National Library of Energy BETA

Sample records for garbincius physics section

  1. HEALTH PHYSICS SOCIETY - ENVIRONMENTAL/RADON SECTION ANNOUNCEMENT OF SPONSORED SCHOLARSHIP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEALTH PHYSICS SOCIETY - ENVIRONMENTAL/RADON SECTION ANNOUNCEMENT OF SPONSORED SCHOLARSHIP Tim Jannik, Environmental/Radon Section President The HPS Environmental/Radon Section is dedicated to promoting students within our discipline. To this end, the Environmental/Radon section is proud to announce the F. Ward Whicker Scholarship. This scholarship will provide $2,000 per year ($1,000 for the first semester and $1,000 for the second semester-dependent on successful completion of the first

  2. Sections prepared for inclusion in an IAEA technical document handbook on Designing and Implementing a Physical Protection System

    SciTech Connect (OSTI)

    Snell, Mark K.

    2015-11-01

    Two major sections were drafted (each with several subsections) for the IAEA dealing with designing and implementing a Physical Protection System (PPS). Areas addressed were Search Systems and the evaluation of PPS effectiveness.

  3. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    SciTech Connect (OSTI)

    Wardaya, P. D. Noh, K. A. B. M. Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.

    2014-09-25

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave

  4. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group (PDG) Organizations American Institute of Physics (AIP) American Physical Society (APS) Institute of Physics (IOP) SPIE - International society for optics and photonics Top...

  5. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on Materials/Condensed Matter, and this one, with a dual focus on AMO (atomic, molecular, and optical) physics and accelerator physics. Light sources such as the ALS have opened up research frontiers that may hold the answers to fundamental questions about structure and dynamics in AMO physics. The advanced spectroscopies that

  6. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on Materials/Condensed Matter, and this one, with a dual focus on AMO (atomic, molecular, and optical) physics and accelerator physics. Light sources such as the ALS have opened up research frontiers that may hold the answers to fundamental questions about structure and dynamics in AMO physics. The advanced spectroscopies that have been

  7. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Physics Our science answers questions about the nature of the universe and delivers solutions for national security concerns. Contact Us Division Leader David Meyerhofer Deputy Division Leader Scott Wilburn Division Office (505) 667-4117 For more than 70 years-from the Manhattan Project to today-Physics Division researchers have been performing groundbreaking fundamental and applied research. For more than 70 years-from the Manhattan Project to today-Physics Division researchers have

  8. Hadronic Total Cross Sections (R) in E+E- Interactions: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Whalley, M. R.

    A comprehensive compilation of experimental data on total hadronic cross sections, and R ratios, in e+e- interactions is presented. Published data from the Novosibirsk, Orsay, Frascati, SLAC, CORNELL, DESY, KEK and CERN e+e- colliders on both exclusive and inclusive final particle states are included from threshold energies to the highest LEP energies. The data are presented in tabular form supplemented by compilation plots of different exclusive final particle states and of different energy regions. (Taken from abstract of paper, A Compilation of Data on Hadronic Total Cross Sections in E+E- Interactions, M.R. Whalley, Journal of Physics G (Nuclear and Particle Physics), Volume 29, Number 12A, 2003). The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. The data are also included in the Durham HEP Reaction Data Database, which can be searched at http://hepdata.cedar.ac.uk/reaction

  9. Drell-Yan Cross Sections: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stirling, W. J.; Whalley, M. R.

    A compilation of data on Drell-Yan cross sections above a lepton-pair mass of 4 GeV/c2 is presented. The relevant experiments at Fermilab and CERN are included dating from approximately 1977 to the present day, covering p, p and pi +or- beams on a variety of nuclear and hydrogen targets, with centre-of-mass energies from 8.6 GeV to 630 GeV. The type of data presented include d sigma /dm, d2 sigma /dm dx and d2 sigma /dm dy distributions as well as other variations of these, and also transverse momentum distributions. The data are compared with a standard theoretical model, and a phenomenological 'K-factor' for each set is calculated. (Taken from the abstract of A Compilation of Drell-Yan Cross sections, W.J. Stirling and M.R. Whalley, Journal of Physics G (Nuclear and Particle Physics), Volume 19, Data Review, 1993.) The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also included in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction

  10. AN INTEGRAL REACTOR PHYSICS EXPERIMENT TO INFER ACTINIDE CAPTURE CROSS-SECTIONS FROM THORIUM TO CALIFORNIUM WITH ACCELERATOR MASS SPECTROMETRY

    SciTech Connect (OSTI)

    G. Youinou; M. Salvatores; M. Paul; R. Pardo; G. Palmiotti; F. Kondev; G. Imel

    2010-04-01

    The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectroscopy (AMS) technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am and 248Cm.

  11. Measurement and Basic Physics Committee of the US cross-section evaluation working group. Annual report 1996

    SciTech Connect (OSTI)

    Smith, D.L.; McLane, V.

    1996-11-01

    The Cross-Section Evaluation Working Group (CSEWG) is a long-standing committee charged with the responsibility for organizing and overseeing the U.S. cross-section evaluation effort. It`s main product is the official U.S. evaluated nuclear data file, ENDF. The current version of this file is Version VI. All evaluations included in ENDF are reviewed and approved by CSEWG and issued by the U.S. Nuclear Data Center, Brookhaven National Laboratory. CSEWG is comprised of volunteers from the U.S. nuclear data community who possess expertise in evaluation methodologies and who collectively have been responsible for producing most of the evaluations included in ENDF. In 1992 CSEWG added the Measurements Committee to its list of standing committees and subcommittees. This action was based on a recognition of the importance of experimental data in the evaluation process as well as the realization that measurement activities in the U.S. were declining at an alarming rate and needed all possible encouragement to avoid the loss of this resource. The mission of the Committee is to maintain a network of experimentalists in the U.S. that would provide needed encouragement to the national nuclear data measurement effort through improved communication and facilitation of collaborative activities. In 1994, an additional charge was added to the responsibilities of this Committee, namely, to serve as an interface between the more applied interests represented in CSEWG and the basic nuclear science community. This annual report is the second such document issued by the Committee. It contains voluntary contributions from eleven laboratories in the U.S. which have been prepared by members of the Committee and submitted to the Chairman for compilation and editing. It is hoped that the information provided here on the work that is going on at the reporting laboratories will prove interesting and stimulating to the readers.

  12. Low Energy Neutrino Cross Sections: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This large collection of low-energy (less than 30 GEV) neutrino cross sections is extracted from the results of many experiments from 1973 through 2002. The experiments, facilities, and collaborations include ANL, BNL, and FNAL in the U.S., along with CERN, Gargamelle, SKAT, LSND, and others. The data are presented in both tabular and plotted formats. The Durham High Energy Physics Database Group makes these data available in one place, easy to access and compare. The data are also included in the Durham HEP Reaction Data Database, which can be searched at http://hepdata.cedar.ac.uk/reaction

  13. Ratios of W and Z cross sections at large boson $p_T$ as a constraint on PDFs and background to new physics

    SciTech Connect (OSTI)

    Malik, Sarah Alam; Watt, Graeme

    2014-02-05

    We motivate a measurement of various ratios of W and Z cross sections at the Large Hadron Collider (LHC) at large values of the boson transverse momentum (p T ? M W,Z ). We study the dependence of predictions for these cross-section ratios on the multiplicity of associated jets, the boson p T and the LHC centre-of-mass energy. We present the flavour decomposition of the initial-state partons and an evaluation of the theoretical uncertainties. We also show that the W + /W - ratio is sensitive to the up-quark to down-quark ratio of parton distribution functions (PDFs), while other theoretical uncertainties are negligible, meaning that a precise measurement of the W + /W - ratio at large boson p T values could constrain the PDFs at larger momentum fractions x than the usual inclusive W charge asymmetry. The W /Z ratio is insensitive to PDFs and most other theoretical uncertainties, other than possibly electroweak corrections, and a precise measurement will therefore be useful in validating theoretical predictions needed in data-driven methods, such as using W (? ??) + jets events to estimate the Z(? ??) + jets background in searches for new physics at the LHC. Furthermore, the differential W and Z cross sections themselves, d?/dp T , have the potential to constrain the gluon distribution, provided that theoretical uncertainties from higher-order QCD and electroweak corrections are brought under control, such as by inclusion of anticipated next-to-next-to-leading order QCD corrections.

  14. Ratios of W and Z cross sections at large boson $p_T$ as a constraint on PDFs and background to new physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malik, Sarah Alam; Watt, Graeme

    2014-02-05

    We motivate a measurement of various ratios of W and Z cross sections at the Large Hadron Collider (LHC) at large values of the boson transverse momentum (p T ≳ M W,Z ). We study the dependence of predictions for these cross-section ratios on the multiplicity of associated jets, the boson p T and the LHC centre-of-mass energy. We present the flavour decomposition of the initial-state partons and an evaluation of the theoretical uncertainties. We also show that the W + /W - ratio is sensitive to the up-quark to down-quark ratio of parton distribution functions (PDFs), while other theoreticalmore » uncertainties are negligible, meaning that a precise measurement of the W + /W - ratio at large boson p T values could constrain the PDFs at larger momentum fractions x than the usual inclusive W charge asymmetry. The W ± /Z ratio is insensitive to PDFs and most other theoretical uncertainties, other than possibly electroweak corrections, and a precise measurement will therefore be useful in validating theoretical predictions needed in data-driven methods, such as using W (→ ℓν) + jets events to estimate the Z(→ νν¯) + jets background in searches for new physics at the LHC. Furthermore, the differential W and Z cross sections themselves, dσ/dp T , have the potential to constrain the gluon distribution, provided that theoretical uncertainties from higher-order QCD and electroweak corrections are brought under control, such as by inclusion of anticipated next-to-next-to-leading order QCD corrections.« less

  15. MANTA. An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    SciTech Connect (OSTI)

    Youinou, Gilles Jean-Michel

    2015-10-01

    Neutron cross-sections characterize the way neutrons interact with matter. They are essential to most nuclear engineering projects and, even though theoretical progress has been made as far as the predictability of neutron cross-section models, measurements are still indispensable to meet tight design requirements for reduced uncertainties. Within the field of fission reactor technology, one can identify the following specializations that rely on the availability of accurate neutron cross-sections: (1) fission reactor design, (2) nuclear fuel cycles, (3) nuclear safety, (4) nuclear safeguards, (5) reactor monitoring and neutron fluence determination and (6) waste disposal and transmutation. In particular, the assessment of advanced fuel cycles requires an extensive knowledge of transuranics cross sections. Plutonium isotopes, but also americium, curium and up to californium isotope data are required with a small uncertainty in order to optimize significant features of the fuel cycle that have an impact on feasibility studies (e.g. neutron doses at fuel fabrication, decay heat in a repository, etc.). Different techniques are available to determine neutron cross sections experimentally, with the common denominator that a source of neutrons is necessary. It can either come from an accelerator that produces neutrons as a result of interactions between charged particles and a target, or it can come from a nuclear reactor. When the measurements are performed with an accelerator, they are referred to as differential since the analysis of the data provides the cross-sections for different discrete energies, i.e. σ(Ei), and for the diffusion cross sections for different discrete angles. Another approach is to irradiate a very pure sample in a test reactor such as the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after

  16. Neutron physics of the Re/Os clock. II. The (n,n{sup '}) cross section of {sup 187}Os at 30 keV neutron energy

    SciTech Connect (OSTI)

    Mosconi, M.; Heil, M.; Kaeppeler, F.; Plag, R.; Mengoni, A.

    2010-07-15

    The inelastic neutron-scattering cross section of {sup 187}Os has been determined in a time-of-flight experiment at the Karlsruhe 3.7-MV Van de Graaff accelerator. An almost monoenergetic beam of 30-keV neutrons was produced at the threshold of the {sup 7}Li(p,n){sup 7}Be reaction. Information on the inelastic channel is required for reliable calculations of the so-called stellar enhancement factor, by which the laboratory cross section of {sup 187}Os must be corrected in order to account for the thermal population of low-lying excited states at the temperatures of s-process nucleosynthesis, in particular of the important state at 9.75 keV. This correction represents a crucial step in the interpretation of the {sup 187}Os/{sup 187}Re pair as a cosmochronometer.

  17. SECTION H

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Contract Section H Contract No. DE-AC27-08RV14800 Modification No. 360 H-i PART I - THE SCHEDULE SECTION H SPECIAL CONTRACT REQUIREMENTS TABLE OF CONTENTS H.1 WORKFORCE ...

  18. SECTION E

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E Contract No. DE-AC27-01RV14136 Conformed Thru Modification No. A143 E - i SECTION E INSPECTION AND ACCEPTANCE WTP Contract Section E Contract No. DE-AC27-01RV14136 Conformed Thru...

  19. Neutron physics of the Re/Os clock. I. Measurement of the (n, ) cross sections of 186,187,188Os at the CERN n TOF facility

    SciTech Connect (OSTI)

    Mosconi, M.; Fujii, K.; Mengoni, A.; Domingo-Pardo, C.; Kappeler, F.; Koehler, Paul Edward

    2010-01-01

    The precise determination of the neutron capture cross sections of 186Os and 187Os is important to define the s-process abundance of 187Os at the formation of the solar system. This quantity can be used to evaluate the radiogenic component of the abundance of 187Os due to the decay of the unstable 187Re (t1/2 = 41.2 Gyr) and from this to infer the time duration of the nucleosynthesis in our galaxy (Re/Os cosmochronometer). The neutron capture cross sections of 186Os, 187Os, and 188Os have been measured at the CERN n TOF facility from 1 eV to 1 MeV, covering the entire energy range of astrophysical interest. The measurement has been performed by time-of-flight technique using isotopically enriched samples and two C6D6 scintillation detectors for recording the prompt rays emitted in the capture events. Maxwellian averaged capture cross sections have been determined for thermal energies between kT = 5 and 100 keV corresponding to all possible s-process scenarios. The estimated uncertainties for the values at 30 keV are 4.1, 3.3, and 4.7% for 186Os, 187Os, and 188Os, respectively.

  20. Section 40

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cl J cl J a Q 0 J a Session Papers 167 Figure 1. Hemispheric solar irradiance (1) and retrieved cloud optical depth (2). Zvenigorod, September 7, 1996. Cloud-Radiation-Aerosol Experiments at the Institute of Atmospheric Physics, Russia G. S. Golitsyn, P. P. Anikin, E. M. Feigelson, A. A. Isakov and M. A. Sviridenkov Obukhov Institute of Atmospheric Physics Moscow, Russia Introduction The Institute of Atmospheric Physics, Russian Academy of Sciences, has carried out several field Cloud-Radiation-

  1. Section L

    National Nuclear Security Administration (NNSA)

    of Energy (DOE)National Nuclear Security Administration (NNSA) Contract for the management and operation of the ... perform onsite physical environmental and waste management ...

  2. SECTION I

    National Nuclear Security Administration (NNSA)

    ... tube (CRT), liquid crystal display (LCD), plasma display, or other display technology. ... for activities associated with Princeton Plasma Physics Laboratory; (6) The Associated ...

