Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Liens for Oil and Gas Operations (Nebraska)  

Broader source: Energy.gov [DOE]

This section contains regulations concerning lien allowances made to operators of oil and gas operations.

2

Thailand gas project now operational  

SciTech Connect (OSTI)

Now operational, Phase 1 of Thailand's first major natural gas system comprises one of the world's longest (264 miles) offshore gas lines. Built for the Petroleum Authority of Thailand (PTT), this system delivers gas from the Erawan field in the Gulf of Thailand to two electrical power plants near Bangkok, operated by the Electricity Generating Authority of Thailand (EGAT). The project required laying about 360 miles of pipeline, 34-in., 0.625 in.-thick API-5LX-60 pipe offshore and 28-in., 0.406 in.-thick API-5LX-60 onshore. The offshore pipe received a coal-tar coating, a 3.5-5.0 in. concrete coating, and zinc sacrificial-anode bracelets. The onshore line was coated with the same coal-tar enamel and, where necessary, with concrete up to 4.5 in. thick. Because EGAT's two power plants are the system's only customers, no more pipeline will be constructed until deliveries, currently averaging about 100 million CF/day, reach the 250 million CF/day level. The project's second phase will include additional pipelines as well as an onshore distribution network to industrial customers.

Horner, C.

1982-08-01T23:59:59.000Z

3

,"Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - All Operators",8,"Monthly","102014","1151973" ,"Release...

4

,"California Underground Natural Gas Storage - All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural Gas Storage - All Operators",3,"Annual",2013,"6301967"...

5

Saudi Aramco Gas Operations Energy Efficiency Program  

E-Print Network [OSTI]

Saudi Aramco Gas Operations (GO) created energy efficiency strategies for its 5-year business plan (2011-2015), supported by a unique energy efficiency program, to reduce GO energy intensity by 26% by 2015. The program generated an energy savings...

Al-Dossary, F. S.

2012-01-01T23:59:59.000Z

6

Hydrate Control for Gas Storage Operations  

SciTech Connect (OSTI)

The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

Jeffrey Savidge

2008-10-31T23:59:59.000Z

7

Micro Gas Turbine Operation with Biomass Producer Gas and Mixtures of Biomass Producer Gas and Natural Gas  

Science Journals Connector (OSTI)

Instead of gas engines, micro or mini gas turbines may be used. ... Power output delivered to the grid, engine speed, turbine temperature, and fuel gas valve position are read from the micro gas turbine operating console and recorded manually. ... Financial support from the Renewable Energy (DEN) program of the Dutch Energy Agency SenterNovem is gratefully acknowledged. ...

Luc P. L. M. Rabou; Jan M. Grift; Ritze E. Conradie; Sven Fransen

2008-03-06T23:59:59.000Z

8

Independent Activity Report, Savannah River Operation - June...  

Broader source: Energy.gov (indexed) [DOE]

Operation - June 2010 Independent Activity Report, Savannah River Operation - June 2010 June 2010 Savannah River Operations Office Self-Assessment of the Technical Qualification...

9

Compare All CBECS Activities: Natural Gas Use  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Use Natural Gas Use Compare Activities by ... Natural Gas Use Total Natural Gas Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 2.0 trillion cubic feet of natural gas in 1999. Natural gas use was not dominated by any single activity, with seven activities each accounting for between 9 and 13 percent of all commercial natural gas use. Figure showing total natural gas consumption by building type. If you need assistance viewing this page, please call 202-586-8800. Natural Gas Consumption per Building by Building Type Inpatient health care buildings used by far the most natural gas per building. Figure showing natural gas consumption per building by building type. If you need assistance viewing this page, please call 202-586-8800.

10

Independent Activity Report, Richland Operations Office - April...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Richland Operations Office - April 2011 April 2011 Operational Awareness Review of the Hanford Sludge Treatment Project HIAR-RL-2011-04-07 This Independent Activity Report...

11

Independent Activity Report, Hanford Operations Office - July...  

Broader source: Energy.gov (indexed) [DOE]

assessment included evaluation of work control, fall protection, quality assurance, and conduct of operations. Independent Activity Report, Hanford Operations Office - July 2010...

12

,"New York Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas Storage - All Operators",3,"Annual",2013,"6301967" ,"Release...

13

Independent Activity Report, Richland Operations Office - August...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2011 Independent Activity Report, Richland Operations Office - August 2011 August 2011 Hanford Sludge Treatment Project HIAR-RL-2011-08-25 This Independent Activity Report...

14

,"Colorado Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

"Sourcekey","N5030CO2","N5010CO2","N5020CO2","N5070CO2","N5050CO2","N5060CO2" "Date","Colorado Natural Gas Underground Storage Volume (MMcf)","Colorado Natural Gas in Underground...

15

Vehicle Investment and Operating Costs and Savings for Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Investment and Operating Costs and Savings for Greenhouse Vehicle Investment and Operating Costs and Savings for Greenhouse Gas Mitigation Strategies Vehicle Investment and Operating Costs and Savings for Greenhouse Gas Mitigation Strategies October 7, 2013 - 1:17pm Addthis YOU ARE HERE: Step 4 To help estimate costs of implementing greenhouse gas (GHG) mitigation strategies for vehicles, the table below provides the initial investment, operating costs, and operating savings for each strategy. Table 1. Types and Ranges of Initial Investment Requirements and Annual Operating Costs and Savings. Strategies Initial Investment Operating Costs Operating Savings Consolidate trips Time to research & coordinate routes None Eliminate fleet vehicle trips; reduce cost & time (fuel, maintenance, etc) associated with fleet vehicle use. Could result in decreasing inventory & need for vehicles leading to long-term savings

16

Gas well operation with liquid production  

SciTech Connect (OSTI)

Prediction of liquid loading in gas wells is discussed in terms of intersecting tubing or system performance curves with IPR curves and by using a more simplified critical velocity relationship. Different methods of liquid removal are discussed including such methods as intermittent lift, plunger lift, use of foam, gas lift, and rod, jet, and electric submersible pumps. Advantages, disadvantages, and techniques for design and application of the methods of liquid removal are discussed.

Lea, J.F.; Tighe, R.E.

1983-02-01T23:59:59.000Z

17

Effect of Coal Gas Contaminants on Solid Oxide Fuel Cell Operation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Gas Contaminants on Solid Oxide Fuel Cell Operation. Effect of Coal Gas Contaminants on Solid Oxide Fuel Cell Operation. Abstract: The operation of solid oxide fuel cells...

18

Canada Oil and Gas Operations Act (Canada) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Canada Oil and Gas Operations Act (Canada) Canada Oil and Gas Operations Act (Canada) Canada Oil and Gas Operations Act (Canada) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info Start Date 1985 Program Type Environmental Regulations Equipment Certification Fees Generating Facility Rate-Making Generation Disclosure Industry Recruitment/Support Safety and Operational Guidelines Siting and Permitting Provider Canada National Energy Board The purpose of this Act is to promote safety, the protection of the environment, the conservation of oil and gas resources, joint production arrangements, and economically efficient infrastructures.

19

Minnesota Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 5,535 5,563 5,789 6,051 6,354 6,516 1990-2013

20

Louisiana Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 481,448 506,368 537,381 569,532 588,760 616,097 1990-2013

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Virginia Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 7,627 7,917 7,809 8,111 7,771 8,769 1997-2013

22

Oregon Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 18,802 21,071 24,355 26,317 27,099 27,826 1990-2013

23

California Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 494,687 526,990 548,682 551,855 553,972 563,219 1990-2013

24

Utah Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 93,084 97,539 101,216 104,637 109,135 112,135 1990-2013

25

Alabama Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 28,455 28,958 28,160 28,582 28,018 29,312 1995-2013

26

Indiana Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 87,254 89,244 91,822 94,240 97,911 101,106 1990-2013

27

Washington Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 30,412 33,787 37,711 40,833 43,621 45,359 1990-2013

28

Texas Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 638,154 659,387 666,457 668,068 696,056 730,492 1990-2013

29

Ohio Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 390,648 417,691 447,275 468,055 493,454 516,625 1990-2013

30

California Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 494,687 526,990 548,682 551,855 553,972 563,219 1990-2013

31

Oklahoma Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 270,117 293,368 310,075 317,797 325,829 340,801 1990-2013

32

Mississippi Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 188,580 205,724 214,887 222,273 217,684 229,843 1990-2013

33

Kansas Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 200,725 214,725 228,046 244,878 256,709 266,439 1990-2013

34

Kentucky Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 165,997 174,089 181,856 187,293 192,663 201,374 1990-2013

35

Alaska Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 28,203 29,473 30,384 31,284 32,766 34,652 2013-2013

36

Montana Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 207,626 210,385 214,435 219,447 224,995 224,335 1990-2013

37

Wyoming Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 90,464 90,588 89,999 89,825 91,028 93,007 1990-2013

38

Illinois Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 746,993 774,182 809,958 842,081 876,844 917,781 1990-2013

39

Iowa Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 209,512 215,593 221,664 230,749 245,317 261,998 1990-2013

40

Alaska Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 28,203 29,473 30,384 31,284 32,766 34,652 2013-2013

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Arkansas Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 11,133 11,575 11,977 12,383 12,816 13,020 1990-2013

42

Iowa Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 215,593 221,664 230,749 245,317 261,998 273,823 1990-2013

43

Utah Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 97,539 101,216 104,637 109,135 112,135 113,539 1990-2013

44

Colorado Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 70,182 74,046 80,390 87,199 94,797 100,693 1990-2013

45

Illinois Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 746,993 774,182 809,958 842,081 876,844 917,781 1990-2013

46

Oklahoma Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 293,368 310,075 317,797 325,829 340,801 351,660 1990-2013

47

Mississippi Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 205,724 214,887 222,273 217,684 229,843 244,371 1990-2013

48

Louisiana Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 506,368 537,381 569,532 588,760 616,097 641,658 1990-2013

49

Indiana Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 89,244 91,822 94,240 97,911 101,106 102,341 1990-2013

50

Tennessee Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 340 340 340 340 340 340 1997-2013

51

Minnesota Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 5,563 5,789 6,051 6,354 6,516 6,874 1990-2013

52

Oregon Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 21,071 24,355 26,317 27,099 27,826 28,494 1990-2013

53

Virginia Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 7,917 7,809 8,111 7,771 8,769 9,216 1997-2013

54

Missouri Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 10,867 11,358 11,873 12,197 12,433 12,660 1990-2013

55

Maryland Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 53,540 55,026 57,959 59,418 61,671 62,862 1990-2013

56

Washington Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 30,412 33,787 37,711 40,833 43,621 45,359 1990-2013

57

Ohio Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 390,648 417,691 447,275 468,055 493,454 516,625 1990-2013

58

Pennsylvania Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 567,796 613,368 634,789 656,308 693,662 712,848 1990-2013

59

Pennsylvania Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 520,387 567,796 613,368 634,789 656,308 693,662 1990-2013

60

Nebraska Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 25,055 25,858 26,866 27,234 29,408 31,383 1990-2013

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Missouri Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 10,867 11,358 11,873 12,197 12,433 12,660 1990-2013

62

Texas Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 582,834 638,154 659,387 666,457 668,068 696,056 1990-2013

63

Arkansas Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 11,133 11,575 11,977 12,383 12,816 13,020 1990-2013

64

Montana Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 205,601 207,626 210,385 214,435 219,447 224,995 1990-2013

65

Michigan Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 643,563 706,443 777,107 839,963 906,927 972,307 1990-2013

66

Michigan Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 643,563 706,443 777,107 839,963 906,927 972,307 1990-2013

67

Kansas Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 200,725 214,725 228,046 244,878 256,709 266,439 1990-2013

68

Operating Experience Review of the INL HTE Gas Monitoring System  

SciTech Connect (OSTI)

This paper describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored at hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and unwanted alarms are described. The calibration session time durations are described. Some simple statistics are given for the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

L. C. Cadwallader; K. G. DeWall

2010-06-01T23:59:59.000Z

69

1 - Gas turbines: operating conditions, components and material requirements  

Science Journals Connector (OSTI)

Abstract: This chapter provides a summary of the operating cycle of an industrial gas turbine and associated plant. The characteristics of the materials and integrated materials systems used in a gas turbine are considered. The conditions under which industrial gas turbines operate, and the impact these operating conditions have on materials behavior, are described. The materials selection criteria for individual components and component sections are discussed. The key material properties for designing critical components and the approach for conducting a life assessment are considered. The major limitations to the performance of current superalloys, coatings and steels and the challenges facing the introduction of new materials are discussed. An overview is given of current trends in materials development and future materials technologies.

A.W. James; S. Rajagopalan

2014-01-01T23:59:59.000Z

70

Independent Activity Report, Richland Operations Office - June...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

June 20-22, 2011, at the Cold Vacuum Drying Facility at the Department of Energy's Hanford Site. The activity consisted of observing an operational assessment of the facility's...

71

Active constraint regions for a natural gas liquefaction process Magnus G. Jacobsena  

E-Print Network [OSTI]

Active constraint regions for a natural gas liquefaction process Magnus G. Jacobsena , Sigurd little attention. this paper addresses optimal operation of a simple natural gas liquefaction process at all times. Keywords: Self-optimizing control, liquefied natural gas, LNG, PRICO, disturbances, optimal

Skogestad, Sigurd

72

Greenhouse Gas Emissions from Building and Operating Electric  

E-Print Network [OSTI]

Greenhouse Gas Emissions from Building and Operating Electric Power Plants in the Upper Colorado-1712 As demand for electricity increases, investments into new generation capacity from renewable,CaliforniaandtherestoftheWestCoastoftheUnited States started to experience severe shortages of electricity. Investments

Kammen, Daniel M.

73

Oil and Gas CDT Gas hydrate distribution on tectonically active continental  

E-Print Network [OSTI]

Oil and Gas CDT Gas hydrate distribution on tectonically active continental margins: Impact on gas. Gregory F. Moore, University of Hawaii (USA) http://www.soest.hawaii.edu/moore/ Key Words Gas Hydrates, Faults, Fluid Flow, gas prospectivity Overview Fig. 1. Research on gas hydrates is often undertaken

Henderson, Gideon

74

Field Operations Program Activities Status Report  

SciTech Connect (OSTI)

The Field Operations Program is an electric vehicle testing and evaluation program sponsored by US Department of Energy and managed by the Idaho National Engineering and Environmental Laboratory. The Program's goals are to evaluate electric vehicles in real-world applications and environments, support electric vehicle technology advancement, develop infrastructure elements necessary to support significant electric vehicle use, support increased use of electric vehicles in federal fleets, and increase overall awareness and acceptance of electric vehicles. This report covers Program activities from fiscal year 1997 through mid-fiscal year 1999. The Field Operations Program succeeded the Site Operator Program, which ended in September 1996. Electric vehicle testing conducted by the Program includes baseline performance testing (EV America testing), accelerated reliability (life-cycle) testing, and fleet testing. The baseline performance parameters include accelerations, braking, range, energy efficiency, and charging time. The Program collects accelerated reliability and fleet operations data on electric vehicles operated by the Program's Qualified Vehicle Testing (QVT) partners. The Program's QVT partners have over 3 million miles of electric vehicle operating experience.

J. E. Francfort; D. V. O'Hara; L. A. Slezak

1999-05-01T23:59:59.000Z

75

Operating the LCLS Gas Attenuator and Gas Detector System with Apertures of 6mm Diameter  

SciTech Connect (OSTI)

The possibility of increasing the apertures of the LCLS gas attenuator/gas detector system is considered. It is shown that increase of the apertures from 3 to 6 mm, together with 4-fold reduction of the operation pressure does not adversely affect the vacuum conditions upstream or downstream. No change of the pump speed and the lengths of the differential pumping cells is required. One minor modification is the use of 1.5 cm long tubular apertures in the end cells of the differential pumping system. Reduction of the pressure does not affect performance of the gas attenuator/gas detector system at the FEL energies below, roughly, 2 keV. Some minor performance degradation occurs at higher energies.

Ryutov, D.D.; Bionta, R.M.; Hau-Riege, S.P.; Kishiyama, K.I.; Roeben, M.D.; Shen, S.; /LLNL, Livermore; Stefan, P.M.; /SLAC; ,

2010-11-17T23:59:59.000Z

76

Effect of operating parameters and anode gas impurities upon polymer electrolyte fuel cells  

SciTech Connect (OSTI)

PEM fuel cells are actively under development for transportation and other applications. Integration of a PEM fuel cell stack with a methanol reformer requires an understanding of single cell performance under a range of operating conditions using anode gas contaminated with impurities. The effect of temperature, pressure, and anode gas impurities on single cell PEM performance was investigated with platinum black electrodes. Single cell performance remained unchanged as temperature was varied between 80 and 100 at 3 atm pressure. High water partial pressures at 120C produced a mass transfer limiting current. While operation at 120C did not reverse CO{sub 2} poisoning, anode air addition proved effective. Air injection also decreased CO poisoning at injected concentrations up to 200 ppm CO. Higher single cell tolerance was observed for CH{sub 3}OH than CO. Up to 1 mole % CH{sub 3}OH in the gas phase reduced the current density by less than 10%.

Weisbrod, K.R.; Vanderborgh, N.E.

1994-07-01T23:59:59.000Z

77

Apparatus for operating a gas and oil producing well  

SciTech Connect (OSTI)

Apparatus is disclosed for automatically operating a gas and oil producing well of the plunger lift type, including a comparator for comparing casing and tubing pressures, a device for opening the gas delivery valve when the difference between casing and tubing pressure is less than a selected minimum value, a device for closing the gas discharge valve when casing pressure falls below a selected casing bleed value, an arrival sensor switch for initially closing the fluid discharge valve when the plunger reaches the upper end of the tubing, and a device for reopening the fluid discharge valve at the end of a given downtime period in the event that the level of oil in the tubing produces a pressure difference greater than the given minimum differential value, and the casing pressure is greater than lift pressure. The gas discharge valve is closed if the pressure difference exceeds a selected maximum value, or if the casing pressure falls below a selected casing bleed value. The fluid discharge valve is closed if tubing pressure exceeds a maximum safe value. In the event that the plunger does not reach the upper end of the tubing during a selected uptime period, a lockout indication is presented on a visual display device, and the well is held shut-in until the well differential is forced down to the maximum differential setting of the device. When this occurs, the device will automatically unlock and normal cycling will resume.

Wynn, S. R.

1985-07-02T23:59:59.000Z

78

Vehicle Investment and Operating Costs and Savings for Greenhouse Gas Mitigation Strategies  

Broader source: Energy.gov [DOE]

To help estimate costs of implementing greenhouse gas (GHG) mitigation strategies for vehicles, the table below provides the initial investment, operating costs, and operating savings for each strategy.

79

Wetland regulations affecting coal mining and oil and gas operations  

SciTech Connect (OSTI)

Although the total acreage of wetlands in Appalachia is relatively small, the impact of wetlands on coal mining and the oil and gas industry can be significant. Wetlands are strongly protected from degradation and diminution under both federal and state regulatory programs, and both environmental protection groups and the public are concerned about the disturbance of natural wetlands. If an owner or operator of site is unable to obtain an appropriate permit, the presence of wetlands may completely preclude energy development. This article strives to provide an insight into the regulatory scheme surrounding wetlands and the risks of wetlands development.

Tokarz, A.P. [Bowles Rice McDavid Graff & Love, Charleston, WV (United States); Dulin, B.E. [Univ. Center for Environmental, Geotechnical, and Applied Sciences, Huntington, WV (United States)

1995-12-31T23:59:59.000Z

80

Independent Activity Report, Richland Operations Office - April 2013 |  

Broader source: Energy.gov (indexed) [DOE]

3 3 Independent Activity Report, Richland Operations Office - April 2013 April 2013 Operational Awareness of a Department of Energy Richland Operations Office Fire Protection Surveillance [HIAR-RL-2013-04-08] The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), performed an onsite operational awareness review of a DOE Richland Operations Office (DOE-RL) fire protection surveillance. Independent Activity Report, Richland Operations Office - April 2013 More Documents & Publications Independent Activity Report, Richland Operations Office - April 2011 Independent Activity Report, Hanford Sludge Treatment Project - February 2012 Independent Activity Report, Richland Operations Office - June 201

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The landfill gas activity of the IEA bioenergy agreement  

Science Journals Connector (OSTI)

Landfill gas (LFG) is a renewable source of useful energy. Its world wide annual energy potential is in the range of a few hundred TWh. Today it is only marginally exploited. LFG is also an important contributor to the atmospheres CH4-content, it can be estimated to contribute about 25% of the methane coming from anthropogenic sources. In comparison to many other sources of methane emissions such as peat bogs, rice paddies, termites and sheep, landfills can be considered to be point sources, i.e. they are stationary and of limited extension. For this reason landfill gas (LFG) utilisation is one of the most cost effective ways to combat the greenhouse effect. The aim of the IEA activity on LFG is to promote information exchange and co-operation between national programmes in order to promote the proliferation of landfill gas utilisation. During the period 1992–1994 the LFG activity has had six participating countries: Canada, Denmark, Norway, The Netherlands, Sweden, UK and USA. In the past three-year period, the activity has been mainly directed towards establishing networks and obtaining an over-view of data related to LFG in the member countries. Numerous contacts have been established and perhaps of most importance for the future of the activity are the links towards organisations involved in the development of landfill technology, such as ISWA and SWANA. The gathering and evaluation of data within the LFG area from the member countries has resulted in a number of documents that are to be published within the near future. These documents cover information on LFG utilisation, landfill research, landfill gas potentials, landfill emission assessment and also non-technical barriers to LFG utilisation.

A Lagerkvist

1995-01-01T23:59:59.000Z

82

Technology Solutions for Mitigating Environmental Impacts of Oil and Gas E&P Activity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Solutions for Mitigating Technology Solutions for Mitigating Environmental Impacts of Oil and Gas E&P Activity The mission of the Environmental Program is to promote a reliable, affordable, and secure supply of domestic oil and clean-burning natural gas, by providing cost-effective environmental regulatory compliance technologies, enhancing environmental protections during oil and gas E&P operations, and facilitating the development and use of scientific, risk-based environmental regulatory frameworks.

83

Gas Release During Saltwell Pumping: Interpretation of Operational Data  

SciTech Connect (OSTI)

The Hanford Site has 149 single-shell tanks (SSTs) containing radioactive waste that is a complex mix of radioactive and chemical products. Of these, 67 are known or suspected to have leaked liquid into the surrounding soil, while 82 are considered sound (Hanlon 1999). To minimize the amount of material that potentially could leak into the surrounding soil, all of the SSTs are scheduled to have drainable liquid removed and to be designated as interim stabilized. Of the SSTs, 119 have been declared stabilized, and only 30 require further processing (Hanlon 1999). Many of the tanks have been declared stabilized administratively, with only 45 tanks having had drainable liquid removed. The pending consent decree between the Washington State Department of Ecology and the Office of River Protection. (U.S. District Court Eastern District of Washington, 1999) sets a milestone to complete interim stabilization by September 2004. While process equipment exists for removing drainable liquid, and its operation is well known from previous pumping campaigns, a number of safety issues associated with the release and potential ignition of flammable gases within the tanks needs to be addressed. The safety concerns associated with flammable gases stem from the observation that some of the waste in the SSTs generates and retains hazardous quantities of flammable gases, including hydrogen, nitrous oxide, and ammonia. Of the 30 SSTs remaining to be declared interim stabilized, 29 need to have drainable liquid removed by saltwell pumping (waste in tank 241-C-106 will be removed by sluicing), and 16 of these are on the Flammable Gas Watch List (FGWL) (Hopkins 1995; Hanlon 1999). Most of these tanks are in Facility Group 2 (Noorani 1997); that is, it is believed that tank operations may induce the release of significant quantities of flammable gas, but gas release does not occur spontaneously. In particular, saltwell pumping to remove the interstitial liquid from SSTs is expected to cause the release of much of the retained gas, both insoluble (principally hydrogen) and soluble (principally ammonia), posing a number of safety concerns (Peurrung et al. 1997; Meader 1996).

J.L. Huckaby; L.M. Peurrung; P.A. Gauglitz

1999-09-16T23:59:59.000Z

84

Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report  

SciTech Connect (OSTI)

This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity.

Francfort; Donald Karner; Roberta Brayer

2006-09-01T23:59:59.000Z

85

Gas Companies Operating Within the State of Connecticut (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations apply a broad definition of “gas company”, which includes any person or entity involved in the manufacture or transportation of gas within Connecticut. The regulations set...

86

Independent Activity Report, Richland Operations Office - June 2011 |  

Broader source: Energy.gov (indexed) [DOE]

June 2011 June 2011 Independent Activity Report, Richland Operations Office - June 2011 June 2011 Hanford Cold Vacuum Drying Facility, Multi-Canister Overpack, Operational Proficiency Demonstration [HIAR-RL-2011-06-22] The U.S. Department of Energy's (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), performed an operational awareness review of the Cold Vacuum Drying Facility, Multi-Canister Overpack, Operational Proficiency Demonstration. Independent Activity Report, Richland Operations Office - June 2011 More Documents & Publications Independent Oversight Review, Hanford K Basin and Cold Vacuum Drying Facility - August 2012 Independent Activity Report, Richland Operations Office - January 2011 Independent Activity Report, Richland Operations Office - June 2011

87

Independent Activity Report, Richland Operations Office - June 2011 |  

Broader source: Energy.gov (indexed) [DOE]

June 2011 June 2011 Independent Activity Report, Richland Operations Office - June 2011 June 2011 Hanford Cold Vacuum Drying Facility, Multi-Canister Overpack, Operational Proficiency Demonstration [HIAR-RL-2011-06-22] The U.S. Department of Energy's (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), performed an operational awareness review of the Cold Vacuum Drying Facility, Multi-Canister Overpack, Operational Proficiency Demonstration. Independent Activity Report, Richland Operations Office - June 2011 More Documents & Publications Independent Oversight Review, Hanford K Basin and Cold Vacuum Drying Facility - August 2012 Independent Activity Report, Hanford Sludge Treatment Project - February 2012 Independent Activity Report, Richland Operations Office - June

88

Independent Activity Report, Savannah River Operation - June 2010 |  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Operation - June 2010 Savannah River Operation - June 2010 Independent Activity Report, Savannah River Operation - June 2010 June 2010 Savannah River Operations Office Self-Assessment of the Technical Qualification Program The U.S. Department of Energy (DOE), Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), participated in the DOE Savannah River Operations Office (DOE-SR) self-assessment of the Technical Qualification Program (TQP). Independent Activity Report, Savannah River Operation - June 2010 More Documents & Publications Independent Oversight Review, Savannah River Operations Office - July 2013 Independent Activity Report, Savannah River Remediation - July 2010 2011 Annual Workforce Analysis and Staffing Plan Report - Savannah River

89

Next Generation Natural Gas Vehicle Activity: Natural Gas Engine and Vehicle Research & Development (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the status of the Next Generation Natural Gas Vehicle (NGNGV) activity, including goals, R&D progress, NGV implementation, and the transition to hydrogen.

