National Library of Energy BETA

Sample records for garl oaf bu

  1. Haskel/BuTech/PPI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation For Argonne National Laboratory Haskel/BuTech/PPI Products * 100,000psi Liquid Pumps * 37,000psi Gas Boosters * 15,000psi Diaphragm Comp * 4,500psi Air Amplifiers * 150,000psi Valves, Fittings, and Tubing * 15,000psi Sub-Sea Valves (1" orifice) * Air Pilot Switches & Relief Valves Valves, Fittings & Tubing Pumps, Boosters, & Diaphragm Compressors & Systems Hydraulic Gas Booster Challenges * Global Material Regulations - KHK Japan recommends A286 & 316 SS

  2. Bu Sung: Noncompliance Determination (2015-SE-42007)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Bu Sung America Corporation d/b/a Everest Refrigeration finding that basic model ESRF2, a commercial refrigerator-freezer does not comport with the energy conservation standards.

  3. Bu Sung: Order (2015-SE-42007) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Order (2015-SE-42007) Bu Sung: Order (2015-SE-42007) October 13, 2015 DOE ordered Bu Sung America Corporation to pay a $71,480 civil penalty after finding Bu Sung had manufactured and distributed in commerce in the U.S. at least 361 units of basic model ESRF2, a noncompliant commercial refrigerator-freezer. The Order adopted a Compromise Agreement, which reflected settlement terms between DOE and Bu Sung. Bu Sung: Order (2015-SE-42007) (123.64 KB) More Documents & Publications Bu Sung:

  4. Bu Sung: Proposed Penalty (2015-SE-42007) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proposed Penalty (2015-SE-42007) Bu Sung: Proposed Penalty (2015-SE-42007) September 29, 2015 DOE alleged in a Notice of Proposed Civil Penalty that Bu Sung America Corporation d/b/a Everest Refrigeration manufactured and distributed noncompliant commercial refrigerator-freezers in the U.S. Federal law subjects manufacturers and private labelers to civil penalties if those parties distribute in the U.S. products that do not meet applicable energy conservation standards. This civil penalty notice

  5. BIG SANDY IDA ONEID A WILL IAM SBU RG BU RNIN G SPRIN GS WIN

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... ASH BU RN C REEK HUNT ING CREEK RED BIRD C OALBED GREEN GROVE RPD-WAYNE-3 LOC UST HILL BU ... Division, Office of Oil and Gas, Energy Information Administration pursuant to ...

  6. GLADY CASSIT Y VANDALIA MURPHY CR EEK BU CKHN-CENT URY CLAY

    U.S. Energy Information Administration (EIA) Indexed Site

    GLADY CASSIT Y VANDALIA MURPHY CR EEK BU CKHN-CENT URY CLAY GLENVILLE N MINNORA JARVISVILLE FAR MINGTON PH ILIPPI BELIN GT ON WAYN ESBUR G PR UNT Y GLENVILLE S CAVE RUN TAYLOR DRAIN ROSEDALE ST MPT-N RMNT-SHK WESTON-JAN E LEW SWN DL-WID EN VADIS STANL EY DEKALB UNION TALLM AN SVILL E ASPINALL-FIN ST ER ZOLLARSVILLE WILBU R RAMSEY HEATER S BR IDGEPORT-PRUNT YTOWN ALEXAND ER LILLY FORK SH ERMAN HIRAM ST FK-BLST N CK BU RNS CH APEL S BR WN -LUM BER PORT CON INGS PR ATT BOSWELL REVEL ELK C REEK

  7. BuD, a helixloophelix DNA-binding domain for genome modification

    SciTech Connect (OSTI)

    Stella, Stefano; Molina, Rafael; Lpez-Mndez, Blanca; Juillerat, Alexandre; Bertonati, Claudia; Daboussi, Fayza; Campos-Olivas, Ramon; Duchateau, Phillippe; Montoya, Guillermo

    2014-07-01

    Crystal structures of BurrH and the BurrHDNA complex are reported. DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific proteinDNA interactions in protein scaffolds is key to providing toolkits for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helixloophelix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin ? (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing.

  8. Controlled Pd(0)/t Bu3P Catalyzed Suzuki Cross-Coupling Polymerization of AB-Type Monomers with ArPd(t Bu3P)X or Pd2(dba)3/t Bu3P/ArX as the Initiator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Honghai; Xing, Chun-Hui; Hu, Qiao-Sheng; Hong, Kunlun

    2015-02-05

    The synthesis of well-defined and functionalized conjugated polymers, which are essential in the development of efficient organic electronics, through Suzuki cross-coupling polymerizations has been a challenging task. We developed controlled Pd(0)/t-Bu3P-catalyzed Suzuki cross-coupling polymerizations of AB-type monomers via the chain-growth mechanism with a series of in situ generated ArPd(t-Bu3P)X (X = I, Br, Cl) complexes as initiators. Among them, the combinations of Pd2(dba)3/t-Bu3P/p-BrC6H4I, Pd2(dba)3/t-Bu3P/p-BrC6H4CH2OH and Pd2(dba)3/t-Bu3P/p-PhCOC6H4Br were identified as highly robust initiator systems, resulting in polymers with predictable molecular weight and narrow polydispersity (PDI~1.13-1.20). In addition, Pd2(dba)3/t-Bu3P/p-BrC6H4CH2OH and Pd2(dba)3/t-Bu3P/p-PhCOC6H4Br initiator systems afforded functional polymers with >95% fidelity. Our results pavedmore » the road to access well-defined conjugated polymers, including conjugated polymers with complex polymer architectures such as block copolymers and branch copolymers.« less

  9. B.U. Students Talk Energy Research at Lost Dog Cafe > Archived News Stories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    > The Energy Materials Center at Cornell Archived News Stories Latest News The perfect atom sandwich requires an extra layer › Cornell boasts 22 'highly cited' researchers › Postdoc brings open access issue to the table › In This Section EMC2 News Archived News Stories B.U. Students Talk Energy Research at Lost Dog Cafe April 10th, 2014 › There was a science café at the Lost Dog Cafe in Binghamton last night. A group of Binghamton University students and professors talked about

  10. Closure Plan for Corrective Action Unit 109: U-2bu Subsidence Crater Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Shannon Parsons

    1999-03-01

    The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facilities Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). The subsidence crater was used as a land disposal unit for radioactive and hazardous waste from 1973 to 1988. Site disposal history is supported by memorandums, letters, and personnel who worked at the Nevada Test Site at the time of active disposal. Closure activities will include the excavation and disposal of impacted soil form the tip of the crater. Upon completion of excavation, verification samples will be collected to show that lead has been removed to concentrations be low regulatory action level. The area will then be backfilled and a soil flood diversion berm will be constructed, and certified by an independent professional engineer as to having followed the approved Closure Plan.

  11. Au133(SPh-tBu)52 Nanomolecules: X-ray Crystallography, Optical, Electrochemical, and Theoretical Analysis

    SciTech Connect (OSTI)

    Dass, Amala; Theivendran, Shevanuja; Nimmala, Praneeth Reddy; Kumara, Chanaka; Jupally, Vijay Reddy; Fortunelli, Alessandro; Sementa, Luca; Barcaro, Giovanni; Zuo, Xiaobing; Noll, Bruce C.

    2015-04-15

    Crystal structure determination has revolutionized modern science in biology, chemistry, and physics. However, the difficulty in obtaining periodic crystal lattices which are needed for X-ray crystal analysis has hindered the determination of atomic structure in nanomaterials, known as the nanostructure problem. Here, by using rigid and bulky ligands, we have overcome this limitation and successfully solved the X-ray crystallographic structure of the largest reported thiolated gold nanomolecule, Au133S52. The total composition, Au133(SPh-tBu)52, was verified using high resolution electrospray ionization mass spectrometry (ESI-MS). The experimental and simulated optical spectra show an emergent surface plasmon resonance that is more pronounced than in the slightly larger Au144(SCH2CH2Ph)60. Theoretical analysis indicates that the presence of rigid and bulky ligands is the key to the successful crystal formation.

  12. Pressure Build-Up During the Fire Test in Type B(U) Packages Containing Water - 13280

    SciTech Connect (OSTI)

    Feldkamp, Martin; Nehrig, Marko; Bletzer, Claus; Wille, Frank

    2013-07-01

    The safety assessment of packages for the transport of radioactive materials with content containing liquids requires special consideration. The main focus is on water as supplementary liquid content in Type B(U) packages. A typical content of a Type B(U) package is ion exchange resin, waste of a nuclear power plant, which is not dried, normally only drained. Besides the saturated ion exchange resin, a small amount of free water can be included in these contents. Compared to the safety assessment of packages with dry content, attention must be paid to some more specific issues. An overview of these issues is provided. The physical and chemical compatibility of the content itself and the content compatibility with the packages materials must be demonstrated for the assessment. Regarding the mechanical resistance the package has to withstand the forces resulting from the freezing liquid. The most interesting point, however, is the pressure build-up inside the package due to vaporization. This could for example be caused by radiolysis of the liquid and must be taken into account for the storage period. If the package is stressed by the total inner pressure, this pressure leads to mechanical loads to the package body, the lid and the lid bolts. Thus, the pressure is the driving force on the gasket system regarding the activity release and a possible loss of tightness. The total pressure in any calculation is the sum of partial pressures of different gases which can be caused by different effects. The pressure build-up inside the package caused by the regulatory thermal test (30 min at 800 deg. C), as part of the cumulative test scenario under accident conditions of transport is discussed primarily. To determine the pressure, the temperature distribution in the content must be calculated for the whole period from beginning of the thermal test until cooling-down. In this case, while calculating the temperature distribution, conduction and radiation as well as evaporation

  13. Accessing conjugated polymers with precisely controlled heterobisfunctional chain ends via post-polymerization modification of the OTf group and controlled Pd(0)/t-Bu3P-catalyzed Suzuki cross-coupling polymerization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Qiao -Sheng; Hong, Kunlun; Zhang, Hong -Hai

    2015-08-12

    In this study, a general strategy toward the synthesis of well-defined conjugated polymers with controlled heterobisfunctional chain ends via combination of controlled Pd(0)/t-Bu3P Suzuki cross-coupling polymerization with the post-polymerization modification of the triflate (OTf) group was disclosed.

  14. Haskel/BuTech/PPI

    Broader source: Energy.gov [DOE]

    This presentation was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013.

  15. A Linear trans -Bis(imido) Neptunium(V) Actinyl Analog: NpV (NDipp)2 ( tBu2 bipy)2Cl (Dipp = 2,6- i Pr2C6H3)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, Jessie L.; Batista, Enrique R.; Boncella, James M.; Gaunt, Andrew J.; Reilly, Sean D.; Scott, Brian L.; Tomson, Neil C.

    2015-07-22

    We present the discovery that imido analogs of actinyl dioxo cations can be extended beyond uranium into the transuranic elements. Synthesis of the Np(V) complex, Np(NDipp)2(tBu2bipy)2Cl (1), is achieved through treatment of a Np(IV) precursor with a bipyridine co-ligand and lithium-amide reagent. Complex 1 has been structurally characterized, analyzed by 1H NMR and UV/vis/NIR spectroscopies, and the electronic structure evaluated by DFT calculations.

  16. Energy and charge transfers between (Bu{sub 4}N){sub 2}(Ru)(dcbpyH){sub 2}(NCS){sub 2} (N719) and ZnO thin films

    SciTech Connect (OSTI)

    Ni Manman; Cheng Qiang; Zhang, W. F.

    2010-03-15

    ZnO thin films and (Bu{sub 4}N){sub 2}(Ru)(dcbpyH){sub 2}(NCS){sub 2} (called N719) sensitized ZnO thin films are grown on fluorine-doped tin oxide (FTO) conducting glass substrates using laser molecular beam epitaxy. Ultraviolet-visible absorption, photoluminescence (PL), surface photovoltage spectroscopy, and Raman scattering are employed to probe into the transition process of photogenerated charges and the interaction between ZnO and N719. The experimental results indicate that there is a significant electronic interaction between N719 and ZnO through chemiadsorption. The interaction greatly enhances the photogenerated charge separation and thus the photovoltaic response of the ZnO film but remarkedly weakens its radiative recombination, i.e., PL, implying strong energy and charge transfer occurring between N719 and ZnO. In addition, a new PL peak observed at about 720 nm in N719 sensitized ZnO/FTO is attributed to the electron-hole recombination of N719.

  17. BPA CPTC BU Certification.pdf

    Office of Environmental Management (EM)

    BAKERBOTTS.-.* February 3,2015 THE WARNER I299 PENNSYIVANIA AVE , NW WASHING]ON, D C 20C04-2400 IEI +l 202.6397700 FAX +l 202 6397890 BokerBolls com AUSTIN BEIIING BRUSSELS DAITAS DUBAI HONG KONG HOUSTON IONDON MOSCOW NEW YORK PALO AITO RIO DE JANEIRO RIYADH WASHINGTON PUBLIC VERSION Christopher Lawrence U.S. Department of Energy, OE-20 Offrce of Electric Delivery and Energy Reliability 1000 Independence Avenue, SW Washington, DC 20585 Informational Filing; Frontera MarketingrLLC, Docket No.

  18. A Linear trans -Bis(imido) Neptunium(V) Actinyl Analog: NpV (NDipp)2 ( tBu2 bipy)2Cl (Dipp = 2,6- i Pr2C6H3)

    SciTech Connect (OSTI)

    Brown, Jessie L.; Batista, Enrique R.; Boncella, James M.; Gaunt, Andrew J.; Reilly, Sean D.; Scott, Brian L.; Tomson, Neil C.

    2015-07-22

    We present the discovery that imido analogs of actinyl dioxo cations can be extended beyond uranium into the transuranic elements. Synthesis of the Np(V) complex, Np(NDipp)2(tBu2bipy)2Cl (1), is achieved through treatment of a Np(IV) precursor with a bipyridine co-ligand and lithium-amide reagent. Complex 1 has been structurally characterized, analyzed by 1H NMR and UV/vis/NIR spectroscopies, and the electronic structure evaluated by DFT calculations.

  19. Measurement of BR(Bu to phi K)/BR(Bu to J/psi K) at the collider detector at Fermilab

    SciTech Connect (OSTI)

    Napora, Robert A

    2004-10-01

    This thesis presents evidence for the decay mode B{sup {+-}} {yields} {phi}K{sup {+-}} in p{bar p} collisions at {radical}s = 1.96 TeV using (120 {+-} 7)pb{sup -1} of data collected by the Collider Detector at Fermilab (CDF). This signal is then used to measure the branching ratio relative to the decay mode B{sup {+-}} {yields} J/{psi}K{sup {+-}}. The measurement starts from reconstructing the two decay modes: B{sup {+-}} {yields} {phi}K{sup {+-}}, where {phi} {yields} K{sup +}K{sup -} and B{sup {+-}} {yields} J/{psi}K{sup {+-}}, where J/{psi} {yields} {mu}{sup +}{mu}{sup -}. The measurement yielded 23 {+-} 7 B{sup {+-}} {yields} {phi}K{sup {+-}} events, and 406 {+-} 26 B{sup {+-}} {yields} J/{psi}K{sup {+-}} events. The fraction of B{sup {+-}} {yields} J/{psi}K{sup {+-}} events where the J/{psi} subsequently decayed to two muons (as opposed to two electrons) was found to be f{sub {mu}{mu}} = 0.839 {+-} 0.066. The relative branching ratio of the two decays is then calculated based on the equation: BR(B{sup {+-}} {yields} {phi}K{sup {+-}})/BR(B{sup {+-}} {yields} J/{psi}K{sup {+-}}) = N{sub {phi}K}/N{sub {psi}K} {center_dot}f{sub {mu}{mu}} BR(J/{psi} {yields} {mu}{sup +}{mu}{sup -})/BR({phi} {yields} K{sup +}K{sup -}) {epsilon}{sub {mu}{mu}}K/{epsilon}KKK R({epsilon}{sub iso}). The measurement finds BR(B{sup {+-}} {yields} {phi}K{sup {+-}})/BR(B{sup {+-}} {yields} J/{psi}K{sup {+-}}) = 0.0068 {+-} 0.0021(stat.) {+-} 0.0007(syst.). The B{sup {+-}} {yields} {phi}K{sup {+-}} branching ratio is then found to be BR(B{sup {+-}} {yields} {phi}K{sup {+-}}) = [6.9 {+-} 2.1(stat.) {+-} 0.8(syst.)] x 10{sup -6}. This value is consistent with similar measurements reported by the e{sup +}e{sup -} collider experiments BaBar[1], Belle[2], and CLEO[3].

  20. ALT AMONT BLU EBELL NATUR AL BU TT ES PLAT EAU CATHED RAL RED...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Reserve Class No 2001 gas reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000.1 - 10,000 MMCF 10,000.1 - 100,000 MMCF > 100,000 MMCF Basin Outline Total Total Total...

  1. ALT AMONT BLU EBELL NATUR AL BU TT ES PLAT EAU CATHED RAL RED...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl 10,000.1 - 100,000 Mbbl Basin Outline Total Total Total Number...

  2. ALT AMONT BLU EBELL NATUR AL BU TT ES PLAT EAU CATHED RAL RED...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Basin Outline Total Total Total...

  3. BIG SANDY IDA ONEID A WILL IAM SBU RG BU RNIN G SPRIN GS WIN

    U.S. Energy Information Administration (EIA) Indexed Site

    Miles 2001 Gas Reserve Class No 2001 gas reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000.1 - 10,000 MMCF 10,000.1 - 100,000 MMCF > 100,000 MMCF Appalachian ...

  4. BASIN VER DE GREAT ER ANETH BU G BAR KER DOME HOR SESH OE UTE...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lands' Oil and Gas Resources and Reserves and the Extent and Nature of Restrictions to Their Development", prepared by the US Departments of Interior, Agriculture and Energy. ...

  5. ALT AMONT BLU EBELL NATUR AL BU TT ES PLAT EAU CATHED RAL RED WASH

    U.S. Energy Information Administration (EIA) Indexed Site

    BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Basin Outline Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Uinta-Piceance 180 254,329 7,181,669 1,451,274 Basin Uinta-Piceance Basin Oil & Gas Fields By 2001 BOE

  6. ALT AMONT BLU EBELL NATUR AL BU TT ES PLAT EAU CATHED RAL RED WASH

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Reserve Class No 2001 gas reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000.1 - 10,000 MMCF 10,000.1 - 100,000 MMCF > 100,000 MMCF Basin Outline Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Uinta-Piceance 180 254,329 7,181,669 1,451,274 Basin Uinta-Piceance Basin Oil & Gas Fields By 2001 Gas

  7. ALT AMONT BLU EBELL NATUR AL BU TT ES PLAT EAU CATHED RAL RED WASH

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl 10,000.1 - 100,000 Mbbl Basin Outline Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Uinta-Piceance 180 254,329 7,181,669 1,451,274 Basin Uinta-Piceance Basin Oil & Gas Fields By 2001 Liquids

  8. Controlled Pd(0)/t Bu3P Catalyzed Suzuki Cross-Coupling Polymerization...

    Office of Scientific and Technical Information (OSTI)

    systems afforded functional polymers with >95% fidelity. Our results paved the road to access well-defined conjugated polymers, including conjugated polymers with complex ...

  9. BIG SANDY IDA ONEID A WILL IAM SBU RG BU RNIN G SPRIN GS WIN

    U.S. Energy Information Administration (EIA) Indexed Site

    100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Appalachian Basin Boundary Appalachian Basin, TN-KY (Panel 7 of 7) Oil and Gas Fields By 2001 BOE

  10. GLADY CASSIT Y VANDALIA MURPHY CR EEK BU CKHN-CENT URY CLAY

    U.S. Energy Information Administration (EIA) Indexed Site

    WAYN ESBUR G PR UNT Y GLENVILLE S CAVE RUN TAYLOR DRAIN ROSEDALE ST MPT-N RMNT-SHK ... Authors: Sam Limerick (1), Lucy Luo (1), Gary Long (2), David Morehouse (2), Jack Perrin ...

  11. BASIN VER DE GREAT ER ANETH BU G BAR KER DOME HOR SESH OE UTE...

    U.S. Energy Information Administration (EIA) Indexed Site

    Map created June 2005; projection is UTM-13, NAD-27. Authors: Sam Limerick (1), Lucy Luo (1), Gary Long (2), David Morehouse (2), Jack Perrin (1), Steve Jackson (1) and Robert King ...

  12. BASIN VER DE GREAT ER ANETH BU G BAR KER DOME HOR SESH OE UTE DOME

    U.S. Energy Information Administration (EIA) Indexed Site

    BOE Reserve Class 0 20 40 10 30 Miles ± The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by Section 604 of the Energy Policy and Conservation Act Amendments of 2000 (P.L. 106-469). The boundaries are not informed by subsurface structural information. The data and methods used in their creation are detailed in a report, "Scientific Inventory of Onshore

  13. BASIN VER DE GREAT ER ANETH BU G BAR KER DOME HOR SESH OE UTE DOME

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Reserve Class 0 20 40 10 30 Miles ± The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by Section 604 of the Energy Policy and Conservation Act Amendments of 2000 (P.L. 106-469). The boundaries are not informed by subsurface structural information. The data and methods used in their creation are detailed in a report, "Scientific Inventory of Onshore

  14. BASIN VER DE GREAT ER ANETH BU G BAR KER DOME HOR SESH OE UTE DOME

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Reserve Class 0 20 40 10 30 Miles ± The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by Section 604 of the Energy Policy and Conservation Act Amendments of 2000 (P.L. 106-469). The boundaries are not informed by subsurface structural information. The data and methods used in their creation are detailed in a report, "Scientific Inventory of

  15. BIG SANDY IDA ONEID A WILL IAM SBU RG BU RNIN G SPRIN GS WIN

    U.S. Energy Information Administration (EIA) Indexed Site

    315 Miles ¯ 2001 BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Appalachian Basin Boundary Appalachian Basin, TN-KY (Panel 7 of 7) Oil and Gas Fields By 2001 BOE

  16. BASIN VER DE GREAT ER ANETH BU G BAR KER DOME HOR SESH OE UTE...

    U.S. Energy Information Administration (EIA) Indexed Site

    Unnamed fields and fields generically named "wildcat" were renamed to a concatenate of their basin and state of occurrence, e.g. UPUT (Uinta-Piceance Basin and Utah). Map created ...

  17. Assignment of the luminescing states of [Au{sup 1}Rh{sup 1}({sup t}BuNC){sub 2}({mu}-dppm){sub 2}][PF{sub 6}]{sub 2}

    SciTech Connect (OSTI)

    Striplin, D.R.; Crosby, G.A.

    1995-07-13

    Fluorescence, phosphorescence, and excitation spectra were measured on the title compound. These results were augmented with polarization ratios obtained at 77 K and detailed studies of the temperature dependence of the phosphorescence in the 77-4 K range. The phosphorescence decay rate at K was also recorded as a function of an applied magnetic field. All the results are consistent with a 4d{sub z}Rh{sup 1} {yields} 6p{sub 2}Au{sup 1} orbital promotion leading to emitting {sup 1}A, {sup 3}A{sub 1} terms in pseudo-C{sub 2v} symmetry. The {sup 3}A{sub 1} term is split by spin-orbit coupling into a forbidden A{sub 2} state lying lowest followed by a quasi-degenerate pair, [B{sub 1}(x), B{sub 2}(y)] lying approximately 16 cm{sup -1} higher that decays >500 times faster than the lowest one. 28 refs., 6 figs.

  18. Final Scientific/Technical Report Grant title: Use of ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes and Aerosol-Cloud Interaction This is a collaborative project with the NASA GSFC project of Dr. A. Marshak and W. Wiscombe (PIs). This report covers BU activities from February 2011 to June 2011 and BU "no-cost extension" activities from June 2011 to June 2012. This report summarizes results that complement a final technical report submitted by the PIs in 2011.

    SciTech Connect (OSTI)

    Knyazikhin, Y

    2012-09-10

    Main results are summarized for work in these areas: spectrally-invariant approximation within atmospheric radiative transfer; spectral invariance of single scattering albedo for water droplets and ice crystals at weakly absorbing wavelengths; seasonal changes in leaf area of Amazon forests from leaf flushing and abscission; and Cloud droplet size and liquid water path retrievals from zenith radiance measurements.

  19. DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Record 13007: Industry Deployed Fuel Cell Backup Power (BuP) DOE Hydrogen and Fuel Cells Program Record 13007: Industry Deployed Fuel Cell Backup Power (BuP) This record from the ...

  20. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 New Mexico Environment Department Harold Runnels Bu ...

  1. Envirocapital | Open Energy Information

    Open Energy Info (EERE)

    Envirocapital Jump to: navigation, search Name: Envirocapital Place: London, United Kingdom Zip: EC4M 8BU Sector: Renewable Energy Product: Provides corporate finance advice to the...

  2. Alternative Energy Finance | Open Energy Information

    Open Energy Info (EERE)

    Finance Jump to: navigation, search Name: Alternative Energy Finance Place: London, United Kingdom Zip: NW11 8BU Sector: Renewable Energy Product: String representation...

