National Library of Energy BETA

Sample records for gas activities operated

  1. ,"Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas ...

  2. The oil and gas joint operating agreement

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This book covers the following topics: introduction to the AAPL model form operating agreement; property provisions of the operating agreement; Article 6---the drilling and development article; duties and obligations revisited---who bear what risk of loss; operator's liens; accounting procedure joint operations; insurance; taking gas in kind absent a balancing agreement; RMMLF Form 5 Gas Balancing Agreement; tax partnerships for nontax professionals; alternative agreement forms.

  3. Oil and Gas Lease Equipment and Operating Costs 1994 Through...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas > Publications > Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Released: September ...

  4. Operating a fuel cell using landfill gas

    SciTech Connect (OSTI)

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  5. Hydrate Control for Gas Storage Operations

    SciTech Connect (OSTI)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  6. New Jersey Natural Gas Underground Storage Injections All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Injections All Operators (Million Cubic Feet) New Jersey Natural Gas ... Injections of Natural Gas into Underground Storage - All Operators New Jersey Underground ...

  7. WIPP Activates Emergency Operations Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 5, 2015 WIPP Activates Emergency Operations Center At approximately 7:00 p.m. MDT on Tuesday, August 4, the Waste Isolation Pilot Plant (WIPP) activated the Emergency...

  8. Operational Awareness Records and Activity Reports | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operational Awareness Records and Activity Reports Operational Awareness Records and Activity Reports December 10, 2015 Enterprise Assessments Operational Awareness Record for the...

  9. ,"Minnesota Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:41 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Minnesota Natural Gas in ...

  10. ,"Michigan Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:40 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Michigan Natural Gas in ...

  11. ,"Louisiana Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:38 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Louisiana Natural Gas in ...

  12. ,"Oklahoma Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:50 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Oklahoma Natural Gas in ...

  13. ,"Tennessee Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:54 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Tennessee Natural Gas in ...

  14. ,"Alaska Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:26 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Alaska Natural Gas in ...

  15. ,"Missouri Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:43 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Missouri Natural Gas in ...

  16. ,"Arkansas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:28 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Arkansas Natural Gas in ...

  17. ,"Maryland Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:40 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Maryland Natural Gas in ...

  18. ,"Ohio Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:49 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Ohio Natural Gas in ...

  19. ,"Illinois Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:34 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Illinois Natural Gas in ...

  20. ,"Nebraska Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:46 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Nebraska Natural Gas in ...

  1. ,"Wyoming Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:30:00 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Wyoming Natural Gas in ...

  2. ,"Utah Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:56 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Utah Natural Gas in ...

  3. ,"Kentucky Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:37 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Kentucky Natural Gas in ...

  4. ,"Virginia Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:57 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Virginia Natural Gas in ...

  5. ,"California Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:29 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","California Natural Gas in ...

  6. ,"Mississippi Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:44 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Mississippi Natural Gas in ...

  7. Rhode Island Natural Gas Underground Storage Injections All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Injections All Operators (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

  8. Wisconsin Natural Gas Underground Storage Injections All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Injections All Operators (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

  9. ,"Texas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...010TX2","N5020TX2","N5070TX2","N5050TX2","N5060TX2" "Date","Texas Natural Gas Underground Storage Volume (MMcf)","Texas Natural Gas in Underground Storage (Base Gas) (MMcf)","Texas ...

  10. ,"U.S. Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Underground Natural Gas Storage - All Operators",3,"Annual",2014,"06301935" ,"Release Date:","09302015" ,"Next Release Date:","10302015" ,"Excel File...

  11. Gas characterization system operation, maintenance, and calibration plan

    SciTech Connect (OSTI)

    Tate, D.D.

    1996-03-04

    This document details the responsibilities and requirements for operation, maintenance, and calibration of the Gas Characterization Systems (GCS) analytical instrumentation. It further, defines the division of responsibility between the Characterization Monitoring Development organization and Tank Farms Operations.

  12. Operational Awareness Records and Activity Reports | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Independent Activity Report, Richland Operations Office - June 2011 Hanford Cold Vacuum Drying Facility, Multi-Canister Overpack, Operational Proficiency Demonstration...

  13. Michigan Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas 394,117 394,117 394,117 386,427 387,027 385,038 1990-2015 Working Gas 241,221 323,709 398,647 488,022 563,188 622,544 1990-2015 Net Withdrawals -82,150 -82,493 -74,938...

  14. Missouri Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas 7,845 7,845 7,845 7,845 7,845 7,845 1990-2016 Working Gas 6,341 6,537 6,493 6,045 6,198 6,063 1990-2016 Net Withdrawals -268 -212 28 433 -168 119 1990-2016 Injections 268 ...

  15. Arkansas Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas 10,841 11,213 11,664 11,664 11,652 11,652 1990-2016 Working Gas 2,222 2,132 1,808 1,374 1,057 619 1990-2016 Net Withdrawals -212 -283 -127 434 328 438 1990-2016 Injections ...

  16. Residual Gas Analysis for Long-Pulse, Advanced Tokamak Operation

    SciTech Connect (OSTI)

    Klepper, C Christopher; Hillis, Donald Lee; Bucalossi, J.; Douai, D.; OddonCEA, IRFM, P.; VartanianCEA-Cadarach, S.; Colas, L.; Manenc, L.; Pegourie, B.

    2010-01-01

    A shielded residual gas analyzer RGA system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This diagnostic RGA has been used in long-pulse up to 6 min discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H2 /D2 isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H2 injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses 4 min absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H2 could increase due to thermodesorption of overheated plasma facing components. 2010 American Institute of Physics.

  17. Minnesota Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    6,573 6,835 6,984 6,973 6,658 6,531 1990-2016 Base Gas 4,848 4,848 4,848 4,848 4,848 4,848 1990-2016 Working Gas 1,725 1,987 2,136 2,125 1,810 1,683 1990-2016 Net Withdrawals -219 ...

  18. Maryland Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    ,818 62,080 61,590 61,074 57,082 54,789 1990-2016 Base Gas 45,677 45,677 45,677 45,677 45,677 45,677 1990-2016 Working Gas 16,141 16,403 15,913 15,396 11,405 9,111 1990-2016 Net ...

  19. Washington Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    5,053 45,877 42,090 39,380 37,900 32,046 1990-2016 Base Gas 22,300 22,300 22,300 22,300 22,300 22,300 1990-2016 Working Gas 22,753 23,577 19,790 17,080 15,600 9,746 1990-2016 Net ...

  20. Wyoming Underground Natural Gas Storage - All Operators

    Gasoline and Diesel Fuel Update (EIA)

    91,886 90,669 90,354 91,501 92,834 94,020 1990-2015 Base Gas 67,815 67,798 67,815 67,815 67,815 67,815 1990-2015 Working Gas 24,071 22,871 22,539 23,686 25,018 26,205 1990-2015 Net...

  1. Operating a blast furnace using dried top gas

    SciTech Connect (OSTI)

    Kundrat, D.M.

    1993-08-10

    A method is described of operating a blast furnace, comprising: introducing into the top of the furnace a charge containing metal oxide, coke and flux, collecting a top gas CO, H[sub 2], carbon dioxide and water from the furnace, increasing the reducing potential of said collected top gas by removing water but without removing carbon dioxide from at least a portion of said collected top gas thereby forming a dried top gas, heating said dried top gas to form a heated dried top gas, introducing said heated dried top gas into the lower half of the stack of the furnace at a position above which said coke is not reactive and introducing an oxygen-containing gas and a hydrogenaceous fuel into the bosh of the furnace whereby said metal oxide is reduced to a molten metal using said heated dried top gas.

  2. Iowa Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    236,541 225,867 221,105 218,955 221,304 224,160 1990-2016 Base Gas 197,897 197,897 197,897 197,897 197,897 197,897 1990-2016 Working Gas 38,644 27,970 23,208 21,059 23,407 26,264 1990-2016 Net Withdrawals 19,427 10,674 4,762 2,150 -2,349 -2,856 1990-2016 Injections 122 1 1 17 2,858 3,331 1990-2016 Withdrawals 19,548 10,675 4,763 2,167 509 474 1990-2016 Change in Working Gas from Same Period Previous Year Volume 78 534 2,156 548 -2,458 -6,563 1991-2016 Percent 0.2 1.9

  3. Louisiana Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    600,979 579,744 593,753 613,908 625,375 627,582 1990-2016 Base Gas 274,129 274,174 274,106 274,142 275,344 275,661 1990-2016 Working Gas 326,850 305,571 319,646 339,766 350,030 351,921 1990-2016 Net Withdrawals 56,058 21,175 -14,011 -20,296 -11,540 -2,585 1990-2016 Injections 10,677 23,206 38,091 36,480 30,639 23,795 1990-2016 Withdrawals 66,735 44,381 24,080 16,183 19,100 21,210 1990-2016 Change in Working Gas from Same Period Previous Year Volume 88,848 140,857 153,919 129,118 104,626 90,542

  4. Nebraska Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    30,842 30,290 30,389 31,015 32,111 32,123 1990-2016 Base Gas 22,197 22,197 22,197 22,197 22,197 22,197 1990-2016 Working Gas 8,645 8,093 8,192 8,818 9,914 9,926 1990-2016 Net Withdrawals 1,788 549 -103 -630 -1,099 -16 1990-2016 Injections 442 589 741 1,108 404 1990-2016 Withdrawals 1,788 991 486 111 9 387 1990-2016 Change in Working Gas from Same Period Previous Year Volume -1,224 5 778 990 968 -359 1991-2016 Percent -12.4 0.1 10.5 12.6 10.8 -3.5

  5. Oregon Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    24,021 23,538 23,895 24,917 27,133 27,642 1990-2016 Base Gas 11,186 11,186 11,186 11,186 11,186 11,186 1990-2016 Working Gas 12,835 12,352 12,709 13,731 15,947 16,456 1990-2016 Net Withdrawals 1,845 481 -362 -1,027 -1,218 -511 1990-2016 Injections 402 336 1,069 1,027 2,228 511 1990-2016 Withdrawals 2,246 817 708 1,009 1990-2016 Change in Working Gas from Same Period Previous Year Volume 787 993 621 1,431 1,544 1,691 1990-2016 Percent 6.5 8.7 5.1 11.6 10.7 11.5 1990

  6. Alaska Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    38,492 38,987 39,438 40,879 42,836 44,158 2013-2016 Base Gas 14,197 14,197 14,197 14,197 14,197 14,197 2013-2016 Working Gas 24,295 24,790 25,241 26,682 28,639 29,961 2013-2016 Net Withdrawals -50 -459 -451 -1,441 -1,957 -1,468 2013-2016 Injections 496 748 752 1,540 2,065 1,970 2013-2016 Withdrawals 446 289 301 99 108 501 2013-2016 Change in Working Gas from Same Period Previous Year Volume -515 164 850 2,474 4,360 5,604 2013-2016 Percent -2.1 0.7 3.5 10.2 18.0 23.0 2013

  7. California Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    473,606 466,313 471,118 488,378 500,458 508,224 1990-2016 Base Gas 225,845 225,845 225,845 225,845 225,845 225,845 1990-2016 Working Gas 247,760 240,467 245,272 262,533 274,613 282,379 1990-2016 Net Withdrawals 40,217 7,203 -4,805 -17,261 -16,700 -7,766 1990-2016 Injections 5,046 7,694 14,460 19,176 20,553 12,383 1990-2016 Withdrawals 45,263 14,897 9,655 1,914 3,853 4,616 1990-2016 Change in Working Gas from Same Period Previous Year Volume 916 -8,951 -8,466 -7,672 -21,052 -23,626 1990-2016

  8. Tennessee Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    2,014 2,020 2,052 2,069 2,095 2,130 1997-2016 Base Gas 878 878 878 878 878 878 1997-2016 Working Gas 1,137 1,143 1,175 1,192 1,217 1,253 1997-2016 Net Withdrawals 25 -6 -32 -17 -27 -38 1998-2016 Injections 3 25 37 19 27 38 1997-2016 Withdrawals 28 19 5 2 1997-2016 Change in Working Gas from Same Period Previous Year Volume 470 573 595 565 537 524 1997-2016 Percent 70.6 100.4 102.6 90.0 79.0 71.9 1997

  9. Texas Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    705,870 681,323 700,744 737,343 766,877 759,232 1990-2016 Base Gas 294,440 294,891 295,364 298,436 298,505 298,312 1990-2016 Working Gas 411,431 386,432 405,380 438,907 468,372 460,919 1990-2016 Net Withdrawals 56,721 24,128 -19,445 -38,115 -29,546 7,624 1990-2016 Injections 17,953 21,048 46,257 52,553 44,466 16,715 1990-2016 Withdrawals 74,674 45,176 26,812 14,438 14,920 24,339 1990-2016 Change in Working Gas from Same Period Previous Year Volume 103,720 154,140 177,174 142,516 107,354 76,072

  10. Montana Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals 264 2,609 3,670 4,406 2,112 1,418 1990-2016 Change in Working Gas from Same Period Previous Year Volume 2,239 3,471 3,197 3,391 4,649 5,247 1990-2016 Percent 9.4 17.3 ...

