cation exchange IV. Pollution of Water, Soil, and Air: (Lecture... unsaturated unsteady water flow X. Gaseous Phase of Soils (Hillel pages...

84

E-Print Network 3.0 - air water interfaces Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water interfaces Search Powered by Explorit Topic List Advanced Search Sample search results for: air water interfaces Page: << < 1 2 3 4 5 > >> 1 Determination of Methane...

85

Sudden structural change at ati air/binary liquid interface: Sum frequency study of the air/acetonitrile-water interface  

E-Print Network [OSTI]

Sudden structural change at ati air/binary liquid interface: Sum frequency study of the air/acetonitrile change in an air/acetonitrile-water interface as the solution composition varies; the abruptness of which and in the polarization of the signal from the acetonitrile molecules in the interface observed using infrared + visible

Eisenthal, Kenneth B.

86

Plasma Kinetics in Electrical Discharge in Mixture of Air, Water and Ethanol Vapors for Hydrogen Enriched Syngas Production  

E-Print Network [OSTI]

The complex theoretical and experimental investigation of plasma kinetics of the electric discharge in the mixture of air and ethanol-water vapors is carried out. The discharge was burning in the cavity, formed by air jets pumping between electrodes, placed in aqueous ethanol solution. It is found out that the hydrogen yield from the discharge is maximal in the case when ethanol and water in the solution are in equal amounts. It is shown that the hydrogen production increases with the discharge power and reaches the saturation at high value. The concentrations of the main stable gas-phase components, measured experimentally and calculated numerically, agree well in the most cases.

Shchedrin, A I; Ryabtsev, A V; Chernyak, V Ya; Yukhymenko, V V; Olszewski, S V; Naumov, V V; Prysiazhnevych, I V; Solomenko, E V; Demchina, V P; Kudryavtsev, V S

2008-01-01T23:59:59.000Z

87

Water-Gas Shift Membrane Reactor Studies  

E-Print Network [OSTI]

Coal, Petroleum coke, Biomass, Waste, etc. Gasifier Particulate Removal Air Separator Oxygen Air Steam - Transition to the Hydrogen Economy - CO2 capture and sequestration #12;Coal Gasification Technology Options&D Plan · Project falls within the Technical Objective to develop technology to produce pure H2 from coal

88

PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam Reforming, and Reverse-Water-Gas-Shift. PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam...

89

E-Print Network 3.0 - air-sea gas transfer Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

C 2006 The Authors Journal compilation C 2006 Blackwell Munksgaard Summary: and wind speed dependence of the air-sea gas transfer velocity By NIR Y. KRAKAUER1 , JAMES T....

90

Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs : a study for the DOE Energy Storage Systems Program.  

SciTech Connect (OSTI)

The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a function of time and proximity of the bubble boundary to the well. For all simulations reported here, with a formation radius above 50 m the maximum methane composition in the produced gas phase was less than 0.5%. This report provides an initial investigation of CAES in a depleted natural gas reservoir, and the results will provide useful guidance in CAES system investigation and design in the future.

Gardner, William Payton

2013-06-01T23:59:59.000Z

91

Air/water oxydesulfurization of coal: laboratory investigation  

SciTech Connect (OSTI)

Air/water oxidative desulfurization has been demonstrated in autoclave experiments at the Pittsburgh Energy Technology Center for various coals representative of the major US coal basins. This experimentation has shown that the reaction proceeds effectively for pulverized coals at temperatures of 150 to 200/sup 0/C with air at a total system pressure of 500 to 1500 psig. Above 200/sup 0/C, the loss of coal and product heating value increases due to oxidative consumption of carbon and hydrogen. The pyritic sulfur solubilization reactions are typically complete (95 percent removal) within 15 to 40 minutes at temperature; however, significant apparent organic sulfur removal requires residence times of up to 60 minutes at the higher temperatures. The principal products of the reaction are sulfuric acid, which can be neutralized with limestone, and iron oxide. Under certain conditions, especially for high pyritic sulfur coals, the precipitation of sulfur-containing compounds from the products of the pyrite reaction may cause anomalous variations in the sulfur form data. The influence of various parameters on the efficiency of sulfur removal from coal by air/water oxydesulfurization has been studied.

Warzinski, R. P.; Friedman, S.; Ruether, J. A.; LaCount, R. B.

1980-08-01T23:59:59.000Z

92

Cooling air recycling for gas turbine transition duct end frame and related method  

DOE Patents [OSTI]

A method of cooling a transition duct end frame in a gas turbine includes the steps of a) directing cooling air into the end frame from a region external of the transition duct and the impingement cooling sleeve; and b) redirecting the cooling air from the end frame into the annulus between the transition duct and the impingement cooling sleeve.

Cromer, Robert Harold (Johnstown, NY); Bechtel, William Theodore (Scotia, NY); Sutcu, Maz (Niskayuna, NY)

2002-01-01T23:59:59.000Z

93

Southwest Gas Corporation- Smarter Greener Better Solar Water Heating Program  

Broader source: Energy.gov [DOE]

Southwest Gas is offering rebates to Nevada customers for solar water heating systems installed in private residential, small business, public and other properties. Rebates are based on the amount...

94

Questar Gas- Residential Solar Assisted Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

95

Texas Gas Service- Residential Solar Water Heating Rebate Program (Texas)  

Broader source: Energy.gov [DOE]

Texas Gas Service offers a flat rebate of $750 for its residential customers within the Austin and Sunset Valley city limits for the installation and purchase of a new solar water heater with...

96

Questar Gas- Residential Solar Assisted Water Heating Rebate Program (Idaho)  

Broader source: Energy.gov [DOE]

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

97

Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik...  

Open Energy Info (EERE)

Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik & Goff, 2002) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Water-Gas...

98

The Coordinated Control of a Central Air Conditioning System Based on Variable Chilled Water Temperature and Variable Chilled Water Flow  

E-Print Network [OSTI]

At present, regulation of water flow by means of pump frequency conversion is one of the major methods for power-saving in central air conditioning systems. In this article, optimization regulation for central air conditioning system on the basis...

Liu, J.; Mai, Y.; Liu, X.

2006-01-01T23:59:59.000Z

99

A study of water driven oil encroachment into gas caps  

E-Print Network [OSTI]

A STUDY OF WATER DRIVEN OIL ENCROACHMENT INTO GAS CAPS LIBRARY A S I COLLEGE OF TEXAS A Thesis By HARLAN J. RITCH ~ ~ ~ Submitted to the Graduate School oi' the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May, 1958 Major Subject: Petroleum Engineering A STUDY OF WATER DRIVEN OIL ENCROACHMENT INTO GAS CAPS A Thesis By HARLAN J. RITCH Approved as to style and content by: hairxnan of Coxnxnittee) (Head...

Ritch, Harlan J

1958-01-01T23:59:59.000Z

100

Water's Journey Through the Shale Gas Drilling and  

E-Print Network [OSTI]

Water's Journey Through the Shale Gas Drilling and Production Processes in the Mid-Atlantic Region: Marcellus shale drilling in progress, Beaver Run Reservoir, Westmoreland County. Credit: Robert Donnan. Gas. This publication fo- cuses mostly on Pennsylvania because it has the most Marcellus drilling activity of any state

Lee, Dongwon

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA  

E-Print Network [OSTI]

inventory. The storage water heaters evaluated in this studyFurnace CES Storage Water Heater Table 4: Technology

Carerras-Sospedra, Marc

2012-01-01T23:59:59.000Z

102

Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants  

SciTech Connect (OSTI)

This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

Ken Mortensen

2009-06-30T23:59:59.000Z

103

Compressor discharge bleed air circuit in gas turbine plants and related method  

DOE Patents [OSTI]

A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

2002-01-01T23:59:59.000Z

104

Compressor discharge bleed air circuit in gas turbine plants and related method  

DOE Patents [OSTI]

A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

2003-04-08T23:59:59.000Z

105

Economic Analysis of a Waste Water Resource Heat Pump Air-Conditioning System in North China  

E-Print Network [OSTI]

This paper describes the situation of waste water resource in north China and the characteristics and styles of a waste water resource heat pump system, and analyzes the economic feasibility of a waste water resource heat pump air...

Chen, H.; Li, D.; Dai, X.

2006-01-01T23:59:59.000Z

106

Control of water coning in gas reservoirs by injecting gas into the aquifer  

E-Print Network [OSTI]

the injected gas bubble to not have the expected effect, because the cone established may have a greater radius at the original WGC than the maximum radius of the gas bubble. In other words, the cone tends to avoid the low permeability zone by going around... the warm seasons of the year. The best storage sites found up to now are deleted or partly aeleted gas fields close to large consumption areas. In this study, gas storage reservoirs with gas originally left by a water drive are studied. The production/injection...

Haugen, Sigurd Arild

1980-01-01T23:59:59.000Z

107

Water management practices used by Fayetteville shale gas producers.  

SciTech Connect (OSTI)

Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least three states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.

Veil, J. A. (Environmental Science Division)

2011-06-03T23:59:59.000Z

108

Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report  

SciTech Connect (OSTI)

For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

2013-01-21T23:59:59.000Z

109

Instrumented Water Tanks can Improve Air Shower Detector Sensitivity  

E-Print Network [OSTI]

Previous works have shown that water Cherenkov detectors have superior sensitivity to those of scintillation counters as applied to detecting extensive air showers (EAS). This is in large part due to their much higher sensitivity to EAS photons which are more than five times more numerous than EAS electrons. Large area water Cherenkov detectors can be constructed relatively cheaply and operated reliably. A sparse detector array has been designed which uses these types of detectors to substantially increase the area over which the Milagro Gamma Ray Observatory collects EAS information. Improvements to the Milagro detector's performance characteristics and sensitivity derived from this array and preliminary results from a prototype array currently installed near the Milagro detector will be presented.

Atkins, R; Berley, D; Chen, M L; Coyne, D G; Delay, R S; Dingus, B L; Dorfan, D E; Ellsworth, R W; Evans, D; Falcone, A D; Fleysher, L; Fleysher, R; Gisler, G; Goodman, J A; Haines, T J; Hoffman, C M; Hugenberger, S; Kelley, L A; Leonor, I; Macri, J R; McConnell, M; McCullough, J F; McEnery, J E; Miller, R S; Mincer, A I; Morales, M F; Nmethy, P; Ryan, J M; Schneider, M; Shen, B; Shoup, A L; Sinnis, G; Smith, A J; Sullivan, G W; Thompson, T N; Tmer, T O; Wang, K; Wascko, M O; Westerhoff, S; Williams, D A; Yang, T; Yodh, G B

1999-01-01T23:59:59.000Z

110

Instrumented Water Tanks can Improve Air Shower Detector Sensitivity  

E-Print Network [OSTI]

Previous works have shown that water Cherenkov detectors have superior sensitivity to those of scintillation counters as applied to detecting extensive air showers (EAS). This is in large part due to their much higher sensitivity to EAS photons which are more than five times more numerous than EAS electrons. Large area water Cherenkov detectors can be constructed relatively cheaply and operated reliably. A sparse detector array has been designed which uses these types of detectors to substantially increase the area over which the Milagro Gamma Ray Observatory collects EAS information. Improvements to the Milagro detector's performance characteristics and sensitivity derived from this array and preliminary results from a prototype array currently installed near the Milagro detector will be presented.

R. Atkins; W. Benbow; D. Berley; M. -L. Chen; D. G. Coyne; R. S. Delay; B. L. Dingus; D. E. Dorfan; R. W. Ellsworth; D. Evans; A. Falcone; L. Fleysher; R. Fleysher; G. Gisler; J. A. Goodman; T. J. Haines; C. M. Hoffman; S. Hugenberger; L. A. Kelley; I. Leonor; J. Macri; M. McConnell; J. F. McCullough; J. E. McEnery; R. S. Miller; A. I. Mincer; M. F. Morales; P. Nemethy; J. M. Ryan; M. Schneider; B. Shen; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; T. N. Thompson; O. T. Tumer; K. Wang; M. O. Wascko; S. Westerhoff; D. A. Williams; T. Yang; G. B. Yodh

1999-07-15T23:59:59.000Z

111

Water as a lubricant for Stirling air engines: design considerations and operating experience  

SciTech Connect (OSTI)

Air is favoured as the working fluid for large, slow-running Stirling engines. Lubricating oil entering the working space could combine with compressed, heated air to form a mixture capable of spontaneous combustion. To preclude this possibility, water may be used as the lubricant in Stirling air engines. This paper reviews the lubrication requirements of Stirling air engines and the potential of water to fulfil these requirements. Some bearing and seal materials suitable for water-lubricated Stirling engines are reviewed in terms of a design case study for a 20 kW water lubricated Ringbom-Stirling air engine. Early operating experience with this engine is reported.

Fauvel, O.R.; van Benthem, J.; Walker, G.

1983-08-01T23:59:59.000Z

112

THE STATE OF THE ENVIRONMENT IN ALLEGHENY COUNTY: Land, Water and Air  

E-Print Network [OSTI]

Figure II-1: 1996 Water Pollution Inventory for the US II-2 Figure III-1: Daily Air Quality IndexTHE STATE OF THE ENVIRONMENT IN ALLEGHENY COUNTY: Land, Water and Air MARCH, 2001 Jose R. Argueta Nutrient Effects: II-8 Nutrient Sources II-8 Metals and AMD II-9 Conclusions II-12 PART III: AIR QUALITY

Sibille, Etienne

113

Determination of the effect of gas viscosity upon gas flow in permeable media containing water and gas  

E-Print Network [OSTI]

?ateredeaturated Natural Gas Visoositiss at Varieua PPISSQreao ~ ~ ~ o e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 32 VI Ns~tura+ed gitrogen Viscosities 0't Varieue h%00uraee ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ eel 33 VII Das Wbili... pressure to 1500 ysi per yccryoses of flew work~ tho viscosities af aitrogen aud tho natural gas wbou saturated with water vapor were also detercdcmd Sco basis yerpese of this pre)set was te dsteruine ths offset of the vtsoosQy of a gas nyon the web...

Stegemeier, Richard Joseph

1952-01-01T23:59:59.000Z

114

Combustion Gas Turbine Power Enhancement by Refrigeration of Inlet Air  

E-Print Network [OSTI]

Combustion gas turbines have gained widespread acceptance for mechanical drive and power generation applications. One key drawback of a combustion turbine is that its specific output and thermal efficiency vary quite significantly with variations...

Meher-Homji, C. B.; Mani, G.

1983-01-01T23:59:59.000Z

115

AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA  

E-Print Network [OSTI]

factor (CF) for large water heaters and small boilers, CF =for residential NG-fired water heaters, CF = 0.25 Note: EFi,inventory. The storage water heaters evaluated in this study

Carerras-Sospedra, Marc

2012-01-01T23:59:59.000Z

116

Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 3: Appendix F through I  

SciTech Connect (OSTI)

This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described. Compiled data included in numerous figures, tables and graphs.

NONE

1996-01-30T23:59:59.000Z

117

Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 2: Appendix A through E  

SciTech Connect (OSTI)

This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described. Compiled data included in numerous figures, tables and graphs.

NONE

1996-01-30T23:59:59.000Z

118

Quantitative imaging of the air-water flow fields formed by unsteady breaking waves  

E-Print Network [OSTI]

An experimental method for simultaneously measuring the velocity fields on the air and water side of unsteady breaking waves is presented. The method is applied to breaking waves to investigate the physics of the air and ...

Belden, Jesse (Jesse Levi)

2009-01-01T23:59:59.000Z

119

RESEARCH ARTICLE Statistics of the surface temperature field of an air/water interface  

E-Print Network [OSTI]

is the coefficient of thermal expansion, m is the kinematic viscosity, a is the thermal diffusivity, DTRESEARCH ARTICLE Statistics of the surface temperature field of an air/water interface under air

Saylor, John R.

120

Submersible Survey Along the Honolulu Sea Water Air Conditioning LLC Pipe Route to Provide Data  

E-Print Network [OSTI]

1 Submersible Survey Along the Honolulu Sea Water Air Conditioning LLC Pipe Route to Provide Data, University of Hawaii 2Honolulu Seawater Air Conditioning, LLC KOK & Pisces V #12;2 HSWAC Pipe Route Survey

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Commercial Gas Water Heaters, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)  

SciTech Connect (OSTI)

Performance and purchasing specifications for commercial gas water heaters under the FEMP-designated product program.

Not Available

2010-09-01T23:59:59.000Z

122

Water in Alberta With Special Focus on the Oil and Gas Industry  

E-Print Network [OSTI]

1 Water in Alberta With Special Focus on the Oil and Gas Industry (Education Paper) Seyyed Ghaderi ................................................................................................................................18 Shale Gas ................................................................................................................................................19 How much water is used in deep shale gas development

Gieg, Lisa

123

Cattle Feedlot Waste Management Practices -For Water and Air Pollution Control  

E-Print Network [OSTI]

Cattle Feedlot Waste Management Practices - For Water and Air Pollution Control John M. Sweeten in the potential for both water and air pollution. To prevent potential problems from developinginto real problems* Water Pollution and Wastewater Management This bulletin outlines some of the basic regulatory

Mukhtar, Saqib

124

Fluorine Gas Management Guidelines Fluorine is a highly toxic, pale yellow gas about 1.3 times as heavy as air at atmospheric  

E-Print Network [OSTI]

Fluorine Gas Management Guidelines Overview Fluorine is a highly toxic, pale yellow gas about 1.3 times as heavy as air at atmospheric temperature and pressure. Fluorine gas is the most powerful oxidizing agent known, reacting with practically all organic and inorganic substances. Fluorine gas

de Lijser, Peter

125

Zero Discharge Water Management for Horizontal Shale Gas Well Development  

SciTech Connect (OSTI)

Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make-up water for successive fracs. RFW, however, contains dissolved salts, suspended sediment and oils that may interfere with fracking fluids and/or clog fractures. This would lead to impaired well productivity. The major technical constraints to recycling RFW involves: identification of its composition, determination of industry standards for make-up water, and development of techniques to treat RFW to acceptable levels. If large scale RFW recycling becomes feasible, the industry will realize lower transportation and disposal costs, environmental conflicts, and risks of interruption in well development schedules.

Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

2012-03-31T23:59:59.000Z

126

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems  

SciTech Connect (OSTI)

The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

1991-02-01T23:59:59.000Z

127

E-Print Network 3.0 - air-water bubbly flow Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Chemistry 6 Hydrodynamic and statistical parameters of slug flow Lev Shemer * Summary: identification from dynamic void fraction measurements in vertical air-water flows. Int....

128

E-Print Network 3.0 - air-water interface predictive Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air-water interface predictive Page: << < 1 2 3 4 5 > >> 1 Generalized Interface Polarity Scale...

129

E-Print Network 3.0 - air-water flow experimental Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air-water flow experimental Page: << < 1 2 3 4 5 > >> 1 Mechanical engineering Department...

130

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

furnaces and storage water heaters, finds that installing aAs shown in Table 2, storage water heaters in single-familya gas furnace and a gas storage water heater. This market is

Lekov, Alex B.

2010-01-01T23:59:59.000Z

131

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

furnaces and storage water heaters, finds that installing aAs shown in Table 2, storage water heaters in single-familya gas furnace and a gas storage water heater. This market is

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

132

Analysis of a duo-selecting membrane reactor for the water-gas shift  

E-Print Network [OSTI]

The water-gas shift reaction is an exothermic and reversible catalytic process that converts carbon monoxide and water (steam) to hydrogen and carbon dioxide. In regard to energy-related issues, the water-gas shift is part ...

Hardy, AliciA Jillian Jackson, 1978-

2004-01-01T23:59:59.000Z

133

Adaptation of gas tagging for failed fuel identification in light water reactors  

SciTech Connect (OSTI)

This paper discusses experience with noble gas tagging and its adaptation to commercial reactors. It reviews the recent incidence of fuel failures in light water reactors, and methods used to identify failures, and concludes that the on-line technique of gas tagging could significantly augment present flux tilting, sipping and ultrasonic testing of assemblies. The paper describes calculations on tag gas stability in-reactor, and tag injection tests that were carried out collaboratively with Commonwealth Edison Company in the Byron-2 pressurized water reactor (P%a) and with Duke Power Company and Babcock and Wilcox Fuel Company in the Oconee-2 PWM. The tests gave information on: (a) noble gas concentration dynamics as the tag gases were dissolved in and eventually removed from subsystems of the RCS; and (b) the suitability of candidate Ar, Ne, Kr and Xe isotopes for tagging PWR fuel. It was found that the activity of Xe{sup 125} (the activation product of the tag isotope Xe{sup 124}) acted as a ``tag of a tag`` and tracked gas through the reactor; measured activities are being used to model gas movement in the RCS. Several interference molecules (trace contaminants normally present at sub-ppM concentrations in RCS samples) and entrained air in the RCS were found to affect mass spectrometer sensitivity for tag isotopes. In all instances the contaminants could be differentiated from the tag isotopes by operating the mass spectrometer at high resolution (2500). Similarly, it was possible to distinguish all the candidate tag gases against a high background of air. The test results suggested, however, that for routine analysis a high resolution static mass spectrometer will be preferable to the dynamic instrument used for the present analyses.

Lambert, J.D.B.; Gross, K.C.; Depiante, E.V. [Argonne National Lab., IL (United States); Callis, E.L. [Los Alamos National Lab., NM (United States); Egebrecht, P.M. [Commonwealth Edison Company, Downers Grove, IL (United States)

1996-03-01T23:59:59.000Z

134

Flame holding tolerant fuel and air premixer for a gas turbine combustor  

DOE Patents [OSTI]

A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.

York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve

2012-11-20T23:59:59.000Z

135

Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures  

DOE Patents [OSTI]

A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

Aines, Roger D.; Bourcier, William L.; Viani, Brian

2013-01-29T23:59:59.000Z

136

E-Print Network 3.0 - air conditioners water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Moving the Market toward High Efficiency Summary: and water source air conditioners and heat pumps <135,000 Btuh and for large commercial packaged water... h and <135,000 Btuh...

137

E-Print Network 3.0 - airs water vapor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water vapor Search Powered by Explorit Topic List Advanced Search Sample search results for: airs water vapor Page: << < 1 2 3 4 5 > >> 1 A laboratory experiment from the Little...

138

Feasibility of Municipal Water Mains as Heat Sink for Residential Air-Conditioning  

E-Print Network [OSTI]

It has been proposed that municipal water mains be used as the heat sink or the heat source for air-conditioning or heating, respectively. This paper addresses the extent of thermal contamination associated with the use of municipal water...

Vliet, G. C.

1994-01-01T23:59:59.000Z

139

Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants  

SciTech Connect (OSTI)

This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

Ken Mortensen

2011-12-31T23:59:59.000Z

140

Electric, Gas, and Electric/Gas Energy Options for Cold-Air HVAC Systems  

E-Print Network [OSTI]

and incorporated into HVAC design for medium-to-large buildings, it is possible to structure system arrangements that reduce energy operating costs very significantly compared to conventional all-air VAV systems and also to all-air VAV ice thermal storage systems...

Meckler, G.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGoIndiana Natural Gas Powers MilkSaveQuality

142

Biological Water Gas Shift DOE Hydrogen, Fuel Cell, and Infrastructure  

E-Print Network [OSTI]

Yields Energy in Darkness · CO supports both cell growth and ATP synthesis, in darkness · ATP can be used to regenerate more water-gas shift catalysts in darkness · Dark bioreactor simplifies reactor design, operation's comments that shift reaction can support cell growth yielding energy in darkness leading to sustained H2

143

Covered Product Category: Residential Gas Storage Water Heaters  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance across a variety of product categories, including gas storage water heaters, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

144

Growth of Au Nanowires at the Interface of Air/Water Zhichuan Xu,,  

E-Print Network [OSTI]

produced at the interface of air/water by immersing a Au coated platinum tip into the growth solutionGrowth of Au Nanowires at the Interface of Air/Water Zhichuan Xu,, Chengmin Shen, Shouheng Sun and these Au islands initiated the growth of Au crystals, which further produced Au nanowires via the template

Gao, Hongjun

145

FOREST-AIR FLUXES OF CARBON, WATER AND ENERGY OVER NON-FLAT TERRAIN  

E-Print Network [OSTI]

FOREST-AIR FLUXES OF CARBON, WATER AND ENERGY OVER NON-FLAT TERRAIN XUHUI LEE and XINZHANG HU-air exchange of carbon, water, and energy was conducted at a mid-latitude, mixed forest on non-flat terrain to address this question, we conducted a field experiment on energy and carbon exchanges in a mixed forest

Lee, Xuhui

146

Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)  

SciTech Connect (OSTI)

This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

2012-10-01T23:59:59.000Z

147

Air bottoming cycle: Use of gas turbine waste heat for power generation  

SciTech Connect (OSTI)

This paper presents a thermodynamic analysis of the Air Bottoming Cycle (ABC) as well as the results of a feasibility study for using the Air Bottoming Cycle for gas turbine waste heat recovery/power generation on oil/gas platforms in the North Sea. The basis for the feasibility study was to utilize the exhaust gas heat from an LM2500PE gas turbine. Installation of the ABC on both a new and an existing platform have been considered. A design reference case is presented, and the recommended ABC is a two-shaft engine with two compressor intercoolers. The compression pressure ratio was found optimal at 8:1. The combined gas turbine and ABC shaft efficiency wa/s calculated to 46.6 percent. The LM2500PE gas turbine contributes with 36.1 percent while the ABC adds 10.5 percent points to the gas turbine efficiency. The ABC shaft power output is 6.6 MW when utilizing the waste heat of an LM2500PE gas turbine. A preliminary thermal and hydraulic design of the ABC main components (compressor, turbine, intercoolers, and recuperator) was carried out. The recuperator is the largest and heaviest component (45 tons). A weight and cost breakdown of the ABC is presented. The total weight of the ABC package was calculated to 154 metric tons, and the ABC package cost to 9.4 million US$. An economical examination for three different cases was carried out. The results show that the ABC alternative (LM2500PE + ABC) is economical, with a rather good margin, compared to the other alternatives. The conclusion is that the Air Bottoming Cycle is an economical alternative for power generation on both new platforms and on existing platforms with demand for more power.

Bolland, O.; Foerde, M. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Div. of Thermal Energy and Hydropower; Haande, B. [Oil Engineering Consultants, Sandvika (Norway)

1996-04-01T23:59:59.000Z

148

Excess electron relaxation dynamics at water/air interfaces dm Madarsz  

E-Print Network [OSTI]

of the relaxation of a ground state excess electron at interfaces of different phases of water with air with the surrounding water bath. The systems exhibiting the most stable SB excess electron states supercooled water to contain double acceptor-type water molecules in the close vicinity of the electron. These surface states

Simons, Jack

149

Water Extraction from Coal-Fired Power Plant Flue Gas  

SciTech Connect (OSTI)

The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.

Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

2006-06-30T23:59:59.000Z

150

A Simplified Solution For Gas Flow During a Blow-out in an H2 or Air Storage Cavern  

E-Print Network [OSTI]

and hydrogen storage in salt caverns. Compressed Air Energy Storage (CAES) is experiencing a rise in interest-form solutions of the blow-out problem. These solutions are applied to the cases of compressed air storageA Simplified Solution For Gas Flow During a Blow-out in an H2 or Air Storage Cavern Pierre Bérest

Boyer, Edmond

151

CFD Validation of Gas Injection into Stagnant Water  

SciTech Connect (OSTI)

Investigations in the area of two-phase flow at the Oak Ridge National Laboratory's (ORNL) Spallation Neutron Source (SNS) facility are progressing. It is expected that the target vessel lifetime could be extended by introducing gas into the liquid mercury target. As part of an effort to validate the two-phase computational fluid dynamics (CFD) model, simulations and experiments of gas injection in stagnant water have been completed. The volume of fluid (VOF) method as implemented in ANSYS-CFX was used to simulate the unsteady two-phase flow of gas injection into stagnant water. Flow visualization data were obtained with a high-speed camera for the comparison of predicted and measured bubble sizes and shapes at various stages of the bubble growth, detachment, and gravitational rise. The CFD model is validated with these experimental measurements at different gas flow rates. The acoustic waves emitted at the time of detachment and during subsequent oscillations of the bubble were recorded with a microphone. The acoustic signature aspect of this validation is particularly interesting since it has applicability to the injection of gas into liquid mercury, which is opaque.

Abdou, Ashraf A [ORNL

2007-01-01T23:59:59.000Z

152

Development of Novel Water-Gas Shift Membrane Reactor  

SciTech Connect (OSTI)

This report summarizes the objectives, technical barrier, approach, and accomplishments for the development of a novel water-gas-shift (WGS) membrane reactor for hydrogen enhancement and CO reduction. We have synthesized novel CO{sub 2}-selective membranes with high CO{sub 2} permeabilities and high CO{sub 2}/H{sub 2} and CO{sub 2}/CO selectivities by incorporating amino groups in polymer networks. We have also developed a one-dimensional non-isothermal model for the countercurrent WGS membrane reactor. The modeling results have shown that H{sub 2} enhancement (>99.6% H{sub 2} for the steam reforming of methane and >54% H{sub 2} for the autothermal reforming of gasoline with air on a dry basis) via CO{sub 2} removal and CO reduction to 10 ppm or lower are achievable for synthesis gases. With this model, we have elucidated the effects of system parameters, including CO{sub 2}/H{sub 2} selectivity, CO{sub 2} permeability, sweep/feed flow rate ratio, feed temperature, sweep temperature, feed pressure, catalyst activity, and feed CO concentration, on the membrane reactor performance. Based on the modeling study using the membrane data obtained, we showed the feasibility of achieving H{sub 2} enhancement via CO{sub 2} removal, CO reduction to {le} 10 ppm, and high H{sub 2} recovery. Using the membrane synthesized, we have obtained <10 ppm CO in the H{sub 2} product in WGS membrane reactor experiments. From the experiments, we verified the model developed. In addition, we removed CO{sub 2} from a syngas containing 17% CO{sub 2} to about 30 ppm. The CO{sub 2} removal data agreed well with the model developed. The syngas with about 0.1% CO{sub 2} and 1% CO was processed to convert the carbon oxides to methane via methanation to obtain <5 ppm CO in the H{sub 2} product.