  3. TO. TO. , W. B; Harris, Chief, Industrial Hygiene'Branch DA ...

    Office of Legacy Management (LM)

    To study operations planned byBu.reau of Ea: factors for Be, II, thorium, zirconium, etc, ... laboratory paper. containing uranium ;thorium ,,beryllium and zirconi turned to AEC ...

  4. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Katz, Emanuel Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305 (United States) (1) Katz, Emanuel, E-mail: bfeldste@buphy.bu.edu, E-mail: ...

  5. Lattice Quantum Chromodynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lattice Quantum Chromodynamics Lattice Quantum Chromodynamics QCD-BU.jpg Key Challenges: Although the QCD theory has been extensively tested at at high energies, at low energies or...

  6. A=19Ne (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ03) (See Energy Level Diagrams for 19Ne) GENERAL: See (1972AJ02) and Table 19.24 [Table of Energy Levels] (in PDF or PS). Nuclear models: (1972EN03, 1972NE1B, 1972WE01, 1973DE13, 1977BU05). Electromagnetic transitions: (1972EN03, 1972LE06, 1973HA53, 1973PE09, 1977BU05). Special states: (1972EN03, 1972GA14, 1972HI17, 1972NE1B, 1972WE01, 1977BU05, 1977SC08). Complex reactions involving 19Ne: (1976HI05, 1977BU05). Astrophsyical questions: (1973CL1E). Muon capture: (1972MI11). Pion capture and

  7. Everest Refrigeration: Order (2015-SE-42001)

    Broader source: Energy.gov [DOE]

    DOE ordered Bu Sung America Corporation (dba Everest Refrigeration) to pay a $12,080 civil penalty after finding Bu Sung had manufactured and distributed in commerce in the U.S. at least 64 units of noncompliant commercial refrigerator basic model ESGR3.

  8. A=18O (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1979DA15, 1979WU06, 1980GO01, 1980KU05, 1980MA18, 1981EL1D, 1982KI02, 1982OL01). Cluster, collective and deformed models: (1977BU22, 1978BU03, 1978CH26, 1978PI1E,...

  9. Microsoft Word - S06397_Apr09 thru Mar10.doc

    Office of Legacy Management (LM)

    ... 5062.19 5059.6 2 03-Apr-00 731569 1871746 0266 MW D 4890.6 4870.6 4850.6 160.0 180.0 ... NS 0264 D 0.0031 2001 0.0005 B 0.00087 BU 0266 D 0.00058 2001 0.00061 B 0.00082 BU 0272 D ...

  10. A=18F (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    83AJ01) (See Energy Level Diagrams for 18F) GENERAL: See also (1978AJ03) and Table 18.11 [Table of Energy Levels] (in PDF or PS). Shell model: (1977AN1P, 1977GR16, 1977SO1C, 1978CO08, 1978DA1N, 1978MA2H, 1979BU12, 1979DA15, 1980GO01, 1980KU05, 1980MA18, 1981EL1D, 1981ER03, 1981GR06, 1982KI02). Cluster, collective and deformed models: (1977BU22, 1978BU03, 1978PI1E, 1978SA15, 1978TA1A, 1979BU12, 1979SA31, 1980RO19, 1981CH24). Electromagnetic transitions: (1976MC1G, 1977BU22, 1977HA1Z, 1977HE1L,

  11. Cobalt Complexes Containing Pendant Amines in the Second Coordination Sphere as Electrocatalysts for H2 Production

    SciTech Connect (OSTI)

    Fang, Ming; Wiedner, Eric S.; Dougherty, William G.; Kassel, W. S.; Liu, Tianbiao L.; DuBois, Daniel L.; Bullock, R. Morris

    2014-10-27

    A series of heteroleptic 17e- cobalt complexes, [CpCoII(PtBu2NPh2)](BF4), [CpC6F5CoII(PtBu2NPh2)](BF4), [CpC5F4NCoII(PtBu2NPh2)](BF4), [where P2tBuN2Ph = 1,5-diphenyl-3,7-di(tert-butyl)-1,5-diaza-3,7-diphosphacyclooctane, CpC6F5 = C5H4(C6F5), and CpC5F4N = C5H4(C5F4N)] were synthesized, and structures of all three were determined by X-ray crystallography. Electrochemical studies showed that the CoIII/II couple of [CpC5F4NCoII(PtBu2NPh2)]+ appears 250 mV positive of the CoIII/II couple of [CpCoII(PtBu2NPh2)] as a result of the strongly electron-withdrawing perfluorpyridyl substituent on the Cp ring. Reduction of these paramagnetic CoII complexes by KC8 led to the diamagnetic 18e- complexes CpICo(PtBu2NPh2), CpC6F5CoI(PtBu2NPh2), CpC5F4NCoI(PtBu2NPh2), which were also characterized by crystallography. Protonation of these neutral CoI complexes led to the cobalt hydrides [CpCoIII(PtBu2NPh2)H](BF4), [CpC6F5CoIII(PtBu2NPh2)H](BF4), and [CpC5F4NCoIII(PtBu2NPh2)H](BF4). The cobalt hydride with the most electron-withdrawing Cp ligand, [CpC5F4NCoIII(PtBu2NPh2)H]+ is an electrocatalyst for production of H2 using 4-MeOC6H4NH3BF4 (pKaMeCN = 11.86) with a turnover frequency of 350 s-1 and an overpotential of 0.75 V. Experimental measurement of thermochemical data provided further insights into the thermodynamics of H2 elimination. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  12. Iron Complexes Bearing Diphosphine Ligands with Positioned Pendant Amines as Electrocatalysts for the Oxidation of H2

    SciTech Connect (OSTI)

    Liu, Tianbiao L.; Liao, Qian; O'Hagan, Molly J.; Hulley, Elliott; DuBois, Daniel L.; Bullock, R. Morris

    2015-06-22

    The synthesis and spectroscopic characterization of CpC5F4NFe(PtBu2NBn2)Cl, [3-Cl] (where C5F4N is the tetrafluorpyridyl substituent and PtBu2NBn2 = 1,5-di(tert-butyl)-3,7-di(benzyl)-1,5-diaza-3,7-diphosphacyclooctane) are reported. Complex 3-Cl and previously reported [CpC5F4NFe(PtBu2NtBu2)Cl], 4-Cl, are precursors to intermediates in the catalytic oxidation of H2, including CpC5F4NFe(PtBu2NBn2)H (3-H), CpC5F4NFe(PtBu2NtBu2)H (4-H), [CpC5F4NFe(PtBu2NBn2)]BArF4 ([3](BArF4), [CpC5F4NFe(PtBu2NtBu2)]BArF4 ([4](BArF4), [CpC5F4NFe(PtBu2NBn2)(H2)]BArF4 ([3-H2]BArF4), and [CpC5F4NFe(PtBu2NtBu2H)H]BArF4 ([4-FeH(NH)]BArF4). All of these complexes were characterized by spectroscopic and electrochemical studies; 3-Cl, 3-H and 4-Cl were also characterized by single crystal diffraction studies. 3-H and 4-H are electrocatalysts for H2 (1.0 atm) oxidation in the presence of a excess of the amine base N-methylpyrrolidine, with turnover frequencies at 22 °C of 2.5 s-1 and 0.5 s-1, and overpotentials at Ecat/2 of 235 mV and 95 mV, respectively. Studies of individual chemical and/or electrochemical reactions of the various intermediates provide important insights into the factors governing the overall catalytic activity for H2 oxidation, and provide important insights into the role of the pendant base of the [FeFe] hydrogenase active site. This work was supported by the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  13. DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Backup Power (BuP) | Department of Energy Record #13007: Industry Deployed Fuel Cell Backup Power (BuP) DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed Fuel Cell Backup Power (BuP) This record from the DOE Hydrogen and Fuel Cells Program describes the number of current and planned fuel cell deployments for backup power applications. 13007_industry_bup_deployments.pdf (307.65 KB) More Documents & Publications Early Stage Market Change and Effects of the Recovery

  14. NREL: Biomass Research - Mary Ann Franden

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Biotechnology for Biofuels (Manuscript in review). Franden, M.A.; Pienkos, P.T.; Zhang, M. ... Journal of Biotechnology (144); pp. 259-267. Knoshaug, E.; Franden, M.A.; Stambuk, B.U.; ...

  15. Island Gas | Open Energy Information

    Open Energy Info (EERE)

    United Kingdom Zip: W1J 7BU Sector: Renewable Energy Product: UK-based coal bed methane company, Island Gas was the subject of a reverse takeover by KP Renewables in...

  16. West Central Soy | Open Energy Information

    Open Energy Info (EERE)

    Soy Jump to: navigation, search Name: West Central Soy Place: Iowa Product: Biodiesel producer based in Iowa, Owned bu a soy farmer coop References: West Central Soy1 This...

  17. Atmospheric formation and removal of C3-C5 peroxyacyl nitrates

    SciTech Connect (OSTI)

    Grosjean, D.

    1993-12-31

    The C3-C5 peroxyacyl nitrates RC(O)OONO{sub 2} (R=Et, n-Pr, i-Pr, n-Bu, i-Bu, sec-Bu, t-Bu, Ch{sub 2}=CH- and CH{sub 2}=C(CH{sub 3})-) have been synthesized and prepared in situ and have been characterized by electron capture gas chromatography. Their thermal decomposition rates have been measured and are similar to that of PAN (R = CH{sub 3}). Carbonyl products have been identified and the corresponding reaction mechanisms have been outlined. Ambient levels of several peroxyacyl nitrates (R =CH{sub 3}, Et, n-Pr and CH{sub 2}=(CH{sub 3})-) have been measured. The results are discussed with focus on atmospheric hydrocarbons as precursors to C3-C5 peroxyacyl nitrates in the atmosphere.

  18. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M.; Decker, S. .R; Bu, L. T.; Zhao, X. C.; McCabe, C.; Wohlert, J.; Bergenstrahle, M.; Brady, J. W.; Adney, W. S.; Himmel, M. E.; Crowley, M. F., ":The O-Glycosylated Linker from...

  19. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Clayton, T. (4) Duan, L. (4) Hampton, E. (4) Harrison, Stephen C. (4) Haynes, Barton F. ... Moody, M. Anthony ; Haynes, Barton F. ; Harrison, Stephen C. ; BU-M) ; Duke-MED) ; et al ...

  20. MHK Projects/Makah Bay Offshore Wave Pilot Project | Open Energy...

    Open Energy Info (EERE)

    mooringanchoring and electrical connection system; (2) a 3.7-statute-mile-long, direct current (DC) submarine transmission cable connecting from one of the AquaBuOY's...

  1. Llr. Norgnn of the St. Louis office tolepbonod Dr. ;PuAuff mcently

    Office of Legacy Management (LM)

    Company of 122 East l&xi Btmot, f&w PO* 17, N. ,P., had also expressed an intereat ir.having their mbsidi.arg, the J. T. Baker Chemical Coqany, get into the field. BU aeked...

  2. Everest Refrigeration: Proposed Penalty (2015-SE-42001)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Bu Sung America Corporation (dba Everest Refrigeration) manufactured and distributed noncompliant commercial refrigeration equipment model ESGR3 in the U.S.

  3. Everest Refrigeration: Noncompliance Determination (2015-SE-42001)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Bu Sung America Corporation (dba Everest Refrigeration) finding that commercial refrigeration equipment model number ESGR3 does not comport with the energy conservation standards.

  4. Class 1 Permit Modification Notification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Bu il ding 1 Santa Fe, New Mexico 87505-6303 JUL 0 5 2011 Subject: Notification of a Class 1 Permit...

  5. NREL: Biomass Research - Eric P. Knoshaug

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Algal Biofuels: The Process." Chem. Engin. Prog. (107); pp. 37-47. Knoshaug, E.P.; Franden, M.A.; Stambuk, B.U.; Zhang, M.; Singh, A. (2009). "Utilization and Transport of ...

  6. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  7. An ortholog of farA of Aspergillus nidulans is implicated in the transcriptional activation of genes involved in fatty acid utilization in the yeast Yarrowia lipolytica

    SciTech Connect (OSTI)

    Poopanitpan, Napapol; Kobayashi, Satoshi; Fukuda, Ryouichi; Horiuchi, Hiroyuki; Ohta, Akinori

    2010-11-26

    Research highlights: {yields} POR1 is a Yarrowia lipolytica ortholog of farA involved in fatty acid response in A. nidulans. {yields} Deletion of POR1 caused growth defects on fatty acids. {yields} {Delta}por1 strain exhibited defects in the induction of genes involved in fatty acid utilization. -- Abstract: The yeast Yarrowia lipolytica effectively utilizes hydrophobic substrates such as fatty acids and n-alkanes. To identify a gene(s) regulating fatty acid utilization in Y. lipolytica, we first studied homologous genes to OAF1 and PIP2 of Saccharomyces cerevisiae, but their disruption did not change growth on oleic acid at all. We next characterized a Y. lipolytica gene, POR1 (primary oleate regulator 1), an ortholog of farA encoding a transcriptional activator that regulates fatty acid utilization in Aspergillus nidulans. The deletion mutant of POR1 was defective in the growth on various fatty acids, but not on glucose, glycerol, or n-hexadecane. It exhibited slight defect on n-decane. The transcriptional induction of genes involved in {beta}-oxidation and peroxisome proliferation by oleate was distinctly diminished in the {Delta}por1 strains. These data suggest that POR1 encodes a transcriptional activator widely regulating fatty acid metabolism in Y. lipolytica.

  8. DAx

    Office of Legacy Management (LM)

    r .*, J ".t , hj rk - DAx Jtdp -I 0 ' ,, i$i? m ;, ;. ESE p L, 21, ).,.G,,YlZ -w F M M c, !. ?Z-=S i%Df J,- :. ?i2& . ti. _ xri ?M SE t.' C z 39-&i stz-eet Fe-rbc;t.e L s;zewr A YI *- co2;$r-:-c' ,;c=;, & the 3ybb SFe& T&*-ehczfc Lnc!E:8ks 502 s*y-,"r=c rte2 ~2 i=GJwe ;ieAL*c--e ih ' ,be =a- ,y,z-t -._ **c -4 Qd"& F-5 Cs??lS' ,e' L XT 7, 3949. CCP L' s.S bt-""d -c, f oaf 22 ' ,be ba.a, tjg ,e$, cn$ op e-;_uf ~r:,t re>. >iz cs kriLcLt.ti on

  9. The selective catalytic reduction of NOx over Ag/Al2O3 with isobutanol as the reductant

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brookshear, Daniel William; Pihl, Josh A.; Toops, Todd J.; West, Brian H.; Prikhodko, Vitaly Y.

    2016-02-13

    Here, this study investigates the potential of isobutanol (iBuOH) as a reductant for the selective catalytic reduction (SCR) of NOx over 2 wt% Ag/Al2O3 between 150 and 550 °C and gas hourly space velocities (GHSV) between 10,000 and 35,000 h-1. The feed gas consists of 500 ppm NO, 5% H2O, 10% O2, and 375-1500 ppm iBuOH (C1:N ratios of 3-12); additionally, blends of 24 and 48% iBuOH in gasoline are evaluated. Over 90% NOx conversion is achieved between 300 and 400 C using pure iBuOH, including a 40% peak selectivity towards NH3 that could be utilized in a dual HC/NH3more » SCR configuration. The iBuOH/gasoline blends are only able to achieve greater than 90% NOx conversion when operated at a GHSV of 10,000 h-1 and employing a C1:N ratio of 12. Iso-butyraldehyde and NO2 appear to function as intermediates in the iBuOH-SCR mechanism, which mirrors the mechanism observed for EtOH-SCR. In general, the performance of iBuOH in the SCR of NOx over a Ag/Al2O3 catalyst is comparable with that of EtOH, although EtOH/gasoline blends display higher NOx reduction than iBuOH/gasoline blends. The key parameter in employing alcohols in SCR appears to be the C-OH:N ratio rather than the C1:N ratio.« less

  10. Homoleptic Ce(III) and Ce(IV) Nitroxide Complexes: Significant Stabilization of the 4+ Oxidation State

    SciTech Connect (OSTI)

    Bogart, Justin A.; Lewis, Andrew J.; Medling, Scott A.; Piro, Nicholas A.; Carroll, Patrick J.; Booth, Corwin H.; Schelter, Eric J.

    2014-06-25

    Electrochemical experiments performed on the complex Ce-IV[2-((BuNO)-Bu-t)py](4), where [2-((BuNO)-Bu-t)py](-) = N-tert-butyl-N-2-pyridylnitroxide, indicate a 2.51 V stabilization of the 4+ oxidation state of Ce compared to [(Bu4N)-Bu-n](2)[Ce(NO3)(6)] in acetonitrile and a 2.95 V stabilization compared to the standard potential for the ion under aqueous conditions. Density functional theory calculations suggest that this preference for the higher oxidation state is a result of the tetrakis(nitroxide) ligand framework at the Ce cation, which allows for effective electron donation into, and partial covalent overlap with, vacant 4f orbitals with delta symmetry. The results speak to the behavior of CeO2 and related solid solutions in oxygen uptake and transport applications, in particular an inherent local character of bonding that stabilizes the 4+ oxidation state. The results indicate a cerium(IV) complex that has been stabilized to an unprecedented degree through tuning of its ligand-field environment.

  11. Molecular and Electronic Structure of Cyclic Trinuclear Gold(I) Carbeniate Complexes: Insights for Structure/Luminescence/Conductivity Relationships

    SciTech Connect (OSTI)

    McDougaldJr, Roy N; Chilukuri, Bhaskar; Jia, Huiping; Perez, Michael R; Rabaa, Hassan; Wang, Xiaoping; Nesterov, Vladimir; Cundari, Thomas R.; Gnade, Bruce E; Omary, Mohammad A

    2014-01-01

    An experimental and computational study of correlations between solid-state structure and optical/electronic properties of cyclotrimeric gold(I) carbeniates, [Au-3(RN=COR')(3)] (R, R' = H, Me, Bu-n, or (c)Pe), is reported. Synthesis and structural and photophysical characterization of novel complexes [Au-3(MeN=(COBu)-Bu-n)(3)], [Au-3((BuN)-Bu-n=COMe)(3)], [Au-3((BuN)-Bu-n=(COBu)-Bu-n)(3)], and [Au-3((c)PeN=COMe)(3)] are presented. Changes in R and R' lead to distinctive variations in solid-state stacking, luminescence spectra, and conductive properties. Solid-state emission and excitation spectra for each complex display a remarkable dependence on the solid-state packing of the cyclotrimers. The electronic structure of [Au-3(RN=COR')(3)] was investigated via molecular and solid-state simulations. Calculations on [Au-3(HN=COH)(3)] models indicate that the infinitely extended chain of eclipsed structures with equidistant Au-Au intertrimer aurophilic bonding can have lower band gaps, smaller Stokes shifts, and reduced reorganization energies (lambda). The action of one cyclotrimer as a molecular nanowire is demonstrated via fabrication of an organic field effect transistor and shown to produce a p-type field effect. Hole transport for the same cyclotrimer-doped within a poly(9-vinylcarbazole) host-produced a colossal increase in current density from similar to 1 to similar to 1000 mA/cm(2). Computations and experiments thus delineate the complex relationships between solid-state morphologies, electronic structures, and optoelectronic properties of gold(I) carbeniates.

  12. Uranium (VI)Bis(imido) chalcogenate complexes:synthesis and density functional theory analysis

    SciTech Connect (OSTI)

    Spencer, Liam P; Batista, Enrique R; Boncella, James M; Yang, Ping; Scott, Brian L

    2009-01-01

    Bis(imido) uranium(VI) trans- and cis-dichalcogenate complexes with the general formula U(NtBu)2(EAr)2(OPPh3)2 (EAr = O-2-tBuC6H4, SPh, SePh, TePh) and U(NtBu)2(EAr)2(R2bpy) (EAr = SPh, SePh, TePh) (R2bpy = 4,4'-disubstituted-2,2'-bipyridyl, R = Me, tBu) have been prepared. This family of complexes includes the first reported monodentate selenolate and tellurolate complexes of uranium(VI). Density functional theory calculations show that covalent interactions in the U-E bond increase in the trans-dichalcogenate series U(NtBu)2(EAr)2(OPPh3)2 as the size of the chalcogenate donor increases and that both 5f and 6d orbital participation is important in the M-E bonds of U-S, U-Se, and U-Te complexes.

  13. Tris(Cyclopentadienyl)Uranium-t-Butyl: Synthesis, reactions, and mechanisms

    SciTech Connect (OSTI)

    Weydert, M.

    1993-04-01

    Compounds (RC{sub 5}H{sub 4}){sub 3}U(t-Bu) were prepared for R = H, Me, Et. Their decomposition products in aromatic solvents are consistent with a radical decomposition pathway induced by solvent-assisted U-C bond homolysis. NMR was used to study the reactions of (RC{sub 5}H{sub 4}){sub 3}UCl with t-BuLi (R = t-Bu, Me{sub 3}Si). Reactions of (MeC{sub 5}H{sub 4}){sub 3}U(t-Bu) with Lewis bases and fluorocarbons were studied. Analogous reaction chemistry between (RC{sub 5}H{sub 4}){sub 3}ThX systems and t-BuLi was also studied, and reactivity differences between U and Th are discussed. Synthesis of sterically crowded (RC{sub 5}H{sub 4}){sub 4}U compounds is next considered. Reaction of the trivalent (RC{sub 5}H{sub 4}){sub 3}U with (RC{sub 5}H{sub 4}){sub 2}Hg results in formation of (RC{sub 5}H{sub 4}){sub 4}U. Steric congestion, cyclopentadienyl ligand exchange, and electron transfer are discussed. (DLC)

  14. Tris(Cyclopentadienyl)Uranium-t-Butyl: Synthesis, reactions, and mechanisms

    SciTech Connect (OSTI)

    Weydert, M.

    1993-04-01

    Compounds (RC[sub 5]H[sub 4])[sub 3]U(t-Bu) were prepared for R = H, Me, Et. Their decomposition products in aromatic solvents are consistent with a radical decomposition pathway induced by solvent-assisted U-C bond homolysis. NMR was used to study the reactions of (RC[sub 5]H[sub 4])[sub 3]UCl with t-BuLi (R = t-Bu, Me[sub 3]Si). Reactions of (MeC[sub 5]H[sub 4])[sub 3]U(t-Bu) with Lewis bases and fluorocarbons were studied. Analogous reaction chemistry between (RC[sub 5]H[sub 4])[sub 3]ThX systems and t-BuLi was also studied, and reactivity differences between U and Th are discussed. Synthesis of sterically crowded (RC[sub 5]H[sub 4])[sub 4]U compounds is next considered. Reaction of the trivalent (RC[sub 5]H[sub 4])[sub 3]U with (RC[sub 5]H[sub 4])[sub 2]Hg results in formation of (RC[sub 5]H[sub 4])[sub 4]U. Steric congestion, cyclopentadienyl ligand exchange, and electron transfer are discussed. (DLC)

  15. Nuclear Data Sheets for A = 50

    SciTech Connect (OSTI)

    Elekes, Zoltan; Timar, Janos; Singh, Balraj

    2011-01-15

    The experimental nuclear spectroscopic data for known nuclides of mass number 50 (Cl,Ar,K,Ca,Sc,Ti,V, Cr,Mn,Fe,Co,Ni) have been evaluated and presented together with Adopted properties for levels and {gamma} rays. This evaluation has been carried out about 15 years after the previous one by Thomas Burrows (1995Bu29). Except for {sup 50}Sc and {sup 50}V, extensive new data have become available for all the other nuclides in the intervening years. The data for {sup 50}Sc and {sup 50}V have also been checked again in detail and several changes made. No data are yet available for excited states in {sup 50}Cl, {sup 50}Ar and {sup 50}Ni. This work supersedes earlier evaluations (1995Bu29, 1990Bu18, 1984Al29, 1976Au07) of A=50 nuclides.

  16. The interactions of azure B, a metabolite of methylene blue, with acetylcholinesterase and butyrylcholinesterase

    SciTech Connect (OSTI)

    Petzer, Anél; Harvey, Brian H.; Petzer, Jacobus P.

    2014-02-01

    Methylene blue (MB) is reported to possess diverse pharmacological actions and is attracting increasing attention for the treatment of neurodegenerative disorders such as Alzheimer's disease. Among the pharmacological actions of MB, is the significant inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These activities may, at least in part, underlie MB's beneficial effects in Alzheimer's disease. MB is metabolized to yield N-demethylated products of which azure B, the monodemethyl metabolite, is the predominant species. Azure B has been shown to be pharmacologically active and also possesses a variety of biological actions. Azure B therefore may contribute to the pharmacological profile of MB. Based on these considerations, the present study investigates the possibility that azure B may, similar to MB, act as an inhibitor of human AChE and BuChE. The results document that azure B inhibits AChE and BuChE with IC{sub 50} values of 0.486 μM and 1.99 μM, respectively. The results further show that azure B inhibits AChE and BuChE reversibly, and that the modes of inhibition are most likely competitive. Although the AChE and BuChE inhibitory activities of azure B are twofold and fivefold, respectively, less potent than those recorded for MB [IC{sub 50}(AChE) = 0.214 μM; IC{sub 50}(BuChE) = 0.389 μM] under identical conditions, azure B may be a contributor to MB's in vivo activation of the cholinergic system and beneficial effects in Alzheimer's disease. - Highlights: • Methylene blue (MB) is a known inhibitor of AChE and BuChE. • Azure B, the major metabolite of MB, also is an inhibitor of AChE and BuChE. • Azure B may be a contributor to MB's in vivo activation of the cholinergic system. • Azure B may contribute to MB's potential in Alzheimer's disease therapy.