  11. Virginia Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas 4,980 5,251 5,202 3,591 3,573 3,438 1997-2016 Net Withdrawals -545 -270 48 1,612 17 135 1995-2016 Injections 1,077 722 392 1,258 1,471 653 1997-2016 Withdrawals 533 451 ...

  12. Ohio Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas 181,373 192,681 184,926 165,463 118,381 86,221 1990-2016 Net Withdrawals -22,886 -11,308 7,717 19,441 47,082 32,160 1990-2016 Injections 23,451 13,257 2,530 1,632 70 ...

  13. Illinois Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals 746 1,354 17,147 47,497 72,099 52,482 1990-2016 Change in Working Gas from Same Period Previous Year Volume -4,131 -6,939 5,451 10,834 4,759 12,589 1990-2016 Percent ...

  14. Indiana Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    97,724 92,441 90,746 90,218 93,116 95,432 1990-2016 Base Gas 77,171 77,164 77,161 77,161 77,159 77,158 1990-2016 Working Gas 20,553 15,277 13,584 13,057 15,957 18,274 1990-2016 Net Withdrawals 6,106 5,259 1,694 527 -2,905 -2,226 1990-2016 Injections 166 119 201 439 2,997 2,269 1990-2016 Withdrawals 6,272 5,378 1,894 966 92 42 1990-2016 Change in Working Gas from Same Period Previous Year Volume 3,736 3,953 4,911 4,051 4,056 3,433 1990-2016 Percent 22.2 34.9 56.6 45.0 34.1 23.1

  15. Kansas Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    233,257 221,342 225,397 232,549 245,809 250,495 1990-2016 Base Gas 164,231 164,229 164,214 164,200 164,187 164,172 1990-2016 Working Gas 69,026 57,113 61,183 68,350 81,622 86,323 1990-2016 Net Withdrawals 26,541 11,913 -4,070 -7,167 -13,272 -4,701 1990-2016 Injections 1,222 3,898 10,871 11,169 14,861 9,088 1990-2016 Withdrawals 27,763 15,811 6,801 4,002 1,588 4,388 1990-2016 Change in Working Gas from Same Period Previous Year Volume 3,373 17,845 21,158 25,542 24,672 17,504 1990-2016 Percent 5.1

  16. Kentucky Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    190,694 181,000 178,850 194,795 203,102 205,878 1990-2016 Base Gas 112,965 112,964 112,961 112,959 112,957 112,956 1990-2016 Working Gas 77,729 68,036 65,889 81,836 90,145 92,922 1990-2016 Net Withdrawals 19,675 9,656 2,150 -16,117 -8,262 -2,776 1990-2016 Injections 575 1,883 3,203 17,718 10,554 5,041 1990-2016 Withdrawals 20,250 11,540 5,354 1,601 2,292 2,265 1990-2016 Change in Working Gas from Same Period Previous Year Volume 11,014 21,500 21,915 22,918 21,339 18,578 1990-2016 Percent 16.5

  17. Mississippi Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    249,528 242,509 254,667 261,037 267,742 266,005 1990-2016 Base Gas 116,505 116,483 116,449 116,491 116,028 116,068 1990-2016 Working Gas 133,023 126,026 138,218 144,545 151,714 149,937 1990-2016 Net Withdrawals 36,129 6,944 -12,187 -6,394 -6,684 1,758 1990-2016 Injections 5,837 12,939 20,073 13,651 15,608 8,894 1990-2016 Withdrawals 41,966 19,883 7,886 7,256 8,924 10,651 1990-2016 Change in Working Gas from Same Period Previous Year Volume 27,861 60,981 73,599 49,163 35,750 22,932 1990-2016

  18. Oklahoma Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    319,836 309,723 315,586 324,956 340,266 343,288 1990-2016 Base Gas 183,624 183,624 181,624 181,624 181,624 181,624 1990-2016 Working Gas 136,212 126,100 133,962 143,332 158,643 161,664 1990-2016 Net Withdrawals 26,725 10,070 -5,923 -9,402 -15,348 -3,069 1990-2016 Injections 2,701 4,518 10,606 11,696 17,060 8,283 1990-2016 Withdrawals 29,426 14,589 4,683 2,294 1,711 5,214 1990-2016 Change in Working Gas from Same Period Previous Year Volume 38,649 59,569 66,611 53,951 38,406 23,706 1990-2016

  19. Pennsylvania Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    631,739 569,313 549,303 554,903 586,915 623,378 1990-2016 Base Gas 343,818 343,699 336,838 336,631 336,740 337,217 1990-2016 Working Gas 287,921 225,614 212,465 218,272 250,176 286,161 1990-2016 Net Withdrawals 87,473 62,426 20,011 -5,601 -32,012 -36,463 1990-2016 Injections 5,148 8,852 24,088 30,454 44,376 43,461 1990-2016 Withdrawals 92,621 71,278 44,098 24,854 12,364 6,997 1990-2016 Change in Working Gas from Same Period Previous Year Volume 34,424 64,473 98,696 77,397 46,930 31,712 1990-2016

  20. Alabama Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    29,595 30,309 30,632 34,015 35,551 34,065 1995-2016 Base Gas 9,640 9,640 9,640 10,450 10,450 10,450 1995-2016 Working Gas 19,955 20,669 20,992 23,565 25,101 23,615 1995-2016 Net Withdrawals 4,787 -713 -323 -3,383 -1,536 1,486 1993-2016 Injections 1,260 3,081 2,222 3,807 3,036 1,576 1994-2016 Withdrawals 6,047 2,367 1,898 424 1,500 3,062 1994-2016 Change in Working Gas from Same Period Previous Year Volume 4,615 13,768 13,039 9,452 5,305 3,085 1996-2016 Percent 30.1 199.5 163.9 67.0 26.8 15.0

  1. Colorado Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    90,208 87,796 84,108 82,774 88,322 94,164 1990-2016 Base Gas 58,435 58,428 58,429 58,436 58,440 58,446 1990-2016 Working Gas 31,772 29,368 25,679 24,338 29,882 35,718 1990-2016 Net Withdrawals 9,800 2,412 3,688 1,334 -5,548 -5,842 1990-2016 Injections 1,835 3,933 3,939 3,816 7,388 7,000 1990-2016 Withdrawals 11,635 6,345 7,627 5,149 1,841 1,157 1990-2016 Change in Working Gas from Same Period Previous Year Volume -434 2,740 2,493 3,043 3,547 2,566 1990-2016 Percent -1.3 10.3 10.8 14.3 13.5

  2. NREL Document Profiles Natural Gas Fueling, Fleet Operation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Document Profiles Natural Gas Fueling, Fleet Operation Media may contact: George Douglas, 303-275-4096 email: George Douglas Steve Ginter, Mack, 610-709-3259 Golden, Colo., June 7, 2000 - A unique and successful natural gas fueling and fleet operation involving trash haulers is discussed in a recent document issued by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). The NREL document, Waste Management's LNG Truck Fleet Start-Up Experience, offers solid evidence that

  3. VACASULF operation at Citizens Gas and Coke Utility

    SciTech Connect (OSTI)

    Currey, J.H.

    1995-12-01

    Citizens Gas and Coke Utility is a Public Charitable Trust which operates as the Department of Utilities of the City of Indianapolis, Indiana. Indianapolis Coke, the trade name for the Manufacturing Division of the Utility, operates a by-products coke plant in Indianapolis, Indiana. The facility produces both foundry and blast furnace coke. Surplus Coke Oven gas, generated by the process, is mixed with Natural Gas for sale to industrial and residential customers. In anticipation of regulatory developments, beginning in 1990, Indianapolis Coke undertook the task to develop an alternate Coke Oven Gas desulfurization technology for its facility. The new system was intended to perform primary desulfurization of the gas, dramatically extending the oxide bed life, thus reducing disposal liabilities. Citizens Gas chose the VACASULF technology for its primary desulfurization system. VACASULF requires a single purchased material, Potassium Hydroxide (KOH). The KOH reacts with Carbon Dioxide in the coke Oven Gas to form Potassium Carbonate (potash) which in turn absorbs the Hydrogen Sulfide. The rich solution releases the absorbed sulfide under strong vacuum in the desorber column. Operating costs are reduced through utilization of an inherent heat source which is transferred indirectly via attendant reboilers. The Hydrogen Sulfide is transported by the vacuum pumps to the Claus Kiln and Reactor for combustion, reaction, and elemental Sulfur recovery. Regenerated potash solution is returned to the Scrubber.

  4. Alaska Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16,327 13,253 15,555 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of Natural Gas into

  5. Alaska Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -16,327 -13,253 -15,555 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Net Withdrawals of Natural Gas

  6. Georgia Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Georgia Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 123 366 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of Natural Gas into Underground

  7. Georgia Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Georgia Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -90 -339 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Net Withdrawals of Natural Gas from

  8. Idaho Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Idaho Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 112 395 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of Natural Gas into Underground

  9. Idaho Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Idaho Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -112 -395 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Net Withdrawals of Natural Gas from Underground

  10. South Carolina Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) South Carolina Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 48 80 70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of Natural Gas

  11. Operating experience review of an INL gas monitoring system

    SciTech Connect (OSTI)

    Cadwallader, Lee C.; DeWall, K. G.; Herring, J. S.

    2015-03-12

    This article describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored in the lab room are hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and both actual and unwanted alarms are described. The calibration session time durations are described. In addition, some simple calculations are given to estimate the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

  12. Operating experience review of an INL gas monitoring system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cadwallader, Lee C.; DeWall, K. G.; Herring, J. S.

    2015-03-01

    This article describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored in the lab room are hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and both actual and unwanted alarms are described. The calibration session time durations are described. Some simple calculations are given to estimate the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

  13. Rhode Island Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of Natural Gas into Underground Storage

  14. Massachusetts Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Massachusetts Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's -174 -102 253 1970's -200 -96 -1,074 2,468 1,707 -2,185 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  15. Connecticut Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Connecticut Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 683 740 746 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of

  16. Connecticut Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Connecticut Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -242 501 1,271 1990's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Net Withdrawals of

  17. Delaware Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,274 1,500 179 1970's 391 189 255 2,012 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections

  18. Delaware Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's -294 -245 699 1970's 211 -189 -255 -549 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Net

  19. Rhode Island Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 97 243 137 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of

  20. Rhode Island Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -6 411 541 1990's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Net Withdrawals of Natural

  1. Strings of liquid beads for gas-liquid contact operations

    SciTech Connect (OSTI)

    Hattori, Kenji; Ishikawa, Mitsukuni; Mori, Y.H. . Dept. of Mechanical Engineering)

    1994-12-01

    Energy recovery from hot gases exhausted from power plants, garbage incineration facilities, and many industrial processes has been growing due to demands for saving the primary-energy consumption. A novel device for gas-liquid contact operations is proposed to feed a liquid onto wires (or threads) hanging down in a gas stream is proposed. The liquid disintegrates into beads strung on each wire at regular intervals; if the wire is moderately wettable, a thin film forms to sheathe the wire, thereby interconnecting the beads. Since the beads fall down slowly, which possibly renews the film flowing down even more slowly, a sufficient gas-liquid contact time is available even in a contactor with considerably limited height. An approximate calculation method is developed for predicting the variation in the temperature effectiveness for the liquid (the fractional approach of the liquid exit temperature to the gas inlet temperature) with the falling distance, assuming an applicability of strings-of-beads contactors to thermal energy recovery from hot gas streams.

  2. Dynamic gas flow during plasma operation in TMX-U

    SciTech Connect (OSTI)

    Pickles, W.L.; Carter, M.R.; Clower, C.A.; Drake, R.P.; Hunt, A.L.; Simonen, T.C.; Turner, W.C.

    1982-11-12

    Control of the neutral density outside of the plasma radius is essential for proper operation of the various plasma configurations in TMX-U. TMX-U excess-beam, stream-gun, gas-box, and beam-reflux gases are pumped internally in regions defined by 73/sup 0/ Ti-gettered liners and warm Ti-gettered plasma liners. The array of fast and slow ion gauges - a large TMX-U diagnostic - has been used to measure the dynamic pressure in many of the liner-defined regions on three time scales. The natural divertor action, or plasma pump effect, of mirror plasmas has been measured using the ion gauge diagnostics on a fast time scale during operation of TMX-U with ECRH start-up. Routine operation of TMX-U is enhanced by the ability to verify the effectiveness of gettering and to locate leaks using pressure data collected on the two slow time scales. A computer code, DYNAVAC 6, which treats TMX-U as a set of conductance-coupled regions with pumping and sources in each region, has been used to successfully model the overall gas dynamics during all phases of TMX-U operation.

  3. Field testing the Raman gas composition sensor for gas turbine operation

    SciTech Connect (OSTI)

    Buric, M.; Chorpening, B.; Mullem, J.; Ranalli, J.; Woodruff, S.

    2012-01-01

    A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class I Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 μm ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.