  3. Section 81

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conservation equation: Here P represents the "physics" that affects q. The corresponding continuity equation is By using Equation 2, we can rewrite Equation 1 in the "advective"...

  4. Section 97

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forward in time. These divergent solutions are due to the non- linear nature of the mathematical equations used in the model that govern atmospheric physics and dynamics. In...

  5. Neutron physics of the Re/Os clock. III. Resonance analyses and stellar (n,gamma) cross sections of {sup 186,187,188}Os

    SciTech Connect (OSTI)

    Fujii, K.; Abbondanno, U.; Belloni, F.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Kaeppeler, F.; Audouin, L.; Dillmann, I.; Heil, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.; Mengoni, A.; Domingo-Pardo, C.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.

    2010-07-15

    Neutron resonance analyses have been performed for the capture cross sections of {sup 186}Os, {sup 187}Os, and {sup 188}Os measured at the n{sub T}OF facility at cern. Resonance parameters have been extracted up to 5, 3, and 8 keV, respectively, using the sammy code for a full R-matrix fit of the capture yields. From these results average resonance parameters were derived by a statistical analysis to provide a comprehensive experimental basis for modeling of the stellar neutron capture rates of these isotopes in terms of the Hauser-Feshbach statistical model. Consistent calculations for the capture and inelastic reaction channels are crucial for the evaluation of stellar enhancement factors to correct the Maxwellian averaged cross sections obtained from experimental data for the effect of thermally populated excited states. These factors have been calculated for the full temperature range of current scenarios of s-process nucleosynthesis using the combined information of the experimental data in the region of resolved resonances and in the continuum. The consequences of this analysis for the s-process component of the {sup 187}Os abundance and the related impact on the evaluation of the time duration of galactic nucleosynthesis via the Re/Os cosmochronometer are discussed.

  6. Neutron physics of the Re/Os clock. III. Resonance analyses and stellar (n, ) cross sections of 186,187,188Os

    SciTech Connect (OSTI)

    Fujii, K.; Koehler, Paul Edward

    2010-01-01

    Neutron resonance analyses have been performed for the capture cross sections of 186Os, 187Os, and 188Os measured at the n TOF facility at CERN. Resonance parameters have been extracted up to 5, 3, and 8 keV, respectively, using the SAMMY code for a full R-matrix fit of the capture yields. From these results average resonance parameters were derived by a statistical analysis to provide a comprehensive experimental basis for modeling of the stellar neutron capture rates of these isotopes in terms of the Hauser-Feshbach statistical model. Consistent calculations for the capture and inelastic reaction channels are crucial for the evaluation of stellar enhancement factors to correct the Maxwellian averaged cross sections obtained from experimental data for the effect of thermally populated excited states. These factors have been calculated for the full temperature range of current scenarios of s-process nucleosynthesis using the combined information of the experimental data in the region of resolved resonances and in the continuum. The consequences of this analysis for the s-process component of the 187Os abundance and the related impact on the evaluation of the time duration of galactic nucleosynthesis via the Re/Os cosmochronometer are discussed.

  7. SECTION J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    K-1 SECTION J APPENDIX K CONTRACTOR'S TRANSITION PLAN (RESERVED) Contract No.: DE-RW0000005 QA:QA J-K-2

  8. Section J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    L-1 Section J Appendix L MEMORANDUM FROM DAVID R. HILL, GENERAL COUNSEL, DATED NOVEMBER 30, 2006, SUBJECT: ONGOING LICENSING SUPPORT NETWORK ("LSN") OBLIGATIONS Contract No.: ...

  9. SECTION I

    National Nuclear Security Administration (NNSA)

    to Mod 0108 DE-NA0000622 Section I, Page i PART II - CONTRACT CLAUSES SECTION I CONTRACT CLAUSES TABLE OF CONTENTS I-1 FAR 52.202-1 DEFINITIONS (NOV 2013) (AS MODIFIED BY DEAR 952.202-1) (REPLACED MODS 020, 029, 0084) ................................................................................................................................ 1 I-2 FAR 52.203-3 GRATUITIES (APR 1984) ................................................................................................. 1 I-3 FAR

  10. SECTION B

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    phases of the fee determination process consistent with Section B.2 of the subject contract. ... At the end of the rating period, after the determination of the award fee, the CBFO ...

  11. Section I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projectile and Target Z-scaling of Target K-vacancy Production Cross Sections at 10A MeV R. L. Watson, V. Horvat and K. E. Zaharakis Molecular Orbital Effects in Near-symmetric ...

  12. SECTION J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J-1 SECTION J APPENDIX J PERFORMANCE EVALUATION AND MEASUREMENT PLAN (TO BE NEGOTIATED AFTER CONTRACT AWARD) Contract No.: DE-RW0000005 QA:QA J-J-2 Page Blank

  13. SECTION J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A-1 SECTION J APPENDIX A ADVANCE UNDERSTANDING ON HUMAN RESOURCES (TO BE NEGOTIATED DURING CONTRACT TRANSITION) The personnel appendix required by DEAR Subpart 970.31 entitled "Contract Cost Principles and Procedures" as referenced in Section I Clause, DEAR 970.5232-2, "Payments and Advances" will be Appendix A of the contract. The personnel appendix will be negotiated between DOE OCRWM and the selected offeror during the contract transition period. Contract No.: DE-RW0000005

  14. Section 66

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CFCl 3 ) (CF 2 Cl 2 ) (CHFCl 2 ) CF 4 CCl 4 (CFCl 3 ) (CF 2 Cl 2 ) (CHFCl 2 ) SF 6 CF 4 CCl 4 Session Papers 277 Figure 1. Spectral absorption cross-sections of CF 4 between 1281 and 1284 cm . The experimental -1 conditions correspond to the surface, 5-km, and 19-km levels of the U.S. Standard Atmosphere. Figure 2. Spectral absorption cross-sections of CCl 4 between 755 and 810 cm . The experimental conditions -1 correspond to the surface, 5-km, and 19-km levels of the U.S. Standard Atmosphere.

  15. Section CC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30 J-12-1 ATTACHMENT J-12 GOVERNMENT FURNISHED SERVICES AND INFORMATION TABLE J-12.1 GFS/I LIST FROM SECTION C (SOW) ID GFS/I GFS/I Due Contract Section GF0001 DOE will administer MOUs with other law enforcement agencies or other Federal agencies (e.g., U.S. Department of Defense [Yakima Training Center]). DOE will provide copies of MOUs and/or contracts to the MSC. As required C.2.1.1.1 GF0002 DOE will provide Federal Commissions for Hanford Patrol personnel. As required C.2.1.1.1 GF0003 DOE

  16. Section CC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract No. DE-AC06-09RL14728 Modification 464 J-11-1 ATTACHMENT J-11 CONTRACT DELIVERABLES TABLE J-11.1 DELIVERABLE LIST FROM SECTION C (SOW) ID Deliverable DOE Contract Deliverable Due Contract Section Action Response Time a CD0001 Hanford Site Services and Interface Requirements Matrix Approve 30 days July 24, 2009; thereafter by request as applicable C.1.3 CD0002 Annual Forecast of Services and Infrastructure Review NA November 21, 2009; annually thereafter by November 31 C.1.3 CD0003

  17. Section I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract Modification No.0200 Section I I-1 PART II SECTION I CONTRACT CLAUSES TABLE OF CONTENTS CLAUSE I.1 - FAR 52.202-1 DEFINITIONS (NOV 2013); MODIFIED BY DEAR 952.202-1 9 CLAUSE I.2 - FAR 52.203-3 GRATUITIES (APR 1984) 9 CLAUSE I.3 - FAR 52.203-5 COVENANT AGAINST CONTINGENT FEES (MAY 2014) 10 CLAUSE I.4 - FAR 52.203-6 RESTRICTIONS ON SUBCONTRACTOR SALES TO THE GOVERNMENT (SEP 2006) 11 CLAUSE I.5 - FAR 52.203-7 ANTI-KICKBACK PROCEDURES (MAY 2014) 11 CLAUSE I.6 - FAR 52.203-8 CANCELLATION,

  18. Section 50

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements of the Summertime Surface Radiation Budget in the Arctic P. J. Minnett Meteorology and Physical Oceanography Division Rosenstiel School of Marine and Atmospheric Science University of Miami Miami, Florida Abstract Measurements of the long- and short-wave incident radiation taken from the USCGC Polar Sea during a research cruise to the Northeast Water Polynya during the summer of 1993 are analyzed, together with observations of cloud type and amount, to determine the effects of

  19. Section 69

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Measurements of the Skin Effect and Diurnal Thermocline in the Tropical Western Pacific Ocean P. J. Minnett Meteorology & Physical Oceanography Rosenstiel School of Marine and Atmospheric Science University of Miami Miami, Florida R. O. Knuteson Space Science and Engineering Center University of Wisconsin - Madison Madison, Wisconsin Scientific Background A fundamental problem in evaluating the exchange of heat, momentum, and gases (including water vapor and carbon dioxide) across the

  20. Section J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    M-1 Section J Appendix M Key Design, Licensing and Site Management M&O Milestone Chart Activity Planned Date Develop and Submit CD-2 (25%-30%) 08/2009 Submission of Construction Performance Specifications - Balance of Plant Support Facilities (OCRWM Start of Construction 3/2012) TBD Submission of Construction Performance Specifications - Initial Handling Facility (IHF) (OCRWM Start of Construction for IHF: 9/2013) TBD Submission of Construction Performance Specifications - Wet Handling

  1. Section L

    National Nuclear Security Administration (NNSA)

    Section L - Attachment F - Past Performance Cover Letter and Questionnaire Date: ________________ Dear _________________: Our firm is submitting a proposal for a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) Contract for the management and operation of the Nevada National Security Site with an estimated value of approximately $550M per year. Our firm is seeking your assistance. We are asking you to complete the attached questionnaire evaluating our performance on

  2. SECTION J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D-1 SECTION J APPENDIX D KEY PERSONNEL Name Position Doug Cooper General Manager John Donnell Repository Licensing Lead Al Ebner, PE, PhD Repository Design Lead Steve Piccolo Deputy General Manager Steve White Quality & Performance Assurance Lead George Clare Project Management & Integration Lead Mike Hitchler Preclosure Safety Analysis Lead Contract No.: DE-RW0000005 QA:QA J-D-2 POSITION DESCRIPTIONS OCRWM SPECIFIED KEY PERSONNEL 1. General Manager: Requires 10 years experience as a

  3. SECTION J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H-1 SECTION J APPENDIX H CONTRACT GUIDANCE FOR PREPARATION OF DIVERSITY PLAN This Guidance is to assist the Contractor in understanding the information being sought by the Department for each of the Diversity elements and where these issues may already be addressed in the contract. To the extent these issues are already addressed in the contract, the Contractor need only cross reference the location. Contractor's Workforce The Department's contracts contain clauses on Equal Employment

  4. Section 89

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensitivity Tests on the Microphysical Parameters of a 2-Dimensional Cirrus Model R.-F. Lin Department of Meteorology, Pennsylvania State University University Park, Pennsylvania Introduction Radiatively induced convection may serve a key role in the evolution of cirrus. A 2-dimensional cirrus model with a spatial resolution of 100 m is developed to investigate dynam- ical-radiative-microphysical interactions. It is assumed that the model domain represents part of a cross-section of cirrus

  5. Section 25

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D(N,8) ' I(N,8)K(8) BI o (8)sec(Z) D(N8) ' C(N,8)N &q(8) Session Papers 109 (1) (2) Figure 1. Angular course of aureole scattering. ARESE, October 1995 (1 - 10/4, 2 - 10/18, 3 - 10/17, 4 - 10/19). Solar Aureole Measurements and Coarse Dispersed Aerosol Size Distributions in ARM Enhanced Shortwave Experiment Intensive Observation Period G. S. Golitsyn, P. P. Anikin, and M. A. Sviridenkov Institute of Atmospheric Physics, Russian Academy of Sciences Moscow, Russia Introduction Results of

  6. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-07-23

    This Manual establishes requirements for the physical protection of interests under the U.S. Department of Energys (DOEs) purview ranging from facilities, buildings, Government property, and employees to national security interests such as classified information, special nuclear material (SNM), and nuclear weapons. Cancels Section A of DOE M 470.4-2 Chg 1. Canceled by DOE O 473.3.

  7. Cross-Section Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Section Measurement of 2 H(n,np)n at 16 MeV in Symmetric Constant Relative Energy Configurations Alexander Hoff Couture A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics and Astronomy. Chapel Hill 2011 Approved by: T. B. Clegg, Advisor C. R. Howell, Advisor H. J. Karwowski, Reader J. Lu, Reader J. Engel, Reader c 2011 Alexander Hoff Couture ALL

  8. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    This Manual establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Chg 1, dated 3/7/06. Cancels: DOE M 473.1-1 and DOE M 471.2-1B

  9. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    Establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Cancels: DOE M 473.1-1 and DOE M 471.2-1B.

  10. Hadron physics

    SciTech Connect (OSTI)

    Bunce, G.

    1984-05-30

    Is all hadronic physics ultimately describable by QCD. Certainly, many disparate phenomena can be understood within the QCD framework. Also certainly, there are important questions which are open, both theoretically (little guidance, as yet) and experimentally, regarding confinement. Are there dibaryons, baryonium, glueballs. In addition, there are experimental results which at present do not have an explanation. This talk, after a short section on QCD successes and difficulties, will emphasize two experimental topics which have recent results - glueball spectroscopy and exclusive reactions at large momentum transfer. Both are experimentally accessible in the AGS/LAMPF II/AGS II/TRIUMF II/SIN II energy domain.

  11. PHYSICAL SCIENCES, Physics Phase

    Office of Scientific and Technical Information (OSTI)

    SCIENCES, Physics Phase competition in trisected superconducting dome I. M. Vishik, 1, 2 M Hashimoto, 3 R.-H. He, 4 W. S. Lee, 1, 2 F. Schmitt, 1, 2 D. H. Lu, 3 R. G. Moore, 1...

  12. Top physics at CDF

    SciTech Connect (OSTI)

    Julia Thom

    2004-06-24

    Precision studies of top quark properties are a primary goal of the Run II physics program at the Fermilab Tevatron. Marking the first stages of this program, the CDF collaboration presents recent results on top pair production cross section, single top physics and top mass, using between 109 and 200 pb{sup -1} of Run II data.

  13. B physics: measurement of the j/psi meson and b-hadron production cross sections in p anti-p collisions at s**(1/2) = 1960 gev

    SciTech Connect (OSTI)

    Acosta, D.; The CDF Collaboration

    2004-12-23

    The authors present a new measurement of the inclusive and differential production cross sections of J/{psi} mesons and b-hadrons in proton-antiproton collisions at {radical}s = 1960 GeV. The data correspond to an integrated luminosity of 39.7 pb{sup -1} collected by the CDF Run II detector. They find the integrated cross section for inclusive J/{psi} production for all transverse momenta from 0 to 20 GeV/c in the rapidity range |y| < 0.6 to be 4.08 {+-} 0.02(stat){sub -0.33}{sup +0.36}(syst) {mu}b. They separate the fraction of J/{psi} events from the decay of the long-lived b-hadrons using the lifetime distribution in all events with p{sub T}(J/{psi}) > 1.25 GeV/c. They find the total cross section for b-hadrons, including both hadrons and anti-hadrons, decaying to J/{psi} with transverse momenta greater than 1.25 GeV/c in the rapidity range |y(J/{psi})| < 0.6, is 0.330 {+-} 0.005(stat){sub -0.033}{sup +0.036}(syst) {mu}b. Using a Monte Carlo simulation of the decay kinematics of b-hadrons to all final states containing a J/{psi}, they extract the first measurement of the total single b-hadron cross section down to zero transverse momentum at {radical}s = 1960 GeV. They find the total single b-hadron cross section integrated over all transverse momenta for b-hadrons in the rapidity range |y| < 0.6 to be 17.6 {+-} 0.4(stat){sub -2.3}{sup +2.5}(syst) {mu}b.