  17. GNU Bug Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GLADY CASSIT Y VANDALIA MURPHY CR EEK BU CKHN-CENT URY CLAY GLENVILLE N MINNORA JARVISVILLE FAR MINGTON PH ILIPPI BELIN GT ON WAYN ESBUR G PR UNT Y GLENVILLE S CAVE RUN TAYLOR DRAIN ROSEDALE ST MPT-N RMNT-SHK WESTON-JAN E LEW SWN DL-WID EN VADIS STANL EY DEKALB UNION TALLM AN SVILL E ASPINALL-FIN ST ER ZOLLARSVILLE WILBU R RAMSEY HEATER S BR IDGEPORT-PRUNT YTOWN ALEXAND ER LILLY FORK SH ERMAN HIRAM ST FK-BLST N CK BU RNS CH APEL S BR WN -LUM BER PORT CON INGS PR ATT BOSWELL REVEL ELK C REEK

  18. Search for: All records | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Hong, Kunlun (1) Hu, Qiao-Sheng (1) Xing, Chun-Hui (1) Zhang, Honghai (1) Save Results ... or Pd2(dba)3t Bu3PArX as the Initiator Zhang, Honghai ; Xing, Chun-Hui ; Hu, Qiao-Sheng ...

  19. HIGH PRESSURE COAL COMBUSTION KINETICS PROJECT

    SciTech Connect (OSTI)

    Stefano Orsino

    2003-07-25

    NEA completed the CFD simulations for all NBFZ tests. SRI resumed work on HPBO experiments and conducted preliminary tests using the UCONN impactor. UCONN prepared several samples of char for cross-sectional analysis by SEM and characterization is underway. BU completed the NBFZ char characterization program. CBK model had been implemented into Fluent.

  20. Lanthanide(III) di- and tetra-nuclear complexes supported by a chelating tripodal tris(amidate) ligand

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, Jessie L.; Jones, Matthew B.; Gaunt, Andrew J.; Scott, Brian L.; MacBeth, Cora E.; Gordon, John C.

    2015-04-06

    Syntheses, structural, and spectroscopic characterization of multinuclear tris(amidate) lanthanide complexes is described. Addition of K3[N(o-PhNC(O)tBu)3] to LnX3 (LnX3 = LaBr3, CeI3, and NdCl3) in N,N-dimethylformamide (DMF) results in the generation of dinuclear complexes, [Ln(N(o-PhNC(O)tBu)3)(DMF)]2(μ-DMF) (Ln = La (1), Ce (2), Nd(3)), in good yields. Syntheses of tetranuclear complexes, [Ln(N(o-PhNC(O)tBu)3)]4 (Ln = Ce (4), Nd(5)), resulted from protonolysis of Ln[N(SiMe3)2]3 (Ln = Ce, Nd) with N(o-PhNCH(O)tBu)3. As a result, in the solid-state, complexes 1–5 exhibit coordination modes of the tripodal tris(amidate) ligand that are unique to the 4f elements and have not been previously observed in transition metal systems.

  1. Controlled Synthesis of Polyenes by Catalytic Methods. Progress Report, December 1, 1992 -- November 30, 1993

    DOE R&D Accomplishments [OSTI]

    Schrock, R. R.

    1993-12-01

    Four studies are reported: living cyclopolymerization of diethyl dipropargylmalonate by Mo(CH-t-Bu)(NAr)[OCMe(CF{sub 3}){sub 2}]{sub 2} in dimethoxyethane, effect of chain length on conductivity of polyacetylene, nonlinear optical analysis of a series of triblock copolymers containing model polyenes, and synthesis of bifunctional hexafluoro-t-butoxide Mo species and their use as initiators in ROMP reactions.

  2. A=19F (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1978DA1N, 1978MA2H, 1979DA15, 1980KU05, 1980MC1L, 1981ER03, 1981GR06, 1982KI02). Cluster, collective and rotational models: (1977BU22, 1977FO1E, 1978BR21, 1978CH26,...

  3. A=19C (1972AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2AJ02) (Not illustrated) 19C may have been observed in the 3 GeV proton bombardment of a 197Au target: if so it is particle stable (1970RA1A). Its mass excess must then be < 37.9 MeV (18C + n). See also (1960ZE03, 1971BU1E

  4. A=20N (1972AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2AJ02) (Not illustrated) 20N has been observed in the bombardment of 232Th by 122 MeV 18O ions (1969AR13, 1970AR1D) and in the 3 GeV proton bombardment of 197Au (1970RA1A): it is particle stable. See also (1960ZE03, 1961BA1C, 1971BU1E

  5. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Similarly, di-n-propyl- or di-n-butylether gives Cp'2Ce(O-n-Pr) and propane or Cp'2Ce(O-n-Bu) and butane, respectively. Using Cp'2CeD, the propane and butane contain deuterium ...

  6. Microsoft Word - lblsubethers.doc

    Office of Scientific and Technical Information (OSTI)

    Similarly, di-n-propyl- or di-n-butylether gives Cp' 2 Ce(O-n- Pr) and propane or Cp' 2 Ce(O-n-Bu) and butane, respectively. Using Cp' 2 CeD, the propane and butane contain ...

  7. Splitting a C-O bond in dialkylethers withbis(1,2,4-tri-t-butylcyclop...

    Office of Scientific and Technical Information (OSTI)

    Similarly, di-n-propyl- or di-n-butylether gives Cp'2Ce(O-n-Pr) and propane or Cp'2Ce(O-n-Bu) and butane, respectively. Using Cp'2CeD, the propane and butane contain deuterium ...

  8. S?. LL-UIIS WLLM

    Office of Legacy Management (LM)

    No. 31 12187 IEmN wffi WE ST. Lulls m ST. cows awv m S?. LL-UIIS WLLM ftl M NV 9 HIC ltRElWXDwIDloIC6IC WVCf ., sm. m buTm1Iv IJm-n Fww. DECMPIISSI 1NltEEhU 1"O'S. llE...

  9. 2010 Dry and 2009 - 2010 Wet Season Branchiopod Survey Report, Site 300

    SciTech Connect (OSTI)

    Dexter, W

    2011-03-14

    Lawrence Livermore National Laboratory (LLNL) requested that Condor Country Consulting, Inc. (CCCI) perform wet season surveys and manage the dry season sampling for listed branchiopods in two ponded locations within the Site 300 Experimental Test Site. Site 300 is located in Alameda and San Joaquin Counties, located between the Cities of Livermore and Tracy. The two pool locations have been identified for possible amphibian enhancement activities in support of the Compensation Plan for impacts tied to the Building 850 soil clean-up project. The Building 850 project design resulted in formal consultation with the U.S. Fish and Wildlife Service (USFWS) as an amendment (File 81420-2009-F-0235) to the site-wide Biological Opinion (BO) (File 1-1-02-F-0062) in the spring of 2009 and requires mitigation for the California tiger salamander (AMCA, Ambystoma californiense) and California red-legged frog (CRLF, Rana draytonii) habitat loss. Both pools contain breeding AMCA, but do not produce metamorphs due to limited hydroperiod. The pool to the southeast (Pool BC-FS-2) is the preferred site for amphibian enhancement activities, and the wetland to northwest (Pool OA-FS-1) is the alternate location for enhancement. However, prior to enhancement, LLNL has been directed by USFWS (BO Conservation Measure 17 iii) to 'conduct USFWS protocol-level branchiopod surveys to determine whether listed brachiopod species are present within the compensation area.' CCCI conducted surveys for listed branchiopods in the 2009-2010 wet season to determine the presence of federally-listed branchiopods at the two pools (previous surveys with negative findings were performed by CCCI in 2001-2002 and 2002-2003 onsite). Surveys were conducted to partially satisfy the survey requirements of the USFWS 'Interim Survey Guidelines to Permittees for Recovery Permits under Section 10(a)(1)(A) of the Endangered Species Act for the Listed Vernal Pool Branchiopods' ('Guidelines, USFWS 1996 and BO Conservation

  10. Evaluating ligands for use in polymer ligand film (PLF) for plutonium and uranium extraction

    SciTech Connect (OSTI)

    Rim, Jung H.; Peterson, Dominic S.; Armenta, Claudine E.; Gonzales, Edward R.; Ünlü, Kenan

    2015-05-08

    We describe a new analyte extraction technique using Polymer Ligand Film (PLF). PLFs were synthesized to perform direct sorption of analytes onto its surface for direct counting using alpha spectroscopy. The main focus of the new technique is to shorten and simplify the procedure for chemically isolating radionuclides for determination through a radiometric technique. 4'(5')-di-t-butylcyclohexano 18-crown-6 (DtBuCH18C6) and 2-ethylhexylphosphonic acid (HEH[EHP]) were examined for plutonium extraction. Di(2-ethyl hexyl) phosphoric acid (HDEHP) were examined for plutonium and uranium extraction. DtBuCH18C6 and HEH[EHP] were not effective in plutonium extraction. HDEHP PLFs were effective for plutonium but not for uranium.

  11. A=11C (1980AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    80AJ01) (See Energy Level Diagrams for 11C) GENERAL: See also (1975AJ02) and Table 11.19 [Table of Energy Levels] (in PDF or PS). Special levels: (1976IR1B). Astrophysical questions: (1976VI1A, 1977SC1D, 1977SI1D, 1978BU1B). Special reactions: (1975HU14, 1976BE1K, 1976BU16, 1976DI01, 1976HE1H, 1976LE1F, 1976SM07, 1977AR06, 1977AS03, 1977SC1G, 1978DI1A, 1978GE1C, 1978HE1C, 1979KA07, 1979VI05). Muon and neutrino capture and reactions: (1975DO1F, 1976DO1G). Pion capture and reactions (See also

  12. A=12O (1985AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5AJ01) (See the Isobar Diagram for 12O) 12O has been observed in the 16O(α, 8He) reaction at Eα = 117.4 MeV (1978KE06) and in the 12C(π+, π-) reaction at Eπ = 164 MeV (1983BL08; see for angular distribution) and 180 MeV (1980BU15). The mass excess of 12O is 32.10 ± 0.12 MeV (1978KE06), 32.059 ± 0.048 MeV (1980BU15): we adopt 32.065 ± 0.045 MeV. 12O is thus unstable to decay into 10C + 2p by 1.79 MeV and into 11N* + p by 0.45 MeV [note that 11N* is probably not the ground state of 11N and

  13. A=15O (1981AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    81AJ01) (See Energy Level Diagrams for 15O) GENERAL: See also (1976AJ04) and Table 15.18 [Table of Energy Levels] (in PDF or PS) here. Shell model: (1976LI16, 1976SA37, 1977EM01, 1977PO16). Special states: (1976LI16, 1977RI08). Electromagnetic transitions: (1976LI16, 1976SH04, 1977HO04, 1978KR19). Astrophysical questions: (1977BA1V, 1977SI1D, 1978BU1B, 1978WO1E, 1979PE1E). Special reactions involving 15O: (1976AB04, 1976BU16, 1976HE1H, 1976HI05, 1976LE1F, 1977AR06, 1977SC1G, 1978AB08, 1978BO1W,

  14. Application of Gold Electrodes for the Study of Nickel Based Homogeneous Catalysts for Hydrogen Oxidation

    SciTech Connect (OSTI)

    Nepomnyashchii, Alexander B.; Liu, Fei; Roberts, John A.; Parkinson, Bruce A.

    2013-08-12

    Gold and glassy carbon working electrode materials are compared as suitable substrates for the hydrogen oxidation reaction with Ni(PCy2Nt-Bu2)2(BF4)2 used as a catalyst. Voltammetric responses showing electrocatalytic hydrogen oxidation mediated by the homogeneous electrocatalyst Ni(PCy2Nt-Bu2)2(BF4)2 are identical at glassy carbon and gold electrodes, which shows that gold electrode can be used for hydrogen oxidation reaction. This work is supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under FWP 56073.

  15. Evaluating ligands for use in polymer ligand film (PLF) for plutonium and uranium extraction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rim, Jung H.; Peterson, Dominic S.; Armenta, Claudine E.; Gonzales, Edward R.; Ünlü, Kenan

    2015-05-08

    We describe a new analyte extraction technique using Polymer Ligand Film (PLF). PLFs were synthesized to perform direct sorption of analytes onto its surface for direct counting using alpha spectroscopy. The main focus of the new technique is to shorten and simplify the procedure for chemically isolating radionuclides for determination through a radiometric technique. 4'(5')-di-t-butylcyclohexano 18-crown-6 (DtBuCH18C6) and 2-ethylhexylphosphonic acid (HEH[EHP]) were examined for plutonium extraction. Di(2-ethyl hexyl) phosphoric acid (HDEHP) were examined for plutonium and uranium extraction. DtBuCH18C6 and HEH[EHP] were not effective in plutonium extraction. HDEHP PLFs were effective for plutonium but not for uranium.

  16. Simulation of differential die-away instrument’s response to asymmetrically burned spent nuclear fuel

    SciTech Connect (OSTI)

    Martinik, Tomas; Henzl, Vladimir; Grape, Sophie; Svard, Staffan Jacobsson; Jansson, Peter; Swinhoe, Martyn T.; Tobin, Stephen J.

    2015-03-04

    Here, previous simulation studies of Differential Die–Away (DDA) instrument’s response to active interrogation of spent nuclear fuel from a pressurized water reactor (PWR) yielded promising results in terms of its capability to accurately measure or estimate basic spent fuel assembly (SFA) characteristics, such as multiplication, initial enrichment (IE) and burn-up (BU) as well as the total plutonium content. These studies were however performed only for a subset of idealized SFAs with a symmetric BU with respect to its longitudinal axis. Therefore, to complement the previous results, additional simulations have been performed of the DDA instrument’s response to interrogation of asymmetrically burned spent nuclear fuel in order to determine whether detailed assay of SFAs from all 4 sides will be necessary in real life applications or whether a cost and time saving single sided assay could be used to achieve results of similar quality as previously reported in case of symmetrically burned SFAs.

  17. A=7Be (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ01) (See Energy Level Diagrams for 7Be) GENERAL: See also (1984AJ01) and Table 7.7 [Table of Energy Levels] (in PDF or PS) here. Nuclear models: (1983BU1B, 1983FU1D, 1983HO22, 1983PA06, 1984BA53, 1984KA06, 1984WA02, 1985FI1E, 1986FI07, 1986KR12, 1986VA13). Special states: (1982PO12, 1983BU1B, 1983HO22, 1984FI20, 1984WA02, 1985FI1E, 1986FI07, 1986VA13, 1986XU02, 1988KW02). Electromagnetic transitions, giant resonances: (1984KA06, 1985FI1E, 1986FI07, 1986ME13). Astrophysical questions:

  18. Synthesis and structural characterization of two half-sandwich nickel(II) complexes with the scorpionate ligands

    SciTech Connect (OSTI)

    Wang, G.-F. E-mail: s-shuwen@163.com; Zhang, X.; Sun, S.-W.; Sun, H.; Ma, H.-X.

    2015-12-15

    The synthesis and characterization of two new halfsandwich mononuclear nickel(II) complexes with the scorpionate ligands, [k{sup 3}-N, N',N''-Tp{sup t-Bu}, {sup Me}NiI] (1) and [k{sup 3}-N,N',N''-Tp{sup t-Bu}, {sup Me}NiNO{sub 3}] (2), are reported. These complexes have been fully characterized by elemental analyses and infrared spectra. Their molecular structures were determined by single crystal X-ray diffraction. The nickel(II) ion of complex 1 is in a four-coordinate environment, in which the donor atoms are provided by three nitrogen atoms of a hydrotris(pyrazolyl) borate ligand and one iodide atom, while that of complex 2 is in a five-coordinate environment with three nitrogen atoms from a hydrotris(pyrazolyl)borate ligand and two oxygen atoms from a nitrate ion.

  19. Utility: Order (2016-CE-42007) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CE-42007) Utility: Order (2016-CE-42007) January 5, 2016 DOE ordered Utility Refrigerator to pay a $8,000 civil penalty after finding Utility had failed to certify that certain models of commercial refrigerator equipment comply with the applicable energy conservation standards. The Order adopted a Compromise Agreement, which reflected settlement terms between DOE and Utility. Utility: Order (2016-CE-42007) (22.13 KB) More Documents & Publications Utility: Proposed Penalty (2016-CE-42007) Bu

  20. CX-008990: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    990: Categorical Exclusion Determination CX-008990: Categorical Exclusion Determination "Prototype Development and Evaluation of Self-Cleaning Concentrated Solar Power Collectors and Receivers CX(s) Applied: B3.6, B5.17 Date: 08/06/2012 Location(s): Massachusetts Offices(s): Golden Field Office The U.S. Department of Energy (DOE) is proposing to provide federal funding to the Trustees of Boston University (BU) to conduct research and development activities that advance prototype development

  1. BandelierDirections2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a r k i n g M E R G E T o T o w n s it e D ia m o n d D ri v e To Sa n ta Fe T o J e m e z M ts . Co mm ut er Bu s Dr op Of f P a r k i n g M E R G E M E R G E T o T o w n s i t e ...

  2. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 New Mexico Environment Department Harold Runnels Bu ildi ng 1190 Saint Francis Drive, PO Box 5496 Santa Fe, NM 87502-5469 Subject: Fifth Supplement to the Report of Implementation of the Waste Isolation Pilot Plant Facility Resource Conservation and Recovery Act Contingency Plan on April 11, 2014 Dear Mr. Kieling and Ms. Roberts: On April11 , 2014, the Department of

  3. Intermolecular C?H bond activation of benzene and pyridines by a vanadium(III) alkylidene including a stepwise conversion of benzene to a vanadium-benzyne complex

    SciTech Connect (OSTI)

    Andino, Jos G.; Kilgore, Uriah J.; Pink, Maren; Ozarowski, Andrew; Krzystek, J.; Telser, Joshua; Baik, Mu-Hyun; Mindiola, Daniel J.

    2012-01-20

    Breaking of the carbon-hydrogen bond of benzene and pyridine is observed with (PNP)V(CH{sub 2}tBu){sub 2} (1), and in the case of benzene, the formation of an intermediate benzyne complex (C) is proposed, and indirect proof of its intermediacy is provided by identification of (PNP)VO({eta}{sup 2}-C{sub 6}H{sub 4}) in combination with DFT calculations.

  4. Nuclear Data Sheets for A = 68

    SciTech Connect (OSTI)

    McCutchan, E. A.

    2012-07-01

    The experimental results from the various reaction and radioactive decay studies leading to nuclides in the A = 68 mass chain have been reviewed. Nuclides ranging from Cr (Z = 24) to Br (Z = 35) are included. For these nuclei, level and decay schemes, as well as tables of nuclear properties, are given. This work supersedes the previous evaluation of the data on these nuclides (2002Bu29).

  5. Radioisotope thermoelectric generator transportation system safety analysis report for packaging. Volumes 1 and 2

    SciTech Connect (OSTI)

    Ferrell, P.C.

    1996-04-18

    This SARP describes the RTG Transportation System Package, a Type B(U) packaging system that is used to transport an RTG or similar payload. The payload, which is included in this SARP, is a generic, enveloping payload that specifically encompasses the General Purpose Heat Source (GPHS) RTG payload. The package consists of two independent containment systems mounted on a shock isolation transport skid and transported within an exclusive-use trailer.

  6. Class 1 Permit Modification Notification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Bu il ding 1 Santa Fe, New Mexico 87505-6303 JUL 0 5 2011 Subject: Notification of a Class 1 Permit Modification to the Hazardous Waste Facility Permit, Permit Number: NM4890139088-TSDF Dear Mr. Kieling : Enclosed is a Class 1 Permit Modification Notification 1 0: * Update Emergency Coordinator list We certify under penalty of law that this document and the enclosure were prepared under our direction or supervision in

  7. Extractant composition including crown ether and calixarene extractants

    DOE Patents [OSTI]

    Meikrantz, David H.; Todd, Terry A.; Riddle, Catherine L.; Law, Jack D.; Peterman, Dean R.; Mincher, Bruce J.; McGrath, Christopher A.; Baker, John D.

    2009-04-28

    An extractant composition comprising a mixed extractant solvent consisting of calix[4] arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The DtBu18C6 may be present at from approximately 0.01M to approximately 0.4M, such as at from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present at from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The extractant composition further comprises an aqueous phase. The mixed extractant solvent may be used to remove cesium and strontium from the aqueous phase.

  8. Cesium and strontium extraction using a mixed extractant solvent including crown ether and calixarene extractants

    DOE Patents [OSTI]

    Meikrantz, David H.; Todd, Terry A.; Riddle, Catherine L.; Law, Jack D.; Peterman, Dean R.; Mincher, Bruce J.; McGrath, Christopher A.; Baker, John D.

    2007-11-06

    A mixed extractant solvent including calix[4]arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The mixed extractant solvent may be used to remove cesium and strontium from an acidic solution. The DtBu18C6 may be present from approximately 0.01 M to approximately 0.4M, such as from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The mixed extractant solvent may form an organic phase in an extraction system that also includes an aqueous phase. Methods of extracting cesium and strontium as well as strontium alone are also disclosed.

  9. Controlled Synthesis of Polyenes by Catalytic Methods. Progress Report, December 1, 1989 -- November 30, 1992

    DOE R&D Accomplishments [OSTI]

    Schrock, R. R.

    1992-01-01

    A more direct approach to polyenes by the direct polymerization of acetylenes has been achieved. We were able to show that polymerization of acetylene itself can be controlled with a well- characterized alkylidene catalyst, but only if a base such as quinuclidine is present in order to slow down the rate of propagation relative to initiation. (Quinuclidine may also stabilize vinylalkylidene intermediates formed in the reaction). Unfortunately, living polyenes were no more stable than isolated polyenes, and so this approach had its limitations. Direct polymerization of acetylene by Mo(CH-t-Bu)(NAr)(O-t-Bu){sub 2} was more successful, but inherent polyene instability was still a problem. The most important result of the past grant period is the finding that dipropargyl derivatives (HC=CCH{sub 2}XCH{sub 2}C=CH; X = CH{sub 2}, C(CO{sub 2}R){sub 2}, SiR{sub 2}, etc.), which have been reported to be cyclopolymerized by various classical catalysts by as yet unknown mechanisms, are polymerized by Mo(CH-t-Bu)(NAr)[OCMe(CF{sub 3}){sub 2}]{sub 2} in dimethoxyethane. We speculate that intramolecular formation of a five-membered ring in the product of {alpha} addition is fast enough to yield another terminal alkylidene on the time scale of the polymerization reaction, while a six-membered ring is formed in a reaction involving a more reaction terminal alkylidene. Either intermediate alkylidene, but most likely the terminal alkylidene, could react with additional monomer to lead to growth of a chain having dangling triple bonds that eventually could be employed to form crosslinks.

  10. Sample Preparation Report of the Fourth OPCW Confidence Building Exercise on Biomedical Sample Analysis

    SciTech Connect (OSTI)

    Udey, R. N.; Corzett, T. H.; Alcaraz, A.

    2014-07-03

    Following the successful completion of the 3rd biomedical confidence building exercise (February 2013 – March 2013), which included the analysis of plasma and urine samples spiked at low ppb levels as part of the exercise scenario, another confidence building exercise was targeted to be conducted in 2014. In this 4th exercise, it was desired to focus specifically on the analysis of plasma samples. The scenario was designed as an investigation of an alleged use of chemical weapons where plasma samples were collected, as plasma has been reported to contain CWA adducts which remain present in the human body for several weeks (Solano et al. 2008). In the 3rd exercise most participants used the fluoride regeneration method to analyze for the presence of nerve agents in plasma samples. For the 4th biomedical exercise it was decided to evaluate the analysis of human plasma samples for the presence/absence of the VX adducts and aged adducts to blood proteins (e.g., VX-butyrylcholinesterase (BuChE) and aged BuChE adducts using a pepsin digest technique to yield nonapeptides; or equivalent). As the aging of VX-BuChE adducts is relatively slow (t1/2 = 77 hr at 37 °C [Aurbek et al. 2009]), soman (GD), which ages much more quickly (t1/2 = 9 min at 37 °C [Masson et al. 2010]), was used to simulate an aged VX sample. Additional objectives of this exercise included having laboratories assess novel OP-adducted plasma sample preparation techniques and analytical instrumentation methodologies, as well as refining/designating the reporting formats for these new techniques.