  4. Field Operations Program Activities Status Report

    SciTech Connect (OSTI)

    J. E. Francfort; D. V. O'Hara; L. A. Slezak

    1999-05-01

    The Field Operations Program is an electric vehicle testing and evaluation program sponsored by US Department of Energy and managed by the Idaho National Engineering and Environmental Laboratory. The Program's goals are to evaluate electric vehicles in real-world applications and environments, support electric vehicle technology advancement, develop infrastructure elements necessary to support significant electric vehicle use, support increased use of electric vehicles in federal fleets, and increase overall awareness and acceptance of electric vehicles. This report covers Program activities from fiscal year 1997 through mid-fiscal year 1999. The Field Operations Program succeeded the Site Operator Program, which ended in September 1996. Electric vehicle testing conducted by the Program includes baseline performance testing (EV America testing), accelerated reliability (life-cycle) testing, and fleet testing. The baseline performance parameters include accelerations, braking, range, energy efficiency, and charging time. The Program collects accelerated reliability and fleet operations data on electric vehicles operated by the Program's Qualified Vehicle Testing (QVT) partners. The Program's QVT partners have over 3 million miles of electric vehicle operating experience.

  5. Model operating permits for natural gas processing plants

    SciTech Connect (OSTI)

    Arend, C.

    1995-12-31

    Major sources as defined in Title V of the Clean Air Act Amendments of 1990 that are required to submit an operating permit application will need to: Evaluate their compliance status; Determine a strategic method of presenting the general and specific conditions of their Model Operating Permit (MOP); Maintain compliance with air quality regulations. A MOP is prepared to assist permitting agencies and affected facilities in the development of operating permits for a specific source category. This paper includes a brief discussion of example permit conditions that may be applicable to various types of Title V sources. A MOP for a generic natural gas processing plant is provided as an example. The MOP should include a general description of the production process and identify emission sources. The two primary elements that comprise a MOP are: Provisions of all existing state and/or local air permits; Identification of general and specific conditions for the Title V permit. The general provisions will include overall compliance with all Clean Air Act Titles. The specific provisions include monitoring, record keeping, and reporting. Although Title V MOPs are prepared on a case-by-case basis, this paper will provide a general guideline of the requirements for preparation of a MOP. Regulatory agencies have indicated that a MOP included in the Title V application will assist in preparation of the final permit provisions, minimize delays in securing a permit, and provide support during the public notification process.

  6. ,"Midwest Region Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:21 AM" "Back to Contents","Data 1: Total Underground Storage" ... Region Natural Gas in Underground Storage (Base Gas) (MMcf)","Midwest Region Natural Gas ...

  7. ,"West Virginia Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:59 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","West Virginia Natural Gas in ...

  8. ,"New York Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:48 AM" "Back to Contents","Data 1: Total Underground Storage" ... York Natural Gas in Underground Storage (Base Gas) (MMcf)","New York Natural Gas in ...

  9. ,"Mountain Region Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:22 AM" "Back to Contents","Data 1: Total Underground Storage" ... Region Natural Gas in Underground Storage (Base Gas) (MMcf)","Mountain Region Natural Gas ...

  10. ,"Pacific Region Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:26 AM" "Back to Contents","Data 1: Total Underground Storage" ... Region Natural Gas in Underground Storage (Base Gas) (MMcf)","Pacific Region Natural Gas ...

  11. ,"East Region Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:19 AM" "Back to Contents","Data 1: Total Underground Storage" ... Region Natural Gas in Underground Storage (Base Gas) (MMcf)","East Region Natural Gas in ...

  12. ,"New Mexico Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,"N5020NM2","N5070NM2","N5050NM2","N5060NM2" "Date","New Mexico Natural Gas Underground Storage Volume (MMcf)","New Mexico Natural Gas in Underground Storage (Base Gas) ...

  13. Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report

    SciTech Connect (OSTI)

    Francfort; Donald Karner; Roberta Brayer

    2006-09-01

    This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity.

  14. Unconventional oil and gas (UOG) development and operations release...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Oil and Natural Gas Goals The Administration has set a goal to reduce methane emissions from the oil and gas sector by 40-45 percent from 2012 levels by 2025. Achieving ...

  15. Gas-liquid separator and method of operation

    DOE Patents [OSTI]

    Soloveichik, Grigorii Lev; Whitt, David Brandon

    2009-07-14

    A system for gas-liquid separation in electrolysis processes is provided. The system includes a first compartment having a liquid carrier including a first gas therein and a second compartment having the liquid carrier including a second gas therein. The system also includes a gas-liquid separator fluidically coupled to the first and second compartments for separating the liquid carrier from the first and second gases.

  16. Systems acceptance and operability testing for rotary mode core sampling in flammable gas tanks

    SciTech Connect (OSTI)

    Corbett, J.E., Westinghouse Hanford

    1996-07-29

    This document provides instructions for the system acceptance and operability testing of the rotary mode core sampling system, modified for use in flammable gas tanks.

  17. ,"U.S. Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Underground Storage",6,"Monthly","72015","01151973" ,"Data 2","Change in Working Gas from Same Period Previous Year",2,"Monthly","72015","01151973" ,"Release...

  18. Operational Awareness Records and Activity Reports | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 18, 2012 Independent Activity Report, Lawrence Livermore National Laboratory - October 2012 Lawrence Livermore National Laboratory Site Lead Planning Activities HIAR...

  19. Compare All CBECS Activities: Natural Gas Use

    U.S. Energy Information Administration (EIA) Indexed Site

    call 202-586-8800. Natural Gas Consumption per Building by Building Type Inpatient health care buildings used by far the most natural gas per building. Figure showing natural...

  20. Independent Activity Report, Richland Operations Office - April 2011 |

    Office of Environmental Management (EM)

    Department of Energy Richland Operations Office - April 2011 Independent Activity Report, Richland Operations Office - April 2011 April 2011 Operational Awareness Review of the Hanford Sludge Treatment Project [HIAR-RL-2011-04-07] This Independent Activity Report documents operational awareness activities conducted by Office of Health, Safety and Security's Office of Safety and Emergency Management Evaluations between November 2010 and April 2011 at the Hanford Site Sludge Treatment Project.

  1. Lower 48 States Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    8,266,377 8,001,243 7,270,200 6,866,117 2011-2016 Base Gas 4,350,036 4,350,581 4,353,183 4,348,362 4,346,354 4,345,766 2011-2016 Working Gas 3,600,021 3,928,475 3,913,194 ...

  2. Internal combustion engine for natural gas compressor operation

    DOE Patents [OSTI]

    Hagen, Christopher L.; Babbitt, Guy; Turner, Christopher; Echter, Nick; Weyer-Geigel, Kristina

    2016-04-19

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a system for compressing a gas comprises a reciprocating internal combustion engine including at least one piston-cylinder assembly comprising a piston configured to travel in a cylinder and to compress gas in the cylinder in multiple compression stages. The system can further comprise a first pressure tank in fluid communication with the piston-cylinder assembly to receive compressed gas from the piston-cylinder assembly until the first pressure tank reaches a predetermined pressure, and a second pressure tank in fluid communication with the piston-cylinder assembly and the first pressure tank. The second pressure tank can be configured to receive compressed gas from the piston-cylinder assembly until the second pressure tank reaches a predetermined pressure. When the first and second pressure tanks have reached the predetermined pressures, the first pressure tank can be configured to supply gas to the piston-cylinder assembly, and the piston can be configured to compress the gas supplied by the first pressure tank such that the compressed gas flows into the second pressure tank.

  3. Natural Gas Transportation - Infrastructure Issues and Operational Trends

    Reports and Publications (EIA)

    2001-01-01

    This report examines how well the current national natural gas pipeline network has been able to handle today's market demand for natural gas. In addition, it identifies those areas of the country where pipeline utilization is continuing to grow rapidly and where new pipeline capacity is needed or is planned over the next several years.

  4. AGA Producing Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    1,689,895 1,688,206 1,865,696 2,041,963 2,126,724 2,176,332 1994-2015 Base Gas 1,087,170 1,084,178 1,084,148 1,086,406 1,088,335 1,088,465 1994-2015 Working Gas 602,725 604,028...

  5. Midwest Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    375 2,180,135 2,319,830 2,461,785 2,582,258 2,578,619 2014-2015 Base Gas 1,496,379 1,496,378 1,488,687 1,489,658 1,487,866 1,487,894 2014-2015 Working Gas 564,995 683,757 831,144...

  6. AGA Producing Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    1,863,519 1,917,665 2,042,184 2,206,064 2,200,189 2,159,737 1994-2014 Base Gas 1,083,436 1,087,842 1,089,725 1,089,543 1,089,660 1,089,228 1994-2014 Working Gas 780,084 829,824...

  7. South Central Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    225 2,109,107 2,154,799 2,265,050 2,381,950 2,393,620 2014-2015 Base Gas 1,058,973 1,059,103 1,058,987 1,058,721 1,060,652 1,061,199 2014-2015 Working Gas 1,002,252 1,050,004...

  8. Next Generation Natural Gas Vehicle Activity: Natural Gas Engine and Vehicle Research & Development (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2003-09-01

    This fact sheet describes the status of the Next Generation Natural Gas Vehicle (NGNGV) activity, including goals, R&D progress, NGV implementation, and the transition to hydrogen.

  9. U.S. Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming ... Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 Mar-16 View History Natural Gas in Storage 8,317,848 ...

  10. Lower 48 States Underground Natural Gas Storage - All Operators

    Gasoline and Diesel Fuel Update (EIA)

    5,996,949 5,804,144 6,125,877 6,622,606 6,984,761 7,267,318 2011-2015 Base Gas 4,345,006 4,345,836 4,345,412 4,347,895 4,356,082 4,357,143 2011-2015 Working Gas 1,651,943 1,458,308...

  11. New Mexico Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    74,320 74,935 73,367 71,954 73,611 74,781 1990-2016 Base Gas 29,362 29,362 29,362 29,362 29,362 29,362 1990-2016 Working Gas 44,957 45,573 44,005 42,592 44,249 45,419 1990-2016 Net ...

  12. Effects of Globally Waste Disturbing Activities on Gas Generation, Retention, and Release in Hanford Waste Tanks

    SciTech Connect (OSTI)

    Stewart, Charles W.; Fountain, Matthew S.; Huckaby, James L.; Mahoney, Lenna A.; Meyer, Perry A.; Wells, Beric E.

    2005-08-02

    Various operations are authorized in Hanford single- and double-shell tanks that disturb all or a large fraction of the waste. These globally waste-disturbing activities have the potential to release a large fraction of the retained flammable gas and to affect future gas generation, retention, and release behavior. This report presents analyses of the expected flammable gas release mechanisms and the potential release rates and volumes resulting from these activities. The background of the flammable gas safety issue at Hanford is summarized, as is the current understanding of gas generation, retention, and release phenomena. Considerations for gas monitoring and assessment of the potential for changes in tank classification and steady-state flammability are given.

  13. Operational Awareness Records and Activity Reports | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 27, 2014 Independent Oversight Activity Report, Pacific Northwest National Laboratory - January 2014 PNNL Corrective Actions from the Independent Oversight Review of the...

  14. Operational Awareness Records and Activity Reports | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 25, 2011 Independent Activity Report, Nevada National Security Site - February 2011 Nevada National Security Site Defense Nuclear Facility Safety Board Review...

  15. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOE Patents [OSTI]

    Zafred, P.R.; Dederer, J.T.; Gillett, J.E.; Basel, R.A.; Antenucci, A.B.

    1996-11-12

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas and pressurized fuel gas into modules containing fuel cells, where the modules are each enclosed by a module housing surrounded by an axially elongated pressure vessel, and where there is a purge gas volume between the module housing and pressure vessel; passing pressurized purge gas through the purge gas volume to dilute any unreacted fuel gas from the modules; and passing exhaust gas and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transportable when the pressure vessel is horizontally disposed, providing a low center of gravity. 11 figs.

  16. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOE Patents [OSTI]

    Zafred, Paolo R.; Dederer, Jeffrey T.; Gillett, James E.; Basel, Richard A.; Antenucci, Annette B.

    1996-01-01

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas, (O) and pressurized fuel gas, (F), into fuel cell modules, (10 and 12), containing fuel cells, where the modules are each enclosed by a module housing (18), surrounded by an axially elongated pressure vessel (64), where there is a purge gas volume, (62), between the module housing and pressure vessel; passing pressurized purge gas, (P), through the purge gas volume, (62), to dilute any unreacted fuel gas from the modules; and passing exhaust gas, (82), and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transpatable when the pressure vessel (64) is horizontally disposed, providing a low center of gravity.

  17. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2003-10-01

    This report documents work performed in the fourth quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: second field test; test data analysis for the first field test; operational optimization plans.