  14. Top physics: measurement of the tt-bar production cross section in p anti-p collisions at s**(1/2) = 1.96 tev using lepton + jets events with secondary vertex b-tagging

    SciTech Connect (OSTI)

    Acosta, D.; The CDF Collaboration

    2005-04-07

    We present a measurement of the t{bar t} production cross section using events with one charged lepton and jets from p{bar p} collisions at a center-of-mass energy of 1.96TeV. In these events, heavy flavor quarks from top quark decay are identified with a secondary vertex tagging algorithm. From 162 pb{sup -1} of data collected by the Collider Detector at Fermilab, a total of 48 candidate events are selected, where 13.5 {+-} 1.8 events are expected from background contributions. We measure a t{bar t} production cross section of 5.6{sub -1.1}{sup _1.2}(stat.){sub -0.6}{sup +0.9}(syst.)pb.

  15. Neutron physics of the Re/Os clock. I. Measurement of the (n,gamma) cross sections of {sup 186,187,188}Os at the CERN n{sub T}OF facility

    SciTech Connect (OSTI)

    Mosconi, M.; Kaeppeler, F.; Audouin, L.; Dillmann, I.; Heil, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.; Fujii, K.; Abbondanno, U.; Belloni, F.; Milazzo, P. M.; Moreau, C.; Mengoni, A.; Domingo-Pardo, C.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.

    2010-07-15

    The precise determination of the neutron capture cross sections of {sup 186}Os and {sup 187}Os is important to define the s-process abundance of {sup 187}Os at the formation of the solar system. This quantity can be used to evaluate the radiogenic component of the abundance of {sup 187}Os due to the decay of the unstable {sup 187}Re (t{sub 1/2}=41.2 Gyr) and from this to infer the time duration of the nucleosynthesis in our galaxy (Re/Os cosmochronometer). The neutron capture cross sections of {sup 186}Os, {sup 187}Os, and {sup 188}Os have been measured at the CERN n{sub T}OF facility from 1 eV to 1 MeV, covering the entire energy range of astrophysical interest. The measurement has been performed by time-of-flight technique using isotopically enriched samples and two C{sub 6}D{sub 6} scintillation detectors for recording the prompt gamma rays emitted in the capture events. Maxwellian averaged capture cross sections have been determined for thermal energies between kT=5 and 100 keV corresponding to all possible s-process scenarios. The estimated uncertainties for the values at 30 keV are 4.1, 3.3, and 4.7% for {sup 186}Os, {sup 187}Os, and {sup 188}Os, respectively.

  16. Particle physics and cosmology

    SciTech Connect (OSTI)

    Kolb, E.W.

    1986-10-01

    This series of lectures is about the role of particle physics in physical processes that occurred in the very early stages of the bug gang. Of particular interest is the role of particle physics in determining the evolution of the early Universe, and the effect of particle physics on the present structure of the Universe. The use of the big bang as a laboratory for placing limits on new particle physics theories will also be discussed. Section 1 reviews the standard cosmology, including primordial nucleosynthesis. Section 2 reviews the decoupling of weakly interacting particles in the early Universe, and discusses neutrino cosmology and the resulting limits that may be placed on the mass and lifetime of massive neutrinos. Section 3 discusses the evolution of the vacuum through phase transitions in the early Universe and the formation of topological defects in the transitions. Section 4 covers recent work on the generation of the baryon asymmetry by baryon-number violating reactions in Grand Unified Theories, and mentions some recent work on baryon number violation effects at the electroweak transition. Section 5 is devoted to theories of cosmic inflation. Finally, Section 6 is a discussion of the role of extra spatial dimensions in the evolution of the early Universe. 78 refs., 32 figs., 6 tabs.

  17. RFP Section H and Section L Templates

    Broader source: Energy.gov [DOE]

    On April 26, 2011, two draft RFP Section H templates "Performance Requirements" and "Performance Evaluation and Measurement Plan" and one draft RFP Section L template "Proposal Preparation Instructions – Cover Letter and Volume I, Offer and Other Documents" were distributed for Procurement Director (PD), Head of Contracting Activity (HCA), General Counsel and National Nuclear Security Administration (NNSA) review and comment. All comments received were considered and changes were made as appropriate. The final version of the three aforementioned RFP Section H and L templates are available in STRIPES.

  18. SECTION L… ATTACHMENT H

    National Nuclear Security Administration (NNSA)

    III-SECTION J APPENDIX K TRANSITION PLAN To be Added at a Later Date

  19. Operational health physics training

    SciTech Connect (OSTI)

    1992-06-01

    The initial four sections treat basic information concerning atomic structure and other useful physical quantities, natural radioactivity, the properties of {alpha}, {beta}, {gamma}, x rays and neutrons, and the concepts and units of radiation dosimetry (including SI units). Section 5 deals with biological effects and the risks associated with radiation exposure. Background radiation and man-made sources are discussed next. The basic recommendations of the ICRP concerning dose limitations: justification, optimization (ALARA concepts and applications) and dose limits are covered in Section seven. Section eight is an expanded version of shielding, and the internal dosimetry discussion has been extensively revised to reflect the concepts contained in the MIRD methodology and ICRP 30. The remaining sections discuss the operational health physics approach to monitoring radiation. Individual sections include radiation detection principles, instrument operation and counting statistics, health physics instruments and personnel monitoring devices. The last five sections deal with the nature of, operation principles of, health physics aspects of, and monitoring approaches to air sampling, reactors, nuclear safety, gloveboxes and hot cells, accelerators and x ray sources. Decontamination, waste disposal and transportation of radionuclides are added topics. Several appendices containing constants, symbols, selected mathematical topics, and the Chart of the Nuclides, and an index have been included.

  20. Physics Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as Institute of Physics Fellow January 18, 2011 LOS ALAMOS, New Mexico, January 18, ... simulation, and computation, has been selected as a Fellow of the Institute of Physics. ...

  1. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. ...

  2. Theoretical Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Theoretical Physics Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get ... HEP Theory at Los Alamos The Theoretical High Energy Physics group at ...

  3. PART III - SECTION J

    National Nuclear Security Administration (NNSA)

    E SECTION J APPENDIX E PERFORMANCE GUARANTEE AGREEMENT(S) [Note: To be inserted by the Contracting Officer prior to contract award. For Performance Guarantee Agreement(s) template, see Section L, Attachment A.]

  4. PART III - SECTION J

    National Nuclear Security Administration (NNSA)

    I SECTION J APPENDIX I SMALL BUSINESS SUBCONTRACTING PLAN [Note: To be inserted by the Contracting Officer prior to

  5. PART III - SECTION J

    National Nuclear Security Administration (NNSA)

    I SECTION J APPENDIX I SMALL BUSINESS SUBCONTRACTING PLAN Note: To be inserted by the Contracting Officer prior to...

  6. LANSCE Weapons Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 LANSCE Weapons Physics Fortune 500 companies and weapons designers alike rely on our internationally recognized nuclear physics and materials science expertise as well as our one-of-a-kind experimental tools. Contact Us Group Leader Gus Sinnis Email Deputy Group Leader Fredrik Tovesson Email Deputy Group Leader and Experimental Area Manager Charles Kelsey Email Group Office (505) 665-5390 Time Projection Chamber at LANSCE Researcher making measurements of fission cross sections on the Time

  7. Section 106 Archaeology Guidance

    Broader source: Energy.gov [DOE]

    The Advisory Council on Historic Preservation's Section 106 guidance is designed to assist federal agencies in making effective management decisions about archaeological resources in completing the requirements of Section 106 of the National Historic Preservation Act (16 U.S.C. 470f) and its implementing regulations (36 CFR Part 800). This guidance highlights the decision-making role of the federal agency in the Section 106 process. It is also designed for use by State and Tribal Historic Preservation Officers, Indian tribes, Native Hawaiian organizations, and cultural resource management professionals when assisting federal agencies to meet their responsibilities under Section 106.

  8. 14655 Section D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D Contract No. DE-AC06-05RL14655 A000 PART I - THE SCHEDULE SECTION D PACKAGING AND MARKING TABLE OF CONTENTS D.1 PACKAGING......

  9. PART III ? SECTION J

    National Nuclear Security Administration (NNSA)

    B, Page 1 SECTION J APPENDIX B AWARD FEE PLAN Note: To be inserted by the Contracting Officer after contract award....

  10. PART III ? SECTION J

    National Nuclear Security Administration (NNSA)

    M, Page 1 SECTION J APPENDIX M CONTRACTOR COMMITMENTS, AGREEMENTS, AND UNDERSTANDINGS Note: To be inserted by the Contracting Officer after contract award....

  11. Sectional device handling tool

    DOE Patents [OSTI]

    Candee, Clark B.

    1988-07-12

    Apparatus for remotely handling a device in an irradiated underwater environment includes a plurality of tubular sections interconnected end-to-end to form a handling structure, the bottom section being adapted for connection to the device. A support section is connected to the top tubular section and is adapted to be suspended from an overhead crane. Each section is flanged at its opposite ends. Axially retractable bolts in each bottom flange are threadedly engageable with holes in the top flange of an adjacent section, each bolt being biased to its retracted position and retained in place on the bottom flange. Guide pins on each top flange cooperate with mating holes on adjacent bottom flanges to guide movement of the parts to the proper interconnection orientation. Each section carries two hydraulic line segments provided with quick-connect/disconnect fittings at their opposite ends for connection to the segments of adjacent tubular sections upon interconnection thereof to form control lines which are connectable to the device and to an associated control console.

  12. 14655 Section D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D Contract No. DE-AC06-05RL14655 A000 PART I - THE SCHEDULE SECTION D PACKAGING AND MARKING TABLE OF CONTENTS D.1 PACKAGING......................................................................................................................................1 D.2 MARKING ..........................................................................................................................................1 D-i River Corridor Closure Contract Section D Contract No. DE-AC06-05RL14655 A000 PART I

  13. 14655 Section H

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Section H Contract No. DE-AC06-05RL14655 H-i PART I - THE SCHEDULE SECTION H SPECIAL CONTRACT REQUIREMENTS TABLE OF CONTENTS H.1 INCUMBENT EMPLOYEES HIRING PREFERENCES ................................................................... 1 H.2 PAY AND BENEFITS ....................................................................................................................... 1 H.3 LABOR RELATIONS

  14. QCD and Hadron Physics

    SciTech Connect (OSTI)

    Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.

    2015-02-26

    This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.

  15. 14655 Section I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I Contract No. DE-AC06-05RL14655 A099 I-i PART II - CONTRACT CLAUSES SECTION I CONTRACT CLAUSES River Corridor Closure Contract Section I Contract No. DE-AC06-05RL14655 649 I-1 PART II - CONTRACT CLAUSES SECTION I CONTRACT CLAUSES I.1 FAR 52.252-2 CLAUSES INCORPORATED BY REFERENCE (FEB 1998) This contract incorporates one or more clauses by reference, with the same force and effect as if they were given in full text. Upon request, the Contracting Officer will make their full text available.

  16. 6Li Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 03012016) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2004TU02 6Li(p, ): coincidence yields, deduced S-factors low 1, S-factors from ...

  17. 7Li Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 12162015) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1997GO13 7Li(pol. p, ): total , S-factor for capture to third-excited state 0 - ...

  18. PART III - SECTION J

    National Nuclear Security Administration (NNSA)

    E SECTION J APPENDIX E PERFORMANCE GUARANTEE AGREEMENT(S) Note: To be inserted by the Contracting Officer prior to contract award. For Performance Guarantee Agreement(s) template,...

  19. Section 1703 Loan Program

    Broader source: Energy.gov [DOE]

    Section 1703 of Title XVII of the Energy Policy Act of 2005 authorizes the U.S. Department of Energy to support innovative clean energy technologies that are typically unable to obtain conventional private financing due to high technology risks.

  20. HANDBOOK OF ACCELERATOR PHYSICS AND ENGINEERING; SECTIONS 2.7...

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 1999-04-19 OSTI Identifier: 14862 Report Number(s): BNL--66455; KA0201 R&D Project: AD2ADOP; KA0201; TRN: US0106825 DOE Contract Number: AC02-98CH10886 Resource ...

  1. PART III - SECTION J

    National Nuclear Security Administration (NNSA)

    J, Page 1 SECTION J APPENDIX J DIVERSITY PLAN GUIDANCE In accordance with Section I clause DEAR 970.5226-1, Diversity Plan, this Appendix provides guidance to assist the Contractor in understanding the information being sought by the Department of Energy, National Nuclear Security Administration (DOE/NNSA) for each of the diversity elements within the clause. The Contractor shall submit a Diversity Plan to the Contracting Officer for approval within 90 days after the effective date of this

  2. Section II INT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6/14/11 Page 1 of 9 Printed copies of this document are uncontrolled. Retrieve latest version electronically. SANDIA CORPORATION SF 6432-IN (06/14/11) SECTION II GENERAL PROVISIONS FOR INTERNATIONAL COMMERCIAL TRANSACTIONS THE FOLLOWING CLAUSES APPLY TO THIS CONTRACT AS INDICATED UNLESS SPECIFICALLY DELETED, OR EXCEPT TO THE EXTENT THEY ARE SPECIFICALLY SUPPLEMENTED OR AMENDED IN WRITING IN THE SIGNATURE PAGE OR SECTION I OF THIS CONTRACT. IN01 ACCEPTANCE OF TERMS AND CONDITIONS This Contract

  3. Section 1251 Report Update

    National Nuclear Security Administration (NNSA)

    November 2010 Update to the National Defense Authorization Act of FY2010 Section 1251 Report New START Treaty Framework and Nuclear Force Structure Plans 1. Introduction This paper updates elements of the report that was submitted to Congress on May 13, 2010, pursuant to section 1251 of the National Defense Authorization Act for Fiscal Year 2010 (Public Law 111-84) ("1251 Report"). 2. National Nuclear Security Administration and modernization of the complex - an overview From FY 2005

  4. Fermilab | Science | Particle Physics | Benefits of Particle Physics |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workforce Workforce Development In this Section: thumb Medicine thumb Homeland Security thumb Industry thumb Computing thumb Sciences thumb Workforce Development thumb A Growing List Training scientists Particle physics has a profound influence on the workforce. Basic science is a magnet that attracts inquisitive and capable students. In particle physics, roughly one sixth of those completing PhDs ultimately pursue careers in basic high-energy physics research. The rest find their way to

  5. Theoretical Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Theoretical Physics Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email HEP Theory at Los Alamos The Theoretical High Energy Physics group at Los Alamos National Laboratory is active in a number of diverse areas of research. Their primary areas of interest are in physics beyond the Standard Model, cosmology, dark matter, lattice quantum chromodynamics, neutrinos, the fundamentals of

  6. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. Isotopes» A roadmap of matter that will help unlock the secrets of how the universe is put together The DOE Office of Science's Nuclear Physics (NP) program supports the experimental and theoretical research needed to create this roadmap. This quest requires a broad approach to different, but related, scientific

  7. Planetary Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    planetary physics Planetary Physics Some of the most intriguing NIF experiments test the physics believed to determine the structures of planets down to their cores, both in our solar system and beyond. In particular, scientists are using NIF to "explore" recently discovered exoplanets by duplicating the extreme conditions thought to exist in their interiors. Hundreds of extrasolar planets have been identified, some smaller than Earth and others a dozen times more massive than Jupiter.