  11. Venture Capital Finance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Venture Capital Finance DOE Biomass Conference July 2014 Priced Out of Oil ... Into What? Energy Source Commodity Price Sun: $0 / GJ Oil (6.2 GJ/bbl) $10/bbl = $1.6 / GJ (late 1990s) Coal: $3 - 6 / GJ Natural Gas (N America) $3 - 4 / GJ Biomass (15 GJ/dt) $60-100/dt = $4 - 6 / GJ Natural Gas (ex N America) $10 - 15 / GJ Oil (6.2 GJ/bbl) $100/bbl = $16 / GJ Corn $4-7/bu= $10 - 20 / GJ 2 * Higher oil prices create a disruptive opportunity for lower cost feedstocks * North American shale gas is a

  12. Highly efficient greenish-blue platinum-based phosphorescent organic light-emitting diodes on a high triplet energy platform

    SciTech Connect (OSTI)

    Chang, Y. L. Gong, S. White, R.; Lu, Z. H.; Wang, X.; Wang, S.; Yang, C.

    2014-04-28

    We have demonstrated high-efficiency greenish-blue phosphorescent organic light-emitting diodes (PHOLEDs) based on a dimesitylboryl-functionalized C^N chelate Pt(II) phosphor, Pt(m-Bptrz)(t-Bu-pytrz-Me). Using a high triplet energy platform and optimized double emissive zone device architecture results in greenish-blue PHOLEDs that exhibit an external quantum efficiency of 24.0% and a power efficiency of 55.8?lm/W. This record high performance is comparable with that of the state-of-the-art Ir-based sky-blue organic light-emitting diodes.

  13. A=18C (1972AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2AJ02) (Not illuatrated) 18C is particle stable. Therefore its atomic mass excess, M - A, must be < 29.84 MeV [16C + 2n] (1970WA1G). 18C has been observed in the bombardment of 232Th by 122 MeV 18O ions (1969AR13, 1970AR1D) and in the 3 GeV proton bombardment of Au (1970RA1A). See also (1960ZE03, 1968PO04, 1971BU1E

  14. L AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT

    National Nuclear Security Administration (NNSA)

    L _ AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 2. AMENDMENT/MODIFICATION NO. 3. EFFECTIVE DATE 25 7 See Block 16C 6 . 1SSUED BY CODE 0500 8 NNSA/ Oa kridge Site Office u.s. De pa rtment of Energ y NNSA/ Y-12 S it e Offic e P. O. Box 2 05 0 Bu ilding 97 0 4- 2 Oak Ridge TN 37831 8 . NAME AND ADDRESS OF CONTRACTOR (No., street, county. state and ZIP Code) ABCOCK & WILCOX TECHNICAL B A t t n: W ILLIE J. W I LSON PO BOX 2009 SERVICES Y- 12 , LLC ,1 . CONTRACT ID CODE I PAGE OF PAGES 1 I

  15. HIGH PRESSURE COAL COMBUSTION KINETICS PROJECT

    SciTech Connect (OSTI)

    Chris Guenther, Ph.D.

    2003-01-28

    SRI has completed the NBFZ test program, made modification to the experimental furnace for the HPBO test. The NBFZ datasets provide the information NEA needs to simulate the combustion and fuel-N conversion with detailed chemical reaction mechanisms. BU has determined a linear swell of 1.55 corresponding to a volumetric increase of a factor of 3.7 and a decrease in char density by the same factor. These results are highly significant, and indicate significantly faster burnout at elevated pressure due to the low char density and large diameter.

  16. QER- Comment of Mike Gray

    Broader source: Energy.gov [DOE]

    The biggest issue with wind energy in ND is the Transmission System. There was a proposal recently by Clean Line Energy This type of forward thinking would allow wind energy to go forward.... The other huge issue is the blockade that the fossil fuel industry has placed on Master Limited Partnerships in 1978!! If the Master Limited Partner Parity Act is passed THAT WOULD BE A GAME CHANGER!! ( this is sponsored bu Senator Coons From DE) Call me directly..... You can also aske Heidi Heitkamp about me.... Mike Gray

  17. BIG RU N INDIANA LAKESHORE RUN E LUMBER CIT Y WARSAW JOHNST

    U.S. Energy Information Administration (EIA) Indexed Site

    RU N INDIANA LAKESHORE RUN E LUMBER CIT Y WARSAW JOHNST OWN BU RNSIDE MILLSTONE FROSTBUR G JUN EAU PLU MVILLE CHERRY HILL KAN E BOSWELL MAR ION CENT ER CREEKSIDE SALTSBUR G POINT N BLAIR SVILL E COU NCIL RU N SIGEL LEWISVILLE BEAR C REEK AR MBRUST OHIOPYLE HALLT ON BR OOKVILLE MAR KTON NOL O RAT HMEL COR SICA MAR CHAND SMIC KSBU RG HOWE APOLLO SEVEN SPRIN GS YAT ESBORO MCNEES LUCIND A GEORGE PIN EY LEEPER TIMBLIN WILL ET FERGUSON CLIMAX PANIC DAVY HILL TIDIOUT E GRAMPIAN SLIGO ROC KVI LLE

  18. LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON

    U.S. Energy Information Administration (EIA) Indexed Site

    81 § ¨ ¦ 81 LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON CALEDONIA HURON C REEK LEIC EST ER COL DEN ASH FORD INDIAN FALLS LAWTONS SAR DINIA RPD-037 -2 GLENWOOD PU LASKI PAVILION CON CORD COL LINS N ELM A ORC HARD PARK-H AMBU RG DANLEY CORNERS ST ILLWAT ER CHAFF EE-ARCAD E FAYETT E-WATERLOO LAKEVIEW JAVA SEN EC A W ELLER Y AU RORA E ZOAR BU FFALO TIOGA SILVER LAKE AKR ON ROM E RAT HBON E ALM A BET HANY WYOMING ULYSSES BR ANCH W SAN DY CREEK COL LINS BLOOMFIELD E LEBANON

  19. A=18Ne (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    83AJ01) (See Energy Level Diagrams for 18Ne) GENERAL: See also (1978AJ03) and Table 18.21 [Table of Energy Levels] (in PDF or PS). Model calculations: (1979DA15, 1979SA31, 1980ZH01). Electromagnetic transitions: (1977HA1Z, 1979SA31, 1982LA26). Special states: (1977HE18, 1978KR1G, 1979DA15, 1979SA31, 1980OK01, 1982ZH1D). Astrophysical questions: (1978WO1E). Complex reactions involving 18Ne: (1979HE1D). Pion-induced capture and reactions (See also reaction 6.): (1977PE12, 1977SP1B, 1978BU09,

  20. A=9C (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See the Isobar Diagram for 9C) GENERAL: (See also (1979AJ01) for other references in this category and for some reactions on which no new work has been done.) and Table 9.12 [Table of Energy Levels] (in PDF or PS) here. Model calculations: (1979LA06). Complex reactions involving 9C: (1981MO20). Reactions involing pions: (1979AS01, 1979NA1E, 1980BU15, 1983HU02). Other topics: (1979BE1H, 1979LA06, 1982NG01). Mass of 9C: The recent Q0 value for the 12C(3He, 6He)9C reaction (see reaction 3)

  1. 18N

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    N β--Decay Evaluated Data Measurements 1964CH19: 18N; measured not abstracted; deduced nuclear properties. 1982OL01: 18N; measured Eγ, Iγ, T1/2; deduced log ft. 18O deduced levels, β-branches. 1989ZH04: 18N(β-); measured absolute β-decay branching ratios; deduced log ft, Gamow-Teller matrix elements. 18O(α) [from 18N β-decay]; measured total β-delayed α-yield. 18O deduced possible new levels. 1993BU21: 18N(β-); measured β-delayed Eα, Iα. 1991RE02, 1993REZX, 1994RE1R: 18N(β-n);

  2. 18Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne β+-Decay Evaluated Data Measurements 1954GO17: 18Ne. 1961BU05: 18Ne; measured not abstracted; deduced nuclear properties. 1961EC02: 18Ne; measured not abstracted; deduced nuclear properties. 1963FR10: 18Ne; measured not abstracted; deduced nuclear properties. 1965FR09: 18Ne; measured not abstracted; deduced nuclear properties. 1968GO05: 18Ne; measured Eγ, Iγ; deduced Iβ, log ft. 18F deduced levels, branching ratios. 1970AL11: 18Ne; measured T1/2; deduced log ft, β-branching. 1970AS06,

  3. Carlsbad Field Office P. O. Box 3090 Carlsbad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W aste Bu reau New Mexico Environment Department 2905 Rodeo Park Drive East, Buitding 1 San ta Fe. New Mexico 87505-6303 FEB 1 3 20j~ Subject: Notification of Cla ss 1 Permit Modification to the Hazardous Waste Facility Permit, Number: NM4890139088-TSDF De ar Mr. Kieling : Enclosed is the Class 1 Permit Modification Notification listed below: * Change in th e Department of Energy, Carlsbad Field Office Manager We certify under penalty of law that this document and th e enclos ure were prepared

  4. Simultaneous separation of cesium and strontium from spent nuclear fuel using the fission-product extraction process

    SciTech Connect (OSTI)

    Law, J.D.; Peterman, D.R.; Riddle, C.L.; Meikrantz, D.A.; Todd, T.A.

    2008-07-01

    The Fission-Product Extraction (FPEX) Process is being developed as part of the United States Department of Energy Global Nuclear Energy Partnership (GNEP) for the simultaneous separation of cesium and strontium from spent LWR fuel. Separation of the Cs and Sr will reduce the short-term heat load in a geological repository and, when combined with the separation of Am and Cm, could increase the capacity of the geological repository by a factor of approximately 100. The FPEX process is based on two highly-specific extractants: 4,4',(5')-di-(t-butyl-dicyclohexano)- 18-crown-6 (DtBuCH18C6) and calix[4]arene-bis-(t-octyl-benzo-crown-6 ) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium, and the BOBCalixC6 extractant is selective for cesium. Results of flowsheet testing of the FPEX process with simulated and actual spent-nuclear-fuel feed solution in centrifugal contactors are detailed. Removal efficiencies, co-extraction of metals, and process hydrodynamic performance ar e discussed along with recommendations for future flowsheet testing with actual spent nuclear fuel. Recent advances in the evaluation of alternative calixarenes with increased solubility and stability are also detailed. (authors)

  5. Electron localization in a mixed-valence diniobium benzene complex

    SciTech Connect (OSTI)

    Gianetti, Thomas L.; Nocton, Grgory; Minasian, Stefan G.; Kaltsoyannis, Nikolas; Kilcoyne, A. L. David; Kozimor, Stosh A.; Shuh, David K.; Tyliszczak, Tolek; Bergman, Robert G.; Arnold, John

    2014-11-11

    Reaction of the neutral diniobium benzene complex {[Nb(BDI)NtBu]2(?-C6H6)} (BDI = N,N'-diisopropylbenzene-?-diketiminate) with Ag[B(C6F5)4] results in a single electron oxidation to produce a cationic diniobium arene complex, {[Nb(BDI)NtBu]2(?-C6H6)}{B(C6F5)4}. Investigation of the solid state and solution phase structure using single-crystal X-ray diffraction, cyclic voltammetry, magnetic susceptibility, and multinuclear NMR spectroscopy indicates that the oxidation results in an asymmetric molecule with two chemically inequivalent Nb atoms. Further characterization using density functional theory (DFT) calculations, UV-visible, Nb L3,2-edge X-ray absorption near-edge structure (XANES), and EPR spectroscopies supports assignment of a diniobium complex, in which one Nb atom carries a single unpaired electron that is not largely delocalized on the second Nb atom. During the oxidative transformation, one electron is removed from the ?-bonding HOMO, which causes a destabilization of the molecule and formation of an asymmetric product. Subsequent reactivity studies indicate that the oxidized product allows access to metal-based chemistry with substrates that did not exhibit reactivity with the starting neutral complex.

  6. Assessment of the Electrohol process to manufacture acetaldehyde from ethanol electrogeneratively. Final report

    SciTech Connect (OSTI)

    Trevino, A.A.

    1985-04-10

    Preliminary process economics data for the electrogenerative process to manufacture acetaldehyde from ethanol were generated based on patent information. The technology was assessed in four alternative processing options. The Electrohol process is viable in the US only if integrated to the production of 190 pf ethanol from corn in a large scale unit. To be competitive, the Electrohol process must show yields in excess of 93%. Its attractiveness depends on corn prices remaining under $2.90/bu and DDG selling for more than $132/T. A corn price of $2.00/bu is needed to make a farm-size corn-based processing alternative competitive. A plant based on the fermentation of molasses proved too expensive under the US economic assumptions. The Electrohol technology based on purchased ethanol cannot compete with the existing ethylene-based process under current conditions. To become attractive, the Electrohol process must have access to cheap ethanol ($1.43/gal). The zero electricity generation mode is the most attractive mode of operation for the Electrohol technology in the US. The penalty for low levels of generation (0.130 kwh/kg AcH) is, however, negligible. The optimum operating mode in W. Europe is the generation of 0.312 kwh/kg AcH. In Japan, the low generation level is perferred (0.130 kwh/kg AcH). In general, higher energy prices improve the competitiveness of the Electrohol processing alternatives.

  7. ADVANCED TECHNOLOGIES FOR THE SIMULTANEOUS SEPARATION OF CESIUM AND STRONTIUM FROM SPENT NUCLEAR FUEL

    SciTech Connect (OSTI)

    Jack D. Law; Terry A. Todd; R. Scott Herbst; David H. Meikrantz; Dean R. Peterman; Catherine L. Riddle; Richard D. Tillotson

    2005-02-01

    Two new solvent extraction technologies have been recently developed to simultaneously separate cesium and strontium from spent nuclear fuel, following dissolution in nitric acid. The first process utilizes a solvent consisting of chlorinated cobalt dicarbollide and polyethylene glycol extractants in a phenyltrifluoromethyl sulfone diluent. Recent improvements to the process include development of a new, non-nitroaromatic diluent and development of new stripping reagents, including a regenerable strip reagent that can be recovered and recycled. This new strip reagent reduces product volume by a factor of 20, over the baseline process. Countercurrent flowsheet tests on simulated spent nuclear fuel feed streams have been performed with both cesium and strontium removal efficiencies of greater than 99 %. The second process developed to simultaneously separate cesium and strontium from spent nuclear fuel is based on two highly-specific extractants: 4',4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) and Calix[4]arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium and the BOBCalixC6 extractant is selective for cesium. A solvent composition has been developed that enables both elements to be removed together and, in fact, a synergistic effect was observed with strontium distributions in the combined solvent that are much higher that in the strontium extraction (SREX) process. Initial laboratory test results of the new combined cesium and strontium extraction process indicate good extraction and stripping performance.

  8. Electron localization in a mixed-valence diniobium benzene complex

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gianetti, Thomas L.; Nocton, Grégory; Minasian, Stefan G.; Kaltsoyannis, Nikolas; Kilcoyne, A. L. David; Kozimor, Stosh A.; Shuh, David K.; Tyliszczak, Tolek; Bergman, Robert G.; Arnold, John

    2014-11-11

    Reaction of the neutral diniobium benzene complex {[Nb(BDI)NtBu]2(μ-C6H6)} (BDI = N,N'-diisopropylbenzene-β-diketiminate) with Ag[B(C6F5)4] results in a single electron oxidation to produce a cationic diniobium arene complex, {[Nb(BDI)NtBu]2(μ-C6H6)}{B(C6F5)4}. Investigation of the solid state and solution phase structure using single-crystal X-ray diffraction, cyclic voltammetry, magnetic susceptibility, and multinuclear NMR spectroscopy indicates that the oxidation results in an asymmetric molecule with two chemically inequivalent Nb atoms. Further characterization using density functional theory (DFT) calculations, UV-visible, Nb L3,2-edge X-ray absorption near-edge structure (XANES), and EPR spectroscopies supports assignment of a diniobium complex, in which one Nb atom carries a single unpaired electron that ismore » not largely delocalized on the second Nb atom. During the oxidative transformation, one electron is removed from the δ-bonding HOMO, which causes a destabilization of the molecule and formation of an asymmetric product. Subsequent reactivity studies indicate that the oxidized product allows access to metal-based chemistry with substrates that did not exhibit reactivity with the starting neutral complex.« less

  9. Technical Cross-Cutting Issues for the Next Generation Safeguards Initiative's Spent Fuel Nondestructive Assay Project

    SciTech Connect (OSTI)

    Tobin, S. J.; Menlove, H. O.; Swinhoe, Martyn T.; Blanc, P.; Burr, T.; Evans, L. G.; Favalli, A.; Fensin, M. L.; Freeman, C. R.; Galloway, J.; Gerhart, J.; Rajasingam, A.; Rauch, E.; Sandoval, N. P.; Trellue, H.; Ulrich, T. J.; Conlin, J. L.; Croft, S.; Hendricks, John; Henzl, V.; Henzlova, D.; Eigenbrodt, J. M.; Koehler, W. E.; Lee, D. W.; Lee, T. H.; Lafleur, A. M.; Schear, M. A.; Humphrey, M. A.; Smith, Leon E.; Anderson, Kevin K.; Campbell, Luke W.; Casella, Andrew M.; Gesh, Christopher J.; Shaver, Mark W.; Misner, Alex C.; Amber, S. D.; Ludewigt, Bernhard A.; Quiter, B.; Solodov, Alexander; Charlton, W.; Stafford, A.; Romano, C.; Cheatham, J.; Ehinger, Michael; Thompson, S. J.; Chichester, David; Sterbentz, James; Hu, Jianwei; Hunt, A.; Mozin, Vladimir V.; Richard, J. G.

    2012-03-01

    Ever since there has been spent fuel (SF), researchers have made nondestructive assay (NDA) measurements of that fuel to learn about its content. In general these measurements have focused on the simplest signatures (passive photon and total neutron emission) and the analysis has often focused on diversion detection and on determining properties such as burnup (BU) and cooling time (CT). Because of shortcomings in current analysis methods, inspectorates and policy makers are interested in improving the state-of-the-art in SF NDA. For this reason the U.S. Department of Energy, through the Next Generation Safeguards Initiative (NGSI), targeted the determination of elemental Pu mass in SF as a technical goal. As part of this research effort, 14 nondestructive assay techniques were studied . This wide range of techniques was selected to allow flexibility for the various needs of the safeguards inspectorates and to prepare for the likely integration of one or more techniques having complementary features. In the course of researching this broad range of NDA techniques, several cross-cutting issues were. This paper will describe some common issues and insights. In particular we will describe the following: (1) the role of neutron absorbers with emphasis on how these absorbers vary in SF as a function of initial enrichment, BU and CT; (2) the need to partition the measured signal among different isotopic sources; and (3) the importance of the “first generation” concept which indicates the spatial location from which the signal originates as well as the isotopic origins.

  10. Direct Measurement of Initial Enrichment and Burn-up of Spent Fuel Assembly with a Differential Die-Away Technique Based Instrument

    SciTech Connect (OSTI)

    Henzl, Vladimir; Swinhoe, Martyn T.; Tobin, Stephen J.

    2012-07-16

    A key objective of the Next Generation Safeguards Initiative (NGSI) is to utilize non-destructive assay (NDA) techniques to determine the elemental plutonium (Pu) content in a commercial-grade nuclear spent fuel assembly (SFA). In the third year of the NGSI Spent Fuel NDA project, the research focus is on the integration of a few NDA techniques. One of the reoccurring challenges to the accurate determination of Pu content has been the explicit dependence of the measured signal on the presence of neutron absorbers which build up in the assembly in accordance with its operating and irradiation history. The history of any SFA is often summarized by the parameters of burn-up (BU), initial enrichment (IE) and cooling time (CT). While such parameters can typically be provided by the operator, the ability to directly measure and verify them would significantly enhance the autonomy of the IAEA inspectorate. Within this paper, we demonstrate that an instrument based on a Differential Die-Away technique is in principle capable of direct measurement of IE and, should the CT be known, also the BU.

  11. Simulation of differential die-away instrument’s response to asymmetrically burned spent nuclear fuel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martinik, Tomas; Henzl, Vladimir; Grape, Sophie; Svard, Staffan Jacobsson; Jansson, Peter; Swinhoe, Martyn T.; Tobin, Stephen J.

    2015-03-04

    Here, previous simulation studies of Differential Die–Away (DDA) instrument’s response to active interrogation of spent nuclear fuel from a pressurized water reactor (PWR) yielded promising results in terms of its capability to accurately measure or estimate basic spent fuel assembly (SFA) characteristics, such as multiplication, initial enrichment (IE) and burn-up (BU) as well as the total plutonium content. These studies were however performed only for a subset of idealized SFAs with a symmetric BU with respect to its longitudinal axis. Therefore, to complement the previous results, additional simulations have been performed of the DDA instrument’s response to interrogation of asymmetricallymore » burned spent nuclear fuel in order to determine whether detailed assay of SFAs from all 4 sides will be necessary in real life applications or whether a cost and time saving single sided assay could be used to achieve results of similar quality as previously reported in case of symmetrically burned SFAs.« less

  12. Mixed N-Heterocyclic Carbene-Bis(oxazolinyl)borato Rhodium and Iridium Complexes in Photochemical and Thermal Oxidative Addition Reactions

    SciTech Connect (OSTI)

    Xu, Songchen; Manna, Kuntal; Ellern, Arkady; Sadow, Aaron D

    2014-12-08

    In order to facilitate oxidative addition chemistry of fac-coordinated rhodium(I) and iridium(I) compounds, carbenebis(oxazolinyl)phenylborate proligands have been synthesized and reacted with organometallic precursors. Two proligands, PhB(OxMe2)2(ImtBuH) (H[1]; OxMe2 = 4,4-dimethyl-2-oxazoline; ImtBuH = 1-tert-butylimidazole) and PhB(OxMe2)2(ImMesH) (H[2]; ImMesH = 1-mesitylimidazole), are deprotonated with potassium benzyl to generate K[1] and K[2], and these potassium compounds serve as reagents for the synthesis of a series of rhodium and iridium complexes. Cyclooctadiene and dicarbonyl compounds {PhB(OxMe2)2ImtBu}Rh(?4-C8H12) (3), {PhB(OxMe2)2ImMes}Rh(?4-C8H12) (4), {PhB(OxMe2)2ImMes}Rh(CO)2 (5), {PhB(OxMe2)2ImMes}Ir(?4-C8H12) (6), and {PhB(OxMe2)2ImMes}Ir(CO)2 (7) are synthesized along with ToMM(?4-C8H12) (M = Rh (8); M = Ir (9); ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate). The spectroscopic and structural properties and reactivity of this series of compounds show electronic and steric effects of substituents on the imidazole (tert-butyl vs mesityl), effects of replacing an oxazoline in ToM with a carbene donor, and the influence of the donor ligand (CO vs C8H12). The reactions of K[2] and [M(?-Cl)(?2-C8H14)2]2 (M = Rh, Ir) provide {?4-PhB(OxMe2)2ImMes?CH2}Rh(?-H)(?-Cl)Rh(?2-C8H14)2 (10) and {PhB(OxMe2)2ImMes}IrH(?3-C8H13) (11). In the former compound, a spontaneous oxidative addition of a mesityl ortho-methyl to give a mixed-valent dirhodium species is observed, while the iridium compound forms a monometallic allyl hydride. Photochemical reactions of dicarbonyl compounds 5 and 7 result in CH bond oxidative addition providing the compounds {?4-PhB(OxMe2)2ImMes?CH2}RhH(CO) (12) and {PhB(OxMe2)2ImMes}IrH(Ph)CO (13). In 12, oxidative addition results in cyclometalation of the mesityl ortho-methyl similar to 10, whereas the iridium compound reacts with the benzene solvent to give a rare crystallographically characterized cis-[Ir](H)(Ph) complex

  13. PON1 status does not influence cholinesterase activity in Egyptian agricultural workers exposed to chlorpyrifos

    SciTech Connect (OSTI)

    Ellison, Corie A.; Crane, Alice L.; Bonner, Matthew R.; Knaak, James B.; Browne, Richard W.; Lein, Pamela J.; Olson, James R.

    2012-12-15

    Animal studies have shown that paraoxonase 1 (PON1) genotype can influence susceptibility to the organophosphorus pesticide chlorpyrifos (CPF). However, Monte Carlo analysis suggests that PON1 genotype may not affect CPF-related toxicity at low exposure conditions in humans. The current study sought to determine the influence of PON1 genotype on the activity of blood cholinesterase as well as the effect of CPF exposure on serum PON1 in workers occupationally exposed to CPF. Saliva, blood and urine were collected from agricultural workers (n = 120) from Egypt's Menoufia Governorate to determine PON1 genotype, blood cholinesterase activity, serum PON1 activity towards chlorpyrifos-oxon (CPOase) and paraoxon (POase), and urinary levels of the CPF metabolite 3,5,6-trichloro-2-pyridinol (TCPy). The PON1 55 (P ≤ 0.05) but not the PON1 192 genotype had a significant effect on CPOase activity. However, both the PON1 55 (P ≤ 0.05) and PON1 192 (P ≤ 0.001) genotypes had a significant effect on POase activity. Workers had significantly inhibited AChE and BuChE after CPF application; however, neither CPOase activity nor POase activity was associated with ChE depression when adjusted for CPF exposure (as determined by urinary TCPy levels) and stratified by PON1 genotype. CPOase and POase activity were also generally unaffected by CPF exposure although there were alterations in activity within specific genotype groups. Together, these results suggest that workers retained the capacity to detoxify chlorpyrifos-oxon under the exposure conditions experienced by this study population regardless of PON1 genotype and activity and that effects of CPF exposure on PON1 activity are minimal. -- Highlights: ► CPF exposure resulted in an increase in TCPy and decreases in BuChE and AChE. ► CPOase activity decreased in subjects with the PON1 55LM and PON1 55 MM genotypes. ► Neither PON1 genotype nor CPOase activity had an effect on BuChE or AChE inhibition.