  18. West Virginia Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    91,056 355,390 343,819 357,455 384,746 410,685 1990-2016 Base Gas 270,042 269,935 270,125 269,945 269,945 270,137 1990-2016 Working Gas 121,014 85,455 73,694 87,511 114,801 140,547 1990-2016 Net Withdrawals 62,059 35,666 11,571 -14,238 -27,290 -25,941 1990-2016 Injections 734 2,318 4,083 17,376 27,487 27,482 1990-2016 Withdrawals 62,793 37,985 15,654 3,137 197 1,542 1990-2016 Change in Working Gas from Same Period Previous Year Volume 21,210 26,758 34,404 25,047 18,992 19,873 1990-2016 Percent

  19. Mountain Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    582,516 569,950 570,852 578,589 603,180 623,304 2014-2016 Base Gas 426,151 426,075 426,050 426,104 426,133 426,165 2014-2016 Working Gas 156,365 143,875 144,803 152,484 177,047 197,139 2014-2016 Net Withdrawals 29,411 12,562 -910 -7,610 -24,696 -20,024 2014-2016 Injections 4,057 9,286 16,189 15,107 27,298 22,765 2014-2016 Withdrawals 33,468 21,849 15,279 7,497 2,602 2,741 2014-2016 Change in Working Gas from Same Period Previous Year Volume 25,398 27,993 31,462 36,352 41,855 42,528 2014-2016

  20. Pacific Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    535,527 521,897 525,124 546,324 565,012 575,122 2014-2016 Base Gas 259,331 259,331 259,331 259,331 259,331 259,331 2014-2016 Working Gas 276,196 262,566 265,792 286,993 305,681 315,790 2014-2016 Net Withdrawals 43,542 13,538 -3,232 -21,206 -22,310 -10,113 2014-2016 Injections 7,399 8,534 16,892 23,819 27,387 15,868 2014-2016 Withdrawals 50,941 22,072 13,660 2,613 5,078 5,755 2014-2016 Change in Working Gas from Same Period Previous Year Volume 219 -10,585 -9,885 -6,564 -19,775 -20,204 2014-2016

  1. New Claus tail-gas process proved in German operation

    SciTech Connect (OSTI)

    Kettner, R.; Liermann, N.

    1988-01-11

    A process for removing sulfur components from Claus-plant tail gases increases sulfur-recovery rates to 99.5%. It has been in use for more than 4 years. In December 1983, a tail-gas cleaning unit was started up for the sulfur-recovery plants of the Nordeutsche Erdgas Aufbereitungsgesellschaft (NEAG) natural-gas treating complex at Voigten, West Germany. NEAG, a joint venture of Exxon, Shell, and Mobil Oil, desulfurizes 7.7 million normal cu m/day (approximately 271.2 million cfd) of sour gas in three plants. Up to 1,050 tons/day of elemental sulfur are produced (Fig. 1). Mobil Oil AG developed the process which has been dubbed the Mobil direct-oxidation process (Modop).

  2. Activation of catalysts for synthesizing methanol from synthesis gas

    DOE Patents [OSTI]

    Blum, David B.; Gelbein, Abraham P.

    1985-01-01

    A method for activating a methanol synthesis catalyst is disclosed. In this method, the catalyst is slurried in an inert liquid and is activated by a reducing gas stream. The activation step occurs in-situ. That is, it is conducted in the same reactor as is the subsequent step of synthesizing methanol from a methanol gas stream catalyzed by the activated catalyst still dispersed in a slurry.

  3. New Mexico Air Operating Permit List of Trivial Activities |...

    Open Energy Info (EERE)

    Operating Permit List of Trivial Activities Author New Mexico Environment Department - Air Quality Bureau Published New Mexico Environment Department - Air Quality Bureau, 2008...

  4. East Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals 7,271 12,466 45,095 85,288 232,321 162,639 2014-2016 Change in Working Gas from Same Period Previous Year Volume 53,666 26,264 82,451 113,777 93,945 141,451 2014-2016 ...

  5. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-03-01

    This report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes a number of potential enhancements to the existing natural gas compression infrastructure that have been identified and qualitatively demonstrated in tests on three different integral engine/compressors in natural gas transmission service.

  6. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-08-01

    This report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infracture''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes a number of potential enhancements to the existing natural gas compression infrastructure that have been identified and tested on four different integral engine/compressors in natural gas transmission service.

  7. Independent Activity Report, Richland Operations Office - June 2011 |

    Office of Environmental Management (EM)

    Department of Energy June 2011 Independent Activity Report, Richland Operations Office - June 2011 June 2011 Hanford Sludge Treatment Project Review [HIAR-RL-2011-06-17] This Independent Activity Report documents an operational awareness activity conducted by Office of Health, Safety and Security's Office of Safety and Emergency Management Evaluations June 13-17, 2011, at the Sludge Treatment Project at the Department of Energy's (DOE) Hanford Site. The activity consisted of touring project

  8. A Guidance Document for Kentucky's Oil and Gas Operators

    SciTech Connect (OSTI)

    Bender, Rick

    2002-03-18

    The accompanying report, manual and assimilated data represent the initial preparation for submission of an Application for Primacy under the Class II Underground Injection Control (UIC) program on behalf of the Commonwealth of Kentucky. The purpose of this study was to identify deficiencies in Kentucky law and regulation that would prevent the Kentucky Division of Oil and Gas from receiving approval of primacy of the UIC program, currently under control of the United States Environmental Protection Agency (EPA) in Atlanta, Georgia.

  9. New York Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    202,549 188,208 183,548 185,119 196,365 203,711 1990-2016 Base Gas 114,956 114,913 114,853 114,603 114,779 114,826 1990-2016 Working Gas 87,594 73,296 68,695 70,516 81,586 88,885 1990-2016 Net Withdrawals 21,931 14,573 4,660 -1,571 -11,246 -7,422 1990-2016 Injections 351 2,066 5,092 7,990 11,932 9,211 1990-2016 Withdrawals 22,282 16,639 9,752 6,419 686 1,789 1990-2016 Change in Working Gas from Same Period Previous Year Volume 11,336 14,144 23,322 20,310 18,553 10,564 1990-2016 Percent 14.9 23.9

  10. Drilling and operating oil, gas, and geothermal wells in an H/sub 2/S environment

    SciTech Connect (OSTI)

    Dosch, M.W.; Hodgson, S.F.

    1981-01-01

    The following subjects are covered: facts about hydrogen sulfides; drilling and operating oil, gas, and geothermal wells; detection devices and protective equipment; hazard levels and safety procedures; first aid; and H/sub 2/S in California oil, gas, and geothermal fields. (MHR)

  11. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTNG NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalle; Ralph E. Harris; Gary D. Bourn

    2003-07-01

    This report documents work performed in the third quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: first field test; test data analysis.

  12. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-01-01

    This report documents work performed in the fifth quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: completion of analysis of data from first visit to second site; preparation for follow-up testing.

  13. Operation of cover-gas system during SLSF tests. [LMFBR

    SciTech Connect (OSTI)

    Braid, T.H.; Harper, H.A.; Wilson, R.E.

    1982-01-01

    During two tests in the Sodium Loop Safety Facility (W1 and P4), high resolution gamma-ray spectroscopy was used to detect pin failure by observing radioactive fission product isotopes of Kr and Xe from exposed fuel. A continuous stream of argon cover gas from the in-pile loop was transferred to a shielded sample volume. Two germanium crystal spectrometers continuously recorded spectra of gamma rays in the energy range 80 keV to approx. 2.7 MeV. A very wide range of signal strength was accommodated without saturation by dilution of the sample, reduction of the sample chamber volume and insertion of detecter collimators. The cover gas system provided an unambiguous indication of fuel failure during a series of boiling tests in W1. In P4, spectra were recorded after a power transient that released molten fuel and from a mass of exposed fuel at a range of reactor power levels. Gamma rays were observed from isotopes of Kr and Xe with half-lives from 3.8 m to 5.2 d.

  14. Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs

    Broader source: Energy.gov [DOE]

    An award-winning compressor design that decreases the energy required to compress and transport natural gas, lowers operating costs, improves efficiencies and reduces the environmental footprint of well site operations has been developed by a Massachusetts-based company with support from the U.S. Department of Energy

  15. Methodology for optimizing the development and operation of gas storage fields

    SciTech Connect (OSTI)

    Mercer, J.C.; Ammer, J.R.; Mroz, T.H.

    1995-04-01

    The Morgantown Energy Technology Center is pursuing the development of a methodology that uses geologic modeling and reservoir simulation for optimizing the development and operation of gas storage fields. Several Cooperative Research and Development Agreements (CRADAs) will serve as the vehicle to implement this product. CRADAs have been signed with National Fuel Gas and Equitrans, Inc. A geologic model is currently being developed for the Equitrans CRADA. Results from the CRADA with National Fuel Gas are discussed here. The first phase of the CRADA, based on original well data, was completed last year and reported at the 1993 Natural Gas RD&D Contractors Review Meeting. Phase 2 analysis was completed based on additional core and geophysical well log data obtained during a deepening/relogging program conducted by the storage operator. Good matches, within 10 percent, of wellhead pressure were obtained using a numerical simulator to history match 2 1/2 injection withdrawal cycles.

  16. Independent Activity Report, Richland Operations Office - April 2013 |

    Office of Environmental Management (EM)

    Department of Energy April 2011 Independent Activity Report, Nevada National Security Site - April 2011 April 2011 Nevada National Security Site Operational Readiness Review for the Joint Actinide Shock Physics Experimental Research Facility Restart Pre-visit [HIAR-NNSS-2011-04-28] This Independent Activity Report documents an oversight activity conducted by Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations April 25-28, 2011, at the Nevada

  17. Hindered amine development and operating experience at Quirk Creek Gas Plant

    SciTech Connect (OSTI)

    Smart, P.; Devenny, I. [Imperial Oil Resources Ltd., Calgary, Alberta (Canada); Rendall, A. [Nalco/Exxon Energy Chemicals, Calgary, Alberta (Canada)

    1997-12-31

    The Imperial Oil Resources Limited Quirk Creek gas plant has a significant natural gas treating challenge. The natural gas feed contains H{sub 2}S, CO{sub 2}, carbonyl sulfide, mercaptans and elemental sulfur. The trace sulfur components are difficult to remove with conventional solvents. Over its 26 year history, three different solvents have been used. The latest solvent, a hybrid of a hindered amine and a physical solvent, has been operating for over two years, with better than expected performance. This high capacity solvent has lowered operating costs by over $500,000/yr by reducing solids formation. The development work, including pilot testing at Quirk Creek, and the operating history will be reviewed.

  18. Bi-gas pilot plant operation. Technical progress report, 1 November-30 November 1980

    SciTech Connect (OSTI)

    1980-01-01

    Test G-14A was completed; Test G-15 was initiated and also completed. During the latter part of G-14A, solids feed and pressure control remained stable but problems in the slag removal and spray drying areas limited further completion of objectives. Test G-15 also had very stable solids feed but problems with the gas washer and slag tap burner interrupted testing. Accomplishments during operation were: control of Stage I temperature with fuel gas flow; operation at reduced fuel gas rates to the A and C char burners; operation with three char burners of the new design; and collection of material balance data. The BI-GAS staged concept of gasification was developed by Bituminous Coal Research primarily to maximize the yield of methane as the coal is devolitized by the hot, hydrogen rich gas in Stage II. At present, the major developmental effort is concentrated on gasification. Current goals are to assess the viability of the process from an operating and cost standpoint, determine possible improvements, and obtain design data for a full scale plant.

  19. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-10-01

    This quarterly report documents work performed under Tasks 10 through 14 of the project entitled: Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report documents the second series of tests performed on a GMW10 engine/compressor after modifications to add high pressure Fuel and a Turbocharger. It also presents baseline testing for air balance investigations and initial simulation modeling of the air manifold for a Cooper GMVH6.

  20. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-07-01

    This quarterly report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report documents the second series of tests performed on a turbocharged HBA-6T engine/compressor. It also presents baseline testing for air balance investigations and initial simulation modeling of the air manifold for a Cooper GMVH6.

  1. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris

    2003-01-01

    This report documents work performed in the first quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: preparation and submission of the Research Management Plan; preparation and submission of the Technology Status Assessment; attendance at the Project Kick-Off meeting at DOE-NETL; formation of the Industry Advisory Committee (IAC) for the project; preparation of the Test Plan; acquisition and assembly of the data acquisition system (DAS).

  2. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley

    2003-04-01

    This report documents work performed in the second quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: preparation and submission of the Technology Status Assessment; formation of the Industry Advisory Committee (IAC) for the project; attendance at the first IAC meeting; preparation of the Test Plan; completion of the data acquisition system (DAS); plans for the first field test.

  3. Final report on evaluation of cyclocraft support of oil and gas operations in wetland areas

    SciTech Connect (OSTI)

    Eggington, W.J.; Stevens, P.M.; John, C.J.; Harder, B.J.; Lindstedt, D.M.

    1994-10-01

    The cyclocraft is a proven hybrid aircraft, capable of VTOL, lifting heavy and bulky loads, highly controllable, having high safety characteristics and low operating costs. Mission Research Corporation (MRC), under Department of Energy sponsorship, is evaluating the potential use of cyclocraft in the transport of drill rigs, mud, pipes and other materials and equipment, in a cost effective and environmentally safe manner, to support oil and gas drilling, production, and transportation operations in wetland areas. Based upon the results of an earlier parametric study, a cyclocraft design, having a payload capacity of 45 tons and designated H.1 Cyclocraft, was selected for further study, including the preparation of a preliminary design and a development plan, and the determination of operating costs. This report contains all of the results derived from the program to evaluate the use of cyclocraft in the support of oil and gas drilling and production operations in wetland areas.