Ho, W. S. Winston

2004-12-29T23:59:59.000Z

153

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network [OSTI]

and F. Southworh. 2004. Heat pump water heater technology:gas tankless water heaters, heat pump water heaters,heat pump space heaters, and solar water heaters, as well as

Lekov, Alex

2011-01-01T23:59:59.000Z

154

TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE  

SciTech Connect (OSTI)

Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of potentially hazardous chemicals, and could be readily adapted to an automated system.

Lynn E. Katz; R.S. Bowman; E.J. Sullivan

2003-11-01T23:59:59.000Z

155

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

appliance_standards/residential/water_ pool_heaters_prelim_Star (2008). Energy star residential water heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

156

Potential hazards of compressed air energy storage in depleted natural gas reservoirs.  

SciTech Connect (OSTI)

This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

2011-09-01T23:59:59.000Z

157

Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity Generation  

E-Print Network [OSTI]

1 Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity from the LNG life-cycle. Notice that local distribution of natural gas falls outside our analysis boundary. Figure 1S: Domestic Natural Gas Life-cycle. Figure 2S: LNG Life-cycle. Processing Transmission

Jaramillo, Paulina

158

Whole-Home Gas Tankless Water Heaters, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)  

SciTech Connect (OSTI)

Performance and purchasing specifications for whole-home gas water heaters under the FEMP-designated product program.

Not Available

2010-06-01T23:59:59.000Z

159

OG 4.4.06 1 Use of Instrumented Water Tanks for the Improvement of Air  

E-Print Network [OSTI]

OG 4.4.06 1 Use of Instrumented Water Tanks for the Improvement of Air Shower Detector Sensitivity (5m 2 ), water Cherenkov detectors (tanks) will be deployed around the pond to effectively extend its from the Milagro pond. 2 Water Tank Detector & Array The criteria for selecting a detector design

California at Santa Cruz, University of

160

Environmental performance of air staged combustor with flue gas recirculation to burn coal/biomass  

SciTech Connect (OSTI)

The environmental and thermal performance of a 1.07 m diameter, 440 kW atmospheric fluidized bed combustor operated at 700{degrees}C-920{degrees}C and burning coal was studied. Flue gas recirculation was incorporated to enhance the thermal performance and air staging was used to control emissions of SO{sub 2}, CO, NO{sub x} and N{sub 2}O. Studies focused on the effect of excess air, firing rate, and use of sorbent on system performance. The recirculation-staging mode with limestone had the highest thermal efficiency (0.67) using the firing equation. Emission data showed that flue gas recirculation (ratio of 0.7) significantly reduced NO{sub x} emissions; and that use of limestone sorbent at a Ca/S ratio of 3 reduced SO{sub 2} emissions by 64% to approximately 0.310 g/MJ.

Anuar, S.H.; Keener, H.M.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review  

E-Print Network [OSTI]

Fundamentals of Gas Combustion. 2001: Washington, DC. 131Components A gas appliance combustion system accomplishestransfers energy from hot combustion gases to water or air

Lekov, Alex

2010-01-01T23:59:59.000Z

162

MathematicalGeology, Vol. 11,No. I,1979 Modeling and Optimizing a Gas-Water Reservoir  

E-Print Network [OSTI]

of gas in psia pressure of gas in psia at time t constant production rate of gas in moles per year production rate at time t in moles per year ideal gas constant constant rate of water injection in cubic feet of the reservoir in cubic feet, below which gas production ceases initial reservoir volume in cubic feet reservoir

Waterman, Michael S.

163

Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling and Analysis Results for 2011  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Legacy Management conducted natural gas sampling for the Gasbuggy, New Mexico, site on June 7 and 8, 2011. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

None

2011-09-01T23:59:59.000Z

164

Spin states of para-water and ortho-water molecule in gas and liquid phases  

E-Print Network [OSTI]

Spin degrees of freedom of water molecule in gas and liquid state were investigated in order to provide a reasonable answer about the unsolved problem of a long-term behavior of water spin isomers. The approach used involves an assumption that molecules change their spin state from a pure state to a mixed one when they interact with some sorts of adsorbent surface. Some models and conceptions of the quantum information processing were used.

V. K. Konyukhov

2009-09-23T23:59:59.000Z

165

Nuclear tanker producing liquid fuels from air and water  

E-Print Network [OSTI]

Emerging technologies in CO? air capture, high temperature electrolysis, microchannel catalytic conversion, and Generation IV reactor plant systems have the potential to create a shipboard liquid fuel production system ...

Galle-Bishop, John Michael

2011-01-01T23:59:59.000Z

166

Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station  

SciTech Connect (OSTI)

In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

Armstrong, P.R.; Conover, D.R.

1993-05-01T23:59:59.000Z

167

Environmental Regulations, Air and Water Pollution, and Infant Mortality in India  

E-Print Network [OSTI]

Using the most comprehensive data file ever compiled on air pollution, water pollution, and environmental regulations from a developing country, the paper examines the effectiveness of Indias environmental regulations. ...

Greenstone, Michael

2011-07-01T23:59:59.000Z

168

Environmental Regulations, Air and Water Pollution, and Infant Mortality in India  

E-Print Network [OSTI]

Using the most comprehensive data file ever compiled on air pollution, water pollution, environmental regulations, and infant mortality from a developing country, the paper examines the effectiveness of Indias environmental ...

Greenstone, Michael

169

Energy Comparison Between Conventional and Chilled Water Thermal Storage Air Conditioning Systems  

E-Print Network [OSTI]

, encouraged by government subsidies and driven by the rapid and continual expansion in building construction, urban development, and the heavy reliance on Air Conditioning (AC) systems for the cooling of buildings. The Chilled Water Thermal Storage (CWTS...

Sebzali, M.; Hussain, H. J.; Ameer, B.

2010-01-01T23:59:59.000Z

170

E-Print Network 3.0 - air-water solution interface Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air-water solution interface Page: << < 1 2 3 4 5 > >> 1 BES Chemical Sciences Division Research...

171

E-Print Network 3.0 - air-water cross flow Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air-water cross flow Page: << < 1 2 3 4 5 > >> 1 Journal of Colloid and Interface Science 326...

172

E-Print Network 3.0 - air-water interactions Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air-water interactions Page: << < 1 2 3 4 5 > >> 1 The Earth's ...as conduit Summary: , and...

173

E-Print Network 3.0 - air water two-phase Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air water two-phase Page: << < 1 2 3 4 5 > >> 1 Proceedings of FEDSM2005 2005 ASME Fluids...

174

E-Print Network 3.0 - air-water vertical upward Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air-water vertical upward Page: << < 1 2 3 4 5 > >> 1 Journal of Colloid and Interface Science...

175

E-Print Network 3.0 - air-water two-phase flow Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air-water two-phase flow Page: << < 1 2 3 4 5 > >> 1 Heat and Mass Transfer Laboratory Gnie...

176

Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-Conditioning System  

E-Print Network [OSTI]

Based on the heating and air-conditioning system of a high-rise residential building in Northern city, this paper provides a discussion on the choice and matching of different types of Waste Water Resource Heat Pump (WWRHP) heating and air...

Zhang, C.; Wang, S.; Chen, H.; Shi, Y.

2006-01-01T23:59:59.000Z

177

PROCESS WATER RECOVERY: DISSOLVED AIR FLOTATION COMPARED TO HIGH SHEAR RATE SEPARATION  

E-Print Network [OSTI]

PROCESS WATER RECOVERY: DISSOLVED AIR FLOTATION COMPARED TO HIGH SHEAR RATE SEPARATION John H to the feed without dissolved air or with the addition of dual polymer flocculating polymers. Although fiber intend to investigate the effect of pacifying stickies by precipitating calcium carbonate with carbon

Abubakr, Said

178

Precipitation suppression by anthropogenic air pollution: major loss of water resources where we need them most  

E-Print Network [OSTI]

Precipitation suppression by anthropogenic air pollution: major loss of water resources where we inferences of air pollution suppressing precipitation lead us to investigate historical climate records precipitation, decreases with time in the polluted regions and remains unchanged where no pollution sources were

Daniel, Rosenfeld

179

Method and apparatus for extracting water from air using a desiccant  

DOE Patents [OSTI]

The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method can be considered as four phases: (1) adsorbing water from air into a desiccant, (2) isolating the water-laden desiccant from the air source, (3) desorbing water as vapor from the desiccant into a chamber, and (4) isolating the desiccant from the chamber, and compressing the vapor in the chamber to form liquid condensate. The liquid condensate can be removed for use. Careful design of the dead volumes and pressure balances can minimize the energy required. The dried air can be exchanged for fresh moist air and the process repeated. An apparatus comprises a first chamber in fluid communication with a desiccant, and having ports to intake moist air and exhaust dried air. The apparatus also comprises a second chamber in fluid communication with the desiccant. The second chamber allows variable internal pressure, and has a port for removal of liquid condensate. Each chamber can be configured to be isolated or in communication with the desiccant. The first chamber can be configured to be isolated or in communication with a course of moist air. Various arrangements of valves, pistons, and chambers are described.

Spletzer, Barry L. (Albuquerque, NM); Callow, Diane Schafer (Albuquerque, NM)

2003-01-01T23:59:59.000Z

180

Potential Air Contamination During CO{sub 2} Angiography Using a Hand-Held Syringe: Theoretical Considerations and Gas Chromatography  

SciTech Connect (OSTI)

Purpose. To assess air contamination in the hand-held syringes currently used for CO{sub 2} delivery and to determine whether there is an association between their position and the rate of air contamination. Methods. Assessment of air contamination in the syringe (20 ml) included theoretical modeling, mathematical calculation, and gas chromatography (GC). The model was used with Fick's first law to calculate the diffusion of CO{sub 2} and the amount of air contamination. For GC studies, the syringes were placed in the upright, horizontal, and inverted positions and gas samples were obtained after 5, 10, 20, 30, and 60 min. All trials with each position for each sampling time were performed five times. Results. The amounts of air contamination with time calculated mathematically were 5-10% less than those of GC. With the diffusivity of air-CO{sub 2} at 0.1599 cm{sup 2}/sec (9.594 cm{sup 2}/min), air contamination was calculated to be 60% at 60 min. With GC air contamination was 13% at 5 min, 31% at 20 min, 43% at 30 min, and 68% at 60 min. There was no difference in air contamination between the different syringe positions. Conclusion. Air contamination occurs in hand-held syringes filled with CO{sub 2} when they are open to the ambient air. The amounts of air contamination over time are similar among syringes placed in the upright, horizontal, and inverted positions.

Cho, David R. [Samsung Austin Semiconductor (United States); Cho, Kyung J. [University of Michigan Medical Center, FACR, B1D 530C/0030, Department of Radiology (United States)], E-mail: kyungcho@umich.edu; Hawkins, Irvin F. [University of Florida College of Medicine, Department of Radiology (United States)

2006-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health  

SciTech Connect (OSTI)

Reducing greenhouse gas (GHG) emissions also influences air quality. We simulate the co-benefits of global GHG reductions on air quality and human health via two mechanisms: a) reducing co-emitted air pollutants, and b) slowing climate change and its effect on air quality. Relative to a reference scenario, global GHG mitigation in the RCP4.5 scenario avoids 0.50.2, 1.30.6, and 2.21.6 million premature deaths in 2030, 2050, and 2100, from changes in fine particulate matter and ozone. Global average marginal co-benefits of avoided mortality are $40-400 (ton CO2)-1, exceeding marginal abatement costs in 2030 and 2050, and within the low range of costs in 2100. East Asian co-benefits are 10-80 times the marginal cost in 2030. These results indicate that transitioning to a low-carbon future might be justified by air quality and health co-benefits.

West, Jason; Smith, Steven J.; Silva, Raquel; Naik, Vaishali; Zhang, Yuqiang; Adelman, Zacariah; Fry, Meridith M.; Anenberg, Susan C.; Horowitz, L.; Lamarque, Jean-Francois

2013-10-01T23:59:59.000Z

182

Minimizing Water Production from Unconventional Gas Wells Using a Novel Environmentally Benign Polymer Gel System  

E-Print Network [OSTI]

Excess water production is a major economic and environmental problem for the oil and gas industry. The cost of processing excess water runs into billions of dollars. Polymer gel technology has been successfully used in controlling water influx...

Gakhar, Kush

2012-02-14T23:59:59.000Z

183

U.S. Natural Gas Supplemental Gas - Propane Air (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass Gas (Million Cubic Feet) U.S.Propane

184

Two-phase air-water stratified flow measurement using ultrasonic techniques  

SciTech Connect (OSTI)

In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200?s. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.

Fan, Shiwei; Yan, Tinghu; Yeung, Hoi [School of Engineering, Cranfield University, Cranfield, Bedfordshire MK43 0AL (United Kingdom)

2014-04-11T23:59:59.000Z

185

The construction and use of aquifer influence functions in determining original gas in place for water-drive gas reservoirs  

E-Print Network [OSTI]

THE CONSTRUCTION AND USE OF AQUIFER INFLUENCE FUNCTIONS IN DETERMINING ORIGINAL GAS IN PLACE FOR WATER-DRIVE GAS RESERVOIRS A Thesis by RONALD JOSEPH GAJDICA Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1986 Major Subject: Petroleum Engineering THE CONSTRUCTION AND USE OF AQUIFER INFLUENCE FUNCTIONS IN DETERMINING ORIGINAL GAS IN PLACE FOR MATER-DRIVE GAS RESERVOIRS A Thesis by RONALD JOSEPH...

Gajdica, Ronald Joseph

1986-01-01T23:59:59.000Z

186

Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling Results for 2012  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual natural gas sampling for the Gasbuggy, New Mexico, Site on June 20 and 21, 2012. This long-term monitoring of natural gas includes samples of produced water from gas production wells that are located near the site. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

None

2012-12-01T23:59:59.000Z

187

Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling  

E-Print Network [OSTI]

Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling (Updated November 15th in the absence of shale-gas drilling, well owners are strongly encouraged to evaluate their water on a regular review of shale gas drilling in New York State, as well as the most comprehensive collection of data

Manning, Sturt

188

Gas-Liquid Coexistence in the Primitive Model for Water  

E-Print Network [OSTI]

We evaluate the location of the gas-liquid coexistence line and of the associated critical point for the primitive model for water (PMW), introduced by Kolafa and Nezbeda [J. Kolafa and I. Nezbeda, Mol. Phys. 61, 161 (1987)]. Besides being a simple model for a molecular network forming liquid, the PMW is representative of patchy proteins and novel colloidal particles interacting with localized directional short-range attractions. We show that the gas-liquid phase separation is metastable, i.e. it takes place in the region of the phase diagram where the crystal phase is thermodynamically favored, as in the case of articles interacting via short-range attractive spherical potentials. Differently from spherical potentials, we do not observe crystallization close to the critical point. The region of gas-liquid instability of this patchy model is significantly reduced as compared to equivalent models of spherically interacting particles, confirming the possibility of observing kinetic arrest in an homogeneous sample driven by bonding as opposed to packing.

F. Romano; P. Tartaglia; F. Sciortino

2007-05-08T23:59:59.000Z

189

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS  

SciTech Connect (OSTI)

This project involved fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2} -separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams were examined in the project. Cu-cerium oxide was identified as the most promising high-temperature water-gas shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. The high-temperature shift catalyst composition was optimized by proper selection of dopant type and amount in ceria. The formulation 10at%Cu-Ce(30at%La)O{sub x} showed the best performance, and was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The apparent activation energy, measured over aged catalysts, was equal to 70.2 kJ/mol. Reaction orders in CO, H{sub 2}O, CO{sub 2} and H{sub 2} were found to be 0.8, 0.2, -0.3, and -0.3, respectively. This shows that H{sub 2}O has very little effect on the reaction rate, and that both CO{sub 2} and H{sub 2} weakly inhibit the reaction. Good stability of catalyst performance was found in 40-hr long tests. A flat (38 cm{sup 2}) Pd-Cu alloy membrane reactor was used with the catalyst washcoated on oxidized aluminum screens close coupled with the membrane. To achieve higher loadings, catalyst granules were layered on the membrane itself to test the combined HTS activity/ H{sub 2} -separation efficiency of the composite. Simulated coal gas mixtures were used and the effect of membrane on the conversion of CO over the catalyst was evidenced at high space velocities. Equilibrium CO conversion at 400 C was measured at a space velocity of 30,000 h{sup -1} with the 10{micro}m- thick Pd{sub 60}Cu{sub 40} membrane operating under a pressure differential of 100 psi. No carbon deposition took place during operation. The performance of the coupled Cu-ceria catalyst/membrane system at 400 C was stable in {approx} 30 h of continuous operation. The overall conclusion from this project is that Cu-doped ceria catalysts are suitable for use in high-temperature water-gas shift membrane reactors. CO{sub 2}-rich operation does not affect the catalyst activity or stability; neither does it affect hydrogen permeation through the Pd-Cu membrane. Operation in the temperature range of 400-430 C is recommended.

Maria Flytzani-Stephanopoulos; Xiaomei Qi; Scott Kronewitter

2004-02-01T23:59:59.000Z

190

Solubility trapping in formation water as dominant CO2 sink in natural gas fields  

E-Print Network [OSTI]

LETTERS Solubility trapping in formation water as dominant CO2 sink in natural gas fields Stuart M removal in nine natural gas fields in North America, China and Europe, using noble gas and carbon isotope tracers. The natural gas fields investigated in our study are dominated by a CO2 phase and provide

Haszeldine, Stuart

191

Gas exchange in terrestrial environments comes at the cost of evaporative water loss from respiratory surfaces.  

E-Print Network [OSTI]

3477 Gas exchange in terrestrial environments comes at the cost of evaporative water loss from of gas exchange, both within and among species (Lighton, 1998; Shelton and Appel, 2001; Chown, 2002). The classical pattern is that of discontinuous gas exchange, or discontinuous gas-exchange cycles (DGC; Lighton

Franz, Nico M.

192

Development of a Market Optimized Condensing Gas Water Heater  

SciTech Connect (OSTI)

This program covered the development of a market optimized condensing gas water heater for residential applications. The intent of the program was to develop a condensing design that minimized the large initial cost premium associated with traditional condensing water heater designs. Equally important was that the considered approach utilizes design and construction methods that deliver the desired efficiency without compromising product reliability. Standard condensing water heater approaches in the marketplace utilize high cost materials such as stainless steel tanks and heat exchangers as well as expensive burner systems to achieve the higher efficiencies. The key in this program was to develop a water heater design that uses low-cost, available components and technologies to achieve higher efficiency at a modest cost premium. By doing this, the design can reduce the payback to a more reasonable length, increasing the appeal of the product to the marketplace. Condensing water heaters have been in existence for years, but have not been able to significantly penetrate the market. The issue has typically been cost. The high purchase price associated with existing condensing water heaters, sometimes as much as $2000, has been a very difficult hurdle to overcome in the marketplace. The design developed under this program has the potential to reduce the purchase price of this condensing design by as much as $1000 as compared to traditional condensing units. The condensing water heater design developed over the course of this program led to an approach that delivered the following performance attributes: 90%+ thermal efficiency; 76,000 Btu/hr input rate in a 50 gallon tank; First hour rating greater than 180 gph; Rapid recovery time; and Overall operating condition well matched to combination heat and hot water applications. Over the final three years of the program, TIAX worked very closely with A.O. Smith Water Products Company as our commercial partner to optimize the design for manufacturing. This work included the initiation of a large field testing program (over 125 units) and an in-depth reliability program intended to minimize the risks associated with a new product introduction. At the time of this report, A.O. Smith plans to introduce this product to the marketplace in the early 2006 time period.

Peter Pescatore

2006-01-11T23:59:59.000Z

193

ENVIR 202: EARTH, AIR, WATER 22 Jan 2003 BACKGROUND DISCUSSION FOR THE SCIENCE CORE: ENERGY  

E-Print Network [OSTI]

. The example below is the heat engine, E4 Notice that some of the energy converting devices in the experiments is split into hydrogen and oxygen gas by passing an electric current through the water, and the reverse reaction is the fuel cell, with hydrogen gas used to make electricity without burning it. It is less easy

194

Forced Dispersion of Liquefied Natural Gas Vapor Clouds with Water Spray Curtain Application  

E-Print Network [OSTI]

.............................................................................................................................. 211 xv LIST OF FIGURES Page Fig. 1. Densities of methane (vapor) and air at different temperatures. .......................... 2 Fig. 2. Temperature and specific gravity of methane, air and methane-air mixture at atmospheric... on methane concentration downwind of the LNG pool ..................................................................................................... 37 Fig. 10. Methane concentrations downwind of the LNG pool, with and without water spray...

Rana, Morshed A.

2011-02-22T23:59:59.000Z

195

Air-cooled condensers eliminate plant water use  

SciTech Connect (OSTI)

River or ocean water has been the mainstay for condensing turbine exhaust steam since the first steam turbine began generating electricity. A primary challenge facing today's plant developers, especially in drought-prone regions, is incorporating processes that reduce plant water use and consumption. One solution is to shed the conventional mindset that once-through cooling is the only option and adopt dry cooling technologies that reduce plant water use from a flood to a few sips. A case study at the Astoria Energy plant, New York City is described. 14 figs.

Wurtz, W.; Peltier, R. [SPX Cooling Technologies Inc. (United States)

2008-09-15T23:59:59.000Z

196

New Advances in Shale Gas Reservoir Analysis Using Water Flowback Data  

E-Print Network [OSTI]

Shale gas reservoirs with multistage hydraulic fractures are commonly characterized by analyzing long-term gas production data, but water flowback data is usually not included in the analysis. However, this work shows there can be benefits...

Alkouh, Ahmad

2014-04-04T23:59:59.000Z

197

Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia.  

E-Print Network [OSTI]

??The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, (more)

Rueda Silva, Carlos Fernando

2012-01-01T23:59:59.000Z

198

Energy Consumption Measuring and Diagnostic Analysis of Air-conditioning Water System in a Hotel Building in Harbin  

E-Print Network [OSTI]

This paper introduces an air-conditioning water system in a hotel building in Harbin, finishes its air-conditioning energy consumption measurement in summer conditions, and presents an estimation index of performance of chiller, pump and motor...

Zhao, T.; Zhang, J.; Li, Y.

2006-01-01T23:59:59.000Z

199

Tropical air mass modification over water (Gulf of Mexico Region)  

E-Print Network [OSTI]

. Scripps Institution of Oceanography, Oceanographic Report No. 9 (Fog Pro)sot) Lopes, M. E. 194S A technique for detailed radiosonde analysis in the tropics. Bull. Amer. Meteor. Soc. , Vol. 29, No. 5. Solot, S. R. 1939 Computations of' depth... represents an aporoxi- mate equilibrium with respect to the surface beneath. Thus, an air mass may be identified by the vertical structure it acquires over a source Willett, H. D. , Papers in Phys. Ocn. and Met. , Vol. II, No. 2, 1943 region. The concept...

Sorgnit, Ernest Frederick

1952-01-01T23:59:59.000Z

200

Water-saving liquid-gas conditioning system  

DOE Patents [OSTI]

A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

Martin, Christopher; Zhuang, Ye

2014-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

AIR-FLOW STRUCTURE IN THE VERY CLOSE VICINITY OF WIND GENERATED WATER-WAVES  

E-Print Network [OSTI]

to : , with the air-density, u and w the horizontal and vertical components of the wind speed, u* the friction and the viscous drag at the sea sur- face, we build two new microphysical devices: 1) the wind-speed vertical of the vertical profile of the normalized phase-averaged wind-speed in the air-viscous layer (1mm above water

Paris-Sud XI, Université de

202

Minimization of steam requirements and enhancement of water-gas shift reaction with warm gas temperature CO2 removal  

DOE Patents [OSTI]

The disclosure utilizes a hydroxide sorbent for humidification and CO.sub.2 removal from a gaseous stream comprised of CO and CO.sub.2 prior to entry into a water-gas-shift reactor, in order to decrease CO.sub.2 concentration and increase H.sub.2O concentration and shift the water-gas shift reaction toward the forward reaction products CO.sub.2 and H.sub.2. The hydroxide sorbent may be utilized for absorbtion of CO.sub.2 exiting the water-gas shift reactor, producing an enriched H.sub.2 stream. The disclosure further provides for regeneration of the hydroxide sorbent at temperature approximating water-gas shift conditions, and for utilizing H.sub.2O product liberated as a result of the CO.sub.2 absorption.

Siriwardane, Ranjani V; Fisher, II, James C

2013-12-31T23:59:59.000Z

203

Comparison of Palladium and Platinum Water Gas Shift Kinetics Using Density Functional Theory Models.  

E-Print Network [OSTI]

??The Water Gas Shift (WGS) reaction can be either thermodynamically or kinetically limited, depending on process conditions. Improved catalysts are of particular interest at low (more)

Clay, John

2014-01-01T23:59:59.000Z

204

Comparison of palladium and platinum Water Gas Shift reaction kinetics using density functional theory models.  

E-Print Network [OSTI]

?? The Water Gas Shift (WGS) reaction can be either thermodynamically or kinetically limited, depending on process conditions. Improved catalysts are of particular interest at (more)

Clay, John P.

2014-01-01T23:59:59.000Z

205

Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration...

206

Electric, Gas, Water, Heating, Refrigeration, and Street Railways Facilities and Service (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation contains provisions for facilities and service related to electricity, natural gas, water, heating, refrigeration, and street railways. The chapter addresses the construction and...

207

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

Experiences of residential consumers and utilities. OakStar (2008). Energy Star Residential Water Heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.

2010-01-01T23:59:59.000Z

208

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina)  

Broader source: Energy.gov [DOE]

This legislation applies to public utilities and entities furnishing natural gas, heat, water, sewerage, and street railway services to the public. The legislation addresses rates and services,...

209

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS  

SciTech Connect (OSTI)

Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperatures to improve reaction kinetics and permeation. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H{sub 2} removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2}-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. The first-year screening studies of WGS catalysts identified Cu-ceria as the most promising high-temperature shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}, and were thus eliminated from further consideration. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. Several catalyst formulations were prepared, characterized and tested in the first year of study. Details from the catalyst development and testing work were given in our first annual technical report. Hydrogen permeation through Pd and Pd-alloy foils was investigated in a small membrane reactor constructed during the first year of the project. The effect of temperature on the hydrogen flux through pure Pd, Pd{sub 60}Cu{sub 40} and Pd{sub 75}Ag{sub 25} alloy membranes, each 25 {micro}m thick, was evaluated in the temperature range from 250 C to 500 C at upstream pressure of 4.4 atm and permeate hydrogen pressure of 1 atm. Flux decay was observed for the Pd-Cu membrane above 500 C. From 350-450 C, an average hydrogen flux value of 0.2 mol H{sub 2}/m{sup 2}/s was measured over this Pd-alloy membrane. These results are in good agreement with literature data. In this year's report, we discuss reaction rate measurements, optimization of catalyst kinetics by proper choice of dopant oxide (lanthana) in ceria, long-term stability studies, and H{sub 2} permeation data collected with unsupported flat, 10 {micro}m-thick Pd-Cu membranes over a wide temperature window and in various gas mixtures. The high-temperature shift catalyst composition was further improved, by proper selection of dopant type and amount. The formulation 10 at%Cu-Ce(30 at%La)Ox was the best; this was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The stability of catalyst performance was examined in 40-hr long tests. A series of hydrogen permeation tests were conducted in a small flat-membrane reactor using the 10 m{micro}-thick Pd-Cu membranes. Small inhibitory effects of CO and CO{sub 2} were found at temperatures above 350 C, while H{sub 2}O vapor had no effect on hydrogen permeation. No carbon deposition took place during many hours of membrane operation. The reaction extent on the blank (catalyst-free) membrane was also negligible. A larger flat-membrane reactor will be used next year with the catalyst wash coated on screens close coupled with the Pd-Cu membrane.