  8. Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plasma physics Plasma Physics Almost all of the observable matter in the universe is in the plasma state. Formed at high temperatures, plasmas consist of freely moving ions and free electrons. They are often called the "fourth state of matter" because their unique physical properties distinguish them from solids, liquids and gases. Plasma densities and temperatures vary widely, from the cold gases of interstellar space to the extraordinarily hot, dense cores of stars and inside a

  9. physical security

    National Nuclear Security Administration (NNSA)

    5%2A en Physical Security Systems http:nnsa.energy.govaboutusourprogramsnuclearsecurityphysicalsecuritysystems

  10. Physical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the universe around us. Physics Division researchers are studying these interactions from the outermost reaches of the cosmos, to the innermost confines of subatomic particles....

  11. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, Mod 420 J.6-1 ATTACHMENT J.6 SMALL BUSINESS SUBCONTRACTING PLAN Plateau Remediation Contract Section J Contract No. DE-AC06-08RL14788 Attachment J.6, Mod 420 J.6-2 SMALL BUSINESS SUBCONTRACTING PLAN for United States Department of Energy Plateau Remediation Contract Submitted by: CH2M HILL PLATEAU REMEDIATION COMPANY Prime Contractor FISCAL YEARS 2009-2018 (Base and Option Period) CONTRACT NUMBER DE-AC06-08RL14788 Revision 4 December 30, 2014 Plateau Remediation Contract Section J Contract

  12. FTP archives for physics

    SciTech Connect (OSTI)

    Trunec, D.; Brablec, A.; Kapicka, V.

    1995-12-31

    We have established archives for programs, data, papers etc. in physics (mainly for plasma physics). The archives are located at computer ftp.muni.cz in the directory pub/muni.cz/physics. These archives can be reached by anonymous FTP or by gopher server gopher.muni.cz (147.251.4.33). At the present time, programs for PC, cross sections for electrons, swarm parameters and rate constants stored are in the archives. We would like to collect the programs for calculations in physics (mainly for PC). We suppose that each program should have a testing example and some description. We would also like to collect physical constants and experimental or theoretical data (e.g. cross sections, swarm parameters and rate constants), which are important for other calculation or for comparison with the results of others studies. Interested scholars are invited to sent us their programs, data, preprints and reports for these archives. All files in the archives are in public domain and can be obtained using computer network Internet.

  13. Proton-antiproton collider physics

    SciTech Connect (OSTI)

    Shochet, M.J.

    1995-07-01

    The 9th {anti p}p Workshop was held in Tsukuba, Japan in October, 1993. A number of important issues remained after that meeting: Does QCD adequately describe the large cross section observed by CDF for {gamma} production below 30 GeV? Do the CDF and D0 b-production cross sections agree? Will the Tevatron live up to its billing as a world-class b-physics facility? How small will the uncertainty in the W mass be? Is there anything beyond the Minimal Standard Model? And finally, where is the top quark? Presentations at this workshop addressed all of these issues. Most of them are now resolved, but new questions have arisen. This summary focuses on the experimental results presented at the meeting by CDF and D0 physicists. Reviews of LEP and HERA results, future plans for hadron colliders and their experiments, as well as important theoretical presentations are summarized elsewhere in this volume. Section 1 reviews physics beyond the Minimal Standard Model. Issues in b and c physics are addressed in section 3. Section 4 focuses on the top quark. Electroweak physics is reviewed in section 5, followed by QCD studies in section 6. Conclusions are drawn in section 7.

  14. 9Be Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9Be(p, X) (Current as of 03012016) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1997ZA06 9Be(p, ), (p, d): S-factor 16 - 390 keV X4 01232013 1973SI27 9Be(p, ...

  15. 4He Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 03012016) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1974KR07 4He(p, p): 0.5 - 3 X4 10232014 2004PU02 4He(p, p): ( 128.7) ...

  16. 14655 Section C

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C Contract No. DE-AC06-05RL14655 226 C-i PART I - THE SCHEDULE SECTION C - STATEMENT OF WORK TABLE OF CONTENTS C.1 PURPOSE, OVERVIEW, END-STATES, AND ORGANIZATION ................................................... 1 C.1.1 PURPOSE AND OVERVIEW ................................................................................................ 1 C.1.2 END-STATES ........................................................................................................................ 1 C.1.3

  17. 14655 Section E

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E Contract No. DE-AC06-05RL14655 A000 PART I - THE SCHEDULE SECTION E INSPECTION AND ACCEPTANCE TABLE OF CONTENTS E.1 FAR 52.246-5 INSPECTION OF SERVICES - COST REIMBURSEMENT (APR 1984) .................1 E.2 FIELD INSPECTION ..........................................................................................................................1 E.3 DOE INSPECTION ............................................................................................................................2 E.4

  18. Theoretical High Energy Physics

    SciTech Connect (OSTI)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  19. 19F Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Incomplete) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1990WA10 19F(p, n): σ < 30 X4 04/26/2012 2008CO03 19F(p, γ): σ Ecm = 200 - 700 keV X4 05/14/2014 1979SU13 19F(p, γ): σ 0.2 - 1.2 X4 05/06/2014 2006COZY 19F(p, γ1): capture yield 200 - 800 keV thin target 12/08/2014 19F(p, γ): capture yield thick target 19F(p, α2γ): capture yield thin target, thick target 2008CO03 19F(p, γ1): reaction cross section Ecm = 200 - 800 keV thin target, thick target

  20. Neutrino Physics

    DOE R&D Accomplishments [OSTI]

    Lederman, L. M.

    1963-01-09

    The prediction and verification of the neutrino are reviewed, together with the V A theory for its interactions (particularly the difficulties with the apparent existence of two neutrinos and the high energy cross section). The Brookhaven experiment confirming the existence of two neutrinos and the cross section increase with momentum is then described, and future neutrino experiments are considered. (D.C.W.)

  1. Part III - Section J

    National Nuclear Security Administration (NNSA)

    Corporation Contract No. DE-AC04-94AL85000 Modification No. 585 Attachment 2 Page 1 of 5 Part III - Section J Appendix G List of Applicable Directives and NNSA Policy Letters In addition to the list of applicable directives referenced below, the contractor shall also comply with supplementary directives (e.g., manuals), which are invoked by a Contractor Requirements Document (CRD) attached to a directive referenced below. This List excludes directives that have been granted an exemption from the

  2. Part III - Section J

    National Nuclear Security Administration (NNSA)

    M280 Attachment 1 Page 1 of 5 Part III - Section J Appendix G List of Applicable Directives and NNSA Policy Letters In addition to the list of applicable directives referenced below, the contractor shall also comply with supplementary directives (e.g., manuals), which are invoked by a Contractor Requirements Document (CRD) attached to a directive referenced below. DIRECTIVE NUMBER DATE DOE DIRECTIVE TITLE APPH Chapter X Revision 10 09/08/98 Accounting Practices & Procedures Handbook Chapter

  3. PART III - SECTION J

    National Nuclear Security Administration (NNSA)

    L, Page 1 SECTION J APPENDIX L SPECIAL FINANCIAL INSTITUTION AGREEMENT FOR USE WITH THE PAYMENTS-CLEARED FINANCING ARRANGEMENT Note: (1) The Contractor shall enter into a new banking agreement(s) during the Transition Term of the Contract, utilizing the format contained in this Appendix and include other applicable Contract terms and conditions. (2) Items in brackets [ ] below are provided for clarification and will be removed from the document prior to execution. Agreement entered into this,

  4. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, Modification 332 J.7-1 ATTACHMENT J.7 SMALL DISADVANTAGED BUSINESS PARTICIPATION PROGRAM TARGETS Plateau Remediation Contract Section J Contract No. DE-AC06-08RL14788 Attachment J.7, Modification 332 J.7-2 Small Disadvantaged Business (SDB) Participation Program Targets ATTACHMENT J.7 SMALL DISADVANTAGED BUSINESS PARTICIPATION PROGRAM TARGETS (a) OFFEROR - CH2M HILL Plateau Remediation Company - Prime: AREVA Federal Services, LLC; Fluor Federal Services, Inc. (base period only); East

  5. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, Revision 3, 420 J.8-1 ATTACHMENT J.8 ADVANCE UNDERSTANDING OF COSTS In accordance with the Section H Clause entitled, Advance Understanding of Costs, this attachment sets forth the basis for determining the allowability of costs associated with expenditures that have cost implications under the Contract, that are not identified in other documents requiring the review and approval of the contracting officer. Unless a date is provided within an item of cost identified below, all items within

  6. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 J-1 PART III - LIST OF DOCUMENTS, EXHIBITS, AND OTHER ATTACHMENTS SECTION J -- LIST OF ATTACHMENTS TABLE OF CONTENTS Attachment Number Title of Attachment Modification Number Number of Pages J.1 ABBREVIATIONS AND ACRONYM LIST 0 6 J.2 REQUIREMENTS SOURCES AND IMPLEMENTING DOCUMENTS 331 8 J.3 HANFORD SITE SERVICES AND INTERFACE REQUIREMENTS MATRIX 246 107 J.4 PERFORMANCE EVALUATION AND MEASUREMENT PLAN (PEMP) 249 50 J.5 PERFORMANCE GUARANTEE AGREEMENT 0 3 J.6 SMALL BUSINESS SUBCONTRACTING PLAN

  7. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8RL14655 640 PART III - LIST OF DOCUMENTS, EXHIBITS, AND OTHER ATTACHMENTS SECTION J LIST OF ATTACHMENTS TABLE OF CONTENTS ATTACHMENT J-1 TABLE OF RIVER CORRIDOR CLOSURE CONTRACT WORK SCOPE ATTACHMENT J-2 DOE DIRECTIVES APPLICABLE TO THE RIVER CORRIDOR CLOSURE CONTRACT ATTACHMENT J-3 PERFORMANCE GUARANTEE AGREEMENTS ATTACHMENT J-4 SMALL BUSINESS SUBCONTRACTING PLAN ATTACHMENT J-5 SMALL DISADVANTAGED BUSINESS PARTICIPATION PROGRAM TARGETS ATTACHMENT J-6 ADVANCE AGREEMENT, PERSONNEL, AND RELATED

  8. Physical Scientist

    Broader source: Energy.gov [DOE]

    The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of...

  9. Subatomic Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Subatomic Physics We play a major role in large-scale scientific collaborations around the world, performing nuclear physics experiments that advance the understanding of the hidden subatomic reactions of the universe and how high explosives affect matter. Contact Us Group Leader Melynda Brooks Email Deputy Group Leader Frans Trouw Email Group Office (505) 667-6941 A detector that uses muons, tiny particles generated when cosmic rays interact with Earth's atmosphere to look inside the cores of

  10. Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Plasma Physics By leveraging plasma under extreme conditions, we concentrate on solving critical scientific challenges such as detecting smuggled nuclear materials, advancing weapons physics and generating fusion energy. Contact Us Group Leader Ray Leeper Email Deputy Group Leader Julie Canepa Email Group Office (505) 665-9145 Laser-generated neutrons Researchers at Los Alamos have successfully demonstrated for the first time that laser-generated neutrons can be enlisted as a useful tool in

  11. Section II INT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (11-03-2010) Title: Standard Terms & Conditions for International Commercial Transactions Owner: Procurement Policy & Quality Dept Initial Release Date: 11/3/10 Page 1 of 8 PPQD-TMPLT-008R01 Template Release Date: 12/01/09 Printed copies of this document are uncontrolled. Before using a printed copy to perform work, verify the version against the electronic document to ensure you are using the correct version. SANDIA CORPORATION SF 6432-IN (11-03-2010) SECTION II GENERAL PROVISIONS FOR

  12. Section II INT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IN (01-12-2010) Title: Standard Terms & Conditions for International Commercial Transactions Owner: Procurement Policy & Quality Dept Initial Release Date: 01/12/10 Page 1 of 6 PPQD-TMPLT-008R01 Template Release Date: 12/01/09 Printed copies of this document are uncontrolled. Before using a printed copy to perform work, verify the version against the electronic document to ensure you are using the correct version. SANDIA CORPORATION SF 6432-IN (01-12-2010) SECTION II GENERAL PROVISIONS

  13. HASQARD Section 4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HASQARD Section 4.2.4, Volume 2, Revision 3 requires: "The field custodian shall seal the cap of the individual sample container so that any tampering is easy to detect. Custody seals shall be used to verify that sample integrity has been maintained during transport." The HASQARD Focus Group provides the following clarification to the requirement: Note: The presence of, or fixative residue from, custody seals can interfere with the functionality of equipment used during analysis (e.g.,

  14. HASQARD Section 4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    text of the sixth paragraph in HASQARD Volume 2, Revision 3, Section 4.2.4 is revised to say: "Custody seals shall be used to verify that sample integrity has been maintained during transport. The field custodian shall seal the cap of the individual sample container so that any tampering is easy to detect. In lieu of using a custody seal directly applied to sample containers, the sample container may be placed inside a secondary container that is sealed with a custody seal. Custody tape

  15. 10Be Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Be(p, X) (Current as of 03/01/2016) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1970GO04 10Be(p, γ0): σ 0.6 - 6.3 θ = 0°, θ = 90° 06/05/2012 1987ERZY 10Be(p, n): σ 0.9 - 2 X4 05/15/2012 The following references may be related but not included. 1991GOZV Back to (p, X) Main Page Back to (α, X) Main Page Back to Datacomp Home Page Last modified: 02 March 2016

  16. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, Modification 476 J.2-1 ATTACHMENT J.2 REQUIREMENTS SOURCES AND IMPLEMENTING DOCUMENTS The following lists are provided in accordance with the Section I Clause entitled, DEAR 970.5204-2, Laws, Regulations, and DOE Directives. LIST A: APPLICABLE FEDERAL, STATE, AND LOCAL REGULATIONS Table J.2.1 Code of Federal Regulations (CFR) Document Number Title 10 CFR 63 Disposal of High-Level Radioactive Wastes in a Geologic Repository at Yucca Mountain, Nevada 10 CFR 71 Packaging And Transportation Of

  17. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0, Revision 5 J.10-1 ATTACHMENT J.10 WAGE DETERMINATIONS - SERVICE CONTRACT ACT (SCA) AND DAVIS-BACON ACT Plateau Remediation Contract Section J Contract No. DE-AC06-08RL14788 Attachment J.10, Revision 5 J.10-2 SERVICE CONTRACT ACT WAGE DETERMINATION WD 05-2569 (Rev.-18) was first posted on www.wdol.gov on 07/14/2015 ***************************************************************************** REGISTER OF WAGE DETERMINATIONS UNDER | U.S. DEPARTMENT OF LABOR THE SERVICE CONTRACT ACT | EMPLOYMENT

  18. Section L, Paragraph L-4

    National Nuclear Security Administration (NNSA)

    D SECTION L ATTACHMENT D CROSS REFERENCE MATRIX Section L Section M Offeror's Proposal Criterion 1: PAST PERFORMANCE L-15 (a) M-3 (a) Criterion 2: SITE ORGANIZATION AND...