Not Available

2003-09-01T23:59:59.000Z

90

Independent Activity Report, Richland Operations Office - June 2011 |  

Broader source: Energy.gov (indexed) [DOE]

Independent Activity Report, Richland Operations Office - June 2011 Independent Activity Report, Richland Operations Office - June 2011 Independent Activity Report, Richland Operations Office - June 2011 June 2011 Hanford Sludge Treatment Project Review [HIAR-RL-2011-06-17] The U.S. Department of Energy's (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), performed operational awareness reviews of the Sludge Treatment Project (STP), Engineered Container Retrieval and Transfer System (ECRTS) during site visits. Independent Activity Report, Richland Operations Office - June 2011 More Documents & Publications Independent Activity Report, Richland Operations Office - April 2011 Independent Activity Report, Hanford Sludge Treatment Project - February 2012 Independent Activity Report, Richland Operations Office - August 2011

91

Independent Activity Report, Richland Operations Office - April...  

Office of Environmental Management (EM)

April 2013 Operational Awareness of a Department of Energy Richland Operations Office Fire Protection Surveillance HIAR-RL-2013-04-08 The U.S. Department of Energy (DOE)...

92

Gas-flow-induced controlled unidirectional operation of a CO2 ring laser  

Science Journals Connector (OSTI)

It is shown experimentally and theoretically that axial gas flow leads to controlled unidirectional operation of a CO2 ring laser. The direction of emission, clockwise or...

Boulnois, J L; Agrawal, Govind P; Bret, G; Cottin, P; Van Lerberghe, A

1985-01-01T23:59:59.000Z

93

Systems acceptance and operability testing for rotary mode core sampling in flammable gas tanks  

SciTech Connect (OSTI)

This document provides instructions for the system acceptance and operability testing of the rotary mode core sampling system, modified for use in flammable gas tanks.

Corbett, J.E., Westinghouse Hanford

1996-07-29T23:59:59.000Z

94

Gas-liquid separator and method of operation  

DOE Patents [OSTI]

A system for gas-liquid separation in electrolysis processes is provided. The system includes a first compartment having a liquid carrier including a first gas therein and a second compartment having the liquid carrier including a second gas therein. The system also includes a gas-liquid separator fluidically coupled to the first and second compartments for separating the liquid carrier from the first and second gases.

Soloveichik, Grigorii Lev (Latham, NY); Whitt, David Brandon (Albany, NY)

2009-07-14T23:59:59.000Z

95

Operational Awareness Records and Activity Reports | Department...  

Office of Environmental Management (EM)

Oversight Activity Report, National Nuclear Security Administration Production Office - March 10-14, 2014 Contractor Transition Activities for the National Nuclear Security...

96

Sensitivity of Optimal Operation of an Activated Sludge Process Model  

E-Print Network [OSTI]

Sensitivity of Optimal Operation of an Activated Sludge Process Model Antonio Araujo, Simone sensitivity analysis of optimal operation conducted on an activated sludge process model based on the test.[7] applied a systematic procedure for control structure design of an activated sludge process

Skogestad, Sigurd

97

A Semi-Lagrangian Approach for Natural Gas Storage Valuation and Optimal Operation  

E-Print Network [OSTI]

A Semi-Lagrangian Approach for Natural Gas Storage Valuation and Optimal Operation Zhuliang Chen such as fuel and electricity, natural gas prices exhibit seasonality dynamics due to fluctuations in demand [28]. As such, natural gas storage facilities are constructed to provide a cushion for such fluctuations

Forsyth, Peter A.

98

,"New York Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

"Sourcekey","N5030NY2","N5010NY2","N5020NY2","N5070NY2","N5050NY2","N5060NY2" "Date","New York Natural Gas Underground Storage Volume (MMcf)","New York Natural Gas in...

99

Practical Operation of Prep-Scale Gas Chromatographic Units  

Science Journals Connector (OSTI)

......given in Table I. The cost of a recycling unit is...nitrogen is used as carrier gas. For narrower columns it depends on the length of production cycles. Once a recycling unit is used, the carrier gas cost becomes negligible, and......

B. Roz; R. Bonmati; G. Hagenbach; P. Valentin; G. Guiochon

1976-08-01T23:59:59.000Z

100

EMAB Briefing on Capital Assets Projects and Operations Activities...  

Office of Environmental Management (EM)

Asset Projects and Operations Activities www.em.doe.gov 1 Presented to Environmental Management Advisory Boards Mark Gilbertson Deputy Assistant Secretary for Site Restoration...

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NETL: News Release - New Projects to Help Operators See Oil, Gas Formations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Help Operators "See" Oil, Gas Formations More Clearly Help Operators "See" Oil, Gas Formations More Clearly Six Research Teams to Develop Advanced Diagnostics And Imaging Technologies for Oil, Gas Fields TULSA, OK - If oil and gas producers could "see" hydrocarbon-bearing formations more accurately from the surface or from nearby wellbores, they can position new wells more precisely to produce more oil or gas with less risk and ultimately, at lower costs. For many producers in the United States, especially smaller producers operating on razor-thin margins, advanced diagnostics and imaging systems can help them in business. By visualizing the barriers and pathways for the flow of oil and gas through underground rock formations, producers can avoid dry holes and increase ultimate recovery.

102

Independent Activity Report, Richland Operations Office - June...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

June 13-17, 2011, at the Sludge Treatment Project at the Department of Energy's (DOE) Hanford Site. The activity consisted of touring project test facilities and reviewing test...

103

Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Released: September 28, 2010 Next Release: Discontinued Excel Spreadsheet Model - 1994-2009 XLS (1,178 KB) Overview Oil and gas well equipment and operating costs, including coal bed methane costs, stopped their upward trend from the 1990s and fell sharply in 2009. The extremely high oil and gas prices during the first half of 2008 followed by an unprecedented drop to very low prices by the end of the year had a major impact on equipment demand. Operating costs tumbled also because fuel costs were reduced and well servicing rates fell in most areas. The exceptions were in California where electric rates continued to increase, causing a one (1) percent increase in annual operating costs for leases producing from 12,000 feet. Operating cost for coal bed methane wells in the Appalachian and Powder River areas increased because electric rates continued to climb. Due to the timing of the data collection, the cost reported here could be higher than the actual annual average for 2008. However, some production costs (labor and equipment) are not as volatile as drilling, pipe, and other well completion costs, so the effect of the oil and gas prices on collected data may be lessened. Annual average electric rates and natural gas prices are used, which also helps to dampen cost variances.

104

Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal  

Open Energy Info (EERE)

Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal System- A Case Study Of The Geysers Geothermal Field, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal System- A Case Study Of The Geysers Geothermal Field, Usa Details Activities (1) Areas (1) Regions (0) Abstract: Hydrothermal alteration and the active vapor-dominated geothermal system at The Geysers, CA are related to a composite hypabyssal granitic pluton emplaced beneath the field 1.1 to 1.2 million years ago. Deep drill holes provide a complete transect across the thermal system and samples of the modern-day steam. The hydrothermal system was liquid-dominated prior to formation of the modern vapor-dominated regime at 0.25 to 0.28 Ma. Maximum

105

Crude Oil and Natural Gas Drilling Activity  

Gasoline and Diesel Fuel Update (EIA)

Jul-14 Aug-14 Sep-14 Oct-14 Nov-14 Dec-14 View History Rotary Rigs in Operation 1,876 1,904 1,930 1,924 1,925 1,882 1973-2014 By Site Onshore 1,819 1,842 1,866 1,867 1,872 1,824...

106

Crude Oil and Natural Gas Drilling Activity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jun-14 Jul-14 Aug-14 Sep-14 Oct-14 Nov-14 View History Rotary Rigs in Operation 1,861 1,876 1,904 1,930 1,924 1,925 1973-2014 By Site Onshore 1,804 1,819 1,842 1,866 1,867 1,872...

107

Effect of Cooling Flow on the Operation of a Hot Rotor-Gas Foil Bearing System  

E-Print Network [OSTI]

Gas foil bearings (GFBs) operating at high temperature rely on thermal management procedures that supply needed cooling flow streams to keep the bearing and rotor from overheating. Poor thermal management not only makes systems inefficient...

Ryu, Keun

2012-02-14T23:59:59.000Z

108

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect (OSTI)

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-01-01T23:59:59.000Z

109

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect (OSTI)

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-12-01T23:59:59.000Z

110

Independent Activity Report, Hanford Operations Office - July 2010 |  

Broader source: Energy.gov (indexed) [DOE]

Independent Activity Report, Hanford Operations Office - July 2010 Independent Activity Report, Hanford Operations Office - July 2010 Independent Activity Report, Hanford Operations Office - July 2010 July 2010 Joint Assessment of the Effectiveness of Corrective Actions for the Building 336 Accident The U.S. Department of Energy, Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), and the Richland Operations Office (RL) performed a joint effectiveness assessment of the corrective actions taken by Washington Closure Hanford, LLC (WCH) in response to the Building 336 Fall Event. The review was conducted from July 12-21, 2010, by a team consisting of four HSS and six RL personnel. The scope of the assessment included evaluation of work control, fall protection, quality assurance, and conduct of operations.

111

Quantifying Greenhouse Gas Emissions from Human Activities: Toward  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quantifying Greenhouse Gas Emissions from Human Activities: Toward Quantifying Greenhouse Gas Emissions from Human Activities: Toward Verification of Emissions Control Compliance Speaker(s): Marc Fischer Date: April 29, 2010 - 12:00pm Location: 90-3122 Local to international control of anthropogenic greenhouse gas (GHG) emissions will require systematic estimation of emissions and independent verification. California, the only state in the US with legislated controls on GHG emissions, is conducting research to enable emissions verification of the mandated emissions reductions (AB-32). The California Energy Commission supports the California Greenhouse Gas Emissions Measurement (CALGEM) project at LBNL. In collaboration with NOAA, CALGEM measures mixing ratios of all significant GHGs at two tall-towers and on aircraft in

112

Natural catalytic activity in a marine shale for generating natural gas  

Science Journals Connector (OSTI)

...natural catalytic activity in marine shales. Gas is generated at ambient temperatures...differences are in degree. Mowry shale generates gas compositions that are quite different...probably a major source of natural gas. Mowry shale generates gas at thermodynamic...

2010-01-01T23:59:59.000Z

113

Active constraint regions for optimal operation of distillation columns  

E-Print Network [OSTI]

Active constraint regions for optimal operation of distillation columns Magnus G. Jacobsen the control structure of distillation columns, with optimal operation in mind, it is important to know how for distillation columns change with variations in energy cost and feed flow rate. The production of the most

Skogestad, Sigurd

114

Preliminary analysis of fission gas behavior and fuel response during an LMFBR operational transient  

SciTech Connect (OSTI)

This summary presents results obtained from a preliminary analysis of gas behavior and oxide fuel response during an LMFBR operational transient. The DiMelfi and Deitrich model is extrapolated to operational transient regimes to delineate brittle versus ductile fuel response modes. All pertinent parameters necessary for application of the DiMelfi and Deitrich model were obtained from the LIFE-3 code.

Liu, Y.Y.

1983-01-01T23:59:59.000Z

115

U.S. Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 6,235,025 6,652,218 7,026,645 7,302,127 7,572,885 7,928,016

116

New York Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 165,802 176,083 189,103 195,374 204,838 215,729 1990-2013

117

New Mexico Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 65,129 64,289 62,901 61,506 61,449 63,300 1990-2013

118

New Mexico Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 66,524 65,129 64,289 62,901 61,506 61,449 1990-2013

119

Influence of steam injection and hot gas bypass on the performance and operation of a combined heat and power system using a recuperative cycle gas turbine  

Science Journals Connector (OSTI)

The influence of steam injection and hot gas bypass on the performance and operation of ... power (CHP) system using a recuperative cycle gas turbine was investigated. A full off-design analysis ... in steam gene...

Soo Young Kang; Jeong Ho Kim; Tong Seop Kim

2013-08-01T23:59:59.000Z

120

Independent Activity Report, Richland Operations Office - January 2011 |  

Broader source: Energy.gov (indexed) [DOE]

Independent Activity Report, Richland Operations Office - January Independent Activity Report, Richland Operations Office - January 2011 Independent Activity Report, Richland Operations Office - January 2011 January 2011 Presentation of Questions Associated With the Safety Analysis Report for Packaging (Onsite) Multi-Canister Overpack Cask [ARPT-RL-2011-001] The U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security, during a site visit from January 10-14, 2011, presented the results of a technical review of the Safety Analysis Report (SAR) for Packaging (Onsite) Multi-Canister Overpack (MCO) Cask HNF-SD-SARP-017, Rev. 3, to DOE Richland Operations Office (RL) representatives. The presentation was supported by a detailed document that discussed the individual questions.

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ENVIRONMENTAL EFFECTS IN GALAXIES: MOLECULAR GAS AND NUCLEAR ACTIVITY  

E-Print Network [OSTI]

ENVIRONMENTAL EFFECTS IN GALAXIES: MOLECULAR GAS AND NUCLEAR ACTIVITY DUILIA DE MELLO and TOMMY;ENVIRONMENTAL EFFECTS IN GALAXIES 69 a. log(MH2 /LB) versus Morphology b. Kolmogorov-Smirnov Statistic Figure 2 in dense envir- onments and in the field and to study whether there is any correlation between nuclear

Maia, Marcio Antonio Geimba

122

On the Radio-activity of Natural Gas  

Science Journals Connector (OSTI)

... Physical Science Series, an account is given of some experiments with a highly radio-active gas obtained from crude petroleum. In this investigation it was found that air drawn through ... emanation from radium. The present writer has extended this investigation to an examination of the natural ...

J. C. MCLENNAN

1904-06-16T23:59:59.000Z

123

,"U.S. Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6/30/1935" U.S. Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6/30/1935" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_stor_sum_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_stor_sum_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 7:04:06 PM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage - All Operators" "Sourcekey","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Net Withdrawals (MMcf)","U.S. Total Natural Gas Injections into Underground Storage (MMcf)","U.S. Natural Gas Underground Storage Withdrawals (MMcf)"

124

Costs and indices for domestic oil and gas field equipment and production operations 1994 through 1997  

SciTech Connect (OSTI)

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1994, 1995, 1996, and 1997. The costs of all equipment and services are those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (compliance costs and lease availability) have a significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas equipment and production operations.

NONE

1998-03-01T23:59:59.000Z

125

Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993  

SciTech Connect (OSTI)

This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations.

Not Available

1994-07-08T23:59:59.000Z

126

Performance of an Internal Combustion Engine Operating on Landfill Gas and the Effect of Syngas Addition  

Science Journals Connector (OSTI)

Performance of an Internal Combustion Engine Operating on Landfill Gas and the Effect of Syngas Addition ... The performance of a four-stroke Honda GC160E spark ignition (SI) internal combustion (IC) engine operating on landfill gas (LFG) was investigated, as well as the impact of H2 and CO (syngas) addition on emissions and engine efficiency. ... In addition, variation across both the syngas content (up to 15%) and the ratio of H2 to CO in the syngas (H2/CO = 0.5, 1, and 2) were tested. ...

McKenzie P. Kohn; Jechan Lee; Matthew L. Basinger; Marco J. Castaldi

2011-02-07T23:59:59.000Z

127

Influence of electrolytes and membranes on cell operation for syn-gas production  

SciTech Connect (OSTI)

The impact of membrane type and electrolyte composition for the electrochemical generation of synthesis gas (CO + H2) using a Ag gas diffusion electrode are presented. Changing from a cation exchange membrane to an anion exchange membrane (AEM) extended the cell operational time at low Ecell values (up to 4x) without impacting product composition. The use of KOH as the catholyte decreased the Ecell and resulted in a minimum electrolyte cost reduction of 39%. The prime factor in determining operational time at low Ecell values was the ability to maintain a sufficiently high anolyte pH.

Eric J. Dufek; Tedd E. Lister; Michael E. McIlwain

2012-02-01T23:59:59.000Z

128

EIA - Natural Gas Exploration & Reserves Data and Analysis  

Gasoline and Diesel Fuel Update (EIA)

natural gas, and lease condensate (annual). Crude Oil and Natural Gas Drilling Activity Rotary rigs in operation, footage drilled, and active well service rig counts (monthly,...

129

Popular Epidemiology and “Fracking”: Citizens’ Concerns Regarding the Economic, Environmental, Health and Social Impacts of Unconventional Natural Gas Drilling Operations  

Science Journals Connector (OSTI)

Pennsylvania sits atop the Marcellus Shale, a reservoir of natural gas that was untapped until the 2004 introduction of unconventional natural gas drilling operations (UNGDO) in the state. Colloquially known as fracking

Martha Powers; Poune Saberi; Richard Pepino; Emily Strupp…

2014-11-01T23:59:59.000Z

130

Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities  

SciTech Connect (OSTI)

In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

Bent, Jimmy

2014-05-31T23:59:59.000Z

131

Independent Activity Report, Richland Operations Office - April 2011 |  

Broader source: Energy.gov (indexed) [DOE]

1 1 Independent Activity Report, Richland Operations Office - April 2011 April 2011 Operational Awareness Review of the Hanford Sludge Treatment Project [HIAR-RL-2011-04-07] The U.S. Department of Energy's Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), performed operational awareness reviews of the Sludge Treatment Project (STP), Engineered Container Retrieval and Transfer System (ECRTS) during site visits. On November 17, 2010, a HSS representative participated in a tour of the STP test facility. The HSS representative was also briefed by the Department of Energy Richland Operations Office (DOE-RL) Project Engineer, the CHPRC STP Design Manager, and the DOE-RL principal support contract engineer. The HSS representative walked down the major components of the

132

Thermal Cyclic Creep and Long-Term Strength of the Material of Aircraft Gas Turbine Blades after Operation  

Science Journals Connector (OSTI)

The remaining thermal cyclic creep and long-term strength life of the material of aircraft gas turbine blades after operation has been determined experimentally....

B. S. Karpinos; V. V. Samuleev; B. A. Lyashenko; E. V. Lais’ke…

2013-09-01T23:59:59.000Z

133

Worcester 1 Inch Solenoid Actuated Gas Operated VPS System Ball Valve  

SciTech Connect (OSTI)

1 inch Gas-operated full-pod ball valve incorporates a solenoid and limit switches as integral park of the actuator. The valve is normally open and fails safe to the closed position. The associated valve position switch is class GS.

MISKA, C.R.

2000-11-13T23:59:59.000Z

134

Operation of ferroelectric plasma sources in a gas discharge modea... A. Dunaevskyb)  

E-Print Network [OSTI]

. Fisch Princeton Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, New JerseyOperation of ferroelectric plasma sources in a gas discharge modea... A. Dunaevskyb) and N. J plasma sources in vacuum are known as sources of ablative plasma, formed due to surface discharge

135

,"Delaware Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:28:50 PM"

136

,"Idaho Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050id2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050id2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:28:51 PM"

137

,"Alaska Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

All Operators (MMcf)" All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5070ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5070ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:42 PM"

138

,"South Carolina Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050sc2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050sc2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:07 PM"

139

,"Wisconsin Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1973 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050wi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050wi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:12 PM"

140

,"Alaska Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:28:46 PM"

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

,"Connecticut Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1996 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050ct2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050ct2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:28:50 PM"

142

,"Georgia Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050ga2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050ga2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:28:50 PM"

143

HERA-B Gas Systems The gas mixture, the gas volume of the corresponding detector and the required gas flow are given. All detectors are operating at nominal  

E-Print Network [OSTI]

stations in external gas hut 6 nonflammable pressure reducer stations CF4, Xe, CO2, Ar/CF4, reserve, reserve 3 flammable pressure reducer stations C2H6O, CH4, Ar/CH4 2 stations for cool liquids Ar, N2 4 gas stations without recyling ITR, high pt inner, high pt outer, Muon pixel 4 gas stations with gas recyling

144

Phase 1 immobilized low-activity waste operational source term  

SciTech Connect (OSTI)

This report presents an engineering analysis of the Phase 1 privatization feeds to establish an operational source term for storage and disposal of immobilized low-activity waste packages at the Hanford Site. The source term information is needed to establish a preliminary estimate of the numbers of remote-handled and contact-handled waste packages. A discussion of the uncertainties and their impact on the source term and waste package distribution is also presented. It should be noted that this study is concerned with operational impacts only. Source terms used for accident scenarios would differ due to alpha and beta radiation which were not significant in this study.

Burbank, D.A.

1998-03-06T23:59:59.000Z

145

Ammonia-Activated Mesoporous Carbon Membranes for Gas Separations  

SciTech Connect (OSTI)

Porous carbon membranes, which generally show improved chemical and thermal stability compared to polymer membranes, have been used in gas separations for many years. In this work, we show that the post-synthesis ammonia treatment of porous carbon at elevated temperature can improve the permeance and selectivity of these membranes for the separation of carbon dioxide and hydrocarbons from permanent gases. Hierarchically structured porous carbon membranes were exposed to ammonia gas at temperatures ranging from 850 C to 950 C for up to 10 min and the N{sub 2}, CO{sub 2}, and C{sub 3}H{sub 6} permeances were measured for these different membranes. Higher treatment temperatures and longer exposure times resulted in higher gas permeance values. In addition, CO{sub 2}/N{sub 2} and C{sub 3}H{sub 6}/N{sub 2} selectivities increased by a factor of 2 as the treatment temperature and time increased up to a temperature and time of 900 C, 10 min. Higher temperatures showed increased permeance but decreased selectivity indicating excess pore activation. Nitrogen adsorption measurements show that the ammonia treatment increased the porosity of the membrane while elemental analysis revealed the presence of nitrogen-containing surface functionalities in the treated carbon membranes. Thus, ammonia treatment at high temperature provides a controlled method to introduce both added microporosity and surface functionality to enhance gas separations performance of porous carbon membranes.

Mahurin, Shannon Mark [ORNL; Lee, Jeseung [ORNL; Wang, Xiqing [ORNL; Dai, Sheng [ORNL

2011-01-01T23:59:59.000Z

146

Environment/Health/Safety (EHS): Operating Permits for LBNL Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Operating Permits for LBNL Activities Operating Permits for LBNL Activities LBNL Main Site Agency Expiration Date Certified Unified Program Agency Permit and Registration Hazardous Materials Release Response Plan (Hazardous Materials Business Plan) Aboveground Petroleum Storage Tanks, Spill Prevention Control and Countermeasures Plan Underground Storage Tank Program Hazardous Waste Generator Program Tiered Permit Program for Onsite Treatment of Hazardous Wastes City of Berkeley March 1, 2014 Fuel Dispensing Sources at Building 76: E85 Unleaded Bay Area Air Quality Management District July 1, 2014 Stationary Air Emission Sources (28 permits): Diesel-powered Emergency Standby Generators: Buildings 2, 31, 37(2), 48, 50A, 50B, 55, 62, 64(2), 66, 67, 68, 70, 70A, 72, 74, 77, 84B, 85 and three (3) portable units

147

Impact of Siloxane Impurities on the Performance of an Engine Operating on Renewable Natural Gas  

Science Journals Connector (OSTI)

Impact of Siloxane Impurities on the Performance of an Engine Operating on Renewable Natural Gas ... Biogas from sludge biodegradation in wastewater treatment plants (WWTP) and landfill gas (LFG) generated from the decomposition of solid waste in landfills are both promising renewable fuels, as they contain a large fraction of methane, 40–70% by volume, the rest being CO2, together with smaller amounts of other gases like O2, N2, and Ar. ... In these studies two Honda EU2000i gasoline electric generators were utilized. ...

Nitin Nair; Xianwei Zhang; Jorge Gutierrez; Jack Chen; Fokion Egolfopoulos; Theodore Tsotsis

2012-11-13T23:59:59.000Z

148

International oil and gas exploration and development activities  

SciTech Connect (OSTI)

This report is part of an ongoing series of quarterly publications that monitors discoveries of oil and natural gas in foreign countries and provides an analysis of the reserve additions that result. The report is prepared by the Energy Information Administration (EIA) of the US Department of Energy (DOE) under the Foreign Energy Supply Assessment Program (FESAP). It presents a summary of discoveries and reserve additions that result from recent international exploration and development activities. It is intended for use by petroleum industry analysts, various government agencies, and political leaders in the development, implementation, and evaluation of energy plans, policy, and legislation. 25 refs., 8 figs., 4 tabs.

Not Available

1990-10-29T23:59:59.000Z

149

Selection and preparation of activated carbon for fuel gas storage  

DOE Patents [OSTI]

Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

Schwarz, James A. (Fayetteville, NY); Noh, Joong S. (Syracuse, NY); Agarwal, Rajiv K. (Las Vegas, NV)

1990-10-02T23:59:59.000Z

150

Costs and indices for domestic oil and gas field equipment and production operations, 1992--1995  

SciTech Connect (OSTI)

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1992, 1993, 1994, and 1995. The costs of all equipment and services are those in effect during June of each year. The sum (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measured do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables.

NONE

1996-08-01T23:59:59.000Z

151

A theoretical and experimental investigation of gas operated bearing dampers for turbomachinery  

E-Print Network [OSTI]

, therefore, no longer be viable candidates for controlling engine dynamic response . In the non-oil, high temperature environment of future military engines, a suitable replacement for the squeeze film damper must be found. These engines, with their light...A THEORETICAL AND EXPERIMENTAL INVESTIGATION OF GAS OPERATED BEARING DAMPERS FOR TURBOMACHINERY A Thesis by PADMANABHAN SUNDARARAJAN Submitted to the Office of Graduate Studies of Texas AS' University in Partial fulfillment...

Sundararajan, Padmanabhan

2012-06-07T23:59:59.000Z

152

Source Signature of Volatile Organic Compounds from Oil and Natural Gas Operations in Northeastern Colorado  

Science Journals Connector (OSTI)

Source Signature of Volatile Organic Compounds from Oil and Natural Gas Operations in Northeastern Colorado ... Only 4% of all samples at BAO had high ROH+VOCO&NG and were from the western sector where the nearest wells are located indicating that they were not the dominant O&NG source at BAO. ... parameters were measured concurrently at a site on the western perimeter of Boulder, Colorado, during Feb., 1991. ...

J. B. Gilman; B. M. Lerner; W. C. Kuster; J. A. de Gouw

2013-01-14T23:59:59.000Z

153

Effect of Siloxanes Contained in Natural Gas on the Operation of a Residential Furnace  

Science Journals Connector (OSTI)

(1) Many facilities exist worldwide that use biomethane (biogas or LFG) for the production of power or electricity, and concerns about global warming are likely to encourage their further capture and utilization. ... Because of the challenges siloxanes present to the beneficial use of biomethane, they have attracted the attention of researchers in the renewable energy area. ... (14) Regeneration involves burning the off-gas, which releases silica particulates into the atmosphere and consumes biomethane to operate the incinerators. ...