Maria Flytzani-Stephanopoulos, PI; Jerry Meldon, Co-PI; Xiaomei Qi

2002-12-01T23:59:59.000Z

210

Research and development of a high efficiency gas-fired water heater. Volume 2. Task reports  

SciTech Connect (OSTI)

Design and development of a cost-effective high efficiency gas-fired water heater to attain a service efficiency of 70% (including the effect of exfiltration) and a service efficiency of 78% (excluding exfiltration) for a 75 GPD draw at a 90/sup 0/F temperature rise, with a stored water to conditioned air temperature difference of 80/sup 0/F, are described in detail. Based on concept evaluation, a non-powered natural draft water heater was chosen as the most cost-effective design to develop. The projected installed cost is $374 compared to $200 for a conventional unit. When the project water heater is compared to a conventional unit, it has a payback of 3.7 years and life cycle savings of $350 to the consumer. A prototype water heater was designed, constructed, and tested. When operated with sealed combustion, the unit has a service efficiency of 66.4% (including the effect of exfiltration) below a burner input of 32,000 Btu/h. In the open combustion configuration, the unit operated at a measured efficiency of 66.4% Btu/h (excluding exfiltration). This compares with a service efficiency of 51.3% for a conventional water heater and 61% for a conventional high efficiency unit capable of meeting ASHRAE 90-75. Operational tests showed the unit performed well with no evidence of stacking or hot spots. It met or exceeded all capacity or usage tests specified in the program test plan and met all emission goals. Future work will concentrate on designing, building, and testing pre-production units. It is anticipated that both sealed combustion and open draft models will be pursued.

Vasilakis, A.D.; Pearson, J.F.; Gerstmann, J.

1980-01-01T23:59:59.000Z

211

Optimizing the air flotation water treatment process. Final report, May 1997  

SciTech Connect (OSTI)

The injection water for the Nelson Project is a combination of produced and make-up water, typical of many Eastern Kansas operations. The make-up water is a low-salinity salt water from the Arbuckle Formation and contains dissolved minerals and sulfides. The produced water contains suspended oil, suspended clay and silt particles, along with a combination of other dissolved minerals. The combination of the two waters causes several undesirable reactions. The suspended solids load contained in the combined waters would plug a 75-micron plant bag filter within one day. Wellhead filters of 75-micron size were also being used on the injection wells. The poor water quality resulted in severe loss of injectivity and frequent wellbore cleaning of the injection wells. Various mechanical and graded-bed filtration methods were considered for cleaning the water. These methods were rejected due to the lack of field equipment and service availability. A number of vendors did not even respond to the author`s request. The air flotation process was selected as offering the best hope for a long-term solution. The objective of this work is to: increase the cost effectiveness of the process through optimizing process design factors and operational parameters. A vastly modified air flotation system is the principal tool for accomplishing the project objective. The air flotation unit, as received from manufacturer Separation Specialist, was primarily designed to remove oil from produced water. The additional requirement for solids removal necessitated major physical changes in the unit. Problems encountered with the air flotation unit and specific modifications are detailed in the body of the report.

Barnett, B.

1998-09-01T23:59:59.000Z

212

Water management technologies used by Marcellus Shale Gas Producers.  

SciTech Connect (OSTI)

Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

Veil, J. A.; Environmental Science Division

2010-07-30T23:59:59.000Z

213

Sustainable development through beneficial use of produced water for the oil and gas industry  

E-Print Network [OSTI]

Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced...

Siddiqui, Mustafa Ashique

2002-01-01T23:59:59.000Z

214

The Full Water Disposal Ways and Study on Central Air-conditioning Circulation Cooling Water System  

E-Print Network [OSTI]

with automatic inspection, control the condense times and installing toroidal swirl type filtering water purifier. We have solved the water quality fundamentally of the circulation cooling water. This way will make the chem..with medicine more reliable...

Zhang, J.

2006-01-01T23:59:59.000Z

215

STATE OF CALIFORNIA AIR, WATER SIDE SYSTEM, SERVICE HOT WATER & POOL REQUIREMENTS  

E-Print Network [OSTI]

/Cool 144(d) Economizer 144(e) Heat and Cool Air Supply Reset 144(f) Electric Resistance Heating1 144(g) Heat Rejection System §144 (h) Air Cooled Chiller Limitation §144 (i) Duct Leakage Sealing. If Yes, a MECH-4-A must be submitted 144(k) 1. Total installed capacity (MBtu/hr) of all electric heat

216

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 1, Final report  

SciTech Connect (OSTI)

The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

1991-02-01T23:59:59.000Z

217

Researching power plant water recovery  

SciTech Connect (OSTI)

A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

NONE

2008-04-01T23:59:59.000Z

218

Influence of entrapped air pockets on hydraulic transients in water pipelines  

SciTech Connect (OSTI)

The pressure variations associated with a filling undulating pipeline containing an entrapped air pocket are investigated both experimentally and numerically. The influence of entrapped air on abnormal transient pressures is often ambiguous since the compressibility of the air pocket permits the liquid flow to accelerate but also partly cushions the system, with the balance of these tendencies being associated with the initial void fraction of the air pocket. Earlier experimental research involved systems with an initial void fraction greater than 5.8%; this paper focuses on initial void fractions ranging from 0% to 10%, in order to more completely characterize the transient response. Experimental results show that the maximum pressure increases and then decreases as the initial void fraction decreases. A simplified model is developed by neglecting the liquid inertia and energy loss of a short water column near the air-water interface. Comparisons of the calculated and observed results show the model is able to accurately predict peak pressures as a function of void fraction and filling conditions. Rigid water column models, however, perform poorly with small void fractions.

Zhou, Ling [Hohai University, China; Liu, Prof. Deyou [Hohai University, China; Karney, Professor Byran W. [University of Toronto; Zhang, Qin Fen [ORNL

2011-01-01T23:59:59.000Z

219

E-Print Network 3.0 - air-lift water-pumping wind-turbines Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water-pumping wind-turbines Search Powered by Explorit Topic List Advanced Search Sample search results for: air-lift water-pumping wind-turbines Page: << < 1 2 3 4 5 > >> 1 Review...

220

Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania  

E-Print Network [OSTI]

Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania Nathaniel R. In Pennsylvania, oil and gas wastewater is sometimes treated at brine treatment facilities and discharged to local bioaccumulation in localized areas of shale gas wastewater disposal. INTRODUCTION The safe disposal of large

Jackson, Robert B.

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia  

E-Print Network [OSTI]

The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field...

Rueda Silva, Carlos Fernando

2012-06-07T23:59:59.000Z

222

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

SciTech Connect (OSTI)

The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

Dexin Wang

2012-03-31T23:59:59.000Z

223

AGGLOMERATION OF GAS HYDRATE IN A WATER-IN-OIL EMULSION: EXPERIMENTAL AND MODELING STUDIES  

E-Print Network [OSTI]

AGGLOMERATION OF GAS HYDRATE IN A WATER-IN-OIL EMULSION: EXPERIMENTAL AND MODELING STUDIES Ana of gas hydrates in water-in-oil emulsion is investigated at the laboratory pilot scale on a flow loop, rheology, chord length distribution, modeling Corresponding author: Phone: +33 477420286 Fax +33 477429694

Paris-Sud XI, Université de

224

Analysis of Heating Systems and Scale of Natural Gas-Condensing Water Boilers in Northern Zones  

E-Print Network [OSTI]

In this paper, various heating systems and scale of the natural gas-condensing water boiler in northern zones are discussed, based on a technical-economic analysis of the heating systems of natural gas condensing water boilers in northern zones...

Wu, Y.; Wang, S.; Pan, S.; Shi, Y.

2006-01-01T23:59:59.000Z

225

THEORY OF THREE-PHASE FLOW APPLIED TO WATER-ALTERNATING-GAS ENHANCED OIL RECOVERY  

E-Print Network [OSTI]

is the key to this improvement. 1. Introduction In secondary oil recovery, water or gas is injectedTHEORY OF THREE-PHASE FLOW APPLIED TO WATER-ALTERNATING-GAS ENHANCED OIL RECOVERY D. MARCHESIN, we show that this theory can be applied to increase the rate of oil recovery, during certain

226

An air-to-air heat pump (COP-3.11 at 470 F (8.30C)) run alternately with an electric-resistance water  

E-Print Network [OSTI]

- ter than that of the system using electric resistance water heating. An analytical tinclel predicts of a high-efficiency heat pump'/electric-resistance .waterheater (IIP/IZR) system. TEST FACILITIES#12;/ ABSTRACT An air-to-air heat pump (COP-3.11 at 470 F (8.30C)) run alternately with an electric

Oak Ridge National Laboratory

227

Self-Assembly of CdTe Tetrapods into Network Monolayers at the Air/Water  

E-Print Network [OSTI]

Self-Assembly of CdTe Tetrapods into Network Monolayers at the Air/Water Interface Matthew D present a versatile method for cadmium telluride (CdTe) tetrapod syn- thesis by utilizing multiple Te the tetrapod shape. CdTe tetra- pods are a promising inorganic semicon- ductor for photovoltaic cells due

Lin, Zhiqun

228

Feasibility Study of Developing a Virtual Chilled Water Flow Meter at Air Handling Unit Level  

E-Print Network [OSTI]

In this paper, a virtual Air handling unit (AHU) level water flow meter is explored by using a control valve as a measurement device. The flow through the valve is indirectly calculated using differential pressure over both the valve and its...

Song, L.; Swamy, A.; Shim, G.

2011-01-01T23:59:59.000Z

229

Numerical simulation of air/water multiphase flows for ceramic sanitary ware design by multiple GPUs  

E-Print Network [OSTI]

and kitchen fittings. Facing the increasing demands for saving energy and water, TOTO has always targeted schemes and port the code to the GPU platforms to accelerate the large scale computations for real** Tokyo Institute of Technology, Department of energy sciences Numerical simulation of air

Furui, Sadaoki

230

MERCURY FLUX MEASUREMENTS OVER AIR AND WATER IN KEJIMKUJIK NATIONAL PARK, NOVA SCOTIA  

E-Print Network [OSTI]

temperature, and this dependence was well described by an Arrhenius-type expression with an activation energy from the atmosphere are wet and dry deposition. Once entering a watershed via precipitation and dry deposition mercury can be transformed to more Water, Air, and Soil Pollution 122: 183­202, 2000. © 2000

Folkins, Ian

231

A Study of Atmospheric Deposition of Air Toxics to the Waters of Puget Sound  

E-Print Network [OSTI]

, Washington, it is vital to determine what the impacts of such growth have had on air and water quality and if greater needs in regulation are needed to curtail emissions. A bi-weekly deposition study of atmospheric particulate matter at seven sites around...

Aguirre, Danielle

2009-06-09T23:59:59.000Z

232

Production-management techniques for water-drive gas reservoirs. Annual Report, August 1990-December 1991  

SciTech Connect (OSTI)

The project was designed to investigate production management strategies through a field study approach. The initial task was to prepare a summary of industry experience with water-drive gas and water-drive gas storage reservoirs. This activity was necessary to define the variety of reservoir situations in which water influx occurs, to identify those cases where alternative production practices will increase ultimate recovery, and to develop techniques to better characterize these reservoirs for further analysis. Four fields were selected for study: 1 onshore Gulf Coast gas reservoir, 2 offshore Gulf Coast reservoirs, and 1 mid-continent aquifier gas storage field. A modified material balance technique was developed and validated which predicts the pressure and production performance of water-drive gas reservoirs. This method yields more accurate results than conventional water influx techniques.

Hower, T.L.; Abbott, W.A.; Arsenault, J.W.; Jones, R.E.

1992-01-01T23:59:59.000Z

233

Navier-Stokes simulations of steep breaking water waves with a coupled air-water interface  

E-Print Network [OSTI]

Wave breaking on the ocean surface significantly facilitates the transfer of mass, momentum, heat and energy across the air-sea interface. In the context of the near field flow about a surface ship, the breaking bow wave ...

Hendrickson, Kelli L

2005-01-01T23:59:59.000Z

234

Ultrahigh Sensitivity Heavy Noble Gas Detectors for Long-Term Monitoring and for Monitoring Air  

SciTech Connect (OSTI)

The primary objective of this research project is to develop heavy noble gas (krypton, xenon, and radon) detectors for (1) long-term monitoring of transuranic waste, spent fuel, and other uranium and thorium bearing wastes and (2) alpha particle air monitors that discriminate between radon emissions and other alpha emitters. A University of Cincinnati/Argonne National Laboratory (UC/ANL) Team was assembled to complete this detector development project. Effective 1/4/99, the UC PI (John Valentine) became an Associate Professor in the Nuclear and Radiological Engineering Program of the George W. Woodruff School of Mechanical Engineering at the Georgia Institute of Technology. Consequently, this project was transferred to Georgia Tech (GT) with the PI. UC funding extended to 1/31/99 and GT funding became active 4/26/99. Due to this transfer, we will refer to the research team as the GT/UC/ANL Team for this Annual Report. Subsequently, we will use GT/ANL Team. DOE needs that are ad dressed by this project include improved long-term monitoring capability and improved air monitoring capability during remedial activities. Successful development and implementation of the proposed detection systems could significantly improve current capabilities with relatively simple and inexpensive equipment.

Valentine,John D.; Gross, Kenny

1999-06-01T23:59:59.000Z

235

Thermo-fluidal behavior of the air in a cavern for the CAES-G/T[Compressed Air Energy Storage Gas Turbine  

SciTech Connect (OSTI)

In this paper, a numerical analysis was performed to gain the detailed features of the thermo-fluidal behavior of the air inside the cavern for the compressed air storage gas turbine (CAES-G/T). The CAES-G/T, a peak shave power plant is now on the installation in Japan, where energy is stored in off peak period by compressed air in an underground cavern at pressure up to 80 atm abs. In the present work, an analytical model based on the two-dimensional laminar flow on the cross-section of the circular cavern was developed to quantify the effect of the transient process occurring in the cavern and wall during injection, storage and release of compressed air in the experimental circular cavern. the air was introduced until the required pressure inside the cavern is reached, then it was released outside after the storage period. It was found that the stratified temperature distribution was maintained in the cavern during compression and expansion periods. The wall temperature varied together with the variation of the air temperature with time, leading to the heat storage in the wall.

Tada, Shigeru; Yoshida, Hideo; Echigo, Ryozo; Oishi, Yasushi

1999-07-01T23:59:59.000Z

236

Treatability test of a stacked-tray air stripper for VOC in water  

SciTech Connect (OSTI)

A common strategy for hydraulic containment and mass removal at VOC contaminated sites is `pump and treat (P&T)`. In P&T operations, contaminated ground water is pumped from wells, treated above ground, and discharged. Many P&T remediation systems at VOC sites rely on air stripping technology because VOCs are easily transferred to the vapor phase. In stacked-tray air strippers, contaminated water is aerated while it flows down through a series of trays. System operations at LLNL are strictly regulated by the California and federal Environmental Protection Agencies (Cal/EPA and EPA), the Bay Area Air Quality Management District (BAAQMD), the California Regional Water Quality Control Board (RWQCB) and the Department of Toxic Substances Control (DTSC). These agencies set discharge limits, require performance monitoring, and assess penalties for non-compliance. National laboratories are also subject to scrutiny by the public and other government agencies. This extensive oversight makes it necessary to accurately predict field treatment performance at new extraction locations to ensure compliance with all requirements prior to facility activation. This paper presents treatability test results for a stacked- tray air stripper conducted at LLNL and compares them to the vendor`s modeling software results.

Pico, T., LLNL

1998-04-01T23:59:59.000Z

237

RESEARCH AND DEVELOPMENT OF AN INTEGRAL SEPARATOR FOR A CENTRIFUGAL GAS PROCESSING FACILITY  

SciTech Connect (OSTI)

A COMPACT GAS PROCESSING DEVICE WAS INVESTIGATED TO INCREASE GAS PRODUCTION FROM REMOTE, PREVIOUSLY UN-ECONOMIC RESOURCES. THE UNIT WAS TESTED ON AIR AND WATER AND WITH NATURAL GAS AND LIQUID. RESULTS ARE REPORTED WITH RECOMMENDATIONS FOR FUTURE WORK.

LANCE HAYS

2007-02-27T23:59:59.000Z

238

Versatile, fuel-powered active gas mask or room air purifier Paul D. Ronney, Department of Aerospace and Mechanical Engineering  

E-Print Network [OSTI]

temperature (250°C ­ 400°C), a catalyst is required. Breakdown products of chemical-agent molecules eitherVersatile, fuel-powered active gas mask or room air purifier Paul D. Ronney, Department Number: CBDIF-2006-PRO01 (Individual Protection) Motivation and approach Practically all chemical

239

Utilization of CO2 as cushion gas for porous media compressed air energy storage  

E-Print Network [OSTI]

design of compressed air energy storage electric powerS and Williams RH, Compressed Air Energy Storage: Theory,Porous media compressed air energy storage (PM-CAES): theory

Oldenburg, C.M.

2014-01-01T23:59:59.000Z

240

A Simple Method to Continuous Measurement of Energy Consumption of Tank Less Gas Water Heaters for Commercial Buildings  

E-Print Network [OSTI]

energy consumptions of hot water supply in restaurants or residential houses are large amount, guidelines for optimal design are not presented. measurements of energy consumption of tank less gas water heaters very difficult unless gas flow meters...

Yamaha, M.; Fujita, M.; Miyoshi, T.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

FEMP Designated Product Assessment for Commercial Gas Water Heaters  

E-Print Network [OSTI]

resistance and heat pump water heaters are not covered.other than commercial heat pump water heaters). 10CFR431.110

Lutz, Jim

2012-01-01T23:59:59.000Z

242

Lifecycle impacts of natural gas to hydrogen pathways on urban air quality  

E-Print Network [OSTI]

on the impact of hydrogen production on urban air quality.in ambient air quality: (1) onsite hydrogen production; (2)centralized hydrogen production with gaseous hydrogen

Wang, Guihua; Ogden, Joan M; Nicholas, Michael A

2007-01-01T23:59:59.000Z

243

Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module  

SciTech Connect (OSTI)

A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

Rice, C Keith [ORNL] [ORNL; Uselton, Robert B. [Lennox Industries, Inc] [Lennox Industries, Inc; Shen, Bo [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Shrestha, Som S [ORNL] [ORNL

2014-01-01T23:59:59.000Z

244

Fisk-based criteria to support validation of detection methods for drinking water and air.  

SciTech Connect (OSTI)

This report was prepared to support the validation of analytical methods for threat contaminants under the U.S. Environmental Protection Agency (EPA) National Homeland Security Research Center (NHSRC) program. It is designed to serve as a resource for certain applications of benchmark and fate information for homeland security threat contaminants. The report identifies risk-based criteria from existing health benchmarks for drinking water and air for potential use as validation targets. The focus is on benchmarks for chronic public exposures. The priority sources are standard EPA concentration limits for drinking water and air, along with oral and inhalation toxicity values. Many contaminants identified as homeland security threats to drinking water or air would convert to other chemicals within minutes to hours of being released. For this reason, a fate analysis has been performed to identify potential transformation products and removal half-lives in air and water so appropriate forms can be targeted for detection over time. The risk-based criteria presented in this report to frame method validation are expected to be lower than actual operational targets based on realistic exposures following a release. Note that many target criteria provided in this report are taken from available benchmarks without assessing the underlying toxicological details. That is, although the relevance of the chemical form and analogues are evaluated, the toxicological interpretations and extrapolations conducted by the authoring organizations are not. It is also important to emphasize that such targets in the current analysis are not health-based advisory levels to guide homeland security responses. This integrated evaluation of chronic public benchmarks and contaminant fate has identified more than 200 risk-based criteria as method validation targets across numerous contaminants and fate products in drinking water and air combined. The gap in directly applicable values is considerable across the full set of threat contaminants, so preliminary indicators were developed from other well-documented benchmarks to serve as a starting point for validation efforts. By this approach, at least preliminary context is available for water or air, and sometimes both, for all chemicals on the NHSRC list that was provided for this evaluation. This means that a number of concentrations presented in this report represent indirect measures derived from related benchmarks or surrogate chemicals, as described within the many results tables provided in this report.

MacDonell, M.; Bhattacharyya, M.; Finster, M.; Williams, M.; Picel, K.; Chang, Y.-S.; Peterson, J.; Adeshina, F.; Sonich-Mullin, C.; Environmental Science Division; EPA

2009-02-18T23:59:59.000Z

245

Optimization Models for Shale Gas Water Management Linlin Yang  

E-Print Network [OSTI]

source water acquisition, wastewater production, reuse and recycle, and subsequent transportation, about 19,000-26,000 m3 of water is used to complete each well. A wastewater production forecast . Furthermore, the injected water that remains underground accounts for 0.3% of all water consumption in the US

Grossmann, Ignacio E.

246

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network [OSTI]

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen walls. Air Products tasked our team to design an insert to place in the tubes of the WHB to increase flow velocity, thereby reducing fouling of the WHB. Objectives Air Products wishes that our team

Demirel, Melik C.

247

Application of microturbines to control emissions from associated gas  

DOE Patents [OSTI]

A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

Schmidt, Darren D.

2013-04-16T23:59:59.000Z

248

Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods  

E-Print Network [OSTI]

Pollutant Control Index: A New Method of Characterizing Ventilation in Commercial Buildings." Proceedings of Indoor Air'

Sherman, Max H.

2014-01-01T23:59:59.000Z

249

Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating  

SciTech Connect (OSTI)

Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

Kingston, T.; Scott, S.

2013-03-01T23:59:59.000Z

250

Bibliography of work on the photocatalytic removal of hazardous compounds from water and air  

SciTech Connect (OSTI)

This is a bibliography of information in the open literature on work that has been done to date on the photocatalytic oxidation of compounds, principally organic compounds. The goal of the listing is removing hazardous oompounds from water or air. It contains lists of substances and literature citations. The bibliography includes information obtained through the middle of 1993 and some selected references for the balance of that year.

Blake, D.M.

1994-05-01T23:59:59.000Z

251

Fracture toughness of Alloy 690 and EN52 weld in air and water  

SciTech Connect (OSTI)

The effect of low and high temperature water with high hydrogen on the fracture toughness of Alloy 690 and its weld, EN52, was characterized using elastic-plastic J{sub IC} methodology. While both materials display excellent fracture resistance in air and elevated temperature (>93 C) water, a dramatic degradation in toughness is observed in 54 C water. The loss of toughness is associated with a hydrogen-induced intergranular cracking mechanism where hydrogen is picked up from the water. Comparison of the cracking behavior in low temperature water with that for hydrogen-precharged specimens tested in air indicates that the critical local hydrogen content required to cause low temperature embrittlement is on the order of 120 to 160 ppm. Loading rate studies show that the cracking resistance is significantly improved at rates above ca. 1000 MPa{radical}m/h because there is insufficient time to produce grain boundary embrittlement. Electron fractographic examinations were performed to correlate cracking behavior with microstructural features and operative fracture mechanics.

Brown, C.M.; Mills, W.J.

1999-06-01T23:59:59.000Z

252

EIS-0071: Memphis Light, Gas and Water Division Industrial Fuels Gas Demonstration Plant, Memphis, Shelby County, Tennessee  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this EIS to assesses the potential environmental impacts associated with the construction and operation of a 3,155-ton-per-day capacity facility, which will demonstrate the technical operability, economic viability, and environmental acceptability of the Memphis Division of Light, Gas and Water coal gasification plant at Memphis, Tennessee.

253

"Solution plot technique"-Analysis of water influx in gas reservoirs using simulation studies  

E-Print Network [OSTI]

the reservoir-aquifer boundary. The most widely used methods for estimating water- influx which can be applied to water-drive gas reservoirs include: 1. Van Everdingen-Hurst Radial, unsteady statet. 2. Carter and Tracy, unsteady state2. 3, Fetkovich, pseudo... of calculating water- influx, and involves the use of the convolution integral method. Fetkovich proposed a model that utilizes a pseudo-steady state productivity index and the aquifer material balance for estimating the water influx. The Van Everdingen...

Hardikar, Sachin Suresh

1992-01-01T23:59:59.000Z

254

Sustainable development through beneficial use of produced water for the oil and gas industry.  

E-Print Network [OSTI]

??Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large (more)

Siddiqui, Mustafa Ashique

2012-01-01T23:59:59.000Z

255

Memphis Light, Gas and Water (Electric)- Commercial Efficiency Advice and Incentives Program  

Broader source: Energy.gov [DOE]

Memphis Light, Gas and Water (MLGW), in partnership with the Tennessee Valley Authority (TVA), offers a variety of energy efficient incentives to non-residential customers. The program provides...

256

ENVIR 202: EARTH, AIR, WATER PERSPECTIVES ON EXPERIMENTAL PROJECTS for Water (W)  

E-Print Network [OSTI]

with the basic questions from the first hand-out (25 Feb 2003..on the class web-page), please pose some of your-water' and `deep-water' waves. This shallow and deep is measured in comparison to the wavelength. The wavespeed that the fastest gravity waves in the deep ocean can move at (9.8 x 4000) or 200 m/sec (450 m.p.h.). When

257

IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan DYNAMIC MODELING OF AN AIR SOURCE HEAT PUMP WATER  

E-Print Network [OSTI]

. Compared to those water heaters, heat pump water heating systems can supply much more heat just with the same amount of electric input used for electric water heaters. The ASHPWH absorbs heat from the ambient- 1 - 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan DYNAMIC MODELING OF AN AIR

Paris-Sud XI, Université de

258

Simulating the Effect of Water on the Fracture System of Shale Gas Wells  

E-Print Network [OSTI]

SIMULATING THE EFFECT OF WATER ON THE FRACTURE SYSTEM OF SHALE GAS WELLS A Thesis by HASSAN HASAN H. HAMAM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2010 Major Subject: Petroleum Engineering SIMULATING THE EFFECT OF WATER ON THE FRACTURE SYSTEM OF SHALE GAS WELLS A Thesis by HASSAN HASAN H. HAMAM Submitted to the Office of Graduate...

Hamam, Hassan Hasan H.

2011-10-21T23:59:59.000Z

259

Effect of connate water on miscible displacement of reservoir oil by flue gas  

E-Print Network [OSTI]

gas and water injection, have allowed the industry to greatly increase primary oil recovery. But the common weakness of gas and water as pressure maintenance and secondary recovery agents is im- miscibility with the reservoir fluid to be displaced... to using a hydrocarbon slug, Saxon, et al was one of the earliest investigators of carbon dioxide as a possible flooding 14 agent. Gatlin and Slobod reported on laboratory investigations of another possible miscible flooding agent, methyl alcohol. Each...

Maxwell, H. D.

1960-01-01T23:59:59.000Z

260

Effects of fluid properties and initial gas saturation on oil recovery by water flooding  

E-Print Network [OSTI]

EFFECTS OF FLUID PROPERTIES AND INITIAL GAS SATURATION ON OIL RECOVERY BY WATER FLOODING A Thesis By MARION D. ARNOLD Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August, 1959 Major Subject: Petroleum Engineering EFFECTS OF FLUID PROPERTIES AND INITIAL GAS SATURATION ON OIL RECOVERY BY WATER FLOODING A Thesis By MARION D, ARNOLD Approved as to style and content by...

Arnold, Marion Denson

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas  

E-Print Network [OSTI]

Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production Zhenyu (PWT) in offshore oil & gas production processes. Different from most existing facility- or material offshore and the oil industry expects this share to grow continuously in the future. In last decade, oil

Yang, Zhenyu

262

Dual gas and oil dispersions in water: production and stability of foamulsion Anniina Salonen,*a  

E-Print Network [OSTI]

Dual gas and oil dispersions in water: production and stability of foamulsion Anniina Salonen of oil droplets and gas bubbles and show that the oil can have two very different roles, either suppressing foaming or stabilising the foam. We have foamed emulsions made from two different oils (rapeseed

Paris-Sud XI, Universit de

263

The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling  

E-Print Network [OSTI]

The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling Methane contamination is usually due to natural causes; however, it can also be the result of drilling activities, including shale gas drilling. Monitoring techniques exist for detecting methane and, in some cases

Wang, Z. Jane

264

Gas exchange and water relations of evergreen and deciduous tropical savanna trees  

E-Print Network [OSTI]

Gas exchange and water relations of evergreen and deciduous tropical savanna trees G. Goldstein1 F savannas with pro- nounced wet/dry seasonality and well- drained soils are characterized by the presence the rainless period (Medina, 1982; Sarmiento et al., 1985). The purpose of this study was to investi- gate gas

Boyer, Edmond

265

Water Transport Characteristics of Gas Diffusion Layer in a PEM Fuel Cell  

SciTech Connect (OSTI)

A presentation addressing the following: Water transport in PEM Fuel Cells - a DoE Project 1. Gas Diffusion Layer--Role and Characteristics 2. Capillary Pressure Determinations of GDL Media 3. Gas Permeability Measurements of GDL Media 4. Conclusions and Future Activities

Ashok S. Damle; J. Vernon Cole

2008-11-01T23:59:59.000Z

266

July 2010 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site  

SciTech Connect (OSTI)

Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis was conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analysis. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. An additional water sample was collected from well 29-6 Water Hole for analysis of tritium and gamma-emitting radionuclides. A duplicate produced water sample was collected from well 30-039-21743.

None

2011-01-01T23:59:59.000Z

267

June 2011 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site  

SciTech Connect (OSTI)

Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analyses. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. A duplicate produced water sample was collected from well 30-039-21743. Produced water samples were not collected at locations 30-039-30161 and 30-039-21744 because of the lack of water. Samples were not collected from location 30-039-29988 because the well was shut-in.

None

2011-10-01T23:59:59.000Z

268

Performance and evaluation of gas-engine-driven rooftop air conditioning equipment at the Willow Grove Naval Air Station. Final report (revised October 21, 1996)  

SciTech Connect (OSTI)

The performance was evaluated of a new US cooling technology that has been installed for the first time at a federal facility. The technology is a 15-ton natural gas-engine-driven rooftop air conditioning unit made by Thermo King. Two units were installed to serve the Navy Exchange at Willow Grove. The savings potential at Willow Grove is described and that in the federal sector estimated. Conditions for implementation are discussed. In summary, the new technology is generally cost-effective at sites where marginal electricity cost (per MBtu at the meter) is more than 4 times the marginal gas cost (per MBtu at the meter) and annual full-load-equivalent cooling hours exceed 2,000.