  4. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    SciTech Connect (OSTI)

    Rachel Henderson

    2007-09-30

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with

  5. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Ford A. Phillips; Danny M. Deffenbaugh

    2006-05-31

    This project has documented and demonstrated the feasibility of technologies and operational choices for companies who operate the large installed fleet of integral engine compressors in pipeline service. Continued operations of this fleet is required to meet the projected growth of the U.S. gas market. Applying project results will meet the goals of the DOE-NETL Natural Gas Infrastructure program to enhance integrity, extend life, improve efficiency, and increase capacity, while managing NOx emissions. These benefits will translate into lower cost, more reliable gas transmission, and options for increasing deliverability from the existing infrastructure on high demand days. The power cylinders on large bore slow-speed integral engine/compressors do not in general combust equally. Variations in cylinder pressure between power cylinders occur cycle-to-cycle. These variations affect both individual cylinder performance and unit average performance. The magnitude of the variations in power cylinder combustion is dependent on a variety of parameters, including air/fuel ratio. Large variations in cylinder performance and peak firing pressure can lead to detonation and misfires, both of which can be damaging to the unit. Reducing the variation in combustion pressure, and moving the high and low performing cylinders closer to the mean is the goal of engine balancing. The benefit of improving the state of the engine ''balance'' is a small reduction in heat rate and a significant reduction in both crankshaft strain and emissions. A new method invented during the course of this project is combustion pressure ratio (CPR) balancing. This method is more effective than current methods because it naturally accounts for differences in compression pressure, which results from cylinder-to-cylinder differences in the amount of air flowing through the inlet ports and trapped at port closure. It also helps avoid compensation for low compression pressure by the addition of excess fuel

  6. Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities

    SciTech Connect (OSTI)

    Bent, Jimmy

    2014-05-31

    In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

  7. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTNG NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-01-28

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey test performed on an HBA-6 engine/compressor installed at Duke Energy's Bedford Compressor Station. This is one of several tests planned, which will emphasize identification and reduction of compressor losses. Additionally, this report presents a methodology for distinguishing losses in compressor attributable to valves, irreversibility in the compression process, and the attached piping (installation losses); it illustrates the methodology with data from the survey test. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

  8. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-10-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first summarizes key results from survey site tests performed on an HBA-6 installed at Duke Energy's Bedford compressor station, and on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. The report then presents results of design analysis performed on the Bedford HBA-6 to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

  9. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2006-01-24

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report presents results of design analysis performed on the TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

  10. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-07-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey site test performed on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. This test completes planned screening efforts designed to guide selection of one or more units for design analysis and testing with emphasis on identification and reduction of compressor losses. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

  11. Identifying emerging smart grid impacts to upstream and midstream natural gas operations.

    SciTech Connect (OSTI)

    McIntyre, Annie

    2010-09-01

    The Smart Grid has come to describe a next-generation electrical power system that is typified by the increased use of communications and information technology in the generation, delivery and consumption of electrical energy. Much of the present Smart Grid analysis focuses on utility and consumer interaction. i.e. smart appliances, home automation systems, rate structures, consumer demand response, etc. An identified need is to assess the upstream and midstream operations of natural gas as a result of the smart grid. The nature of Smart Grid, including the demand response and role of information, may require changes in upstream and midstream natural gas operations to ensure availability and efficiency. Utility reliance on natural gas will continue and likely increase, given the backup requirements for intermittent renewable energy sources. Efficient generation and delivery of electricity on Smart Grid could affect how natural gas is utilized. Things that we already know about Smart Grid are: (1) The role of information and data integrity is increasingly important. (2) Smart Grid includes a fully distributed system with two-way communication. (3) Smart Grid, a complex network, may change the way energy is supplied, stored, and in demand. (4) Smart Grid has evolved through consumer driven decisions. (5) Smart Grid and the US critical infrastructure will include many intermittent renewables.

  12. Fire protection considerations for the design and operation of liquefied petroleum gas (LPG) storage facilities

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This standard addresses the design, operation, and maintenance of LPG storage facilities from the standpoint of prevention and control of releases, fire-protection design, and fire-control measures, as well as the history of LPG storage facility failure, facility design philosophy, operating and maintenance procedures, and various fire-protection and firefighting approaches and presentations. The storage facilities covered are LPG installations (storage vessels and associated loading/unloading/transfer systems) at marine and pipeline terminals, natural gas processing plants, refineries, petrochemical plants, and tank farms.

  13. ,"Rhode Island Natural Gas Underground Storage Injections All Operators (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Monthly","12/1996" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016"

  14. Special considerations on operating a fuel cell power plant using natural gas with marginal heating value

    SciTech Connect (OSTI)

    Moses, L. Ng; Chien-Liang Lin; Ya-Tang Cheng

    1996-12-31

    In realizing new power generation technologies in Taiwan, a phosphoric acid fuel cell power plant (model PC2513, ONSI Corporation) has been installed in the premises of the Power Research Institute of the Taiwan Power Company in Taipei County of Taiwan. The pipeline gas supplying to the site of this power plant has a high percentage of carbon dioxide and thus a slightly lower heating value than that specified by the manufacturer. Because of the lowering of heating value of input gas, the highest Output power from the power plant is understandably less than the rated power of 200 kW designed. Further, the transient response of the power plant as interrupted from the Grid is also affected. Since this gas is also the pipeline gas supplying to the heavily populated Taipei Municipal area, it is conceivable that the success of the operations of fuel cells using this fuel is of vital importance to the promotion of the use of this power generation technology in Taiwan. Hence, experiments were set up to assess the feasibility of this fuel cell power plant using the existing pipeline gas in this part of Taiwan where fuel cells would most likely find useful.

  15. Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants

    SciTech Connect (OSTI)

    Lebedev, A. S.; Kovalevskii, V. P.; Getmanov, E. A.; Ermaikina, N. A.

    2008-07-15

    Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

  16. Sensitivity of natural gas HCCI combustion to fuel and operating parameters using detailed kinetic modeling

    SciTech Connect (OSTI)

    Aceves, S; Dibble, R; Flowers, D; Smith, J R; Westbrook, C K

    1999-07-19

    This paper uses the HCT (Hydrodynamics, Chemistry and Transport) chemical kinetics code to analyze natural gas HCCI combustion in an engine. The HCT code has been modified to better represent the conditions existing inside an engine, including a wall heat transfer correlation. Combustion control and low power output per displacement remain as two of the biggest challenges to obtaining satisfactory performance out of an HCCI engine, and these are addressed in this paper. The paper considers the effect of natural gas composition on HCCI combustion, and then explores three control strategies for HCCI engines: DME (dimethyl ether) addition, intake heating and hot EGR addition. The results show that HCCI combustion is sensitive to natural gas composition, and an active control may be required to compensate for possible changes in composition. The three control strategies being considered have a significant effect in changing the combustion parameters for the engine, and should be able to control HCCI combustion.

  17. THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION

    SciTech Connect (OSTI)

    Shassere, Benjamin; West, David L; Abdelaziz, Omar; Evans III, Boyd Mccutchen

    2012-01-01

    An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

  18. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    SciTech Connect (OSTI)

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-12-15

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 {mu}F, 50 to 200 nH, and 1 to 3 kV, respectively.

  19. High pressure operation of tubular solid oxide fuel cells and their intergration with gas turbines

    SciTech Connect (OSTI)

    Haynes, C.; Wepfer, W.J.

    1996-12-31

    Fossil fuels continue to be used at a rate greater than that of their natural formation, and the current byproducts from their use are believed to have a detrimental effect on the environment (e.g. global warming). There is thus a significant impetus to have cleaner, more efficient fuel consumption alternatives. Recent progress has led to renewed vigor in the development of fuel cell technology, which has been shown to be capable of producing high efficiencies with relatively benign exhaust products. The tubular solid oxide fuel cell developed by Westinghouse Electric Corporation has shown significant promise. Modeling efforts have been and are underway to optimize and better understand this fuel cell technology. Thus far, the bulk of modeling efforts has been for operation at atmospheric pressure. There is now interest in developing high-efficiency integrated gas turbine/solid oxide fuel cell systems. Such operation of fuel cells would obviously occur at higher pressures. The fuel cells have been successfully modeled under high pressure operation and further investigated as integrated components of an open loop gas turbine cycle.

  20. The Office of Fossil Energy Natural Gas Regulatory Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 24, 2014 The Office of Fossil Energy Natural Gas Regulatory Activities U.S. Department of Energy Attention: Larine Moore, Docket Room Manager Docket Room FE-34 P.O. Box 44375 Washington, DC 20026-4375 Re: Cheniere Marketing, LLC DOE Semi-annual Report DOE/FE Order No. 3164 FE Docket No. 12-99-LNG Dear: Ms. Moore: Pursuant to the above referenced Order, Corpus Christi Liquefaction, LLC ("Corpus Christi") herein submits this semi-annual progress report for the period of September

  1. The Office of Fossil Energy Natural Gas Regulatory Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 25, 2014 The Office of Fossil Energy Natural Gas Regulatory Activities U.S. Department of Energy Attention: Larine Moore, Docket Room Manager Docket Room FE-34 P.O. Box 44375 Washington, DC 20026-4375 Re: Cheniere Marketing, LLC DOE Semi-annual Report DOE/FE Order No. 3164 FE Docket No. 12-99-LNG Dear: Ms. Moore: Pursuant to the above referenced Order, Corpus Christi Liquefaction, LLC ("Corpus Christi") herein submits this semi- annual progress report for the period of March

  2. The Office of Fossil Energy Natural Gas Regulatory Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 The Office of Fossil Energy Natural Gas Regulatory Activities U.S. Department of Energy Attention: Larine Moore, Docket Room Manager Docket Room FE-34 P.O. Box 44375 Washington, DC 20026-4375 Re: Cheniere Marketing, LLC DOE Semi-Annual Report DOE/FE Order No. 3164 FE Docket No. 12-99-LNG Dear: Ms. Moore: Pursuant to the above referenced Order, Corpus Christi Liquefaction, LLC ("Corpus Christi") herein submits this semi-annual progress report for the period of September 1 - February

  3. The Office of Fossil Energy Natural Gas Regulatory Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3, 2015 The Office of Fossil Energy Natural Gas Regulatory Activities U.S. Department of Energy Attention: Larine Moore, Docket Room Manager Docket Room FE-34 P.0. Box 44375 Washington, DC 20026-4375 Re: Cheniere Marketing, LLC DOE Semi-Annual Report DOE FE Order Nos. 3164 and 3638 FE Docket Nos. 12-99-LNG and 12-97-LNG Dear Ms. Moore: Pursuant to the above-referenced Order, Corpus Christi Liquefaction, LLC ("Corpus Christi") herein submits this semi- annual progress report for the

  4. Selection and preparation of activated carbon for fuel gas storage

    DOE Patents [OSTI]

    Schwarz, James A.; Noh, Joong S.; Agarwal, Rajiv K.

    1990-10-02

    Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

  5. International oil and gas exploration and development activities

    SciTech Connect (OSTI)

    Not Available

    1990-10-29

    This report is part of an ongoing series of quarterly publications that monitors discoveries of oil and natural gas in foreign countries and provides an analysis of the reserve additions that result. The report is prepared by the Energy Information Administration (EIA) of the US Department of Energy (DOE) under the Foreign Energy Supply Assessment Program (FESAP). It presents a summary of discoveries and reserve additions that result from recent international exploration and development activities. It is intended for use by petroleum industry analysts, various government agencies, and political leaders in the development, implementation, and evaluation of energy plans, policy, and legislation. 25 refs., 8 figs., 4 tabs.

  6. Computer simulation of nonstationary thermal fields in design and operation of northern oil and gas fields

    SciTech Connect (OSTI)

    Vaganova, N. A.; Filimonov, M. Yu.

    2015-11-30

    A mathematical model, numerical algorithm and program code for simulation and long-term forecasting of changes in permafrost as a result of operation of a multiple well pad of northern oil and gas field are presented. In the model the most significant climatic and physical factors are taken into account such as solar radiation, determined by specific geographical location, heterogeneous structure of frozen soil, thermal stabilization of soil, possible insulation of the objects, seasonal fluctuations in air temperature, and freezing and thawing of the upper soil layer. Results of computing are presented.

  7. ,"U.S. Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Underground Natural Gas Storage - All Operators",3,"Annual",2015,"06/30/1935" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File Name:","ng_stor_sum_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_stor_sum_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help,

  8. Ten Years of Compressed Natural Gas (CNG) Operations at SunLine Transit Agency: April 2003--December 2004

    SciTech Connect (OSTI)

    Chandler, K.

    2006-01-01

    This report focuses on the lesson learned at the SunLine Transit Agency after it converted in 1994 its entire operating transit bus fleet to compressed natural gas (CNG).