  14. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  15. A=10B (66LA04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    66LA04) (See Energy Level Diagrams for 10B) GENERAL: See (BA59F, BR59M, TA60L, TR61, IN62, BU63D, KU63B, ME63A, MO63C, OL63B, VL63A, WA63C, AM64, BA64V, FR64D, GR64C, MA64HH, NE64C, OL64A, ST64, VA64F, FA65C, NE65). See also Table 10.6 [Table of Energy Levels] (in PDF or PS). Ground State: μ = +1.8007 nm (FU65E). Q = +0.08 b (FU65E). 1. 6Li(α, γ)10B Qm = 4.461 Six resonances are observed in the range Eα = 0.5 to 2.6 MeV, corresponding to 10B*(4.76 - 6.06 MeV): see Table 10.8 (in PDF or PS).

  16. A=10C (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9AJ01) (See Energy Level Diagrams for 10C) GENERAL: See also (1974AJ01) and Table 10.22 [Table of Energy Levels] (in PDF or PS). Model calculations: (1974IR04, 1976IR1B). Special reactions (See also reaction 2 in (1974AJ01).): (1973BA81, 1974RI1A, 1975BA1Q, 1976BE1K, 1976BU16, 1977AR06). Pion reactions (See also reactions 3 and 9 here.): (1975GI1B, 1975RE01, 1977HO1B, 1977WA02, 1978AM01). Astrophysical questions: (1972PA1C, 1976VI1A, 1977SI1D). Other topics: (1974IR04, 1976IR1B, 1976VO1C).

  17. A=11Be (1985AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    85AJ01) (See Energy Level Diagrams for 11Be) GENERAL: See also (1980AJ01) and Table 11.3 [Table of Energy Levels] (in PDF or PS). Model calculations:(1981RA06, 1981SE06, 1983MI1E, 1984VA06). Electromagnetic transitions:(1980MI1G). Complex reactions involving 11Be:(1979BO22, 1980WI1L, 1983EN04, 1983WI1A, 1984GR08, 1984HI1A). Hypernuclei:(1979BU1C, 1982IK1A, 1982KA1D, 1982KO11, 1983FE07, 1983KO1D, 1983MI1E). Other topics:(1981SE06, 1982NG01). Ground-state properties of 11Be:(1981AV02, 1982NG01,

  18. A=12N (1980AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0AJ01) (See Energy Level Diagrams for 12N) GENERAL: See also (1975AJ02) and Table 12.21 [Table of Energy Levels] (in PDF or PS). Model calculations: (1976IR1B). Pion reactions (See also reaction 2.): (1975NA16, 1976NA16, 1978BU1J, 1978EP01, 1978NA1N, 1979BO1W, 1979BO2C, 1979DI1A, 1979EP1B, 1979NA1Q, 1979WI1A). Other topics: (1975HU14, 1976AB04, 1976BE1K, 1976IR1B, 1977SI1D, 1978SE1B, 1979WI1A). Ground state of 12N: (1974SHYR, 1975BE31, 1977YO1D, 1978LEZA). μ = +(0.4571 ± 0.005) nm (1968SU05).

  19. A=13N (1991AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    91AJ01) (See Energy Level Diagrams for 13N) GENERAL: See also (1986AJ01) and Table Prev. Table 13.14 preview 13.14 [Table of Energy Levels] (in PDF or PS) here. Nuclear models:(1989AM02). Special states:(1984KO40, 1985RO1J, 1986AN07, 1988RO1R, 1989RO03). Electromagnetic transitions:(1984VA06, 1987HO1L). Astrophysical questions:(1985TA1A, 1987RA1D, 1989ST14). Applied work:(1986HI1B, 1986MA2F, 1986MA1T, 1986WE1E, 1987BU12, 1987LE1H, 1988HI1F, 1988VO1D, 1989AR1J, 1989AR1N, 1989AR1Q, 1989TR1B,

  20. A=14O (1976AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    76AJ04) (See Energy Level Diagrams for 14O) GENERAL: See also (1970AJ04) and Table 14.29 [Table of Energy Levels] (in PDF or PS). Nuclear models: (1973SA30, 1974KU1F). Special reactions involving 14O: (1971AR02, 1973BA81, 1975BA1Q, 1975HU14). Reactions involving pions: (1973CH20, 1973DA37, 1975HU1D, 1975RE01). Other topics: (1970FO1B, 1972AN05, 1972CA37, 1972KU1C, 1973GO1H, 1973KA1H, 1973PA1F, 1973RO1R, 1973SP1A, 1974BO22, 1974KU1F, 1974SE1B, 1974VA24, 1975BU1M). Ground state: (1975BE31). 1.

  1. A=15C (1976AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    76AJ04) (See Energy Level Diagrams for 15C) GENERAL: See also (1970AJ04) and Table 15.1 [Table of Energy Levels] (in PDF or PS) here. Model calculations: (1973PH03, 1973RE17). Special levels: (1973PH03, 1974VA24). Muon and neutrino capture and reactions: (1973BE16, 1973BU20). Pion capture and reactions: (1970JA11). Special reactions: (1971AR02, 1973KO1D, 1973WI15, 1974KO25, 1975UD01). Other topics: (1970SU1B, 1973PH03, 1973RE17, 1974VA24, 1975BE31). 1. 15C(β-)15N Qm = 9.772 The half-life is

  2. A=15N (70AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70AJ04) (See Energy Level Diagrams for 15N) GENERAL: See Table 15.4 [Table of Energy Levels] (in PDF or PS) here. Model calculations:(HA57B, BR59M, FE59E, TA60L, BA61N, BU63D, KU63I, MA64HH, CO65I, FA65A, GR65E, GU65A, ZA65B, EL66B, SO66A, CO67M, EL67C, PA67K, EL68E, HO68, MA68DD, SH68D, WA68E, ZH68A, CH69, EL69B). General calculations and reviews:(EV64, BE65G, OL66B, WI66E, FA67A, LO67E, BI68C, ZH68, HA69M, IW69A). Electromagnetic transitions:(RO65O, HA66O, PO66F, RO66C, RO66M, WA66D, KU67J,

  3. A=16Ne (1986AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ04) (See the Isobar Diagram for 16Ne) GENERAL: See also (1982AJ01) and Table 16.26 [Table of Energy Levels] (in PDF or PS) here. See (1981SE1B, 1983ANZQ, 1985AN28, 1985MA1X). Mass of 16Ne: The Q-values of the 20Ne(α, 8He) and 16O(π+, π-) reactions lead to atomic mass excesses of 23.93 ± 0.08 MeV (1978KE06), 23.978 ± 0.024 MeV (1983WO01) and 24.048 ± 0.045 MeV (1980BU15) [recalculated using the (1985WA02) masses for 8He, 16O and 20Ne]. The weighted mean is 23.989 ± 0.020 MeV which is

  4. A=16Ne (1993TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    93TI07) (See the Isobar Diagram for 16Ne) GENERAL: See Table Prev. Table 16.29 preview 16.29 [General Table] (in PDF or PS) and Table Prev. Table 16.32 preview 16.32 [Table of Energy Levels] (in PDF or PS). Mass of 16Ne: The Q-values of the 20Ne(α, 8He) and 16O(π+, π-) reactions lead to atomic mass excesses of 23.93 ± 0.08 MeV (1978KE06), 23.978 ± 0.024 MeV (1983WO01) and 24.048 ± 0.045 MeV (1980BU15) [recalculated using the (1985WA02) masses for 8He, 16O and 20Ne]. The weighted mean is

  5. Atmospheric Pressure Chemical Vapor Deposition of High Silica SiO2-TiO2 Antireflective Thin Films for Glass Based Solar Panels

    SciTech Connect (OSTI)

    Klobukowski, Erik R; Tenhaeff, Wyatt E; McCamy, James; Harris, Caroline; Narula, Chaitanya Kumar

    2013-01-01

    The atmospheric pressure chemical vapor deposition (APCVD) of SiO2-TiO2 thin films employing [[(tBuO)3Si]2O-Ti(OiPr)2], which can be prepared from commercially available materials, results in antireflective thin films on float glass under industrially relevant manufacturing conditions. It was found that while the deposition temperature had an effect on the SiO2:TiO2 ratio, the thickness was dependent on the time of deposition. This study shows that it is possible to use APCVD employing a single source precursor containing titanium and silicon to produce thin films on float glass with high SiO2:TiO2 ratios.

  6. Efficient One-Step Electrolytic Recycling of Low-Grade and Post-Consumer Magnesium Scrap

    SciTech Connect (OSTI)

    Adam C. Powell, IV

    2012-07-19

    Metal Oxygen Separation Technologies, Inc. (abbreviated MOxST, pronounced most) and Boston University (BU) have developed a new low-cost process for recycling post-consumer co-mingled and heavily-oxidized magnesium scrap, and discovered a new chemical mechanism for magnesium separations in the process. The new process, designated MagReGenTM, is very effective in laboratory experiments, and on scale-up promises to be the lowest-cost lowest-energy lowest-impact method for separating magnesium metal from aluminum while recovering oxidized magnesium. MagReGenTM uses as little as one-eighth as much energy as today's methods for recycling magnesium metal from comingled scrap. As such, this technology could play a vital role in recycling automotive non-ferrous metals, particularly as motor vehicle magnesium/aluminum ratios increase in order to reduce vehicle weight and increase efficiency.

  7. An Assessment of Technologies to Provide Extended Sludge Retrieval from Underground Storage Tanks at the Hanford Site

    SciTech Connect (OSTI)

    JA Bamberger

    2000-08-02

    The purpose of this study was to identify sludge mobilization technologies that can be readily installed in double-shell tanks along with mixer pumps to augment mixer pump operation when mixer pumps do not adequately mobilize waste. The supplementary technologies will mobilize sludge that may accumulate in tank locations out-of-reach of the mixer-pump jet and move the sludge into the mixer-pump range of operation. The identified technologies will be evaluated to determine if their performances and configurations are adequate to meet requirements developed for enhanced sludge removal systems. The study proceeded in three parallel paths to identify technologies that: (1) have been previously deployed or demonstrated in radioactive waste tanks, (2) have been specifically evaluated for their ability to mobilize or dislodge waste simulants with physical and theological properties similar to those anticipated during waste retrieval, and (3) have been used in similar industrial conditions, bu t not specifically evaluated for radioactive waste retrieval.

  8. Synthesis of peptide .alpha.-thioesters

    DOE Patents [OSTI]

    Camarero, Julio A.; Mitchell, Alexander R.; De Yoreo, James J.

    2008-08-19

    Disclosed herein is a new method for the solid phase peptide synthesis (SPPS) of C-terminal peptide .alpha. thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. The oxidation step converts the acyl-hydrazine group into a highly reactive acyl-diazene intermediate which reacts with an .alpha.-amino acid alkylthioester (H-AA-SR) to yield the corresponding peptide .alpha.-thioester in good yield. A variety of peptide thioesters, cyclic peptides and a fully functional Src homology 3 (SH3) protein domain have been successfully prepared.

  9. Nucleophilic fluorination of aromatic compounds

    DOE Patents [OSTI]

    Satyamurthy, Nagichettiar; Barrio, Jorge R

    2014-03-18

    Iodylbenzene derivatives substituted with electron donating as well as electron withdrawing groups on the aromatic ring are used as precursors in aromatic nucleophilic substitution reactions. The iodyl group (IO.sub.2) is regiospecifically substituted by nucleophilic fluoride to provide the corresponding fluoroaryl derivatives. No-carrier-added [F-18]fluoride ion derived from anhydrous [F-18](F/Kryptofix, [F-18]CsF or a quaternary ammonium fluoride (e.g., Me.sub.4NF, Et.sub.4NF, n-Bu.sub.4NF, (PhCH.sub.2).sub.4NF) exclusively substitutes the iodyl moiety in these derivatives and provides high specific activity F-18 labeled fluoroaryl analogs. Iodyl derivatives of a benzothiazole analog and 6-iodyl-L-dopa derivatives have been synthesized as precursors and have been used in the preparation of no-carrier-added [F-18]fluorobenzothiazole as well as 6-[F-18]fluoro-L-dopa.

  10. Final Technical Report

    SciTech Connect (OSTI)

    D. Paul Mehta

    2006-09-01

    The Industrial Assessment Center at Bradley University (BU IAC) has been successful in promoting the wise use of energy resources, reduction of environmental waste and increased productivity in the industrial sector. Over 1100 assessment recommendations have been made to 94 industrial clients from September 1, 2002 to August 31, 2006. The projected savings from these recommendations exceeded $15.5 million of which just under $10 million or 62% were implemented. In addition to this over 50 students have been trained to idientify opportunities to reduce costs in induatrial facilities. Many of these students have gone on to careers where they influence the costs of manufacturing thus multiplying the efforts of the center. The details of how this was accomplished is contained in the report which follows.

  11. Synthesis, NMR spectra, and structure of rhodium hydride complexes with Rh-Sn bonds

    SciTech Connect (OSTI)

    Krut'ko, B.P.; Permin, A.B.; Petrosyan, V.S.; Reutov, O.A.

    1985-06-20

    The authors study the hydride complexes using Sn 119 and H 1 NMR spectroscopy. The spectra were taken in a pulse mode on a Varian FT-80A spectrometer equipped with a wideband system at 29.66 and 79.54 MHz. The Sn 119 and H 1 NMR spectral parameters for a solution of the complex (Bu/sub 4/N)/sub 3/ (HRh(SnCl/sub 3/)/sub 5/) in CD/sub 3/CN are shown, the spectra show that the (HRh(SnCl/sub 3/)/sub 5/)/sup 3 -/ anion has octahedral structure with four equatorial and one axial Rh-Sn bonds. New rhodium hydride complexes with general formula (R/sub 4/N)/sub 3/(HRh(SnCl/sub 3/)/sub 5/) were synthesized.

  12. A Singular Differential Equation Stemming from an Optimal Control Problem in Financial Economics

    SciTech Connect (OSTI)

    Brunovsky, Pavol; Cerny, Ales; Winkler, Michael

    2013-10-15

    We consider the ordinary differential equation x{sup 2} u'' = axu'+bu-c(u'-1){sup 2}, x Element-Of (0,x{sub 0}), with a Element-Of R, b Element-Of R , c>0 and the singular initial condition u(0)=0, which in financial economics describes optimal disposal of an asset in a market with liquidity effects. It is shown in the paper that if a+b<0 then no continuous solutions exist, whereas if a+b>0 then there are infinitely many continuous solutions with indistinguishable asymptotics near 0. Moreover, it is proved that in the latter case there is precisely one solution u corresponding to the choice x{sub 0}={infinity} which is such that 0{<=}u(x){<=}x for all x>0, and that this solution is strictly increasing and concave.

  13. Lawrence Co. Scioto Co. Greenup Co. Jack

    U.S. Energy Information Administration (EIA) Indexed Site

    COWEN BELLS F OR D FREDVILLE BIG CH IMNEY ALVIN N RPD-LAWRENC E-2 PEYTONA-EMMON S TOM PR ICE SCHOOL NE BREEDEN MAR E CREEK SCHOOL FAR LEY C HUR CH W LON G R UN LICKBURG RPD-GALLIA-1 MIMA LEF T F OR K RPD-MASON-1 MABSCOT T-CBM CON LEY MEAD E BR ANCH PET ERSBURG VAN LEAR SILVERTON RPD-SC IOT O-2 HURR ICANE CR EEK OT TER ROAD BRANCH SH AVERS FORK HAGERH ILL KEEL FORK CRAGER FORK CON TRARY BRAN CH HUNN EWELL S DUMPS CREEK DOBSON SCH OOL BU LAN DANIEL HINDMAN N LAU REL HILL CROOK PYR AMI D AU XIER

  14. Data Mining Techniques to Estimate Plutonium, Initial Enrichment, Burnup, and Cooling Time in Spent Fuel Assemblies

    SciTech Connect (OSTI)

    Trellue, Holly Renee; Fugate, Michael Lynn; Tobin, Stephen Joesph

    2015-03-19

    The Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and Arms Control (NPAC), National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE) has sponsored a multi-laboratory, university, international partner collaboration to (1) detect replaced or missing pins from spent fuel assemblies (SFA) to confirm item integrity and deter diversion, (2) determine plutonium mass and related plutonium and uranium fissile mass parameters in SFAs, and (3) verify initial enrichment (IE), burnup (BU), and cooling time (CT) of facility declaration for SFAs. A wide variety of nondestructive assay (NDA) techniques were researched to achieve these goals [Veal, 2010 and Humphrey, 2012]. In addition, the project includes two related activities with facility-specific benefits: (1) determination of heat content and (2) determination of reactivity (multiplication). In this research, a subset of 11 integrated NDA techniques was researched using data mining solutions at Los Alamos National Laboratory (LANL) for their ability to achieve the above goals.

  15. A=19F (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ03) (See Energy Level Diagrams for 19F) GENERAL: See (1972AJ02) and Table 19.6 [Table of Energy Levels] (in PDF or PS). Shell model: (1970FL1A, 1972EN03, 1972GU05, 1972LE13, 1972NE1B, 1973DE13, 1973JU1A, 1973LA1D, 1973MA1K, 1973MC06, 1973MC1E, 1973ME1D, 1973SM1C, 1974CO39, 1975BA81, 1975GA1L, 1975MA1U, 1975SUZR, 1977HA33, 1977SH11). Cluster, collective and rotational models: (1972NE1B, 1973DE06, 1973MC1E, 1973NE1C, 1973RO19, 1976LE19, 1977BU05, 1977HO1F). Electromagnetic transitions:

  16. A=7Be (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See Energy Level Diagrams for 7Be) GENERAL: See also (1979AJ01) and Table 7.7 [Table of Energy Levels] (in PDF or PS). Nuclear models: (1978RE1A, 1979WI1B, 1980HA1M, 1981KU13, 1982FI13, 1983WA1M). Astrophysical questions: (1978BU1B, 1979MO04, 1979RA20, 1979RA1C, 1980CA1C, 1980LA1G, 1980WI1M, 1983LI01). Applied work: (1979LA1E, 1982HA1D, 1983HA1W). Complex reactions involving 7Be: (1978DI1A, 1978DU1B, 1978HA40, 1978HE1C, 1979BO22, 1979KA07, 1979LO11, 1979PO10, 1979RA20, 1979SC1D,

  17. A=7He (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See the Isobar Diagram for 7He) GENERAL: See also (1979AJ01) and Table 7.1 [Table of Energy Levels] (in PDF or PS). Reactions involving pions: (1978FU09, 1979BA1M, 1979PE1C). Hypernuclei: (1978DA1A, 1978SO1A, 1979BU1C, 1981WA1J, 1982KO11). Other topics: (1979BE1H, 1981AV02, 1982AW02, 1982NG01). 1. 7Li(π-, γ)7He Qm = 128.36 See (1979AJ01). 2. 7Li(n, p)7He Qm = -10.42 At En = 14.8 MeV a proton group is reported corresponding to 7Heg.s.: Γ < 0.2 MeV: see (1979AJ01). See also

  18. A=7Li (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See Energy Level Diagrams for 7Li) GENERAL: See also (1979AJ01) and Table 7.2 [Table of Energy Levels] (in PDF or PS). Shell model: (1978FU13, 1978MI13, 1979MA11, 1981BO1Y, 1982BA52, 1982FI13). Cluster and α-particle models: (1978MI13, 1979MA11, 1979VE08, 1980KA16, 1980SU04, 1981BE27, 1981EL06, 1981FI1A, 1981HA1Y, 1981KR1J, 1981RA1M, 1981SR01, 1982DE12, 1982FI13, 1982MU10, 1983DU1B, 1983KA1K). Special states: (1978MI13, 1979BU14, 1978DU1C, 1979KI10, 1980GO1Q, 1980SH1N, 1981BE27,

  19. A=7Li (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ01) (See Energy Level Diagrams for 7Li) GENERAL: See also (1984AJ01) and Table 7.2 [Table of Energy Levels] (in PDF or PS) here. Shell model: (1983BU1B, 1983KU17, 1983SH1D, 1983VA31, 1984CH24, 1984REZZ, 1984VA06, 1984ZW1A, 1985FI1E, 1985GO11, 1986AV08, 1987KA09, 1987KI1C, 1988WO04). Cluster and α-particle models: (1981PL1A, 1983FU1D, 1983HO22, 1983PA06, 1983SH1D, 1983SR1C, 1984BA53, 1984DA07, 1984DU13, 1984DU17, 1984JO1A, 1984KA06, 1984KA04, 1984LO09, 1984MI1F, 1984SH26, 1985FI1E, 1985FU01,

  20. A=8Li (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9AJ01) (See Energy Level Diagrams for 8Li) GENERAL: See also (1974AJ01) and Table 8.1 [Table of Energy Levels] (in PDF or PS). Nuclear models: (1975KH1A, 1977ST24). Special states: (1974IR04, 1976IR1B, 1978KH03). Electromagnetic interactions: (1974KU06, 1976KU07). Special reactions: (1973SI38, 1974BA70, 1974BA1N, 1974BO08, 1975FE1A, 1975ZE01, 1976BE67, 1976BO08, 1976BU16, 1977FE1B, 1977PR05, 1977ST1J, 1977YA1B, 1978DI04). Muon and neutrino interactions: (1977BA1P). Pion and kaon reactions (See

  1. A=9Li (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9AJ01) (See Energy Level Diagrams for 9Li) GENERAL: See also (1974AJ01) and Table 9.1 [Table of Energy Levels] (in PDF or PS). Model calculations: (1974IR04, 1976IR1B, 1977JA14). Special reactions: (1975AB1D, 1975ZE01, 1976AL1F, 1976BE67, 1976BU16, 1977YA1B). Pion and kaon reactions (See also reaction 3.): (1973CA1C, 1976TR1A, 1977BA1Q, 1977DO06, 1977SH1C). Other topics: (1970KA1A, 1973TO16, 1974IR04, 1975BE56, 1976IR1B). Ground state properties: (1975BE31). μ = 3.4359 ± 0.0010 nm (1976CO1L;

  2. HEALTH AhO SAFETY DIVISION Industrial Hygiene or Medical Dept.

    Office of Legacy Management (LM)

    ALYTICAL DATA SHEET ANALYTICAL DEPT. - HEALTH AhO SAFETY DIVISION Industrial Hygiene or Medical Dept. m 1956 w I. H.# 7g2 Semplb Nos l2 Date Collected- 512 by RlX -----Route to EA LocetionKN(U[YTr-r-ETyp of Sample ~hd%---Analyzed for F Alphaxx Rema&mre t&n from the furnace and from U= Beta JOC slap ladles. No, Ro Oil PH Be Th Nc0 NO 8506 BcA-j &A- ii \JC cL"w-- Anolyticol Chemistry Secrion: Date Received--!b4-56 by Lab* Date Reported 6-X-66 bu I&b , Method of Analyair

  3. 12C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 05/15/2012) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2001NE15 12C(p, γ): σ, deduced S(E) ratio < 160 keV X4 10/28/2014 1993CH02 12C(p, X): σ for η production ≤ 0.9 GeV X4 03/07/2012 1974RO29 12C(p, γ): σ 150 - 3000 keV X4 08/27/2013 1951GO1B 12C(p, p): yield curve of elastic scattering 0.2 - 4.0 θ = 164° 11/05/2014 1976ME22 12C(p, p): absolute σ 0.3 - 2.0 X4 08/07/2013 2008BU19 12C(p, γ): σ, deduced S-factors. 354, 390, 460, 463, 565,

  4. 12O

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O Ground-State Decay Evaluated Data Measured Ground-State Γcm for 12O Adopted value: 0.40 ± 0.25 MeV (1990AJ01) Measured Mass Excess for 12O Adopted value: 32048 ± 18 keV (2003AU02) Measurements 1978KE06: 16O(α, 8He), E = 117 MeV; measured σ(θ); deduced Q. 12O deduced mass excess, Γcm, diproton decay. 1980BU15: 12C(π+, π-), E = 180 MeV; measured σ(θ), Q. 12O deduced masses. 1980MOZX: 12C(π+, π-), E = 180 MeV; measured mass spectra, θ = 5°. 12O deduced masses. 1986FAZY: 12C(π+,

  5. 16C

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C β--Decay Evaluated Data Measurements 1961HI01: 16C; measured not abstracted; deduced nuclear properties. 1976AL02: 16C; measured Eγ, Iγ, γ(t), T1/2, delayed neutrons log ft. 16N deduced levels. 1976FI03: 16C; measured T1/2, delayed γ, delayed neutrons. 1983GA03: 16C(β-), (β-n); measured β(t), γ(t), βγ-coin; deduced log ft. 16N levels deduced β-branching ratio. 2000BU33, 2001GR06: 16C(β-n); measured β-delayed neutron spectra. 16N deduced level, J, π. Comparison with shell model

  6. 16Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne Ground-State Decay Evaluated Data Measured Ground-State Γcm for 16Ne Adopted value: 122 ± 37 keV (1993TI07) Measured Mass Excess for 16Ne Adopted value: 23996 ± 20 keV (2003AU02) Measurements 1971MAXQ: 16O(π+, π-); measured particle spectra, σ. 1977HO13: 16O(π+, π-), E = 145 MeV; measured σ; deduced Q. 16Ne deduced mass excess. 1977KEZX: 20Ne(α, 8He), E = 118 MeV; measured σ. 16Ne deduced levels, mass excess. 1978BU09: 16O(π+, π-), E = 145 MeV; measured σ. 16Ne deduced mass

  7. CRC handbook of neurohypophyseal hormone analogs. Volume I

    SciTech Connect (OSTI)

    Jost, K.; Lebl, M.; Brtnik, F.