Armstrong, P.R.; Katipamula, S.

1996-10-01T23:59:59.000Z

269

Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air  

DOE Patents [OSTI]

A gas turbine engine is provided comprising an outer shell, a compressor assembly, at least one combustor assembly, a turbine assembly and duct structure. The outer shell includes a compressor section, a combustor section, an intermediate section and a turbine section. The intermediate section includes at least one first opening and at least one second opening. The compressor assembly is located in the compressor section to define with the compressor section a compressor apparatus to compress air. The at least one combustor assembly is coupled to the combustor section to define with the combustor section a combustor apparatus. The turbine assembly is located in the turbine section to define with the turbine section a turbine apparatus. The duct structure is coupled to the intermediate section to receive at least a portion of the compressed air from the compressor apparatus through the at least one first opening in the intermediate section, pass the compressed air to an apparatus for separating a portion of oxygen from the compressed air to produced vitiated compressed air and return the vitiated compressed air to the intermediate section via the at least one second opening in the intermediate section.

Bland, Robert J. (Oviedo, FL); Horazak, Dennis A. (Orlando, FL)

2012-03-06T23:59:59.000Z

270

Water Structure at Air/Acetonitrile Aqueous Solution Interfaces Yi Rao, Nicholas J. Turro, and Kenneth B. Eisenthal*  

E-Print Network [OSTI]

Water Structure at Air/Acetonitrile Aqueous Solution Interfaces Yi Rao, Nicholas J. Turro organized beneath an acetonitrile monolayer at the air/acetonitrile aqueous solution interface? The method-like", and the non-hydrogen bonded "free" OD, responded differently as the acetonitrile bulk concentration

Eisenthal, Kenneth B.

271

Development of minimum efficiency standards for large capacity air conditioners, and commercial water heaters, refrigerators, and freezers. Final report  

SciTech Connect (OSTI)

The California Energy Resources Conservation and Development Commission has promulgated appliance energy efficiency standards and energy conservation standards for new construction with the objective of reducing energy consumption in the State of California. The following appliance categories are specifically addressed: large capacity air conditioners; commercial water heaters; and commercial refrigerators and freezers. The tasks that have been performed include: an energy use pattern study for the subject equipment; an examination of the size distribution of commercial air conditioning equipment; an examination of the different types of commercial air conditioning systems; an evaluation of the effectiveness of economizers in reducing commercial air conditioning system energy consumption in California; an examination of the effects of oversizing commercial air conditioners; a detailed study of supermarket refrigeration and air conditioning equipment; an evaluation of the economic feasibility of utilizing air conditioner waste heat to heat water; an assessment of the applicability of existing test procedures for small water heaters to large water heaters; and a brief investigation of the marketing and distribution systems for air conditioning and refrigeration equipment. Results of the efforts are described.

Merrill, P.S.; Rettberg, R.J.; Erickson, R.C.; Toor, J.S.

1980-05-01T23:59:59.000Z

272

Zero Discharge Water Management for Horizontal Shale Gas Well...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PG Report Date Issued: June 2012 DOE Award : DE-FE0001466 Submitting Organization: West Virginia Water Research Institute West Virginia University PO Box 6064 Morgantown, WV...

273

Reclamation of potable water from mixed gas streams  

DOE Patents [OSTI]

An apparatus for separating a liquid from a mixed gas stream can include a wall, a mixed gas stream passageway, and a liquid collection assembly. The wall can include a first surface, a second surface, and a plurality of capillary condensation pores. The capillary condensation pores extend through the wall, and have a first opening on the first surface of the wall, and a second opening on the second surface of the wall. The pore size of the pores can be between about 2 nm to about 100 nm. The mixed gas stream passageway can be in fluid communication with the first opening. The liquid collection assembly can collect liquid from the plurality of pores.

Judkins, Roddie R; Bischoff, Brian L; Debusk, Melanie Moses; Narula, Chaitanya

2013-08-20T23:59:59.000Z

274

A Computational Analysis of Smart Timing Decisions for Heating Based on an Air-to-Water Heat pump SMARTER EUROPE E-world energy & water 2014 Proceedings page 1  

E-Print Network [OSTI]

A Computational Analysis of Smart Timing Decisions for Heating Based on an Air-to-Water Heat pump Decisions for Heating Based on an Air-to-Water Heat pump Jan Treur VU University Amsterdam, Agent Systems be most efficient to use this energy in these periods. For air to water heat pumps a similar issue occurs

Treur, Jan

275

The deep water gas charged accumulator and its possible replacements  

E-Print Network [OSTI]

. The problem may arise when the wellhead is at water depth of more than 3500 ft. In deep water drilling, the accumulators should be placed on the subsea blowout preventer stack to reduce hydraulic response times and provide a hydraulic power supply in case...

Mir Rajabi, Mehdi

2006-04-12T23:59:59.000Z

276

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

SciTech Connect (OSTI)

Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certification. Consumers, installers, and builders who make decisions about installing space and water heating equipment generally do not perform an analysis to assess the economic impacts of different combinations and efficiencies of space and water heating equipment. Thus, equipment is often installed without taking into consideration the potential life-cycle economic and energy savings of installing space and water heating equipment combinations. Drawing on previous and current analysis conducted for the United States Department of Energy rulemaking on amended standards for furnaces and water heaters, this paper evaluates the extent to which condensing equipment can provide life-cycle cost-effectiveness in a representative sample of single family American homes. The economic analyses indicate that significant energy savings and consumer benefits may result from large-scale introduction of condensing water heaters combined with condensing furnaces in U.S. residential single-family housing, particularly in the Northern region. The analyses also shows that important benefits may be overlooked when policy analysts evaluate the impact of space and water heating equipment separately.

Lekov, Alex; Franco, Victor; Meyers, Steve

2010-05-14T23:59:59.000Z

277

High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing  

SciTech Connect (OSTI)

Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis, MO. The product will be initially launched in the hot-humid climates of the southern U.S.

Henry DeLima; Joe Akin; Joseph Pietsch

2008-09-14T23:59:59.000Z

278

Recommended Parameter Values for GENII Modeling of Radionuclides in Routine Air and Water Releases  

SciTech Connect (OSTI)

The GENII v2 code is used to estimate dose to individuals or populations from the release of radioactive materials into air or water. Numerous parameter values are required for input into this code. User-defined parameters cover the spectrum from chemical data, meteorological data, agricultural data, and behavioral data. This document is a summary of parameter values that reflect conditions in the United States. Reasonable regional and age-dependent data is summarized. Data availability and quality varies. The set of parameters described address scenarios for chronic air emissions or chronic releases to public waterways. Considerations for the special tritium and carbon-14 models are briefly addressed. GENIIv2.10.0 is the current software version that this document supports.

Snyder, Sandra F.; Arimescu, Carmen; Napier, Bruce A.; Hay, Tristan R.

2012-11-01T23:59:59.000Z

279

Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process)  

SciTech Connect (OSTI)

The CAMERE process (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) was developed and evaluated. The reverse-water-gas-shift reactor and the methanol synthesis reactor were serially aligned to form methanol from CO{sub 2} hydrogenation. Carbon dioxide was converted to CO and water by the reverse-water-gas-shift reaction (RWReaction) to remove water before methanol was synthesized. With the elimination of water by RWReaction, the purge gas volume was minimized as the recycle gas volume decreased. Because of the minimum purge gas loss by the pretreatment of RWReactor, the overall methanol yield increased up to 89% from 69%. An active and stable catalyst with the composition of Cu/ZnO/ZrO{sub 2}/Ga{sub 2}O{sub 3} (5:3:1:1) was developed. The system was optimized and compared with the commercial methanol synthesis processes from natural gas and coal.

Joo, O.S.; Jung, K.D.; Han, S.H.; Uhm, S.J. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of). Catalysis Lab.] [Korea Inst. of Science and Technology, Seoul (Korea, Republic of). Catalysis Lab.; Moon, I. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering] [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering; Rozovskii, A.Y.; Lin, G.I. [A.V. Topchiev Inst. of Petrochemical Synthesis, Moscow (Russian Federation)] [A.V. Topchiev Inst. of Petrochemical Synthesis, Moscow (Russian Federation)

1999-05-01T23:59:59.000Z

280

CORQUENCH: A model for gas sparging-enhanced melt-water, film boiling heat transfer  

SciTech Connect (OSTI)

A phenomenological model (CORQUENCH) has been developed to describe the gas-sparging enhanced film boiling heat transfer between a molten pool of corium and an overlying water layer. The model accounts for thermal radiation across the vapor film, bulk liquid subcooling, interfacial area enhancement due to sparging gas, and melt entrainment into the overlying water layer. In this paper, the modeling approach is described, and a comparison with the lead-Freon 11 and lead-water film boiling experiment data of Greene is made. Predictions are then made for the case of film boiling over corium in the presence of sparging concrete decomposition gases. 15 refs., 3 figs.

Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations  

SciTech Connect (OSTI)

The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with the specific projects and regions, which increases the productive life of wells and increases the ultimate recoverable reserves in the ground. A case study was conducted in Wyoming to validate the applicability of the GIS analysis tool for watershed evaluations under real world conditions. Results of the partnered research will continue to be shared utilizing proven methods, such as on the IGOCC Web site, preparing hard copies of the results, distribution of documented case studies, and development of reference and handbook components to accompany the interactive internet-based GIS watershed analysis tool. Additionally, there have been several technology transfer seminars and presentations. The goal is to maximize the recovery of our nation's energy reserves and to promote water conservation.

Rachel Henderson

2007-09-30T23:59:59.000Z

282

Poster: Building a test-bed for wireless sensor networking for under-water oil and gas installations  

E-Print Network [OSTI]

. Initially we are building a laboratory in a large water tank. Later we will cooperate with an oil and gasPoster: Building a test-bed for wireless sensor networking for under-water oil and gas@ifi.uio.no 1 Introduction and background When the oil and gas industry moves its production facilities

Zhou, Shengli

283

Advances in the development of energy efficient technologies: Sea Water Air Conditioning (SWAC)  

SciTech Connect (OSTI)

Sea water air conditioning (SWAC) is a cost effective and environmentally friendly alternative to and/or enhancement of air conditioning from mechanical chillers. SWAC pumps cold sea water from the appropriate ocean depths (50 to 3,000 feet depending on the climate and local characteristics) to the shore where it replaces (by direct cooling) or enhances (through use as condenser water) large mechanical chillers found in coastal facilities. SWAC direct cooling uses less than twenty per cent of the electricity of a mechanical chiller and uses no refrigerants whatsoever. Indirect cooling also offers substantial energy savings. Both systems dispense with the need for a cooling tower. Technical advances over the last twenty years in corrosion resistant alloys (titanium or aluminum), bio-fouling deterrence, and deep ocean pipeline deployment allow SWAC installations to use reliable, off-the-shelf technology. SWAC works in a variety of climates (existing installations are in Hawaii and Halifax, Nova Scotia), giving it significant domestic and international potential. Economy-of-scale advantages make it attractive to district cooling schemes.

Coony, J.E. [Boston Pacific Co., Inc., Washington, DC (United States)

1996-11-01T23:59:59.000Z

284

Special Provisions Affecting Gas, Water, or Pipeline Companies (South Carolina)  

Broader source: Energy.gov [DOE]

This legislation confers the rights and privileges of telegraph and telephone companies (S.C. Code 58-9) on pipeline and water companies, and contains several additional provisions pertaining to...

285

Water Withdrawals for Development of Marcellus Shale Gas in Pennsylvania  

E-Print Network [OSTI]

is the fracking fluid (also called drilling return wa- ter, drilling wastewater, flowback, or produced- ing (fracking), the portion of water withdrawals related to mining is likely to rise. The information

Boyer, Elizabeth W.

286

Economics of residential gas furnaces and water heaters in United States new construction market  

SciTech Connect (OSTI)

New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2009-05-06T23:59:59.000Z

287

air-cooled gas turbine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan) 2003-01-01 57 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

288

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas activity: a west of Shetland case study industry and government identified sponge grounds in areas of interest to the oil and gas sector

Henderson, Gideon

289

Diagnosis of "fizz-gas" and gas reservoirs in deep-water environment De-hua Han, X RPL, Houston Unversity  

E-Print Network [OSTI]

pressure (shallow depth gas modulus is much less than 0.1 GPa. Even few percent volume fraction are a result of complicated geological processes which form a reservoir. Introduction "Fizz-water" or "Fizz-gasMixture of brine (50000ppm) & gas (0.78) 0 500 1000 1500 2000 2500 3000 3500 0 20 40 60 80 10 Brine Volume

290

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1)  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1) Host institution: University of Oxford Cartwright Project description: Recovery of natural gas from mudstone (shale) formations has triggered

Henderson, Gideon

291

1.0 GAS TRANSFER An important process used in water and wastewater treatment. Also very important when  

E-Print Network [OSTI]

1.0 GAS TRANSFER An important process used in water and wastewater treatment. Also very important = CL (CL + HcVG) (6) where CL = liquid phase concentration, VL = liquid volume, CG = gas phase concentration, VG = gas volume, Hc = dimensionless Henry's law coefficient and M = mass of gas. Now use two

Stenstrom, Michael K.

292

Production management techniques for water-drive gas reservoirs. Field No. 2, offshore gulf coast over-pressured, dry gas reservoirs. Topical report, July 1993  

SciTech Connect (OSTI)

An investigation of reservoir management strategies for optimization of ultimate hydrocarbon recovery and net present value from an overpressured, high yield gas condensate reservoir with water influx is reported. This field evaluation was based on a reservoir simulation. Volumetric and performance-derived original gas-in-place estimates did not agree: the performance-derived values were significantly lower than those predicted from volumetric analysis. Predicted field gas recovery was improved significantly by methods which accelerated gas withdrawals. Recovery was also influenced by well location. Accelerated withdrawals from wells near the aquifer tended to reduce sweep by cusping and coning water. This offset any benefits of increased gas rates.

Jones, R.E.; Jirik, L.A.; Hower, T.L.

1993-07-01T23:59:59.000Z

293

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

SciTech Connect (OSTI)

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

Edward Levy; Harun Bilirgen; John DuPoint

2011-03-31T23:59:59.000Z

294

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

SciTech Connect (OSTI)

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. Condensed flue gas water treatment needs and costs. Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. Results of cost-benefit studies of condensing heat exchangers.

Levy, Edward; Bilirgen, Harun; DuPont, John

2011-03-31T23:59:59.000Z

295

Effects of Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability  

SciTech Connect (OSTI)

Demonstrating effective treatment technologies and beneficial uses for oil and gas produced water is essential for producers who must meet environmental standards and deal with high costs associated with produced water management. Proven, effective produced-water treatment technologies coupled with comprehensive data regarding blending ratios for productive long-term irrigation will improve the state-of-knowledge surrounding produced-water management. Effective produced-water management scenarios such as cost-effective treatment and irrigation will discourage discharge practices that result in legal battles between stakeholder entities. The goal of this work is to determine the optimal blending ratio required for irrigating crops with CBNG and conventional oil and gas produced water treated by ion exchange (IX), reverse osmosis (RO), or electro-dialysis reversal (EDR) in order to maintain the long term physical integrity of soils and to achieve normal crop production. The soils treated with CBNG produced water were characterized with significantly lower SAR values compared to those impacted with conventional oil and gas produced water. The CBNG produced water treated with RO at the 100% treatment level was significantly different from the untreated produced water, while the 25%, 50% and 75% water treatment levels were not significantly different from the untreated water. Conventional oil and gas produced water treated with EDR and RO showed comparable SAR results for the water treatment technologies. There was no significant difference between the 100% treated produced water and the control (river water). The EDR water treatment resulted with differences at each level of treatment, which were similar to RO treated conventional oil and gas water. The 100% treated water had SAR values significantly lower than the 75% and 50% treatments, which were similar (not significantly different). The results of the greenhouse irrigation study found the differences in biomass production between each soil were significant for Western Wheatgrass and Alfafla. The Sheridan sandy loam soil resulted in the highest production for western wheatgrass and alfalfa while the X-ranch sandy loam had the lowest production rate for both plants. Plant production levels resulting from untreated CBNG produced water were significantly higher compared to untreated conventional oil and gas produced water. However, few differences were found between water treatments. The biomass produced from the greenhouse study was analyzed for elemental composition and for forage value. Elemental composition indentified several interesting findings. Some of the biomass was characterized with seemly high boron and sodium levels. High levels of boron found in some of the biomass was unexpected and may indicate that alfalfa and western wheatgrass plants may have been impacted by either soil or irrigation water containing high boron levels. Plants irrigated with water treated using EDR technology appeared to contain higher levels of boron with increased levels of treatment. Forage evaluations were conducted using near infrared reflectance spectroscopy. The data collected show small differences, generally less than 10%, between produced water treatments including the no treatment and 100% treatment conditions for each plant species studied. The forage value of alfalfa and western wheatgrass did not show significant tendencies dependent on soil, the amount of produced water treatment, or treatment technology.

Terry Brown; Jeffrey Morris; Patrick Richards; Joel Mason

2010-09-30T23:59:59.000Z

296

Combination gas-producing and waste-water disposal well. [DOE patent application  

DOE Patents [OSTI]

The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

Malinchak, R.M.

1981-09-03T23:59:59.000Z

297

Effect of Channel Materials on the Behavior of Water Droplet Emerging From GDL into PEMFC Gas Channels  

E-Print Network [OSTI]

hand, lack of water in the cell leads to membrane dehydration and reduction of proton exchange throughEffect of Channel Materials on the Behavior of Water Droplet Emerging From GDL into PEMFC Gas, Rochester, New York 14623, USA Water accumulation in the gas channels of proton exchange membrane fuel cells

Kandlikar, Satish

298

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane (R290)  

E-Print Network [OSTI]

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane-to-water reversible heat pump unit was carried out using two different fin-and-tube heat exchanger ``coil'' designs concepts. The performance of the heat pump was evaluated for each coil design at different superheat

Fernández de Córdoba, Pedro

299

Dynamic Air Layer on Textured Superhydrophobic Surfaces Ivan U. Vakarelski,*,  

E-Print Network [OSTI]

Dynamic Air Layer on Textured Superhydrophobic Surfaces Ivan U. Vakarelski,*, Derek Y. C. Chan that a novel macroscopic, dynamic continuous air layer or plastron can be sustained indefinitely on textured super- hydrophobic surfaces in air-supersaturated water by a natural gas influx mechanism. This type

Chan, Derek Y C

300

Determination of water saturation using gas phase partitioning tracers and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape, Density,TiO2(110). |Gas-phase Tracer

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode  

SciTech Connect (OSTI)

An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

Fang, Guiyin; Hu, Hainan; Liu, Xu [Department of Physics, Nanjing University, Nanjing 210093 (China)

2010-09-15T23:59:59.000Z

302

The Impact of Thermal Conductivity and Diffusion Rates on Water Vapor Transport through Gas Diffusion Layers  

E-Print Network [OSTI]

Water management in a hydrogen polymer electrolyte membrane (PEM) fuel cell is critical for performance. The impact of thermal conductivity and water vapor diffusion coefficients in a gas diffusion layer (GDL) has been studied by a mathematical model. The fraction of product water that is removed in the vapour phase through the GDL as a function of GDL properties and operating conditions has been calculated and discussed. Furthermore, the current model enables identification of conditions when condensation occurs in each GDL component and calculation of temperature gradient across the interface between different layers, providing insight into the overall mechanism of water transport in a given cell design. Water transport mode and condensation conditions in the GDL components depend on the combination of water vapor diffusion coefficients and thermal conductivities of the GDL components. Different types of GDL and water removal scenarios have been identified and related to experimentally-determined GDL proper...

Burlatsky, S F; Gummallaa, M; Condita, D; Liua, F

2013-01-01T23:59:59.000Z

303

Remediation of Risks in Natural Gas Storage Produced Waters: The Potential Use of Constructed Wetland Treatment Systems.  

E-Print Network [OSTI]

??Natural gas storage produced waters (NGSPWs) are generated in large volumes, vary in composition, and often contain constituents in concentrations and forms that are toxic (more)

Johnson, Brenda

2006-01-01T23:59:59.000Z

304

E-Print Network 3.0 - air-gas mixture khitinsoderzhashchie Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for three or more standard gas mixtures ... Source: Oak Ridge National Laboratory, Carbon Dioxide Information Analysis Center, Global Ocean Data Analysis Project (GLODAP)...

305

Management of produced water in oil and gas operations  

E-Print Network [OSTI]

of oil present in the sample. For example, the calibration factor obtained for samples containing kerosene is different from the calibration factor obtained for samples containing diesel. However according to EPA, if the analyzer is calibrated...) for analysis which reduces the chances of inaccuracy because the larger the amount of sample the higher the chances of good representation of the original sample. 6 In this work TOC-700 was used to analyze kerosene-water emulsions. To match TOC...

Patel, Chirag V.

2005-02-17T23:59:59.000Z

306

Production management teachniques for water-drive gas reservoirs. Field No. 3. Offshore gulf coast normally pressured, dry gas reservoir. Topical report, July 1993  

SciTech Connect (OSTI)

To develop improved completion and reservoir management strategies for water-drive gas reservoir, the study conducted on an offshore, normally pressured, dry gas reservoir is reported. The strategies that were particularly effective in increasing both the ultimate recovery and the net present value of the field are high volume water production from strategically located downdip wells and the recompletion of an upstructure well to recover trapped attic gas. High volume water production lowered the average reservoir pressure, which liberated residual gas trapped in the invaded region. Recompleting a new well into the reservoir also lowered the pressure and improved the volumetric displacement efficiency by recovering trapped attic gas. Ultimate recovery is predicted to increase 5-12% of the original gas-in-place.

Hower, T.L.; Uttley, S.J.

1993-07-01T23:59:59.000Z

307

Ultrahigh sensitivity heavy noble gas detectors for long-term monitoring and for monitoring air. Technical status report  

SciTech Connect (OSTI)

The primary objective of this research project is to develop heavy noble gas (krypton, xenon, and radon) detectors for (1) long-term monitoring of transuranic waste, spent fuel, and other uranium and thorium bearing wastes and (2) alpha particle air monitors that discriminate between radon emissions and other alpha emitters. A University of Cincinnati/Argonne National Laboratory (UC/ANL) Team was assembled to complete this detector development project. DOE needs that are addressed by this project include improved long-term monitoring capability and improved air monitoring capability during remedial activities. Successful development and implementation of the proposed detection systems could significantly improve current capabilities with relatively simple and inexpensive equipment.

Valentine, J.D.

1999-01-31T23:59:59.000Z

308

Performance and evaluation of gas-engine-driven split-system cooling equipment at the Willow Grove Naval Air Station  

SciTech Connect (OSTI)

DOE`s Federal Energy Management Program supports efforts to reduce energy use and associated expenditures within the federal sector; one such effort, the New Technology Demonstration Program (NTDP)(formerly the Test Bed Demonstration program), seeks to evaluate new energy saving US technologies and secure their more timely adoption by the federal government. This report describes the field evaluation conducted to examine the performance of a 15-ton natural-gas-engine- driven, split-system, air-conditioning unit. The unit was installed at a multiple-use building at Willow Grove Naval Air Station, a regular and reserve training facility north of Philadelphia, and its performance was monitored under the NTDP.

Armstrong, P.R.; Schmelzer, J.R.

1997-01-01T23:59:59.000Z

309

Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station. Interim report, 1992 cooling season  

SciTech Connect (OSTI)

In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

Armstrong, P.R.; Conover, D.R.

1993-05-01T23:59:59.000Z

310

Lifecycle impacts of natural gas to hydrogen pathways on urban air quality  

E-Print Network [OSTI]

generation of electricity in California, which resulted in more air pollution than central power plants [electricity-intensive liquid hydrogen truck pathway, emis- sions from diesel truck delivery and electric generation at power plants

Wang, Guihua; Ogden, Joan M; Nicholas, Michael A

2007-01-01T23:59:59.000Z

311

Experimentation and application of directional solvent extraction for desalination of seawater and shale gas 'frac' flowback water  

E-Print Network [OSTI]

A recently demonstrated directional solvent technique for desalination of water has been tested for desalting seawater and shale gas 'frac' flowback water. The premise behind directional solvent extraction is that when ...

Kleinguetl, Kevin (Kevin G.)

2011-01-01T23:59:59.000Z

312

Albany Water Gas & Light Comm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy LLCAir(EC-LEDS) | Open EnergyWater

313

Shale Gas Development Challenges: Water | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the Gridwise Global1WasteRecoveryAwardsFacility inDepartmentFracture FluidsWater

314

Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction  

SciTech Connect (OSTI)

Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ?375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?Sr SW = +13.8 to +41.6, where ?Sr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

Elizabeth C. Chapman, Rosemary C. Capo, Brian W. Stewart,*, Carl S. Kirby, Richard W. Hammack,

2012-02-24T23:59:59.000Z

315

Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction  

SciTech Connect (OSTI)

Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of 375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?{sub Sr}{sup SW} = +13.8 to +41.6, where ?{sub Sr}{sup SW} is the deviation of the {sup 87}Sr/{sup 86}Sr ratio from that of seawater in parts per 10{sup 4}); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

Chapman, Elizabeth C; Capo, Rosemary C.; Stewart, Brian W.; Kirby, Carl S.; Hammack, Richard W.; Schroeder, Karl T.; Edenborn, Harry M.

2012-03-20T23:59:59.000Z

316

Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve  

SciTech Connect (OSTI)

A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the probability of error in the measurements is significantly greater than for conventionally manufactured flow meters. In this paper, mathematical models are developed and used to conduct uncertainty analysis for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded anuncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other, and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study.

Song, Li; Wang, Gang; Brambley, Michael R.

2013-04-28T23:59:59.000Z

317

CORQUENCH: A model for gas sparging-enhanced, melt-water, film-boiling heat transfer  

SciTech Connect (OSTI)

In evaluation of severe-accident sequences for water-cooled nuclear reactors, molten core materials may be postulated to be released into the containment and accumulate on concrete. The heatup and decomposition of concrete is accompanied by the release of water vapor and carbon dioxide gases. Gases flowing through the melt upper surface can influence the rates of heat transfer to water overlying the melt. In particular, the gas flow through the interface can be envisioned to enhance the heat removal from the melt. A mechanistic model (CORQUENCH) has been developed to describe film-boiling heat transfer between a molten pool and an overlying coolant layer in the presence of sparging gas. The model favorably predicts the lead-Feron 11 data of Greene and Greene et al. for which the calculations indicate that area enhancement in the conduction heat transfer across the film is the predominant mechanism leading to augmentation in the heat flux as the gas velocity increases. Predictions for oxidic corium indicate a rapid increase in film-boiling heat flux as the gas velocity rises. The predominant mode of heat transfer for this case is radiation, and the increase in heat flux with gas velocity is primarily a result of interfacial area enhancement of the radiation component of the overall heat transfer coefficient. The CORQUENCH model has been incorporated into the MELTSPREAD-1 computer code{sup 6} for the analysis of transient spreading in containments.

Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.

1990-01-01T23:59:59.000Z

318

Tracing coalbed natural gas-coproduced water using stable isotopes of carbon  

SciTech Connect (OSTI)

Recovery of hydrocarbons commonly is associated with coproduction of water. This water may be put to beneficial use or may be reinjected into subsurface aquifers. In either case, it would be helpful to establish a fingerprint for that coproduced water so that it may be tracked following discharge on the surface or reintroduction to geologic reservoirs. This study explores the potential of using {delta}{sup 13}C of dissolved inorganic carbon (DIC) of coalbed natural gas (CBNG) - coproduced water as a fingerprint of its origin and to trace its fate once it is disposed on the surface. Our initial results for water samples coproduced with CBNG from the Powder River Basin show that this water has strongly positive {delta}{sup 13}C(DIC) (12 parts per thousand to 22 parts per thousand) that is readily distinguished from the negative {delta}{sup 13}C of most surface and ground water (-8 parts per thousand to -11 parts per thousand). Furthermore, the DIC concentrations in coproduced water samples are also high (more than 100 mg C/L) compared to the 20 to 50 mg C/L in ambient surface and ground water of the region. The distinctively high {delta}{sup 13}C and DIC concentrations allow us to identify surface and ground water that have incorporated CBNG-coproduced water. Accordingly, we suggest that the {delta}{sup 13}C(DIC) and DIC concentrations of water can be used for long-term monitoring of infiltration of CBNG-coproduced water into ground water and streams. Our results also show that the {delta} {sup 13}C (DIC) of CBNG-coproduced water from two different coal zones are distinct leading to the possibility of using {delta}{sup 13}C(DIC) to distinguish water produced from different coal zones.