Nitin Nair; Arjun Vas; Tongyu Zhu; Wenjing Sun; Jorge Gutierrez; Jack Chen; Fokion Egolfopoulos; Theodore T. Tsotsis

2013-04-11T23:59:59.000Z

154

,"Idaho Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (MMcf)" Net Withdrawals All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5070id2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5070id2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:46 PM"

155

,"South Carolina Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (MMcf)" Net Withdrawals All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5070sc2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5070sc2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:00 PM"

156

,"Georgia Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (MMcf)" Net Withdrawals All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5070ga2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5070ga2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:45 PM"

157

,"Delaware Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (MMcf)" Net Withdrawals All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5070de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5070de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:45 PM"

158

Operator Trainer System for the Petrobras P-26 Semi-Submersible Oil and Gas Production Unit  

Science Journals Connector (OSTI)

Abstract Operator trainer systems aim to improve operator performance, by simulating scenarios such as emergency conditions, thus reducing accidents and increasing processes economical results. In this paper, we present PETROBRAS' Oil & Gas Production Process and Utilities Simulator Environment called AMBTREI (Training Environment) that mimics the actual Control Room of an E&P semi-submersible Platform at a very high fidelity level. This training environment was created utilizing Soteica's Operator Training System solution (S-OTS). The dynamic process model will be described as well as the Process Control Interface that was implemented. The software used will be explained in detail and the conclusions that have been reached in almost 2 years of use will be presented.

A.C. Pereira; A. Riera; G. Padilla; E. Musulin; N.J. Nakamura

2009-01-01T23:59:59.000Z

159

,"Connecticut Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (MMcf)" Net Withdrawals All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)",1,"Annual",1996 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5070ct2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5070ct2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:45 PM"

160

THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION  

SciTech Connect (OSTI)

An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

Shassere, Benjamin [ORNL] [ORNL; West, David L [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Evans III, Boyd Mccutchen [ORNL] [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fast valve and nozzle for gas-puff operation of dense plasma focus  

Science Journals Connector (OSTI)

A simple and reliable valve and nozzle system for a very fast injection of gas has been designed and constructed for its use in gas-puff mode of dense plasma focus experiments. It delivers a very quick rise time: 55 ? s . The pressure measured in our setup at a distance of 15 mm from the nozzle output is about 0.285 mbar with a plenum pressure of 3 bars (absolute). The time between the valve aperture and pressure front arrival is 360 ? s . This result comes up as an average of about a hundred measurements. The energy input is 95 J (270 V on a 3000 ? F capacitor bank). The typical dimensions of the valve are 52 mm in diameter and 80 mm in length. The entire volume of the valve is then very small. The relative low pressure and voltage operation are significant advantages of this development. The performance of the valve satisfactorily fulfills the objectives of gas-puff plasma focus operation.

María M. Milanese; Jorge O. Pouzo; Osvaldo D. Cortázar; Roberto L. Moroso

2006-01-01T23:59:59.000Z

162

CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES  

SciTech Connect (OSTI)

In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During the first six months of operation, the primary activities of the JIP were to conduct and plan Workshops, which were as follows: (1) Data Collection Workshop--March 2002 (2) Drilling, Coring and Core Analyses Workshop--May 2002 (3) Modeling, Measurement and Sensors Workshop--May 2002.

Steve Holditch; Emrys Jones

2003-01-01T23:59:59.000Z

163

Expanding the operational envelope of compact cylindrical cyclone gas/liquid separators using a variable inlet-slot configuration  

E-Print Network [OSTI]

Despite the numerous advantages associated with using compact cylindrical cyclone gas/liquid separators, particularly for upstream production operations, the lack of a full understanding of the complex hydrodynamic process taking place in it and its...

Uvwo, Ighofasan

2006-04-12T23:59:59.000Z

164

Organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends  

E-Print Network [OSTI]

The organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends have been assessed under warmed-up and cold idle conditions. The speciated emissions show that the ...

Kar, Kenneth

165

A comparison of theoretical and experimental rotordynamic coefficients for a smooth gas seal at eccentric operation  

E-Print Network [OSTI]

(pHU) B(pHUP) HBP & i? (20) Bt Bx By Bx 8(pHP), 8(pHUP), 8(pH+ a~, T 1? (21) ENERGY: B(p~ B(peUg @ paVr)] Bx By H ? + U ? + V ? + RQT [ ? UT i ? Vf i Bp BP Bp H H H Bt Bx By saO xzO yaO (22) 19 Isothermal rotor and stator surfaces are assumed... Bradley (Head ot Department) August 1993 Major Subject: Mechanical Engineering ABSTRACT A Comparison of Theoretical and Experimental Rotordynamic Coefficients for a Smooth Gas Seal at Eccentric Operation. Christopher Richard Alexander, B. S. , Texas...

Alexander, Christopher Richard

2012-06-07T23:59:59.000Z

166

Field Laboratory in the Osage Reservation -- Determination of the Status of Oil and Gas Operations: Task 1. Development of Survey Procedures and Protocols  

SciTech Connect (OSTI)

Procedures and protocols were developed for the determination of the status of oil, gas, and other mineral operations on the Osage Mineral Reservation Estate. The strategy for surveying Osage County, Oklahoma, was developed and then tested in the field. Two Osage Tribal Council members and two Native American college students (who are members of the Osage Tribe) were trained in the field as a test of the procedures and protocols developed in Task 1. Active and inactive surface mining operations, industrial sites, and hydrocarbon-producing fields were located on maps of the county, which was divided into four more or less equal areas for future investigation. Field testing of the procedures, protocols, and training was successful. No significant damage was found at petroleum production operations in a relatively new production operation and in a mature waterflood operation.

Carroll, Herbert B.; Johnson, William I.

1999-04-27T23:59:59.000Z

167

Spent Fuel Storage Operational Experience With Increased Crud Activities  

SciTech Connect (OSTI)

A significant part of the electricity production in Hungary is provided by 4 units of VVER 440 nuclear reactors at the Paks Nuclear Power Plant. Interim dry storage of the spent fuel assemblies that are generated during the operation of the reactors is provided in a Modular Vault Dry Storage (MVDS) facility that is located in the immediate vicinity of the Paks Nuclear Power Plant. The storage capacity of the MVDS is being continuously extended in accordance with spent the fuel production rate from the four reactors. An accident occurred at unit 2 of the Paks Nuclear Power Plant in 2003, when thirty irradiated fuel assemblies were damaged during a cleaning process. The fuel assemblies were not inside the reactor at the time of the accident, but in a separate tank within the adjacent fuel decay pool. As a result of this accident, contamination from the badly damaged fuel assemblies spread to the decay pool water and also became deposited onto the surface of (hermetic) spent fuel assemblies within the decay pool. Therefore, it was necessary to review the design basis of the MVDS and assess the effects of taking the surface contaminated spent fuel assemblies into dry storage. The contaminated hermetic assemblies were transferred from the unit 2 pool to the interim storage facility in the period between 2005 and 2007. Continuous inspection and measurement was carried out during the transfer of these fuel assemblies. On the basis of the design assessments and measurement of the results during the fuel transfer, it was shown that radiological activity values increased due to the consequences of the accident but that these levels did not compromise the release and radiation dose limits for the storage facility. The aim of this paper is to show the effect on the operation of the MVDS interim storage facility as a result of the increased activity values due to the accident that occurred in 2003, as well as to describe the measurements that were taken, and their results and experience gained. In summary: On the basis of the design assessments and measurement of the results during the fuel transfer operations, it was shown that radiological activity values increased due to the consequences of the 2003 accident but that these levels did not compromise the release and dose limits for the fuel storage facility. In the environment there was no measurable radioactivity as a result of the operation of the Paks ISFSI. The exposure of the surrounding population was calculated on measured releases and meteorological data. The calculations show negligible doses until 2004. Due to the increased surface contamination on the spent fuel assemblies the dose rate increased almost 5 times compared to the least annual value, but still less then 0.01 percent of the allowed dose restriction. (authors)

Barnabas, I. [Public Agency for Radioactive Waste, Management (PURAM) (Hungary); Eigner, T. [Paks NPP (Hungary); Gresits, I. [Technical University of Budapest (Hungary); Ordagh, M. [SOM System Llc, (Hungary)

2008-07-01T23:59:59.000Z

168

Gas-turbine units of OAO Aviadvigatel’ designed for operation on synthesis gas obtained from gasification of coal  

Science Journals Connector (OSTI)

Problems that have to be solved for adapting a 16-MW gas-turbine unit used as part of a gas turbine-based power station for firing low-grade...

D. D. Sulimov

2010-02-01T23:59:59.000Z

169

Flexibility and operability analysis of a HEN-integrated natural gas expander plant  

Science Journals Connector (OSTI)

In the heat-exchanger network (HEN) literature, synthesis, design, and flexibility analyses of \\{HENs\\} are done independently from processes to which \\{HENs\\} are integrated. Such analyses are made mostly based on nominal operating conditions at which the HEN's source- and target-stream properties are evaluated. However, terminal-stream properties of \\{HENs\\} depend upon temperatures, pressures, and compositions of the process connected to the HEN. In this work, flexibility and operability issues of a HEN are investigated with rigorous simulations using the process flowsheet simulator HYSYS for a HEN-integrated natural gas turbo-expander plant (TEP) operating under ethane-recovery mode. The contribution of this work is threefold. First, the HEN-plant interactions are exemplified via the process flowsheet simulator. Second, flexibility and operability issues are tackled using the optimization capability of the flowsheet simulator. Third, for highly energy-integrated complex plants like the TEP, the difficulties or impossibilities of automated HEN synthesis and flexibility analysis with process flowsheet simulators are demonstrated.

Alp Er S. Konukman; Ugur Akman

2005-01-01T23:59:59.000Z

170

Issues Involving The OSI Concept of Operation For Noble Gas Radionuclide Detection  

SciTech Connect (OSTI)

The development of a technically sound protocol for detecting the subsurface release of noble gas radionuclides is critical to the successful operation of an on site inspection (OSI) under the CTBT and has broad ramifications for all aspects of the OSI regime including the setting of specifications for both sampling and analysis equipment used during an OSI. With NA-24 support, we are investigating a variety of issues and concerns that have significant bearing on policy development and technical guidance regarding the detection of noble gases and the creation of a technically justifiable OSI concept of operation. The work at LLNL focuses on optimizing the ability to capture radioactive noble gases subject to the constraints of possible OSI scenarios. This focus results from recognizing the difficulty of detecting gas releases in geologic environments - a lesson we learned previously from the LLNL Non-Proliferation Experiment (NPE). Evaluation of a number of important noble gas detection issues, potentially affecting OSI policy, has awaited the US re-engagement with the OSI technical community. Thus, there have been numerous issues to address during the past 18 months. Most of our evaluations of a sampling or transport issue necessarily involve computer simulations. This is partly due to the lack of OSI-relevant field data, such as that provided by the NPE, and partly a result of the ability of LLNL computer-based models to test a range of geologic and atmospheric scenarios far beyond what could ever be studied in the field making this approach very highly cost effective. We review some highlights of the transport and sampling issues we have investigated during the past year. We complete the discussion of these issues with a description of a preliminary design for subsurface sampling that is intended to be a practical solution to most if not all the challenges addressed here.

Carrigan, C R; Sun, Y

2011-01-21T23:59:59.000Z

171

Environmental and economic assessment of discharges from Gulf of Mexico Region Oil and Gas Operations  

SciTech Connect (OSTI)

Task 3 (Environmental Field Sampling and Analysis of NORM, Heavy Metals, and Organics) and 4 (Monitoring of the Recovery of Impacted Wetland and Open Bay Produced Water Discharge Sites in Coastal Louisiana and Texas) activities involved continued data analysis and report writing. Task 5 (Assessment of Economic Impacts of Offshore and Coastal Discharge Requirements on Present and Future Operations in the Gulf of Mexico Region) was issued as a final report during the previous reporting period. Task 6 (Synthesis of Gulf of Mexico Seafood Consumption and Use Patterns) activities included the preparation of the final report. There were no Task 7 (Technology Transfer Plan) activities to report. Task 8 (Project Management and Deliverables) activities involved the submission of the necessary reports and routine management.

Gettleson, D.A.

1997-11-24T23:59:59.000Z

172

Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters  

SciTech Connect (OSTI)

A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

2005-11-01T23:59:59.000Z

173

Natural Gas_v2 (9764 - Activated, Traditional).xps  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

natural gas usage for this service address between September 2008 and April 2010. Billing Period Enter End Date for each billing period MMDDYY Amount used was: AActual...

174

Active microuidic mixer and gas bubble lter driven by thermal bubble micropump$  

E-Print Network [OSTI]

Active micro¯uidic mixer and gas bubble ®lter driven by thermal bubble micropump$ Jr-Hung Tsaia Abstract A micro¯uidic mixer with a gas bubble ®lter activated by a thermal bubble actuated nozzle/min. The optimal mixing result is found when the actuating frequency of thermal bubble reaches 200 Hz. Normalized

Lin, Liwei

175

Sensitivity Analysis of Optimal Operation of an Activated Sludge Process Model for Economic Controlled Variable Selection  

E-Print Network [OSTI]

Sensitivity Analysis of Optimal Operation of an Activated Sludge Process Model for Economic operation conducted on an activated sludge process model based on the test-bed benchmark simulation model no structure that leads to optimal economic operation, while promptly rejecting disturbances at lower layers

Skogestad, Sigurd

176

Environmental and economic assessment of discharges from Gulf of Mexico region oil and gas operations  

SciTech Connect (OSTI)

Task 3 (Environmental Field Sampling and Analysis of NORM, Heavy Metals, and Organics) activities included the continuation of the platform selection process. A revised sampling plan and a projected cost estimate were prepared for Task 3. A letter detailing the revised plan was sent to the Scientific Review Committee (SRC). Task 4 (Monitoring of the Recovery of Impacted Wetland and Open Bay Produced Water Discharge Sites in Coastal Louisiana and Texas) activities involved receiving the final approval for sampling two facilities and requesting approval for a third alternative facility. A revised Task 4 sampling plan and projected estimated costs were prepared. The sampling plan was presented to the SRC for comment. Mobilization activities for the first quarterly sampling were initiated. Task 5 (Assessment of Economic Impactsof Offshore and Coastal Discharge Requirements on Present and Future Operations in the Gulf of Mexico Region) activities included refining the model for estimating the impact of increased environmental compliance costs on remaining reserves in coastal and offshore fields. Task 6 (Synthesis of Gulf of Mexico Seafood Consumption and Use Patterns) activities involved completion and field testing of most survey forms. Retail surveys were initiated and contacts were made with the Vietnamese community. Task 7 (Technology Transfer Plan) work has included scheduling the presentation of information concerning this project at the DOE Contractor Review Meeting in July in Oklahoma. Task 8 (Project Management and Deliverables) activities have involved the submission of the necessary reports and routine management.

Gettleson, D.A.

1993-04-22T23:59:59.000Z

177

Experimental investigation of thermal balance of a turbocharged SI engine operating on natural gas  

Science Journals Connector (OSTI)

Abstract This paper experimentally investigates the thermal balance and performance of a turbocharged gas spark ignition engine. The First Law of Thermodynamics was used for control volume around the engine to compute the output power, transferred energy to the cooling fluid, exhaust gases and also unaccounted losses through convection and radiation heat transfer. Thermal balance tests were performed for various operational conditions including full and half loads and different cooling fluid temperatures. Results indicate that by increasing engine load and coolant temperature, the percentage of transferred energy to the exhaust gases increased while the percentage of coolant energy decreased. Also, experimental data reveals that using gaseous fuel and a turbocharger (TC) in the engine leads to 4.5% and 4% more thermal efficiency than gasoline and natural aspirated (NA), respectively. Also, second law analysis reveals that using a turbocharger leads to a 3.6% increase in exergetic efficiency of the engine, averagely. Based on experimental results, an empirical correlation was suggested for computing the energy of exhaust gases which shows good agreement with the experimental data for the majority of operating conditions.

A. Gharehghani; M.Koochak; M. Mirsalim; Talal Yusaf

2013-01-01T23:59:59.000Z

178

State-Scale Perspective on Water Use and Production Associated with Oil and Gas Operations, Oklahoma, U.S.  

Science Journals Connector (OSTI)

The purpose of this paper is to quantify annual volumes of water used for completion of oil and gas wells, coproduced during oil and gas production, injected via underground injection program wells, and used in water flooding operations. ... (12) Many U.S. states (e.g., Colorado, Kansas, New Mexico, Oklahoma, Texas, and Wyoming) that have abundant reserves of oil and gas are also subject to water scarcity due to uneven spatial and temporal distribution of rainfall. ... 3.4 UIC and Water Flood Volumes ...

Kyle E. Murray

2013-03-26T23:59:59.000Z

179

Commercialization of waste gob gas and methane produced in conjunction with coal mining operations. Final report, August 1992--December 1993  

SciTech Connect (OSTI)

The primary objectives of the project were to identify and evaluate existing processes for (1) using gas as a feedstock for production of marketable, value-added commodities, and (2) enriching contaminated gas to pipeline quality. The following gas conversion technologies were evaluated: (1) transformation to liquid fuels, (2) manufacture of methanol, (3) synthesis of mixed alcohols, and (4) conversion to ammonia and urea. All of these involved synthesis gas production prior to conversion to the desired end products. Most of the conversion technologies evaluated were found to be mature processes operating at a large scale. A drawback in all of the processes was the need to have a relatively pure feedstock, thereby requiring gas clean-up prior to conversion. Despite this requirement, the conversion technologies were preliminarily found to be marginally economic. However, the prohibitively high investment for a combined gas clean-up/conversion facility required that REI refocus the project to investigation of gas enrichment alternatives. Enrichment of a gas stream with only one contaminant is a relatively straightforward process (depending on the contaminant) using available technology. However, gob gas has a unique nature, being typically composed of from constituents. These components are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. REI is pursuing Phase 2 of this project for demonstration of a waste gas enrichment facility using the approach described above. This is expected to result in the validation of the commercial and technical viability of the facility, and the refinement of design parameters.

Not Available

1993-12-01T23:59:59.000Z

180

Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations  

SciTech Connect (OSTI)

Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

David B. Burnett; Mustafa Siddiqui

2006-12-29T23:59:59.000Z

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the

Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

2014-01-27T23:59:59.000Z

182

Passive landfill gas emission – Influence of atmospheric pressure and implications for the operation of methane-oxidising biofilters  

Science Journals Connector (OSTI)

A passively vented landfill site in Northern Germany was monitored for gas emission dynamics through high resolution measurements of landfill gas pressure, flow rate and composition as well as atmospheric pressure and temperature. Landfill gas emission could be directly related to atmospheric pressure changes on all scales as induced by the autooscillation of air, diurnal variations and the passage of pressure highs and lows. Gas flux reversed every 20 h on average, with 50% of emission phases lasting only 10 h or less. During gas emission phases, methane loads fed to a connected methane oxidising biofiltration unit varied between near zero and 247 g CH4 h?1 m?3 filter material. Emission dynamics not only influenced the amount of methane fed to the biofilter but also the establishment of gas composition profiles within the biofilter, thus being of high relevance for biofilter operation. The duration of the gas emission phase emerged as most significant variable for the distribution of landfill gas components within the biofilter.

Julia Gebert; Alexander Groengroeft

2006-01-01T23:59:59.000Z

183

INTERNAL REPAIR OF GAS PIPLINES SURVEY OF OPERATOR EXPERIENCE AND INDUSTRY NEEDS REPORT  

SciTech Connect (OSTI)

A repair method that can be applied from the inside of a gas transmission pipeline (i.e., a trenchless repair) is an attractive alternative to conventional repair methods since the need to excavate the pipeline is precluded. This is particularly true for pipelines in environmentally sensitive and highly populated areas. The objectives of the project are to evaluate, develop, demonstrate, and validate internal repair methods for pipelines; develop a functional specification for an internal pipeline repair system; and prepare a recommended practice for internal repair of pipelines. The purpose of this survey is to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. A total of fifty-six surveys were sent to pipeline operators. A total of twenty completed surveys were returned, representing a 36% response rate, which is considered very good given the fact that tailored surveys are known in the marketing industry to seldom attract more than a 10% response rate. The twenty survey responses produced the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water (e.g., lakes and swamps) in difficult soil conditions, under highways, under congested intersections, and under railway crossings. All these areas tend to be very difficult and very costly if, and where, conventional excavated repairs may be currently used. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem in a water/river crossing. (3) The typical travel distances required can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). In concept, these groups require pig-based systems; despooled umbilical systems could be considered for the first two groups. For the last group a self-propelled system with an onboard self-contained power and welding system is required. (4) Pipe size range requirements range from 50.8 mm (2 in.) through 1,219.2 mm (48 in.) in diameter. The most common size range for 80% to 90% of operators surveyed is 508 mm to 762 mm (20 in. to 30 in.) diameter, with 95% using 558.8 mm (22 in.) diameter pipe.

Ian D. Harris

2003-09-01T23:59:59.000Z

184

Independent Oversight Activity Report for the Operational Awareness...  

Office of Environmental Management (EM)

investigation reports and will integrate additional corrective actions into ongoing fire protection and life safety activities, e.g., installation of additional fire...

185

Analysis of efficiency of control of operation conditions of air gas cooling devices at compressor stations  

Science Journals Connector (OSTI)

Based on calculations of energy consumption by air gas cooling devices, an analysis has been made of the efficiency of the methods of control of temperature conditions of the transported gas. Two types of air ...

A. V. Krupnikov; A. D. Vanyashov; I. A. Yanvarev

2010-05-01T23:59:59.000Z

186

Experimental study of active magnetic bearing on a 150M3 turbo oxygen gas expander  

Science Journals Connector (OSTI)

This paper is concerned with the investigation, experiment and design analyses on the application of active magnetic bearings for a 150M3 turbo oxygen gas expander having 1.16 kg weight and 30...

Wang Xiping Ph. D; Zhang Zhiming; Yu Liang…

1998-12-01T23:59:59.000Z

187

Improving Model-Based Gas Turbine Fault Diagnosis Using Multi-Operating Point Method  

Science Journals Connector (OSTI)

A comprehensive gas turbine fault diagnosis system has been designed using a full nonlinear simulator developed in Turbotec company for the V94.2 industrial gas turbine manufactured by Siemens AG. The methods used for detection and isolation of faulty ... Keywords: monitoring, fault diagnosis, extended Kalman filter, gas turbine, simulator

Amin Salar; Seyed Mehrdad Hosseini; Behnam Rezaei Zangmolk; Ali Khaki Sedigh

2010-11-01T23:59:59.000Z

188

Task 23 - background report on subsurface environmental issues relating to natural gas sweetening and dehydration operations. Topical report, February 1, 1994--February 28, 1996  

SciTech Connect (OSTI)

This report describes information pertaining to environmental issues, toxicity, environmental transport, and fate of alkanolamines and glycols associated with natural gas sweetening and dehydration operations. Waste management associated with the operations is also discussed.

Sorensen, J.A.

1998-12-31T23:59:59.000Z

189

"1. Rhode Island State Energy Partners","Gas","FPL Energy Operating Serv Inc",528  

U.S. Energy Information Administration (EIA) Indexed Site

Rhode Island" Rhode Island" "1. Rhode Island State Energy Partners","Gas","FPL Energy Operating Serv Inc",528 "2. Manchester Street","Gas","Dominion Energy New England, LLC",447 "3. Tiverton Power Plant","Gas","Tiverton Power Inc",250 "4. Ocean State Power II","Gas","Ocean State Power II",219 "4. Ocean State Power","Gas","Ocean State Power Co",219 "6. Pawtucket Power Associates","Gas","Pawtucket Power Associates LP",63 "7. Ridgewood Providence Power","Other Renewables","Ridgewood Power Management LLC",24 "8. Central Power Plant","Gas","State of Rhode Island",10

190

Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas  

Science Journals Connector (OSTI)

A simple, semi-analytical model of flowing gas diode pumped alkali lasers (DPALs) is presented. The model takes into account the rise of temperature in the lasing medium with...

Barmashenko, B D; Rosenwaks, S

2012-01-01T23:59:59.000Z

191

Operating characteristics of a spray tower for cooling gas at moderate temperatures  

E-Print Network [OSTI]

of multiport gas burners was placed. The top of the tower was fitted with an adapter, a square duct elbow and a reducing duct tying the top of the tower to a cyclone separator. A circular 12-inch elbow out of the top of the cyclone separator led to a venturi..., in the inlet-gas 11 stream, in the outlet-gas stream and in the ventur1. Wet bulb tempera- tures were obtained at top of tower and in the venturi by mercury-column thermometers fitted with wicks. Water-and gas-flow rates were measured by calibrated...

Legler, Bobby

2012-06-07T23:59:59.000Z

192

Catalyst optimization in gas-to-liquid technology : an operations view / Israel Olalekan Jolaolu.  

E-Print Network [OSTI]

??Gas to Liquids (GTL) technology is a general term used for a group of technologies that has the capability to create liquid hydrocarbon fuels from… (more)

Jolaolu, Israel Olalekan

2008-01-01T23:59:59.000Z

193

Marcellus Shale Natural Gas Drilling Operators' Choice of Wastewater Disposal Method.  

E-Print Network [OSTI]

??As natural gas drilling in the Marcellus Shale region moves forward, the issue of wastewater disposal has risen to the forefront. In 2010, the Pennsylvania… (more)

Edmundson, Caitlyn

2012-01-01T23:59:59.000Z

194

The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel  

SciTech Connect (OSTI)

This report summarizes activities conducted for the project “The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel” under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuel’s characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the project’s objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project goals. Several flex-fuel demonstration vehicles were designed and built for carrying out calibration development and final testing to quantify the technology merits. Based on the extensive test results collected from dynamometer and vehicle testing, the fuel economy benefits of cooled EGR from the intended level of turbocharger technology were quantified. When combined with turbo downsizing, the FE benefits are considered large enough for E0 fuel as well as for E85 fuel to warrant further development of the technology beyond the current proof-of-concept level to a level that can meet production driveability quality and durability requirements in order to meet customers’ expectations. Cold-start cart test results from the emissions segment of the project were positive, confirming the assumption of faster thermal response of turbo exhaust system for emissions reductions for both E0 and E85 fuels. Vehicle emissions test results directionally correlated to the cold-start cart findings. The limited number of test runs did demonstrate the potentials of meeting stringent emission standards, however, they did not comprehend the factors such as hardware variability and long-term durability, 3 which are essential for mass production to satisfy customers’ expectations. It is therefore recommended, moving forward, durability concerns over turbocharger, EGR system and aftertreatment system, which would likely impact production viability, should be addressed. The data moreover suggested that further FE increase is likely with turbocharger technology advancement.