  19. 6Li Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 02/01/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1985NE05 6Li(α, γ): γ thick target yield resonance X4 02/15/2012 1966FO05 6Li(α, γ): σ 0.9 - 3.0 2 < Eγ < 4 MeV, 4 < Eγ < 7 MeV, thick target capture γ-ray yield, capture γ-ray yield of 2.43 MeV resonance 02/29/2012 1989BA24 6Li(α, γ): σ 1.085, 1.175 X4 02/15/2012 1979SP01 6Li(α, γ): thick target yield curve for 718 keV γ-rays 1140 - 1250 keV 1175 keV resonance 07/19/2011

  20. 19F Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 02/08/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 2008UG01 19F(α, p): yield curves, σ 792 - 1993 keV X4 09/14/2011 2005UG04 19F(α, p1γ): excitation curve 1238 - 2009 keV 1 11/30/2011 19F(α, p0): excitation curve 1 19F(α, p1): excitation curve 1 1984CS01 19F(α, α): σ 1.5 - 3.7 X4 09/14/2011 1994CH36 19F(α, α): σ 1.5 - 4.5 X4 09/14/2011 2000WR01 19F(α, n): neutron yields and σ 2.28 - 3.10 X4 09/14/2011 1977VA10 19F(α, n): differential

  1. 20Ne Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 05/15/2012) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1981DY03 20Ne(p, p'γ): σ for production of γ-rays threshold - 23 1.63-MeV γ-rays X4 03/15/2011 20Ne(p, pαγ): σ for production of γ-rays threshold - 23 6.13-MeV γ-rays 1975RO08 20Ne(p, γ): S-factors 0.37 - 2.10 Direct Capture (DC) → 332-keV state, DC → 2425-keV state, tail of 2425-keV state X4 04/19/2011 20Ne(p, γ): differential σ at θγ = 90° DC → 332-keV state, 332-keV state →

  2. 10B Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 01/21/2015) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1992MC03 10B(α, α): σ relative to Rutherford scattering 1 - 3.3 X4 05/02/2012 1969GA01 10B(α, p), (α α'): relative σ at θ = 90° for Eγ = 1.0 - 3.5 0.170 MeV, 3.088 MeV, 3.682 MeV, 3.852 MeV, 0.717 MeV 06/18/2012 1973VA25 10B(α, n): laboratory differential σ 1.0 - 5.0 for n0: θ = 0°, θ = 90°, θ = 160° X4 04/04/2011 for n1: θ = 0°, θ = 90° for n23: θ = 0°, θ = 90° 10B(α, n):

  3. 11B Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B(α, X) (Current as of 02/01/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1991WA02 11B(α, n): thick-target yield of Eα = 411, 605 and 606 keV resonance 350 - 2400 keV 1 X4 04/04/2011 11B(α, n): for 606-keV resonance 1 11B(α, n): for 411-keV resonance after subtraction of the 605-keV resonance 1 11B(α, n): S-factor 1 11B(α, n): S-factor for thick-target 400 - 500 keV 1 11B(α, n): S-factor for thin-target 1 1966MA04, Errata 11B(α, n): excitation curve < 4.5 for

  4. 11C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C(p, X) (Current as of 03/01/2016) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2013SO11 11C(p, γ): deduced astrophysical reaction rates and S-factors X4 12/14/2015 2003LI51 11C(p, γ): deduced S-factor low X4 09/12/2011 2003TA02 11C(p, γ): deduced S-factor 0 - 0.7 X4 09/12/2011 2003KU36 11C(p, p): elastic scattering σ ~ 0.2 - 3.2 θcm = 180° 09/08/2011 Back to (p, X) Main Page Back to (α, X) Main Page Back to Datacomp Home Page Last modified: 02 March

  5. 12C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 05/15/2012) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2001NE15 12C(p, γ): σ, deduced S(E) ratio < 160 keV X4 10/28/2014 1993CH02 12C(p, X): σ for η production ≤ 0.9 GeV X4 03/07/2012 1974RO29 12C(p, γ): σ 150 - 3000 keV X4 08/27/2013 1951GO1B 12C(p, p): yield curve of elastic scattering 0.2 - 4.0 θ = 164° 11/05/2014 1976ME22 12C(p, p): absolute σ 0.3 - 2.0 X4 08/07/2013 2008BU19 12C(p, γ): σ, deduced S-factors. 354, 390, 460, 463, 565,

  6. 13C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 03/01/2016) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2001NE15 13C(p, γ): σ, deduced S(E) ratio < 160 keV X4 09/12/2011 1994KI02 13C(p, γ): γ-ray yield, calculated S(E) 120 - 950 keV X4 09/12/2011 2008HE11 13C(p, γ): reaction yield at the resonance 448.5-keV for a fresh target and after an integrated charge of 1C 435 - 470 keV σ X4 11/07/2011 1991BR19 13C(p, γ): reaction yield near the resonance 0.44 - 0.6 483.3-keV, 0.55-MeV X4 11/07/2011

  7. 13C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 02/08/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 2006JO11 13C(α, n): deduced S(E) ~ 0 - 1 from (1993BR17), from (1993DR08) X4 08/04/2011 2001HE22 13C(α, n): S(E) 0 - 2 S-factor 11/15/2011 2003KA51 13C(α, n): deduced S-factors, reaction rate Ecm ~ 200 - 800 keV X4 05/01/2012 1993DR08 13C(α, n): excitation function and S(E) ~ 275 - 1075 keV σ, S-factor X4 08/04/2011 2008HE11 13C(α, n): σ, reaction yields and S(E) Ecm = 320 - 700 keV σ, Table

  8. 14N Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Incomplete) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2003MU12 14N(p, γ): deduced astrophysical S-factors < 600 keV X4 05/06/2013 1990WA10 14N(p, n): σ < 30 X4 04/26/2012 2005CO16, 2006BE50 14N(p, γ): σ, deduced astrophysical S-factors, resonance strength 70 - 228 keV X4 05/08/2013 2006LE13 14N(p, γ): σ, deduced astrophysical S-factors 70 - 228 keV X4 05/30/2013 2005BR04, 2005BR15 14N(p, γ): astrophysical S-factors ~ 0.1 - 2.5 1 08/15/2013 2004FO02,

  9. 14N Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 05/14/2012) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1971CO27 14N(α, γ): thick target yield 0.5 - 1.2 1 08/04/2011 2000GO43 14N(α, γ): resonance yields, deduced astrophysical reaction rates 550 - 1300 keV X4 03/01/2012 1973RO03 14N(α, γ): γ-ray yield 1.0 - 3.2 1 04/30/2012 1980MA26 14N(α, α): σ 1.5, 1.6 X4 03/01/2012 2007CH25 14N(α, γ): deduced resonance parameters 1620 - 1775 keV X4 03/01/2012 1994YE11 14N(α, α): σ(θ)/σ(Rutherford) 2

  10. 16O Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Incomplete) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1973MC12 16O(p, α): σ threshold - 7.7 X4 10/17/2012 1981DY03 16O(p, pα): σ for production of γ-rays threshold - 23 4.44-MeV γ-rays X4 03/15/2011 16O(p, p'): σ for production of γ-rays threshold - 23 6.13-MeV γ-rays 1997MO27 16O(p, p), (p, γ): elastic, capture σ Ecm = 200 - 3750 keV X4 03/28/2013 1973RO34 16O(p, γ): S(E) 0.3 - 3.1 S-Factor X4 05/10/2011 16O(p, γ): differential σ for the DC → ground

  11. 18O Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 05/14/2012) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 2003DA19 18O(α, γ): deduced resonance strengths ~ 470 - 770 keV X4 02/13/2012 1978TR05 18O(α, γ): excitation function for the 1.27 MeV secondary γ-ray transition 0.6 - 2.3 θγ = 0° 02/29/2012 1990VO06 18O(α, γ): resonance γ yields < 0.78 X4 02/13/2012 1973BA10 18O(α, n): σ with target thickness 1 - 5 6 keV, 13 keV 06/06/2011 1956BO61 18O(α, n): neutron yields 1.8 - 5.3 0° - 30° X4

  12. SECTION J, APPENDIX B - PEP

    National Nuclear Security Administration (NNSA)

    SECTION J APPENDIX B PERFORMANCE EVALUATION PLAN Replaced by Mods 002, 016, 020, 029, 0084 Intentionally left blank for Internet posting purposes. Section J, Appendix B, Page 1...

  13. SECTION J, APPENDIX B - PEP

    National Nuclear Security Administration (NNSA)

    SECTION J APPENDIX B PERFORMANCE EVALUATION PLAN Replaced by Mods 002, 016, 020, 029, 0084 Intentionally left blank for Internet posting purposes. Section J, Appendix B, Page 1

  14. Physical Security

    SciTech Connect (OSTI)

    2008-01-01

    The future of physical security at government facilities and national laboratories is rapidly progressing beyond the cliché of gates, guns and guards, and is quickly being replaced by radars, sensors and cameras. Learn more about INL's security research at http://www.facebook.com/idahonationallaboratory.

  15. 3H Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3H(α, X) (Current as of 02/01/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 2001TO07 3H(α, γ): deduced S-factor Ecm = 0.05 - 0.8 X4 01/09/2012 1994BR25 3H(α, γ): deduced σ and S-factor Ecm = 50 - 1200 keV X4 01/09/2012 1987SC18 3H(α, γ): σ, deduced S-factor Ecm = 79 - 464 keV X4 01/09/2012 1988SA13 3H(α, α): recoil σ 0.5 - 2.5 X4 01/09/2012 1987BU18 3H(α, γ): σ and S-factor 0.7 - 2 X4 01/09/2012 1968IV01 3H(α, α): elastic scattering σ 3 - 11 Table 9 X4

  16. 3He Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 05/14/2012) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1982KR05 3He(α, γ): σ Ecm = 107 - 1266 keV X4 01/05/2012 1969NA24 3He(α, γ): σ and S-factor 164 - 245 keV σ, S(E) X4 07/19/2011 1984OS03 3He(α, γ): σ 165 - 1169 keV X4 01/05/2012 1982OS02 3He(α, γ): S-factor 165 - 1170 keV S34(Ecm) X4 07/19/2011 1988HI06 3He(α, γ): σ Ecm = 195 - 686 keV X4 01/05/2012 2007CO17 3He(α, γ): deduced σ and S-factor 220, 250, 400 keV X4 01/05/2012

  17. 20Ne Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20Ne(α, X) (Current as of 02/08/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1983SC17 20Ne(α, γ): deduced S-factor of capture σ 0.55 - 3.2 X4 09/15/2011 1997WI12 20Ne(α, γ): deduced primary transitions yield 1.64 - 2.65 X4 09/15/2011 1999KO34 20Ne(α, γ): γ-ray yield for the transition 1.9 - 2.8 g.s. 01/03/2012 1369 keV g.s. 10917 keV g.s., 1369 keV 11016 keV g.s. 1975KU06 20Ne(α, γ): σ 2.5 - 20 X4 09/15/2011 1968HI02 20Ne(α, γ): σ 3 - 6 X4 09/15/2011

  18. 10B Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 05/15/2012) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2010LA11 10B(p, α): deduced S(E) E(cm) = 0 - 0.15 1 11/30/2011 1993AN06 10B(p, α): α yield E(cm) = 17 - 134 keV X4 11/07/2011 1993AN09 10B(p, α): absolute fusion σ and S(E) E(cm) = 48 - 159 keV X4 11/07/2011 1972SZ02 10B(p, α): total reaction σ and S(E) 60 - 180 keV 1 X4 03/03/2011 1983WI09 10B(p, γ): γ yield, capture σ(E) 0.07 - 2.2 X4 11/07/2011 2003TO21 10B(pol. p, γ): σ, deduced

  19. 11B Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 12/17/2015) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2004RO27, 2004SP03 11B(p, α): deduced σ, S-factor Ecm ~ 0 - 1 X4 11/07/2012 2010LA11 11B(p, α): deduced S-factor E(cm) = 0 - 0.6 1 11/30/2011 2000KE10 11B(pol. p, γ): σ, deduced S-factor < 100 keV X4 11/07/2012 1993AN06 11B(p, α): α yield E(cm) = 17 - 134 keV X4 11/29/2012 1979DA03 11B(p, 3α): σ 35.4 - 1500 keV X4 07/30/2014 1992CE02 11B(p, γ): deduced S-factor 40 - 180 keV X4 03/07/2012

  20. 12C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 05/14/2012) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 2009MA70 12C(α, γ0): σ 0 - 2.27 X4 05/01/2012 2012OU01 12C(α, γ): deduced S-factor Ecm = 0.3 - 3.5 X4 02/12/2015 1997KU18 12C(α, γ): analyzed S-factor Ecm = 0.9 - 3 X4 05/10/2012 1987RE02 12C(α, γ): σ, deduced S-factor 0.94 - 2.84 X4 05/09/2012 2001HA31 12C(α, γ): deduced S-factors Ecm = 0.95 - 2.78 E1, E2 06/18/2012 2001KU09 12C(α, γ): deduced S-factor Ecm = 0.95 - 2.8 X4 05/09/2012

  1. 14C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C(p, X) (Incomplete) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1969SI04 14C(p, γ): γ-rays yield for 230 - 690 keV Eγ ≥ 2.8 MeV 08/15/2013 1990GO25 14C(p, γ): σ, deduced S-factor 250 - 740 keV X4 10/28/2014 1968HE12 14C(p, γ): γ-ray yield 0.6 - 2.7 γ0 01/06/2015 1991WA02 14C(p, n): σ 1.0 - 1.55 X4 10/28/2014 1968HA27 14C(p, p): σ at θcm = 1.0 - 2.7 39.2°, 54.7°, 90°, 125.3°, 161.4° 08/15/2013 1971KU01 14C(p, γ0): excitation function at θ = 90° 1.3 - 2.6 1

  2. 15N Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 05/15/2012) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1990WA10 15N(p, n): σ < 30 X4 04/26/2012 1982RE06 15N(p, α): σ 78 - 810 keV X4 09/12/2011 1979ZY02 15N(p, α0): σ, deduced S-factor 93 - 418 keV X4 09/12/2011 2010LE21, 2013DE03 15N(p, γ): σ, S-factors 130 - 1800 keV X4 05/01/2012 & 02/01/2016 2012IM02 15N(p, γ), (p, αγ): σ, S-factors 0.14 - 1.80 X4 02/01/2016 1974RO37 15N(p, γ), (p, αγ): σ 150 - 2500 keV X4 09/12/2011 1968GO07