Sharma, S.; Frost, C.D. [University of Wyoming, Laramie, WY (United States). Dept. for Renewable Resources

2008-03-15T23:59:59.000Z

319

Hydraulic Properties of Rice and the Response of Gas Exchange to Water Stress1  

E-Print Network [OSTI]

Hydraulic Properties of Rice and the Response of Gas Exchange to Water Stress1 Volker Stiller*, H.R.L.) We investigated the role of xylem cavitation, plant hydraulic conductance, and root pressure-specific photosynthetic rate, leaf diffusive conductance, and soil-leaf hydraulic conductance that were associated

Stiller, Volker

320

Argonne National Laboratory Chemical Engineering Division Water-gas shift catalysis  

E-Print Network [OSTI]

Argonne National Laboratory Chemical Engineering Division Water-gas shift catalysis Sara Yu Choung Engineering Division Argonne National Laboratory Hydrogen, Fuel Cells, and Infrastructure Technologies 2003 Merit Review Berkeley, CA May 19-22, 2003 #12;Argonne National Laboratory Chemical Engineering Division

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Methane contamination of drinking water accompanying gas-well drilling and  

E-Print Network [OSTI]

Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing (received for review January 13, 2011) Directional drilling and hydraulic-fracturing technologies are dra use (1­5). Directional drilling and hydrau- lic-fracturing technologies are allowing expanded natural

322

Methane contamination of drinking water accompanying gas-well drilling and  

E-Print Network [OSTI]

Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing (received for review January 13, 2011) Directional drilling and hydraulic-fracturing technologies are dra of energy use (1­5). Directional drilling and hydrau- lic-fracturing technologies are allowing expanded

Jackson, Robert B.

323

Title: Using acidic electrolyzed water to reduce objectionable gas emissions from poultry production facilities in Texas.  

E-Print Network [OSTI]

Title: Using acidic electrolyzed water to reduce objectionable gas emissions from poultry Summary: There are increasing numbers of poultry production buildings, with large, densely housed flocks to allow producers to meet the increasing demand for poultry products and, yet, reduce the environmental

Mukhtar, Saqib

324

Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance across a variety of product categories, including whole-home gas tankless water heaters, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

325

Application of Genetic Algorithm to Optimal Design of Central Air-Conditioning Water System  

E-Print Network [OSTI]

.25 150 121.86 0.1182 1.92 200 131.55 0.0218 376.9729 1.0864 19 19 20 4.5 150 99.58 0.1013 1.57 150 107.18 0.1013 1163.561 1.6857 20 20 21 1.8 80 22.29 0.965 1.17 65 24.28 2.3884 1408.019 1.8046 21 22 23 1 80 22.29 0.5361 1.17 80 24.24 0.5361 315.0493... Wuxi, P. R. China, 214122 Shanghai? P. R. China, 200070 fxp_99@126.com Zouyun_22@126.com WeidingLong@163.com Abstract: The optimal design of air-conditioning water system is an optimization problem of functions that depend on a series...

Feng, X.; Zou, Y.; Long, W.

2006-01-01T23:59:59.000Z

326

CAN SORBENT-BASED GAS PHASE AIR CLEANING FOR VOCS SUBSTITUTE FOR VENTILATION IN COMMERCIAL BUILDINGS?  

SciTech Connect (OSTI)

This paper reviews current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings, as needed to enable reductions in ventilation rates and associated energy savings. The principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

Fisk, William; Fisk, William J.

2007-08-01T23:59:59.000Z

327

Sorbent-Based Gas Phase Air Cleaning for VOCs in CommercialBuildings  

SciTech Connect (OSTI)

This paper provides a review of current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings as needed to enable reductions in ventilation rates and associated energy savings. The fundamental principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, novel sorbent technologies are described, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

Fisk, William J.

2006-05-01T23:59:59.000Z

328

Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine  

SciTech Connect (OSTI)

Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

David B. Burnett

2004-09-29T23:59:59.000Z

329

Air Handler Condensate Recovery at the Environmental Protection Agency's Science and Ecosystem Support Division: Best Management Practice Case Study #14; Alternate Water Sources (Fact Sheet)  

SciTech Connect (OSTI)

FEMP Water Efficiency Best Management Practice #14 Case Study: Overview of the air handler condensate recovery program at the Environmental Protection Agency's Science and Ecosystem Support Division.

Not Available

2010-02-01T23:59:59.000Z

330

Proposal for the award of a blanket contract for the supply, commissioning and maintenance of water-and air-cooled chillers  

E-Print Network [OSTI]

Proposal for the award of a blanket contract for the supply, commissioning and maintenance of water-and air-cooled chillers

2011-01-01T23:59:59.000Z

331

natural gas+ condensing flue gas heat recovery+ water creation+ CO2  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Home Water Powerlaunchmulticolorreduction+

332

E-Print Network 3.0 - air-cooled water chillers Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and centrifugal chillers... ... xvi Adsorption Heat Pumps and Air Conditioners ... xvi Absorption Chillers......

333

Primary zone air proportioner  

DOE Patents [OSTI]

An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

Cleary, Edward N. G. (San Diego, CA)

1982-10-12T23:59:59.000Z

334

Preliminary Modeling, Testing, and Analysis of a Gas Tankless Water Heater: Preprint  

SciTech Connect (OSTI)

Today's gas tankless water heaters offer significant energy savings over conventional gas storage tank water heaters, but savings depends on the draw pattern. A one-node model incorporating heat exchanger mass is used to address this and other issues. Key model parameters are determined from least-squares regression on short-term data, including burner efficiency, thermal capacitance, and thermal loss coefficient. The calibrated model agrees with data to ~5% on Qgas, with temperature RMS deviation of ~4..deg..C. Efficiency with a standard realistic draw is 71%, compared to 81% predicted from standard energy-factors. Adding a small tank controlled by the tankless heater solves issues of oscillations with solar pre-heat, low-flow and hot-water-delay issues. Future work includes model refinements and developing optimal data protocols for model parameter extraction.

Burch, J.; Hoeschele, M.; Springer, D.; Rudd, A.

2008-05-01T23:59:59.000Z

335

Molecular Density Functional Theory for water with liquid-gas coexistence and correct pressure  

E-Print Network [OSTI]

The solvation of hydrophobic solutes in water is special because liquid and gas are almost at coexistence. In the common hypernetted chain approximation to integral equations, or equivalently in the homogenous reference fluid of molecular density functional theory, coexistence is not taken into account. Hydration structures and energies of nanometer-scale hydrophobic solutes are thus incorrect. In this article, we propose a bridge functional that corrects this thermodynamic inconsistency by introducing a metastable gas phase for the homogeneous solvent. We show how this can be done by a third order expansion of the functional around the bulk liquid density that imposes the right pressure and the correct second order derivatives. Although this theory is not limited to water, we apply it to study hydrophobic solvation in water at room temperature and pressure and compare the results to all-atom simulations. With this correction, molecular density functional theory gives, at a modest computational cost, quantita...

Jeanmairet, Guillaume; Sergiievskyi, Volodymyr; Borgis, Daniel

2015-01-01T23:59:59.000Z

336

Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings  

SciTech Connect (OSTI)

Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

2009-07-15T23:59:59.000Z

337

Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations  

SciTech Connect (OSTI)

Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

David B. Burnett; Mustafa Siddiqui

2006-12-29T23:59:59.000Z

338

E-Print Network 3.0 - air gas turbine Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Utilization 54 Reproducedwith pennissionfrom ElsevierPergamon Biomass and Bioenerg..' Vol: 10, :os 2-3, pp..149-l66, 1996 Summary: -up water Gasturbine Electricity...

339

Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine  

SciTech Connect (OSTI)

This study is developing a comprehensive study of what is involved in the desalination of oil field produced brine and the technical developments and regulatory changes needed to make the concept a commercial reality. It was originally based on ''conventional'' produced water treatment and reviewed (1) the basics of produced water management, (2) the potential for desalination of produced brine in order to make the resource more useful and available in areas of limited fresh water availability, and (3) the potential beneficial uses of produced water for other than oil production operations. Since we have begun however, a new area of interest has appeared that of brine water treatment at the well site. Details are discussed in this technical progress report. One way to reduce the impact of O&G operations is to treat produced brine by desalination. The main body of the report contains information showing where oil field brine is produced, its composition, and the volume available for treatment and desalination. This collection of information all relates to what the oil and gas industry refers to as ''produced water management''. It is a critical issue for the industry as produced water accounts for more than 80% of all the byproducts produced in oil and gas exploration and production. The expense of handling unwanted waste fluids draws scarce capital away for the development of new petroleum resources, decreases the economic lifetimes of existing oil and gas reservoirs, and makes environmental compliance more expensive to achieve. More than 200 million barrels of produced water are generated worldwide each day; this adds up to more than 75 billion barrels per year. For the United States, the American Petroleum Institute estimated about 18 billion barrels per year were generated from onshore wells in 1995, and similar volumes are generated today. Offshore wells in the United States generate several hundred million barrels of produced water per year. Internationally, three barrels of water are produced for each barrel of oil. Production in the United States is more mature; the US average is about 7 barrels of water per barrel of oil. Closer to home, in Texas the Permian Basin produces more than 9 barrels of water per barrel of oil and represents more than 400 million gallons of water per day processed and re-injected.

David B. Burnett

2005-09-29T23:59:59.000Z

340

Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report  

SciTech Connect (OSTI)

A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

NONE

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Plasma Kinetics in the Ethanol/Water/Air Mixture in "Tornado" Type Electrical Discharge  

E-Print Network [OSTI]

This paper presents the results of a theoretical and experimental study of plasma-assisted reforming of ethanol into molecular hydrogen in a new modification of the "tornado" type electrical discharge. Numerical modeling clarifies the nature of the non-thermal conversion and explains the kinetic mechanism of nonequilibrium plasma-chemical transformations in the gas-liquid system and the evolution of hydrogen during the reforming as a function of discharge parameters and ethanol-to-water ratio in the mixture. We also propose a scheme of chemical reactions for plasma kinetics description. It is shown that some characteristics of the investigated reactor are at least not inferior to characteristics of other plasma chemical reactors.

Levko, D; Chernyak, V; Olszewski, S; Nedybaliuk, O

2011-01-01T23:59:59.000Z

342

Changing the spatial location of electricity generation to increase water availability in areas with drought: a feasibility study and quantification of air quality impacts in Texas  

E-Print Network [OSTI]

The feasibility, cost, and air quality impacts of using electrical grids to shift water use from drought-stricken regions to areas with more water availability were examined. Power plant cooling represents a large portion ...

Pacsi, Adam P

343

Soil chemical changes resulting from irrigation with water co-produced with coalbed natural gas  

SciTech Connect (OSTI)

Land application of coalbed natural gas (CBNG) co-produced water is a popular management option within northwestern Powder River Basin (PRB) of Wyoming. This study evaluated the impacts of land application of CBNG waters on soil chemical properties at five sites. Soil samples were collected from different depths (0-5, 5-15, 15-30, 30-60, 60-90, and 90-120 cm) from sites that were irrigated with CBNG water for 2 to 3 yr and control sites. Chemical properties of CBNG water used for irrigation on the study sites indicate that electrical conductivity of CBNG water (EC{sub w}) and sodium adsorption ratio of CBNG water (SAR{sub w}) values were greater than those recommended for irrigation use on the soils at the study sites. Soil chemical analyses indicated that electrical conductivity of soil saturated paste extracts (ECe) and sodium adsorption ratio of soil saturated paste extracts (SAR(e)) values for irrigated sites were significantly greater (P < 0.05) than control plots in the upper 30-cm soil depths. Mass balance calculations suggested that there has been significant buildup of Na in irrigated soils due to CBNG irrigation water as well as Na mobilization within the soil profiles. Results indicate that irrigation with CBNG water significantly impacts certain soil properties, particularly if amendments are not properly utilized. This study provides information for better understanding changes in soil properties due to land application of CBNG water.

Ganjegunte, G.K.; Vance, G.F.; King, L.A. [University of Wyoming, Laramie, WY (United States). Dept. of Renewable Resources

2005-12-01T23:59:59.000Z

344

Metal/ceria water-gas shift catalysts for automotive polymer electrolyte fuel cell system.  

SciTech Connect (OSTI)

Polymer electrolyte fuel cell (PEFC) systems are a leading candidate for replacing the internal combustion engine in light duty vehicles. One method of generating the hydrogen necessary for the PEFC is reforming a liquid fuel, such as methanol or gasoline, via partial oxidation, steam reforming, or autothermal reforming (a combination of partial oxidation and steam reforming). The H{sub 2}-rich reformate can contain as much as 10% carbon monoxide. Carbon monoxide has been shown to poison the platinum-based anode catalyst at concentrations as low as 10 ppm,1 necessitating removal of CO to this level before passing the reformate to the fuel cell stack. The water-gas shift (WGS) reaction, CO + H{sub 2}O {rightleftharpoons} CO{sub 2} + H{sub 2}, is used to convert the bulk of the reformate CO to CO{sub 2}. Industrially, the WGS reaction is conducted over two catalysts, which operate in different temperature regimes. One catalyst is a FeCr mixed oxide, which operates at 350-450 C and is termed the high-temperature shift (HTS) catalyst. The second catalyst is a CuZn mixed oxide, which operates at 200-250 C and is termed the low-temperature shift (LTS) catalyst. Although these two catalysts are used industrially in the production of H{sub 2} for ammonia synthesis, they have major drawbacks that make them unsuitable for transportation applications. Both the LTS and the HTS catalysts must first be ''activated'' before being used. For example, the copper in the copper oxide/zinc oxide LTS catalyst must first be reduced to elemental copper in situ before it becomes active for the WGS reaction. This reduction reaction is exothermic and must be carried out under well- controlled conditions using a dilute hydrogen stream (1 vol% H{sub 2}) to prevent high catalyst temperatures, which can result in sintering (agglomeration) of the copper particles and loss of active surface area for the WGS reaction. Also, once the catalyst has been activated by reduction, it must be protected from exposure to ambient air to prevent re-oxidation of the copper. The activated catalyst must also be protected from the condensation of liquids, for example, during start-up or transient operation. For these reasons, a more thermally rugged catalyst is needed which has sufficient activity to operate at the low temperatures that are thermodynamically necessary to achieve low CO concentrations.

Myers, D. J.; Krebs, J. F.; Carter, J. D.; Kumar, R.; Krumpelt, M.

2002-01-11T23:59:59.000Z

345

Oil production from thin oil columns subject to water and gas coning  

E-Print Network [OSTI]

OIL PRODUCTION FROM THIN OIL COLUMNS SUBJECT TO MATER AND GAS CONING A Thesis by KMOK KIT CHAI Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1981... Major Subject: Petroleum Engineering OIL PRODUCTION FROM THIN OIL COLUMNS SUBJECT TO WATER AND GAS CONING A Thesis by KWOK KIT CHAI Approved as to style and content by airman of o t ee Member Member Head o Department May 1981 ABSTRACT Oil...

Chai, Kwok Kit

1981-01-01T23:59:59.000Z

346

Dutch gas plant uses polymer process to treat aromatic-saturated water  

SciTech Connect (OSTI)

A gas-processing plant in Harlingen, The Netherlands, operated by Elf Petroland has been running a porous-polymer extraction process since 1994 to remove aromatic compounds from water associated with produced natural gas. In the period, the unit has removed dispersed and dissolved aromatic compounds to a concentration of <1 ppm with energy consumption of only 17% that of a steam stripper, according to Paul Brooks, general manager for Akzo Nobel`s Macro Porous Polymer-Extraction (MPPE) systems. The paper describes glycol treatment the MPPE separation process, and the service contract for the system.

NONE

1998-11-02T23:59:59.000Z

347

Surface Tensions in NaCl-Water-Air Systems from MD Simulations Ranjit Bahadur, Lynn M. Russell,*, and Saman Alavi  

E-Print Network [OSTI]

Surface Tensions in NaCl-Water-Air Systems from MD Simulations Ranjit Bahadur, Lynn M. Russell, Ottawa, Ontario K1A 0R6, Canada ReceiVed: July 9, 2007; In Final Form: July 30, 2007 Surface tensions to the surface tension, while the energy-integral and test area methods provide direct estimates. At 1 atm

Russell, Lynn

348

14 Diffusive CO2 Flux at the Air-Water Interface of the Robert-Bourassa Hydroelectric Reservoir in  

E-Print Network [OSTI]

14 Diffusive CO2 Flux at the Air-Water Interface of the Robert-Bourassa Hydroelectric Reservoir Hydroelectric reservoirs and lakes in boreal Québec produce greenhouse gases (GHG) mainly in the form of CO2 of the interface. When applied to the Robert- Bourassa hydroelectric reservoir in boreal Québec, this model

Long, Bernard

349

Consistency in the Sum Frequency Generation Intensity and Phase Vibrational Spectra of the Air/Neat Water Interface  

SciTech Connect (OSTI)

Tremendous progresses have been made in quantitative understanding and interpretation of the hydrogen bonding and ordering structure at the air/water interface since the first sum-frequency generation vibrational spectroscopy (SFG-VS) measurement on the neat air/water interface by Q. Du et al. in 1993 (PRL, 70, 2312-2316, 1993.). However, there are still disagreements and controversies on the consistency between the different experiment measurements and the theoretical computational results. One critical problem lies in the inconsistency between the SFG-VS intensity measurements and the recently developed SFG-VS phase spectra measurements of the neat air/water interface, which has inspired various theoretical efforts trying to understand them. In this report, the reliability of the SFG-VS intensity spectra of the neat air/water interface is to be quantitatively examined, and the sources of possible inaccuracies in the SFG-VS phase spectral measurement is to be discussed based on the non-resonant SHG phase measurement results. The conclusion is that the SFG-VS intensity spectra data from different laboratories are now quantitatively converging and in agreement with each other, and the possible inaccuracies and inconsistencies in the SFG-VS phase spectra measurements need to be carefully examined against the properly corrected phase standard.

Feng, Ranran; Guo, Yuan; Lu, Rong; Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

2011-06-16T23:59:59.000Z

350

A low diffusive Lagrange-remap scheme for the simulation of violent air-water free-surface flows.  

E-Print Network [OSTI]

. The evolution of the interfaces between phases and the consecutive complex dynamics need to be simulatedA low diffusive Lagrange-remap scheme for the simulation of violent air-water free-surface flows. Introduction Simulation of free surface flows knows an increasing interest as an essential predictive tool

Boyer, Edmond

351

Energy savings and economics of advanced control strategies for packaged air conditioners with gas heat  

SciTech Connect (OSTI)

This paper presents an evaluation of the potential energy savings from adding advanced control to existing packaged air conditioners. Advanced control options include air-side economizer, multi-speed fan control, demand control ventilation and staged cooling. The energy and cost savings from the different control strategies individually and in combination are estimated using the EnergyPlus detailed energy simulation program for four building types, namely, a small office building, a stand-alone retail building, a strip mall building and a supermarket building. For each of the four building types, the simulation was run for 16 locations covering all 15 climate zones in the U.S. The maximum installed cost of a replacement controller that provides acceptable payback periods to owners is estimated.

Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

2013-10-01T23:59:59.000Z

352

PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam Reforming, and Reverse-Water-Gas-Shift  

SciTech Connect (OSTI)

Pd/ZnO/Al2O3 catalysts were studied for water-gas-shift (WGS), methanol steam reforming, and reverse-water-gas-shift (RWGS) reactions. WGS activity was found to be dependent on the Pd:Zn ratio with a maximum activity obtained at approximately 0.50, which was comparable to that of a commercial Pt-based catalyst. The catalyst stability was demonstrated for 100 hours time-on-stream at a temperature of 3600C without evidence of metal sintering. WGS reaction rates were approximately 1st order with respect to CO concentration, and kinetic parameters were determined to be Ea = 58.3 kJ mol-1 and k0 = 6.1x107 min-1. During methanol steam reforming, the CO selectivities were observed to be lower than the calculated equilibrium values over a range of temperatures and steam/carbon ratios studied while the reaction rate constants were approximately of the same magnitude for both WGS and methanol steam reforming. These results indicate that although Pd/ZnO/Al2O3 are active WGS catalysts, WGS is not involved in methanol steam reforming. RWGS rate constants are on the order of about 20 times lower than that of methanol steam reforming, suggesting that RWGS reaction could be one of the sources for small amount of CO formation in methanol steam reforming.

Dagle, Robert A.; Platon, Alexandru; Datye, Abhaya K.; Vohs, John M.; Wang, Yong; Palo, Daniel R.

2008-03-07T23:59:59.000Z

353

Demonstration of Natural Gas Engine Driven Air Compressor Technology at Department of Defense Industrial Facilities  

E-Print Network [OSTI]

of incorporating the NGEDAC performance data directly into their overall energy management control system. All Army industrial installations will be screened for technology application. Technology transfer will be coordinated with Air Force, Navy, and Defense... Technology & Management Paul A. Wenner Laboratory Services, Inc. XENERGY, Inc. Champaign, Illinois Gaithersburg, Maryland Worthington, Ohio ABSTRACT Recent downsizing and consolidation of Department of Defense (DOD) facilities provides an opportunity...

Lin, M.; Aylor, S. W.; Van Ormer, H.

354

The effects of channel diameter on flow pattern, void fraction and pressure drop of two-phase air-water flow in circular micro-channels  

SciTech Connect (OSTI)

Two-phase air-water flow characteristics are experimentally investigated in horizontal circular micro-channels. Test sections are made of fused silica. The experiments are conducted based on three different inner diameters of 0.53, 0.22 and 0.15 mm with the corresponding lengths of 320, 120 and 104 mm, respectively. The test runs are done at superficial velocities of gas and liquid ranging between 0.37-42.36 and 0.005-3.04 m/s, respectively. The flow visualisation is facilitated by systems mainly including stereozoom microscope and high-speed camera. The flow regime maps developed from the observed flow patterns are presented. The void fractions are determined based on image analysis. New correlation for two-phase frictional multiplier is also proposed for practical applications. (author)

Saisorn, Sira [Energy Division, The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand); Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

2010-05-15T23:59:59.000Z

355

Competition between Atmospherically Relevant Fatty Acid Monolayers at the Air/Water Laura F. Voss, Christopher M. Hadad,* and Heather C. Allen*  

E-Print Network [OSTI]

Competition between Atmospherically Relevant Fatty Acid Monolayers at the Air/Water Interface Laura F. Voss, Christopher M. Hadad,* and Heather C. Allen* Department of Chemistry, The Ohio State Uni Competition and oxidation of fatty acids spread at the air/water interface were investigated using surface

356

MODELING AND TRAJECTORY OPTIMIZATION OF WATER SPRAY COOLING IN A LIQUID PISTON AIR COMPRESSOR  

E-Print Network [OSTI]

and expansion has many applications in pneumatic and hydraulic systems, including in the Compressed Air Energy Storage (CAES) system for offshore wind turbine that has recently been proposed in [1,2]. Since the air

Li, Perry Y.

357

Investigation of Water Droplet Interaction with the Sidewalls of the Gas Channel in a PEM Fuel Cell in the Presence of Gas Flow  

E-Print Network [OSTI]

forms of hydrogen powered technologies exist and have been well-researched, fuel cells is considered efficiently in the fuel cells (4). Inefficient water removal results in flooding of the catalyst layerInvestigation of Water Droplet Interaction with the Sidewalls of the Gas Channel in a PEM Fuel Cell

Kandlikar, Satish

358

Coalbed Methane Procduced Water Treatment Using Gas Hydrate Formation at the Wellhead  

SciTech Connect (OSTI)

Water associated with coalbed methane (CBM) production is a significant and costly process waste stream, and economic treatment and/or disposal of this water is often the key to successful and profitable CBM development. In the past decade, advances have been made in the treatment of CBM produced water. However, produced water generally must be transported in some fashion to a centralized treatment and/or disposal facility. The cost of transporting this water, whether through the development of a water distribution system or by truck, is often greater than the cost of treatment or disposal. To address this economic issue, BC Technologies (BCT), in collaboration with Oak Ridge National Laboratory (ORNL) and International Petroleum Environmental Consortium (IPEC), proposed developing a mechanical unit that could be used to treat CBM produced water by forming gas hydrates at the wellhead. This process involves creating a gas hydrate, washing it and then disassociating hydrate into water and gas molecules. The application of this technology results in three process streams: purified water, brine, and gas. The purified water can be discharged or reused for a variety of beneficial purposes and the smaller brine can be disposed of using conventional strategies. The overall objectives of this research are to develop a new treatment method for produced water where it could be purified directly at the wellhead, to determine the effectiveness of hydrate formation for the treatment of produced water with proof of concept laboratory experiments, to design a prototype-scale injector and test it in the laboratory under realistic wellhead conditions, and to demonstrate the technology under field conditions. By treating the water on-site, producers could substantially reduce their surface handling costs and economically remove impurities to a quality that would support beneficial use. Batch bench-scale experiments of the hydrate formation process and research conducted at ORNL confirmed the feasibility of the process. However, researchers at BCT were unable to develop equipment suitable for continuous operation and demonstration of the process in the field was not attempted. The significant achievements of the research area: Bench-scale batch results using carbon dioxide indicate >40% of the feed water to the hydrate formation reactor was converted to hydrate in a single pass; The batch results also indicate >23% of the feed water to the hydrate formation reactor (>50% of the hydrate formed) was converted to purified water of a quality suitable for discharge; Continuous discharge and collection of hydrates was achieved at atmospheric pressure. Continuous hydrate formation and collection at atmospheric conditions was the most significant achievement and preliminary economics indicate that if the unit could be made operable, it is potentially economic. However, the inability to continuously separate the hydrate melt fraction left the concept not ready for field demonstration and the project was terminated after Phase Two research.

BC Technologies

2009-12-30T23:59:59.000Z

359

Microbial Community Changes in Hydraulic Fracturing Fluids and Produced Water from Shale Gas Extraction  

SciTech Connect (OSTI)

Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

Mohan, Arvind Murali; Hartsock, Angela; Bibby, Kyle J.; Hammack, Richard W.; Vidic, Radisav D.; Gregory, Kelvin B.

2013-11-19T23:59:59.000Z

360

Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow  

SciTech Connect (OSTI)

Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.

Wu, Hao; Dong, Feng [Tianjin Key Laboratory of Process Measurement and Control, School of Electrical Engineering and Automation, Tianjin University, Tianjin (China)

2014-04-11T23:59:59.000Z

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems  

SciTech Connect (OSTI)

The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro's estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

1991-01-01T23:59:59.000Z

362

Mechanical characterization of metallic materials for high-temperature gas-cooled reactors in air and in helium environments  

SciTech Connect (OSTI)

In the French R and D program for high-temperature gas-cooled reactors (HTGRs), three metallic alloys were studied: steel Chromesco-3 with 2.25% chromium, alloy 800H, and Hastelloy-X. The Chromesco-3 and alloy 800H creep behavior is the same in air and in HTGR atmosphere (helium). The tensile tests of Hastelloy-X specimens reveal that aging has embrittlement and hardening effects up to 700/sup 0/C, but the creep tests at 800/sup 0/C show opposite effects. This particular behavior could be due to induced precipitation by aging and the depletion of hardening elements from the matrix. Tests show a low influence of cobalt content on mechanical properties of Hastelloy-X.

Sainfort, G.; Cappelaere, M.; Gregoire, J.; Sannier, J.

1984-07-01T23:59:59.000Z

363

WATER-GAS SHIFT KINETICS OVER IRON OXIDE CATALYSTS AT MEMBRANE REACTOR CONDITIONS  

SciTech Connect (OSTI)

This report covers the second year of a project investigating water-gas shift catalysts for use in membrane reactors. It has been established that a simple iron high temperature shift catalyst becomes ineffective in a membrane reactor because the reaction rate is severely inhibited by the build-up of the product CO{sub 2}. During the past year, an improved microkinetic model for water-gas shift over iron oxide was developed. Its principal advantage over prior models is that it displays the correct asymptotic behavior at all temperatures and pressures as the composition approaches equilibrium. This model has been used to explore whether it might be possible to improve the performance of iron high temperature shift catalysts under conditions of high CO{sub 2} partial pressure. The model predicts that weakening the surface oxygen bond strength by less than 5% should lead to higher catalytic activity as well as resistance to rate inhibition at higher CO{sub 2} partial pressures. Two promoted iron high temperature shift catalysts were studied. Ceria and copper were each studied as promoters since there were indications in the literature that they might weaken the surface oxygen bond strength. Ceria was found to be ineffective as a promoter, but preliminary results with copper promoted FeCr high temperature shift catalyst show it to be much more resistant to rate inhibition by high levels of CO{sub 2}. Finally, the performance of sulfided CoMo/Al{sub 2}O{sub 3} catalysts under conditions of high CO{sub 2} partial pressure was simulated using an available microkinetic model for water-gas shift over this catalyst. The model suggests that this catalyst might be quite effective in a medium temperature water-gas shift membrane reactor, provided that the membrane was resistant to the H{sub 2}S that is required in the feed.

Carl R.F. Lund

2001-08-10T23:59:59.000Z

364

Investigation of the thermal conductivity of unconsolidated sand packs containing oil, water, and gas  

E-Print Network [OSTI]

INVESTIGATION OF THE THERNAL CONDUCTIVITY OF UNCONSOLIDATED SAND PACKS CONTAINING OIL, WATER, AND GAS A Thesis David E. Gore Submitted to the Graduate School of the Agricultural and Nechanical College oi' Texas in Partial fulfillment.... EXPERIMENTAL EQUIPMENT AND PROCEDURE All tests were performed on unconsolidated sand packs containing either one, two, or three saturating fluids, Phys- ical properties of the sand and saturating fluids are shown in Tables I and II in the Appendix...