Wu, Ko-Jen

2011-12-31T23:59:59.000Z

195

Natural gas monthly, October 1996  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

NONE

1996-10-01T23:59:59.000Z

196

Natural gas monthly, September 1993  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1993-09-27T23:59:59.000Z

197

Natural gas monthly, August 1993  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1993-08-25T23:59:59.000Z

198

Environmental and economic assessment of discharges from Gulf of Mexico region oil and gas operations. Quarterly technical progress report, April 1995--June 1995  

SciTech Connect (OSTI)

Progress is described on the determination of environmental impacts from waste discharges to the aquatic ecosystems from oil and gas operations. Task 2 (Preparation of the Sampling and Analysis Plan) activities involved revisions and additions to the Sampling and Analysis Plan. Task 3 (Environmental Field Sampling and Analysis of NORM, Heavy Metals, and Organics) work included analyses of water, sediment, and tissue samples as well as data management. Task 4 (Monitoring of the Recovery of Impacted Wetland and Open Bay Produced Water Discharge Sites in Coastal Louisiana and Texas) activities involved the continued analyses of samples and conducting field sampling at Bay de Chene. Task 5 (Assessment of Economic Impacts of Offshore and Coastal Discharge Requirements on Present and Future Operations in the Gulf of Mexico Region) activities included preparing a draft final report and review by the Scientific Review Committee (SRC). Task 6 (Synthesis of Gulf of Mexico Seafood Consumption and Use Patterns) work involved the preparation of the draft final report and review by the SRC. Task 7 (Technology Transfer Plan) activities involved the presentation of four papers. Task 8 (Project Management and Deliverables) activities involved the submission of the necessary reports and routine management.

Gettleson, D.A.

1995-07-31T23:59:59.000Z

199

Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal...  

Open Energy Info (EERE)

and the active vapor-dominated geothermal system at The Geysers, CA are related to a composite hypabyssal granitic pluton emplaced beneath the field 1.1 to 1.2 million years ago....

200

Upgrading of Landfill Gas by Membranes — Experiences with Operating a Pilot Plant  

Science Journals Connector (OSTI)

In the last years the interest in using landfill gas as an energy source has risen ... has been constructed on the premises of a landfill dump in Neuss. In a two-stage-process, landfill gas is upgraded in order t...

R. Rautenbach; K. Welsch

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Plasma parameters of an active cathode during relativistic magnetron operation  

SciTech Connect (OSTI)

The results of time- and space-resolved spectroscopic studies of the plasma produced at the surface of the ferroelectric cathode during the operation of an S-band relativistic magnetron generating approx50 MW microwave power at f=3005 MHz and powered by a linear induction accelerator (LIA) (150 kV, 1.5 kA, 250 ns) are presented. The surface plasma was produced by a driving pulse (3 kV, 150 ns) prior to the application of the LIA accelerating high-voltage pulse. The cathode plasma electron density and temperature were obtained by analyzing hydrogen H{sub a}lpha and H{sub b}eta, and carbon ions CII and CIII spectral lines, and using the results of nonstationary collision radiative modeling. It was shown that the microwave generation causes an increase in plasma ion and electron temperature up to approx4 and approx7 eV, respectively, and the plasma density increases up to approx7x10{sup 14} cm{sup -3}. Estimates of the plasma transport parameters and its interaction with microwave radiation are also discussed.

Hadas, Y.; Kweller, T.; Sayapin, A.; Krasik, Ya. E. [Department of Physics, Technion, Haifa 32000 (Israel); Bernshtam, V. [Department of Physics, Weizmann Institute of Sciences, 61000 Rehovot (Israel)

2009-09-15T23:59:59.000Z

202

Use of oil-emulsion mud in the Sivells Bend Field: Gas and gas condensate operations for the independent producer.  

E-Print Network [OSTI]

during drilling operations. Early in thc life of the Sivells Bend ficl&1, it became apparent that it would follow thc typical pattern of other Straivn saml fiiel&ls, 2nd in an effort to effect l&atter &veil completions, it ivas dcculcd to iisc... of the drilling crews toward its use, It was more difficult to keep the equipment clean, it increase&1 their work to some degree aml it ivas g something nelv. Hoivcver, after thc first few wells, the crews hsd become more familiar with its use...

Echols, Walter Harlan

1954-01-01T23:59:59.000Z

203

Biological and Chemical Scrubbings of Vented gas from hot-melting operation of recycled nylon plastics.  

E-Print Network [OSTI]

??This study aimed to develop a biotrickling-biofilter process and a two-stage chemical scrubbing process to absorb and oxidize VOCs in vented gas from hot-melt granulation… (more)

Chen, Kuan-po

2014-01-01T23:59:59.000Z

204

Special Delivery for Sustainability: Clean Cities Supports UPS in Expanding Natural Gas Operations  

Office of Energy Efficiency and Renewable Energy (EERE)

With support from the Energy Department's Clean Cities program, United Parcel Service plans to deploy 1,000 liquefied natural gas trucks, making it the biggest private fleet of its kind in the United States.

205

Reliability analysis of urban gas transmission and distribution system based on FMEA and correlation operator  

Science Journals Connector (OSTI)

In order to improve the safety management of urban gas transmission and distribution system, failure mode and effects analysis (FMEA) was used to construct the reliability analysis ... the risk priority number (R...

Su Li; Weiguo Zhou

2014-12-01T23:59:59.000Z

206

Assessment of off-design performance of a small-scale combined cooling and power system using an alternative operating strategy for gas turbine  

Science Journals Connector (OSTI)

Abstract A small-scale combined cooling and power (CCP) system usually serves district air conditioning apart from power generation purposes. The typical system consists of a gas turbine and an exhaust gas-fired absorption refrigerator. The surplus heat of the gas turbine is recovered to generate cooling energy. In this way, the CCP system has a high overall efficiency at the design point. However, the CCP system usually runs under off-design conditions because the users’ demand varies frequently. The operating strategy of the gas turbine will affect the thermodynamic performance of itself and the entire CCP system. The operating strategies for gas turbines include the reducing turbine inlet temperature (TIT) and the compressor inlet air throttling (IAT). A CCP system, consisting of an OPRA gas turbine and a double effects absorption refrigerator, is investigated to identify the effects of different operating strategies. The CCP system is simulated based on the partial-load model of gas turbine and absorption refrigerator. The off-design performance of the CCP system is compared under different operating strategies. The results show that the IAT strategy is the better one. At 50% rated power output of the gas turbine, the IAT operating strategy can increase overall system efficiency by 10% compared with the TIT strategy. In general, the IAT operating strategy is suited for other gas turbines. However, the benefits of IAT should be investigated in the future, when different gas turbine is adopted. This study may provide a new operating strategy of small scale gas turbine to improve the off-design performance of CCP system.

Wei Han; Qiang Chen; Ru-mou Lin; Hong-guang Jin

2015-01-01T23:59:59.000Z

207

Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels  

SciTech Connect (OSTI)

This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15-ppm NOx capability on high Hydrogen fuels. In Stage 4, Solar fabricated a complete set of injectors and a combustor liner to test the system capability in a full-scale atmospheric rig. Extensive high-pressure single injector rig test results show that 15-ppm NOx guarantee is achievable from 50% to 100% Load with fuel blends containing up to 65% Hydrogen. Because of safety limitations in Solar Test Facility, the atmospheric rig tests were limited to methane-based fuel blends. Further work to validate the durability and installed engine capability would require long-term engine field test.

Srinivasan, Ram

2013-07-31T23:59:59.000Z

208

LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in greatest abundance in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are low but are also expected to be in measurable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, {sup 241}Pu, and {sup 241}Am. These are present due to their partial volatility and some entrainment in the off-gas system. This report discusses results of optimized {sup 99}Tc decontamination testing of the simulant. Testing examined use of inorganic reducing agents for {sup 99}Tc. Testing focused on minimizing the quantity of sorbents/reactants added, and minimizing mixing time to reach the decontamination targets in this simulant formulation. Stannous chloride and ferrous sulfate were tested as reducing agents to determine the minimum needed to convert soluble pertechnetate to the insoluble technetium dioxide. The reducing agents were tried with and without sorbents.

Taylor-Pashow, K.; Nash, C.; McCabe, D.

2014-09-29T23:59:59.000Z

209

UK scenario of islanded operation of active distribution networks with renewable distributed generators  

Science Journals Connector (OSTI)

This paper reports on the current UK scenario of islanded operation of active distribution networks with renewable distributed generators (RDGs). Different surveys indicate that the present scenario does not economically justify islanding operation of active distribution networks with RDGs. With rising DG penetration, much benefit would be lost if the \\{DGs\\} are not allowed to island only due to conventional operational requirement of utilities. Technical studies clearly indicate the need to review parts of the Electricity Safety, Quality and Continuity Regulations (ESQCR) for successful islanded operations. Commercial viability of islanding operation must be assessed in relation to enhancement of power quality, system reliability and supply of potential ancillary services through network support. Demonstration projects under Registered Power Zone and Technical Architecture Projects should be initiated to investigate the utility of DG islanding. However these efforts should be compounded with a realistic judgement of the associated technical and economic issues for the development of future power networks beyond 2010.

S.P. Chowdhury; S. Chowdhury; P.A. Crossley

2011-01-01T23:59:59.000Z

210

Environmental and economic assessment of discharges from Gulf of Mexico region oil and gas operations. Quarterly technical progress report, July--September 1995  

SciTech Connect (OSTI)

Continental Shelf Associates, Inc. (CSA) was contracted to conduct a three-year study of the environmental and health related impacts of produced water and sand discharges from oil and gas operations. Data on naturally occurring radioactive materials (NORM), heavy metals, and hydrocarbons in water, sediment, and biota will be collected and evaluated. Health related impacts will be studied through field collections and analyses of commercially- and recreationally-important fish and shellfish tissues. Additionally, information on seafood catch, consumption, and use patterns for the Gulf of Mexico will be gathered and analyzed. The facilities to be studied will include both offshore and coastal facilities in the Gulf of Mexico. Coastal sites will be additionally studied to determine ecological recovery of impacted wetland and open bay areas. The economic impact of existing and proposed effluent federal and state regulations will also be evaluated. This report represents the thirteenth quarterly technical summary for the study ``Environmental and Economic Assessment of Discharges from Gulf of Mexico Region Oil and Gas Operations.`` Activities associated with Tasks 3 through 8 are discussed in this report.

Gettleson, D.A.

1995-10-31T23:59:59.000Z

211

FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{trademark} baghouse. Activated carbon was injected between the ESP and COHPAC{trademark} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{trademark} unit. The test also showed that activated carbon was effective in removing both forms of mercury--elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{trademark}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{trademark} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{trademark} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

2004-01-29T23:59:59.000Z

212

Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

2004-06-04T23:59:59.000Z

213

Effects of operating damage of labyrinth seal on seal leakage and wheelspace hot gas ingress  

E-Print Network [OSTI]

, and (4) the effect of rub-groove axial position and wall angle on gas turbine ingress heating. To facilitate grid generation, an unstructured grid generator named OpenCFD was also developed. The grid generator is written in C++ and generates hybrid grids...

Xu, Jinming

2007-09-17T23:59:59.000Z

214

New Tracers Identify Hydraulic Fracturing Fluids and Accidental Releases from Oil and Gas Operations  

E-Print Network [OSTI]

New Tracers Identify Hydraulic Fracturing Fluids and Accidental Releases from Oil and Gas fingerprints of fluids that return to the surface after high volume hydraulic fracturing of unconventional oil the hydraulic fracturing process, resulting in the relative enrichment of boron and lithium in HFFF

Jackson, Robert B.

215

Active hurricane season expected to shut-in higher amount of oil and natural gas production  

U.S. Energy Information Administration (EIA) Indexed Site

Active hurricane season expected to shut-in higher amount of Active hurricane season expected to shut-in higher amount of oil and natural gas production An above-normal 2013 hurricane season is expected to cause a median production loss of about 19 million barrels of U.S. crude oil and 46 billion cubic feet of natural gas production in the Gulf of Mexico, according to the new forecast from the U.S. Energy Information Administration. That's about one-third more than the amount of oil and gas production knocked offline during last year's hurricane season. Government weather forecasts predict 13 to 20 named storms will form between June and the end of November, with 7 to 11 of those turning into hurricanes. Production outages in previous hurricane seasons were as high as 107 million barrels of crude oil

216

Solute-Solvent Interactions From Gas Chromatographic Activity Coefficients and the Solvation Parameter Model for Nitrogen-Containing Stationary Phases  

Science Journals Connector (OSTI)

......analyte injected into a gas chromatographic...Interactions From Gas Chromatographic Activity...Parameter Model for Nitrogen-Containing Stationary...mol), R is the gas con- stant (taken...pressure of saturated water vapor at ambient...the Ost- wald solubility coefficient (or......

José M. Santiuste

2003-04-01T23:59:59.000Z

217

Atlantic update, July 1986--June 1990: Outer Continental Shelf oil and gas activities  

SciTech Connect (OSTI)

This report describes outer continental shelf oil and gas activities in the Atlantic Region. This edition of the Atlantic Update includes an overview of the Mid-Atlantic Planning Area and a summary of the Manteo Prospect off-shore North Carolina. 6 figs., 8 tabs.

Karpas, R.M.; Gould, G.J.

1990-10-01T23:59:59.000Z

218

Gulf of Mexico Gas Hydrate Joint Industry Project Leg II: Walker Ridge 313 LWD Operations and Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cook Cook 1 , Gilles Guerin 1 , Stefan Mrozewski 1 , Timothy Collett 2 , & Ray Boswell 3 Walker Ridge 313 LWD Operations and Results Gulf of Mexico Gas Hydrate Joint Industry Project Leg II: 1 Borehole Research Group Lamont-Doherty Earth Observatory of Columbia University Palisades, NY 10964 E-mail: Cook: acook@ldeo.columbia.edu Guerin: guerin@ldeo.columbia.edu Mrozewski: stefan@ldeo.columbia.edu 3 National Energy Technology Laboratory U.S. Department of Energy P.O. Box 880 Morgantown, WV 26507 E-mail: ray.boswell@netl.doe.gov 2 US Geological Survey Denver Federal Center, MS-939 Box 25046 Denver, CO 80225 E-mail:

219

Continuous process preparation of activated silica with low carbon dioxide content gas  

E-Print Network [OSTI]

for storage to prevent gel formation. This sol hns loss tendency to gel and. csn be sai'ely stored and used st approxirately twice the safe storage concentrat1on of the ILsylis sol, Hay (8) bas published. the results of a great deal of de- velopment work... of equipment operation which gave an activated product should. be accurate enough to cause activation in different, but similar equipment. Operating conditions found. 8o /0 /0 Figure ~ /oo /00o /moog C e/ Time, //oorq Gel Time oF Activated Sols Based...

Burdett, Joseph Walton

1954-01-01T23:59:59.000Z

220

Reduced gas pressure operation of sludge digesters: Expanded studies. Final report  

SciTech Connect (OSTI)

Previous investigations strongly suggested that the municipal anaerobic sludge digestion process could be enhanced by reactor operation with subatmospheric headspace pressures. Enhanced solids destruction and methane production along with increased process stability were observed in these earlier studies. However, due to the small scale of the anaerobic reactors used ( {approx}1.5 L), definitive steady-state measurements could not be obtained. These expanded studies were undertaken to verify and define the magnitude of the benefits that might be obtained with vacuum operation of sludge digesters. Four reactors ({approx}15.0 L) were fed municipal sludge at three different organic loading rates while being maintained with a 15-day solids retention time. One reactor had a constant headspace pressure of 1.02 atm; a second was maintained at 0.75 atm; and the remaining two reactors were operated for the majority of the day at 1.02 atm, and for part of the day with a 0.75 atm headspace pressure. Additional small-scale, batch experiments were performed to help identify controlling digestion mechanisms. The results of these expanded studies indicate that vacuum operation did not yield significant advantages over the organic loading range investigated (0.088 to 0.352 lb VSS/ft{sup 3}{center_dot}d).

Not Available

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Volatile liquid hydrocarbon characterization of underwater hydrocarbon vents and formation waters from offshore production operations  

Science Journals Connector (OSTI)

Volatile liquid hydrocarbon characterization of underwater hydrocarbon vents and formation waters from offshore production operations ... The environmental implications of offshore oil and gas activities ... The environmental implications of offshore oil and gas activities ...

Theodor C. Sauer

1981-08-01T23:59:59.000Z

222

,"U.S. Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Underground Storage",6,"Monthly","9/2013","1/15/1973" Total Underground Storage",6,"Monthly","9/2013","1/15/1973" ,"Data 2","Change in Working Gas from Same Period Previous Year",2,"Monthly","9/2013","1/15/1973" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_stor_sum_dcu_nus_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_stor_sum_dcu_nus_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 7:04:07 PM" "Back to Contents","Data 1: Total Underground Storage"

223

Environmental and Economic Assessment of Discharges from Gulf of Mexico Region Oil and Gas Operations  

SciTech Connect (OSTI)

The primary objectives of the project are to increase the base of scientific knowledge concerning (1) the fate and environmental effects of organics, trace metals, and NORM in water, sediment, and biota near several offshore oil and gas facilities; (2) the characteristics of produced water and produced sand discharges as they pertain to organics, trace metals, and NORM variably found in association with the discharges; (3) the recovery of three terminated produced water discharge sites located in wetland and high-energy open bay sites of coastal Louisiana; (4) the economic and energy supply impacts of existing and anticipated federal and state offshore and coastal discharge regulations; and (5) the catch, consumption and human use patterns of seafood species collected from coastal and offshore waters. The products of the effort will be a series of technical reports detailing the study procedures, results, and conclusions which contribute to the transfer of technology to the scientific community, petroleum industry, and state and federal agencies.

Gettleson, David A

1999-10-28T23:59:59.000Z

224

,"U.S. Natural Gas Salt Underground Storage Activity-Net (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5460us2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5460us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:31 PM" "Back to Contents","Data 1: U.S. Natural Gas Salt Underground Storage Activity-Net (MMcf)" "Sourcekey","N5460US2" "Date","U.S. Natural Gas Salt Underground Storage Activity-Net (MMcf)" 34515,-19376 34880,5419 35246,-12622 35611,6367

225

,"U.S. Natural Gas Salt Underground Storage Activity-Net (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5460us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5460us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:31 PM" "Back to Contents","Data 1: U.S. Natural Gas Salt Underground Storage Activity-Net (MMcf)" "Sourcekey","N5460US2" "Date","U.S. Natural Gas Salt Underground Storage Activity-Net (MMcf)" 34349,10392 34380,8240 34408,-5388

226

,"U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5440us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5440us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:30 PM" "Back to Contents","Data 1: U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" "Sourcekey","N5440US2" "Date","U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" 34349,10956 34380,12444

227

,"U.S. Natural Gas Salt Underground Storage Activity-Withdraw (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5450us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5450us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:30 PM" "Back to Contents","Data 1: U.S. Natural Gas Salt Underground Storage Activity-Withdraw (MMcf)" "Sourcekey","N5450US2" "Date","U.S. Natural Gas Salt Underground Storage Activity-Withdraw (MMcf)" 34349,21349 34380,20684

228

,"U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5440us2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5440us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:29 PM" "Back to Contents","Data 1: U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" "Sourcekey","N5440US2" "Date","U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" 34515,142243 34880,194185 35246,258468

229

if it is a gas leak, do not activate building alarms, use mobile phones, hand held radios, electronic equipment or light flammable material!  

E-Print Network [OSTI]

gas leak gas leak if it is a gas leak, do not activate building alarms, use mobile phones, hand held radios, electronic equipment or light flammable material! 1. If you discover a Gas Leak, shout and check that the nearest gas isolator switch is off. 4. Evacuate the building immediately, avoiding

Hickman, Mark

230

Round 1 Emissions Results from Compressed Natural Gas Vans and Gasoline Controls Operating in the U.S. Federal Fleet  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Round 1 Emissions Results from Compressed Round 1 Emissions Results from Compressed Natural Gas Vans and Gasoline Controls Operating in the U.S. Federal Fleet Kenneth J. Kelly, Brent K. Bailey, and Timothy C. Coburn National Renewable Energy Laboratory Leslie Eudy ManTech Environmental Technology, Inc. Peter Lissiuk Environmental Research and Development Corp. Presented at Society for Automotive Engineers International Spring Fuels and Lubricants Meeting Dearborn, MI May 6-8, 1996 The work described here was wholly funded by the U.S. Department of Energy, a U.S. government agency. As such, this information is in the public domain, may be copied and otherwise accessed freely, and is not subject to copyright laws. These papers were previously published in hard copy form by the Society of Automotive Engineers, Inc.

231

EPA Natural Gas STAR Program Accomplishments  

E-Print Network [OSTI]

Established in 1993, the Natural Gas STAR program is a partnership between the U.S. EPA and the oil and natural gas industry designed to cost-effectively reduce methane emissions from voluntary activities undertaken at oil and natural gas operations both

unknown authors

232

EIA - Natural Gas Storage Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Storage Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground Storage - All Operators Total storage by base gas and working gas, and storage activity by State (monthly, annual). Underground Storage by Type U.S. storage and storage activity by all operators, salt cavern fields and nonsalt cavern (monthly, annual). Underground Storage Capacity Storage capacity, working gas capacity, and number of active fields for salt caverns, aquifers, and depleted fields by State (monthly, annual). Liquefied Natural Gas Additions to and Withdrawals from Storage By State (annual). Weekly Natural Gas Storage Report Estimates of natural gas in underground storage for the U.S. and three regions of the U.S.

233

A Reversible Planar Solid Oxide Fuel-Fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biomass Fuels  

SciTech Connect (OSTI)

A solid oxide fuel-assisted electrolysis technique was developed to co-generate hydrogen and electricity directly from a fuel at a reduced cost of electricity. Solid oxide fuel-assisted electrolysis cells (SOFECs), which were comprised of 8YSZ electrolytes sandwiched between thick anode supports and thin cathodes, were constructed and experimentally evaluated at various operation conditions on lab-level button cells with 2 cm2 per-cell active areas as well as on bench-scale stacks with 30 cm2 and 100 cm2 per-cell active areas. To reduce the concentration overpotentials, pore former systems were developed and engineered to optimize the microstructure and morphology of the Ni+8YSZ-based anodes. Chemically stable cathode materials, which possess good electronic and ionic conductivity and exhibit good electrocatalytic properties in both oxidizing and reducing gas atmospheres, were developed and materials properties were investigated. In order to increase the specific hydrogen production rate and thereby reduce the system volume and capital cost for commercial applications, a hybrid system that integrates the technologies of the SOFEC and the solid-oxide fuel cell (SOFC), was developed and successfully demonstrated at a 1kW scale, co-generating hydrogen and electricity directly from chemical fuels.

Tao, Greg, G.

2007-03-31T23:59:59.000Z

234

EMAB Briefing on Capital Assets Projects and Operations Activities Presentation by Mark Gilbertson  

Broader source: Energy.gov (indexed) [DOE]

Capital Asset Projects and Operations Activities Capital Asset Projects and Operations Activities www.em.doe.gov 1 Presented to Environmental Management Advisory Boards Mark Gilbertson Deputy Assistant Secretary for Site Restoration Office of Environmental Management May 31, 2012 We reduce risks and protect our workers, our communities and the environment through cleanup Our work is urgent and essential to the health and economic vitality of our communities and the nation and positions our Sites for future missions and use Our mission is not discretionary - it is a congressional mandate to D&D the gaseous diffusion plant under the U.S. Energy Policy Act of 1992 and a federal obligation to address the cold war environmental legacy cleanup and honor our regulatory commitments Environmental Management:

235

The development and operational testing of an experimental reactor for gas-liquid-solid reaction systems at high temperatures and pressures  

E-Print Network [OSTI]

shaft. With the impeller in place and rotating, gas was drawn into the top port and ejected at the impeller mount. The reactor pressure was monitored via the transducer port. The transducer was a Viatran Pressure Transducer, model 103. The liquid...THE DEVELOPMENT AND OPERATIONAL TESTING OF AN EXPERIMENTAL REACTOR FOR GAS-LIQUID-SOLID REACTION SYSTEMS AT HIGH TEMPERATURES AND PRESSURES A Thesis by RICHARD KENNETH HESS Submitted to the Graduate College of Texas A&M University in partial...

Hess, Richard Kenneth

2012-06-07T23:59:59.000Z

236

Demonstration of the enrichment of medium quality gas from gob wells through interactive well operating practices. Final report, June--December, 1995  

SciTech Connect (OSTI)

Methane released to the atmosphere during coal mining operations is believed to contribute to global warming and represents a waste of a valuable energy resource. Commercial production of pipeline-quality gob well methane through wells drilled from the surface into the area above the gob can, if properly implemented, be the most effective means of reducing mine methane emissions. However, much of the gas produced from gob wells is vented because the quality of the gas is highly variable and is often below current natural gas pipeline specifications. Prior to the initiation of field-testing required to further understand the operational criteria for upgrading gob well gas, a preliminary evaluation and assessment was performed. An assessment of the methane gas in-place and producible methane resource at the Jim Walter Resources, Inc. No. 4 and No. 5 Mines established a potential 15-year supply of 60 billion cubic feet of mien methane from gob wells, satisfying the resource criteria for the test site. To understand the effect of operating conditions on gob gas quality, gob wells producing pipeline quality (i.e., < 96% hydrocarbons) gas at this site will be operated over a wide range of suction pressures. Parameters to be determined will include absolute methane quantity and methane concentration produced through the gob wells; working face, tailgate and bleeder entry methane levels in the mine; and the effect on the economics of production of gob wells at various levels of methane quality. Following this, a field demonstration will be initiated at a mine where commercial gob gas production has not been attempted. The guidelines established during the first phase of the project will be used to design the production program. The economic feasibility of various utilization options will also be tested based upon the information gathered during the first phase. 41 refs., 41 figs., 12 tabs.

Blackburn, S.T.; Sanders, R.G.; Boyer, C.M. II; Lasseter, E.L.; Stevenson, J.W.; Mills, R.A.

1995-12-01T23:59:59.000Z

237

Experimental investigation of DI diesel engine operating with eucalyptus biodiesel/natural gas under dual fuel mode  

Science Journals Connector (OSTI)

Abstract With the gradual depletion of petroleum and environmental degradation, intensive research activity has been addressed to the utilization of alternative fuels in internal combustion engines. In the present work, an experimental investigation is carried out to study the effect of eucalyptus biodiesel and natural gas under dual fuel combustion mode on the performance and the exhaust emissions of a single cylinder DI diesel engine. The natural gas (NG) is inducted with the intake air through the inlet manifold. The liquid pilot fuel (eucalyptus biodiesel or diesel fuel) is injected into the combustion chamber to cover approximately 10% of the maximum power output. Then, keeping constant the pilot fuel flow rate, the power output is further increased using only natural gas. The combustion characteristics (cylinder pressure, ignition delay and heat release rate), performance and exhaust emissions of the dual fuel mode (NG–diesel fuel and NG–biodiesel) are compared with those of conventional diesel engine mode at various load conditions. The combustion analysis has shown that biodiesel as pilot fuel exhibits similar pressure–time history, with highest peak, as diesel fuel in conventional and dual fuel modes. The performance and pollutant emission results show that, compared to diesel fuel in dual fuel mode, the use of eucalyptus biodiesel as pilot fuel reduces the high emission levels of unburned hydrocarbon (HC), carbon monoxide (CO) and carbon dioxide (CO2) particularly at high engine loads. However this is accompanied by an increase in the brake specific fuel consumption (BSFC) and the nitrogen oxide (NOx) emissions, which can be explained by the lower calorific value and the oxygen presence in the molecule of the eucalyptus biodiesel, respectively.