    1987-01-01

    This book is discussed in two parts. Part one discusses Introductory Remarks. Nomenclature. Natural Forms of Neurohypophyseal Hormones. Synthesis, Purification, and Stability of the Neurohypophyseal Hormone Analogs. Isotopically Modified Analogs. Studies of Analogs Using Physiocochemical and Theoretical Methods. Conformational properties of Neurohypophyseal Hormone Analogs in Solution as Determined bu NMR and Laser Raman Spectroscopies. Other Methods used in the Investigation of Neurohypophyseal Hormone Analog Conformations. Conformation Properties of Analogs in Solution as Revealed by Circular Dichroism Spectroscopy. Conformational Energy Calculations. Quantitative Structure Activity Relationships. References. Part 2 discusses The Use of Neurohypophyseal Hormone Analogs in the Study of Neurophysin-Hormone Interactions. Enzymatic Inactivation. Immunochemistry. Studies of Neurohypopophyseal Hormone Activities at the Cellular Level. Fundamental Biological Evaluation. Important Structural Modifications. Noncoded Amino Acids. Modification of ..cap alpha..-Amino Group; 1-Deamino and 1-Hydroxy Analogs. Modifications in the Issulfide Bridge (Carba-Analogs). Modification of Other Functional Groups. Changes in the Backbone. References. Index.

  8. Development and Pilot Manufacture of Pseudo-Electric Double Layer Capacitors

    SciTech Connect (OSTI)

    Dae Young Jung,

    2011-01-26

    Binghamton University carried out basic studies on thermal characteristics of the current ELDC design and characterization of current active and conductive carbon materials used to fabricate ELDC and p-ELDC. Multi physics approach was take for thermal modeling to understand the temperature distribution of an individual cell as well as multi-cell systems, which is an important factor to the reliability of ELDC?s and p-ELDC?s. Structure and properties were characterized for various raw active carbon materials which can be used as electrode to look into potential cost reduction opportunity without degrading the performance. BU team also performed experiments for compositional optimization studies for active carbon, conductive carbon, and binder formulation. A few laboratory instruments were installed for this project at BU. These instruments will continued to be used to carry out further research and development tasks relevant to ELDC and p-ELDC. Project subawardee, Ioxus, Inc., successfully created, enhanced, and then generated a product line of hybrid capacitors which now range in size from 220 Farads (F) to 1000F. These products have been proven to work as the primary energy storage method for LED lighting applications, and two significant commercial applications are evaluating these devices for use. Both of these applications will be used in LED lighting, which replaces traditional batteries and allows for a very fast charge and a high cycle life, over a wide temperature range. This will lead to a significant reduction of waste that ends up in landfills. These products are 70% recyclable, with a 10 year life. In one both applications, it is expected that the hybrid capacitor will power the LED lights for the life of the product, which would have required at least 10 battery changes.

  9. Impacts of Mid-level Biofuel Content in Gasoline on SIDI Engine-Out and Tailpipe Particulate Matter Emissions: Preprint

    SciTech Connect (OSTI)

    He, X.; Ireland, J. C.; Zigler, B. T.; Ratcliff, M. A.; Knoll, K. E.; Alleman, T. L.; Tester, J. T.

    2011-02-01

    The influences of ethanol and iso-butanol blended with gasoline on engine-out and post Three-Way Catalyst (TWC) particle size distribution and number concentration were studied using a GM 2.0L turbocharged Spark Ignition Direct Injection (SIDI) engine. The engine was operated using the production ECU with a dynamometer controlling the engine speed and the accelerator pedal position controlling the engine load. A TSI Fast Mobility Particle Sizer (FMPS) spectrometer was used to measure the particle size distribution in the range from 5.6 to 560 nm with a sampling rate of 1 Hz. US federal certification gasoline (E0), two ethanol-blended fuels (E10 and E20), and 11.7% iso-butanol blended fuel (BU12) were tested. Measurements were conducted at ten selected steady-state engine operation conditions. Bi-modal particle size distributions were observed for all operating conditions with peak values at particle sizes of 10 nm and 70 nm. Idle and low speed / low load conditions emitted higher total particle numbers than other operating conditions. At idle, the engine-out Particulate Matter (PM) emissions were dominated by nucleation mode particles, and the production TWC reduced these nucleation mode particles by more than 50%, while leaving the accumulation mode particle distribution unchanged. At engine load higher than 6 bar NMEP, accumulation mode particles dominated the engine-out particle emissions and the TWC had little effect. Compared to the baseline gasoline (E0), E10 does not significantly change PM emissions, while E20 and BU12 both reduce PM emissions under the conditions studied. Iso-butanol was observed to impact PM emissions more than ethanol, with up to 50% reductions at some conditions. In this paper, the issues related to PM measurement using FMPS are also discussed. While some uncertainties are due to engine variation, the FMPS must be operated under careful maintenance procedures in order to achieve repeatable measurement results.

  10. Synthesis and oxidation catalysis of [tris(oxazolinyl)borato]cobalt(II) scorpionates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reinig, Regina R.; Mukherjee, Debabrata; Weinstein, Zachary B.; Xie, Weiwei; Albright, Toshia; Baird, Benjamin; Gray, Tristan S.; Ellern, Arkady; Miller, Gordon J.; Winter, Arthur H.; et al

    2016-04-28

    The reaction of CoCl2·THF and thallium tris(4,4-dimethyl-2-oxazolinyl)phenylborate (TlToM) in tetrahydrofuran (THF) provides ToMCoCl (1) in 95 % yield; however, appropriate solvents and starting materials are required to favor 1 over two other readily formed side-products, (ToM)2Co (2) and {HToM}CoCl2 (3). ESR, NMR, FTIR, and UV/Vis spectroscopies were used to distinguish these cobalt(II) products and probe their electronic and structural properties. Even after the structures indicated by these methods were confirmed by X-ray crystallography, the spectroscopic identification of trace contaminants in the material was challenging. The recognition of possible contaminants in the synthesis of ToMCoCl in combination with the paramagnetic naturemore » of these complexes provided impetus for the utilization of X-ray powder diffraction to measure the purity of the ToMCoCl bulk sample. Furthermore, the X-ray powder diffraction results provide support for the bulk-phase purity of ToMCoCl in preparations that avoid 2 and 3. Thus, 1 is a precursor for new [tris(oxazolinyl)borato]cobalt chemistry, as exemplified by its reactions with KOtBu and NaOAc to give ToMCoOtBu (4) and ToMCoOAc (5), respectively. Compound 5 is a catalyst for the oxidation of cyclohexane with meta-chloroperoxybenzoic acid (mCPBA), and the rate constants and selectivity for cyclohexanol versus cyclohexanone and ϵ-caprolactone were assessed.« less

  11. Experimental Systems-Biology Approaches for Clostridia-Based Bioenergy Production

    SciTech Connect (OSTI)

    Papoutsakis, Elefterios

    2015-04-30

    This is the final project report for project "Experimental Systems-Biology Approaches for Clostridia-Based Bioenergy Production" for the funding period of 9/1/12 to 2/28/2015 (three years with a 6-month no-cost extension) OVERVIEW AND PROJECT GOALS The bottleneck of achieving higher rates and titers of toxic metabolites (such as solvents and carboxylic acids that can used as biofuels or biofuel precursors) can be overcome by engineering the stress response system. Thus, understanding and modeling the response of cells to toxic metabolites is a problem of great fundamental and practical significance. In this project, our goal is to dissect at the molecular systems level and build models (conceptual and quantitative) for the stress response of C. acetobutylicum (Cac) to its two toxic metabolites: butanol (BuOH) and butyrate (BA). Transcriptional (RNAseq and microarray based), proteomic and fluxomic data and their analysis are key requirements for this goal. Transcriptional data from mid-exponential cultures of Cac under 4 different levels of BuOH and BA stress was obtained using both microarrays (Papoutsakis group) and deep sequencing (RNAseq; Meyers and Papoutsakis groups). These two sets of data do not only serve to validate each other, but are also used for identification of stress-induced changes in transcript levels, small regulatory RNAs, & in transcriptional start sites. Quantitative proteomic data (Lee group), collected using the iTRAQ technology, are essential for understanding of protein levels and turnover under stress and the various protein-protein interactions that orchestrate the stress response. Metabolic flux changes (Antoniewicz group) of core pathways, which provide important information on the re-allocation of energy and carbon resources under metabolite stress, were examined using 13C-labelled chemicals. Omics data are integrated at different levels and scales. At the metabolic-pathway level, omics data are integrated into a 2nd generation genome

  12. MicroRNA Regulation of Ionizing Radiation-Induced Premature Senescence

    SciTech Connect (OSTI)

    Wang Yong; Scheiber, Melissa N.; Neumann, Carola; Calin, George A.; Zhou Daohong

    2011-11-01

    Purpose: MicroRNAs (miRNAs) have emerged as critical regulators of many cellular pathways. Ionizing radiation (IR) exposure causes DNA damage and induces premature senescence. However, the role of miRNAs in IR-induced senescence has not been well defined. Thus, the purpose of this study was to identify and characterize senescence-associated miRNAs (SA-miRNAs) and to investigate the role of SA-miRNAs in IR-induced senescence. Methods and Materials: In human lung (WI-38) fibroblasts, premature senescence was induced either by IR or busulfan (BU) treatment, and replicative senescence was accomplished by serial passaging. MiRNA microarray were used to identify SA-miRNAs, and real-time reverse transcription (RT)-PCR validated the expression profiles of SA-miRNAs in various senescent cells. The role of SA-miRNAs in IR-induced senescence was characterized by knockdown of miRNA expression, using anti-miRNA oligonucleotides or by miRNA overexpression through the transfection of pre-miRNA mimics. Results: We identified eight SA-miRNAs, four of which were up-regulated (miR-152, -410, -431, and -493) and four which were down-regulated (miR-155, -20a, -25, and -15a), that are differentially expressed in both prematurely senescent (induced by IR or BU) and replicatively senescent WI-38 cells. Validation of the expression of these SA-miRNAs indicated that down-regulation of miR-155, -20a, -25, and -15a is a characteristic miRNA expression signature of cellular senescence. Functional analyses revealed that knockdown of miR-155 or miR-20a, but not miR-25 or miR-15a, markedly enhanced IR-induced senescence, whereas ectopic overexpression of miR-155 or miR-20a significantly inhibited senescence induction. Furthermore, our studies indicate that miR-155 modulates IR-induced senescence by acting downstream of the p53 and p38 mitogen-activated protein kinase (MAPK) pathways and in part via regulating tumor protein 53-induced nuclear protein 1 (TP53INP1) expression. Conclusion: Our

  13. Electrochemical Oxidation of H? Catalyzed by Ruthenium Hydride Complexes Bearing P?N? Ligands With Pendant Amines as Proton Relays

    SciTech Connect (OSTI)

    Liu, Tianbiao L.; Rakowski DuBois, Mary; DuBois, Daniel L.; Bullock, R. Morris

    2014-01-01

    Two Ru hydride complexes (Cp*Ru(PPh?NBn?)H, (1-H) and Cp*Ru(PtBu?NBn?)H, (2-H) supported by cyclic PR?NR'? ligands (Cp* = n?-C?Me?; 1,5-diaza-3,7-diphosphacyclooctane, where R = Ph or tBu and R' = Bn) have been synthesized and fully characterized. Both complexes are demonstrated to be electrocatalysts for oxidation of H? (1 atm, 22 C) in the presence of external base, DBU (1,8-diazabicyclo[5.4.0]undec-7-ene). The turnover frequency of 2-H is 1.2 s-1, with an overpotential at Ecat/2 of 0.45 V, while catalysis by 1-H has a turnover frequency of 0.6 s-1 and an overpotential of 0.6 V at Ecat/2. Addition of H?O facilitates oxidation of H? by 2-H and increases its turnover frequency to 1.9 s-1 while , H?O slows down the catalysis by 1-H. The different effects of H?O for 1-H and 2-H are ascribed to different binding affinities of H?O to the Ru center of the corresponding unsaturated species, [Cp*Ru(PPh?NBn?)]+ and [Cp*Ru(PPh?NBn?)]+. In addition, studies of Cp*Ru(dmpm)H (where dmpm = bis(dimethylphosphino)methane), a control complex lacking pendent amines in its diphosphine ligand, confirms the critical roles of the pendent amines of P?N? ligands for oxidation of H?. We thank the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, for supporting initial parts of the work. Current work is supported by the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  14. Photonics Research and Development

    SciTech Connect (OSTI)

    Pookpanratana, Sujitra; Shlayan, Neveen; Venkat, Rama; Das, Bisjwajit; Boehm, Bob; Heske, Clemens; Fraser, Donald; Moustakas, Theodore

    2010-01-15

    During the period August 2005 through October 2009, the UNLV Research Foundation (UNLVRF), a non-profit affiliate of the University of Nevada, Las Vegas (UNLV), in collaboration with UNLV’s Colleges of Science and Engineering; Boston University (BU); Oak Ridge National Laboratory (ORNL); and Sunlight Direct, LLC, has managed and conducted a diverse and comprehensive research and development program focused on light-emitting diode (LED) technologies that provide significantly improved characteristics for lighting and display applications. This final technical report provides detailed information on the nature of the tasks, the results of the research, and the deliverables. It is estimated that about five percent of the energy used in the nation is for lighting homes, buildings and streets, accounting for some 25 percent of the average home’s electric bill. However, the figure is significantly higher for the commercial sector. About 60 percent of the electricity for businesses is for lighting. Thus replacement of current lighting with solid-state lighting technology has the potential to significantly reduce this nation’s energy consumption – by some estimates, possibly as high as 20%. The primary objective of this multi-year R&D project has been to develop and advance lighting technologies to improve national energy conversion efficiencies; reduce heat load; and significantly lower the cost of conventional lighting technologies. The UNLVRF and its partners have specifically focused these talents on (1) improving LED technologies; (2) optimizing hybrid solar lighting, a technology which potentially offers the benefits of blending natural with artificial lighting systems, thus improving energy efficiency; and (3) building a comprehensive academic infrastructure within UNLV which concentrates on photonics R&D. Task researchers have reported impressive progress in (1) the development of quantum dot laser emitting diodes (QDLEDs) which will ultimately

  15. Development of a Novel Bi-Directional Isolated Multiple-Input DC-DC Converter

    SciTech Connect (OSTI)

    Li, H.

    2005-10-24

    There is vital need for a compact, lightweight, and efficient energy-storage system that is both affordable and has an acceptable cycle life for the large-scale production of electric vehicles (EVs) and hybrid electric vehicles (HEVs). Most of the current research employs a battery-storage unit (BU) combined with a fuel cell (FC) stack in order to achieve the operating voltage-current point of maximum efficiency for the FC system. A system block diagram is shown in Fig.1.1. In such a conventional arrangement, the battery is sized to deliver the difference between the energy required by the traction drive and the energy supplied by the FC system. Energy requirements can increase depending on the drive cycle over which the vehicle is expected to operate. Peak-power transients result in an increase of losses and elevated temperatures which result in a decrease in the lifetime of the battery. This research will propose a novel two-input direct current (dc) dc to dc converter to interface an additional energy-storage element, an ultracapacitor (UC), which is shown in Fig.1.2. It will assist the battery during transients to reduce the peak-power requirements of the battery.

  16. EsxB, a secreted protein from Bacillus anthracis forms two distinct helical bundles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fan, Yao; Tan, Kemin; Chhor, Gekleng; Butler, Emily K.; Jedrzejczak, Robert P.; Missiakas, Dominique; Joachimiak, Andrzej

    2015-07-03

    The EsxB protein from Bacillus anthracis belongs to the WXG100 family, a group of proteins secreted by a specialized secretion system. We have determined the crystal structures of recombinant EsxB and discovered that the small protein (~10 kDa), comprised of a helix-loop-helix (HLH) hairpin, is capable of associating into two different helical bundles. The two basic quaternary assemblies of EsxB are an antiparallel (AP) dimer and a rarely observed bisecting U (BU) dimer. This structural duality of EsxB is believed to originate from the heptad repeat sequence diversity of the first helix of its HLH hairpin, which allows for twomore » alternative helix packing. The flexibility of EsxB and the ability to form alternative helical bundles underscore the possibility that this protein can serve as an adaptor in secretion and can form hetero-oligomeric helix bundle(s) with other secreted members of the WXG100 family, such as EsxW. The highly conserved WXG motif is located within the loop of the HLH hairpin and is mostly buried within the helix bundle suggesting that its role is mainly structural. The exact functions of the motif, including a proposed role as a secretion signal, remain unknown.« less

  17. EsxB, a secreted protein from Bacillus anthracis forms two distinct helical bundles

    SciTech Connect (OSTI)

    Fan, Yao; Tan, Kemin; Chhor, Gekleng; Butler, Emily K.; Jedrzejczak, Robert P.; Missiakas, Dominique; Joachimiak, Andrzej

    2015-07-03

    The EsxB protein from Bacillus anthracis belongs to the WXG100 family, a group of proteins secreted by a specialized secretion system. We have determined the crystal structures of recombinant EsxB and discovered that the small protein (~10 kDa), comprised of a helix-loop-helix (HLH) hairpin, is capable of associating into two different helical bundles. The two basic quaternary assemblies of EsxB are an antiparallel (AP) dimer and a rarely observed bisecting U (BU) dimer. This structural duality of EsxB is believed to originate from the heptad repeat sequence diversity of the first helix of its HLH hairpin, which allows for two alternative helix packing. The flexibility of EsxB and the ability to form alternative helical bundles underscore the possibility that this protein can serve as an adaptor in secretion and can form hetero-oligomeric helix bundle(s) with other secreted members of the WXG100 family, such as EsxW. The highly conserved WXG motif is located within the loop of the HLH hairpin and is mostly buried within the helix bundle suggesting that its role is mainly structural. The exact functions of the motif, including a proposed role as a secretion signal, remain unknown.

  18. Pressure-dependent magnetism and electrical resistivity of UFe/sub 4/P/sub 12/

    SciTech Connect (OSTI)

    Guertin, R.P.; Rossel, C.; Torikachvili, M.S.; McElfresh, M.W.; Maple, M.B.; Bloom, S.H.; Yao, Y.S.; Kuric, M.V.; Meisner, G.P.

    1987-12-01

    UFe/sub 4/P/sub 12/ is the first reported uranium-based ferromagnetic semiconductor. The Curie temperature T/sub C/ is 3.15 K, and the spontaneous magnetic moment sigma/sub 0/ which at T = 1.14 K was found to be approx. =1.0 ..mu../sub B//(U atom), is associated entirely with the uranium ions. The electrical resistivity rho(T) increases by nearly 7 orders of magnitude as temperature is decreased from room temperature to 4.2 K. The behavior of the ferromagnetic and electrical properties of UFe/sub 4/P/sub 12/ in hydrostatic pressures up to 16 kbar is reported. Quasihydrostatic-pressure effects on rho(T) to 100 kbar are also reported. Although T/sub C/ increases sharply with increasing pressure at the rate dT/sub C//dP = 0.26 K/kbar (in contrast to similar data on the isomorphic ferromagnet NdFe/sub 4/P/sub 12/, where dT/sub C//dP = 0.03 K/kbar), sigma/sub 0/ decreases, (1/sigma/sub 0/)(dsigma/sub 0//dp) = -0.007 kbar/sup -1/. Hydrostatic and quasihydrostatic pressure have little effect on rho(T).

  19. Low-temperature CVD of iron, cobalt, and nickel nitride thin films from bis[di(tert-butyl)amido]metal(II) precursors and ammonia

    SciTech Connect (OSTI)

    Cloud, Andrew N.; Abelson, John R., E-mail: abelson@illinois.edu [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 201 Materials Science and Engineering Building, 1304 W. Green St., Urbana, Illinois 61801 (United States); Davis, Luke M.; Girolami, Gregory S., E-mail: girolami@scs.illinois.edu [School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801 (United States)

    2014-03-15

    Thin films of late transition metal nitrides (where the metal is iron, cobalt, or nickel) are grown by low-pressure metalorganic chemical vapor deposition from bis[di(tert-butyl)amido]metal(II) precursors and ammonia. These metal nitrides are known to have useful mechanical and magnetic properties, but there are few thin film growth techniques to produce them based on a single precursor family. The authors report the deposition of metal nitride thin films below 300?C from three recently synthesized M[N(t-Bu){sub 2}]{sub 2} precursors, where M?=?Fe, Co, and Ni, with growth onset as low as room temperature. Metal-rich phases are obtained with constant nitrogen content from growth onset to 200?C over a range of feedstock partial pressures. Carbon contamination in the films is minimal for iron and cobalt nitride, but similar to the nitrogen concentration for nickel nitride. X-ray photoelectron spectroscopy indicates that the incorporated nitrogen is present as metal nitride, even for films grown at the reaction onset temperature. Deposition rates of up to 18?nm/min are observed. The film morphologies, growth rates, and compositions are consistent with a gas-phase transamination reaction that produces precursor species with high sticking coefficients and low surface mobilities.

  20. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    SciTech Connect (OSTI)

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin

    2010-07-01

    Romania safely air shipped 23.7 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel from the VVR S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world’s first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment.

  1. 3H Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3H(α, X) (Current as of 02/01/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 2001TO07 3H(α, γ): deduced S-factor Ecm = 0.05 - 0.8 X4 01/09/2012 1994BR25 3H(α, γ): deduced σ and S-factor Ecm = 50 - 1200 keV X4 01/09/2012 1987SC18 3H(α, γ): σ, deduced S-factor Ecm = 79 - 464 keV X4 01/09/2012 1988SA13 3H(α, α): recoil σ 0.5 - 2.5 X4 01/09/2012 1987BU18 3H(α, γ): σ and S-factor 0.7 - 2 X4 01/09/2012 1968IV01 3H(α, α): elastic scattering σ 3 - 11 Table 9 X4

  2. The effect of alkali metal on the surface properties of potassium doped Au-Beta zeolites

    SciTech Connect (OSTI)

    Sobczak, Izabela; Rydz, Michal; Ziolek, Maria

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Interaction of gold with K leads to the change of electronic state and redox properties of gold. ► The amount of potassium incorporated into Au-zeolites determines the size of gold particles. ► K(0.2 wt.%)/Au-Beta exhibits the best performance in decomposition of N{sub 2}O and removal of Bu{sub 2}S. -- Abstract: Beta zeolite was applied as support for gold introduced by gold-precipitation method and potassium added by impregnation or adsorption. The effect of zeolite composition and the amount of potassium introduced on the surface properties of the final materials was considered. Moreover, the interaction of gold and potassium species was found to be related to the adsorptive and catalytic behaviour of zeolites in NO reduction with propene and deodorization. K/Au-Beta(Impregnated) exhibits the best performance in the above mentioned processes because of the small gold particles (between 2 and 5 nm) and interaction of gold with potassium species leading to the change of electronic properties of the surface (the appearance of cationic gold species). Potassium added as a promoter improves the catalytic properties of Au-zeolite in N{sub 2}O decomposition and also in deodorization (increase of the ability to dibutyl sulphide oxidation). The catalysts prepared were characterized by XRD, XPS, UV–vis, TEM, pyridine adsorption combined with FTIR and test reaction (2-propanol transformation).

  3. Iron Complexes for the Electrocatalytic Oxidation of Hydrogen: Tuning Primary and Secondary Coordination Spheres

    SciTech Connect (OSTI)

    Darmon, Jonathan M.; Raugei, Simone; Liu, Tianbiao L.; Hulley, Elliott B.; Weiss, Charles J.; Bullock, R. Morris; Helm, Monte L.