Gore, David Eugene

2012-06-07T23:59:59.000Z

365

Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes  

SciTech Connect (OSTI)

Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

Backman, C.; German, A.; Dakin, B.; Springer, D.

2013-12-01T23:59:59.000Z

366

Downward flow of water with entrained air in a nonuniformaly heated subdivided annulus  

SciTech Connect (OSTI)

This paper describes an experimental study in which water was fed to a vertical annulus, entraining air in downward flow. The annulus was subdivided by longitudinal fins into four subchannels and was heated with an azimuthally varying heat flux. A bypass was provided to simulate flow in parallel channels. For steady liquid flow, inlet temperature, and pressure boundary conditions, the power was increased until critical heat flux was reached. Overheating characteristics were grouped according to the prevailing flow pattern. In annular flows (j{sub L} < 0.3 m/s) overheating of the whole test section occurs when steam production causes countercurrent flooding. In intermittent flows (0.3 < j{sub L} < 0.9 m/s) the overheating is confined to a portion of the hot subchannel. The mechanism is postulated to be stagnation of a large bubble. In bubble flows (0.9 m/s < j{sub L}) overheating occurs by diverting inlet flow to the bypass and again involves the whole test section. Except at the very lowest flow rates, critical heat flux occurs when the effluent liquid temperature is below saturation.

Johnston, B.S.; May, C.P.

1992-10-01T23:59:59.000Z

367

Downward flow of water with entrained air in a nonuniformaly heated subdivided annulus  

SciTech Connect (OSTI)

This paper describes an experimental study in which water was fed to a vertical annulus, entraining air in downward flow. The annulus was subdivided by longitudinal fins into four subchannels and was heated with an azimuthally varying heat flux. A bypass was provided to simulate flow in parallel channels. For steady liquid flow, inlet temperature, and pressure boundary conditions, the power was increased until critical heat flux was reached. Overheating characteristics were grouped according to the prevailing flow pattern. In annular flows (j{sub L} < 0.3 m/s) overheating of the whole test section occurs when steam production causes countercurrent flooding. In intermittent flows (0.3 < j{sub L} < 0.9 m/s) the overheating is confined to a portion of the hot subchannel. The mechanism is postulated to be stagnation of a large bubble. In bubble flows (0.9 m/s < j{sub L}) overheating occurs by diverting inlet flow to the bypass and again involves the whole test section. Except at the very lowest flow rates, critical heat flux occurs when the effluent liquid temperature is below saturation.

Johnston, B.S.; May, C.P.

1992-01-01T23:59:59.000Z

368

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network [OSTI]

Inherently, natural gas combustion produces significantlygas turbines were fuel gas combustion devices and that theyof greenhouse gas emissions released during combustion. 5 0

Hagan, Colin R.

2012-01-01T23:59:59.000Z

369

Impact of Pilot Light Modeling on the Predicted Annual Performance of Residential Gas Water Heaters: Preprint  

SciTech Connect (OSTI)

Modeling residential water heaters with dynamic simulation models can provide accurate estimates of their annual energy consumption, if the units? characteristics and use conditions are known. Most gas storage water heaters (GSWHs) include a standing pilot light. It is generally assumed that the pilot light energy will help make up standby losses and have no impact on the predicted annual energy consumption. However, that is not always the case. The gas input rate and conversion efficiency of a pilot light for a GSWH were determined from laboratory data. The data were used in simulations of a typical GSWH with and without a pilot light, for two cases: 1) the GSWH is used alone; and 2) the GSWH is the second tank in a solar water heating (SWH) system. The sensitivity of wasted pilot light energy to annual hot water use, climate, and installation location was examined. The GSWH used alone in unconditioned space in a hot climate had a slight increase in energy consumption. The GSWH with a pilot light used as a backup to an SWH used up to 80% more auxiliary energy than one without in hot, sunny locations, from increased tank losses.

Maguire, J.; Burch, J.

2013-08-01T23:59:59.000Z

370

Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities  

SciTech Connect (OSTI)

In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

Bent, Jimmy

2014-05-31T23:59:59.000Z

371

Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal-Organic Framework mmen-Mg2(dobpdc)  

E-Print Network [OSTI]

, stationary sources like coal-fired power plants, carbon capture and sequestration (CCS) has been proposed.4Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine- Appended Metal-Organic Framework viable absorbents for carbon capture under the aforementioned conditions, and they are presently used

372

Techno-economic analysis of water management options for unconventional natural gas developments in the Marcellus Shale  

E-Print Network [OSTI]

The emergence of large-scale hydrocarbon production from shale reservoirs has revolutionized the oil and gas sector, and hydraulic fracturing has been the key enabler of this advancement. As a result, the need for water ...

Karapataki, Christina

2012-01-01T23:59:59.000Z

373

E-Print Network 3.0 - air-cooled libr-water absorption Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Harold - Sterrewacht, Universiteit Leiden Collection: Chemistry 18 ATOC 3500CHEM 3151 Air Pollution Chemistry Summary: the troposphere where it is relatively humid (formed when...

374

Optimization of hybrid-water/air-cooled condenser in an enhanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

air-cooled condenser in an enhanced turbine geothermal ORC system Optimization of hybrid-waterair-cooled condenser in an enhanced turbine geothermal ORC system DOE Geothermal...

375

WATER-GAS SHIFT KINETICS OVER IRON OXIDE CATALYSTS AT MEMBRANE REACTOR CONDITIONS  

SciTech Connect (OSTI)

The kinetics of water-gas shift were studied over ferrochrome catalysts under conditions with high carbon dioxide partial pressures, such as would be expected in a membrane reactor. The catalyst activity is inhibited by increasing carbon dioxide partial pressure. A microkinetic model of the reaction kinetics was developed. The model indicated that catalyst performance could be improved by decreasing the strength of surface oxygen bonds. Literature data indicated that adding either ceria or copper to the catalyst as a promoter might impart this desired effect. Ceria-promoted ferrochrome catalysts did not perform any better than unpromoted catalyst at the conditions tested, but copper-promoted ferrochrome catalysts did offer an improvement over the base ferrochrome material. A different class of water-gas shift catalyst, sulfided CoMo/Al{sub 2}O{sub 3} is not affected by carbon dioxide and may be a good alternative to the ferrochrome system, provided other constraints, notably the requisite sulfur level and maximum temperature, are not too limiting. A model was developed for an adiabatic, high-temperature water-gas shift membrane reactor. Simulation results indicate that an excess of steam in the feed (three moles of water per mole of CO) is beneficial even in a membrane reactor as it reduces the rate of adiabatic temperature rise. The simulations also indicate that much greater improvement can be attained by improving the catalyst as opposed to improving the membrane. Further, eliminating the inhibition by carbon dioxide will have a greater impact than will increasing the catalyst activity (assuming inhibition is still operative). Follow-up research into the use of sulfide catalysts with continued kinetic and reactor modeling is suggested.

Carl R.F. Lund

2002-08-02T23:59:59.000Z

376

The following is an un-edited introduction to a volume edited by Jill Ker Conway, Kenneth Keniston, and Leo Marx, called Earth, Air, Fire, Water: Humanistic Studies of the Environment,  

E-Print Network [OSTI]

, and Leo Marx, called Earth, Air, Fire, Water: Humanistic Studies of the Environment, which Earth, Air, Fire, Water: Humanistic Studies of the Environment Foreword)..........................................................................393 Anton Struchkov (Russian Academy of Science) -- "Modernity and the Environment as a Public Issue

Keniston, Kenneth

377

Air/water subchannel measurements of the equilibrium quality and mass-flux distribution in a rod bundle. [BWR  

SciTech Connect (OSTI)

Subchannel measurements were performed in order to determine the equilibrium quality and mass flux distribution in a four rod bundle, using air/water flow. An isokinetic technique was used to sample the flow in the center, side and corner subchannels of this test section. Flow rates of the air and water in each sampled subchannel were measured. Experiments were performed for two test-section-average mass fluxes (0.333x10/sup 6/ and 0.666x10/sup 6/ lb/sub m//h-ft/sup 2/), and the test-section-average quality was varied from 0% to 0.54% for each mass flux. Single-phase liquid, bubbly, slug and churn-turbulent two-phase flow regimes were achieved. The observed data trends agreed with previous diabatic measurements in which the center subchannel had the highest quality and mass flux, while the corner subchannel had the lowest.

Sterner, R.W.; Lahey, R.T. Jr.

1983-07-01T23:59:59.000Z

378

Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine  

DOE Patents [OSTI]

A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

2014-05-13T23:59:59.000Z

379

Secondary atomization of coal-water fuels for gas turbine applications: Final report  

SciTech Connect (OSTI)

The main research objective was to determine the effectiveness of the CWF treatments on atomization quality when applied to an ultrafine coal-water fuel (solids loading reduced to 50%) and to gas turbine operating conditions (atomization at elevated pressures). Three fuel treatment techniques were studied: (1) heating of CWF under pressure to produce steam as the pressure drops during passage of the CWF through the atomizer nozzle, (2) absorption of CO/sub 2/ gas in the CWF to produce a similar effect, and (3) a combination of the two treatments above. These techniques were expected to produce secondary atomization, that is, disruptive shattering of CWF droplets subsequent to their leaving the atomizing nozzle, and to lead to better burnout and finer fly ash size distribution. A parallel objective was to present quantitative information on the spray characteristics (mean droplet size, radial distribution of droplet size, and spray shape) of CWF with and without fuel treatment, applicable to the design of CWF-burning gas turbine combustors. The experiments included laser diffraction droplet size measurements and high-speed photographic studies in the MIT Spray Test Facility to determine mean droplet size (mass median diameter), droplet size distribution, and spray shape and angle. Three systems of atomized sprays were studied: (1) water sprays heated to a range of temperatures at atmospheric pressure; (2) CWF sprays heated at atmospheric pressure to different temperatures; and (3) sprays at elevated pressure. 31 refs., 47 figs., 1 tab.

Yu, T.U.; Kang, S.W.; Beer, J.M.

1988-12-01T23:59:59.000Z

380

Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods  

SciTech Connect (OSTI)

The PerFluorocarbon Tracer (PFT) method is a low-cost approach commonly used for measuring air exchange in buildings using tracer gases. It is a specific application of the more general Continuous-Injection, Long-Term Sampling (CILTS) method. The technique is widely used but there has been little work on understanding the uncertainties (both precision and bias) associated with its use, particularly given that it is typically deployed by untrained or lightly trained people to minimize experimental costs. In this article we will conduct a first-principles error analysis to estimate the uncertainties and then compare that analysis to CILTS measurements that were over-sampled, through the use of multiple tracers and emitter and sampler distribution patterns, in three houses. We find that the CILTS method can have an overall uncertainty of 10-15percent in ideal circumstances, but that even in highly controlled field experiments done by trained experimenters expected uncertainties are about 20percent. In addition, there are many field conditions (such as open windows) where CILTS is not likely to provide any quantitative data. Even avoiding the worst situations of assumption violations CILTS should be considered as having a something like a ?factor of two? uncertainty for the broad field trials that it is typically used in. We provide guidance on how to deploy CILTS and design the experiment to minimize uncertainties.

Sherman, Max H.; Walker, Iain S.; Lunden, Melissa M.

2013-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina)  

Broader source: Energy.gov [DOE]

This legislation prohibits the waste of oil or gas and the pollution of water, air, or land. The Department of Health and Environmental Control is authorized to implement regulations designed to...

382

Water Heaters and Hot Water Distribution Systems  

E-Print Network [OSTI]

Gas-fired Storage Water Heater .. 418 Assess Californias Small Gas Storage Water Heaters Small Gas Storage Water Heater Market The objective of

Lutz, Jim

2012-01-01T23:59:59.000Z

383

Experimental investigation of a flow monitoring instrument in an upper plenum of an air-water reflood test facility. [PWR  

SciTech Connect (OSTI)

Instrumentation was developed for measuring fluid phenomena in the upper plenum of pressurized water reactor reflood facilities. In particular, the instrumentation measured two-phase flow velocity and void fraction. The principle of operation of the instrumentation scheme was based on the measurement of electrical impedance. The technique of analysis of random signals from two spatially separated impedance sensors was employed to measure two-phase flow velocity. A relative admittance technique was used to determine void fraction. The performance of the instrumentaton was studied in an air-water test facility.

Combs, S.K.; Hardy, J.E.

1980-01-01T23:59:59.000Z

384

Vapor-liquid equilibrium of water-acetone-air at ambient temperatures and pressures. An analysis of different VLE-fitting methods  

SciTech Connect (OSTI)

The availability of accurate equilibrium data is of high importance in chemical engineering practice both for design and research purposes. It appeared that for the gas absorption system water-acetone-air in the range of special interest for absorption and desorption operations, neither literature data nor calculations following UNIFAC gave a sufficient accuracy. An experimental program was set up to determine equilibrium data with an accuracy within 2% for low acetone concentrations (up to 7 wt % gas phase) at ambient temperature (16-30/sup 0/C) and atmospheric pressure (740-860 mmHg). From experiments the activity coefficient at infinite dilution of acetone ..gamma.. is found to be 6.79 (0.01) at 20/sup 0/C and 7.28 (0.01) at 25/sup 0/C, while the total error in ..gamma.. is 1.5%. The equilibrium constant can be calculated from ..gamma.. and shows the same error. The experimental data-fitting with procedures of Margules (two parameters) and Van Laar were successful, but NRTL, Wilson, and UNIQUAC failed, probably because of the small concentration range used.

Lichtenbelt, J.H.; Schram, B.J.

1985-04-01T23:59:59.000Z

385

Production management techniques for water-drive gas reservoirs. Field No. 4; mid-continent aquifer gas storage reservoir. Volume 1. Topical report, January 1994  

SciTech Connect (OSTI)

A detailed reservoir characterization and numerical simulation study is presented for a mid-continent aquifer gas storage field. It is demonstrated that rate optimization during both injection and withdrawal cycles can significantly improve the performance of the storage reservoir. Performance improvements are realized in the form of a larger working volume of gas, a reduced cushion volume of gas, and decrease in field water production. By utilizing these reservoir management techniques gas storage operators will be able to minimize their base gas requirements, improve their economics, and determine whether the best use for a particular storage field is base loading or meeting peak day requirements. Volume I of this two-volume set contains a detailed technical discussion.

Hower, T.L.; Obernyer, S.L.

1994-01-01T23:59:59.000Z

386

Forced convective flow and heat transfer of upward cocurrent air-water slug flow in vertical plain and swirl tubes  

SciTech Connect (OSTI)

This experimental study comparatively examined the two-phase flow structures, pressured drops and heat transfer performances for the cocurrent air-water slug flows in the vertical tubes with and without the spiky twisted tape insert. The two-phase flow structures in the plain and swirl tubes were imaged using the computerized high frame-rate videography with the Taylor bubble velocity measured. Superficial liquid Reynolds number (Re{sub L}) and air-to-water mass flow ratio (AW), which were respectively in the ranges of 4000-10000 and 0.003-0.02 were selected as the controlling parameters to specify the flow condition and derive the heat transfer correlations. Tube-wise averaged void fraction and Taylor bubble velocity were well correlated by the modified drift flux models for both plain and swirl tubes at the slug flow condition. A set of selected data obtained from the plain and swirl tubes was comparatively examined to highlight the impacts of the spiky twisted tape on the air-water interfacial structure and the pressure drop and heat transfer performances. Empirical heat transfer correlations that permitted the evaluation of individual and interdependent Re{sub L} and AW impacts on heat transfer in the developed flow regions of the plain and swirl tubes at the slug flow condition were derived. (author)

Chang, Shyy Woei [Thermal Fluids Laboratory, National Kaohsiung Marine University, No. 142, Haijhuan Road, Nanzih District, Kaohsiung City 81143 (China); Yang, Tsun Lirng [Department of Marine Engineering, National Kaohsiung Marine University, No. 142, Haijhuan Road, Nanzih District, Kaohsiung City 81143 (China)

2009-10-15T23:59:59.000Z

387

An energy equivalency analysis of trade-offs between thermal efficiency and standby loss requirements for commercial gas service water heaters  

SciTech Connect (OSTI)

The American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) Standing Standard Project Committee 90.1 has approved an addendum (90.lb) to ASHRAE/IES Standard 90.1-1989. The addendum specifies an increase in the minimum thermal efficiency requirement (from 77% to 78%), accompanied by an easing of the standby loss requirements, for commercial gas-fired service water heaters. The Pacific Northwest Laboratory performed an energy equivalency analysis to assess the impact of trade-offs between the improved thermal efficiency and the less stringent standby loss requirements. The analysis objective was to estimate whether the energy savings during firing would offset the increased energy losses during standby periods. The primary focus of this report is to summarize the major results of the analysis and provide a recommendation for minimum energy-efficiency commercial gas-fired service water heaters. Limitations to the availability of detailed performance and energy-use data for these commercial water heaters are also pointed out.

Somasundaram, S.; Jarnagin, R.E.; Keller, J.M.; Schliesing, J.S.

1992-06-01T23:59:59.000Z

388

Will cheap gas and efficient cars imperil air-quality goals under relaxed emission standards  

SciTech Connect (OSTI)

Long-term trends, to the year 2000, of urban household travel were forecast for prototype metropolitan areas under several sets of energy prices, auto fuel economy, and emission standards. Dramatic improvements in air quality were forecast due to redistribution of travel and lowered emissions. The exception to this trend to rapidly growing cities, such as those in the west and southwest experiencing sprawl development that characterized many urbanized areas in the industrial northeast and midwest during the 1950's and 1960's. In one test city, where the rate of urbanization has slowed significantly, analysis indicated that relaxation of the light-duty-vehicle NO/sub x/ standard from 1.0 gm/mi to 2.0 gm/mi would not severely threaten attainment of the ambient NO/sub x/ standards by 1987 owing to redistribution of population and activities. The difference in total energy impacts was determined to be negligible, assuming moderate increase in petroleum prices through 1995 (3.1%/year). In another policy test, without changing emission standards, an increase in fuel price of 3.75%/year from 1980 to 2000 reduced travel and provided a 4% decrease in energy use and a corresponding decrease in CO, HC and NO/sub x/. Virtually all of the reduction in travel and emissions was due to non-work travel, which fell 9%. The price increase damped the increase in auto travel per person that would occur as autos become cheaper to operate and as household wealth increases, making the answer to the title a cautious yes, given steady or slowly rising fuel prices.

LaBelle, S.J.; Saricks, C.L.; Moses, D.O.

1983-04-01T23:59:59.000Z

389

Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process  

SciTech Connect (OSTI)

Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

2011-10-16T23:59:59.000Z

390

Studien-und Prfungsordnung der Universitt Stuttgart fr den auslandsorientierten Studiengang Air Quality Control, Solid Waste and Waste Water Process Engineering  

E-Print Network [OSTI]

Air Quality Control, Solid Waste and Waste Water Process Engineering (WASTE) mit Abschluss Master Quality Control, Solid Waste and Waste Water Process Engineering" (WASTE) beschlossen. Der Rektor hat Control, Solid Waste and Waste Water Process Engineering" (WASTE) überblickt werden, die Fähigkeit

Reyle, Uwe

391

Water Structure at the Air-Aqueous Interface of Divalent Cation and Nitrate Solutions Man Xu, Rick Spinney, and Heather C. Allen*  

E-Print Network [OSTI]

Water Structure at the Air-Aqueous Interface of Divalent Cation and Nitrate Solutions Man Xu, Rick, Columbus, Ohio 43210 ReceiVed: July 24, 2008; ReVised Manuscript ReceiVed: December 4, 2008 The water surface structure of aqueous magnesium, calcium, and strontium nitrate solutions with six to seven water

392

The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device  

SciTech Connect (OSTI)

This project is in response to a requirement for a system that combines water gas shift technology with separation technology for coal derived synthesis gas. The justification of such a system would be improved efficiency for the overall hydrogen production. By removing hydrogen from the synthesis gas stream, the water gas shift equilibrium would force more carbon monoxide to carbon dioxide and maximize the total hydrogen produced. Additional benefit would derive from the reduction in capital cost of plant by the removal of one step in the process by integrating water gas shift with the membrane separation device. The answer turns out to be that the integration of hydrogen separation and water gas shift catalysis is possible and desirable. There are no significant roadblocks to that combination of technologies. The problem becomes one of design and selection of materials to optimize, or at least maximize performance of the two integrated steps. A goal of the project was to investigate the effects of alloying elements on the performance of vanadium membranes with respect to hydrogen flux and fabricability. Vanadium was chosen as a compromise between performance and cost. It is clear that the vanadium alloys for this application can be produced, but the approach is not simple and the results inconsistent. For any future contracts, large single batches of alloy would be obtained and rolled with larger facilities to produce the most consistent thin foils possible. Brazing was identified as a very likely choice for sealing the membranes to structural components. As alloying was beneficial to hydrogen transport, it became important to identify where those alloying elements might be detrimental to brazing. Cataloging positive and negative alloying effects was a significant portion of the initial project work on vanadium alloying. A water gas shift catalyst with ceramic like structural characteristics was the second large goal of the project. Alumina was added as a component of conventional high temperature water gas shift iron oxide based catalysts. The catalysts contained Fe-Al-Cr-Cu-O and were synthesized by co-precipitation. A series of catalysts were prepared with 5 to 50 wt% Al2O3, with 8 wt% Cr2O3, 4 wt% CuO, and the balance Fe2O3. All of the catalysts were compared to a reference WGS catalyst (88 wt% FeOx, 8 wt% Cr2O3, and 4 wt% CuO) with no alumina. Alumina addition to conventional high temperature water gas shift catalysts at concentrations of approximately 15 wt% increased CO conversion rates and increase thermal stability. A series of high temperature water gas shift catalysts containing iron, chromia, and copper oxides were prepared with small amounts of added ceria in the system Fe-Cr-Cu-Ce-O. The catalysts were also tested kinetically under WGS conditions. 2-4 wt% ceria addition (at the expense of the iron oxide content) resulted in increased reaction rates (from 22-32% higher) compared to the reference catalyst. The project goal of a 10,000 liter per day WGS-membrane reactor was achieved by a device operating on coal derived syngas containing significant amounts of carbon monoxide and hydrogen sulfide. The membrane flux was equivalent to 52 scfh/ft2 based on a 600 psi syngas inlet pressure and corresponded to membranes costing $191 per square foot. Over 40 hours of iv exposure time to syngas has been achieved for a double membrane reactor. Two modules of the Chart reactor were tested under coal syngas for over 75 hours with a single module tested for 50 hours. The permeance values for the Chart membranes were similar to the REB reactor though total flux was reduced due to significantly thicker membranes. Overall testing of membrane reactors on coal derived syngas was over 115 hours for all reactors tested. Testing of the REB double membrane device exceeded 40 hours. Performance of the double membrane reactor has been similar to the results for the single reactor with good maintenance of flux even after these long exposures to hydrogen sulfide. Of special interest is that the flux is highest at the start of each e

Barton, Thomas; Argyle, Morris; Popa, Tiberiu

2009-06-30T23:59:59.000Z

393

Treating Coalbed Natural Gas Produced Water for Beneficial Use By MFI Zeolite Membranes  

SciTech Connect (OSTI)

Desalination of brines produced from oil and gas fields is an attractive option for providing potable water in arid regions. Recent field-testing of subsurface sequestration of carbon dioxide for climate management purposes provides new motivation for optimizing efficacy of oilfield brine desalination: as subsurface reservoirs become used for storing CO{sub 2}, the displaced brines must be managed somehow. However, oilfield brine desalination is not economical at this time because of high costs of synthesizing membranes and the need for sophisticated pretreatments to reduce initial high TDS and to prevent serious fouling of membranes. In addition to these barriers, oil/gas field brines typically contain high concentrations of multivalent counter cations (eg. Ca{sup 2+} and SO{sub 4}{sup 2-}) that can reduce efficacy of reverse osmosis (RO). Development of inorganic membranes with typical characteristics of high strength and stability provide a valuable option to clean produced water for beneficial uses. Zeolite membranes have a well-defined subnanometer pore structure and extreme chemical and mechanical stability, thus showing promising applicability in produced water purification. For example, the MFI-type zeolite membranes with uniform pore size of {approx}0.56 nm can separate ions from aqueous solution through a mechanism of size exclusion and electrostatic repulsion (Donnan exclusion). Such a combination allows zeolite membranes to be unique in separation of both organics and electrolytes from aqueous solutions by a reverse osmosis process, which is of great interest for difficult separations, such as oil-containing produced water purification. The objectives of the project 'Treating Coalbed Natural Gas Produced Water for Beneficial Use by MFI Zeolite Membranes' are: (1) to conduct extensive fundamental investigations and understand the mechanism of the RO process on zeolite membranes and factors determining the membrane performance, (2) to improve the membranes and optimize operating conditions to enhance water flux and ion rejection, and (3) to perform long-term RO operation on tubular membranes to study membrane stability and to collect experimental data necessary for reliable evaluations of technical and economic feasibilities. Our completed research has resulted in deep understanding of the ion and organic separation mechanism by zeolite membranes. A two-step hydrothermal crystallization process resulted in a highly efficient membrane with good reproducibility. The zeolite membranes synthesized therein has an overall surface area of {approx}0.3 m{sup 2}. Multichannel vessels were designed and machined for holding the tubular zeolite membrane for water purification. A zeolite membrane RO demonstration with zeolite membranes fabricated on commercial alpha-alumina support was established in the laboratory. Good test results were obtained for both actual produced water samples and simulated samples. An overall 96.9% ion rejection and 2.23 kg/m{sup 2}.h water flux was achieved in the demonstration. In addition, a post-synthesis modification method using Al{sup 3+}-oligomers was developed for repairing the undesirable nano-scale intercrystalline pores. Considerable enhancement in ion rejection was achieved. This new method of zeolite membrane modification is particularly useful for enhancing the efficiency of ion separation from aqueous solutions because the modification does not need high temperature operation and may be carried out online during the RO operation. A long-term separation test for actual CBM produced water has indicated that the zeolite membranes show excellent ion separation and extraordinary stability at high pressure and produced water environment.

Robert Lee; Liangxiong Li

2008-03-31T23:59:59.000Z

394

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network [OSTI]

gas emissions from conven- tional power sources like coal.total emissions from coal- or natural gas-fired power plantsemissions, the lifecycle for natural gas power production is more complicated than that of coal.

Hagan, Colin R.

2012-01-01T23:59:59.000Z

395

E-Print Network 3.0 - atmospheric water vapour Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gas, and carbon dioxide (CO2) is the second... water vapour in the air that the greenhouse effect is very large, add- ing a small additional amount... of CO2 or water vapour has...

396

Experimental investigation of small-scale breaking waves : flow visualization across the air-water interface  

E-Print Network [OSTI]

The dynamics of breaking waves significantly affect air-sea fluxes of heat, momentum, mass and energy across the ocean interface. Breaking waves also contribute considerable loading to offshore and coastal structures, and ...

McDonald, Angus Kai

2005-01-01T23:59:59.000Z

397

A model of vapor-liquid equilibria for acid gas-alkanolamine-water systems  

SciTech Connect (OSTI)

A physico-chemical model was developed for representing liquid phase chemical equilibria and vapor-liquid (phase) equilibria of H{sub 2}SCO{sub 2}-alkanolamine-water systems. The equilibrium composition of the liquid phase is determined by minimization of the Gibbs free energy. Activity coefficients are represented with the Electrolyte-NRTL equation treating both long-range electrostatic interactions and short-range binary interactions between liquid phase species. Vapor phase fugacity coefficients are calculated using the Redlich-Kwong-Soave Equation of State. Adjustable parameters of the model, binary interaction parameters and carbamate stability constants, were fitted on published binary system alkanolamine-water and ternary system (H{sub 2}S-alkanolamine-water, CO{sub 2}-alkanolamine-water) VLE data. The Data Regression System of ASPEN PLUS, based upon the Maximum Likelihood Principle, was used to estimate adjustable parameters. Ternary system measurements used in parameter estimation ranged in temperature from 25 to 120{degree}C in alkanolamine concentration from 1 to 5 M, in acid gas loading from 0 to 1.5 moles per mole alkanolamine, and in acid gas partial pressure from 0.1 to 1,000 kPa. Maximum likelihood estimates of ternary system H{sub 2} or CO{sub 2} equilibrium partial pressures and liquid phase concentrations were found to be in good agreement with measurements for aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), diglycolamine (DGA), and methyldiethanolamine (MDEA) indicating that the model successfully represents ternary system data. The model was extended to represent CO{sub 2} solubility in aqueous mixtures of MDEA with MEA or DEA. The solubility was measured at 40 and 80{degree}C over a wide range of CO{sub 2} partial pressures. These measurements were used to estimate additional binary parameters of the mixed solvent systems.

Austgen, D.M. Jr.