L. Tarabet; K. Loubar; M.S. Lounici; K. Khiari; T. Belmrabet; M. Tazerout

2014-01-01T23:59:59.000Z

238

Innovative high pressure gas MEM's based neutron detector for ICF and active SNM detection.  

SciTech Connect (OSTI)

An innovative helium3 high pressure gas detection system, made possible by utilizing Sandia's expertise in Micro-electrical Mechanical fluidic systems, is proposed which appears to have many beneficial performance characteristics with regards to making these neutron measurements in the high bremsstrahlung and electrical noise environments found in High Energy Density Physics experiments and especially on the very high noise environment generated on the fast pulsed power experiments performed here at Sandia. This same system may dramatically improve active WMD and contraband detection as well when employed with ultrafast (10-50 ns) pulsed neutron sources.

Martin, Shawn Bryan; Derzon, Mark Steven; Renzi, Ronald F.; Chandler, Gordon Andrew

2007-12-01T23:59:59.000Z

239

Renewable Energy Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities)  

Broader source: Energy.gov [DOE]

With ethanol becoming more prevalent in the media and in gas tanks, it is important for students to know where it comes from. This module uses a series of four activities to show how energy and mass are converted from one form to another. It focuses on the conversion of light energy into chemical energy via photosynthesis, then goes on to show how the chemical energy in plant sugars can be fermented to produce ethanol. Finally, the reasons for using ethanol as a fuel are discussed.

240

U.S. Crude Oil and Natural Gas Active Well Service Rigs in operation  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 1,549 1,677 1,805 1,898 1,991 1,994 1,997 2,112 2,227 2,247 2,266 2,334 1974 2,401 2,436 2,470 2,513 2,555 2,525 2,494 2,483 2,473 2,488 2,503 2,543 1975 2,582 2,549 2,568 2,549 2,374 2,426 2,344 2,369 2,459 2,434 2,505 2,675 1976 2,612 2,490 2,521 2,597 2,575 2,607 2,606 2,656 2,652 2,639 2,601 2,660 1977 2,474 2,628 2,695 2,804 2,760 2,895 2,929 2,942 2,964 2,973 2,968 2,898 1978 2,810 2,906 2,899 2,997 2,996 2,987 3,006 3,089 3,073 3,078 2,958 3,063 1979 3,094 2,698 2,765 3,034 3,369 3,506 3,572 3,621 3,673 3,954 3,795 3,709 1980 3,855 3,923 4,010 3,871 4,032 4,112 4,092 4,155 4,277 4,290 4,281 4,172

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333  

SciTech Connect (OSTI)

The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion adsorption chemicals, solid-liquid separation methods, and achievable decontamination factors. Results of the radionuclide removal testing indicate that the radionuclides, including Tc-99, can be removed with inorganic sorbents and precipitating agents. Evaporation test results indicate that the simulant can be evaporated to fairly high concentration prior to formation of appreciable solids, but corrosion has not yet been examined.

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

2014-01-07T23:59:59.000Z

242

Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443  

SciTech Connect (OSTI)

Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls for the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)

Ramsey, William G.; Esparza, Brian P. [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)] [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)

2013-07-01T23:59:59.000Z

243

CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES  

SciTech Connect (OSTI)

In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During April-September 2002, the JIP concentrated on: Reviewing the tasks and subtasks on the basis of the information generated during the three workshops held in March and May 2002; Writing Requests for Proposals (RFPs) and Cost, Time and Resource (CTRs) estimates to accomplish the tasks and subtasks; Reviewing proposals sent in by prospective contractors; Selecting four contractors; Selecting six sites for detailed review; and Talking to drill ship owners and operators about potential work with the JIP.

Steve Holditch; Emrys Jones

2003-01-01T23:59:59.000Z

244

Design and operation methodology for active building-integrated thermal energy storage systems  

Science Journals Connector (OSTI)

Abstract A methodology is presented for integrating the design and operation of active building-integrated thermal energy storage (BITES) systems to enhance their thermal and energy performance. A bounding-condition based design approach is proposed in conjunction with predictive control strategies. The predictive control uses frequency domain models and room air temperature set-point profile as input. The set-point profiles and BITES design are improved in a holistic manner according to the thermal dynamic response of active BITES systems and their thermal zones. The dynamic response is obtained from the transfer functions of frequency domain models. The methodology is demonstrated on ventilated systems. The results show that the methodology can significantly improve the design and operation of active BITES systems, and hence improve their thermal and energy performance. The dynamic response of different sizes of systems is presented to provide useful information for design selection. It is shown that concrete thickness of 0.2–0.3 m is a good value to initiate design. Other important application considerations are also discussed.

Yuxiang Chen; Khaled E. Galal; Andreas K. Athienitis

2014-01-01T23:59:59.000Z

245

Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. This report discusses results of preliminary radionuclide decontamination testing of the simulant. Testing examined use of Monosodium Titanate (MST) to remove {sup 90}Sr and actinides, inorganic reducing agents for {sup 99}Tc, and zeolites for {sup 137}Cs. Test results indicate that excellent removal of {sup 99}Tc was achieved using Sn(II)Cl{sub 2} as a reductant, coupled with sorption onto hydroxyapatite, even in the presence of air and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >577 in two hours. It was less effective at alkaline pH. Conversely, removal of the cesium was more effective at alka

Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

2014-01-21T23:59:59.000Z

246

Extreme wave events during hurricanes can seriously jeopardize the integrity and safety of offshore oil and gas operations in the Gulf of Mexico. Validation of wave forecast for  

E-Print Network [OSTI]

oil and gas operations in the Gulf of Mexico. Validation of wave forecast for significant wave heights of Mexico. Before the storm, it produced 148,000 barrels of oil equivalent per day and 160 million cubic over the warm Gulf of Mexico water between 26 and 28 August, and became a category 5 hurricane by 1200

247

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network [OSTI]

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen walls. Air Products tasked our team to design an insert to place in the tubes of the WHB to increase flow velocity, thereby reducing fouling of the WHB. Objectives Air Products wishes that our team

Demirel, Melik C.

248

Automatic Headspace and Programmed Temperature Vaporizer (PTV) Operated in Cryo-Enrichment Mode in High Resolution Gas Chromatography  

Science Journals Connector (OSTI)

......n of liquid nitrogen p r o v i d...thus avoiding water condensation...SE-30 on Gas Chrom Q. Carbotrap...SE-30 on Gas Chrom Q; PTV...decrease the water solubility fac tor of...liquid a n d gas phases. F...from p u r e water used as a b......

F. Poy; L. Cobelli

1985-03-01T23:59:59.000Z

249

Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor  

E-Print Network [OSTI]

potential as a self-powered active gas sensor This article has been downloaded from IOPscience. Please on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor Xinyu Xue1 as a power source, but also as a response signal to the gas, demonstrating a possible approach as a self-powered

Wang, Zhong L.

250

E-Print Network 3.0 - active gas handling Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

geopolitics of gas working paper series THE BELARUS CONNECTION: EXPORTING RUSSIAN GAS TO GERMANY... AND POLAND david victor and nadejda makarova victor 12;The Belarus Connection:...

251

The use of activated charcoal for the removal of oxygen from gas ...  

Science Journals Connector (OSTI)

May 1, 1970 ... being analyzed by gas-solid chromatography. ... chosen for gas separations will not separate ... two or three stations had been processed to.

1999-12-27T23:59:59.000Z

252

Natural gas monthly, October 1991  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia. 16 figs., 33 tabs.

Not Available

1991-11-05T23:59:59.000Z

253

Natural catalytic activity in a marine shale for generating natural gas  

Science Journals Connector (OSTI)

...in a marine shale for generating natural gas Frank D. Mango 1 * Daniel M...be the source of equilibrium in natural gas habitats and in marine shales...palaeoactivity|low-temperature gas|natural gas| 1. Introduction It is broadly...

2010-01-01T23:59:59.000Z

254

Negative refraction with tunable absorption in an active dense gas of atoms  

E-Print Network [OSTI]

Applications of negative index materials (NIM) presently are severely limited by absorption. Next to improvements of metamaterial designs, it has been suggested that dense gases of atoms could form a NIM with negligible losses. In such gases, the low absorption is facilitated by quantum interference. Here, we show that additional gain mechanisms can be used to tune and effectively remove absorption in a dense gas NIM. In our setup, the atoms are coherently prepared by control laser fields, and further driven by a weak incoherent pump field to induce gain. We employ nonlinear optical Bloch equations to analyze the optical response. Metastable Neon is identified as a suitable experimental candidate at infrared frequencies to implement a lossless active negative index material.

P. P. Orth; R. Hennig; C. H. Keitel; J. Evers

2012-10-17T23:59:59.000Z

255

The influence of tropical operating conditions on the AC and impulse breakdown strength in gas insulated substation (GIS):.  

E-Print Network [OSTI]

??The ambient conditions could influence the breakdown strength of gas insulated substation. It is important to check if this influence will put the GIS into… (more)

Sihombing, H.

2009-01-01T23:59:59.000Z

256

Thermodynamic-Analysis-Based Design and Operation for Boil-Off Gas Flare Minimization at LNG Receiving Terminals  

Science Journals Connector (OSTI)

The LNG (liquefied natural gas) receiving terminal is an important component of the entire LNG value chain. ... Corpus Christi, TX, U.S. ...

Chaowei Liu; Jian Zhang; Qiang Xu; John L. Gossage

2010-07-14T23:59:59.000Z

257

Single-particle spectral density of the unitary Fermi gas: Novel approach based on the operator product expansion, sum rules and the maximum entropy method  

E-Print Network [OSTI]

Making use of the operator product expansion, we derive a general class of sum rules for the imaginary part of the single-particle self-energy of the unitary Fermi gas. The sum rules are analyzed numerically with the help of the maximum entropy method, which allows us to extract the single-particle spectral density as a function of both energy and momentum. These spectral densities contain basic information on the properties of the unitary Fermi gas, such as the dispersion relation and the superfluid pairing gap, for which we obtain reasonable agreement with the available results based on quantum Monte-Carlo simulations.

Gubler, Philipp; Hatsuda, Tetsuo; Nishida, Yusuke

2015-01-01T23:59:59.000Z

258

Adaptation of a commercially available 200 kW natural gas fuel cell power plant for operation on a hydrogen rich gas stream  

SciTech Connect (OSTI)

International Fuel Cells (IFC) has designed a hydrogen fueled fuel cell power plant based on a modification of its standard natural gas fueled PC25{trademark} C fuel cell power plant. The natural gas fueled PC25 C is a 200 kW, fuel cell power plant that is commercially available. The program to accomplish the fuel change involved deleting the natural gas processing elements, designing a new fuel pretreatment subsystem, modifying the water and thermal management subsystem, developing a hydrogen burner to combust unconsumed hydrogen, and modifying the control system. Additionally, the required modifications to the manufacturing and assembly procedures necessary to allow the hydrogen fueled power plant to be manufactured in conjunction with the on-going production of the standard PC25 C power plants were identified. This work establishes the design and manufacturing plan for the 200 kW hydrogen fueled PC25 power plant.

Maston, V.A.

1997-12-01T23:59:59.000Z

259

Modeling of UF{sub 6} enrichment with gas centrifuges for nuclear safeguards activities  

SciTech Connect (OSTI)

The physical modeling of uranium isotopes ({sup 235}U, {sup 238}U) separation process by centrifugation of is a key aspect for predicting the nuclear fuel enrichment plant performances under surveillance by the Nuclear Safeguards Authorities. In this paper are illustrated some aspects of the modeling of fast centrifuges for UF{sub 6} gas enrichment and of a typical cascade enrichment plant with the Theoretical Centrifuge and Cascade Simulator (TCCS). The background theory for reproducing the flow field characteristics of a centrifuge is derived from the work of Cohen where the separation parameters are calculated using the solution of a differential enrichment equation. In our case we chose to solve the hydrodynamic equations for the motion of a compressible fluid in a centrifugal field using the Berman - Olander vertical velocity radial distribution and the solution was obtained using the Matlab software tool. The importance of a correct estimation of the centrifuge separation parameters at different flow regimes, lies in the possibility to estimate in a reliable way the U enrichment plant performances, once the separation external parameters are set (feed flow rate and feed, product and tails assays). Using the separation parameters of a single centrifuge allow to determine the performances of an entire cascade and, for this purpose; the software Simulink was used. The outputs of the calculation are the concentrations (assays) and the flow rates of the enriched (product) and depleted (tails) gas mixture. These models represent a valid additional tool, in order to verify the compliance of the U enrichment plant operator declarations with the 'on site' inspectors' measurements.

Mercurio, G.; Peerani, P.; Richir, P.; Janssens, W.; Eklund, G. [European Commission, Joint Research Centre, Institute for Transuranium Elements Via Fermi, 2749-TP181,20127 Ispra (Italy)

2012-09-26T23:59:59.000Z

260

Raman gas analyzer for determining the composition of natural gas  

Science Journals Connector (OSTI)

We describe a prototype of a Raman gas analyzer designed for measuring the composition of natural gas. Operation of the gas analyzer was tested on a real natural gas. We show that our Raman gas analyzer prototype...

M. A. Buldakov; B. V. Korolev; I. I. Matrosov…

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Non-Paper on Activities and Operations of the IPHE Committees  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

03 03 NON-PAPER ON ACTIVITIES AND OPERATIONS OF THE IPHE COMMITTEES Overview It is anticipated that those invited to send a delegation to the Ministerial Meeting for the International Partnership for the Hydrogen Economy (IPHE) will sign the Terms of Reference, thereby committing to cooperation on research, development, demonstration and commercial adoption of hydrogen technologies. The Terms of Reference is a non-binding agreement among governments and regional economic integration organizations to advance the availability and commercialization of technologies enabling the widespread use of hydrogen as an energy carrier. Under the proposed Terms of Reference, three committees are established-a Planning Committee, an Implementation Committee and a Liaison Committee. In addition a Secretariat

262

Pipeline Operations Program (Louisiana)  

Broader source: Energy.gov [DOE]

The Pipeline Operations Program regulates the construction, acquisition, abandonment and interconnection of natural gas pipelines, as well as, the transportation and use of natural gas supplies.

263

Studies on Optimal Gas Supply For a Maskless Etching System with Micro- Discharge Plasma Operated at Atmospheric Pressure  

Science Journals Connector (OSTI)

An optimal gas supply method for the micro discharge plasma generated along a quartz glass electrode, which was useful for the maskless fabrication of electrode grooves for surface electrodes on solar cells, w...

Toshiyuki Hamada; Takuya Arimura; Tatsuya Sakoda

2012-04-01T23:59:59.000Z

264

Speciated Engine-Out Organic Gas Emissions from a PFI-SI Engine Operating on Ethanol/Gasoline Mixtures  

E-Print Network [OSTI]

Engine-out HC emissions from a PFI spark ignition engine were measured using a gas chromatograph and a flame ionization detector (FID). Two port fuel injectors were used respectively for ethanol and gasoline so that the ...

Kar, Kenneth

265

Diversity and activity of methanotrophs in landfill cover soils with and without landfill gas recovery systems  

Science Journals Connector (OSTI)

Abstract Aerobic CH4 oxidation plays an important role in mitigating CH4 release from landfills to the atmosphere. Therefore, in this study, oxidation activity and community of methanotrophs were investigated in a subtropical landfill. Among the three sites investigated, the highest CH4 concentration was detected in the landfill cover soil of the site (A) without a landfill gas (LFG) recovery system, although the refuse in the site had been deposited for a longer time (?14–15 years) compared to the other two sites (?6–11 years) where a LFG recovery system was applied. In April and September, the higher CH4 flux was detected in site A with 72.4 and 51.7 g m?2 d?1, respectively, compared to the other sites. The abundance of methanotrophs assessed by quantification of pmoA varied with location and season. A linear relationship was observed between the abundance of methanotrophs and CH4 concentrations in the landfill cover soils (R = 0.827, P < 0.001). The key factors influencing the methanotrophic diversity in the landfill cover soils were pH, the water content and the CH4 concentration in the soil, of which pH was the most important factor. Type I methanotrophs, including Methylococcus, Methylosarcina, Methylomicrobium and Methylobacter, and type II methanotrophs (Methylocystis) were all detected in the landfill cover soils, with Methylocystis and Methylosarcina being the dominant genera. Methylocystis was abundant in the slightly acidic landfill cover soil, especially in September, and represented more than 89% of the total terminal-restriction fragment abundance. These findings indicated that the LFG recovery system, as well as physical and chemical parameters, affected the diversity and activity of methanotrophs in landfill cover soils.

Yao Su; Xuan Zhang; Fang-Fang Xia; Qi-Qi Zhang; Jiao-Yan Kong; Jing Wang; Ruo He

2014-01-01T23:59:59.000Z

266

Molecular gas and nuclear activity in early-type galaxies: any link with radio-loudness?  

E-Print Network [OSTI]

Aims. We want to study the amount of molecular gas in a sample of nearby early-type galaxies (ETGs) which host low-luminosity Active Galactic Nuclei (AGN). We look for possible differences between the radio-loud (RL) and radio-quiet (RQ) AGN. Methods. We observed the CO(1-0) and CO(2-1) spectral lines with the IRAM 30m and NRO 45m telescopes for eight galaxies. They belong to a large sample of 37 local ETGs which host both RQ and RL AGN. We gather data from the literature for the entire sample. Results. We report the new detection of CO(1-0) emission in four galaxies (UGC0968, UGC5617, UGC6946, and UGC8355) and CO(2-1) emission in two of them (UGC0968 and UGC5617). The CO(2-1)/CO(1-0) ratio in these sources is $\\sim0.7\\pm0.2$. Considering both the new observations and the literature, the detection rate of CO in our sample is 55 $\\pm$ 9%, with no statistically significant difference between the hosts of RL and RQ AGNs. For all the detected galaxies we converted the CO luminosities into the molecular masses, $M...

Baldi, Ranieri D; Capetti, Alessandro; Giovannini, Gabriele; Casasola, Viviana; Perez-Torres, Miguel A; Kuno, Nario

2014-01-01T23:59:59.000Z

267

Modeling high-pressure adsorption of gas mixtures on activated carbon and coal using a simplified local-density model  

SciTech Connect (OSTI)

The simplified local-density (SLD) theory was investigated regarding its ability to provide accurate representations and predictions of high-pressure supercritical adsorption isotherms encountered in coalbed methane (CBM) recovery and CO{sub 2} sequestration. Attention was focused on the ability of the SLD theory to predict mixed-gas adsorption solely on the basis of information from pure gas isotherms using a modified Peng-Robinson (PR) equation of state (EOS). An extensive set of high-pressure adsorption measurements was used in this evaluation. These measurements included pure and binary mixture adsorption measurements for several gas compositions up to 14 MPa for Calgon F-400 activated carbon and three water-moistened coals. Also included were ternary measurements for the activated carbon and one coal. For the adsorption of methane, nitrogen, and CO{sub 2} on dry activated carbon, the SLD-PR can predict the component mixture adsorption within about 2.2 times the experimental uncertainty on average solely on the basis of pure-component adsorption isotherms. For the adsorption of methane, nitrogen, and CO{sub 2} on two of the three wet coals, the SLD-PR model can predict the component adsorption within the experimental uncertainties on average for all feed fractions (nominally molar compositions of 20/80, 40/60, 60/40, and 80/20) of the three binary gas mixture combinations, although predictions for some specific feed fractions are outside of their experimental uncertainties.

Fitzgerald, J.E.; Robinson, R.L.; Gasem, K.A.M. [Oklahoma State University, Stillwater, OK (United States). School of Chemical Engineering

2006-11-07T23:59:59.000Z

268

DOE Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and Distribution System Operational Efficiency, Reducing Methane Emissions  

Broader source: Energy.gov [DOE]

Following the White House and the Department of Energy Capstone Methane Stakeholder Roundtable on July 29th, DOE announced a series of actions, partnerships, and stakeholder commitments to help modernize the nation’s natural gas transmission and distribution systems and reduce methane emissions. Through common-sense standards, smart investments, and innovative research, DOE seeks to advance the state of the art in natural gas system performance. DOE’s effort is part of the larger Administration’s Climate Action Plan Interagency Strategy to Reduce Methane Emissions.

269

Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations  

SciTech Connect (OSTI)

The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

1987-04-01T23:59:59.000Z

270

Effects of geometry/dimensions of gas flow channels and operating conditions on high-temperature PEM fuel cells  

Science Journals Connector (OSTI)

In order to accomplish the objective of studying and optimizing the flow channel geometries and dimensions for high-temperature proton-exchange-membrane (PEM) fuel cells (with operating temperatures above 120 °C)...

Hong Liu; Peiwen Li; Alexandra Hartz…

2014-11-01T23:59:59.000Z

271

Start | Grid View | Browse by Day OR Group/Topical | Author Index | Keyword Index | Personal Scheduler Active Constraint Regions for Economically Optimal Operation of Distillation  

E-Print Network [OSTI]

Scheduler Active Constraint Regions for Economically Optimal Operation of Distillation Columns Tuesday and operation of distillation columns has been widely studied, as illustrated by for example Skogestad (1993 operation of distillation columns has been studied relatively little. The issue of active constraints

Skogestad, Sigurd

272

Survey of state regulatory activities on least cost planning for gas utilities  

SciTech Connect (OSTI)

Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers' short-term and long-term energy service needs at the lowest cost. Incorporating the concept of meeting customer energy service needs entails a recognition that customers' costs must be considered along with the utility's costs in the economic analysis of energy options. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. All state commissions were surveyed to assess the current status of gas planning and demand-side management and to identify significant regulatory issues faced by commissions during the next several years. The survey was to determine the extent to which they have undertaken least-cost planning for gas utilities. The survey included the following topics: (1) status of state PUC least-cost planning regulations and practices for gas utilities; (2) type and scope ofnatural gas DSM programs in effect, includeing fuel substitution; (3) economic tests and analysis methods used to evaluate DSM programs; (4) relationship between prudence reviews of gas utility purchasing practices and integrated resource planning; and (5) key regulatory issues facing gas utilities during the next five years. 34 refs., 6 figs., 10 tabs.

Goldman, C.A. (Lawrence Berkeley Lab., CA (United States) National Association of Regulatory Utility Commissioners, Washington, DC (United States)); Hopkins, M.E. (Fleming Group, Washington, DC (United States))

1991-04-01T23:59:59.000Z

273

,"U.S. Natural Gas Non-Salt Underground Storage Activity-Net (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5560us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5560us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:35 PM" "Back to Contents","Data 1: U.S. Natural Gas Non-Salt Underground Storage Activity-Net (MMcf)" "Sourcekey","N5560US2" "Date","U.S. Natural Gas Non-Salt Underground Storage Activity-Net (MMcf)" 34349,747322 34380,509144

274

,"U.S. Natural Gas Non-Salt Underground Storage Activity-Withdraw (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5550us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5550us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:34 PM" "Back to Contents","Data 1: U.S. Natural Gas Non-Salt Underground Storage Activity-Withdraw (MMcf)" "Sourcekey","N5550US2" "Date","U.S. Natural Gas Non-Salt Underground Storage Activity-Withdraw (MMcf)" 34349,770932

275

,"U.S. Natural Gas Non-Salt Underground Storage Activity-Withdraw (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5550us2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5550us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:34 PM" "Back to Contents","Data 1: U.S. Natural Gas Non-Salt Underground Storage Activity-Withdraw (MMcf)" "Sourcekey","N5550US2" "Date","U.S. Natural Gas Non-Salt Underground Storage Activity-Withdraw (MMcf)" 34515,2385284 34880,2774498

276

,"U.S. Natural Gas Non-Salt Underground Storage Activity-Net (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5560us2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5560us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:34 PM" "Back to Contents","Data 1: U.S. Natural Gas Non-Salt Underground Storage Activity-Net (MMcf)" "Sourcekey","N5560US2" "Date","U.S. Natural Gas Non-Salt Underground Storage Activity-Net (MMcf)" 34515,-268751 34880,402800 35246,18357

277

CO2 gas exchange and phosphoenolpyruvate carboxylase activity in leaves of Zea mays L.  

Science Journals Connector (OSTI)

Important gas exchange characteristics of C4 plants depend on ... , the enzyme catalysing the primary fixation of CO2 during C4 photosynthesis. In this study, the relationship between intracellular resistance for...

Michael Pfeffer; Martin Peisker

1998-12-01T23:59:59.000Z

278

Passive gas separator and accumulator device  

DOE Patents [OSTI]

A separation device employing a gas separation filter and swirler vanes for separating gas from a gas-liquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use. 3 figs.

Choe, H.; Fallas, T.T.

1994-08-02T23:59:59.000Z

279

Integrated Operation of INL HYTEST System and High-Temperature Steam Electrolysis for Synthetic Natural Gas Production  

SciTech Connect (OSTI)

The primary feedstock for synthetic fuel production is syngas, a mixture of carbon monoxide and hydrogen. Current hydrogen production technologies rely upon fossil fuels and produce significant quantities of greenhouse gases as a byproduct. This is not a sustainable means of satisfying future hydrogen demands, given the current projections for conventional world oil production and future targets for carbon emissions. For the past six years, the Idaho National Laboratory has been investigating the use of high-temperature steam electrolysis (HTSE) to produce the hydrogen feedstock required for synthetic fuel production. High-temperature electrolysis water-splitting technology, combined with non-carbon-emitting energy sources, can provide a sustainable, environmentally-friendly means of large-scale hydrogen production. Additionally, laboratory facilities are being developed at the INL for testing hybrid energy systems composed of several tightly-coupled chemical processes (HYTEST program). The first such test involved the coupling of HTSE, CO2 separation membrane, reverse shift reaction, and methanation reaction to demonstrate synthetic natural gas production from a feedstock of water and either CO or a simulated flue gas containing CO2. This paper will introduce the initial HTSE and HYTEST testing facilities, overall coupling of the technologies, testing results, and future plans.