    2014-04-04

    A series of iron hydride complexes featuring PRNR'PR (PRNR'PR = R2PCH2N(R')CH2PR2 where R = Ph, R' = Me; R = Et, R' = Ph, Bn, Me, tBu) and cyclopentadienyl (CpX = C5H4X where X = H, C5F4N) ligands has been synthesized, characterized by NMR spectroscopy, X-ray diffraction and cyclic voltammetry, and examined by quantum chemistry calculations. Each compound was tested for the electrocatalytic oxidation of H2 and the most active complex, (CpC5F4N)Fe(PEtNMePEt)(H), exhibited a turnover frequency of 8.6 s-1 at 1 atm of H2 with an overpotential of 0.41 V, as measured from the half peak potential of the catalytic wave. Control complexes that do not contain pendant amine groups were also prepared and characterized, but no catalysis was observed. This work demonstrates the importance of the pendant amine in facilitating heterolytic H2 cleavage and subsequent proton movement necessary for electrocatalytic H2 oxidation. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  4. Electrochemistry in neutral ambient-temperature ionic liquids. 1. Studies of iron (III), neodymium (III), and lithium(I)

    SciTech Connect (OSTI)

    Osteryoung, R.A.

    1985-01-01

    An ambient-temperature neutral ionic liquid composed of aluminum chloride and either N-1-butylpyridinium or 1-methyl-3-ethylimidazolium chloride, BuPyCl or ImCl, respectively, was employed in studies that take advantage of their unusual properties. These include an extended electrochemical window, readily controlled additions of excess chloride (base) or aluminum chloride (acid), and the fact that the physical properties of the neutral melt do not change about the 1:1 mole ratio of AlCl/sub 3/ to RCl. Li/sup +/ was found to be reducible in the neutral AlCl/sub 3/-ImCl melt, and its diffusion coefficient was found to be .00000086 sq cm/s. The stoichiometry of the complex formed between Nd(III) and Cl/sup +/ in the molten salt system was investigated by what is essentially an amperometric titration and was found to be NdC/sub 6/(3-). The structure of the Fe(III) chloro complex that exists in basic or acidic melts just slightly varying in composition from the neutral melt was also investigated; a constant value for the diffusion coefficient-viscosity product in both systems suggests no change in structure.

  5. Efficient alkene epoxidation catalyzed by molybdenyl acetylacetonate supported on aminated UiO-66 metal−organic framework

    SciTech Connect (OSTI)

    Kardanpour, Reihaneh; Tangestaninejad, Shahram; Mirkhani, Valiollah; Moghadam, Majid; Mohammadpoor-Baltork, Iraj; Zadehahmadi, Farnaz

    2015-03-15

    Metal–organic frameworks (MOFs) containing Mo Schiff base complexes were prepared by post-synthesis method and applied as efficient catalysts in the epoxidation of alkenes with tert-BuOOH. In this manner, UiO-66-NH{sub 2} (UiO=University of Oslo) MOF was reacted with salicylaldehyde and thiophene-2-carbaldehyde to produce bidentate Schiff bases. Then, the Schiff base ligands were used for immobilization of molybdenyl acetylacetonate. These new catalysts were characterized by FT-IR, UV–vis spectroscopic techniques, X-ray diffraction (XRD), BET, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and field emission scanning electron microscopy (FE-SEM). These catalytic systems showed excellent activity in the epoxidation of alkenes such as cyclic and linear ones with tert-butyl hydroperoxide (TBHP) in 1,2-dichloroethane, and reused several times without any appreciable loss of their activity. - Graphical abstract: Efficient alkene epoxidation with TBHP catalyzed by heterogeneous and reusable molybdenum base catalysts is reported. - Highlights: • UiO-66-NH{sub 2} was modified with salicylaldehyde and thiophene-2-carbaldehyde. • The Schiff base groups were used for immobilization of MoO{sub 2}(acac){sub 2}. • The heterogeneous catalysts were prepared. • The prepared catalysts were used for epoxidation of alkenes. • Compared to other catalyst, our catalysts were more efficient and forceful.

  6. Alkane functionalization at ([mu]-Oxo)diiron(III) centers

    SciTech Connect (OSTI)

    Leising, R.A.; Kim, J.; Perez, M.A.; Que, L. Jr. )

    1993-10-20

    The reactivity of ([mu]-oxo)diferric complexes with [sup t]BuOOH (TBHP) for the functionalization of alkanes in CH[sub 3]CN has been investigated as part of our efforts to model dinuclear sites in nonheme iron enzymes. [Fe[sub 2](TPA)[sub 2]O(OAc)](CIO[sub 4])[sub 3] (1) (TPA = tris(2-pyridylmethyl)amine, OAc = acetate) is an efficient catalyst for cyclohexane oxidation, affording cyclohexanol (A, 9 equiv), cyclohexanone (K, 11 equiv), and (tert-butylperoxy)cyclohexane (P, 16 equiv) in 0.25 h at ambient temperature and pressure under an argon atmosphere. The catalyst is remarkably robust, as indicated by the [sup 1]H NMR and UV-vis spectra of the reaction mixture during the catalytic reaction and by its ability to maintain its turnover efficiency with subsequent additions of oxidant. The catalytic mechanism for TBHP utilization was explored by observing the effects of varying the tripodal ligands on the ([mu]-oxo)([mu]-carboxylato)diferric catalysts and varying the bridge on Fe[sub 2]O(TPA)[sub 2] catalysts. The (A + K)/P ratio increased as the ligands became more electron donating. Solvent also played an important role in determining the partitioning of products between A + K and P, with benzonitrile favoring hydroxylated products at the expense of P and pyridine having the opposite effect. 49 refs., 2 figs., 3 tabs.

  7. XAS/EXAFS studies of Ge nanoparticles produced by reaction between Mg{sub 2}Ge and GeCl{sub 4}

    SciTech Connect (OSTI)

    Pugsley, Andrew J.; Bull, Craig L.; Sella, Andrea; Sankar, Gopinathan; McMillan, Paul F.

    2011-09-15

    We present results of an XAS and EXAFS study of the synthesis of Ge nanoparticles formed by a metathesis reaction between Mg{sub 2}Ge and GeCl{sub 4} in diglyme (diethylene glycol dimethyl ether). The progress of the formation reaction and the products formed at various stages in the processing was characterised by TEM and optical spectroscopy as well as in situ XAS/EXAFS studies using specially designed reaction cells. - Graphical abstract: Nano-Ge particles 2-10 nm in diameter were prepared by reaction between Mg{sub 2}Ge Zintl phase and GeCl{sub 4} in diglyme followed by capping with BuLi and extraction into hexane. We used synchrotron X-ray absorption spectroscopy (XAS) at the Ge K edge with analysis of the EXAFS region combined with room temperature photoluminescence and TEM to characterise the nature of the nanoparticles and model compounds and to follow the course of the reaction. A TEM image of the germanium nanoparticles is shown. Highlights: > In situ characteristaion of germanium nanoparticles. > X-ray spectroscopic technique development. > Improving quality of nanoparticles grown by metathesis route.

  8. Electrodeposition From Acidic Solutions of Nickel Bis(benzenedithiolate) Produces a Hydrogen-Evolving Ni-S Film on Glassy Carbon

    SciTech Connect (OSTI)

    Fang, Ming; Engelhard, Mark H.; Zhu, Zihua; Helm, Monte L.; Roberts, John A.

    2014-01-03

    Films electrodeposited onto glassy carbon electrodes from acidic acetonitrile solutions of [Bu4N][Ni(bdt)2] (bdt = 1,2-benzenedithiolate) are active toward electrocatalytic hydrogen production at potentials 0.2-0.4 V positive of untreated electrodes. This activity is preserved on rinsing the electrode and transfer to fresh acid solution. X-ray photoelectron spectra indicate that the deposited material contains Ni and S. Correlations between voltammetric and spectroscopic results indicate that the deposited material is active, i.e. that catalysis is heterogeneous rather than homogeneous. Control experiments establish that obtaining the observed catalytic response requires both Ni and the 1,2 benzenedithiolate ligand to be present during deposition. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. A portion of the research was performed using EMSL, a 17 national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  9. A=6Li (66LA04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    66LA04) (See Energy Level Diagrams for 6Li) GENERAL: See Table 6.4 [Table of Energy Levels] (in PDF or PS). See also (AU55, LA55, ME56, FR57, HU57D, LE57F, PI58, BA59K, BR59M, FE59E, SK59, UB59, AN60, JA60G, KO60E, PH60A, TA60L, WA60F, BA61N, KO61A, SH61B, TA61G, VA61, CO62B, CR62A, DI62B, FO62E, GA62C, IN62, IN62A, IN62B, JA62, ME62A, NA62C, SA62C, ST62B, WA62H, BO63B, BU63D, DA63D, EL63D, HA63K, JA63C, JO63B, KL63, KU63B, KU63I, MO63C, OL63B, SA63K, SC63E, SC63I, VL63A, WA63, GR64C, JI64,

  10. 17O Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 05/15/2012) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2010SE11 17O(p, α): nuclear excitation function 0 - 0.7 1 06/22/2011 1973RO03 17O(p, γ): γ-ray yield 0.15 - 1.4 1 08/01/2012 2015BU02 17O(p, γ): total S(E)-factors 0.17 - 0.53 X4 03/03/2016 2012SC16, 2014DI01 17O(p, γ): σ, deduced S-factors Ecm = 0.2 - 0.4 X4 03/03/2016 1973RO34 17O(p, γ): S(E) 0.3 - 1.9 S-Factor X4 06/22/2011 17O(p, γ): σ for the γ-ray transition 0.94 → 0 MeV 17O(p, γ):

  11. A faux hawk fullerene with PCBM-like properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    San, Long K.; Bukovsky, Eric V.; Larson, Bryon W.; Whitaker, James B.; Deng, S. H.M.; Kopidakis, Nikos; Rumbles, Garry; Popov, Alexey A.; Chen, Yu-Sheng; Wang, Xue-Bin; et al

    2014-12-16

    Reaction of C60, C6F5CF2I, and SnH(n-Bu)3 produced, among other unidentified fullerene derivatives, the two new compounds 1,9-C60(CF2C6F5)H (1) and 1,9-C60(cyclo-CF2(2-C6F4)) (2). The highest isolated yield of 1 was 35% based on C60. Depending on the reaction conditions, the relative amounts of 1 and 2 generated in situ were as high as 85% and 71%, respectively, based on HPLC peak integration and summing over all fullerene species present other than unreacted C60. Compound 1 is thermally stable in 1,2-dichlorobenzene (oDCB) at 160 °C but was rapidly converted to 2 upon addition of Sn2(n-Bu)6 at this temperature. In contrast, complete conversion ofmore » 1 to 2 occurred within minutes, or hours, at 25 °C in 90/10 (v/v) PhCN/C6D6 by addition of stoichiometric, or sub-stoichiometric, amounts of proton sponge (PS) or cobaltocene (CoCp2). DFT calculations indicate that when 1 is deprotonated, the anion C60(CF2C6F5)- can undergo facile intramolecular SNAr annulation to form 2 with concomitant loss of F-. To our knowledge this is the first observation of a fullerene-cage carbanion acting as an SNAr nucleophile towards an aromatic C–F bond. The gas-phase electron affinity (EA) of 2 was determined to be 2.805(10) eV by low-temperature PES, higher by 0.12(1) eV than the EA of C60 and higher by 0.18(1) eV than the EA of phenyl-C61-butyric acid methyl ester (PCBM). In contrast, the relative E1/2(0/-) values of 2 and C60, -0.01(1) and 0.00(1) V, respectively, are virtually the same (on this scale, and under the same conditions, the E1/2(0/-) of PCBM is -0.09 V). Time-resolved microwave conductivity charge-carrier yield × mobility values for organic photovoltaic active-layer-type blends of 2 and poly-3-hexylthiophene (P3HT) were comparable to those for equimolar blends of PCBM and P3HT. The structure of solvent-free crystals of 2 was determined by single-crystal X-ray diffraction. The number of nearest-neighbor fullerene–fullerene interactions with centroid

  12. LANDSCAPE MANAGEMENT FOR SUSTAINABLE SUPPLIES OF BIOENERGY FEEDSTOCK AND ENHANCED SOIL QUALITY

    SciTech Connect (OSTI)

    Douglas L. Karlen; David J. Muth, Jr.

    2012-09-01

    yields are less than 11 Mg ha-1 (175 bu ac-1) unless more intensive landscape management practices are implemented. Furthermore, although non-irrigated corn grain yields east and west of the primary Corn Belt may not consistently achieve the 11 Mg ha-1 yield levels, corn can still be part of an overall landscape approach for sustainable feedstock production. Another option for producers with consistently high yields (> 12.6 Mg ha-1 or 200 bu ac-1) that may enable them to sustainably harvest even more stover is to decrease their tillage intensity which will reduce fuel use, preserve rhizosphere carbon, and/or help maintain soil structure and soil quality benefits often attributed to no-till production systems. In conclusion, I challenge all ISTRO scientists to critically ask if your research is contributing to improved soil and crop management strategies that effectively address the complexity associated with sustainable food, feed, fiber and fuel production throughout the world.

  13. A faux hawk fullerene with PCBM-like properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    San, Long K.; Bukovsky, Eric V.; Larson, Bryon W.; Whitaker, James B.; Deng, Shihu; Kopidakis, Nikos; Rumbles, Garry; Popov, Alexey A.; Chen, Yu-Sheng; Wang, Xue B.; et al

    2014-12-16

    Reaction of C60, C6F5CF2I, and SnH(n-Bu)3 produced, among other unidentified fullerene derivatives, the two new compounds 1,9-C60(CF2C6F5)H (1) and 1,9-C60(cyclo-CF2(2-C6F4)) (2). The highest isolated yield of 1 was 35% based on C60. Depending on the reaction conditions, the relative amounts of 1 and 2 generated in situ were as high as 85% and 71%, respectively, based on HPLC peak integration and summing over all fullerene species present other than unreacted C60. Compound 1 is thermally stable in 1,2-dichlorobenzene (oDCB) at 160 °C but was rapidly converted to 2 upon addition of Sn2(n-Bu)6 at this temperature. In contrast, complete conversion ofmore » 1 to 2 occurred within minutes, or hours, at 25 °C in 90/10 (v/v) PhCN/C6D6 by addition of stoichiometric, or sub-stoichiometric, amounts of proton sponge (PS) or cobaltocene (CoCp2). DFT calculations indicate that when 1 is deprotonated, the anion C60(CF2C6F5)- can undergo facile intramolecular SNAr annulation to form 2 with concomitant loss of F-. To our knowledge this is the first observation of a fullerene-cage carbanion acting as an SNAr nucleophile towards an aromatic C–F bond. The gas-phase electron affinity (EA) of 2 was determined to be 2.805(10) eV by low-temperature PES, higher by 0.12(1) eV than the EA of C60 and higher by 0.18(1) eV than the EA of phenyl-C61-butyric acid methyl ester (PCBM). In contrast, the relative E1/2(0/-) values of 2 and C60, -0.01(1) and 0.00(1) V, respectively, are virtually the same (on this scale, and under the same conditions, the E1/2(0/-) of PCBM is -0.09 V). Time-resolved microwave conductivity charge-carrier yield x mobility values for organic photovoltaic active-layer-type blends of 2 and poly-3-hexylthiophene (P3HT) were comparable to those for equimolar blends of PCBM and P3HT. The structure of solvent-free crystals of 2 was determined by single-crystal X-ray diffraction. The number of nearest-neighbor fullerene–fullerene interactions with centroid

  14. A faux hawk fullerene with PCBM-like properties

    SciTech Connect (OSTI)

    San, Long K.; Bukovsky, Eric V.; Larson, Bryon W.; Whitaker, James B.; Deng, Shihu; Kopidakis, Nikos; Rumbles, Garry; Popov, Alexey A.; Chen, Yu-Sheng; Wang, Xue B.; Boltalina, Olga V.; Strauss, Steven H.

    2014-12-16

    Reaction of C60, C6F5CF2I, and SnH(n-Bu)3 produced, among other unidentified fullerene derivatives, the two new compounds 1,9-C60(CF2C6F5)H (1) and 1,9-C60(cyclo-CF2(2-C6F4)) (2). The highest isolated yield of 1 was 35% based on C60. Depending on the reaction conditions, the relative amounts of 1 and 2 generated in situ were as high as 85% and 71%, respectively, based on HPLC peak integration and summing over all fullerene species present other than unreacted C60. Compound 1 is thermally stable in 1,2-dichlorobenzene (oDCB) at 160 °C but was rapidly converted to 2 upon addition of Sn2(n-Bu)6 at this temperature. In contrast, complete conversion of 1 to 2 occurred within minutes, or hours, at 25 °C in 90/10 (v/v) PhCN/C6D6 by addition of stoichiometric, or sub-stoichiometric, amounts of proton sponge (PS) or cobaltocene (CoCp2). DFT calculations indicate that when 1 is deprotonated, the anion C60(CF2C6F5)- can undergo facile intramolecular SNAr annulation to form 2 with concomitant loss of F-. To our knowledge this is the first observation of a fullerene-cage carbanion acting as an SNAr nucleophile towards an aromatic C–F bond. The gas-phase electron affinity (EA) of 2 was determined to be 2.805(10) eV by low-temperature PES, higher by 0.12(1) eV than the EA of C60 and higher by 0.18(1) eV than the EA of phenyl-C61-butyric acid methyl ester (PCBM). In contrast, the relative E1/2(0/-) values of 2 and C60, -0.01(1) and 0.00(1) V, respectively, are virtually the same (on this scale, and under the same conditions, the E1/2(0/-) of PCBM is -0.09 V). Time-resolved microwave conductivity charge-carrier yield x mobility values for organic

  15. A faux hawk fullerene with PCBM-like properties

    SciTech Connect (OSTI)

    San, Long K.; Bukovsky, Eric V.; Larson, Bryon W.; Whitaker, James B.; Deng, S. H.M.; Kopidakis, Nikos; Rumbles, Garry; Popov, Alexey A.; Chen, Yu-Sheng; Wang, Xue-Bin; Boltalina, Olga V.; Strauss, Steven H.

    2014-12-16

    Reaction of C60, C6F5CF2I, and SnH(n-Bu)3 produced, among other unidentified fullerene derivatives, the two new compounds 1,9-C60(CF2C6F5)H (1) and 1,9-C60(cyclo-CF2(2-C6F4)) (2). The highest isolated yield of 1 was 35% based on C60. Depending on the reaction conditions, the relative amounts of 1 and 2 generated in situ were as high as 85% and 71%, respectively, based on HPLC peak integration and summing over all fullerene species present other than unreacted C60. Compound 1 is thermally stable in 1,2-dichlorobenzene (oDCB) at 160 °C but was rapidly converted to 2 upon addition of Sn2(n-Bu)6 at this temperature. In contrast, complete conversion of 1 to 2 occurred within minutes, or hours, at 25 °C in 90/10 (v/v) PhCN/C6D6 by addition of stoichiometric, or sub-stoichiometric, amounts of proton sponge (PS) or cobaltocene (CoCp2). DFT calculations indicate that when 1 is deprotonated, the anion C60(CF2C6F5)- can undergo facile intramolecular SNAr annulation to form 2 with concomitant loss of F-. To our knowledge this is the first observation of a fullerene-cage carbanion acting as an SNAr nucleophile towards an aromatic C–F bond. The gas-phase electron affinity (EA) of 2 was determined to be 2.805(10) eV by low-temperature PES, higher by 0.12(1) eV than the EA of C60 and higher by 0.18(1) eV than the EA of phenyl-C61-butyric acid methyl ester (PCBM). In contrast, the relative E1/2(0/-) values of 2 and C60, -0.01(1) and 0.00(1) V, respectively, are virtually the same (on this scale, and under the same conditions, the E1/2(0/-) of PCBM is -0.09 V). Time-resolved microwave conductivity charge-carrier yield × mobility values for organic photovoltaic active-layer-type blends

  16. A primer for criticality calculations with DANTSYS

    SciTech Connect (OSTI)

    Busch, R.D.

    1997-08-01

    With the closure of many experimental facilities, the nuclear safety analyst has to rely on computer calculations to identify safe limits for the handling and storage of fissile materials. Although deterministic methods often do not provide exact models of a system, a substantial amount of reliable information on nuclear systems can be obtained using these methods if the user understands their limitations. To guide criticality specialists in this area, the Nuclear Criticality Safety Group at the University of New Mexico (UNM) in cooperation with the Radiation Transport Group at Los Alamos National Laboratory (LANL) has designed a primer to help the analyst understand and use the DANTSYS deterministic transport code for nuclear criticality safety analyses. DANTSYS is the new name of the group of codes formerly known as: ONEDANT, TWODANT, TWOHEX, TWOGQ, and THREEDANT. The primer is designed to teach bu example, with each example illustrating two or three DANTSYS features useful in criticality analyses. Starting with a Quickstart chapter, the primer gives an overview of the basic requirements for DANTSYS input and allows the user to quickly run a simple criticality problem with DANTSYS. Each chapter has a list of basic objectives at the beginning identifying the goal of the chapter and the individual DANTSYS features covered in detail in the chapter example problems. On completion of the primer, it is expected that the user will be comfortable doing criticality calculations with DANTSYS and can handle 60--80% of the situations that normally arise in a facility. The primary provides a set of input files that can be selective modified by the user to fit each particular problem.

  17. De novo synthesis and properties of analogues of the self-assembling chlorosomal bacteriochlorophylls

    SciTech Connect (OSTI)

    Mass, Olga [North Carolina State Univ., Raleigh, NC (United States); Pandithavidana, Dinesh R. [North Carolina State Univ., Raleigh, NC (United States); Ptaszek, Marcin [North Carolina State Univ., Raleigh, NC (United States); Santiago, Koraliz [North Carolina State Univ., Raleigh, NC (United States); Springer, Joseph W. [Washington Univ., St. Louis, MO (United States); Jiao, Jieying [Univ. Of California, Riverside, CA (United States); Tang, Qun [Univ. Of California, Riverside, CA (United States); Kirmaier, Christine [Washington Univ., St. Louis, MO (United States); Bocian, David F. [Univ. Of California, Riverside, CA (United States); Holten, Dewey [Washington Univ., St. Louis, MO (United States); Lindsey, Jonathan S. [North Carolina State Univ., Raleigh, NC (United States)

    2011-01-01

    Natural photosynthetic pigments bacteriochlorophyllsc, d and e in green bacteria undergo self-assembly to create an organized antenna system known as the chlorosome, which collects photons and funnels the resulting excitation energy toward the reaction centers. Mimicry of chlorosome function is a central problem in supramolecular chemistry and artificial photosynthesis, and may have relevance for the design of photosynthesis-inspired solar cells. The main challenge in preparing artificial chlorosomes remains the synthesis of the appropriate pigment (chlorin) equipped with a set of functional groups suitable to direct the assembly and assure efficient energy transfer. Prior approaches have entailed derivatization of porphyrins or semisynthesis beginning with chlorophylls. This paper reports a third approach, the de novo synthesis of macrocycles that contain the same hydrocarbon skeleton as chlorosomal bacteriochlorophylls. The synthesis here of Zn(II) 3-(1-hydroxyethyl)-10-aryl-13-oxophorbines (the aryl group consists of phenyl, mesityl, or pentafluorophenyl) entails selective bromination of a 3,13-diacetyl-10-arylchlorin, palladium-catalyzed 13-oxophorbine formation, and selective reduction of the 3-acetyl group using BH?tBuNH?. Each macrocycle contains a geminal dimethyl group in the pyrroline ring to provide stability toward adventitious dehydrogenation. A Zn(II) 7-(1-hydroxyethyl)-10-phenyl-17-oxochlorin also has been prepared. Altogether, 30 new hydroporphyrins were synthesized. The UV-Vis absorption spectra of the new chlorosomal bacteriochlorophyll mimics reveal a bathochromic shift of [similar]1800 cm-1 of the Qy band in nonpolar solvent, indicating extensive assembly in solution. The Zn(II) 3-(1-hydroxyethyl)-10-aryl-13-oxophorbines differ in the propensity to form assemblies based on the 10-substituent in the following order: mesityl

  18. Air Shipment of Spent Nuclear Fuel from Romania to Russia

    SciTech Connect (OSTI)

    Igor Bolshinsky; Ken Allen; Lucian Biro; Alexander Buchelnikov

    2010-10-01

    Romania successfully completed the world’s first air shipment of spent nuclear fuel transported in Type B(U) casks under existing international laws and without shipment license special exceptions when the last Romanian highly enriched uranium (HEU) spent nuclear fuel was transported to the Russian Federation in June 2009. This air shipment required the design, fabrication, and licensing of special 20 foot freight containers and cask tiedown supports to transport the eighteen TUK 19 shipping casks on a Russian commercial cargo aircraft. The new equipment was certified for transport by road, rail, water, and air to provide multi modal transport capabilities for shipping research reactor spent fuel. The equipment design, safety analyses, and fabrication were performed in the Russian Federation and transport licenses were issued by both the Russian and Romanian regulatory authorities. The spent fuel was transported by truck from the VVR S research reactor to the Bucharest airport, flown by commercial cargo aircraft to the airport at Yekaterinburg, Russia, and then transported by truck to the final destination in a secure nuclear facility at Chelyabinsk, Russia. This shipment of 23.7 kg of HEU was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in close cooperation with the Rosatom State Atomic Energy Corporation and the International Atomic Energy Agency, and was managed in Romania by the National Commission for Nuclear Activities Control (CNCAN). This paper describes the planning, shipment preparations, equipment design, and license approvals that resulted in the safe and secure air shipment of this spent nuclear fuel.