  3. 15N Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 05/14/2012) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 2002WI18 15N(α γ): σ 461 - 2642 keV X4 09/12/2011 1997WI12 15N(α γ): σ 0.65 - 2.65 X4 09/12/2011 1995WI26 15N(α γ): σ 0.67 - 0.69 X4 09/12/2011 1969AI01 15N(α γ): γ-ray excitation curve for 3.0 ≤ Eγ ≤ 7.0 MeV 2.5 - 3.2 1 11/30/2011 1977DI08 15N(α, γ): γ-ray excitation curve near Eα = 3.15 MeV for transitions to 3146 - 3158 keV five low-lying states, 4.65 MeV (13/2+) state

  4. 16O Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6O(α, X) (Current as of 02/08/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1971TO06 16O(α, γ): σ 0.85 - 1.8 X4 09/15/2011 1953CA44 16O(α, α): σ 0.94 - 4.0 X4 09/15/2011 1997KU18 16O(α, γ): analyzed S-factor 1 - 3.25 X4 05/10/2012 1980MA27 16O(α, α): σ 1.305 - 1.330; 2.950 - 3.075 X4 02/14/2012 16O(α, γ): σ 1.37, 2.6, 2.9, 3.036 1987HA24 16O(α, γ): σ Ecm = 1.7 - 2.35 X4 02/14/2012 1990LE06 16O(α, α): σ 1.8 - 5 X4 03/12/2011 1985JA17 16O(α, α): σ 2

  5. 17O Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 05/15/2012) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2010SE11 17O(p, α): nuclear excitation function 0 - 0.7 1 06/22/2011 1973RO03 17O(p, γ): γ-ray yield 0.15 - 1.4 1 08/01/2012 2015BU02 17O(p, γ): total S(E)-factors 0.17 - 0.53 X4 03/03/2016 2012SC16, 2014DI01 17O(p, γ): σ, deduced S-factors Ecm = 0.2 - 0.4 X4 03/03/2016 1973RO34 17O(p, γ): S(E) 0.3 - 1.9 S-Factor X4 06/22/2011 17O(p, γ): σ for the γ-ray transition 0.94 → 0 MeV 17O(p, γ):

  6. 17O Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 02/08/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 2013BE11; see also 2012BEZP 17O(α, n), (α, γ): σ, S-factors 0.8 - 2.3 X4 02/12/2015 1973BA10 17O(α, n): neutron yields with target thickness 0.9 - 5.3 ~ 2.5 keV, 6 keV, 13 keV, ~ 35 keV 06/06/2011 1976MC12 17O(α, n1): yield of 1.63-MeV γ's 1.4 - 2.3 θγ = 50° 04/28/2011 17O(α, n0): yield of neutrons θn = 120° 17O(α, n1): yield of 1.63-MeV γ's 1.825 - 1.885 θγ = 0° 05/03/2011 17O(α,

  7. 18O Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8O(p, X) (Current as of 05/15/2012) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2008LA06 18O(p, α): deduced S-factor Ecm = 0 - 1.5 θα = 46° 12/03/2012 1990CH32 18O(p, α): σ < 2 X4 10/04/2012 1990VO06 18O(p, γ): resonance γ yields < 0.22 X4 02/13/2012 2008LA13 18O(p, α): deduced σ 0 - 250 keV X4 10/20/2014 1973BA31 18O(p, n): total neutron-production σ < 5 1 X4 05/10/2011 1990WA10 18O(p, n): σ < 30 X4 04/26/2012 1979LO01 18O(p, α): σ 72 - 935 keV X4

  8. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Energy Physics High Energy Physics Investigating the field of high energy physics ... Through the Office of High Energy Physics (HEP), Los Alamos conducts research in particle ...

  9. Top physics: CDF results

    SciTech Connect (OSTI)

    K. Bloom

    2004-06-23

    The top quark plays an important role in the grand scheme of particle physics, and is also interesting on its own merits. We present recent results from CDF on top-quark physics based on 100-200 pb{sup -1} of p{bar p} collision data. We have measured the t{bar t} cross section in different decay modes using several different techniques, and are beginning our studies of top-quark properties. New analyses for this conference include a measurement of {sigma}{sub t{bar t}} in the lepton-plus-jets channel using a neural net to distinguish signal and background events, and measurements of top-quark branching fractions.

  10. CDF Top Physics

    DOE R&D Accomplishments [OSTI]

    Tartarelli, G. F.; CDF Collaboration

    1996-05-01

    The authors present the latest results about top physics obtained by the CDF experiment at the Fermilab Tevatron collider. The data sample used for these analysis (about 110 pb{sup{minus}1}) represents almost the entire statistics collected by CDF during four years (1992--95) of data taking. This large data size has allowed detailed studies of top production and decay properties. The results discussed here include the determination of the top quark mass, the measurement of the production cross section, the study of the kinematics of the top events and a look at top decays.

  11. Physical protection

    SciTech Connect (OSTI)

    Myre, W.C.; DeMontmollin, J.M. )

    1989-07-01

    Serious concern about physical protection of nuclear facilities began around 1972. R and D was initiated at Sandia National Laboratories which had developed techniques to protect weapons for many years. Special vehicles, convoy procedures, and a communications system previously developed for weapons shipments were improved and extended for shipments of other sensitive materials. Barriers, perimeter alarms, portal and internal control systems were developed, tested, and published in handbooks and presented at symposia. Training programs were initiated for U.S. and foreign personnel. Containment and surveillance techniques were developed for the IAEA. Presently emphasis is on computer security, active barriers, and techniques to prevent theft or sabotage by insiders .

  12. Section L, Paragraph L-4

    National Nuclear Security Administration (NNSA)

    D SECTION L ATTACHMENT D CROSS REFERENCE MATRIX Section L Section M Offeror's Proposal Criterion 1: PAST PERFORMANCE L-15 (a) M-3 (a) Criterion 2: SITE ORGANIZATION AND QUALIFICATIONS OF KEY PERSONNEL L-15 (b)(1) M-3 (b)(1) L-15 (b)(2) M-3 (b)(2) Criterion 3: SMALL BUSINESS PARTICIPATION L-15 (c) M-3 (c)

  13. Top physics results at CDF

    SciTech Connect (OSTI)

    Vickey, Trevor; /Illinois U., Urbana

    2005-05-01

    The most recent results on top quark physics at CDF are reported. Measurements of cross-section and mass are presented, and the status of single top quark production searches are discussed. The results obtained from probing various top quark properties are also presented.

  14. Physics Division News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PADSTE » ADEPS » Physics » Physics Division News Physics Division News Discover more about the wide-ranging scope of Physics Division science and technology. Contact Us ADEPS Communications Email Physics Flash An electronic newsletter featuring interviews with Physics Division staff and news of awards and the latest research published in peer-reviewed journals. Physics Flash archive Focus on Physics Focus on Proton Radiography (pdf) High Energy Physics: LBNE, HAWC (pdf) Nuclear Physics:

  15. Mound facility physical characterization

    SciTech Connect (OSTI)

    Tonne, W.R.; Alexander, B.M.; Cage, M.R.; Hase, E.H.; Schmidt, M.J.; Schneider, J.E.; Slusher, W.; Todd, J.E.

    1993-12-01

    The purpose of this report is to provide a baseline physical characterization of Mound`s facilities as of September 1993. The baseline characterizations are to be used in the development of long-term future use strategy development for the Mound site. This document describes the current missions and alternative future use scenarios for each building. Current mission descriptions cover facility capabilities, physical resources required to support operations, current safety envelope and current status of facilities. Future use scenarios identify potential alternative future uses, facility modifications required for likely use, facility modifications of other uses, changes to safety envelope for the likely use, cleanup criteria for each future use scenario, and disposition of surplus equipment. This Introductory Chapter includes an Executive Summary that contains narrative on the Functional Unit Material Condition, Current Facility Status, Listing of Buildings, Space Plans, Summary of Maintenance Program and Repair Backlog, Environmental Restoration, and Decontamination and Decommissioning Programs. Under Section B, Site Description, is a brief listing of the Site PS Development, as well as Current Utility Sources. Section C contains Site Assumptions. A Maintenance Program Overview, as well as Current Deficiencies, is contained within the Maintenance Program Chapter.

  16. Physics Topics - MST - UW Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Topics UW Madison Madison Symmetric Torus Physics Topics MST HomeGraduate Student InformationLinksTourControl and Auxiliary SystemsPhysics TopicsDeviceResearch MissionMST People mst logo CPLA Home Directory Publications Links Internal University of Wisconsin Physics Department Research funding includes support from: Department of Energy National Science Foundation The MST physics challenges are large and many, but much of our work is captured in the following four major RFP physics goals

  17. Section 108 Loan Guarantee Program

    Broader source: Energy.gov [DOE]

    This program provides communities with a source of financing for economic development, housing rehabilitation, public facilities, and other physical development projects, including renewable energy additions. It offers state and local governments the ability to transform a small portion of their CDBG funds into federally guaranteed loans large enough to pursue physical and economic revitalization projects capable of revitalizing entire neighborhoods.

  18. PART III-SECTION J

    National Nuclear Security Administration (NNSA)

    C SECTION J APPENDIX C TRANSITION PLAN Plan: [To be inserted by the Contracting Officer.] Requirements: In accordance with Section F, Deliverables During Transition, the Contractor shall submit a Transition Plan for the Contracting Officer's approval 10 days after Contract award. The Transition plan shall describe the process, details, schedule, and cost for providing an orderly transition during the Contract's Transition Term stated in Section F, F-3 Period of Performance. The Transition Plan

  19. PART III … SECTION J

    National Nuclear Security Administration (NNSA)

    B, Page 1 SECTION J APPENDIX B AWARD FEE PLAN [Note: To be inserted by the Contracting Officer after contract award.]

  20. PART III … SECTION J

    National Nuclear Security Administration (NNSA)

    M, Page 1 SECTION J APPENDIX M CONTRACTOR COMMITMENTS, AGREEMENTS, AND UNDERSTANDINGS [Note: To be inserted by the Contracting Officer after contract award.]

  1. SECTION J, APPENDIX A - SOW

    National Nuclear Security Administration (NNSA)

    0007749 SECTION J, APPENDIX A: STATEMENT OF WORK TABLE OF CONTENTS CHAPTER I. OBJECTIVES, SCOPE, AND REQUIREMENTS ......................................................................... 1 1.0 OBJECTIVE .................................................................................................................................................. 1 2.0 BACKGROUND

  2. Astroparticle physics with a customized low-background broad...

    Office of Scientific and Technical Information (OSTI)

    ... Resource Type: Journal Article Resource Relation: Journal Name: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated ...

  3. Saturday Morning Physics - Talks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Further information online Contemporary Physics Education Project The Particle Adventure Particle Physics - Education and Outreach (Fermilab) CERN (Education Website) Wikipedia: ...

  4. Nucleon-nucleon cross sections in nuclear matter

    SciTech Connect (OSTI)

    Schulze, H.; Schnell, A.; Roepke, G.; Lombardo, U.

    1997-06-01

    We provide a microscopic calculation of neutron-proton and neutron-neutron cross sections in symmetric nuclear matter at various densities, using the Brueckner-Hartree-Fock approximation scheme with the Paris potential. We investigate separately the medium effects on the effective mass and on the scattering amplitude. We determine average cross sections suitable for application in the dynamical simulation of heavy ion collisions, including a parametrization of their energy and density dependence. {copyright} {ital 1997} {ital The American Physical Society}

  5. Fermilab | Science | Particle Physics | Benefits of Particle Physics | A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Growing List A Growing List In this Section: thumb Medicine thumb Homeland Security thumb Industry thumb Computing thumb Sciences thumb Workforce Development thumb A Growing List The science and technology of particle physics has contributed to many other areas of benefit to the nation's well-being. Food sterilization Medical isotope production Simulation of cancer treatments Reliability testing of nuclear weapons Scanning of shipping containers Proposed combination of PET and MRI imaging

  6. SECTION M_Evaluation Factors

    National Nuclear Security Administration (NNSA)

    EVALUATION OF PROPOSALS .....................................................................................2 M-2 BASIS FOR CONTRACT AWARD ...................................................................................3 M-3 TECHNICAL AND MANAGEMENT CRITERIA ..........................................................3 M-4 COST CRITERION .............................................................................................................6 Section M, Page 2 M-1 EVALUATION OF PROPOSALS

  7. SECTION J - TABLE OF CONTENTS

    National Nuclear Security Administration (NNSA)

    Conformed to Mod 0108 DE-NA0000622 Section J Page i PART III - LIST OF DOCUMENTS, EXHIBITS, AND OTHER ATTACHMENTS SECTION J LIST OF APPENDICES TABLE OF CONTENTS Appendix A Statement of Work (Replaced by Mod 002; Modified Mod 016; Replaced Mod 029) Appendix B Performance Evaluation Plan (Replaced by Mods 002, 016, 020, 029, 0084) Appendix C Contractor's Transition Plan Appendix D Sensitive Foreign Nations Control Appendix E Performance Guarantee Agreement(s) Appendix F National Work Breakdown

  8. RFP Section H Clause Templates

    Office of Energy Efficiency and Renewable Energy (EERE)

    On May 3, 2011, twenty two draft Section H clause templates were distributed for Procurement Director (PD), Head of Contracting Activity (HCA), General Counsel and National Nuclear Security Administration (NNSA) review and comment. All comments received were considered and changes were made as appropriate including the elimination of six clauses. The final version of the sixteen RFP Section H clause templates identified below will be available in STRIPES.

  9. Carl A. Gagliardi PHYSICS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. Gagliardi PHYSICS Fundamental interactions and nuclear astrophysics - Fellow, American Physical Society - Distinguished Achievement Award in Teaching, AFS, - Texas A&M John C. Hardy PHYSICS Fundamental interactions and exotic nuclei - Fellow, Royal Society of Canada - Fellow, American Physical Society Che Ming Ko PHYSICS Theoretical hadron physics and heavy-ion collisions - Humboldt Research Award - Fellow, American Physical Society Joseph B. Natowitz CHEMISTRY Heavy-ion reaction

  10. Absolute photoneutron cross sections of Sm isotopes

    SciTech Connect (OSTI)

    Gheorghe, I.; Glodariu, T.; Utsunomiya, H.; Filipescu, D.; Nyhus, H.-T.; Renstrom, T.; Tesileanu, O.; Shima, T.; Takahisa, K.; Miyamoto, S.

    2015-02-24

    Photoneutron cross sections for seven samarium isotopes, {sup 144}Sm, {sup 147}Sm, {sup 148}Sm, {sup 149}Sm, {sup 150}Sm, {sup 152}Sm and {sup 154}Sm, have been investigated near neutron emission threshold using quasimonochromatic laser-Compton scattering γ-rays produced at the synchrotron radiation facility NewSUBARU. The results are important for nuclear astrophysics calculations and also for probing γ-ray strength functions in the vicinity of neutron threshold. Here we describe the neutron detection system and we discuss the related data analysis and the necessary method improvements for adapting the current experimental method to the working parameters of the future Gamma Beam System of Extreme Light Infrastructure - Nuclear Physics facility.