Carl Marcel Stoots; Lee Shunn; James O'Brien

2010-06-01T23:59:59.000Z

280

Natural Gas Monthly  

Reports and Publications (EIA)

Highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

282

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

283

1M. Panahi, S. Skogestad ' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances' Optimal Operation of a CO2 Capturing  

E-Print Network [OSTI]

disturbances: flue gas flowrate, CO2 composition in flue gas + active constraint values Step 4. Optimization 41M. Panahi, S. Skogestad ' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances Mehdi Panahi Sigurd

Skogestad, Sigurd

284

Natural Gas Regulations (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Regulations (Kentucky) Natural Gas Regulations (Kentucky) Natural Gas Regulations (Kentucky) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Program Info State Kentucky Program Type Environmental Regulations Siting and Permitting Provider Department For Natural Resources Kentucky Administrative Regulation title 805 promulgates the rules and regulations pertaining to natural gas production in Kentucky. In addition to KAR title 405, chapter 30, which pertains to any oil shale operation, these regulations govern natural gas operations throughout the state. The following information is found in KAR title 404 chapter 30: Oil shale operations or related activity require a valid permit covering

285

Kinetic inhibition of natural gas hydrates in offshore drilling, production, and processing operations. Annual report, January 1--December 31, 1992  

SciTech Connect (OSTI)

Natural gas hydrates are solid crystalline compounds which form when molecules smaller than n-butane contact molecules of water at elevated pressures and reduced temperatures, both above and below the ice point. Because these crystalline compounds plug flow channels, they are undesirable. In this project the authors proposed an alternate approach of controlling hydrate formation by preventing hydrate growth into a sizeable mass which could block a flow channel. The authors call this new technique kinetic inhibition, because while it allows the system to exist in the hydrate domain, it prevents the kinetic agglomeration of small hydrate crystals to the point of pluggage of a flow channel. In order to investigate the kinetic means of inhibiting hydrate formation, they held two consortium meetings, on June 1, 1990 and on August 31, 1990. At subsequent meetings, the authors determined the following four stages of the project, necessary to reach the goal of determining a new hydrate field inhibitor: (1) a rapid screening method was to be determined for testing the hydrate kinetic formation period of many surfactants and polymer candidates (both individually and combined), the present report presents the success of two screening apparatuses: a multi-reactor apparatus which is capable of rapid, high volume screening, and the backup screening method--a viscometer for testing with gas at high pressure; (2) the construction of two high, constant pressure cells were to experimentally confirm the success of the chemicals in the rapid screening apparatus; (3) in the third phase of the work, Exxon volunteered to evaluate the performance of the best chemicals from the previous two stages in their 4 inch I.D. Multiphase flow loop in Houston; (4) in the final phase of the work, the intention was to take the successful kinetic inhibition chemicals from the previous three stages and then test them in the field in gathering lines and wells from member companies.

NONE

1992-12-31T23:59:59.000Z

286

Gas Separations using Ceramic Membranes  

SciTech Connect (OSTI)

This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

Paul KT Liu

2005-01-13T23:59:59.000Z

287

E-Print Network 3.0 - active trial operation Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences 4 COGNITIVE NEUROSCIENCE Role of the basal ganglia in switching a planned response Summary: from frontal eye fields, an area shown to be more active for antisaccade...

288

Passive gas separator and accumulator device  

DOE Patents [OSTI]

A separation device employing a gas separation filter and swirler vanes for separating gas from a gasliquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use.

Choe, Hwang (Saratoga, CA); Fallas, Thomas T. (Berkeley, CA)

1994-01-01T23:59:59.000Z

289

Environmental and economic assessment of discharges from Gulf of Mexico Region oil and gas operation. Quarterly technical progress report, 1 October--31 December 1994  

SciTech Connect (OSTI)

Task 3 (Environmental Field Sampling and Analysis of NORM, Heavy Metals, and Organics) work included analyses of samples. Task 4 (Monitoring of the Recovery of Impacted Wetland and Open Bay Produced Water Discharge Sites in Coastal Louisiana and Texas) activities involved the continued analyses of samples and field sampling at Bay de Chene. Task 5 (Assessment of Economic Impacts of Offshore and Coastal Discharge Requirements on Present and Future Operations in the Gulf of Mexico Region) activities included preparing a draft final report. Task 6 (Synthesis of Gulf of Mexico Seafood Consumption and Use Patterns) work also involved preparing a draft final report. Task 7 (Technology Transfer Plan) activities included a presentation at the Minerals Management Service Information Transfer Meeting for the Gulf of Mexico OCS Region. Task 8 (Project Management and Deliverables) activities involved the submission of the necessary reports and routine management.

Gettleson, D.A.

1995-01-18T23:59:59.000Z

290

Magmatic Gas Composition Reveals the Source Depth of Slug-Driven Strombolian Explosive Activity  

Science Journals Connector (OSTI)

...hydrothermal meteoric steam during shallow...closed- to open-system conditions...entrainment of meteoric steam from the shallow hydrothermal system. (ii) The gas slugs...prevented quantitative assessment of the slug source...is a powerful tool in such studies...

Mike Burton; Patrick Allard; Filippo Muré; Alessandro La Spina

2007-07-13T23:59:59.000Z

291

Outer continental shelf oil and gas activities. Pacific update: August 1987 - November 1989  

SciTech Connect (OSTI)

This Pacific Update focuses on the geology and petroleum potential of the Central California and Washington-Oregon OCS Planning Areas. This report discusses the following topics: offshore oil and gas resources of the Pacific region; project-specific developments and status; and magnitude and timing of offshore developments. (CBS)

Slitor, Douglas L.; Wiese, Jeffrey D.; Karpas, Robert M.

1990-01-01T23:59:59.000Z

292

A battery-operated, stabilized, high-energy pulsed electron gun for the production of rare gas excimers  

SciTech Connect (OSTI)

We report on the design of a new type of hot-filament electron gun delivering fairly high current (a few hundreds of {mu} A) at high voltage (up to 100 kV) in continuous or pulsed mode. Its novel features are that the filament is heated by means of a pack of rechargeable batteries floated atop the high-voltage power supply in order to get rid of bulky isolation transformers, and that the filament current and, hence, the electron gun current, is controlled by a feedback circuit including a superluminescent diode decoupled from the high voltage by means of an optical fiber. This electron gun is intended for general purposes, although we have especially developed it to meet the needs of our experiment on the infrared emission spectroscopy of rare gas excimers. Our experiment requires that the charge injection into the sample is pulsed and constant and stable in time. The new electron gun can deliver several tens of nC per pulse of electrons of energy up to 100 keV into the sample cell. The new design also eliminates ripples in the emission current and ensures up to 12 h of stable performance.

Barcellan, L.; Carugno, G. [INFN Section, Padua (Italy); Berto, E.; Galet, G.; Galeazzi, G. [Department of Physics, University of Padua (Italy); Borghesani, A. F. [INFN Section, Padua (Italy); CNISM Unit, Department of Physics, University of Padua (Italy)

2011-09-15T23:59:59.000Z

293

Gas inflows towards the nucleus of the active galaxy NGC7213  

E-Print Network [OSTI]

We present two-dimensional stellar and gaseous kinematics of the inner 0.8x1.1kpc^2 of the LINER/Seyfert 1 galaxy NGC7213, from optical spectra obtained with the GMOS integral field spectrograph on the Gemini South telescope at a spatial resolution of 60pc. The stellar kinematics shows an average velocity dispersion of 177km/s, circular rotation with a projected velocity amplitude of 50km/s and a kinematic major axis at a position angle of -4degrees (west of north). From the average velocity dispersion we estimate a black hole mass of M_BH=8_{-6}^{+16}x10^7 M_sun. The gas kinematics is dominated by non-circular motions, mainly along two spiral arms extending from the nucleus out to 4arcsec (280pc) to the NW and SE, that are cospatial with a nuclear dusty spiral seen in a structure map of the nuclear region of the galaxy. The projected gas velocities along the spiral arms show blueshifts in the far side and redshifts in the near side, with values of up to 200km/s. This kinematics can be interpreted as gas infl...

Schnorr-Müller, Allan; Nagar, Neil M; Ferrari, Fabricio

2014-01-01T23:59:59.000Z

294

Environmental and economic assessment of discharges from Gulf of Mexico region oil and gas operations. Quarterly technical progress report, 1 January--31 March 1993  

SciTech Connect (OSTI)

Task 3 (Environmental Field Sampling and Analysis of NORM, Heavy Metals, and Organics) activities included the continuation of the platform selection process. A revised sampling plan and a projected cost estimate were prepared for Task 3. A letter detailing the revised plan was sent to the Scientific Review Committee (SRC). Task 4 (Monitoring of the Recovery of Impacted Wetland and Open Bay Produced Water Discharge Sites in Coastal Louisiana and Texas) activities involved receiving the final approval for sampling two facilities and requesting approval for a third alternative facility. A revised Task 4 sampling plan and projected estimated costs were prepared. The sampling plan was presented to the SRC for comment. Mobilization activities for the first quarterly sampling were initiated. Task 5 (Assessment of Economic Impactsof Offshore and Coastal Discharge Requirements on Present and Future Operations in the Gulf of Mexico Region) activities included refining the model for estimating the impact of increased environmental compliance costs on remaining reserves in coastal and offshore fields. Task 6 (Synthesis of Gulf of Mexico Seafood Consumption and Use Patterns) activities involved completion and field testing of most survey forms. Retail surveys were initiated and contacts were made with the Vietnamese community. Task 7 (Technology Transfer Plan) work has included scheduling the presentation of information concerning this project at the DOE Contractor Review Meeting in July in Oklahoma. Task 8 (Project Management and Deliverables) activities have involved the submission of the necessary reports and routine management.

Gettleson, D.A.

1993-04-22T23:59:59.000Z

295

A rough set-based game theoretical approach for environmental decision-making: A case of offshore oil and gas operations  

Science Journals Connector (OSTI)

Environmental decision-making in offshore oil and gas (OOG) operations can be extremely complex due to conflicting objectives or criteria, availability of vague and uncertain information, and interdependency among multiple decision-makers. Most existing studies ignore conflicting preferences and strategic interactions among decision-makers. This paper presents a game theoretical approach to solve multi-criteria conflict resolution problem under constrained and uncertain environments. Uncertainties in the quantification of imprecise data are expressed using rough numbers. A multi-criteria game is developed to model a decision problem in which three groups of decision-makers (i.e., operators, regulators and service engineers) are involved. This game is solved using the generalized maximin solution concept. With the solution (i.e., optimal weights of the criteria), the rough numbers can be aggregated to an expected payoff for each alternative. Finally, the weights of upper and lower limits of a rough number are employed to transform the expected payoff into a crisp score, based on which all alternatives are ranked to identify the best one. A numerical example is outlined to demonstrate the application of the proposed method to the selection of management scenarios of drilling wastes.

Ming Yang; Faisal I. Khan; Rehan Sadiq; Paul Amyotte

2013-01-01T23:59:59.000Z

296

Capture of CO2 from flue gas by vacuum pressure swing adsorption using activated carbon beads  

Science Journals Connector (OSTI)

Vacuum pressure swing adsorption (VPSA) for CO2 capture has attracted much research effort with the...2...adsorbent materials. In this work, a new adsorbent, that is, pitch-based activated carbon bead (AC bead), ...

Chunzhi Shen; Jianguo Yu; Ping Li; Carlos A. Grande; Alirio E. Rodrigues

2011-02-01T23:59:59.000Z

297

Environmental and economic assessment of discharges from Gulf of Mexico Region Oil and Gas Operations. Quarterly technical progress report, 1 October--31 December 1993  

SciTech Connect (OSTI)

Task 2 (Preparation of the Sampling and Analysis Plan) activities involved the incorporation of the offshore site selection process into the Sampling and Analysis Plan. Task 3 (Environmental Field Sampling and Analysis of NORM, Heavy Metals, and Organics) work included making decisions on tissue analyses and performing analyses of water and sediment samples. Task 4 (Monitoring of the Recovery of Impacted Wetland and Open Bay Produced Water Discharge Sites in Coastal Louisiana and Texas) activities involved the completion of the spring benthos samples collection on pre-termination samples at Four Isle Dome and the first post-termination samples at Delacroix Island. Task 5 (Assessment of Economic Impacts of Offshore and Coastal Discharge Requirements on Present and Future Operations in the Gum of Mexico Region) activities included continued work on development of a base case production forecast, modeling future production, and determining economic impact of treatment technologies. Task 6 (Synthesis of Gulf of Mexico Seafood Consumption and Use Patterns) work involved the completion of the fall survey season and the initiation of the survey data assembly. Task 7 (Technology Transfer Plan) activities included presentations at the Society of Environmental Toxicology and Chemistry annual meeting and Minerals Management Service Information Transfer Meeting. Task 8 (Project Management and Deliverables) activities involved the submission of the necessary reports and routine management.

Gettleson, D.A.

1994-01-28T23:59:59.000Z

298

Investigating of electrons bunching in a Penning trap and accelerating process for CO2 gas mixture active medium  

E-Print Network [OSTI]

In the presence of an active medium incorporated in a Penning trap, the moving electrons can become bunched, as they get enough energy, they escape the trap forming an optical injector. These bunched electrons can enter next PASER section filled with the same active medium to be accelerated. In this paper, electron dynamics in the presence of gas mixture active medium incorporated in a penning trap is analyzed by developing an idealized 1D model. We further evaluate the energy exchange occurring as the train of electrons traversing the next PASER section. The results show that the oscillating electrons can be bunched at the resonant frequency of the active medium. The influence of the trapped time and the population inversion are analyzed, which shows that the longer the electrons are trapped, the more energy from the medium the accelerated electrons get, and with the increase of the population inversion, the decelerated electrons virtually unchanged but the accelerated electrons more than double their peak e...

Tian, Xiu-fang; Jia, Qika

2014-01-01T23:59:59.000Z

299

Underground natural gas storage reservoir management  

SciTech Connect (OSTI)

The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

Ortiz, I.; Anthony, R.

1995-06-01T23:59:59.000Z

300

Environmental and economic assessment of discharges from Gulf of Mexico region oil and gas operations. Quarterly technical progress report, April--June 1993  

SciTech Connect (OSTI)

Continental Shelf Associates, Inc. (CSA) was contracted to conduct a three-year study of the environmental and health related impacts of produced water and sand discharges from oil and gas operations. Data on naturally occurring radioactive materials (NORM), heavy metals, and hydrocarbons in water, sediment, and biota will be collected and evaluated. Health related impacts will be studied through field collections and analyses of commercially- and recreationally-important fish and shellfish tissues. Additionally, information on seafood catch, consumption, and use patterns for the Gulf of Mexico will be gathered and analyzed. The facilities to be studied will include both offshore and coastal facilities in the Gulf of Mexico. Coastal sites will be additionally studied to determine ecological recovery of impacted wetland and open bay areas. The economic impact of existing and proposed effluent federal and state regulations will also be evaluated. The primary objectives of the project are to increase the base of scientific knowledge concerning (1) the fate and environmental effects of organics, trace metals, and NORM in water, sediment, and biota near several offshore oil and gas facilities; (2) the characteristics of produced water and produced sand discharges as they pertain to organics, trace metals, and NORM variably found in association with the discharges; (3) the recovery of four terminated produced water discharge sites located in wetland and high-energy open bay sites of coastal Louisiana and Texas; (4) the economic and energy supply impacts of existing and anticipated federal and state offshore and coastal discharge regulations; and (5) the catch, consumption and human use patterns of seafood species collected from coastal and offshore waters. Accomplishments for this period are described.

Gettleson, D.A.

1993-07-26T23:59:59.000Z

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Environmental Assessment for the Proposed Issuance of an Easement to Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline within Los Alamos National Laboratory, Los Alamos, New Mexico  

Broader source: Energy.gov (indexed) [DOE]

9 9 Environmental Assessment for the Proposed Issuance of an Easement to Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline within Los Alamos National Laboratory, Los Alamos, New Mexico July 24, 2002 Department of Energy National Nuclear Security Administration Office of Los Alamos Site Operations Proposed Pipeline Easement Environmental Assessment DOE OLASO July 24, 2002 iii CONTENTS ACRONYMS AND TERMS................................................................................................................vii EXECUTIVE SUMMARY...................................................................................................................ix 1.0 PURPOSE AND NEED................................................................................................................1

302

Shale gas production: potential versus actual greenhouse gas emissions  

E-Print Network [OSTI]

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O’Sullivan, Francis Martin

303

Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature  

Science Journals Connector (OSTI)

A self-powered gas sensor that can actively detect ethanol at room temperature has been realized from a Pt/ZnO nanoarray nanogenerator. Pt nanoparticles are uniformly distributed on the whole surface of ZnO nanowires. The piezoelectric output of Pt/ZnO nanoarrays can act not only as a power source, but also as a response signal to ethanol at room temperature. Upon exposure to dry air and 1500 ppm ethanol at room temperature, the piezoelectric output of the device under the same compressive strain is 0.672 and 0.419 V, respectively. Moreover, a linear dependence of the sensitivity on the ethanol concentration is observed. Such a linear ethanol sensing at room temperature can be attributed to the atmosphere-dependent variety of the screen effect on the piezoelectric output of ZnO nanowires, the catalytic properties of Pt nanoparticles, and the Schottky barriers at Pt/ZnO interfaces. The present results can stimulate research in the direction of designing new material systems for self-powered room-temperature gas sensing.

Yayu Zhao; Xuan Lai; Ping Deng; Yuxin Nie; Yan Zhang; Lili Xing; Xinyu Xue

2014-01-01T23:59:59.000Z

304

Measurement of gas/water uptake coefficients for trace gases active in the marine environment  

SciTech Connect (OSTI)

Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean's surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry's law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

Davidovits, P. (Boston Coll., Chestnut Hill, MA (United States). Dept. of Chemistry); Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E. (Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics)

1992-02-01T23:59:59.000Z

305

Lattice-gas model for active vesicle transport by molecular motors with opposite polarities  

E-Print Network [OSTI]

We introduce a multi-species lattice gas model for motor protein driven collective cargo transport on cellular filaments. We use this model to describe and analyze the collective motion of interacting vesicle cargoes being carried by oppositely directed molecular motors, moving on a single biofilament. Building on a totally asymmetric exclusion process (TASEP) to characterize the motion of the interacting cargoes, we allow for mass exchange with the environment, input and output at filament boundaries and focus on the role of interconversion rates and how they affect the directionality of the net cargo transport. We quantify the effect of the various different competing processes in terms of non-equilibrium phase diagrams. The interplay of interconversion rates, which allow for flux reversal and evaporation/deposition processes introduce qualitatively new features in the phase diagrams. We observe regimes of three-phase coexistence, the possibility of phase re-entrance and a significant flexibility in how the different phase boundaries shift in response to changes in control parameters. The moving steady state solutions of this model allows for different possibilities for the spatial distribution of cargo vesicles, ranging from homogeneous distribution of vesicles to polarized distributions, characterized by inhomogeneities or {\\it shocks}. Current reversals due to internal regulation emerge naturally within the framework of this model. We believe this minimal model will clarify the understanding of many features of collective vesicle transport, apart from serving as the basis for building more exact quantitative models for vesicle transport relevant to various {\\it in-vivo} situations.

Sudipto Muhuri; Ignacio Pagonabarraga

2010-09-09T23:59:59.000Z

306

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

307

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Permeability Gas Low Permeability Gas Design and Implementation of Energized Fracture Treatment in Tight Gas Sands DE-FC26-06NT42955 Goal The goal of this project is to develop methods and tools that can enable operators to design, optimize, and implement energized fracture treatments in a systematic way. The simulator that will result from this work would significantly expand the use and cost-effectiveness of energized fracs and improve their design and implementation in tight gas sands. Performer University of Texas-Austin, Austin, TX Background A significant portion of U.S. natural gas production comes from unconventional gas resources such as tight gas sands. Tight gas sands account for 58 percent of the total proved natural gas reserves in the United States. As many of these tight gas sand basins mature, an increasing number of wells are being drilled or completed into nearly depleted reservoirs. This includes infill wells, recompletions, and field-extension wells. When these activities are carried out, the reservoir pressures encountered are not as high as the initial reservoir pressures. In these situations, where pressure drawdowns can be less than 2,000 psi, significant reductions in well productivity are observed, often due to water blocking and insufficient clean-up of fracture-fluid residues. In addition, many tight gas sand reservoirs display water sensitivity—owing to high clay content—and readily imbibe water due both to very high capillary pressures and low initial water saturations.

308

Environmental and economic assessment of discharges from Gulf of Mexico Region oil and gas operations. Quarterly technical progress report, 1 October--31 December 1992  

SciTech Connect (OSTI)

Tasks 3 (Environmental Field Sampling and Analysis of naturally occurring radioactive materials (NORM), Heavy Metals, and Organics) and 4 (Monitoring of the Recovery of Impacted Wetland and Open Bay Produced Water Discharge Sites in Coastal Louisiana and Texas) activities have included the narrowing of the list of potential offshore platforms for study off Louisiana and Texas and a preliminary selection of three coastal sites in Louisiana. After an extensive search effort, it was concluded that no coastal sites are available in Texas. A meeting was held between the contractor, Department of Energy (DOE), and Brookhaven National Laboratory (BNL) personnel to discuss potential sites and sampling designs. A letter was sent to the Scientific Review Committee (SRC) providing a general description of the revised site selection process and sampling designs. Task 5 (Assessment of Economic Impacts of Offshore and Coastal Discharge Requirements on Present and Future Operations in the Gulf of Mexico Region) activities included continued evaluation of data types available for the economic analysis. Historical field basis data were acquired. The identification of permitted discharge points was also initiated. Task 6 (Synthesis of Gulf of Mexico Seafood Consumption and Use Patterns) activities have involved the completion of the literature review. Drafts of the fisherman and wholesaler surveys were prepared. It was determined with DOE and BNL personnel that the retailer survey would be eliminated and a subsistence fisherman survey would be added. Task 7 (Technology Transfer Plan) work has been delayed due to the Tasks 3 and 4 delay and cancellation of the annual US Minerals Management Service (MMS) Gulf of Mexico Region Information Transfer Meeting. Task 8 (Project Management and Deliverables) activities have involved the submission of the necessary reports and routine management.

Gettleson, D.A.

1993-01-18T23:59:59.000Z

309

Natural gas dehydration by desiccant materials  

Science Journals Connector (OSTI)

Water vapor in a natural gas stream can result in line plugging due to hydrate formation, reduction of line capacity due to collection of free water in the line, and increased risk of damage to the pipeline due to the corrosive effects of water. Therefore, water vapor must be removed from natural gas to prevent hydrate formation and corrosion from condensed water. Gas dehydration is the process of removing water vapor from a gas stream to lower the temperature at which water will condense from the stream; this temperature is called the “dew point” of the gas. Molecular sieves are considered as one of the most important materials that are used as desiccant materials in industrial natural gas dehydration. This work shows a study of natural gas dehydration using 3A molecular sieve as a type of solid desiccant materials, the scope of this work was to build up a pilot scale unit for a natural gas dehydration as simulation of actual existing plant for Egyptian Western Desert Gas Company (WDGC). The effect of different operating conditions (water vapor concentration and gas flow rate) on dehydration of natural gas was studied. The experimental setup consists of cylinder filled with 3A molecular sieve to form a fixed bed, then pass through this bed natural gas with different water vapor concentration, The experimental setup is fitted with facilities to control bed pressure, flow rate, measure water vapor concentration and bed temperature, a gas heater was used to activate molecular sieve bed. Increasing water vapor concentration in inlet feed gas leads to a marked decrease in dehydration efficiency. As expected, a higher inlet flow rate of natural gas decrease dehydration efficiency. Increasing feed pressure leads to higher dehydration efficiency.

Hassan A.A. Farag; Mustafa Mohamed Ezzat; Hoda Amer; Adel William Nashed

2011-01-01T23:59:59.000Z

310

Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator  

SciTech Connect (OSTI)

In the case of photovoltaic (PV) systems acting as distributed generation (DG) systems, the DC energy that is produced is fed to the grid through the power-conditioning unit (inverter). The majority of contemporary inverters used in DG systems are current source inverters (CSI) operating at unity power factor. If, however, we assume that voltage source inverters (VSI) can replace CSIs, we can generate reactive power proportionally to the remaining unused capacity at any given time. According to the theory of instantaneous power, the inverter reactive power can be regulated by changing the amplitude of its output voltage. In addition, the inverter active power can be adjusted by modifying the phase angle of its output voltage. Based on such theory, both the active power supply and the reactive power compensation (RPC) can be carried out simultaneously. When the insolation is weak or the PV modules are inoperative at night, the RPC feature of a PV system can still be used to improve the inverter utilisation factor. Some MATLAB simulation results are included here to show the feasibility of the method. (author)

Albuquerque, Fabio L.; Moraes, Adelio J.; Guimaraes, Geraldo C.; Sanhueza, Sergio M.R.; Vaz, Alexandre R. [Universidade Federal de Uberlandia, Uberlandia-MG, CEP 38400-902 (Brazil)

2010-07-15T23:59:59.000Z

311

EIA - Natural Gas Pipeline Network - Intrastate Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Intrastate Natural Gas Pipeline Segment Intrastate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Intrastate Natural Gas Pipeline Segment Overview Intrastate natural gas pipelines operate within State borders and link natural gas producers to local markets and to the interstate pipeline network. Approximately 29 percent of the total miles of natural gas pipeline in the U.S. are intrastate pipelines. Although an intrastate pipeline system is defined as one that operates totally within a State, an intrastate pipeline company may have operations in more than one State. As long as these operations are separate, that is, they do not physically interconnect, they are considered intrastate, and are not jurisdictional to the Federal Energy Regulatory Commission (FERC). More than 90 intrastate natural gas pipelines operate in the lower-48 States.

312

Valve for gas centrifuges  

DOE Patents [OSTI]

The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

Hahs, C.A.; Rurbage, C.H.

1982-03-17T23:59:59.000Z

313

Oil and Gas Exploration  

E-Print Network [OSTI]

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

314

San Diego Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Diego Gas & Electric Co Diego Gas & Electric Co (Redirected from San Diego Gas and Electric Company) Jump to: navigation, search Name San Diego Gas & Electric Co Place San Diego, California Service Territory California Website www.sdge.com Green Button Landing Page www.sdge.com/customer-ser Green Button Reference Page www.sdge.com/green-button Green Button Implemented Yes Utility Id 16609 Utility Location Yes Ownership I NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3]

315

Gas-turbine power stations on associated gas by Motor Sich OJSC  

Science Journals Connector (OSTI)

Wide introduction of gas-turbine power stations working on associated oil gas is topical for Russia. Designing and operational ... ) and EG-6000 (6.0 MW) gas-turbine power stations on associated oil gas manufactu...

P. A. Gorbachev; V. G. Mikhailutsa

2011-12-01T23:59:59.000Z

316

Operational experience of electronic active personal dosemeter and comparison with CaSo4:Dy TL dosemeter in Indian PHWR  

Science Journals Connector (OSTI)

......completion of job within planned dose. Battery Batteries of the APD are capable of operating...operation with a provision that the batteries can only be removed with a special...such as nuclear power plants, fuel reprocessing plants, research......