  9. 90 MW build/own/operate gas turbine combined cycle cogeneration project with sludge drying plant

    SciTech Connect (OSTI)

    Schroppe, J.T.

    1986-04-01

    This paper will discuss some of the unique aspects of a build/own/operate cogeneration project for an oil refinery in which Foster Wheeler is involved. The organization is constructing a 90 MW plant that will supply 55 MW and 160,000 lb/hr of 600 psi, 700F steam to the Tosco Corporation's 130,000 bd Avon Oil Refinery in Martinez, California. (The refinery is located about 45 miles northeast of San Francisco.) Surplus power production will be sold to the local utility, Pacific Gas and Electric Co. (PG and E). Many of the aspects of this project took on a different perspective, since the contractor would build, own and operate the plant.

  10. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-01-01

    This quarterly report documents work performed under Tasks 10 through 14 of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents tests performed on a KVG103 engine/compressor installed at Duke's Thomaston Compressor Station. This is the first series of tests performed on a four-stroke engine under this program. Additionally, this report presents results, which complete a comparison of performance before and after modification to install High Pressure Fuel Injection and a Turbocharger on a GMW10 at Williams Station 60. Quarterly Reports 7 and 8 already presented detailed data from tests before and after this modification, but the final quantitative comparison required some further analysis, which is presented in Section 5 of this report. The report further presents results of detailed geometrical measurements and flow bench testing performed on the cylinders and manifolds of the Laboratory Cooper GMVH6 engine being employed for two-stroke engine air balance investigations. These measurements are required to enhance the detailed accuracy in modeling the dynamic interaction of air manifold, exhaust manifold, and in-cylinder fuel-air balance.

  11. Field Laboratory in the Osage Reservation -- Determination of the Status of Oil and Gas Operations: Task 1. Development of Survey Procedures and Protocols

    SciTech Connect (OSTI)

    Carroll, Herbert B.; Johnson, William I.

    1999-04-27

    Procedures and protocols were developed for the determination of the status of oil, gas, and other mineral operations on the Osage Mineral Reservation Estate. The strategy for surveying Osage County, Oklahoma, was developed and then tested in the field. Two Osage Tribal Council members and two Native American college students (who are members of the Osage Tribe) were trained in the field as a test of the procedures and protocols developed in Task 1. Active and inactive surface mining operations, industrial sites, and hydrocarbon-producing fields were located on maps of the county, which was divided into four more or less equal areas for future investigation. Field testing of the procedures, protocols, and training was successful. No significant damage was found at petroleum production operations in a relatively new production operation and in a mature waterflood operation.

  12. CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES

    SciTech Connect (OSTI)

    Steve Holditch; Emrys Jones

    2003-01-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During the first six months of operation, the primary activities of the JIP were to conduct and plan Workshops, which were as follows: (1) Data Collection Workshop--March 2002 (2) Drilling, Coring and Core Analyses Workshop--May 2002 (3) Modeling, Measurement and Sensors Workshop--May 2002.

  13. Technical, economic, and environmental impact study of converting Uzbekistan transportation fleets to natural gas operation. Export trade information

    SciTech Connect (OSTI)

    1997-04-30

    This study, conducted by Radian International, was funded by the U.S. Trade and Development Agency. The report assesses the feasibility (technical, economic and environmental) of converting the Uzbek transportation fleets to natural gas operation. The study focuses on the conversion of high fuel use vehicles and locomotives to liquefied natural gas (LNG) and the conversion of moderate fuel use veicles to compressed natural gas (CNG). The report is divided into the following sections: Executive Summary; (1.0) Introduction; (2.0) Country Background; (3.0) Characterization of Uzbek Transportation Fuels; (4.0) Uzbek Vehicle and Locomotive Fleet Characterization; (5.0) Uzbek Natural Gas Vehicle Conversion Shops; (6.0) Uzbek Natural Gas Infrastructure; (7.0) Liquefied Natural Gas (LNG) for Vehicular Fuel in Uzbekistan; (8.0) Economic Feasibility Study; (9.0) Environmental Impact Analysis; References; Appendices A - S.

  14. Independent Activity Report, Richland Operations Office- June 2011

    Broader source: Energy.gov [DOE]

    Hanford Cold Vacuum Drying Facility, Multi-Canister Overpack, Operational Proficiency Demonstration [HIAR-RL-2011-06-22

  15. Calculators for Estimating Greenhouse Gas Emissions from Public Transit Agency Vehicle Fleet Operations

    SciTech Connect (OSTI)

    Weigel, Brent; Southworth, Frank; Meyer, Michael D

    2010-01-01

    This paper reviews calculation tools available for quantifying the greenhouse gas emissions associated with different types of public transit service, and their usefulness in helping a transit agency to reduce its carbon footprint through informed vehicle and fuel procurement decisions. Available calculators fall into two categories: registry/inventory based calculators most suitable for standardized voluntary reporting, carbon trading, and regulatory compliance; and multi-modal life cycle analysis calculators that seek comprehensive coverage of all direct and indirect emissions. Despite significant progress in calculator development, no single calculator as yet contains all of the information needed by transit agencies to develop a truly comprehensive, life cycle analysis-based accounting of the emissions produced by its vehicle fleet operations, and for a wide range of vehicle/fuel technology options.

  16. Environmental and economic assessment of discharges from Gulf of Mexico Region Oil and Gas Operations

    SciTech Connect (OSTI)

    Gettleson, D.A.

    1997-11-24

    Task 3 (Environmental Field Sampling and Analysis of NORM, Heavy Metals, and Organics) and 4 (Monitoring of the Recovery of Impacted Wetland and Open Bay Produced Water Discharge Sites in Coastal Louisiana and Texas) activities involved continued data analysis and report writing. Task 5 (Assessment of Economic Impacts of Offshore and Coastal Discharge Requirements on Present and Future Operations in the Gulf of Mexico Region) was issued as a final report during the previous reporting period. Task 6 (Synthesis of Gulf of Mexico Seafood Consumption and Use Patterns) activities included the preparation of the final report. There were no Task 7 (Technology Transfer Plan) activities to report. Task 8 (Project Management and Deliverables) activities involved the submission of the necessary reports and routine management.

  17. Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)

    SciTech Connect (OSTI)

    Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

    2006-06-30

    Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

  18. Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)

    SciTech Connect (OSTI)

    Chad Smutzer

    2006-01-01

    Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

  19. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van -- Operating Summary

    SciTech Connect (OSTI)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure- hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  20. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  1. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect (OSTI)

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.

  2. Advanced Vehicle Testing Activity: Dodge Ram Wagon Van - Hydrogen/CNG Operations Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-16

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen-85% CNG.

  3. Advanced Vehicle Testing Activity: Dodge Ram Wagon Van -- Hydrogen/CNG Operations Summary

    SciTech Connect (OSTI)

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen–85% CNG.

  4. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect (OSTI)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  5. ,"U.S. Natural Gas Salt Underground Storage Activity-Withdraw...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5450us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Salt Underground Storage Activity-Withdraw (MMcf)" ...

  6. ,"U.S. Natural Gas Salt Underground Storage Activity-Net (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5460us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Salt Underground Storage Activity-Net (MMcf)" ...

  7. ,"U.S. Natural Gas Salt Underground Storage Activity-Injects...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5440us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" ...

  8. ,"U.S. Natural Gas Salt Underground Storage Activity-Net (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5460us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Salt Underground Storage Activity-Net (MMcf)" ...

  9. ,"U.S. Natural Gas Salt Underground Storage Activity-Injects...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5440us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" ...

  10. ,"U.S. Natural Gas Salt Underground Storage Activity-Withdraw...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5450us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Salt Underground Storage Activity-Withdraw (MMcf)" ...

  11. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, Kathryn M.L.; McCabe, Daniel J.

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  12. Philadelphia gas works medium-Btu coal gasification project: capital and operating cost estimate, financial/legal analysis, project implementation

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    This volume of the final report is a compilation of the estimated capital and operating costs for the project. Using the definitive design as a basis, capital and operating costs were developed by obtaining quotations for equipment delivered to the site. Tables 1.1 and 1.2 provide a summary of the capital and operating costs estimated for the PGW Coal Gasification Project. In the course of its Phase I Feasibility Study of a medium-Btu coal-gas facility, Philadelphia Gas Works (PGW) identified the financing mechanism as having great impact on gas cost. Consequently, PGW formed a Financial/Legal Task Force composed of legal, financial, and project analysis specialists to study various ownership/management options. In seeking an acceptable ownership, management, and financing arrangement, certain ownership forms were initially identified and classified. Several public ownership, private ownership, and third party ownership options for the coal-gas plant are presented. The ownership and financing forms classified as base alternatives involved tax-exempt and taxable financing arrangements and are discussed in Section 3. Project implementation would be initiated by effectively planning the methodology by which commercial operation will be realized. Areas covered in this report are sale of gas to customers, arrangements for feedstock supply and by-product disposal, a schedule of major events leading to commercialization, and a plan for managing the implementation.

  13. Commercialization of waste gob gas and methane produced in conjunction with coal mining operations. Final report, August 1992--December 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The primary objectives of the project were to identify and evaluate existing processes for (1) using gas as a feedstock for production of marketable, value-added commodities, and (2) enriching contaminated gas to pipeline quality. The following gas conversion technologies were evaluated: (1) transformation to liquid fuels, (2) manufacture of methanol, (3) synthesis of mixed alcohols, and (4) conversion to ammonia and urea. All of these involved synthesis gas production prior to conversion to the desired end products. Most of the conversion technologies evaluated were found to be mature processes operating at a large scale. A drawback in all of the processes was the need to have a relatively pure feedstock, thereby requiring gas clean-up prior to conversion. Despite this requirement, the conversion technologies were preliminarily found to be marginally economic. However, the prohibitively high investment for a combined gas clean-up/conversion facility required that REI refocus the project to investigation of gas enrichment alternatives. Enrichment of a gas stream with only one contaminant is a relatively straightforward process (depending on the contaminant) using available technology. However, gob gas has a unique nature, being typically composed of from constituents. These components are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. REI is pursuing Phase 2 of this project for demonstration of a waste gas enrichment facility using the approach described above. This is expected to result in the validation of the commercial and technical viability of the facility, and the refinement of design parameters.

  14. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the

  15. The Office of Fossil Energy Natural Gas Regulatory Activities

    Energy Savers [EERE]

    ... fire and gas detection, and the supervision of refrigeration compressors installation. ... Train 4 worked on completing the refrigeration compressor table top foundation and ...

  16. INTERNAL REPAIR OF GAS PIPLINES SURVEY OF OPERATOR EXPERIENCE AND INDUSTRY NEEDS REPORT

    SciTech Connect (OSTI)

    Ian D. Harris

    2003-09-01

    A repair method that can be applied from the inside of a gas transmission pipeline (i.e., a trenchless repair) is an attractive alternative to conventional repair methods since the need to excavate the pipeline is precluded. This is particularly true for pipelines in environmentally sensitive and highly populated areas. The objectives of the project are to evaluate, develop, demonstrate, and validate internal repair methods for pipelines; develop a functional specification for an internal pipeline repair system; and prepare a recommended practice for internal repair of pipelines. The purpose of this survey is to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. A total of fifty-six surveys were sent to pipeline operators. A total of twenty completed surveys were returned, representing a 36% response rate, which is considered very good given the fact that tailored surveys are known in the marketing industry to seldom attract more than a 10% response rate. The twenty survey responses produced the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water (e.g., lakes and swamps) in difficult soil conditions, under highways, under congested intersections, and under railway crossings. All these areas tend to be very difficult and very costly if, and where, conventional excavated repairs may be currently used. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem in a water/river crossing. (3) The typical travel distances required can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). In concept, these groups require pig-based systems; despooled umbilical systems could be considered for the first two groups

  17. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    SciTech Connect (OSTI)

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  18. Hydraulically-activated operating system for an electric circuit breaker

    DOE Patents [OSTI]

    Imam, Imdad; Barkan, Philip

    1979-01-01

    This operating system comprises a fluid motor having a piston, a breaker-opening space at one side of the piston, and a breaker-closing space at its opposite side. An accumulator freely communicates with the breaker-opening space for supplying pressurized fluid thereto during a circuit-breaker opening operation. A normally-closed valve located on the breaker-closing-side of the piston is openable to release liquid from the breaker-closing space so that pressurized liquid in the breaker-opening space can drive the piston in an opening direction. Means is provided for restoring the valve to its closed position following the circuit-breaker opening operation. An impeded passage affords communication between the accumulator and the breaker-closing space to allow pressurized liquid to flow from the accumulator to the breaker-closing space and develop a pressure therein substantially equal to accumulator pressure when the valve is restored to closed position following breaker-opening. This passage is so impeded that the flow therethrough from the accumulator into the breaker-closing space is sufficiently low during initial opening motion of the piston through a substantial portion of its opening stroke as to avoid interference with said initial opening motion of the piston.

  19. Task 23 - background report on subsurface environmental issues relating to natural gas sweetening and dehydration operations. Topical report, February 1, 1994--February 28, 1996

    SciTech Connect (OSTI)

    Sorensen, J.A.