  19. AIR SHIPMENT OF HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL FROM ROMANIA AND LIBYA

    SciTech Connect (OSTI)

    Christopher Landers; Igor Bolshinsky; Ken Allen; Stanley Moses

    2010-07-01

    In June 2009 Romania successfully completed the world’s first air shipment of highly enriched uranium (HEU) spent nuclear fuel transported in Type B(U) casks under existing international laws and without special exceptions for the air transport licenses. Special 20-foot ISO shipping containers and cask tiedown supports were designed to transport Russian TUK 19 shipping casks for the Romanian air shipment and the equipment was certified for all modes of transport, including road, rail, water, and air. In December 2009 Libya successfully used this same equipment for a second air shipment of HEU spent nuclear fuel. Both spent fuel shipments were transported by truck from the originating nuclear facilities to nearby commercial airports, were flown by commercial cargo aircraft to a commercial airport in Yekaterinburg, Russia, and then transported by truck to their final destinations at the Production Association Mayak facility in Chelyabinsk, Russia. Both air shipments were performed under the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI). The Romania air shipment of 23.7 kg of HEU spent fuel from the VVR S research reactor was the last of three HEU fresh and spent fuel shipments under RRRFR that resulted in Romania becoming the 3rd RRRFR participating country to remove all HEU. Libya had previously completed two RRRFR shipments of HEU fresh fuel so the 5.2 kg of HEU spent fuel air shipped from the IRT 1 research reactor in December made Libya the 4th RRRFR participating country to remove all HEU. This paper describes the equipment, preparations, and license approvals required to safely and securely complete these two air shipments of spent nuclear fuel.

  20. Highly alloyed stainless steels for sea water applications

    SciTech Connect (OSTI)

    Audouard, J.P.; Verneau, M.

    1996-10-01

    Natural sea water is known as a very aggressive environment which generates pitting and crevice corrosion on stainless steels. High chromium grades with sufficient molybdenum and nitrogen additions (PREN > 40) are generally recognized as resistant materials in natural sea water bu the material selection criteria must be improved to take into account the effect of climatic conditions and of biocide treatments which are widely used as anti-fouling agents in sea water circuits. The paper deals with the localized corrosion properties of conventional stainless steels (SS), duplex and superaustenitic alloys. The results of laboratory investigations conducted in more or less oxidizing chloride containing media are discussed. Then, immersion tests carried out in natural sea waters in different climatic conditions are presented and discussed. Finally, the effect of biocide addition on fouling and its consequences on corrosion is investigated. The results are interpreted taking into account the chemical composition of the stainless steels and biofilm criteria. The results showed the Mediterranean Sea to be slightly more aggressive than other European seas but a PREN value higher than 40 is sufficient for stainless steels to withstand localized corrosion in European natural sea waters. A residual chlorine level around 0.3--0.4 ppm was found to be very effective to limit the fouling and to avoid localized corrosion on SS. Nevertheless, due to difficulties in monitoring chlorine addition, PREN values higher than 50 are recommended to withstand localized corrosion in treated sea waters. As an example, the new super-austenitic grade 25Cr-22Ni-5.8Mo-1.5Cu-2W-0.45N with a PRENW value of 54 was found to be perfectly resistant to crevice corrosion with 0.5 ppm free chlorine at ambient temperature.

  1. Organometallic complexes of bulky, optically active, C3-symmetric tris(4S-isopropyl-5,5-dimethyl-2-oxazolinyl)phenylborate (ToP*)

    SciTech Connect (OSTI)

    Xu, Songchen; Magoon, Yitzhak; Reinig, Regina R.; Schmidt, Bradley M.; Ellern, Arkady; Sadow, Aaron D.

    2015-07-16

    A bulky, optically active monoanionic scorpionate ligand, tris(4S-isopropyl-5,5-dimethyl-2-oxazolinyl)phenylborate (ToP*), is synthesized from the naturally occurring amino acid l-valine as its lithium salt, Li[ToP*] (1). That compound is readily converted to the thallium complex Tl[ToP*] (2) and to the acid derivative H[ToP*] (3). Group 7 tricarbonyl complexes ToP*M(CO)3 (M = Mn (4), Re (5)) are synthesized by the reaction of MBr(CO)5 and Li[ToP*] and are crystallographically characterized. The νCO bands in their infrared spectra indicate that π back-donation in the rhenium compounds is greater with ToP* than with non-methylated tris(4S-isopropyl-2-oxazolinyl)phenylborate (ToP). The reaction of H[ToP*] and ZnEt2 gives ToP*ZnEt (6), while ToP*ZnCl (7) is synthesized from Li[ToP*] and ZnCl2. The reaction of ToP*ZnCl and KOtBu followed by addition of PhSiH3 provides the zinc hydride complex ToP*ZnH (8). In this study, compound 8 is the first example of a crystallographically characterized optically active zinc hydride. We tested its catalytic reactivity in the cross-dehydrocoupling of silanes and alcohols, which provided Si-chiral silanes with moderate enantioselectivity.

  2. Organometallic complexes of bulky, optically active, C3-symmetric tris(4S-isopropyl-5,5-dimethyl-2-oxazolinyl)phenylborate (ToP*)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Songchen; Magoon, Yitzhak; Reinig, Regina R.; Schmidt, Bradley M.; Ellern, Arkady; Sadow, Aaron D.

    2015-07-16

    A bulky, optically active monoanionic scorpionate ligand, tris(4S-isopropyl-5,5-dimethyl-2-oxazolinyl)phenylborate (ToP*), is synthesized from the naturally occurring amino acid l-valine as its lithium salt, Li[ToP*] (1). That compound is readily converted to the thallium complex Tl[ToP*] (2) and to the acid derivative H[ToP*] (3). Group 7 tricarbonyl complexes ToP*M(CO)3 (M = Mn (4), Re (5)) are synthesized by the reaction of MBr(CO)5 and Li[ToP*] and are crystallographically characterized. The νCO bands in their infrared spectra indicate that π back-donation in the rhenium compounds is greater with ToP* than with non-methylated tris(4S-isopropyl-2-oxazolinyl)phenylborate (ToP). The reaction of H[ToP*] and ZnEt2 gives ToP*ZnEt (6), whilemore » ToP*ZnCl (7) is synthesized from Li[ToP*] and ZnCl2. The reaction of ToP*ZnCl and KOtBu followed by addition of PhSiH3 provides the zinc hydride complex ToP*ZnH (8). In this study, compound 8 is the first example of a crystallographically characterized optically active zinc hydride. We tested its catalytic reactivity in the cross-dehydrocoupling of silanes and alcohols, which provided Si-chiral silanes with moderate enantioselectivity.« less

  3. Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends

    SciTech Connect (OSTI)

    Storey, John Morse; Lewis Sr, Samuel Arthur; Szybist, James P; Thomas, John F; Barone, Teresa L; Eibl, Mary A; Nafziger, Eric J; Kaul, Brian C

    2014-01-01

    Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.

  4. Synthesis and structural characterization of [eta superscript 3]-allyl([alpha]-diimine)nickel(II) complexes bearing trimethylsilyl groups

    SciTech Connect (OSTI)

    Ionkin, Alex S.; Marshall, William J.

    2012-02-10

    A set of isomeric para- and meta-trimethylsilylphenyl ortho-substituted N,N-phenyl {alpha}-diimine ligands [(Ar-N C(Me)-(Me)C N-Ar) Ar=2,6-di(4-trimethylsilylphenyl)phenyl (16); Ar=2,6-di(3-trimethylsilylphenyl)phenyl (17)] have been synthesized through a two-step procedure. The palladium-catalyzed cross-coupling reaction between 2,6-dibromophenylamine (7) and 4-trimethylsilylphenylboronic acid (8), 3-trimethylsilylphenylboronic acid (9) was used to prepare 4,4-bis(trimethylsilyl)-[1,1;3,1]terphenyl-2-ylamine (10) and 3,3-bis(trimethylsilyl)-[1,1;3,1]terphenyl-2-ylamine (11). The di-1-adamantylphosphine oxide Ad{sub 2}P(O)H (13) and di-tert-butyl-trimethylsilylanylmethylphosphine tert-Bu{sub 2}P-CH{sub 2}-SiMe{sub 3} (14) were used for the first time as ligands for the Suzuki coupling. The condensation of 2,2,3,3-tetramethoxybutane (15) with anilines 10 and 11 afforded {alpha}-diimines 16 and 17. The reaction of {pi}-allylnickel chloride dimer (18), {alpha}-diimines (16), (17) and sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BAF) (19) or silver hexafluoroantimonate (20) led to two sets of isomeric complexes [{eta}{sup 3}-allyl(Ar-N C(Me)-(Me)C N-Ar)Ni]{sup +} X{sup -}, [Ar=2,6-di(4-trimethylsilylphenyl)phenyl, X=BAF (3), X=SbF6 (4); Ar=2,6-di(3-trimethylsilylphenyl)phenyl, X=BAF (5), X=SbF6 (6)]. The steric repulsion of closely positioned trimethylsilyl groups in 4 caused the distortion of the nickel square planar coordination by 17.6{sup o} according to X-ray analysis.

  5. Development of a novel solvent for the simultaneous separation of strontium and cesium from dissolved Spent Nuclear Fuel solutions

    SciTech Connect (OSTI)

    Catherine L. Riddle; John D. Baker; Jack D. Law; Christopher A. McGrath; David H. Meikrantz; Bruce J. Mincher; Dean R. Peterman; Terry A. Todd

    2004-10-01

    The recovery of Cs and Sr from acidic solutions by solvent extraction has been investigated. The goal of this project was to develop an extraction process to remove Cs and Sr from high-level waste in an effort to reduce the heat loading in storage. Solvents for the extraction of Cs and Sr separately have been used on both caustic and acidic spent nuclear fuel waste in the past. The objective of this research was to find a suitable solvent for the extraction of both Cs and Sr simultaneously from acidic nitrate media. The solvents selected for this research possess good stability and extraction behavior when mixed together. The extraction experiments were performed with 4 ,4,(5 )-Di-(tbutyldicyclohexano)- 18-crown-6 {DtBuCH18C6}, Calix[4]arene-bis-(tert-octylbenzocrown-6) {BOBCalixC6} and 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol {Cs-7SB modifier} in a branched aliphatic kerosene {Isopar L}. The BOBCalixC6 and Cs-7SB modifier were developed at Oak Ridge National Laboratory (ORNL) by Bonnesen et al. [1]. The values obtained from the SREX solvent for DSr in 1 M nitric acid ranged from 0.7 to 2.2 at 25oC and 10oC respectively. The values for DCs in 1 M nitric acid with the CSSX solvent ranged from 8.0 to 46.0 at 25oC and 10oC respectively. A new mixed solvent, developed at the Idaho National Engineering and Environmental Laboratory (INEEL) by Riddle et al. [2], showed distributions for Sr ranging from 8.8 to 17.4 in 1 M nitric acid at 25oC and 10oC respectively. The DCs for the mixed solvent ranged from 7.7 to 20.2 in 1 M nitric acid at 25oC to 10oC respectively. The unexpectedly high distributions for Sr at both 25oC and 10oC show a synergy in the mixed solvent. The DCs, although lower than with CSSX solvent, still showed good extraction behavior.

  6. Optimization of combined delayed neutron and differential die-away prompt neutron signal detection for characterization of spent nuclear fuel assemblies

    SciTech Connect (OSTI)

    Blanc, Pauline; Tobin, Stephen J; Croft, Stephen; Menlove, Howard O; Swinhoe, M; Lee, T

    2010-12-02

    the constraints of a single practical instrument. Both DN and PN detections are active techniques using the signal from the most prominent fissile isotopes of spent nuclear fuel that respond the best to a slow neutron interrogation, {sup 235}U, {sup 239}U and {sup 241}PU. The performance is characterized against a library of 64 assemblies and 40 diversion scenarios at different burnup (BU), cooling-time (CT) and initial enrichment (IE) in fresh water.

  7. Low-Cost High-Concentration Photovoltaic Systems for Utility Power Generation

    SciTech Connect (OSTI)

    McConnell, R.; Garboushian, V.; Gordon, R.; Dutra, D.; Kinsey, G.; Geer, S.; Gomez, H.; Cameron, C.

    2012-03-31

    Under DOE's Technology Pathway Partnership (TPP) program, Amonix, Inc. developed a new generation of high-concentration photovoltaic systems using multijunction technology and established the manufacturing capacity needed to supply multi-megawatt power plants buing using the new Amonix 7700-series solar energy systems. For this effort, Amonix Collaborated with a variety of suppliers and partners to complete project tasks. Subcontractors included: Evonik/Cyro; Hitek; the National Renewable Energy Laboratory (NREL); Raytech; Spectrolab; UL; University of Nevada, Las Vegas; and TUV Rheinland PTL. The Amonix TPP tasks included: Task 1: Multijunction Cell Optimization for Field Operation, Task 2: Fresnel Lens R&D, Task 3: Cell Package Design & Production, Task 4: Standards Compliance and Reliability Testing, Task 5: Receiver Plate Production, Task 6: MegaModule Performance, Task 7: MegaModule Cost Reduction, Task 8: Factory Setup and MegaModule Production, Task 9: Tracker and Tracking Controller, Task 10: Installation and Balance of System (BOS), Task 11: Field Testing, and Task 12: Solar Advisor Modeling and Market Analysis. Amonix's TPP addressed nearly the complete PV value chain from epitaxial layer design and wafer processing through system design, manufacturing, deployment and O&M. Amonix has made progress toward achieving these reduced costs through the development of its 28%+ efficient MegaModule, reduced manufacturing and installation cost through design for manufacturing and assembly, automated manufacturing processes, and reduced O&M costs. Program highlights include: (1) Optimized multijunction cell and cell package design to improve performance by > 10%; (2) Updated lens design provided 7% increased performance and higher concentration; (3) 28.7% DC STC MegaModule efficiency achieved in Phase II exceeded Phase III performance goal; (4) New 16' focal length MegaModule achieved target materials and manufacturing cost reduction; (5) Designed and placed into

  8. Transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates: Catalysts for asymmetric olefin hydroamination and acceptorless alcohol decarbonylation

    SciTech Connect (OSTI)

    Manna, Kuntal [Ames Laboratory

    2012-12-17

    The research presented and discussed in this dissertation involves the synthesis of transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates, and their application in catalytic enantioselective olefin hydroamination and acceptorless alcohol decarbonylation. Neutral oxazolinylboranes are excellent synthetic intermediates for preparing new borate ligands and also developing organometallic complexes. Achiral and optically active bis(oxazolinyl)phenylboranes are synthesized by reaction of 2-lithio-2-oxazolide and 0.50 equiv of dichlorophenylborane. These bis(oxazolinyl)phenylboranes are oligomeric species in solid state resulting from the coordination of an oxazoline to the boron center of another borane monomer. The treatment of chiral bis(oxazolinyl)phenylboranes with sodium cyclopentadienide provide optically active cyclopentadienyl-bis(oxazolinyl)borates H[PhB(C{sub 5}H{sub 5})(Ox{sup R}){sub 2}] [Ox{sup R} = Ox{sup 4S-iPr,Me2}, Ox{sup 4R-iPr,Me2}, Ox{sup 4S-tBu]}. These optically active proligands react with an equivalent of M(NMe{sub 2}){sub 4} (M = Ti, Zr, Hf) to afford corresponding cyclopentadienyl-bis(oxazolinyl)borato group 4 complexes {PhB(C{sub 5}H{sub 4})(Ox{sup R}){sub 2}}M(NMe{sub 2}){sub 2} in high yields. These group 4 compounds catalyze cyclization of aminoalkenes at room temperature or below, providing pyrrolidine, piperidine, and azepane with enantiomeric excesses up to 99%. Our mechanistic investigations suggest a non-insertive mechanism involving concerted C?N/C?H bond formation in the turnover limiting step of the catalytic cycle. Among cyclopentadienyl-bis(oxazolinyl)borato group 4 catalysts, the zirconium complex {PhB(C{sub 5}H{sub 4})(Ox{sup 4S-iPr,Me2}){sub 2}}Zr(NMe{sub 2}){sub 2} ({S-2}Zr(NMe{sub 2}){sub 2}) displays highest activity and enantioselectivity. Interestingly, {S-2}Zr(NMe{sub 2}){sub 2} also desymmetrizes olefin moieties of achiral non-conjugated aminodienes and aminodiynes during cyclization

  9. Bootstrapping a Sustainable North American PEM Fuel Cell Industry: Could a Federal Acquisition Program Make a Difference?

    SciTech Connect (OSTI)

    Greene, David L; Duleep, Dr. K. G.

    2008-10-01

    The North American Proton Exchange Membrane (PEM) fuel cell industry may be at a critical juncture. A large-scale market for automotive fuel cells appears to be several years away and in any case will require a long-term, coordinated commitment by government and industry to insure the co-evolution of hydrogen infrastructure and fuel cell vehicles (Greene et al., 2008). The market for non-automotive PEM fuel cells, on the other hand, may be much closer to commercial viability (Stone, 2006). Cost targets are less demanding and manufacturers appear to be close, perhaps within a factor of two, of meeting them. Hydrogen supply is a significant obstacle to market acceptance but may not be as great a barrier as it is for hydrogen-powered vehicles due to the smaller quantities of hydrogen required. PEM fuel cells appear to be potentially competitive in two markets: (1) Backup power (BuP) supply, and (2) electrically-powered MHE (Mahadevan et al., 2007a, 2007b). There are several Original Equipment Manufacturers (OEMs) of PEM fuel cell systems for these applications but production levels have been quite low (on the order of 100-200 per year) and cumulative production experience is also limited (on the order of 1,000 units to date). As a consequence, costs remain above target levels and PEM fuel cell OEMs are not yet competitive in these markets. If cost targets can be reached and acceptable solutions to hydrogen supply found, a sustainable North American PEM fuel cell industry could be established. If not, the industry and its North American supply chain could disappear within a year or two. The Hydrogen Fuel Cell and Infrastructure Technologies (HFCIT) program of the U.S. Department of Energy (DOE) requested a rapid assessment of the potential for a government acquisition program to bootstrap the market for non-automotive PEM fuel cells by driving down costs via economies of scale and learning-by-doing. The six week study included in-depth interviews of three manufacturers

  10. DEVELOPMENT OF THE BULK TRITIUM SHIPPING PACKAGING

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2008-09-14

    A new radioactive shipping packaging for transporting bulk quantities of tritium, the Bulk Tritium Shipping Package (BTSP), has been designed for the Department of Energy (DOE) as a replacement for a package designed in the early 1970s. This paper summarizes significant design features and describes how the design satisfies the regulatory safety requirements of the Code of Federal Regulations and the International Atomic Energy Agency. The BTSP design incorporates many improvements over its predecessor by implementing improved testing, handling, and maintenance capabilities, while improving manufacturability and incorporating new engineered materials. This paper also discusses the results from testing of the BTSP to 10 CFR 71 Normal Conditions of Transport and Hypothetical Accident Condition events. The programmatic need of the Department of Energy (DOE) to ship bulk quantities of tritium has been satisfied since the late 1970s by the UC-609 shipping package. The current Certificate of Conformance for the UC-609, USA/9932/B(U) (DOE), will expire in late 2011. Since the UC-609 was not designed to meet current regulatory requirements, it will not be recertified and thereby necessitates a replacement Type B shipping package for continued DOE tritium shipments in the future. A replacement tritium packaging called the Bulk Tritium Shipping Package (BTSP) is currently being designed and tested by Savannah River National Laboratory (SRNL). The BTSP consists of two primary assemblies, an outer Drum Assembly and an inner Containment Vessel Assembly (CV), both designed to mitigate damage and to protect the tritium contents from leaking during the regulatory Hypothetical Accident Condition (HAC) events and during Normal Conditions of Transport (NCT). During transport, the CV rests on a silicone pad within the Drum Liner and is covered with a thermal insulating disk within the insulated Drum Assembly. The BTSP packaging weighs approximately 500 lbs without contents and is 50

  11. Synthesis of main group, rare-earth, and d{sup 0} metal complexes containing beta-hydrogen

    SciTech Connect (OSTI)

    Yan, Ka King

    2013-05-02

    {sub 2}(NR{sub 2})ZrX (X = Cl, I, OTf; R = t-Bu, SiHMe{sub 2}) and lithium hydrosilazide ultimately afford hydride products Cp{sub 2}(NR{sub 2})ZrH that suggest unusual β-hydrogen elimination processes. A likely intermediate in one of these reactions, Cp{sub 2}Zr[N(SiHMe{sub 2})t-Bu][N(SiHMe{sub 2}){sub 2}], is isolated under controlled synthetic conditions. Addition of alkali metal salts to this zirconium hydrosilazide compound produces the corresponding zirconium hydride. However as conditions are varied, a number of other pathways are also accessible, including C-H/Si-H dehydrocoupling, γ-abstraction of a CH, and β-abstraction of a SiH. Our observations suggest that the conversion of (hydrosilazido)zirconocene to zirconium hydride does not follow the classical four-center β- elimination mechanism. Elimination and abstraction reactions dominate the chemistry of ligands containing β- hydrogen. In contrast, Cp{sub 2}Zr{N(SiHMe{sub 2}){sub 2}}H and Cp{sub 2}Zr{N(SiHMe{sub 2}){sub 2}}Me undergo selective γ-CH bond activation to yield the azasilazirconacycle Cp{sub 2Zr}{κ{sup 2}-N(SiHMe{sub 2})SiHMeCH{sub 2}}, even though there are reactive β-hydrogen available for abstraction. The β-SiH groups in metallacycle provide access to new pathways for sixteen-electron zirconium alkyl compounds, in which Cp{sub 2}Zr{κ{sup 2}-N(SiHMe{sub 2})SiHMeCH{sub 2}} undergoes a rare σ-bond metathesis reaction with ethylene. The resulting vinyl intermediate undergoes β-hydrogen abstraction to reform ethylene and a silanimine zirconium species that reacts with ethylene to give a metallacyclopentane as the isolated product. The pendent β-SiH in metallocycle also reacts with paraformaldehyde through an uncatalyzed hydrosilylation to form an exocyclic methoxysilyl moiety, while the zirconium-carbon bond in metallocycle is surprisingly inert toward formaldehyde. Still, the Zr-C moiety in metallocycle is available for chemistry, and it interacts with the carbon monoxide and strong

  12. Spectroelectrochemical Sensor for Pertechnetate Applicable to Hanford and Other DOE Sites

    SciTech Connect (OSTI)

    Heineman, William R; Seliskar, Carl J; Bryan, Samuel A

    2012-09-18

    lower oxidation state Tc complex within the film for spectroelectrochemical detection. Spectroelectrochemical sensors were developed and demonstrated, first using [Re(dmpe)3]+ (dmpe = 1,2-bis(dimethylphosphino)ethane) as a model compound with the non-radioactive Re surrogate for radioactive Tc. A fluorescence based spectroelectrochemical sensor for [Tc(dmpe)3]+/2+was then developed using SSEBS as the preconcentrating film. Portable instrumentation for the fluorescence spectroelectrochemical sensor was fabricated and tested. The effects of components in Hanford subsurface water on sensor performance with a detailed evaluation of the effect of total ionic strength on sensitivity demonstrated the ability to use the spectroelectrochemical sensor on representative water samples. A variety Re and Tc complexes were synthesized and characterized to explore the best ligands to use for detection of Tc. A lower oxidation-state Tc-complex [Tc(dmpe)3]+ (dmpe = 1,2-bis(dimethylphosphino)ethane) was synthesized to use as a model compound for developing Tc sensors. [Tc(dmpe)3]+/2+ exhibited the important properties of solution fluorescence at ambient temperatures and reversible electrochemistry. A range of low oxidation state dioxo Re- and Tc-complexes of formulae [ReO2(py)4]+, [ReO2(CN)4]-, [ReO2(P-P)2]+ and [ReO2(S-S)2]+ (py = pyridine) were synthesized. An exhaustive study of the spectroscopy and electrochemistry of Re(diimine)(CO)3(halide) complexes was performed. These complexes served as models for the Tc(diimine)(CO)3(halide) complexes that were readily formed from Tc(CO)x(halides)6-x complexes which are themselves constituents of tank waste samples from Hanford. Of particular interest were new Tc complexes with the +5 and +6 oxidation states. Tetrabutylammonium salt of tetrachlorooxotechnetate(V), (nBu4N)[TcOCl4] (I) was synthesized and the structure determined. [TcO2(CN)4]3- , [TcO2(en)2]2+ , [TcO2(im)4]+, and [TcO2(py)4]+ (en = ethylenediamine; im = imidazole; py = pyridine