Vishwanath P. Singh; S. S. Managanvi; R. R. Bihari; H. R. Bhat

2013-08-01T23:59:59.000Z

317

Recirculating rotary gas compressor  

DOE Patents [OSTI]

A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

Weinbrecht, J.F.

1992-02-25T23:59:59.000Z

318

Recirculating rotary gas compressor  

DOE Patents [OSTI]

A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

1992-01-01T23:59:59.000Z

319

Louisville Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Gas & Electric Co Gas & Electric Co Jump to: navigation, search Name Louisville Gas & Electric Co Place Kentucky Utility Id 11249 Utility Location Yes Ownership I NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png ; CSR10-Curtailable Service Rider- Primary voltage Commercial

320

Rochester Gas & Electric Corp | Open Energy Information  

Open Energy Info (EERE)

Rochester Gas & Electric Corp Rochester Gas & Electric Corp Jump to: navigation, search Name Rochester Gas & Electric Corp Place New York Utility Id 16183 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NY Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png SERVICE CLASSIFICATION NO. 1 - RESIDENTIAL SERVICE RSS (Non-Retail Access

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Determining the maximal capacity of a combined-cycle plant operating with afterburning of fuel in the gas conduit upstream of the heat-recovery boiler  

Science Journals Connector (OSTI)

The effect gained from afterburning of fuel in the gas conduit upstream of the heat-recovery boiler used as part of a PGU-450T combined-cycle plant is considered. The results obtained from ... electric and therma...

V. M. Borovkov; N. M. Osmanova

2011-01-01T23:59:59.000Z

322

Removing a small quantity of THT from gas storage groundwater through air stripping and gas-phase carbon adsorption  

SciTech Connect (OSTI)

This paper deals with the response to a case of contaminated groundwater located in France. The natural gas is stored during summer in porous underground rocks. When energy requirements increase (particularly in winter), gas is drawn off, but water is also pumped during this operation. The water has a strong characteristic odour of the TetraHydroThiophene (THT), which has been used by Gaz de France as an additive in order to detect gas leakages because of its strong odour. Unfortunately, the presence of THT in medium other than natural gas can be responsible for safety problems. Gas stripping combined with adsorption on granular activated carbon was chosen to obtain removal of THT from the groundwater. The gas to water ratio for stripping column is higher than usual and the gas used for stripping was recycled in order to prevent air pollution. Carbon consumption is approximately 3 tons a year. 8 refs., 5 figs., 2 tabs.

Girod, J.F.; Leclerc, J.P.; Muhr, H. [CNRS, Nancy (France)] [and others

1996-12-31T23:59:59.000Z

323

Pipelines and Underground Gas Storage (Iowa)  

Broader source: Energy.gov [DOE]

These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of such infrastructure...

324

March Natural Gas Monthly  

Gasoline and Diesel Fuel Update (EIA)

'PGTI[+PHQTOCVKQP#FOKPKUVTCVKQP0CVWTCN)CU/QPVJN[/CTEJ 'PGTI[+PHQTOCVKQP#FOKPKUVTCVKQP0CVWTCN)CU/QPVJN[/CTEJ EIA Corrects Errors in Its Drilling Activity Estimates Series William Trapmann and Phil Shambaugh Introduction The Energy Information Administration (EIA) has published monthly and annual estimates of oil and gas drilling activity since 1978. These data are key information for many industry analysts, serving as a leading indicator of trends in the industry and a barometer of general industry status. They are assessed directly for trends, as well as in combination with other measures to assess the productivity and profitability of upstream industry operations. They are a major reference point for policymakers at both the Federal and State level. Users in the private sector include financial

325

Unaccounted-for gas project. Measurement Task Force (orifice meter studies). Volume 2B. Final report  

SciTech Connect (OSTI)

The study was aimed at determining unaccounted-for (UAF) gas volumes resulting from operating Pacific Gas and Electric Co.'s transmission and distribution systems during 1987. Activities and methods are described and results are presented for research conducted on orifice meter accuracy. The Measurement Task Force determined that orifice metering inaccuracies were the largest single contributor to 1987 UAF.

Godkin, B.J.; Robertson, J.D.; Wlasenko, R.G.; Cowgill, R.M.; Grinstead, J.R.

1990-06-01T23:59:59.000Z

326

Energy (Oil and Gas) Exploration (and Development) on the U.S.  

E-Print Network [OSTI]

Energy (Oil and Gas) Exploration (and Development) on the U.S. Arctic Continental Shelf Jeff Walker Regional Supervisor, Field Operations Minerals Management Service, Alaska Region Jeffrey.walker@mms.gov 3rd of an Ice-Diminishing Arctic on Exploratory Activities Arctic nations will pursue oil and gas. Offshore

Kuligowski, Bob

327

Oil and stock market activity when prices go up and down: the case of the oil and gas industry  

Science Journals Connector (OSTI)

We examine the asymmetric effects of daily oil price changes on equity returns, market betas, oil betas, return variances, and trading volumes for the US oil and gas industry. The responses of stock returns assoc...

Sunil K. Mohanty; Aigbe Akhigbe…

2013-08-01T23:59:59.000Z

328

DOE - Office of Legacy Management -- ANC Gas Hills Site - 040  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ANC Gas Hills Site - 040 ANC Gas Hills Site - 040 FUSRAP Considered Sites Site: ANC Gas Hills Site (040) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The ANC Gas Hills site is a Uranium Mill Tailings Remedial Action (UMTRA) Title II site located in Gas Hills, Wyoming. UMTRA Title II sites are privately owned and operated sites that were active when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The majority of the milling conducted at these sites was for private sale, but a portion was sold to the U.S. Government. After the owner completes U.S. Nuclear Regulatory Commission license termination, the Department of Energy¿s

329

Southern Indiana Gas & Elec Co | Open Energy Information  

Open Energy Info (EERE)

Gas & Elec Co Gas & Elec Co Jump to: navigation, search Name Southern Indiana Gas & Elec Co Place Indiana Utility Id 17633 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png AD - Area Development Commercial

330

Southern Indiana Gas & Elec Co | Open Energy Information  

Open Energy Info (EERE)

Gas & Elec Co Gas & Elec Co (Redirected from Vectren) Jump to: navigation, search Name Southern Indiana Gas & Elec Co Place Indiana Utility Id 17633 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png AD - Area Development Commercial

331

South Carolina Electric&Gas Co | Open Energy Information  

Open Energy Info (EERE)

Electric&Gas Co Electric&Gas Co Jump to: navigation, search Name South Carolina Electric&Gas Co Place South Carolina Utility Id 17539 Utility Location Yes Ownership I NERC Location SERC NERC SERC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 16 (General Service Time-Of-Use) Commercial

332

Portfolio-Based Planning Process for Greenhouse Gas Mitigation | Department  

Broader source: Energy.gov (indexed) [DOE]

Portfolio-Based Planning Process for Greenhouse Gas Mitigation Portfolio-Based Planning Process for Greenhouse Gas Mitigation Portfolio-Based Planning Process for Greenhouse Gas Mitigation October 7, 2013 - 10:10am Addthis The portfolio-based planning process for greenhouse gas (GHG) mitigation offers an approach to: Evaluating the GHG reduction potential at the site, program, and agency level Identifying strategies for reducing those emissions Prioritizing activities to achieve both GHG reduction and cost objectives. Portfolio-based management for GHG mitigation helps agencies move from "peanut-butter-spreading" obligations for meeting GHG reduction targets evenly across all agency operating units to strategic planning of GHG reduction activities based on each operating unit's potential and cost to reduce emissions. The result of this prioritization will lay the foundation

333

Field evaluation of cofiring gas with coal for quantifying operational benefits and emissions trim in a utility boiler. Volume 2. Topical report, 1989-1990  

SciTech Connect (OSTI)

The volume consists of 14 appendixes to accompany volume 1 of the report, and covers the following test data: analysis of coal, fylash, and bottom ash samples; cleanliness factors; slagging observation record sheets; stack opacity measurements; stack sulphur dioxide and nitrogen oxides measurements; total coal flow; fuel gas flow; furnace exit gas temperature; percent oxygen at economizer outlet; percent excess air; bulk steam temperatures at secondary superheater and reheater outlets; secondary superheater and reheater tube outlet leg temperatures; unit heat rate; and models used for data interpretation.

Clark, K.J.; Torbov, T.S.; Impey, R.J.; Hara, K.G.; Burnett, T.D.

1993-02-01T23:59:59.000Z

334

Natural gas monthly, July 1996  

SciTech Connect (OSTI)

This document presents information pertaining to the natural gas industry. Data are included on production, consumption, distribution, and pipeline activities.

NONE

1996-07-01T23:59:59.000Z

335

Operational experience of electronic active personal dosemeter and comparison with CaSo4:Dy TL dosemeter in Indian PHWR  

Science Journals Connector (OSTI)

......radiation level and personnel monitoring by Health...Physics Group. The personnel monitoring in operation...In India, the personnel monitoring for...modifications, material selection, components improvement...ALARA measures, RP training, good practices...economical, multiple operating cycles, less fading......

Vishwanath P. Singh; S. S. Managanvi; R. R. Bihari; H. R. Bhat

2013-08-01T23:59:59.000Z

336

THz-bandwidth coherence measurements of a quantum dash laser in passive and active mode-locking operation  

E-Print Network [OSTI]

, enabling them to be used in atmospheric gas spectroscopy applications [2]. Frequency up-conversion interrogation of a frequency band which contains several biochemically-important spectral components, including hydroxide, methanol and water [1]. Two popular approaches of generating THz radia- tion include frequency up-conversion

Paris-Sud XI, Université de

337

Gas Utility Pipeline Tax (Texas)  

Broader source: Energy.gov [DOE]

All gas utilities, including any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as...

338

Transmission and Storage Operations  

Energy Savers [EERE]

to see minimal to none in static or dynamic mode) - Rates are dependent on size, mechanical wear and operating pressures * PM * PdM 5 Methane Release Reduction Can the gas be...

339

Wave Synchronizing Crane Control during Water Entry in Offshore Moonpool Operations  

E-Print Network [OSTI]

will become increasingly more important in the years to come. Offshore oil and gas fields will be developed1 Wave Synchronizing Crane Control during Water Entry in Offshore Moonpool Operations strategy for active control in heavy-lift offshore crane operations is suggested, by introducing a new con

Johansen, Tor Arne

340

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

Journal of Engineering for Gas Turbines and Power, 121:569-operations with natural gas: Fuel composition implications,”USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATION

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Oklahoma Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Oklahoma Gas and Electric Company) Oklahoma Gas and Electric Company) Jump to: navigation, search Name Oklahoma Gas & Electric Co Place Oklahoma Utility Id 14063 Utility Location Yes Ownership I NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS-1 (General Service) Commercial GS-TOU (General Service Time-Of-Use) Commercial

342

Central Hudson Gas & Elec Corp | Open Energy Information  

Open Energy Info (EERE)

Hudson Gas & Elec Corp Hudson Gas & Elec Corp Jump to: navigation, search Name Central Hudson Gas & Elec Corp Place New York Utility Id 3249 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NY Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png DS-IN 85 Watt (acorn Decorative) Lighting DS-MH 175 Watt (acorn Decorative) Lighting

343

Effect of UV activation on acid and catalytic properties of zeolite-containing catalysts in conversion of gas-condensate straight-run gasolines to high-octane gasolines  

Science Journals Connector (OSTI)

Effect of activation by UV radiation with different wavelengths on the acid and catalytic properties of the N-TsKE-G zeolite catalyst in conversion of straight-run gasolines from the gas condensate of the Myl’...

V. I. Erofeev; A. S. Medvedev; L. M. Koval’…

2011-10-01T23:59:59.000Z

344

Natural Gas Pipeline Safety (Kansas)  

Broader source: Energy.gov [DOE]

This article states minimum safety standards for the transportation of natural gas by pipeline and reporting requirements for operators of pipelines.

345

Enhanced membrane gas separations  

SciTech Connect (OSTI)

An improved membrane gas separation process is described comprising: (a) passing a feed gas stream to the non-permeate side of a membrane system adapted for the passage of purge gas on the permeate side thereof, and for the passage of the feed gas stream in a counter current flow pattern relative to the flow of purge gas on the permeate side thereof, said membrane system being capable of selectively permeating a fast permeating component from said feed gas, at a feed gas pressure at or above atmospheric pressure; (b) passing purge gas to the permeate side of the membrane system in counter current flow to the flow of said feed gas stream in order to facilitate carrying away of said fast permeating component from the surface of the membrane and maintaining the driving force for removal of the fast permeating component through the membrane from the feed gas stream, said permeate side of the membrane being maintained at a subatmospheric pressure within the range of from about 0.1 to about 5 psia by vacuum pump means; (c) recovering a product gas stream from the non-permeate side of the membrane; and (d) discharging purge gas and the fast permeating component that has permeated the membrane from the permeate side of the membrane, whereby the vacuum conditions maintained on the permeate side of the membrane by said vacuum pump means enhance the efficiency of the gas separation operation, thereby reducing the overall energy requirements thereof.

Prasad, R.

1993-07-13T23:59:59.000Z

346

Gas Pipelines (Texas)  

Broader source: Energy.gov [DOE]

This chapter applies to any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as any...

347

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

for natural gas in the electric power sector soared during the week in order to meet heating needs from the current cold spell. The operator for the electric power grid in Texas...

348

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

of the original facility is expected to be operational by April 1, 2010. Tennessee Gas Pipeline Company issued a notice of an emergency repair at its Compressor Station 827 near...

349

Natural gas monthly: December 1993  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. Articles are included which are designed to assist readers in using and interpreting natural gas information.

Not Available

1993-12-01T23:59:59.000Z

350

Natural gas monthly, June 1997  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 24 tabs.

NONE

1997-06-01T23:59:59.000Z

351

Natural gas monthly, August 1994  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1994-08-24T23:59:59.000Z

352

Natural gas monthly: September 1996  

SciTech Connect (OSTI)

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 24 tabs.

NONE

1996-09-01T23:59:59.000Z

353

Natural gas monthly, November 1993  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground state data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1993-11-29T23:59:59.000Z

354

Fission product iodine during early Hanford-Site operations: Its production and behavior during fuel processing, off-gas treatment and release to the atmosphere  

SciTech Connect (OSTI)

The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate the radiological dose impact that Hanford Site operations may have made on the local and regional population. This impact is estimated by examining operations involving radioactive materials that were conducted at the Hanford Site from the startup of the first reactor in 1944 to the present. HEDR Project work is divided among several technical tasks. One of these tasks, Source Terms, is designed to develop quantitative estimates of all significant emissions of radionuclides by Hanford Site operations since 1944. Radiation doses can be estimated from these emissions by accounting for specific radionuclide transport conditions and population demography. This document provides technical information to assist in the evaluation of iodine releases. 115 refs., 5 figs., 3 tabs.

Burger, L.L.

1991-05-01T23:59:59.000Z

355

Uncertainty in Particle Number Modal Analysis during Transient Operation of Compressed Natural Gas, Diesel, and Trap-Equipped Diesel Transit Buses  

Science Journals Connector (OSTI)

A number of recent studies have examined the mass- and number-weighted particulate emissions from diesel engines and vehicles, chiefly using laboratory tests under steady-state vehicle or engine operation. ... However, there remains little fundamental data on the relationships between vehicle operating mode (cruise, idle, acceleration, decelera tion) and ultrafine particle emissions, both for diesel and especially for diesel alternatives. ... The number of ELPI data points measured for individual test cycles ranged from 120 to 1000, depending on the recorded ELPI time resolution and overall length of the driving cycle (?10?35 min). ...

Britt A. Holmén; Yingge Qu

2004-03-10T23:59:59.000Z

356

The Gas Industry  

Science Journals Connector (OSTI)

... the total output of towns' gas in Great Britain, distributes annually approximately as much energy as the whole of the electrical undertakings in the country. The industry has reason ... any actual thermal process, and the operations of the gas industry are not outside the ambit of the second law of thermodynamics, high though the efficiency of the carbonising process ...

J. S. G. THOMAS

1924-04-26T23:59:59.000Z

357

Environmental Assessment and Finding of No Significant Impact: The Proposed Issuance of an Easement to Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline within Los Alamos National Laboratory, Los Alamos, New Mexico  

SciTech Connect (OSTI)

The National Nuclear Security Administration (NNSA) has assigned a continuing role to Los Alamos National Laboratory (LANL) in carrying out NNSAs national security mission. To enable LANL to continue this enduring responsibility requires that NNSA maintain the capabilities and capacities required in support of its national mission assignments at LANL. To carry out its Congressionally assigned mission requirements, NNSA must maintain a safe and reliable infrastructure at LANL. Upgrades to the various utility services at LANL have been ongoing together with routine maintenance activities over the years. However, the replacement of a certain portion of natural gas service transmission pipeline is now necessary as this delivery system element has been operating well beyond its original design life for the past 20 to 30 years and components of the line are suffering from normal stresses, strains, and general failures. The Proposed Action is to grant an easement to the Public Service Company of New Mexico (PNM) to construct, operate, and maintain approximately 15,000 feet (4,500 meters) of 12-inch (in.) (30-centimeter [cm]) coated steel natural gas transmission mainline on NNSA-administered land within LANL along Los Alamos Canyon. The new gas line would begin at the existing valve setting located at the bottom of Los Alamos Canyon near the Los Alamos County water well pump house and adjacent to the existing 12-in. (30-cm) PNM gas transmission mainline. The new gas line (owned by PNM) would then cross the streambed and continue east in a new easement obtained by PNM from the NNSA, paralleling the existing electrical power line along the bottom of the canyon. The gas line would then turn northeast near State Road (SR) 4 and be connected to the existing 12-in. (30-cm) coated steel gas transmission mainline, located within the right-of-way (ROW) of SR 502. The Proposed Action would also involve crossing a streambed twice. PNM would bore under the streambed for pipe installation. PNM would also construct and maintain a service road along the pipeline easement. In addition, when construction is complete, the easement would be reseeded. Portions of the Proposed Action are located within potential roosting and nesting habitat for the Mexican spotted owl (Strix occidentalis lucida), a Federally protected threatened species. Surveys over the last seven years have identified no owls within this area. The Proposed Action would be conducted according to the provisions of the LANL Threatened and Endangered Species Habitat Management Plan. Effects would not be adverse to either individuals or potential critical habitat for protected species. Cultural resources within the vicinity of the proposed easement would be avoided with the exception of an historic trail. However, the original trail has been affected by previous activities and no longer has sufficient historical value to be eligible for listing on the National Register of Historic Places. Minimal undisturbed areas would be involved in the Proposed Action. Most of the proposed easement follows an established ROW for the existing electrical power line. There are several potentially contaminated areas within Los Alamos Canyon; however, these areas would be avoided, where possible, or, if avoidance isn't possible or practicable under the Proposed Action, the contaminated areas would be sampled and remediated in accordance with New Mexico Environment Department requirements before construction.

N /A

2002-07-30T23:59:59.000Z

358

Cell, Vol. 98, 475485, August 20, 1999, Copyright 1999 by Cell Press Activation of Store-Operated Ca2  

E-Print Network [OSTI]

-Operated Ca2 Current in Xenopus Oocytes Requires SNAP-25 but Not a Diffusible Messenger and Blatter, 1997 (1996) showed that the GTP S inhibition of Ca2 influx into oocytes could be prevented by staurosporine reinterpreted as direct inhibition of the Ca2 influxLa Jolla, California 92093-0647 channels (Gregory

Tsien, Roger Y.

359

Natural gas monthly, July 1997  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is entitled ``Intricate puzzle of oil and gas reserves growth.`` A special report is included on revisions to monthly natural gas data. 6 figs., 24 tabs.

NONE

1997-07-01T23:59:59.000Z

360

Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Sampling Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Sampling Details Activities (7) Areas (7) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Gas composition and source of fluids. Thermal: Anomalous flux is associated with active hydrothermal activity. Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Gas Sampling: Gas sampling is done to characterize the chemical, thermal, and hydrological properties of a surface or subsurface hydrothermal system.

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Study of the effects of operating factors on the resulting producer gas of oil palm fronds gasification with a single throat downdraft gasifier  

Science Journals Connector (OSTI)

Abstract Malaysia has abundant but underutilized oil palm fronds. Although the gasification of biomass using preheated inlet air as a gasifying medium is considered an efficient and environmentally friendly method, previous studies were limited to certain types of biomass wastes and gasifier designs. Hence, the effects of preheating the gasifying air on oil palm fronds gasification in a single throat downdraft gasifier are presented in this paper. In addition, the effects of varying the flow rate of the gasifying air and the moisture content of the feedstock on the outputs of oil palm fronds gasification were studied. A response surface methodology was used for the design of the experiment and the analysis of the results. The results showed that preheating the gasifying air to 500 °C increased the concentrations of CO from 22.49 to 24.98%, that of CH4 from 1.98 to 2.87%, and that of H2 from 9.67 to 13.58% on dry basis in the producer gas at a 10% feedstock moisture content. Conversely, the dry basis concentrations of CO, CH4, and H2 decreased from 22.49, 1.98 and 9.67% to 12.01, 1.44 and 5.45%, respectively, as the moisture content increased from 10 to 20%. The airflow rate was also proven to significantly affect the quality of the resulting producer gas.

Fiseha M. Guangul; Shaharin A. Sulaiman; Anita Ramli

2014-01-01T23:59:59.000Z

362

Oil and Gas Conservation (South Dakota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Conservation (South Dakota) Conservation (South Dakota) Oil and Gas Conservation (South Dakota) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Department of Environment and Natural Resources The Minerals and Mining Program oversees the regulation of oil and gas exploration, recovery, and reclamation activities in South Dakota. Permits are required for drilling of oil or gas wells, and the SD Codified Laws contain provisions pertaining to well testing, classification, metering, operation, and spacing. Additional regulations are contained in the SD

363

Optogenetic Mimicry of the Transient Activation of Dopamine Neurons by Natural Reward Is Sufficient for Operant Reinforcement  

E-Print Network [OSTI]

Activation of dopamine receptors in forebrain regions, for minutes or longer, is known to be sufficient for positive reinforcement of stimuli and actions. However, the firing rate of dopamine neurons is increased for only ...

Kim, Kyung Man

364

New York State Elec & Gas Corp | Open Energy Information  

Open Energy Info (EERE)

New York State Elec & Gas Corp New York State Elec & Gas Corp Place New York Utility Id 13511 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes NERC RFC Yes ISO NY Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS-2 (Small General Service ESS) Industrial

365

Gas Flux Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling Gas Flux Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Flux Sampling Details Activities (26) Areas (20) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Thermal: Anomalous flux is associated with active hydrothermal activity. Dictionary.png Gas Flux Sampling: Gas flux sampling measures the flow of volatile gas emissions from a specific location and compares it to average background emissions. Anomalously high gas flux can be an indication of hydrothermal activity.

366

Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Observation of Waste Treatment and Immobilization Plant LAW Melter and Melter Off-gas Process System Hazards Analysis _Oct 21-31  

Broader source: Energy.gov (indexed) [DOE]

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-10-21 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities Dates of Activity : 10/21/13 - 10/31/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS), Office of Safety and Emergency Management Evaluations (Independent Oversight) reviewed the Insight software hazard evaluation (HE) tables for hazard analysis (HA) generated to date for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter and Off-gas systems, observed a

367

Enhanced catalyst stability for cyclic co methanation operations  

DOE Patents [OSTI]

Carbon monoxide-containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is thereafter reacted with steam or hydrogen to form methane. Enhanced catalyst stability for long term, cyclic operation is obtained by the incorporation of an alkali or alkaline earth dopant in a silica binding agent added to the catalyst-support additive composition.

Risch, Alan P. (New Fairfield, CT); Rabo, Jule A. (Armonk, NY)

1983-01-01T23:59:59.000Z

368

Wet-gas compression in twin-screw multiphase pumps  

E-Print Network [OSTI]

encountered when operating under conditions with high gas volume fractions (GVF). Twin-screw multiphase pumps experience a severe decrease in efficiency when operating under wet-gas conditions, GVF over 95%. Field operations have revealed severe vibration...

Chan, Evan

2009-05-15T23:59:59.000Z

369

PRESSURE ACTIVATED SEALANT TECHNOLOGY  

SciTech Connect (OSTI)

The objective of this project is to develop new, efficient, cost effective methods of internally sealing natural gas pipeline leaks through the application of differential pressure activated sealants. In researching the current state of the art for gas pipeline sealing technologies we concluded that if the project was successful, it appeared that pressure activated sealant technology would provide a cost effective alternative to existing pipeline repair technology. From our analysis of current field data for a 13 year period from 1985 to 1997 we were able to identify 205 leaks that were candidates for pressure activated sealant technology, affirming that pressure activated sealant technology is a viable option to traditional external leak repairs. The data collected included types of defects, areas of defects, pipe sizes and materials, incident and operating pressures, ability of pipeline to be pigged and corrosion states. This data, and subsequent analysis, was utilized as a basis for constructing applicable sealant test modeling.

Michael A. Romano

2004-04-01T23:59:59.000Z

370

Liquid and gaseous waste operations section. Annual operating report CY 1997  

SciTech Connect (OSTI)

This document presents information on the liquid and gaseous wastes operations section for calendar year 1997. Operating activities, upgrade activities, and maintenance activities are described.

Maddox, J.J.; Scott, C.B.

1998-03-01T23:59:59.000Z

371

Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico  

E-Print Network [OSTI]

a suspected hazard to oil and gas drilling operations, andregional oil and gas reservoir) and the BGHS. Drilling

Boswell, R.D.

2010-01-01T23:59:59.000Z

372

Natural Gas Annual 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 Released: October 31, 2007 The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2006 and 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

373

Wireless technology collects real-time information from oil and gas wells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wireless technology collects real-time information from oil and gas Wireless technology collects real-time information from oil and gas wells Wireless technology collects real-time information from oil and gas wells The patented system delivers continuous electromagnetic data on the reservoir conditions, enabling economical and effective monitoring and analysis. April 3, 2012 One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas wells, including very deep wells already producing oil and gas and drilling operations for new wells. One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas wells, including very deep wells

374

Development of thin palladium membranes supported on large porous 310L tubes for a steam reformer operated with gas-to-liquid fuel  

Science Journals Connector (OSTI)

Abstract Palladium membranes were prepared on large tubes (80 mm diameter and 150 mm length) of porous stainless steel supports (PSS) using a modified electroless plating technique. The morphology of the palladium layer was found to be depending on the container material of the coating apparatus. The use of PMMA resulted in compact palladium layers with smooth surfaces whereas PTFE led to inhomogeneous palladium coating with rough surface. Two different ceramic materials and coating methods were used to prepare an intermediate layer needed to prevent intermetallic diffusion between the palladium and the support at elevated temperatures. Wet powder spraying of TiO2 followed by sintering resulted in a smoother surface than atmospheric plasma spraying of YSZ, thus allowing for a thinner palladium coating. Pd/TiO2/PSS membranes showed about 4 times higher hydrogen permeances than Pd/YSZ/PSS membranes as a consequence of higher palladium thickness and lower porosity of the ceramic intermediate layer. The selectivity against nitrogen was comparable for both membranes. However, the YSZ intermediate layer showed better stability at elevated temperatures. Two membrane tubes were applied in the membrane reformer, which produced hydrogen successfully from a gas-to-liquid (GtL) fuel.