1989-01-01T23:59:59.000Z

398

Sweeney LUBRICATION OF STEAM, GAS AND WATER TURBINES IN POWER GENERATION- A CHEVRONTEXACO EXPERIENCE  

E-Print Network [OSTI]

On 9 October 2001 two US oil companies Chevron and Texaco merged. Their long-term joint venture operation, known as Caltex (formed in 1936 and operating in East and Southern Africa, Middle East, Asia and Australasia), was incorporated into the one global energy company. This global enterprise will be highly competitive across all energy sectors, as the new company brings together a wealth of talents, shared values and a strong commitment to developing vital energy resources around the globe. Worldwide, ChevronTexaco is the third largest publicly traded company in terms of oil and gas reserves, with some 11.8 billion barrels of oil and gas equivalent. It is the fourth largest producer, with daily production of 2.7 million barrels. The company also has 22 refineries and more than 21,000 branded service stations worldwide. This paper will review the fundamentals of lubrication as they apply to the components of turbines. It will then look at three turbine types, steam, gas and water, to address the different needs of lubricating oils and the appropriate specifications for each. The significance of oil testing both for product development and in-service oil monitoring will be reviewed, together with the supporting field experience of ChevronTexaco. The environmental emissions controls on turbines and any impact on the lubricants will be discussed. Finally, the trends in specifications for lubricating oils to address the modern turbines designs will be reviewed. Key Words: geothermal, lubrication, turbines, in-service testing 1.

Peter James Sweeney

399

TRANSITION STATE FOR THE GAS-PHASE REACTION OF URANIUM HEXAFLUORIDE WITH WATER  

SciTech Connect (OSTI)

Density Functional Theory and small-core, relativistic pseudopotentials were used to look for symmetric and asymmetric transitions states of the gas-phase hydrolysis reaction of uranium hexafluoride, UF{sub 6}, with water. At the B3LYP/6-31G(d,p)/SDD level, an asymmetric transition state leading to the formation of a uranium hydroxyl fluoride, U(OH)F{sub 5}, and hydrogen fluoride was found with an energy barrier of +77.3 kJ/mol and an enthalpy of reaction of +63.0 kJ/mol (both including zero-point energy corrections). Addition of diffuse functions to all atoms except uranium led to only minor changes in the structure and relative energies of the reacting complex and transition state. However, a significant change in the product complex structure was found, significantly reducing the enthalpy of reaction to +31.9 kJ/mol. Similar structures and values were found for PBE0 and MP2 calculations with this larger basis set, supporting the B3LYP results. No symmetric transition state leading to the direct formation of uranium oxide tetrafluoride, UOF{sub 4}, was found, indicating that the reaction under ambient conditions likely includes several more steps than the mechanisms commonly mentioned. The transition state presented here appears to be the first published transition state for the important gas-phase reaction of UF{sub 6} with water.

Garrison, S; James Becnel, J

2008-03-18T23:59:59.000Z

400

Combustion of ultrafine coal/water mixtures and their application in gas turbines: Final report  

SciTech Connect (OSTI)

The feasibility of using coal-water fuels (CWF) in gas turbine combustors has been demonstrated in recent pilot plant experiments. The demands of burning coal-water fuels with high flame stability, complete combustion, low NO/sub x/ emission and a resulting fly ash particle size that will not erode turbine blades represent a significant challenge to combustion scientists and engineers. The satisfactory solution of these problems requires that the variation of the structure of CWF flames, i.e., the fields of flow, temperature and chemical species concentration in the flame, with operating conditions is known. Detailed in-flame measurements are difficult at elevated pressures and it has been proposed to carry out such experiments at atmospheric pressure and interpret the data by means of models for gas turbine combustor conditions. The research was carried out in five sequential tasks: cold flow studies; studies of conventional fine-grind CWF; combustion studies with ultrafine CWF fuel; reduction of NO/sub x/ emission by staged combustion; and data interpretation-ignition and radiation aspects. 37 refs., 61 figs., 9 tabs.

Toqan, M.A.; Srinivasachar, S.; Staudt, J.; Varela, F.; Beer, J.M.

1987-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Atmospheric Environment 39 (2005) 45754582 Conjugate mass transfer during gas absorption by falling liquid  

E-Print Network [OSTI]

Atmospheric Environment 39 (2005) 4575­4582 Conjugate mass transfer during gas absorption polluted air and gaseous streams by water drops is an important mass transfer operation in air pollution occurring phenomena and industrial processes involving sprays, e.g. atmospheric physics, wet deposition. Gas

Elperin, Tov

402

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network [OSTI]

control technology.1 46 sions from the list of regulated hazardous air pollutantsAir Act includes "only those pollutants subject to a statutory or regulatory provision that requires actual control

Hagan, Colin R.

2012-01-01T23:59:59.000Z

403

Envir202b Earth, Air, Water: the Human Context Winter 2003 F. Stahr Outline & notes for water lecture #2  

E-Print Network [OSTI]

~10cm/yr, Mexico City ~30cm/yr, iv. sea water invasion Florida, pollution invasion D. Dams ­ can. Colorado, New Mexico, Arizona, California, Mexico (7 states + Mexico)­ split based on very wet 18 years, so

404

Increasing gas hydrate formation temperature for desalination of high salinity produced water with secondary guests  

SciTech Connect (OSTI)

We suggest a new gas hydrate-based desalination process using water-immiscible hydrate formers; cyclopentane (CP) and cyclohexane (CH) as secondary hydrate guests to alleviate temperature requirements for hydrate formation. The hydrate formation reactions were carried out in an isobaric condition of 3.1 MPa to find the upper temperature limit of CO2 hydrate formation. Simulated produced water (8.95 wt % salinity) mixed with the hydrate formers shows an increased upper temperature limit from ?2 C for simple CO2 hydrate to 16 and 7 C for double (CO2 + CP) and (CO2 + CH) hydrates, respectively. The resulting conversion rate to double hydrate turned out to be similar to that with simple CO2 hydrate at the upper temperature limit. Hydrate formation rates (Rf) for the double hydrates with CP and CH are shown to be 22 and 16 times higher, respectively, than that of the simple CO2 hydrate at the upper temperature limit. Such mild hydrate formation temperature and fast formation kinetics indicate increased energy efficiency of the double hydrate system for the desalination process. Dissociated water from the hydrates shows greater than 90% salt removal efficiency for the hydrates with the secondary guests, which is also improved from about 70% salt removal efficiency for the simple hydrates.

Cha, Jong-Ho [ORISE; Seol, Yongkoo [U.S. DOE

2013-01-01T23:59:59.000Z

405

Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units  

SciTech Connect (OSTI)

Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

2012-07-06T23:59:59.000Z

406

Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer  

SciTech Connect (OSTI)

Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been utilized to randomize the noise introduced from potential etalons. It is expected that all original specifications contained within the initial proposal will be met. We are currently in the beginning stages of assembling the first generation prototypes and finalizing the remaining design elements. The first prototypes will initially be tested in our environmental calibration chamber in which specific gas concentrations, temperature and humidity levels can be controlled. Once operation in this controlled setting is verified, the prototypes will be deployed at LI-COR?¢????s Experimental Research Station (LERS). Deployment at the LERS site will test the instrument?¢????s robustness in a real-world situation.

Liukang, Xu; Dayle, McDermitt; Tyler, Anderson; Brad, Riensche; Anatoly, Komissarov; Julie, Howe

2012-05-01T23:59:59.000Z

407

Ammonia synthesis gas purification  

SciTech Connect (OSTI)

This patent describes the purification of a reformed gas mixture following water gas shift conversion to produce a purified ammonia synthesis gas stream. The improved processing sequence consisting essentially of: (A) Selectively catalytically oxidizing the residual carbon monoxide content of the gas mixture to carbon dioxide so as to reduce the carbon monoxide content of the gas mixture to less than about 20 ppm, the selective catalytic oxidation being carried out with an excess of air, with the excess oxygen being catalytically reacted with a small amount of hydrogen so that the residual oxygen level is reduced to less than about 3 ppm; (B) removing the bulk of the carbon dioxide content of the gas mixture by liquid absorption; (C) Removing residual amounts of carbon monoxide, carbon dioxide and water by selective adsorption on the fixed beds of a thermal swing adsorption system, a dry, purified ammonia ammonia synthesis gas stream containing less than a total of 10 ppm of carbon monoxide and carbon dioxide being recovered from the thermal swing adsorption system; (D) Passing the resulting dry, purified ammonia synthesis gas stream having a low content of methane to an ammonia production operation without intermediate passage of the ammonia synthesis gas stream to a methanation unit or to a cryogenic unit for removal of carbon monoxide and carbon dioxide therefrom; whereby the efficiency of the overall purification operation and the effective utilization of hydrogen are enhanced.

Fuderer, A.

1986-02-25T23:59:59.000Z

408

Disposal/recovery options for brine waters from oil and gas production in New York State. Final report  

SciTech Connect (OSTI)

Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated.

Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

1996-03-01T23:59:59.000Z

409

The influence of free gas saturation on water flood performance - variations caused by changes in flooding rate  

E-Print Network [OSTI]

, 1971) Anil Kumar Dandona, B. S. , Indian School of Mines Directed by: Dr. R. A. Morse It has been recognised that the presence of a free gas satura- tion prior to water flooding can have an important influence on oil recovery. The published results... studies such as the disappearance of part or all of the free gas by solution in the oil bank. Also, it has been realised that gravity forces make it impossible to initiate and maintain a uniforxn gas saturation fram top to bottom of the production...

Dandona, Anil Kumar

1971-01-01T23:59:59.000Z

410

Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst  

SciTech Connect (OSTI)

This report details experiments performed on three different copper-based catalysts: Cu/Cr[sub 2]O[sub 3], Cu/MnO/Cr[sub 2]O[sub 3] and Cu/ZnO/Al[sub 2]O[sub 3]. Of these three catalysts, the Cu/ZnO/Al[sub 2]O[sub 3] exhibits the greatest stability when slurried in octacosane. More than 1000 hours-on-stream indicate that the catalyst activity is not detrimentally affected by high pressure, high H[sub 2]/CO ratio, or the presence of alkenes. All of these are necessary stability characteristics for the water-gas shift catalyst, if it is to be used in combination with a cobalt Fischer-Tropsch catalyst. A review of documented reduction procedures for cobalt-based Fischer-Tropsch catalysts is presented.

Yates, I.C.; Satterfield, C.N.

1988-01-01T23:59:59.000Z

411

Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes  

E-Print Network [OSTI]

Gas furnace Air-to-air heat pump Gas fireplace (primarywith their air-to-air heat pumps, such as nighttimeSystem Type None Air-to-air heat pump Night ventilative

Less, Brennan

2012-01-01T23:59:59.000Z

412

Kinetic studies of the water gas shift reaction on a sulfided cobalt/molybdena/alumina catalyst  

SciTech Connect (OSTI)

In this study, the applicability of low temperature oxygen chemisorption (LTOC) to measure the specific surface area of several rare-earth oxides (La, Ce, Pr, Nd, Tb) and the kinetics of the water-gas shift reaction over a sulfided cobalt-molybdena-alumina (AMOCAT 1A) catalyst are investigated. The LTOC results indicate that oxygen is possibly adsorbed in the molecular form, O/sub 2//sup -/, as observed by others after heat treatment of these oxides in vacuum. Lanthana and ceria were found to have ratios of total surface area to LTOC similar to those of chromia and molybdena respectively, after a comparable pretreatment. Furthermore, ceria is deduced to exist as a monolayer on the alumina support at loadings below 12%. An additional hour of reduction after the 6 hours of reduction shows a significant increase in LTOC on lanthana, neodymia and terbia which may be due to phase changes exhibited by these polymorphic oxides. The kinetics of the water-gas shift reaction has been extensively studied on iron oxide (high temperature shift) and copper oxide (low temperature shift) based catalysts. This investigation establishes the kinetics over a sulfided cobalt-molybdena-alumina (AMOCAT 1A) catalyst in the medium temperature shift range, 250-300/sup 0/C. The catalyst was sulfided in-situ in a high pressure integrated Berty reactor system. Reaction rates were measured for different CO/H/sub 2/O feed ratios in the range 0.3-3.0, with and without CO/sub 2/ in the feed. The reaction was carried out at several pressures in the range 5-27 atm. and GHSV's in the range 4800-2400 hr/sup 1/.

Srivatsa, N.R.

1987-01-01T23:59:59.000Z

413

Development of an equivalent homogenous fluid model for pseudo-two-phase (air plus water) flow through fractured rock  

SciTech Connect (OSTI)

Fracture flow of two-phase mixtures is particularly applicable to the coal mining and coal bed methane projects in Australia. A one-dimensional steady-state pseudo-two-phase flow model is proposed for fractured rock. The model considers free flow of a compressible mixture of air and water in an inclined planar fracture and is based upon the conservation of momentum and the 'cubic' law. The flow model is coupled to changes in the stress environment through the fracture normal stiffness, which is related to changes in fracture aperture. The model represents the individual air and water phases as a single equivalent homogenous fluid. Laboratory testing was performed using the two-phase high-pressure triaxial apparatus on 54 mm diameter (approximately 2: 1 height: diameter) borehole cores intersected by induced near-axial fractures. The samples were of Triassic arenaceous fine-medium grained sandstone (known as the Eckersley Formation) that is found locally in the Southern Coalfield of New South Wales. The sample fracture roughness was assessed using a technique based upon Fourier series analysis to objectively attribute a joint roughness coefficient. The proposed two-phase flow model was verified using the recorded laboratory data obtained over a range of triaxial confining pressures (i.e., fracture normal stresses).

Price, J.; Indraratna, B. [University of Wollongong, Wollongong, NSW (Australia). School of Civil Engineering

2005-07-01T23:59:59.000Z

414

Evaluation of EOR Potential by Gas and Water Flooding in Shale Oil Reservoirs.  

E-Print Network [OSTI]

??The demand for oil and natural gas will continue to increase for the foreseeable future; unconventional resources such as tight oil, shale gas, shale oil (more)

Chen, Ke

2013-01-01T23:59:59.000Z

415

Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems  

SciTech Connect (OSTI)

This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

Rudd, A.

2012-08-01T23:59:59.000Z

416

Air ejector augmented compressed air energy storage system  

DOE Patents [OSTI]

Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1980-01-01T23:59:59.000Z

417

Geohydrologic study of the Michigan Basin for the applicability of Jack W. McIntyre`s patented process for simultaneous gas recovery and water disposal in production wells  

SciTech Connect (OSTI)

Geraghty & Miller, Inc. of Midland, Texas conducted a geohydrologic study of the Michigan Basin to evaluate the applicability of Jack McIntyre`s patented process for gas recovery and water disposal in production wells. A review of available publications was conducted to identify, (1) natural gas reservoirs which generate large quantities of gas and water, and (2) underground injection zones for produced water. Research efforts were focused on unconventional natural gas formations. The Antrim Shale is a Devonian gas shale which produces gas and large quantities of water. Total 1992 production from 2,626 wells was 74,209,916 Mcf of gas and 25,795,334 bbl of water. The Middle Devonian Dundee Limestone is a major injection zone for produced water. ``Waterless completion`` wells have been completed in the Antrim Shale for gas recovery and in the Dundee Limestone for water disposal. Jack McIntyre`s patented process has potential application for the recovery of gas from the Antrim Shale and simultaneous injection of produced water into the Dundee Limestone.

Maryn, S.

1994-03-01T23:59:59.000Z

418

Nonlinear Phenomena Induced by Millijoule Femtosecond Laser Pulses at an Air-water Interface  

E-Print Network [OSTI]

transformation in water. We find that nonlinear femtosecond pulse propagation begins at a peak pulse intensity of about 1010 W/cm2. This experiment provides a convenient segway into the discussion and investigation of femtosecond laser filaments. We describe...

Strycker, Benjamin

2013-11-04T23:59:59.000Z

419

A mini review on the chemistry and catalysis of the water gas shift reaction  

E-Print Network [OSTI]

Water gas shift (WGS) reaction is a chemical reaction in which carbon monoxide reacts with water vapor to form carbon dioxide and hydrogen. It is an important reaction industrially used in conjunction with steam reforming of hydrocarbons for the production of high purity hydrogen. Grenoble et al examined the roles of both active metals and metal oxide support on the kinetics of the WGS reaction. They found out that the turn over numbers of various Al2O3 supported transition metals decreased in the trend of Cu, Re, Co, Ru, Ni, Pt, Os, Au, Fe, Pd, Rh, and Ir, which corresponds nicely to the observed volcano shaped correlation between catalytic activities and respective CO adsorption heat. This is a strong indication that CO gets activated on the metal surface during the reaction and different metals have different activation energies. The authors also observed that the turn over number of Pt/Al2O3 was one order of magnitude higher than that of Pt/SiO2, indicating a strong support effect, which the authors ascri...

Zhao, Zhun

2014-01-01T23:59:59.000Z

420

Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas  

SciTech Connect (OSTI)

Hydraulic fracturing for natural gas extraction from shale produces waste brine known as flowback that is impounded at the surface prior to reuse and/or disposal. During impoundment, microbial activity can alter the fate of metals including radionuclides, give rise to odorous compounds, and result in biocorrosion that complicates water and waste management and increases production costs. Here, we describe the microbial ecology at multiple depths of three flowback impoundments from the Marcellus shale that were managed differently. 16S rRNA gene clone libraries revealed that bacterial communities in the untreated and biocide-amended impoundments were depth dependent, diverse, and most similar to species within the taxa [gamma]-proteobacteria, [alpha]-proteobacteria, ?-proteobacteria, Clostridia, Synergistetes, Thermotogae, Spirochetes, and Bacteroidetes. The bacterial community in the pretreated and aerated impoundment was uniform with depth, less diverse, and most similar to known iodide-oxidizing bacteria in the [alpha]-proteobacteria. Archaea were identified only in the untreated and biocide-amended impoundments and were affiliated to the Methanomicrobia class. This is the first study of microbial communities in flowback water impoundments from hydraulic fracturing. The findings expand our knowledge of microbial diversity of an emergent and unexplored environment and may guide the management of flowback impoundments.

Mohan, Arvind Murali; Hartsock, Angela; Hammack, Richard W.; Vidic, Radisav D; Gregory, Kelvin B.

2013-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

WATER ABSORPTION FROM GAS VERY NEAR THE MASSIVE PROTOSTAR AFGL 2136 IRS 1  

SciTech Connect (OSTI)

We present ground-based observations of the ?{sub 1} and ?{sub 3} fundamental bands of H{sub 2}O toward the massive protostar AFGL 2136 IRS 1, identifying absorption features due to 47 different ro-vibrational transitions between 2.468 ?m and 2.561 ?m. Analysis of these features indicates the absorption arises in warm (T = 506 25 K), very dense (n(H{sub 2}) > 5 10{sup 9} cm{sup 3}) gas, suggesting an origin close to the central protostar. The total column density of warm water is estimated to be N(H{sub 2}O) = (1.02 0.02) 10{sup 19} cm{sup 2}, giving a relative abundance of N(H{sub 2}O)/N(H{sub 2}) ? 10{sup 4}. Our study represents the first extensive use of water vapor absorption lines in the near infrared, and demonstrates the utility of such observations in deriving physical parameters.

Indriolo, Nick; Neufeld, D. A. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Seifahrt, A. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Richter, M. J. [Department of Physics, University of California Davis, Davis, CA 95616 (United States)

2013-10-10T23:59:59.000Z

422

Geologic, geochemical, and geographic controls on NORM in produced water from Texas oil, gas, and geothermal reservoirs. Final report  

SciTech Connect (OSTI)

Water from Texas oil, gas, and geothermal wells contains natural radioactivity that ranges from several hundred to several thousand Picocuries per liter (pCi/L). This natural radioactivity in produced fluids and the scale that forms in producing and processing equipment can lead to increased concerns for worker safety and additional costs for handling and disposing of water and scale. Naturally occurring radioactive materials (NORM) in oil and gas operations are mainly caused by concentrations of radium-226 ({sup 226}Ra) and radium-228 ({sup 228}Ra), daughter products of uranium-238 ({sup 238}U) and thorium-232 ({sup 232}Th), respectively, in barite scale. We examined (1) the geographic distribution of high NORM levels in oil-producing and gas-processing equipment, (2) geologic controls on uranium (U), thorium (Th), and radium (Ra) in sedimentary basins and reservoirs, (3) mineralogy of NORM scale, (4) chemical variability and potential to form barite scale in Texas formation waters, (5) Ra activity in Texas formation waters, and (6) geochemical controls on Ra isotopes in formation water and barite scale to explore natural controls on radioactivity. Our approach combined extensive compilations of published data, collection and analyses of new water samples and scale material, and geochemical modeling of scale Precipitation and Ra incorporation in barite.

Fisher, R.

1995-08-01T23:59:59.000Z

423

Glass flask air sample analysis through Gas Chromatography in India: Implications for constraining CO2 surface fluxes  

E-Print Network [OSTI]

for an air inlet (equipped with a 7µm filter), a pump and a battery placed below the ON/OFF button, a flow to the site measurements, they are prepared and evacuated. We pump and heat the flasks. During pumping the temperature is +60 dc. Flasks are pumped for 72 hours. Outlook Air sampling started at two new stations, Cape

424

Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States  

SciTech Connect (OSTI)

Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

Denholm, P.

2007-03-01T23:59:59.000Z

425

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network [OSTI]

Star Residential Water Heaters: Final criteria analysis.2004. Heat pump water heater technology: Experiences ofmarket research on solar water heaters. National Renewable

Lekov, Alex

2011-01-01T23:59:59.000Z

426

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

2004). Heat pump water heater technology: Experiences ofStar Residential Water Heaters: Final criteria analysis.market research on solar water heaters. National Renewable

Lekov, Alex B.

2010-01-01T23:59:59.000Z

427

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

al. (2004). Heat pump water heater technology: Experiencesstar residential water heaters: Final criteria analysis.market research on solar water heaters. National Renew- able

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

428

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

al. (2004). Heat pump water heater technology: Experienceslarger market for heat pump water heaters (US Department offurnace or heat pump and electric water heater (26%; US

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

429

Production management techniques for water-drive gas reservoirs. Field number 1, onshore gulf coast over-pressured, high yield condensate reservoir. Topical report, July 1993  

SciTech Connect (OSTI)

To develop improved completion and reservoir management strategies for water-drive gas reservoirs, the study conducted on an overpressured high yield gas condensate reservoir is reported. The base recovery factor for the field was projected to be only 47.8%, due to high residual gas saturation and a relatively strong aquifer which maintained reservoir pressure.

Hower, T.L.

1993-07-01T23:59:59.000Z

430

Water Quality Co-effects of Greenhouse Gas Mitigation in US Agriculture Subhrendu K. Pattanayak, Bruce A. McCarl, Allan J. Sommer, Brian C. Murray, Timothy  

E-Print Network [OSTI]

greenhouse gas (GHG) emission offset strategies in U.S. agriculture by linking a national level agriculturalWater Quality Co-effects of Greenhouse Gas Mitigation in US Agriculture Subhrendu K. Pattanayak sector model (ASMGHG) to a national level water quality model (NWPCAM). The simulated policy scenario

McCarl, Bruce A.

431

Integrated Water Gas Shift Membrane Reactors Utilizing Novel, Non Precious Metal Mixed Matrix Membrane  

SciTech Connect (OSTI)

Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 C and were compatible with the polymer matrices used to prepare mixed- matrix membranes (MMMs). MMMs tested at 300 C exhibited a >30 fold increase in permeability, compared to those measured at 35 C, while maintaining H{sub 2}/CO{sub 2} selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 C. CO{sub 2}-induced plasticization was not observed for Matrimid, VTEC, and PBI polymers or their MMMs at 30 atm and 300 C. Membrane surface modification by cross-linking with ethanol diamine resulted in an increase in H{sub 2}/CO{sub 2} selectivity at 35 C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 C. At higher temperatures, the cross-linked membranes exhibit a H{sub 2}/CO{sub 2} selectivity similar to the uncross-linked polymer. Performance of the polybenzimidazole (PBI) hollow fibers prepared at Santa Fe Science and Technology (SFST, Inc.) showed increased flux o to a flat PBI membrane. A water-gas shift reactor has been built and currently being optimized for testing under DOE conditions.

Ferraris, John

2013-09-30T23:59:59.000Z

432

Impacts of Water Loop Management on Simultaneous Heating and Cooling in Coupled Control Air Handling Units  

E-Print Network [OSTI]

The impacts of the water loop management on the heating and cooling energy consumption are investigated by using model simulation. The simulation results show that the total thermal energy consumption can be increased by 24% for a typical AHU in San...

Guan, W.; Liu, M.; Wang, J.

1998-01-01T23:59:59.000Z

433

Enhanced water desalination efficiency in an air-cathode stacked microbial electrodeionization cell (SMEDIC)  

E-Print Network [OSTI]

reserved. 1. Introduction Water scarcity is a major global challenge, and it is predicted that by 2025 two and anion exchange mem- branes to balance charge [6]. The performance of MDC is limited by several factors including the microbial community composition on the anode, electrode materials, pH imbalances, and internal

434

CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES  

SciTech Connect (OSTI)

In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During April-September 2002, the JIP concentrated on: Reviewing the tasks and subtasks on the basis of the information generated during the three workshops held in March and May 2002; Writing Requests for Proposals (RFPs) and Cost, Time and Resource (CTRs) estimates to accomplish the tasks and subtasks; Reviewing proposals sent in by prospective contractors; Selecting four contractors; Selecting six sites for detailed review; and Talking to drill ship owners and operators about potential work with the JIP.

Steve Holditch; Emrys Jones

2003-01-01T23:59:59.000Z

435

CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES  

SciTech Connect (OSTI)

In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During the first six months of operation, the primary activities of the JIP were to conduct and plan Workshops, which were as follows: (1) Data Collection Workshop--March 2002 (2) Drilling, Coring and Core Analyses Workshop--May 2002 (3) Modeling, Measurement and Sensors Workshop--May 2002.

Steve Holditch; Emrys Jones

2003-01-01T23:59:59.000Z

436

Thermoelectrically cooled water trap  

DOE Patents [OSTI]

A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

Micheels, Ronald H. (Concord, MA)

2006-02-21T23:59:59.000Z

437

Discover Jacksonville | Ultimate Jaguars | First Coast Fugitives | Internet Directory | Jax2Go Wireless Water's Edge magazine | H for Health magazine | Jax Air News | Mayport Mirror | Kings Bay Periscope | Ultimate Yellow Pages  

E-Print Network [OSTI]

Wireless Water's Edge magazine | H for Health magazine | Jax Air News | Mayport Mirror | Kings Bay Manatee County Port Authority Central Florida: Furniture Refinishers Sub- Contract Leathersmith

Richardson, Martin C.

438

Sensitivity of Low Sloped Roofs Designs to Initial Water and Air Leakage  

E-Print Network [OSTI]

.Sc. Research Scientist VTT, Espoo, Finland Andre Desjarlais. B.Sc.E Program Manager, Oak Ridge National Laboratory 1 Bethel Valley Rd, Oak Ridge TN, 37831-6070 ABSTRACT Liquid water in low sloped roofs almost always causes problems... roofs in Finland (area varying from 200 m2 up to 5 000 m2). A laboratory hot box apparatus (Kouhia and Nieminen, 1999) was also used to further quantify the performance of the grooved roof ventilation system and to show the thermal consequences...

Karagiozis, A.; Desjarlais, A.; Salonvaara, M.

2002-01-01T23:59:59.000Z

439

Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process  

DOE Patents [OSTI]

In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

Schilke, Peter W. (4 Hempshire Ct., Scotia, NY 12302); Muth, Myron C. (R.D. #3, Western Ave., Amsterdam, NY 12010); Schilling, William F. (301 Garnsey Rd., Rexford, NY 12148); Rairden, III, John R. (6 Coronet Ct., Schenectady, NY 12309)

1983-01-01T23:59:59.000Z

440

Knowledge Partnership for Measuring Air Pollution and Greenhouse...  

Open Energy Info (EERE)

Measuring Air Pollution and Greenhouse Gas Emissions in Asia Jump to: navigation, search Name Knowledge Partnership for Measuring Air Pollution and Greenhouse Gas Emissions in Asia...

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

lackouts, rising gas prices, changes to the Clean Air Act, proposals to open wilderness and protected offshore areas to gas drilling, and increasing  

E-Print Network [OSTI]

the energy events of the 1970s, in whose wake we are still reeling. Julian Darley has done far more than just, as well as a meticulously researched warning about our next potentially catastrophic energy crisis. Did due to the looming NG crisis? HIGH NOON FOR NATURAL GAS The New Energy Crisis JULIAN DARLEY $18

Keeling, Stephen L.

442

Bubble Size Control to Improve Oxygen-Based Bleaching: Characterization of Flow Regimes in Pulp-Water-Gas Three-Phase Flows  

SciTech Connect (OSTI)

Flow characteristics of fibrous paper pulp-water-air slurries were investigated in a vertical circular column 1.8 m long, with 5.08 cm diameter. Flow structures, gas holdup (void fraction), and the geometric and population characteristics of gas bubbles were experimentally investigated, using visual observation, Gamma-ray densitometry, and flash X-ray photography. Five distinct flow regimes could be visually identified: dispersed bubbly, layered bubbly, plug, churn-turbulent, and slug. Flow regime maps were constructed, and the regime transition lines were found to be sensitive to consistency. The feasibility of using artificial neural networks (ANNs) for the identification of the flow regimes, using the statistical characteristics of pressure fluctuations measured by a single pressure sensor, was demonstrated. Local pressure fluctuations at a station were recorded with a minimally-intrusive transducer. Three-layer, feed-forward ANNs were designed that could identify the four major flow patterns (bubbly, plug, churn, and slug) well. The feasibility of a transportable artificial neural network (ANN) - based technique for the classification of flow regimes was also examined. Local pressures were recorded at three different locations using three independent but similar transducers. An ANN was designed, trained and successfully tested for the classification of the flow regimes using one of the normalized pressure signals (from Sensor 1). The ANN trained and tested for Sensor 1 predicted the flow regimes reasonably well when applied directly to the other two sensors, indicating a good deal of transportability. An ANN-based method was also developed, whereby the power spectrum density characteristics of other sensors were adjusted before they were used as input to the ANN that was based on Sensor 1 alone. The method improved the predictions. The gas-liquid interfacial surface area concentration was also measured in the study. The gas absorption technique was applied, using CO2 as the transferred species and sodium hydroxide as the alkaline agent in water. Statistical analysis was performed to identify the parametric dependencies. The experimental data were empirically correlated.