  11. RFP Section L Attachment Templates

    Broader source: Energy.gov [DOE]

    On March 29,2010, six draft RFP Section L Attachment templates (Past Performance Information Questionnaire, Past Performance Questionnaire Cover Letter, Letter of Commitment, Past Performance Reference Information Form, ESH&Q Past Performance Information Form, and Resume Format) were distributed for Procurement Director (PD) and Head of Contracting Activity (HCA) review and comment. All comments received were considered and changes were made as appropriate. The final versions of the six aforementioned RFP Section L Attachment templates will be e-mailed directly to the Procurement Directors and made available in the STRIPES Library. For RFP's generated in STRIPES, the Section L Attachments should be identified in clause DOE-L-1033 and the file with each Attachment should be attached to the RFP.

  12. Transition section for acoustic waveguides

    DOE Patents [OSTI]

    Karplus, H.H.B.

    1975-10-28

    A means of facilitating the transmission of acoustic waves with minimal reflection between two regions having different specific acoustic impedances is described comprising a region exhibiting a constant product of cross-sectional area and specific acoustic impedance at each cross-sectional plane along the axis of the transition region. A variety of structures that exhibit this feature is disclosed, the preferred embodiment comprising a nested structure of doubly reentrant cones. This structure is useful for monitoring the operation of nuclear reactors in which random acoustic signals are generated in the course of operation.

  13. Enabling Technologies for Ceramic Hot Section Components

    SciTech Connect (OSTI)

    Venkat Vedula; Tania Bhatia

    2009-04-30

    Silicon-based ceramics are attractive materials for use in gas turbine engine hot sections due to their high temperature mechanical and physical properties as well as lower density than metals. The advantages of utilizing ceramic hot section components include weight reduction, and improved efficiency as well as enhanced power output and lower emissions as a result of reducing or eliminating cooling. Potential gas turbine ceramic components for industrial, commercial and/or military high temperature turbine applications include combustor liners, vanes, rotors, and shrouds. These components require materials that can withstand high temperatures and pressures for long duration under steam-rich environments. For Navy applications, ceramic hot section components have the potential to increase the operation range. The amount of weight reduced by utilizing a lighter gas turbine can be used to increase fuel storage capacity while a more efficient gas turbine consumes less fuel. Both improvements enable a longer operation range for Navy ships and aircraft. Ceramic hot section components will also be beneficial to the Navy's Growth Joint Strike Fighter (JSF) and VAATE (Versatile Affordable Advanced Turbine Engines) initiatives in terms of reduced weight, cooling air savings, and capability/cost index (CCI). For DOE applications, ceramic hot section components provide an avenue to achieve low emissions while improving efficiency. Combustors made of ceramic material can withstand higher wall temperatures and require less cooling air. Ability of the ceramics to withstand high temperatures enables novel combustor designs that have reduced NO{sub x}, smoke and CO levels. In the turbine section, ceramic vanes and blades do not require sophisticated cooling schemes currently used for metal components. The saved cooling air could be used to further improve efficiency and power output. The objectives of this contract were to develop technologies critical for ceramic hot section

  14. Physics Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thrust Areas Physics Thrust Areas Physics Division serves the nation through its broad portfolio of fundamental and applied research. Quality basic science research: critical component of maintaining our capabilities in national security research To further understand the physical world, generate new or improved technology in experimental physics, and establish a physics foundation for current and future Los Alamos programs, Physics Division leverages its expertise and experimental capabilities

  15. SECTION M_Evaluation Factors

    National Nuclear Security Administration (NNSA)

    EVALUATION OF PROPOSALS................................................................2 M-2 BASIS FOR CONTRACT AWARD.............................................................3 M-3 TECHNICAL AND MANAGEMENT CRITERIA...........................................3 M-4 COST CRITERION.................................................................................5 Section M, Page 2 M-1 EVALUATION OF PROPOSALS (a) This acquisition will be conducted using the policies and procedures in Federal

  16. SECTION M_Evaluation Factors

    National Nuclear Security Administration (NNSA)

    TABLE OF CONTENTS M-1 EVALUATION OF PROPOSALS......................................................................176 M-2 BASIS FOR CONTRACT AWARD...................................................................177 M-3 TECHNICAL AND MANAGEMENT CRITERIA..........................................177 M-4 COST CRITERION.............................................................................................179 Section M, Page 176 M-1 EVALUATION OF PROPOSALS (a) This acquisition will be

  17. SECTION J, APPENDIX A - SOW

    National Nuclear Security Administration (NNSA)

    Mod 002; Modified Mod 016; Replaced Mod 029; Modified Mod 0049) Honeywell FM&T, LLC Contract No. DE-NA0000622 SECTION J APPENDIX A STATEMENT OF WORK 09/19/12 TABLE OF CONTENTS CHAPTER I. OBJECTIVES, SCOPE, AND REQUIREMENTS ......................................................................... 1 1.0 OBJECTIVE .................................................................................................................................................. 1 2.0 BACKGROUND

  18. Nuclear Physics: Recent Talks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Additional Information Computing at JLab Operations Logbook Physics Topics: ...

  19. Nuclear Physics: Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Topics: Meetings Talks given at the Science & Technology Review 2004 Larry Cardman: Science Overview and the Experimental Program ppt | pdf Tony Thomas: Nuclear Physics ...

  20. Nuclear Physics: Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns The Structure of the Nuclear Building Blocks The Structure of Nuclei Symmetry Tests in Nuclear Physics Meetings ...

  1. UNIRIB: Physics Topics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Topics Research Capitalizing on the strengths of nine collaborating research ... Ion Beam (UNIRIB) consortium is conducting research at the forefront of nuclear physics. ...

  2. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Privacy and Security Notice Skip over navigation Search the JLab Site Nuclear Physics Program Please upgrade your browser. This site's design is only visible in a graphical ...

  3. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... equipped with the instruments required for precision nuclear and atomic physics research. ... Mass Analyzer (FMA), an atomic physics beam line, and two general purpose beam lines. ...

  4. Saturday Morning Physics - Talks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Further information online Contemporary Physics Education Project Secret Worlds: The Universe within (Java animation) The Particle Adventure Particle Physics - Education and ...

  5. Computational Physics and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Computational Physics and Methods Performing innovative simulations of physics phenomena on tomorrow's scientific computing platforms Growth and emissivity of young galaxy ...

  6. Office of Physical Protection

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Physical Protection is comprised of a team of security specialists engaged in providing Headquarters-wide physical protection.

  7. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Tom Mullen, Physics Division Safety Engineer. Please Note: If you have any comments or concerns regarding safety at ATLAS, please contact the Physics Division Safety ...

  8. Experimental Physical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Physics, Chair ASM International, Board of Trustees Association for Iron & Steel Technology, Board of Directors National Science Foundation, Condensed Matter Physics, Program...

  9. ORISE: Health Physics Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health Physics Training Student performs an analysis during an ORAU health physics training course Training and educating a highly skilled workforce that can meet operational ...

  10. A poloidal section neutron camera for MAST upgrade

    SciTech Connect (OSTI)

    Sangaroon, S.; Weiszflog, M.; Cecconello, M.; Conroy, S.; Ericsson, G.; Wodniak, I.; Keeling, D.; Turnyanskiy, M. [EURATOM Collaboration: MAST Team

    2014-08-21

    The Mega Ampere Spherical Tokamak Upgrade (MAST Upgrade) is intended as a demonstration of the physics viability of the Spherical Tokamak (ST) concept and as a platform for contributing to ITER/DEMO physics. Concerning physics exploitation, MAST Upgrade plasma scenarios can contribute to the ITER Tokamak physics particularly in the field of fast particle behavior and current drive studies. At present, MAST is equipped with a prototype neutron camera (NC). On the basis of the experience and results from previous experimental campaigns using the NC, the conceptual design of a neutron camera upgrade (NC Upgrade) is being developed. As part of the MAST Upgrade, the NC Upgrade is considered a high priority diagnostic since it would allow studies in the field of fast ions and current drive with good temporal and spatial resolution. In this paper, we explore an optional design with the camera array viewing the poloidal section of the plasma from different directions.

  11. Transverse section radionuclide scanning system

    DOE Patents [OSTI]

    Kuhl, David E.; Edwards, Roy Q.

    1976-01-01

    This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three-dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program.

  12. Cross Sections for (p, X)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cross Sections for (p, X) Reaction for Nuclei A = 3 - 20 Go to the Text Only below if you prefer to view the nuclides in a text list. 20Ne 19F 16O 17O 18O 14N 15N 11C 12C 13C 14C 10B 11B 7Be 9Be 10Be 6Li 7Li 3He 4He Note: Comments, and corrections are welcome. Please email us. List of available cross section data for A = 3 - 20 nuclides: Helium: 3He, 4He Lithium: 6Li, 7Li Beryllium: 7Be, 9Be, 10Be Boron: 10B, 11B Carbon: 11C, 12C, 13C, 14C Nitrogen: 14N, 15N Oxygen: 16O, 17O, 18O Fluorine: 19F

  13. Cross Sections for (α, X)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cross Sections for (α, X) Reaction for Nuclei A = 3 - 20 Go to the Text Only below if you prefer to view the nuclides in a text list. 20Ne 19F 16O 17O 18O 14N 15N 12C 13C 10B 11B 9Be 10Be 6Li 7Li 3He 4He 3H Note: Comments, and corrections are welcome. Please email us. List of available cross section data for A = 3 - 20 nuclides: Hydrogen: 3H Helium: 3He, 4He Lithium: 6Li, 7Li Beryllium: 9Be, 10Be Boron: 10B, 11B Carbon: 12C, 13C Nitrogen: 14N, 15N Oxygen: 16O, 17O, 18O Fluorine: 19F Neon: 20Ne

  14. High Energy Physics and Nuclear Physics Network Requirements...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: High Energy Physics and Nuclear Physics Network Requirements Citation Details In-Document Search Title: High Energy Physics and Nuclear Physics Network ...

  15. PART III … SECTION J

    National Nuclear Security Administration (NNSA)

    18 Section J Appendix F List of Applicable Laws, Regulations, and DOE Directives In addition to the list of applicable directives referenced below, the Contractor shall also comply with supplementary directives (e.g., manuals), which are invoked by a Contractor Requirements Document (CRD) attached to a directive referenced below. This List excludes directives that have been granted an exemption from the CRD in whole or in part. For those Directives whereby the Contractor has been granted an

  16. physics-based-html

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics-based High-Resolution Numerical Modeling of Bridge Foundation Scour

  17. Recommended Dosimetry Cross Section Compendium.

    Energy Science and Technology Software Center (OSTI)

    1994-07-11

    Version 00 The data is recommended for spectrum determination applications and for the prediction of neutron activation of typical radiation sensor materials. The library has been tested for consistency of the cross sections in a wide variety of neutron environments. The results and cautions from this testing have been documented. The data has been interfaced with radiation transport codes, such as TWODANT-SYS (CCC-547) and MCNP (CCC-200), in order to compare calculated and measured activities formore » benchmark reactor experiments.« less

  18. MICROBOONE PHYSICS Ben Carls Fermilab MicroBooNE Physics Outline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PHYSICS Ben Carls Fermilab MicroBooNE Physics Outline * The detector and beam - MicroBooNE TPC - Booster and NuMI beams at Fermilab * Oscillation physics - Shed light on the MiniBooNE low energy excess * Low energy neutrino cross sections * Non-accelerator topics - Supernova neutrino detection - Proton decay backgrounds 2 B. Carls, Fermilab MicroBooNE Physics MicroBooNE Detector * 60 ton fiducial volume (of 170 tons total) liquid Argon TPC * TPC consists of 3 planes of wires; vertical Y, ±60°

  19. Turbine airfoil having outboard and inboard sections

    SciTech Connect (OSTI)

    Mazzola, Stefan; Marra, John J

    2015-03-17

    A turbine airfoil usable in a turbine engine and formed from at least an outboard section and an inboard section such that an inner end of the outboard section is attached to an outer end of the inboard section. The outboard section may be configured to provide a tip having adequate thickness and may extend radially inward from the tip with a generally constant cross-sectional area. The inboard section may be configured with a tapered cross-sectional area to support the outboard section.

  20. Top physics results from CDF

    SciTech Connect (OSTI)

    Gomez, Gervasio; /Cantabria Inst. of Phys.

    2005-05-01

    The top quark is by far the most massive fundamental particle observed so far, and the study of its properties is interesting for several reasons ranging from its possible special role in electroweak symmetry breaking to its sensitivity to physics beyond the Standard Model. They present recent top physics results from CDF based on 160-320 pb{sup -1} of p{bar p} collision data at {radical}s = 1.96 TeV. The t{bar t} cross section and the top mass have been measured in different decay channels and using different methods. they have searched for evidence of single top production, setting upper limits on its production rate. Other results shown in this conference include studies of the polarization of W bosons from top decays, a search for charged Higgs decaying from top, and a search for additional heavy t' quarks.

  1. 2011-2012 SECTION IV: Miscellaneous

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Miscellaneous Ernest Rutherford and the origins of nuclear physics J.C. Hardy

  2. Fermilab | Science | Particle Physics 101

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle Physics 101 Photo Have you ever wondered how often you could split a grain of sand into smaller pieces? Have you asked yourself what the sky is made of? Perhaps you have dreamed of traveling backwards in time? Physicists are as curious as you are. They look for answers to questions that people have pondered since they first began to wonder about the world and their place within it. You'll find some of the answers to these questions here. Explore the sections below to take a crash course

  3. Part IV: Section D - Packaging and Marking

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PART I SECTION D PACKAGING AND MARKING DE-AC36-08GO28308 Modification M901 Section D - Page ii PART I SECTION D PACKAGING AND MARKING TABLE OF CONTENTS D.1 Packaging 1 D.2 Marking ...

  4. Section 999: Annual Plans | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    September 10, 2013 Draft 2014 Annual Plan Section 999: Draft 2014 Annual Plan July 8, 2013 2013 Annual Plan Section 999: 2013 Annual Plan August 3, 2012 2012 Annual Plan Section ...

  5. Top quark pair production cross section at the Tevatron

    SciTech Connect (OSTI)

    Cortiana, Giorgio; /INFN, Padua /Padua U.

    2008-04-01

    Top quark pair production cross section has been measured at the Tevatron by CDF and D0 collaborations using different channels and methods, in order to test standard model predictions, and to search for new physics hints affecting the t{bar t} production mechanism or decay. Measurements are carried out with an integrated luminosity of 1.0 to 2.0 fb{sup -1}, and are found to be consistent with standard model expectations.

  6. OpenEI Community - Section 7

    Open Energy Info (EERE)

    http:en.openei.orgcommunityblogidaho-meeting-2comments endangered species Fauna Fish and Wildlife Flora FWS Section 12 Section 7 Geothermal Regulatory Roadmap Wed, 05 Sep...

  7. Regulatory Review Comment Section | Department of Energy

    Office of Environmental Management (EM)

    Radiation Protection of the Public and the Environment Regulatory Review Comment Section Regulatory Review Comment Section DOE Comments on Radiation Protection (Atomic Energy ...