Grazyna Straczewski; Johannes Völler-Blumenroth; Hubert Beyer; Peter Pfeifer; Michael Steffen; Ingmar Felden; Angelika Heinzel; Matthias Wessling; Roland Dittmeyer

2014-01-01T23:59:59.000Z

375

Environmental and economic assessment of discharges from Gulf of Mexico Region Oil and Gas Operations. Quarterly technical progress report, January 1, 1994--March 31, 1994  

SciTech Connect (OSTI)

The primary objectives of the project are to increase the base of scientific knowledge concerning (1) the fate and environmental effects of organics, trace metals, and NORM in water, sediment, and biota near several offshore oil and gas facilities; (2) the characteristics of produced water and produced sand discharges as they pertain to organics, trace metals, and NORM variably found in association with the discharges; (3) the recovery of four terminated produced water discharge sites located in wetland and high-energy open bay sites of coastal Louisiana and Texas; (4) the economic and energy supply impacts of existing and anticipated federal and state offshore and coastal discharge regulations; and (5) the catch, consumption and human use patterns of seafood species collected from coastal and offshore waters. The products of the effort will be a series of technical reports detailing the study procedures, results, and conclusions which contribute to the transfer of technology to the scientific community, petroleum industry, and state and federal programs.

Gettleson, D.A.

1994-04-21T23:59:59.000Z

376

Ammonia synthesis gas purification  

SciTech Connect (OSTI)

This patent describes the purification of a reformed gas mixture following water gas shift conversion to produce a purified ammonia synthesis gas stream. The improved processing sequence consisting essentially of: (A) Selectively catalytically oxidizing the residual carbon monoxide content of the gas mixture to carbon dioxide so as to reduce the carbon monoxide content of the gas mixture to less than about 20 ppm, the selective catalytic oxidation being carried out with an excess of air, with the excess oxygen being catalytically reacted with a small amount of hydrogen so that the residual oxygen level is reduced to less than about 3 ppm; (B) removing the bulk of the carbon dioxide content of the gas mixture by liquid absorption; (C) Removing residual amounts of carbon monoxide, carbon dioxide and water by selective adsorption on the fixed beds of a thermal swing adsorption system, a dry, purified ammonia ammonia synthesis gas stream containing less than a total of 10 ppm of carbon monoxide and carbon dioxide being recovered from the thermal swing adsorption system; (D) Passing the resulting dry, purified ammonia synthesis gas stream having a low content of methane to an ammonia production operation without intermediate passage of the ammonia synthesis gas stream to a methanation unit or to a cryogenic unit for removal of carbon monoxide and carbon dioxide therefrom; whereby the efficiency of the overall purification operation and the effective utilization of hydrogen are enhanced.

Fuderer, A.

1986-02-25T23:59:59.000Z

377

Gas Chromatography  

Science Journals Connector (OSTI)

He received his B.S. degree in 1970 from Rhodes College in Memphis, TN, his M.S. degree in 1973 from the University of Missouri, Columbia, MO, and his Ph.D. degree in 1975 from Dalhousie University, Halifax, Nova Scotia, Canada. ... A review (with 145 references) on the role of carrier gases on the separation process (A4) demonstrates that carrier gas interactions are integral to the chromatographic process. ... In another report, activity coefficients for refrigerants were evaluated with a polyol ester oil stationary phase (C22). ...

Gary A. Eiceman; Herbert H. Hill, Jr.; Jorge Gardea-Torresdey

2000-04-25T23:59:59.000Z

378

Life Cycle Greenhouse Gas Emissions and Freshwater Consumption of Marcellus Shale Gas  

Science Journals Connector (OSTI)

Life Cycle Greenhouse Gas Emissions and Freshwater Consumption of Marcellus Shale Gas ... We present results of a life cycle assessment (LCA) of Marcellus shale gas used for power generation. ... The analysis employs the most extensive data set of any LCA of shale gas to date, encompassing data from actual gas production and power generation operations. ...

Ian J. Laurenzi; Gilbert R. Jersey

2013-04-02T23:59:59.000Z

379

Natural gas monthly, March 1997  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas analysis and geographic information systems.`` 6 figs., 27 tabs.

NONE

1997-03-01T23:59:59.000Z

380

Natural gas monthly, August 1995  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article is on US Natural Gas Imports and Exports 1994.

NONE

1995-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Natural gas monthly, June 1996  

SciTech Connect (OSTI)

The natural gas monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article for this month is Natural Gas Industry Restructuring and EIA Data Collection.

NONE

1996-06-24T23:59:59.000Z

382

Natural gas monthly, October 1997  

SciTech Connect (OSTI)

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article in this issue is a special report, ``Comparison of Natural Gas Storage Estimates from the EIA and AGA.`` 6 figs., 26 tabs.

NONE

1997-10-01T23:59:59.000Z

383

Unabated Adenovirus Replication following Activation of the cGAS/STING-Dependent Antiviral Response in Human Cells  

Science Journals Connector (OSTI)

...coxsackie B viruses and adenoviruses 2 and 5. Science 275 :1320-1323. doi: 10.1126/science.275.5304.1320 . 13. Gaggar, A , DM...activates the type I interferon pathway. Science 339 :786-791. doi: 10.1126/science...

Eric Lam; Erik Falck-Pedersen

2014-10-08T23:59:59.000Z

384

OPERATIONAL LIMITATIONS FOR DEMOLITION OF A HIGHLY ALPHA CONTAMINATED BUILDING MODLES VERSUS MEASURED AIR & SURFACE ACTIVITY CONCENTRATIONS  

SciTech Connect (OSTI)

The demolition of a facility historically used for processing and handling transuranic materials is considered. Residual alpha emitting radionuclide contamination poses an exposure hazard if released to the local environment during the demolition. The process of planning for the demolition of this highly alpha contaminated building, 232-Z, included a predemolition modeling analysis of potential exposures. Estimated emission rates were used as input to an air dispersion model to estimate frequencies of occurrence of peak air and surface exposures. Postdemolition modeling was also conducted, based on the actual demolition schedule and conditions. The modeling results indicated that downwind deposition is the main operational limitation for demolition of a highly alpha-contaminated building. During the demolition of 232-Z, airborne radiation and surface contamination were monitored. The resultant non-detect monitoring results indicate a significant level of conservatism in the modeled results. This comparison supports the use of more realistic assumption in the estimating emission rates. The resultant reduction in modeled levels of potential exposures has significant implications in terms of the projected costs of demolition of such structures.

LLOYD, E.R.

2006-11-02T23:59:59.000Z

385

Natural Gas Annual 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 Released: January 28, 2009 The Natural Gas Annual 2007 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2007. Summary data are presented for each State for 2003 to 2007. The Natural Gas Annual 2007 Summary Highlights provides an overview of the supply and disposition of natural gas in 2007 and is intended as a supplement to the Natural Gas Annual 2007. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

386

Natural Gas Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

9 9 Released: December 28, 2010 The Natural Gas Annual 2009 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2009. Summary data are presented for each State for 2005 to 2009. The Natural Gas Annual 2009 Summary Highlights provides an overview of the supply and disposition of natural gas in 2009 and is intended as a supplement to the Natural Gas Annual 2009. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2009) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2009) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

387

Natural Gas Annual 2008  

Gasoline and Diesel Fuel Update (EIA)

8 8 Released: March 2, 2010 The Natural Gas Annual 2008 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2008. Summary data are presented for each State for 2004 to 2008. The Natural Gas Annual 2008 Summary Highlights provides an overview of the supply and disposition of natural gas in 2008 and is intended as a supplement to the Natural Gas Annual 2008. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2008) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2008) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

388

Microsoft Word - Gas-Electricity Briefing Memo 072414 FINAL  

Energy Savers [EERE]

natural gas power plants to back up increasing amounts of intermittent wind and solar power. Though the electricity and natural gas pipeline industries have operated...

389

Magnetic Resonance Imaging (MRI) of PEM Dehydration and Gas Manifold...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resonance Imaging (MRI) of PEM Dehydration and Gas Manifold Flooding During Continuous Fuel Cell Operation. Magnetic Resonance Imaging (MRI) of PEM Dehydration and Gas Manifold...

390

Energy Cost Calculator for Electric and Gas Water Heaters | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric and Gas Water Heaters Energy Cost Calculator for Electric and Gas Water Heaters Vary equipment size, energy cost, hours of operation, and or efficiency level. INPUT...

391

Measurement of gas/water uptake coefficients for trace gases active in the marine environment. [Annual report  

SciTech Connect (OSTI)

Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean`s surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry`s law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

Davidovits, P. [Boston Coll., Chestnut Hill, MA (United States). Dept. of Chemistry; Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

1992-02-01T23:59:59.000Z

392

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

393

Operations Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Standards BPA Operations Information (OPI) Transmission Services operates and plans for regional and national system needs. Transmission Services coordinates system operation and...

394

Gas Geothermometry | Open Energy Information  

Open Energy Info (EERE)

Gas Geothermometry Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group:...

395

Gas-dynamic characteristics of a noise and heat insulating jacket on a gas turbine in a gas pumping plant on emergency disconnection of the cooling fans  

Science Journals Connector (OSTI)

The paper discusses the operation of a gas turbine plant (GTP) when the fans in ... NHJ by a fan. The operation of gas-pumping plant involves working with brief (10 ... describing the motion of an ideal thermally...

P. V. Trusov; D. A. Charntsev; I. R. Kats…

2008-09-01T23:59:59.000Z

396

Apparatus for gas sorption measurement with integrated gas composition measurement device and gas mixing  

SciTech Connect (OSTI)

An apparatus for testing of multiple material samples includes a gas delivery control system operatively connectable to the multiple material samples and configured to provide gas to the multiple material samples. Both a gas composition measurement device and pressure measurement devices are included in the apparatus. The apparatus includes multiple selectively openable and closable valves and a series of conduits configured to selectively connect the multiple material samples individually to the gas composition device and the pressure measurement devices by operation of the valves. A mixing system is selectively connectable to the series of conduits and is operable to cause forced mixing of the gas within the series of conduits to achieve a predetermined uniformity of gas composition within the series of conduits and passages.

Micklash. II, Kenneth James; Dutton, Justin James; Kaye, Steven

2014-06-03T23:59:59.000Z

397

A highly active and stable Co4N/?-Al2O3 catalyst for CO and CO2 methanation to produce synthetic natural gas (SNG)  

Science Journals Connector (OSTI)

Abstract Co4N/?-Al2O3 and Co/?-Al2O3 catalysts with different metal loadings were prepared by NH3 and H2-temperature programmed reaction method for the co-methanation of carbon oxides (CO and CO2). The catalysts were characterized by N2 adsorption–desorption, XRD, XPS, TEM-SAED, H2, CO, and CO2-TPD techniques. Results showed that the Co4N catalysts had higher activity than Co metal-supported catalysts due to their enhanced adsorption capacity, uniform metal dispersion, and superior metal-support interaction. Among the catalysts studied, 20Co4N/?-Al2O3 catalyst with 20 wt% metal loading showed the best performance. This catalyst achieved higher activity for CH4 formation between 200 and 300 °C and maintained high product selectivity (?98%). A 250 h stability test for 20Co4N/?-Al2O3 was also conducted at 350 °C and increased gas hourly space velocity (GHSV; 10,000 h?1). The spent catalyst was further characterized using XRD, TEM, and TGA analysis. Results revealed that the catalyst was highly resistant to metal sintering and carbon deposition, whereas high CO and CO2 conversion and CH4 selectivity were maintained even at a higher GHSV.

Rauf Razzaq; Chunshan Li; Muhammad Usman; Kenzi Suzuki; Suojiang Zhang

2015-01-01T23:59:59.000Z

398

Supersonic gas compressor  

DOE Patents [OSTI]

A gas compressor based on the use of a driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by the use of a pre-swirl compressor, and using a bypass stream to bleed a portion of the intermediate pressure gas after passing through the pre-swirl compressor back to the inlet of the pre-swirl compressor. Inlet guide vanes to the compression ramp enhance overall efficiency.

Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

2007-11-13T23:59:59.000Z

399

Activities  

Broader source: Energy.gov [DOE]

Activities and events provide Residential Network members the opportunity to discuss similar needs and challenges, and to collectively identify effective strategies and useful resources.

400

Chapter 9 -Forklift Operations Forklift Operations Safety Rules  

E-Print Network [OSTI]

, or hazardous locations. 19. Operators should not put their fingers, arms, or legs between the uprights that horn, lights, brakes, tires, gas supply, hydraulic lines, etc. are in safe working condition. Employees

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Gas Flux Sampling (Klein, 2007) | Open Energy Information  

Open Energy Info (EERE)

2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling (Klein, 2007) Exploration Activity Details Location Unspecified...

402

Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity Details...

403

Gas Flux Sampling (Lewicki & Oldenburg, 2004) | Open Energy Informatio...  

Open Energy Info (EERE)

2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling (Lewicki & Oldenburg, 2004) Exploration Activity Details Location...

404

Economics of Electric Compressors for Gas Transmission  

E-Print Network [OSTI]

) option. Outside of these regions, new electric drives as well as gas fueled reciprocating engines and turbines are being considered for replacement of older reciprocating gas engines and compressor units, based on improved operating efficiency. We review...

Schmeal, W. R.; Hibbs, J. J.

405

Optimizing Natural Gas Use: A Case Study  

E-Print Network [OSTI]

Optimization of Steam & Energy systems in any continuously operating process plant results in substantial reduction in Natural gas purchases. During periods of natural gas price hikes, this would benefit the plant to control their fuel budget...

Venkatesan, V. V.; Schweikert, P.

2007-01-01T23:59:59.000Z

406

BIOLOGICAL OPINION ON ISSUANCE OF INCIDENTAL HARASSMENT AUTHORIZATIONS FOR OIL AND GAS EXPLORATION ACTIVITIES IN THE CHUKCHI AND BEAUFORT SEAS IN 2010  

E-Print Network [OSTI]

#12;BIOLOGICAL OPINION ON ISSUANCE OF INCIDENTAL HARASSMENT AUTHORIZATIONS FOR OIL AND GAS..............................................................................................................84 i #12;BIOLOGICAL OPINION ON ISSUANCE OF INCIDENTAL HARASSMENT AUTHORIZATIONS FOR OIL AND GAS" permits under section 101(a)(5) of the Marine Mammal Protection Act, as amended, for certain oil and gas

407

EIA - Natural Gas Pipeline System - Northeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Northeast Region Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These interstate pipelines deliver natural gas to several intrastate natural gas pipelines and at least 50 local distribution companies in the region. In addition, they also serve large industrial concerns and, increasingly, natural gas fired electric power generation facilities.

408

Third millenium ideal gas and condensed phase thermochemical database for combustion (with update from active thermochemical tables).  

SciTech Connect (OSTI)

The thermochemical database of species involved in combustion processes is and has been available for free use for over 25 years. It was first published in print in 1984, approximately 8 years after it was first assembled, and contained 215 species at the time. This is the 7th printed edition and most likely will be the last one in print in the present format, which involves substantial manual labor. The database currently contains more than 1300 species, specifically organic molecules and radicals, but also inorganic species connected to combustion and air pollution. Since 1991 this database is freely available on the internet, at the Technion-IIT ftp server, and it is continuously expanded and corrected. The database is mirrored daily at an official mirror site, and at random at about a dozen unofficial mirror and 'finger' sites. The present edition contains numerous corrections and many recalculations of data of provisory type by the G3//B3LYP method, a high-accuracy composite ab initio calculation. About 300 species are newly calculated and are not yet published elsewhere. In anticipation of the full coupling, which is under development, the database started incorporating the available (as yet unpublished) values from Active Thermochemical Tables. The electronic version now also contains an XML file of the main database to allow transfer to other formats and ease finding specific information of interest. The database is used by scientists, educators, engineers and students at all levels, dealing primarily with combustion and air pollution, jet engines, rocket propulsion, fireworks, but also by researchers involved in upper atmosphere kinetics, astrophysics, abrasion metallurgy, etc. This introductory article contains explanations of the database and the means to use it, its sources, ways of calculation, and assessments of the accuracy of data.

Burcat, A.; Ruscic, B.; Chemistry; Technion - Israel Inst. of Tech.

2005-07-29T23:59:59.000Z

409

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network [OSTI]

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O'Sullivan, Francis

410

Qualitative and Quantitative Assessment of Nuclear Materials Contained in High-Activity Waste Arising from the Operations at the 'SHELTER' Facility  

SciTech Connect (OSTI)

As a result of the nuclear accident at the Chernobyl NPP in 1986, the explosion dispeesed nuclear materials contained in the nuclear fuel of the reactor core over the destroyed facilities at Unit No. 4 and over the territory immediately adjacent to the destroyed unit. The debris was buried under the Cascade Wall. Nuclear materials at the SHELTER can be characterized as spent nuclear fuel, fresh fuel assemblies (including fuel assemblies with damaged geometry and integrity, and individual fuel elements), core fragments of the Chernobyl NPP Unit No. 4, finely-dispersed fuel (powder/dust), uranium and plutonium compounds in water solutions, and lava-like nuclear fuel-containing masses. The new safe confinement (NSC) is a facility designed to enclose the Chernobyl NPP Unit No. 4 destroyed by the accident. Construction of the NSC involves excavating operations, which are continuously monitored including for the level of radiation. The findings of such monitoring at the SHELTER site will allow us to characterize the recovered radioactive waste. When a process material categorized as high activity waste (HAW) is detected the following HLW management operations should be involved: HLW collection; HLW fragmentation (if appropriate); loading HAW into the primary package KT-0.2; loading the primary package filled with HAW into the transportation cask KTZV-0.2; and storing the cask in temporary storage facilities for high-level solid waste. The CDAS system is a system of 3He tubes for neutron coincidence counting, and is designed to measure the percentage ratio of specific nuclear materials in a 200-liter drum containing nuclear material intermixed with a matrix. The CDAS consists of panels with helium counter tubes and a polyethylene moderator. The panels are configured to allow one to position a waste-containing drum and a drum manipulator. The system operates on the ‘add a source’ basis using a small Cf-252 source to identify irregularities in the matrix during an assay. The platform with the source is placed under the measurement chamber. The platform with the source material is moved under the measurement chamber. The design allows one to move the platform with the source in and out, thus moving the drum. The CDAS system and radioactive waste containers have been built. For each drum filled with waste two individual measurements (passive/active) will be made. This paper briefly describes the work carried out to assess qualitatively and quantitatively the nuclear materials contained in high-level waste at the SHELTER facility. These efforts substantially increased nuclear safety and security at the facility.

Cherkas, Dmytro

2011-10-01T23:59:59.000Z

411

Madison Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

& Electric Co & Electric Co (Redirected from Madison Gas and Electric Company) Jump to: navigation, search Name Madison Gas & Electric Co Place Madison, Wisconsin Utility Id 11479 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cg-3 Commercial Cg-5 Residential

412

Louisiana Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

413

Mississippi Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

414

Utah Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

415

Arkansas Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

416

Idaho Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

417

Missouri Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

418

California Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

419

Oklahoma Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

420

Indiana Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Washington Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

422

Montana Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

423

Oregon Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

424

Kansas Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

425

Virginia Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

426

Michigan Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

427

Alabama Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

428

Underground Natural Gas in Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

6,235,025 6,652,218 7,026,645 7,302,127 7,572,885 7,928,016 6,235,025 6,652,218 7,026,645 7,302,127 7,572,885 7,928,016 1973-2013 Alaska 28,203 29,473 30,384 31,284 32,766 34,652 2013-2013 Lower 48 States 6,206,822 6,622,745 6,996,261 7,270,844 7,540,119 7,893,364 2011-2013 Alabama 28,455 28,958 28,160 28,582 28,018 29,312 1995-2013 Arkansas 11,133 11,575 11,977 12,383 12,816 13,020 1990-2013 California 494,687 526,990 548,682 551,855 553,972 563,219 1990-2013 Colorado 70,182 74,046 80,390 87,199 94,797 100,693 1990-2013 Illinois 746,993 774,182 809,958 842,081 876,844 917,781 1990-2013 Indiana 87,254 89,244 91,822 94,240 97,911 101,106 1990-2013 Iowa 209,512 215,593 221,664 230,749 245,317 261,998 1990-2013 Kansas 200,725 214,725 228,046 244,878 256,709 266,439 1990-2013

429

Ohio Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

430

Wyoming Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

431

Colorado Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series...

432

Colorado Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series...

433

Kentucky Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern...

434

Tennessee Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern...

435

Mississippi Underground Natural Gas Storage - All Operators  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

436

Kentucky Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

437

Missouri Underground Natural Gas Storage - All Operators  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

438

Virginia Underground Natural Gas Storage - All Operators  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

439

Oklahoma Underground Natural Gas Storage - All Operators  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

440

Alabama Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Minnesota Underground Natural Gas Storage - All Operators  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

442

Utah Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

443

Washington Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

444

Connecticut Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

1994 1995 1996 View History Net Withdrawals 0 0 1973-1996 Injections 0 0 0 1973-1996 Withdrawals 0 0 0 1973-1996...

445

Oregon Underground Natural Gas Storage - All Operators  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

446

Indiana Underground Natural Gas Storage - All Operators  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

447

Pennsylvania Underground Natural Gas Storage - All Operators  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

448

Idaho Underground Natural Gas Storage - All Operators  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

449

Louisiana Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

450

Kansas Underground Natural Gas Storage - All Operators  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

451

California Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

452

Alaska Underground Natural Gas Storage - All Operators  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

453

Texas Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

454

Wyoming Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

455

Montana Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

456

Ohio Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

457

Arkansas Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

458

Michigan Underground Natural Gas Storage - All Operators  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

459

Maryland Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

927 -1,758 2,292 -1,721 2,383 -811 1967-2013 Injections 16,517 15,088 14,384 15,592 10,582 14,165 1967-2013 Withdrawals 17,445 13,330 16,676 13,871 12,965 13,354...

460

Texas Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

Note: This page contains sample records for the topic "gas activities operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Kentucky Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

462

Alaska Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

463

Active NEPA Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Active NEPA Projects Active NEPA Projects Active NEPA Projects List of Active NEPA Projects EIS-0497: CE FLNG Project, Plaquemines Parish, Louisiana The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas terminal in Plaquemines Parish, Louisiana, and approximately 37 miles of 42-inch diameter natural gas transmission pipeline to connect the terminal to natural gas infrastructure facilities. Last Update: January 8, 2014 EIS-0495: Walla Walla Basin Spring Chinook Hatchery Program; Milton-Freewater, Oregon, and Dayton, Washington Bonneville Power Administration (BPA) is preparing an EIS to analyze the potential environmental impacts of funding a proposal by the Confederated

464

Uniform System of Accounts for Gas Utilities (Maine)  

Broader source: Energy.gov [DOE]

This rule establishes a uniform system of accounts and annual report filing requirements for natural gas utilities operating in Maine.

465

NETL: Gasification Systems - Gas Cleaning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cleaning Cleaning Chemicals from Coal Complex Chemicals from Coal Complex (Eastman Company) Novel gas cleaning and conditioning are crucial technologies for achieving near-zero emissions, while meeting gasification system performance and cost targets. DOE's Gasification Systems program supports technology development in the area of gas cleaning and conditioning, including advanced sorbents and solvents, particulate filters, and other novel gas-cleaning approaches that remove and convert gas contaminants into benign and marketable by-products. To avoid the cost and efficiency penalties associated with cooling the gas stream to temperatures at which conventional gas clean-up systems operate, novel processes are being developed that operate at mild to high temperatures and incorporate multi-contaminant control to

466

Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems  

SciTech Connect (OSTI)

This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

Komar, C.A. (ed.)

1980-01-01T23:59:59.000Z

467

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

6 6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1996 and detailed annual historical information by State for 1967-1996. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1996. The remaining tables contain detailed annual historical information, by State, for 1967-1996. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

468

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

7 7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1997 and detailed annual historical information by State for 1967-1997. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1997. The remaining tables contain detailed annual historical information, by State, for 1967-1997. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

469

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

8 8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1998 and detailed annual historical information by State for 1967-1998. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1998. The remaining tables contain detailed annual historical information, by State, for 1967-1998. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

470

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

471

Operating Experience and Lessons Learned in the Use of Soft-Sided Packaging for Transportation and Disposal of Low Activity Radioactive Waste  

SciTech Connect (OSTI)

This paper describes the operating experience and lessons learned at U.S. Department of Energy (DOE) sites as a result of an evaluation of potential trailer contamination and soft-sided packaging integrity issues related to the disposal of low-level and mixed low-level (LLW/MLLW) radioactive waste shipments. Nearly 4.3 million cubic meters of LLW/MLLW will have been generated and disposed of during fiscal year (FY) 2010 to FY 2015—either at commercial disposal sites or disposal sites owned by DOE. The LLW/MLLW is packaged in several different types of regulatory compliant packaging and transported via highway or rail to disposal sites safely and efficiently in accordance with federal, state, and local regulations and DOE orders. In 1999, DOE supported the development of LLW containers that are more volumetrically efficient, more cost effective, and easier to use as compared to metal or wooden containers that existed at that time. The DOE Idaho National Engineering and Environmental Laboratory (INEEL), working in conjunction with the plastic industry, tested several types of soft-sided waste packaging systems that meet U.S. Department of Transportation requirements for transport of low specific activity and surface contaminated objects. Since then, soft-sided packaging of various capacities have been used successfully by the decontamination and decommissioning (D&D) projects to package, transport, and dispose D&D wastes throughout the DOE complex. The joint team of experts assembled by the Energy Facility Contractors Group from DOE waste generating sites, DOE and commercial waste disposal facilities, and soft-sided packaging suppliers conducted the review of soft-sided packaging operations and transportation of these packages to the disposal sites. As a result of this evaluation, the team developed several recommendations and best practices to prevent or minimize the recurrences of equipment contamination issues and proper use of soft-sided packaging for transport and disposal of waste.

Kapoor, A. [DOE; Gordon, S. [NSTec; Goldston, W. [Energy Solutions

2013-07-08T23:59:59.000Z

472

Gas Turbines  

Science Journals Connector (OSTI)

... the time to separate out the essentials and the irrelevancies in a text-book. The gas ...gasturbine ...

H. CONSTANT

1950-10-21T23:59:59.000Z

473

Gas Hydrate Storage of Natural Gas  

SciTech Connect (OSTI)

Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A