    1998-12-31

    This report describes information pertaining to environmental issues, toxicity, environmental transport, and fate of alkanolamines and glycols associated with natural gas sweetening and dehydration operations. Waste management associated with the operations is also discussed.

  20. Test plan for measuring ventilation rates and combustible gas levels in TWRS active catch tanks

    SciTech Connect (OSTI)

    NGUYEN, D.M.

    1999-05-20

    The purpose of this test is to provide an initial screening of combustible gas concentrations in catch tanks that currently are operated by Tank Waste Remediation System (TWRS). The data will be used to determine whether or not additional data will be needed for closure of the flammable gas unreviewed safety question for these facilities. This test will involve field measurements of ammonia, organic vapor, and total combustible gas levels in the headspace of the catch tanks. If combustible gas level in a tank exceeds an established threshold, gas samples will be collected in SUMMA canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flow through the tanks.

  1. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel

    SciTech Connect (OSTI)

    Wu, Ko-Jen

    2011-12-31

    This report summarizes activities conducted for the project “The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel” under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuel’s characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the project’s objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project

  2. Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009

    Gasoline and Diesel Fuel Update (EIA)

    Oil and Gas Field Code Master List With Data for 2015 | Release Date: February 24, 2016 | Next Release Date: February 2017 Previous Issues Year: 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1998 1997 1996 1995 Go Comprehensive listing of U.S. oil and gas field names. Oil and Gas Field Code Master List 2015 Definition of a Field A field is defined as "an area consisting of a single reservoir or multiple reservoirs all grouped on, or related to, the same

  3. Special Delivery for Sustainability: Clean Cities Supports UPS in Expanding Natural Gas Operations

    Office of Energy Efficiency and Renewable Energy (EERE)

    With support from the Energy Department's Clean Cities program, United Parcel Service plans to deploy 1,000 liquefied natural gas trucks, making it the biggest private fleet of its kind in the United States.

  4. Round 1 Emissions Results from Compressed Natural Gas Vans and Gasoline Controls Operating in the U.S. Federal Fleet

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Round 1 Emissions Results from Compressed Natural Gas Vans and Gasoline Controls Operating in the U.S. Federal Fleet Kenneth J. Kelly, Brent K. Bailey, and Timothy C. Coburn National Renewable Energy Laboratory Leslie Eudy ManTech Environmental Technology, Inc. Peter Lissiuk Environmental Research and Development Corp. Presented at Society for Automotive Engineers International Spring Fuels and Lubricants Meeting Dearborn, MI May 6-8, 1996 The work described here was wholly funded by the U.S.

  5. The Office of Fossil Energy Natural Gas Regulatory Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LLC DOE Semi-annual Report DOEFE Order No. 3164 FE Docket No. 12-99-LNG Dear: Ms. ... 1.5 million tonnes per annum ("mtpa") of LNG upon the commencement of operations of the ...

  6. ,"U.S. Natural Gas Non-Salt Underground Storage Activity-Net...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5560us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Non-Salt Underground Storage Activity-Net (MMcf)" ...

  7. ,"U.S. Natural Gas Non-Salt Underground Storage Activity-Withdraw...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5550us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Non-Salt Underground Storage Activity-Withdraw (MMcf)" ...

  8. ,"U.S. Natural Gas Non-Salt Underground Storage Activity-Net...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5560us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Non-Salt Underground Storage Activity-Net (MMcf)" ...

  9. ,"U.S. Natural Gas Non-Salt Underground Storage Activity-Withdraw...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5550us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Non-Salt Underground Storage Activity-Withdraw (MMcf)" ...

  10. Environmental and economic assessment of discharges from Gulf of Mexico region oil and gas operations. Quarterly technical progress report, April 1995--June 1995

    SciTech Connect (OSTI)

    Gettleson, D.A.

    1995-07-31

    Progress is described on the determination of environmental impacts from waste discharges to the aquatic ecosystems from oil and gas operations. Task 2 (Preparation of the Sampling and Analysis Plan) activities involved revisions and additions to the Sampling and Analysis Plan. Task 3 (Environmental Field Sampling and Analysis of NORM, Heavy Metals, and Organics) work included analyses of water, sediment, and tissue samples as well as data management. Task 4 (Monitoring of the Recovery of Impacted Wetland and Open Bay Produced Water Discharge Sites in Coastal Louisiana and Texas) activities involved the continued analyses of samples and conducting field sampling at Bay de Chene. Task 5 (Assessment of Economic Impacts of Offshore and Coastal Discharge Requirements on Present and Future Operations in the Gulf of Mexico Region) activities included preparing a draft final report and review by the Scientific Review Committee (SRC). Task 6 (Synthesis of Gulf of Mexico Seafood Consumption and Use Patterns) work involved the preparation of the draft final report and review by the SRC. Task 7 (Technology Transfer Plan) activities involved the presentation of four papers. Task 8 (Project Management and Deliverables) activities involved the submission of the necessary reports and routine management.

  11. Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect (OSTI)

    Srinivasan, Ram

    2013-07-31

    This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15

  12. Guide for preparing active solar heating systems operation and maintenance manuals

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book presents a systematic and standardized approach to the preparation of operation and maintenance manuals for active solar heating systems. Provides an industry consensus of the best operating and maintenance procedures for large commercial-scale solar service water and space heating systems. A sample O M manual is included. 3-ring binder included.

  13. Natural gas monthly, March 1994

    SciTech Connect (OSTI)

    Not Available

    1994-03-22

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  14. Natural gas monthly, August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-25

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  15. Natural gas monthly, September 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-27

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  16. Operating France's gas grid; Gaz de France depends on sophisticated communications

    SciTech Connect (OSTI)

    Eon, M.; Adel-Manuel, M. )

    1989-10-01

    At Gaz de France, the means used for monitoring and intervention have developed as the transmission network has evolved. The control system for GdF's transmission network is described. It is designed to manage: compressor stations; metering and automatic control stations; pressure pre-regulating stations, city-gate stations and off-take stations for industrial users linked to the transmission system; and underground gas storage facilities.

  17. U.S. Natural Gas Rotary Rigs in Operation (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    Federal Offshore Gulf of Mexico Alabama Alaska Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Louisiana Michigan Mississippi Montana Nebraska New Mexico North Dakota Ohio Oklahoma Pennsylvania South Dakota Tennessee Texas Utah West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2008 2009 2010 2011 2012 2013 View History Natural Gas

  18. Dissolver Off-gas Hot Operations Authorization (AFCI CETE Milestone Report)

    SciTech Connect (OSTI)

    Jubin, Robert Thomas

    2009-06-01

    The head-end processing of the Coupled-End-to-End (CETE) Demonstration includes fuel receipt, fuel disassembly, exposure of fuel (e.g., by segmenting the fuel pins), voloxidation of the fuel to separate tritium, and fuel dissolution. All of these processing steps with the exception of the dissolution step will be accomplished in the Irradiated Fuels Examination Laboratory (IFEL) (Building 3525). The final headend step will be performed in the Radiochemical Engineering Development Center (Building 7920). The primary purpose of the fuel dissolution step is to prepare the solid fuel for subsequent liquid separations steps. This is accomplished by dissolving the fuel solids using nitric acid. During the dissolution process gases are evolved. Oxides of nitrogen are the primary off-gas components generated by the reactions of nitric acid and the fuel oxides however, during the dissolution and sparging of the resulting solution, iodine, C-14 as carbon dioxide, xenon, and krypton gasses are also released to the off-gas stream. The Dissolver Off-gas treatment rack provides a means of trapping these volatile fission products and other gases via various trapping media. Specifically the rack will recover iodine on a solid sorbent bed, scrub NOx in a water/acid column, scrub CO{sub 2} in a caustic scrubber column, remove moisture with solid sorbent drier beds and recover Xe and Kr using solid absorbent beds. The primary purpose of this experimental rack and the off-gas rack associated with the voloxidation equipment located at IFEL is to close the material balances around the volatile gases and to provide an understanding of the impacts of specific processing conditions on the fractions of the volatile components released from the various head-end processing steps.

  19. Environmental and economic assessment of discharges from Gulf of Mexico region oil and gas operations. Quarterly technical progress report, July--September 1995

    SciTech Connect (OSTI)

    Gettleson, D.A.

    1995-10-31

    Continental Shelf Associates, Inc. (CSA) was contracted to conduct a three-year study of the environmental and health related impacts of produced water and sand discharges from oil and gas operations. Data on naturally occurring radioactive materials (NORM), heavy metals, and hydrocarbons in water, sediment, and biota will be collected and evaluated. Health related impacts will be studied through field collections and analyses of commercially- and recreationally-important fish and shellfish tissues. Additionally, information on seafood catch, consumption, and use patterns for the Gulf of Mexico will be gathered and analyzed. The facilities to be studied will include both offshore and coastal facilities in the Gulf of Mexico. Coastal sites will be additionally studied to determine ecological recovery of impacted wetland and open bay areas. The economic impact of existing and proposed effluent federal and state regulations will also be evaluated. This report represents the thirteenth quarterly technical summary for the study ``Environmental and Economic Assessment of Discharges from Gulf of Mexico Region Oil and Gas Operations.`` Activities associated with Tasks 3 through 8 are discussed in this report.

  20. New Mexico Natural Gas in Underground Storage (Base Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Base Gas) (Million Cubic Feet) New Mexico Natural Gas in Underground Storage (Base Gas) ... Underground Base Natural Gas in Storage - All Operators New Mexico Underground Natural Gas ...

  1. New York Natural Gas in Underground Storage (Base Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) New York Natural Gas in Underground Storage (Base Gas) ... Underground Base Natural Gas in Storage - All Operators New York Underground Natural Gas ...

  2. U.S. Natural Gas Rotary Rigs in Operation (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Acquisitions (Million Barrels) U.S. Natural Gas Liquids Lease Condensate, Proved Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 37 2010's 140 273 84 138 408 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate Reserves Acquisitions (Million

  3. Reduced gas pressure operation of sludge digesters: Expanded studies. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    Previous investigations strongly suggested that the municipal anaerobic sludge digestion process could be enhanced by reactor operation with subatmospheric headspace pressures. Enhanced solids destruction and methane production along with increased process stability were observed in these earlier studies. However, due to the small scale of the anaerobic reactors used ( {approx}1.5 L), definitive steady-state measurements could not be obtained. These expanded studies were undertaken to verify and define the magnitude of the benefits that might be obtained with vacuum operation of sludge digesters. Four reactors ({approx}15.0 L) were fed municipal sludge at three different organic loading rates while being maintained with a 15-day solids retention time. One reactor had a constant headspace pressure of 1.02 atm; a second was maintained at 0.75 atm; and the remaining two reactors were operated for the majority of the day at 1.02 atm, and for part of the day with a 0.75 atm headspace pressure. Additional small-scale, batch experiments were performed to help identify controlling digestion mechanisms. The results of these expanded studies indicate that vacuum operation did not yield significant advantages over the organic loading range investigated (0.088 to 0.352 lb VSS/ft{sup 3}{center_dot}d).

  4. Environmental and Economic Assessment of Discharges from Gulf of Mexico Region Oil and Gas Operations

    SciTech Connect (OSTI)

    Gettleson, David A

    1999-10-28

    The primary objectives of the project are to increase the base of scientific knowledge concerning (1) the fate and environmental effects of organics, trace metals, and NORM in water, sediment, and biota near several offshore oil and gas facilities; (2) the characteristics of produced water and produced sand discharges as they pertain to organics, trace metals, and NORM variably found in association with the discharges; (3) the recovery of three terminated produced water discharge sites located in wetland and high-energy open bay sites of coastal Louisiana; (4) the economic and energy supply impacts of existing and anticipated federal and state offshore and coastal discharge regulations; and (5) the catch, consumption and human use patterns of seafood species collected from coastal and offshore waters. The products of the effort will be a series of technical reports detailing the study procedures, results, and conclusions which contribute to the transfer of technology to the scientific community, petroleum industry, and state and federal agencies.

  5. U.S. Offshore Crude Oil and Natural Gas Rotary Rigs in Operation (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) U.S. Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16,674 1980's 16,095 16,238 15,044 13,235 14,514 13,344 12,958 13,553 14,274 14,653 1990's 15,067 15,044 15,238 15,773 16,303 15,988 16,845 17,112 16,486 16,543 2000's 16,863 17,451 17,260

  6. Hybrid sulfur cycle operation for high-temperature gas-cooled reactors

    DOE Patents [OSTI]

    Gorensek, Maximilian B

    2015-02-17

    A hybrid sulfur (HyS) cycle process for the production of hydrogen is provided. The process uses a proton exchange membrane (PEM) SO.sub.2-depolarized electrolyzer (SDE) for the low-temperature, electrochemical reaction step and a bayonet reactor for the high-temperature decomposition step The process can be operated at lower temperature and pressure ranges while still providing an overall energy efficient cycle process.

  7. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-27

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  8. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  9. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.

  10. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, K.; McCabe, D.