S.M. Ghiaasiaan and Seppo Karrila

2006-03-20T23:59:59.000Z

443

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network [OSTI]

associated with coal generation occur at the smokestack. Theassociated with coal-fired electricity generation by up toCoal, Domestic Natural Gas, LNG, and SNG for Electricity Generation,

Hagan, Colin R.

2012-01-01T23:59:59.000Z

444

Integrated flue gas processing method  

SciTech Connect (OSTI)

A system and process for flue gas processing to remove both gaseous contaminants such as sulfur dioxide and particulate matter such as flyash integrates spray scrubbing apparatus and wet electrostatic precipitation apparatus and provides for the advantageous extraction and utilization of heat present in the flue gas which is being processed. The integrated system and process utilizes a spray scrubbing tower into which the flue gas is introduced and into which aqueous alkali slurry is introduced as spray for sulfur dioxide removal therein. The flue gas leaves the tower moisture laden and enters a wet electrostatic precipitator which includes a heat exchanger where flyash and entrained droplets in the flue gas are removed by electrostatic precipitation and heat is removed from the flue gas. The cleaned flue gas exits from the precipitator and discharges into a stack. The heat removed from the flue gas finds use in the system or otherwise in the steam generation plant. The wet electrostatic precipitator of the integrated system and process includes a portion constructed as a cross flow heat exchanger with flue gas saturated with water vapor moving vertically upwards inside tubes arranged in a staggered pattern and ambient air being pulled horizontally across the outside of those tubes to cool the tube walls and thereby remove heat from the flue gas and cause condensation of water vapor on the inside wall surfaces. The condensate washes the electrostatically collected flyash particles down from the inside tube walls. The heat that is extracted from the saturated flue gas in the wet electrostatic precipitator heat exchanger may be utilized in several different ways, including: (1) for flue gas reheat after the wet electrostatic precipitator; (2) for preheating of combustion air to the steam generator boiler; and, (3) for heating of buildings.

Bakke, E.; Willett, H.P.

1982-12-21T23:59:59.000Z

445

Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas: A Novel Process Combining CO Methanation, Water-Gas Shift, and CO2 Capture  

SciTech Connect (OSTI)

Synthetic natural gas (SNG) production from syngas is under investigation again due to the desire for less dependency from imports and the opportunity for increasing coal utilization and reducing green house gas emission. CO methanation is highly exothermic and substantial heat is liberated which can lead to process thermal imbalance and deactivation of the catalyst. As a result, conversion per pass is limited and substantial syngas recycle is employed in conventional processes. Furthermore, the conversion of syngas to SNG is typically performed at moderate temperatures (275 to 325C) to ensure high CH4 yields since this reaction is thermodynamically limited. In this study, the effectiveness of a novel integrated process for the SNG production from syngas at high temperature (i.e. 600?C) was investigated. This integrated process consists of combining a CO methanation nickel-based catalyst with a high temperature CO2 capture sorbent in a single reactor. Integration with CO2 separation eliminates the reverse-water-gas shift and the requirement for a separate water-gas shift (WGS) unit. Easing of thermodynamic constraint offers the opportunity of enhancing yield to CH4 at higher operating temperature (500-700C) which also favors methanation kinetics and improves the overall process efficiency due to exploitation of reaction heat at higher temperatures. Furthermore, simultaneous CO2 capture eliminates green house gas emission. In this work, sorption-enhanced CO methanation was demonstrated using a mixture of a 68% CaO/32% MgAl2O4 sorbent and a CO methanation catalyst (Ni/Al2O3, Ni/MgAl2O4, or Ni/SiC) utilizing a syngas ratio (H2/CO) of 1, gas-hour-space velocity (GHSV) of 22 000 hr-1, pressure of 1 bar and a temperature of 600oC. These conditions resulted in ~90% yield to methane, which was maintained until the sorbent became saturated with CO2. By contrast, without the use of sorbent, equilibrium yield to methane is only 22%. Cyclic stability of the methanation catalyst and durability of the sorbent were also studied in the multiple carbonation-decarbonation cycle studies proving the potential of this integrated process in a practical application.

Lebarbier, Vanessa MC; Dagle, Robert A.; Kovarik, Libor; Albrecht, Karl O.; Li, Xiaohong S.; Li, Liyu; Taylor, Charles E.; Bao, Xinhe; Wang, Yong

2014-01-01T23:59:59.000Z

446

Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge  

SciTech Connect (OSTI)

Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen generation by no more than a factor of three while disodium phosphate increased the corrosion and hydrogen generation rates slightly. U(VI) showed some promise in attenuating hydrogen but only initial testing was completed. Uranium metal corrosion rates also were measured. Under many conditions showing high hydrogen gas attenuation, uranium metal continued to corrode at rates approaching those observed without additives. This combination of high hydrogen attenuation with relatively unabated uranium metal corrosion is significant as it provides a means to eliminate uranium metal by its corrosion in water without the accompanying hazards otherwise presented by hydrogen generation.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2010-01-29T23:59:59.000Z

447

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

and F. Southworh. (2004). Heat pump water heater technology:a larger market for heat pump water heaters (U.S. Departmentfurnace or heat pump and electric water heater (26%). (U.S.

Lekov, Alex B.

2010-01-01T23:59:59.000Z

448

Computational study of shock waves propagating through air-plastic-water interfaces  

E-Print Network [OSTI]

The following study is motivated by experimental studies in traumatic brain injury (TBI). Recent research has demonstrated that low intensity non-impact blast wave exposure frequently leads to mild traumatic brain injury (mTBI); however, the mechanisms connecting the blast waves and the mTBI remain unclear. Collaborators at the Seattle VA Hospital are doing experiments to understand how blast waves can produce mTBI. In order to gain insight that is hard to obtain by experimental means, we have developed conservative finite volume methods for interface-shock wave interaction to simulate these experiments. A 1D model of their experimental setup has been implemented using Euler equations for compressible fluids. These equations are coupled with a Tammann equation of state (EOS) that allows us to model compressible gas along with almost incompressible fluids or elastic solids. A hybrid HLLC-exact Eulerian-Lagrangian Riemann solver for Tammann EOS with a jump in the parameters has been developed. The model has sho...

Del Razo, Mauricio J

2015-01-01T23:59:59.000Z

449

Energy Savings and Economics of Advanced Control Strategies for Packaged Air-Conditioning Units with Gas Heat  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) with funding from the U.S. Department of Energy's Building Technologies Program (BTP) evaluated a number of control strategies that can be implemented in a controller, to improve the operational efficiency of the packaged air conditioning units. The two primary objectives of this research project are: (1) determine the magnitude of energy savings achievable by retrofitting existing packaged air conditioning units with advanced control strategies not ordinarily used for packaged units and (2) estimating what the installed cost of a replacement control with the desired features should be in various regions of the U.S. This document reports results of the study.

Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

2011-12-31T23:59:59.000Z

450

Compressed Air System Optimization  

E-Print Network [OSTI]

Several years ago I went to a gas station and noticed that my car's tires were low on air. I saw the gas station had an air compressor, but it cost a quarter to use the compressor. I paid my quarter and used the compressor. I realized...

Aegerter, R.

451

Water quality in the vicinity of Mosquito Creek Lake, Trumbull County, Ohio, in relation of the chemistry of locally occurring oil, natural gas, and brine  

SciTech Connect (OSTI)

The purpose of this report is to describe current water quality and the chemistry of oil, natural gas, and brine in the Mosquito Creek Lake area. Additionally, these data are used to characterize water quality in the Mosquito Creek Lake area in relation to past oil and natural gas well drilling and production. To meet the overall objective, several goals for this investigation were established. These include (1) collect water-quality and subsurface-gas data from shallow sediments and rock that can be used for future evaluation of possible effects of oil and natural gas well drilling and production on water supplies, (2) characterize current surface-water and ground-water quality as it relates to the natural occurrence and (or) release of oil, gas, and brine (3) sample and chemically characterize the oil in the shallow Mecca Oil Pool, gas from the Berea and Cussewago Sandstone aquifers, and the oil, gas, and brine from the Clinton sandstone, and (4) identify areas where aquifers are vulnerable to contamination from surface spills at oil and natural gas drilling and production sites.

Barton, G.J.; Burruss, R.C.; Ryder, R.T.

1998-12-31T23:59:59.000Z

452

Energy and water vapor transport across a simplified cloud-clear air interface  

E-Print Network [OSTI]

We consider a simplified physics of the could interface where condensation, evaporation and radiation are neglected and momentum, thermal energy and water vapor transport is represented in terms of the Boussinesq model coupled to a passive scalar transport equation for the vapor. The interface is modeled as a layer separating two isotropic turbulent regions with different kinetic energy and vapor concentration. In particular, we focus on the small scale part of the inertial range as well as on the dissipative range of scales which are important to the micro-physics of warm clouds. We have numerically investigated stably stratified interfaces by locally perturbing at an initial instant the standard temperature lapse rate at the cloud interface and then observing the temporal evolution of the system. When the buoyancy term becomes of the same order of the inertial one, we observe a spatial redistribution of the kinetic energy which produce a concomitant pit of kinetic energy within the mixing layer. In this sit...

Gallana, Luca; De Santi, Francesca; Iovieno, Michele; Tordella, Daniela

2015-01-01T23:59:59.000Z

453

Montagnini, Florencia, Howard S. Neufeld and Christopher Uhl. 1984. Heavy metal concentrations in some non-vascular plants in an Amazonian rainforest. Water, Air, and  

E-Print Network [OSTI]

Montagnini, Florencia, Howard S. Neufeld and Christopher Uhl. 1984. Heavy metal concentrations in some non-vascular plants in an Amazonian rainforest. Water, Air, and Soil Pollution 21 the possibility of long-range transport of industrial pollutants to that region. Heavy metal concentrations were

Neufeld, Howard S.

454

2014-02-07 Issuance: Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register notice of proposed rulemaking regarding certification of commercial heating, ventilation, and air-conditioning, water-heating, and refrigeration equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 7, 2014.

455

Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems  

E-Print Network [OSTI]

In Review J. Indoor Air) 2007 LBNL-63193 Tarantola, Albert,Gas Measurement to Determine Air Movements in a House,Measurement Techniques, Air Infiltration and Ventilation

Sherman, Max H.

2008-01-01T23:59:59.000Z

456

Comparative laboratory selection and field testing of polymers for selective control of water production in gas wells  

SciTech Connect (OSTI)

Intensive comparative feasibility studies were performed in different laboratories in order to select the most promising polymer based technology for water control in gas production and storage wells exhibiting low matrix permeability, high temperature and high produced brine salinity. Core flow experiments performed under reservoir conditions with different commercially available chemical systems have pointed to the superiority of two relatively low-molecular-weight vinyl sulfonated/vinyl amide/acrylamide terpolymers over other polymers to decrease selectively and effectively the water permeability without affecting the gas flow. These polymers have excellent compatibility with all types of reservoir brines and good thermal stability up to 150 C. Furthermore, because of their high shear resistance, and excellent injectability even in low permeability cores, solutions of these polymers can be pumped at high injection rates with a moderate wellhead pressure.

Ranjbar, M. [Technical Univ., Clausthal (Germany); Czolbe, P. [DBI-GUT, Freiberg (Germany); Kohler, N. [IFP, Rueil-Malmaison (France)

1995-11-01T23:59:59.000Z

457

Determination of Methane Concentration Methane will be measured on the gas chromatogram using a FID (flame ionization)  

E-Print Network [OSTI]

Determination of Methane Concentration Methane will be measured on the gas chromatogram using a FID to equilibrate the methane between the air and water. · With the syringe pointing down, eject all the water fromL of gas in the syringe · We will now move to the GC lab in Starr 332 to measure methane. · Repeat

Vallino, Joseph J.

458

Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal  

SciTech Connect (OSTI)

The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

Barton, Tom

2013-06-30T23:59:59.000Z

459

Process for analyzing CO[sub 2] in air and in water  

DOE Patents [OSTI]

The process of this invention comprises providing a membrane for separating CO[sub 2] into a first CO[sub 2] sample phase and a second CO[sub 2] analyte phase. CO[sub 2] is then transported through the membrane thereby separating the CO[sub 2] with the membrane into a first CO[sub 2] sample phase and a second CO[sub 2] analyte liquid phase including an ionized, conductive, dissociated CO[sub 2] species. Next, the concentration of the ionized, conductive, dissociated CO[sub 2] species in the second CO[sub 2] analyte liquid phase is chemically amplified using a water-soluble chemical reagent which reversibly reacts with undissociated CO[sub 2] to produce conductivity changes therein corresponding to fluctuations in the partial pressure of CO[sub 2] in the first CO[sub 2] sample phase. Finally, the chemically amplified, ionized, conductive, dissociated CO[sub 2] species is introduced to a conductivity measuring instrument. Conductivity changes in the chemically amplified, ionized, conductive, dissociated CO[sub 2] species are detected using the conductivity measuring instrument. 43 figs.

Atwater, J.E.; Akse, J.R.; DeHart, J.

1999-06-08T23:59:59.000Z

460

Assessing water and environmental impacts of oil and gas projects in Nigeria.  

E-Print Network [OSTI]

??Oil and gas development projects are major sources of social and environmental problems particularly in oil-rich developing countries like Nigeria. Yet, data paucity hinders our (more)

Anifowose, Babatunde A.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Field Demonstration of a Membrane Process to Recover Heavy Hydrocarbons and to Remove Water from Natural Gas  

SciTech Connect (OSTI)

The objective of this project is to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world high-pressure conditions is being conducted to convince industry users of the efficiency and reliability of the process. The system was designed and fabricated by Membrane Technology and Research, Inc. (MTR) and installed and operated at BP Amoco's Pascagoula, MS plant. The Gas Research Institute is partially supporting the field demonstration and BP-Amoco helped install the unit and provides onsite operators and utilities. The gas processed by the membrane system meets pipeline specifications for dew point and BTU value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. During the course of this project, MTR has sold 13 commercial units related to the field test technology, and by the end of this demonstration project the process will be ready for broader commercialization. A route to commercialization has been developed during this project and involves collaboration with other companies already servicing the natural gas processing industry.

R. Baker; T. Hofmann; K. A. Lokhandwala

2006-09-29T23:59:59.000Z

462

Sustaining dry surfaces under water  

E-Print Network [OSTI]

Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

Paul R. Jones; Xiuqing Hao; Eduardo R. Cruz-Chu; Konrad Rykaczewski; Krishanu Nandy; Thomas M. Schutzius; Kripa K. Varanasi; Constantine M. Megaridis; Jens H. Walther; Petros Koumoutsakos; Horacio D. Espinosa; Neelesh A. Patankar

2014-09-29T23:59:59.000Z

463

Combustion Air Control  

E-Print Network [OSTI]

calibration and tune-up: ? A measure of combustion efficiency must be selected as a target operating goal for the combustion control system. Possible measures and typical targets include: Stack Gas Excess Air, 15% Stack Gas Opacity, 0.3 RN Stack Gas CO... Fuel Flows ? Preheater Inlet Temperature ? Btu Flow (Fuel Flow ? Preheater Outlet Temperature Controller Measurement) ? Ambient Temperature ? Oxygen in the Stack ? Boiler Master Controller Output ? Opac i ty Normalize the steam, air and fuel flow...

Hughart, C. L.

1979-01-01T23:59:59.000Z

464

CERIA-BASED WATER-GAS-SHIFT CATALYSTS S. Swartz, A-M. Azad, M. Seabaugh  

E-Print Network [OSTI]

on pure hydrogen or a hydrogen-rich gas with little or no carbon monoxide. In the near term, fuel cells used in fuel processors. This reaction increases the hydrogen content and reduces the carbon monoxide) to the reactor. The reactor section incorporates a bypass loop, which allows for baseline gas chromatograph

Azad, Abdul-Majeed

465

Investigation of trace amounts of gas on microvave water-cut measurement  

E-Print Network [OSTI]

viscosity, improper separator operation, or poor separator design. Gas carry-under is believed to be one of the major causes of large allocation factors in oil and gas operations. Problems in clearly defining the three-phase stream as to flow regime...

Liu, Jin

2006-08-16T23:59:59.000Z

466

Cooler and particulate separator for an off-gas stack  

DOE Patents [OSTI]

This report describes an off-gas stack for a melter, furnace or reaction vessel comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes prevents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

Wright, G.T.

1991-04-08T23:59:59.000Z

467

Cooler and particulate separator for an off-gas stack  

DOE Patents [OSTI]

An off-gas stack for a melter comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes pervents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

Wright, George T. (15 Cherry Hills Dr., Aiken, SC 29803)

1992-01-01T23:59:59.000Z

468

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems  

SciTech Connect (OSTI)

CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

Not Available

1990-07-01T23:59:59.000Z

469

Implementing greenhouse gas emissions caps: A case study of the Los Angeles Department of Water and Power  

SciTech Connect (OSTI)

Our almost forty-year experience with landmark federal environmental statutes, demonstrates unequivocally that implementing grand and noble environmental goals is an arduous and difficult experience. California is now embarking on a similar project: implementing the country's most ambitious greenhouse gas emissions limitations, including rolling back the state's emissions to 1990 levels by 2020. The state's leadership on climate change legislation deserves significant praise. But the hard work in actually achieving emissions limits is just beginning. In this Essay, Professor Ann Carlson provides a case study of the country's largest municipally owned utility - the Los Angeles Department of Water and Power (DWP) - and the challenges it will face in holding its emissions to 1990 levels by 2020. The case study is particularly useful to anticipate challenges utilities across the country will face if the federal government also mandates greenhouse gas emissions reductions. The DWP's energy mix, with its heavy reliance on coal, looks quite similar to the energy mix of the country as a whole (and quite different from the rest of California's electricity market). The challenges are daunting. They include shifting rapidly to renewable energy sources in the face of labor pressures to have DWP own its own sources; building miles of transmission lines to bring the renewable energy to DWP's customer base; repowering natural gas facilities while attempting to comply with stringent Clean Water Act requirements; and eliminating the utility's reliance on coal over the next two decades. These efforts will raise complex environmental and other value clashes, pitting those concerned about jobs, water pollution, species protection, and aesthetic harms against a utility admirably committed to cutting its greenhouse gas emissions significantly. Whether and how we resolve these clashes remains an open and contested question.

Carlson, A.E. [University of California Los Angeles, Los Angeles, CA (United States). School for Law

2008-08-15T23:59:59.000Z

470

Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes: Tucson, Arizona and Chico, California (Fact Sheet)  

SciTech Connect (OSTI)

Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

Not Available

2013-11-01T23:59:59.000Z

471

Deemed Savings Estimates for Legacy Air Conditioning and WaterHeating Direct Load Control Programs in PJM Region  

SciTech Connect (OSTI)

During 2005 and 2006, the PJM Interconnection (PJM) Load Analysis Subcommittee (LAS) examined ways to reduce the costs and improve the effectiveness of its existing measurement and verification (M&V) protocols for Direct Load Control (DLC) programs. The current M&V protocol requires that a PURPA-compliant Load Research study be conducted every five years for each Load-Serving Entity (LSE). The current M&V protocol is expensive to implement and administer particularly for mature load control programs, some of which are marginally cost-effective. There was growing evidence that some LSEs were mothballing or dropping their DLC programs in lieu of incurring the expense associated with the M&V. This project had several objectives: (1) examine the potential for developing deemed savings estimates acceptable to PJM for legacy air conditioning and water heating DLC programs, and (2) explore the development of a collaborative, regional, consensus-based approach for conducting monitoring and verification of load reductions for emerging load management technologies for customers that do not have interval metering capability.

Goldman, Charles

2007-03-01T23:59:59.000Z

472

Influence of Atmospheric Pressure and Water Table Fluctuations on Gas Phase Flow and Transport of Volatile Organic Compounds (VOCs) in Unsaturated Zones  

E-Print Network [OSTI]

in previous studies. This dissertation systematically investigates their influence on the gas phase flow and transport of VOCs in soil and ground water remediation processes using analytically and numerically mathematical modeling. New semi...

You, Kehua

2013-04-19T23:59:59.000Z

473

Anisotropic Heat and Water Transport in a PEFC Cathode Gas Diffusion Layer  

E-Print Network [OSTI]

PEFCs , owing to their high en- ergy efficiency, low emission, and low noise, are widely considered. In addition, the latent heat effects due to condensation/evaporation of water on the temperature and water ohmic losses. Along with water man- agement, thermal management is also a key to high performance

474

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 5, Appendix D: Cost support information: Final report  

SciTech Connect (OSTI)

The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro`s estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

1991-01-01T23:59:59.000Z

475

Genesis and evolution of surface species during Pt atomic layer deposition on oxide supports characterized by in-situ XAFS analysis and water-gas shift reaction.  

SciTech Connect (OSTI)

Platinum atomic layer deposition (ALD) using MeCpPtMe{sub 3} was employed to prepare high loadings of uniform-sized, 1-2 nm Pt nanoparticles on high surface area Al{sub 2}O{sub 3}, TiO{sub 2}, and SrTiO{sub 3} supports. X-ray absorption fine structure was utilized to monitor the changes in the Pt species during each step of the synthesis. The temperature, precursor exposure time, treatment gas, and number of ALD cycles were found to affect the Pt particle size and density. Lower-temperature MeCpPtMe{sub 3} adsorption yielded smaller particles due to reduced thermal decomposition. A 300 C air treatment of the adsorbed MeCpPtMe{sub 3} leads to PtO. In subsequent ALD cycles, the MeCpPtMe{sub 3} reduces the PtO to metallic Pt in the ratio of one precursor molecule per PtO. A 200 C H{sub 2} treatment of the adsorbed MeCpPtMe{sub 3} leads to the formation of 1-2 nm, metallic Pt nanoparticles. During subsequent ALD cycles, MeCpPtMe{sub 3} adsorbs on the support, which, upon reduction, yields additional Pt nanoparticles with a minimal increase in size of the previously formed nanoparticles. The catalysts produced by ALD had identical water-gas shift reaction rates and reaction kinetics to those of Pt catalysts prepared by standard solution methods. ALD synthesis of catalytic nanoparticles is an attractive method for preparing novel model and practical catalysts.

Setthapun, W.; Williams, W.; Kim, S.; Feng, H.; Elam, J.; Rabuffetti, F.; Poeppelmeier, K.; Stair, P.; Stach, E.; Ribeiro, F.; Miller, J.; Marshall, C.; Northwestern Univ.; Purdue Univ.

2010-06-03T23:59:59.000Z

476

Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the  

E-Print Network [OSTI]

12, 2014 (received for review November 27, 2013) Horizontal drilling and hydraulic fracturing have triggered by horizontal drilling or hydraulic fracturing. noble gas geochemistry | groundwater contamination and hydraulic fracturing have substantially increased hydrocarbon recovery from black shales and other

Jackson, Robert B.

477

Southwest Gas Corporation- Smarter Greener Better Solar Water Heating Program (Arizona)  

Broader source: Energy.gov [DOE]

'''''Note: Effective July 15, 2013, Southwest Gas is no longer accepting applications for the current program year. Systems installed during the current program year will not be eligible for a...

478

Deep, water-free gas potential is upside to New Albany shale play  

SciTech Connect (OSTI)

The New Albany shale of the Illinois basin contains major accumulations of Devonian shale gas, comparable both to the Antrim shale of the Michigan basin and the Ohio shale of the Appalachian basin. The size of the resource originally assessed at 61 tcf has recently been increased to between 323 tcf and 528 tcf. According to the 1995 US Geological Survey appraisal, New Albany shale gas represents 52% of the undiscovered oil and gas reserves of the Illinois basin, with another 45% attributed to coalbed methane. New Albany shale gas has been developed episodically for over 140 years, resulting in production from some 40 fields in western Kentucky, 20 fields in southern Indiana, and at least 1 field in southern Illinois. The paper describes two different plays identified by a GRI study and prospective areas.

Hamilton-Smith, T. [Hamilton-Smith LLC, Lexington, KY (United States)

1998-02-16T23:59:59.000Z

479

Iron-ceria Aerogels Doped with Palladium as Water-gas Shift Catalysts for the Production of Hydrogen  

SciTech Connect (OSTI)

Mixed 4.5% iron oxide-95.5% cerium oxide aerogels doped with 1% and 2% palladium (Pd) by weight have been synthesized, and their activities for the catalysis of water-gas shift (WGS) reaction have been determined. The aerogels were synthesized using propylene oxide as the proton scavenger for the initiation of hydrolysis and polycondensation of a homogeneous alcoholic solution of cerium(III) chloride heptahydrate and iron(III) chloride hexahydrate precursor. Palladium was doped onto some of these materials by gas-phase incorporation (GPI) using ({eta}{sup 3}-allyl)({eta}{sup 5}-cyclopentadienyl)palladium as the volatile Pd precursor. Water-gas shift catalytic activities were evaluated in a six-channel fixed-bed reactor at atmospheric pressure and reaction temperatures ranging from 150 to 350 C. Both 1% and 2% Pd-doped 4.5% iron oxide-95.5% cerium oxide aerogels showed WGS activities that increased significantly from 150 to 350 C. The activities of 1% Pd-doped 4.5% iron oxide-95.5% cerium oxide aerogels were also compared with that of the 1% Pd-doped ceria aerogel without iron. The WGS activity of 1% Pd on 4.5% iron oxide-95.5% cerium oxide aerogels is substantially higher (5 times) than the activity of 1% Pd-doped ceria aerogel without iron. The gas-phase incorporation results in a better Pd dispersion. Ceria aerogel provides a nonrigid structure wherein iron is not significantly incorporated inside the matrix, thereby resulting in better contact between the Fe and Pd and thus enhancing the WGS activity. Further, neither Fe nor Pd is reduced during the ceria-aerogel-catalyzed WGS reaction. This behavior contrasts with that noted for other Fe-based WGS catalysts, in which the original ferric oxide is typically reduced to a nonstoichiometric magnetite form.

Bali, S.; Huggins, F; Ernst, R; Pugmire, R; Huffman, G; Eyring, E

2010-01-01T23:59:59.000Z

480

air_water.cdr  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March 20,Since 5%ZL,o-c'3 I,J.

Note: This page contains sample records for the topic "gas air water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

E-Print Network 3.0 - air temperature air Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

measured as 74 per of air flowing through the turbine. The turbine operates... the ideal gas model for air, determine the turbine efficiency. Problem 2 ... Source: Bahrami, Majid -...

482

Surface Environmental Surveillance Project: Locations Manual Volume 1 Air and Water Volume 2 Farm Products, Soil & Vegetation, and Wildlife  

SciTech Connect (OSTI)

This report describes all environmental monitoring locations associated with the Surface Environmental Surveillance Project. Environmental surveillance of the Hanford site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 450.1, Environmental Protection Program, and DOE Order 5400.5, Radiation Protection of the Public and the Environment. The environmental surveillance sampling design is described in the Hanford Site Environmental Monitoring Plan, United States Department of Energy, Richland Operation Office (DOE/RL-91-50). This document contains the locations of sites used to collect samples for the Surface Environmental Surveillance Project (SESP). Each section includes directions, maps, and pictures of the locations. A general knowledge of roads and highways on and around the Hanford Site is necessary to successfully use this manual. Supplemental information (Maps, Gazetteer, etc.) may be necessary if user is unfamiliar with local routes. The SESP is a multimedia environmental surveillance effort to measure the concentrations of radionuclides and chemicals in environmental media to demonstrate compliance with applicable environmental quality standards and public exposure limits, and assessing environmental impacts. Project personnel annually collect selected samples of ambient air, surface water, agricultural products, fish, wildlife, and sediments. Soil and vegetation samples are collected approximately every 5 years. Analytical capabilities include the measurement of radionuclides at very low environmental concentrations and, in selected media, nonradiological chemicals including metals, anions, volatile organic compounds, and total organic carbon.

Fritz, Brad G.; Patton, Gregory W.; Stegen, Amanda; Poston, Ted M.

2009-01-01T23:59:59.000Z

483

The effect on recovery of the injection of alternating slugs of gas and water at pressures above the bubble point  

E-Print Network [OSTI]

. CONCLUSIONS, 24 6. ACKNOWLEDGEMENT. 7. APPE NDIX. 8. REFERENCES. 25 32 337530 LIST OF FIGURES AND TABLES FIGURES 1. Core Saturating and Flooding Apparatus Page 2. Physical Characteristics of Refined Oil and East Texas Crude Oil at 77'F. 3. Refined... Oil Recovery vs Pore Volumes of Injected Fluid for an Initial Gas Slug. 13 4, Refined Oil Recovery vs Pore Volumes of Injected Fluid for an Initial Water Slug. 14 5. The Effect of Slug Length on Recovery of Refined Oil. 15 6. Recovery of East...

Givens, James Wilson

1961-01-01T23:59:59.000Z