  8. Vermont Section 401 Water Quality Certification Application ...

    Open Energy Info (EERE)

    Abstract Application required for Section 401 water quality certification under the Clean Water Act. Form Type ApplicationNotice Form Topic Section 401 Water Quality...

  9. Section 3: Office Portfolio Management, Bioenergy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portfolio Management 3-1 Last revised: March 2015 Section 3: Office Portfolio Management This section describes how the U.S. Department of Energy's (DOE's) Bioenergy Technologies ...

  10. Future Physics | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Physics March 5, 2009 In late January, we held a meeting of our Physics Advisory Committee, PAC34 to be precise. We had two primary goals for the PAC, one related to the ...

  11. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 www.pppl.gov 2016 Princeton Plasma Physics Laboratory. A ...

  12. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 www.pppl.gov 2015 Princeton Plasma Physics Laboratory. A...

  13. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    It is supported by the Office of Nuclear Physics of the Department of Energy. The Users ... main goals and is aligned with i the US Nuclear Physics long-range plan priorities. ...

  14. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Nuclear Physics at the Department of Energy to upgrade the capabilities of ATLAS in the area of physics with rare isotopes. A copy of the proposal for the CAlifornium...

  15. Physics Informed Machine Learning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Informed Machine Learning Physics Informed Machine Learning WHEN: Jan 19, 2016 8:00 AM - Jan 22, 2016 4:00 PM WHERE: Inn at Loretto, Santa Fe CATEGORY: Science TYPE:...

  16. Introduction to Neutrino Physics

    SciTech Connect (OSTI)

    Linares, Edgar Casimiro

    2009-04-30

    I present a basic introduction to the physics of the neutrino, with emphasis on experimental results and developments.

  17. MST - UW Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    UW-Madison > Physics Department > Plasma Physics Group > MST > MST Home UW Madison Madison Symmetric Torus MST Home MST HomeGraduate Student InformationLinksTourControl and Auxiliary SystemsPhysics TopicsDeviceResearch MissionMST People mst logo CPLA Home Directory Publications Links Internal University of Wisconsin Physics Department Research funding includes support from: Department of Energy National Science Foundation The Madison Symmetric Torus produces hot plasma for research

  18. ORISE: Health Physics Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health Physics Training Student performs an analysis during an ORAU health physics training course Training and educating a highly skilled workforce that can meet operational commitments in the areas of radiation and health physics is an essential part of protecting your workers, the public and the environment. ORAU, the managing contractor of the Oak Ridge Institute for Science and Education, offers hands-on, laboratory-based training courses in a variety of health physics areas. Training

  19. American Physical Society Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aps awards American Physical Society Awards American Physical Society (APS) is one of the most important professional societies for gauging the quality of R&D done at the Laboratory. The APS sponsors a number of awards including the John Dawson Award of Excellence in Plasma Physics, James Clerk Maxwell Prize for Plasma Physics, as well as Dinstinguised Lectuerer and Doctoral Dissertation prizes. Name Year Name of Award and Citation Yu-hsin Chen 2012 Marshall N. Rosenbluth Outstanding

  20. How to Popularize Physics

    ScienceCinema (OSTI)

    Simmons, Elizabeth [Michigan State University, East Landing, Michigan, United States

    2009-09-01

    This talk discusses the whys and hows of educational outreach and presents examples from several fields of physics.

  1. American Physical Society awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    awards fellowships to Los Alamos scientists December 18, 2012 American Physical Society Awards Fellowships to Los Alamos Scientists LOS ALAMOS, NEW MEXICO, December 18, 2012-Ten scientists at Los Alamos National Laboratory are being inducted into the ranks of fellowship in the American Physical Society (APS) for 2012. The criterion for election as an APS Fellow is exceptional contributions to the physics enterprise; such as performing outstanding physics research, important applications of

  2. Physics of Cancer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NNSA) Physics and Engineering Models Models are mathematical equations and tables that describe physical entities and processes; and are the vehicle by which new scientific understanding is written into the integrated codes. This subprogram funds the critical skills charged with the development, initial validation, and incorporation of new models into the Integrated Codes. Model development converts the results of theories and experiments into simulation capabilities and is inextricably

  3. Research in Neutrino Physics

    SciTech Connect (OSTI)

    Busenitz, Jerome

    2014-09-30

    Research in Neutrino Physics We describe here the recent activities of our two groups over the first year of this award (effectively November 2010 through January 2012) and our proposed activities and associated budgets for the coming grant year. Both of our groups are collaborating on the Double Chooz reactor neutrino experiment and are playing major roles in calibration and analysis. A major milestone was reached recently: the collaboration obtained the first result on the search for 13 based on 100 days of data from the far detector. Our data indicates that 13 is not zero; specifically the best fit of the neutrino oscillation hypothesis to our data gives sin2 (2 13) = 0.086 ± 0.041 (stat) ± 0.030 (syst) The null oscillation hypothesis is excluded at the 94.6% C.L. This result1 has been submitted to Physical Review Letters. As we continue to take data with the far detector in the coming year, in parallel with completing the construction of the near lab and installing the near detector, we expect the precision of our measurement to improve as we gather significantly more statistics, gain better control of backgrounds through use of partial power data and improved event selection, and better understand the detector energy scale and detection efficiency from calibration data. With both detectors taking data starting in the second half of 2013, we expect to further drive down the uncertainty on our measurement of sin2 (2 13) to less than 0.02. Stancu’s group is also collaborating on the MiniBooNE experiment. Data taking is scheduled to continue through April, by which time 1.18 × 1021 POT is projected. The UA group is playing a leading role in the measurement of antineutrino cross sections, which should be the subject of a publication later this year as well as of Ranjan Dharmapalan’s Ph.D. thesis, which he is expected to defend by the end of this year. It is time to begin working on projects which will eventually succeed Double Chooz and MiniBooNE as the main

  4. Electron Photon Interaction Cross Sections

    Energy Science and Technology Software Center (OSTI)

    2014-11-01

    Version 00 The Electron Photon Interaction Cross Sections, EPICS, provides the atomic data needed to perform coupled Electron-Photon transport calculations, to produce accurate macroscopic results, such as energy deposit and dose. Atomic data is provided for elements, Z = 1 to 100, over the energy range 10 eV to 100 GeV; note that nuclear data, such as photo-nuclear, and data for compounds, are not included. All data is in a simple computer independent text formatmore » that is standard and presented to a high precision that can be easily read by computer codes written in any computer language, e.g., C, C++, and FORTRAN. EPICS includes four separate data bases that are designed to be used in combination, these include, • The Evaluated Electron Data Library (EEDL), to describe the interaction of electrons with matter. • The Evaluated Photon Data Library (EPDL), to describe the interaction of photons with matter. • The Evaluated Atomic Data Library (EADL), to describe the emission of electrons and photons back to neutrality following an ionizing event, caused by either electron or photon interactions. • The Evaluated Excitation Data Library (EXDL), to describe the excitation of atoms due to photon interaction. All of these are available in the Extended ENDL format (ENDLX) in which the evaluations were originally performed. The first three are also available in the ENDF format; as yet ENDF does not include formats to handle excitation data (EXDL).« less

  5. Elastic scattering and total cross sections

    SciTech Connect (OSTI)

    Cahn, R.N.

    1990-03-01

    This report discusses concepts of elastic scattering and cross sections of proton-proton interactions. (LSP)

  6. Luu, T; Platter, L 73 NUCLEAR PHYSICS AND RADIATION PHYSICS;...

    Office of Scientific and Technical Information (OSTI)

    constraints from Big Bang nucleosynthesis Bedaque, P; Luu, T; Platter, L 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; DEUTERIUM; FIELD THEORIES; NUCLEAR PHYSICS; NUCLEOSYNTHESIS;...

  7. Plasma physics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physics Subscribe to RSS - Plasma physics The study of plasma, a partially-ionized gas that is electrically conductive and able to be confined within a magnetic field, and how it releases energy. Stewart Prager Stewart Prager is the sixth director of PPPL. He joined the Laboratory in 2009 after a long career at the University of Wisconsin in Madison. At Wisconsin, he led research on the "Madison Symmetric Torus" (MST) experiment and headed a center that studied plasmas in both the

  8. Princeton Plasma Physics Laboratory achieves milestone, completing first

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    part of heart of fusion experiment | Princeton Plasma Physics Lab Princeton Plasma Physics Laboratory achieves milestone, completing first part of heart of fusion experiment By John Greenwald March 22, 2013 Tweet Widget Google Plus One Share on Facebook The completed first section of the NSTX-U center stack. (Photo by Elle Starkman, PPPL Office of Communications) The completed first section of the NSTX-U center stack. Gallery: Related Images: Engineers and technicians at the U.S. Department

  9. SC e-journals, Physics

    Office of Scientific and Technical Information (OSTI)

    Science Annual Review of Physical Chemistry Applied Optics Applied Physics A Applied ... Transactions (ASTRA) - OAJ Atmospheric Chemistry and Physics - OAJ Atomic Data & Nuclear ...

  10. Research in Theoretical Particle Physics

    SciTech Connect (OSTI)

    Feldman, Hume A; Marfatia, Danny

    2014-09-24

    This document is the final report on activity supported under DOE Grant Number DE-FG02-13ER42024. The report covers the period July 15, 2013 – March 31, 2014. Faculty supported by the grant during the period were Danny Marfatia (1.0 FTE) and Hume Feldman (1% FTE). The grant partly supported University of Hawaii students, David Yaylali and Keita Fukushima, who are supervised by Jason Kumar. Both students are expected to graduate with Ph.D. degrees in 2014. Yaylali will be joining the University of Arizona theory group in Fall 2014 with a 3-year postdoctoral appointment under Keith Dienes. The group’s research covered topics subsumed under the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. Many theoretical results related to the Standard Model and models of new physics were published during the reporting period. The report contains brief project descriptions in Section 1. Sections 2 and 3 lists published and submitted work, respectively. Sections 4 and 5 summarize group activity including conferences, workshops and professional presentations.

  11. Physics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Physics Physics On January 13, 2012, Lawrence Berkeley National Laboratory senior scientist Dr. Saul Perlmutter spoke with Energy Department staff about his research that earned him a 2011 Nobel Prize in Physics. Featured Dark Energy Cam: Fermilab Expands Understanding of Expanding Universe Researchers at Fermi National Lab team stand beside the 570-megapixels, five-ton Dark Energy camera, which will be capable of measuring the expansion of the universe - and developing better models about how

  12. American Physical Society Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aps fellows American Physical Society Fellows American Physical Society (APS) Fellowships recognize those who have made advances in knowledge through original research or have made significant and innovative contributions in the application of physics to science and technology. Each year, no more than one-half of one percent of APS's current membership is recognized by their peers for election to the status of Fellow. The hundred-year-old society numbers tens of thousands of physicists

  13. ORISE: Health physics services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health physics services Nuclear power plant The Oak Ridge Institute for Science and Education (ORISE) offers comprehensive health physics services in a number of technical areas for the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), as well as other federal and state agencies. From radiological facility audits and reviews to dose modeling and technical evaluations, ORISE is nationally-recognized for its health physics support to decontamination and decommissioning

  14. Materials Physics and Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MPA Materials Physics and Applications We develop new technologies that solve pressing national energy and security challenges by exploring and exploiting materials and their properties; developing practical applications of materials, and providing world-class user facilities. Contact Us Division Leader Tanja Pietrass Email Deputy Division Leader Rick Martineau Email Chief of Staff Jeff Willis Email Division Office (505) 665-1131 Materials Physics Applications Division Materials Physics and

  15. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Additional Information Computing at JLab Operations Logbook Experiment ...

  16. Nuclear Physics Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Program HALL A Hall A wide shot of detectors Scientists from across the country and around the world use the Thomas Jefferson National Accelerator Facility to ...

  17. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search Nuclear Physics Program Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to ...

  18. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colloquium Experiment Research UserResearcher Information print version Research Highlights Public Interest Nuclear Physics Accelerator Free Electron Laser (FEL) Medical Imaging ...

  19. ORISE: Health physics services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health physics services Nuclear power plant The Oak Ridge Institute for Science and ... Nuclear power plant Dose modeling and sssessments We perform dose modeling and assessment ...

  20. Internships for Physics Majors

    Broader source: Energy.gov [DOE]

    Fermilab's IPM program offers ten-week summer internships to outstanding undergraduate physics majors. This program has been developed to familiarize students with opportunities at the frontiers of...

  1. Physical Protection Program Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-23

    Supplements DOE O 473.1, by establishing requirements for the physical protection of safeguards and security interests. Cancels: DOE M 5632.1C-1

  2. SHARP Physics Modules Updated

    Office of Energy Efficiency and Renewable Energy (EERE)

    Efforts in the second quarter focused on three major priorities: multi-physics integration, intermediate-fidelity tool development, and demonstrations of applicability.

  3. The MicroBooNE Experiment - About the Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Physics Goals MicroBooNE will collect neutrino interactions using the Booster Neutrino Beam at Fermilab and produce the first neutrino cross section measurements on argon in the 1 GeV energy range. MicroBooNE will also explore the currently unexplained excess of low energy electromagnetic events observed in the MiniBooNE experiment. Click here for public plots and physics distributions.

  4. Part V: Section H: Special Contract Requirements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DE-AC36-08GO28308 Modification M801 Section H - Page 2 of 50 PART I SECTION H SPECIAL CONTRACT REQUIREMENTS TABLE OF CONTENTS H.1 No Third Party Beneficiaries...

  5. Section 12 | OpenEI Community

    Open Energy Info (EERE)

    Contributor 4 September, 2012 - 21:36 Idaho Meeting 2 endangered species Fauna Fish and Wildlife Flora FWS Section 12 Section 7 The second Idaho GRR meeting was held today...

  6. Section 7 | OpenEI Community

    Open Energy Info (EERE)

    Contributor 4 September, 2012 - 21:36 Idaho Meeting 2 endangered species Fauna Fish and Wildlife Flora FWS Section 12 Section 7 The second Idaho GRR meeting was held today...

  7. Spontaneous Potential (book section) | Open Energy Information

    Open Energy Info (EERE)

    Reference LibraryAdd to library Book Section: Spontaneous Potential (book section) Author NA Published NA, The date "NA" was not understood.The date "NA" was not understood....

  8. OpenEI Community - Section 12

    Open Energy Info (EERE)

    http:en.openei.orgcommunityblogidaho-meeting-2comments endangered species Fauna Fish and Wildlife Flora FWS Section 12 Section 7 Wed, 05 Sep 2012 04:36:43 +0000 Kyoung 488...

  9. NAABB Full Final Report Section I

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REPORT SECTION I FULL FINAL REPORT SECTION I FULL FINAL REPORT SECTION I Program Overview Table of Contents Executive Summary ........................................................................................ iv Synopsis .......................................................................................................... 1 Perspective 1. NAABB was Preceded by the Aquatic Species Program ................ 29 Perspective 2. NAABB and the National Research Council Report on Sustainable

  10. Physical Uncertainty Bounds (PUB)

    SciTech Connect (OSTI)

    Vaughan, Diane Elizabeth; Preston, Dean L.

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.