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  11. Atlantic update, July 1986--June 1990: Outer Continental Shelf oil and gas activities

    SciTech Connect (OSTI)

    Karpas, R.M.; Gould, G.J.

    1990-10-01

    This report describes outer continental shelf oil and gas activities in the Atlantic Region. This edition of the Atlantic Update includes an overview of the Mid-Atlantic Planning Area and a summary of the Manteo Prospect off-shore North Carolina. 6 figs., 8 tabs.

  12. Enhancement of the EUV emission of a metallic capillary discharge operated with argon ambient gas

    SciTech Connect (OSTI)

    Chan, L. S. Tan, D. Saboohi, S. Yap, S. L. Wong, C. S.

    2014-03-05

    In this work, the metallic capillary discharge is operated with two different ambients: air and argon. In the experiments reported here, the chamber is first evacuated to 10{sup ?5} mbar. The discharge is initiated by the transient hollow cathode effect generated electron beam, with either air ambient or argon ambient at 10{sup ?4} mbar. The bombardment of electron beam at the tip of the stainless steel anode gives rise to a metallic vapor, which is injected into the capillary and initiates the main discharge through the capillary. The EUV emission is measured for different discharge voltages for both conditions and compared. It is found that the metallic capillary discharge with argon ambientis able to produce higher EUV energy compared to that with air ambient.

  13. A safety equipment list for rotary mode core sampling systems operation in single shell flammable gas tanks

    SciTech Connect (OSTI)

    SMALLEY, J.L.

    1999-05-18

    This document identifies all interim safety equipment to be used for rotary mode core sampling of single-shell flammable gas tanks utilizing Rotary Mode Core Sampling systems (RMCS). This document provides the safety equipment for RMCS trucks HO-68K-4600, HO-68K-4647, trucks three and four respectively, and associated equipment. It is not intended to replace or supersede WHC-SD-WM-SEL-023, (Kelly 1991), or WHC-SD-WM-SEL-032, (Corbett 1994), which classifies 80-68K-4344 and HO-68K-4345 respectively. The term ''safety equipment'' refers to safety class (SC) and safety significant (SS) equipment, where equipment refers to structures, systems and components (SSC's). The identification of safety equipment in this document is based on the credited design safety features and analysis contained in the Authorization Basis (AB) for rotary mode core sampling operations in single-shell flammable gas tanks. This is an interim safety classification since the AB is interim. This document will be updated to reflect the final RMCS equipment safety classification designations upon completion of a final AB which will be implemented with the release of the Final Safety Analysis Report (FSAR).

  14. Avoiding exposure to mercury during inspection and maintenance operations in oil and gas processing

    SciTech Connect (OSTI)

    Wilhelm, S.M.

    1999-11-01

    Exposure to mercury and its compounds poses a potential health risk to workers involved with inspection and maintenance activities in facilities that process hydrocarbons containing significant amounts. The risks of exposure to mercury are often underestimated for a variety of reasons. Foremost is the fact that the exact amount of mercury present in processed petroleum often is not known with certainty. Secondly, the specific quantities of mercury compounds that may be present in hydrocarbon liquids seldom are known at all. Thirdly, monitoring for mercury vapor in work environments is not a routine procedure for many processing facilities. Lastly, mercury toxicity is gradual and produces no immediately apparent impairment that can easily be associated with occupational exposure. Superimposed on the risk issues are several aspects of the chemistry of mercury that make it illusive both to quantitative analysis and to detection in work environments. The combination of the cited factors increases the likelihood that workers who are inadvertently exposed to occupational environments that contain mercury will be adversely affected.

  15. Demonstration of the enrichment of medium quality gas from gob wells through interactive well operating practices. Final report, June--December, 1995

    SciTech Connect (OSTI)

    Blackburn, S.T.; Sanders, R.G.; Boyer, C.M. II; Lasseter, E.L.; Stevenson, J.W.; Mills, R.A.

    1995-12-01

    Methane released to the atmosphere during coal mining operations is believed to contribute to global warming and represents a waste of a valuable energy resource. Commercial production of pipeline-quality gob well methane through wells drilled from the surface into the area above the gob can, if properly implemented, be the most effective means of reducing mine methane emissions. However, much of the gas produced from gob wells is vented because the quality of the gas is highly variable and is often below current natural gas pipeline specifications. Prior to the initiation of field-testing required to further understand the operational criteria for upgrading gob well gas, a preliminary evaluation and assessment was performed. An assessment of the methane gas in-place and producible methane resource at the Jim Walter Resources, Inc. No. 4 and No. 5 Mines established a potential 15-year supply of 60 billion cubic feet of mien methane from gob wells, satisfying the resource criteria for the test site. To understand the effect of operating conditions on gob gas quality, gob wells producing pipeline quality (i.e., < 96% hydrocarbons) gas at this site will be operated over a wide range of suction pressures. Parameters to be determined will include absolute methane quantity and methane concentration produced through the gob wells; working face, tailgate and bleeder entry methane levels in the mine; and the effect on the economics of production of gob wells at various levels of methane quality. Following this, a field demonstration will be initiated at a mine where commercial gob gas production has not been attempted. The guidelines established during the first phase of the project will be used to design the production program. The economic feasibility of various utilization options will also be tested based upon the information gathered during the first phase. 41 refs., 41 figs., 12 tabs.

  16. EMAB Briefing on Capital Assets Projects and Operations Activities Presentation by Mark Gilbertson

    Office of Environmental Management (EM)

    Capital Asset Projects and Operations Activities www.em.doe.gov 1 Presented to Environmental Management Advisory Boards Mark Gilbertson Deputy Assistant Secretary for Site Restoration Office of Environmental Management May 31, 2012 We reduce risks and protect our workers, our communities and the environment through cleanup Our work is urgent and essential to the health and economic vitality of our communities and the nation and positions our Sites for future missions and use Our mission is not

  17. U.S. Crude Oil and Natural Gas Active Well Service Rigs in operation

    Gasoline and Diesel Fuel Update (EIA)

    (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,008 2,490 2,486 2,601 2,828 2,989 3,399 1980's 4,089 4,849 4,249 3,733 4,659 4,716 3,037 3,059 3,339 3,391 1990's 3,658 3,331 2,757 3,193 2,961 3,041 3,445 3,499 3,014 2,232 2000's 2,692 2,267 1,830 1,967 2,064 2,222 2,364 2,388 2,515 1,722 2010's 1,854 2,075 2,113

  18. U.S. Crude Oil and Natural Gas Active Well Service Rigs in operation

    Gasoline and Diesel Fuel Update (EIA)

    (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 1,549 1,677 1,805 1,898 1,991 1,994 1,997 2,112 2,227 2,247 2,266 2,334 1974 2,401 2,436 2,470 2,513 2,555 2,525 2,494 2,483 2,473 2,488 2,503 2,543 1975 2,582 2,549 2,568 2,549 2,374 2,426 2,344 2,369 2,459 2,434 2,505 2,675 1976 2,612 2,490 2,521 2,597 2,575 2,607 2,606 2,656 2,652 2,639 2,601 2,660 1977 2,474 2,628 2,695 2,804 2,760 2,895 2,929 2,942 2,964 2,973 2,968 2,898 1978 2,810 2,906 2,899 2,997 2,996

  19. Active control of low frequency sound in a gas turbine compressor installation

    SciTech Connect (OSTI)

    Swinbanks, M.A.

    1982-01-01

    During the last decade, the development of active attenuators has progressed from theoretical analysis, through laboratory experiments of increasing sophistication to the stage where their practical application to certain large scale industrial sources has finally become reality. This paper outlines some features which the author has investigated in the laboratory, and concludes with a description of the results achieved in applying these techniques to an 11 M.W. Avon Gas Turbine Compressor Installation. The active control hardware necessary to achieve these results represented a very considerable cost saving compared to the estimated cost of achieving similar performance by passive means.

  20. Modeling hot gas flow in the low-luminosity active galactic nucleus of NGC 3115

    SciTech Connect (OSTI)

    Shcherbakov, Roman V.; Reynolds, Christopher S.; Wong, Ka-Wah; Irwin, Jimmy A.

    2014-02-20

    Based on the dynamical black hole (BH) mass estimates, NGC 3115 hosts the closest billion solar mass BH. Deep studies of the center revealed a very underluminous active galactic nucleus (AGN) immersed in an old massive nuclear star cluster. Recent 1 Ms Chandra X-ray visionary project observations of the NGC 3115 nucleus resolved hot tenuous gas, which fuels the AGN. In this paper we connect the processes in the nuclear star cluster with the feeding of the supermassive BH. We model the hot gas flow sustained by the injection of matter and energy from the stars and supernova explosions. We incorporate electron heat conduction as the small-scale feedback mechanism, the gravitational pull of the stellar mass, cooling, and Coulomb collisions. Fitting simulated X-ray emission to the spatially and spectrally resolved observed data, we find the best-fitting solutions with ?{sup 2}/dof = 1.00 for dof = 236 both with and without conduction. The radial modeling favors a low BH mass <1.3 10{sup 9} M {sub ?}. The best-fitting supernova rate and the best-fitting mass injection rate are consistent with their expected values. The stagnation point is at r {sub st} ? 1'', so that most of the gas, including the gas at a Bondi radius r{sub B} = 2''-4'', outflows from the region. We put an upper limit on the accretion rate at 2 10{sup 3} M {sub ?} yr{sup 1}. We find a shallow density profile n?r {sup ?} with ? ? 1 over a large dynamic range. This density profile is determined in the feeding region 0.''5-10'' as an interplay of four processes and effects: (1) the radius-dependent mass injection, (2) the effect of the galactic gravitational potential, (3) the accretion flow onset at r ? 1'', and (4) the outflow at r ? 1''. The gas temperature is close to the virial temperature T{sub v} at any radius.

  1. An economic feasibility analysis of distributed electric power generation based upon the Natural Gas-Fired Fuel Cell: a model of the operations cost.

    SciTech Connect (OSTI)

    Not Available

    1993-06-30

    This model description establishes the revenues, expenses incentives and avoided costs of Operation of a Natural Gas-Fired Fuel Cell-Based. Fuel is the major element of the cost of operation of a natural gas-fired fuel cell. Forecasts of the change in the price of this commodity a re an important consideration in the ownership of an energy conversion system. Differences between forecasts, the interests of the forecaster or geographical areas can all have significant effects on imputed fuel costs. There is less effect on judgments made on the feasibility of an energy conversion system since changes in fuel price can affect the cost of operation of the alternatives to the fuel cell in a similar fashion. The forecasts used in this model are only intended to provide the potential owner or operator with the means to examine alternate future scenarios. The operations model computes operating costs of a system suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

  2. DIGESTER GAS - FUEL CELL - PROJECT

    SciTech Connect (OSTI)

    Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

    2002-03-01

    GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

  3. Oil and gas technology transfer activities and potential in eight major producing states. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

  4. U.S. Department of Energy - The Office of Fossil Energy Natural Gas Regulatory Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 U.S. Department of Energy - The Office of Fossil Energy Natural Gas Regulatory Activities Attention: Larine Moore, Docket Room Manager Docket Room FE-34 P.O. Box 44375 Washington, DC 20026-4375 Re: Cheniere Marketing, LLC and Corpus Christi Liquefaction, LLC DOE Semi-Annual Report DOE/FE Order Nos. 3164, 3638, and 3699 FE Docket Nos. 12-99-LNG, 12-97-LNG, and 15-97-LNG Dear Ms. Moore: Pursuant to the above-referenced Orders, Cheniere Marketing, LLC and Corpus Christi Liquefaction, LLC

  5. Innovative high pressure gas MEM's based neutron detector for ICF and active SNM detection.

    SciTech Connect (OSTI)

    Martin, Shawn Bryan; Derzon, Mark Steven; Renzi, Ronald F.; Chandler, Gordon Andrew

    2007-12-01

    An innovative helium3 high pressure gas detection system, made possible by utilizing Sandia's expertise in Micro-electrical Mechanical fluidic systems, is proposed which appears to have many beneficial performance characteristics with regards to making these neutron measurements in the high bremsstrahlung and electrical noise environments found in High Energy Density Physics experiments and especially on the very high noise environment generated on the fast pulsed power experiments performed here at Sandia. This same system may dramatically improve active WMD and contraband detection as well when employed with ultrafast (10-50 ns) pulsed neutron sources.

  6. Renewable Energy Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities)

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    With ethanol becoming more prevalent in the media and in gas tanks, it is important for students to know where it comes from. This module uses a series of four activities to show how energy and mass are converted from one form to another. It focuses on the conversion of light energy into chemical energy via photosynthesis, then goes on to show how the chemical energy in plant sugars can be fermented to produce ethanol. Finally, the reasons for using ethanol as a fuel are discussed.

  7. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  8. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    SciTech Connect (OSTI)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

    2014-01-07

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion

  9. Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443

    SciTech Connect (OSTI)

    Ramsey, William G.; Esparza, Brian P. [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)] [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)

    2013-07-01

    Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls for the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)

  10. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    SciTech Connect (OSTI)

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2005-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.