National Library of Energy BETA

Sample records for gap substation transmission

  1. Annual Research Portfolio 2013 Transmission and Substations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ord Transmission & Substations New Components & Materials Research Roadmap 2 2013 Electric Power Research Institute, Inc. All rights reserved. Transmission & Substations Area ...

  2. Annual Research Portfolio 2013 Transmission and Substations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ord Transmission & Substations New Components & Materials Research Roadmap 2 © 2013 Electric Power Research Institute, Inc. All rights reserved. Transmission & Substations Area Overhead Transmission Lines (P35) Underground Transmission Lines (P36) HVDC (P162) Substations (P37) Asset Related Research 3 © 2013 Electric Power Research Institute, Inc. All rights reserved. EPRI's Mission Advancing safe, reliable, affordable and environmentally responsible electricity for society through

  3. Supervisory Transmission Lines and Substation Maintenance Manager

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Desert Southwest Region Transmission Lines and Substation Maintenance (G5200) 615...

  4. Electrician - Foreman II (Transmission Lines & Substations) ...

    Broader source: Energy.gov (indexed) [DOE]

    Region Transmission Lines and Substation Maintenance (G5200) 615 S. 43rd Avenue Phoenix, AZ 85009 Duty Location is Page, AZ Find out more about living conditions at this...

  5. EIS-0400: Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO

    Office of Energy Efficiency and Renewable Energy (EERE)

    Western Area Power Administration prepared an EIS, with the U.S. Forest Service, Bureau of Land Management, and Grand County (Colorado) as cooperating agencies, to evaluate the potential environmental impacts of rebuilding a 12-mile, 69 kV electric transmission line in Grand County. The proposed project would rebuild the single-circuit line as a double-circuit transmission line and add a second power transformer. Western identified potentially significant impacts while preparing an EA for this proposal (DOE/EA-1520) and prepared an EIS instead of completing the EA. Further information about the project is available on the project website.

  6. TRANSMISSION AND DISTRIBUTION; POWER SUBSTATIONS; CAPITALIZED...

    Office of Scientific and Technical Information (OSTI)

    AND DISTRIBUTION; POWER SUBSTATIONS; CAPITALIZED COST; CALCULATION METHODS; PLANNING; COST ESTIMATION; MATHEMATICAL MODELS The displacement or deferral of substation...

  7. EIS-0483: Estes to Flatiron Substation Transmission Lines Rebuild...

    Energy Savers [EERE]

    Colorado. EIS-0483: Estes to Flatiron Substation Transmission Lines Rebuild Project Public Comment Opportunities No public comment opportunities available at this time....

  8. Canby Area Service Project substation and associated transmission line. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    Bonneville Power Administration (BPA) provides power to Surprise Valley Electrification Corporation (SVEC) in Modoc County, California. BPA uses PacificCorp`s substation and transmission facilities between Alturas and Canby, California to transfer power to SVEC`s Canby Substation. In the next year, SVEC expects increased industrial, agricultural, and residential electric loads on their 69-kV transmission system south of Canby. SVEC`s substation can accommodate only about 10 percent of the expected additional electric load. BPA`s proposed action is intended to meet SVEC`s increasing electric load. BPA proposes to meet SVEC`s increasing energy load by tapping into BPA`s existing BPA Malin-Warner 230-kV transmission line, and building an 7.9-mile transmission line to a new BPA substation. BPA proposes to build the new substation next to the west side of SVEC`s Canby Substation (Figure 1). This new substation will allow SVEC to move the additional power over their existing transmission or distribution lines. This report is the environmental assessment of the potential impact of the proposed project. The assessment determined that no ``environmental impact statement`` is not required.

  9. Canby Area Service Project : Substation and Associated Transmission Line : Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1992-02-01

    Bonneville Power Administration (BPA) provides power to Surprise Valley Electrification Corporation (SVEC) in Modoc County, California. BPA uses PacificCorp's substation and transmission facilities between Alturas and Canby, California to transfer power to SVEC's Canby Substation. In the next year, SVEC expects increased industrial, agricultural, and residential electric loads on their 69-kV transmission system south of Canby. SVEC's substation can accommodate only about 10 percent of the expected additional electric load. BPA's proposed action is intended to meet SVEC's increasing electric load. BPA proposes to meet SVEC's increasing energy load by tapping into BPA's existing BPA Malin-Warner 230-kV transmission line, and building an 7.9-mile transmission line to a new BPA substation. BPA proposes to build the new substation next to the west side of SVEC's Canby Substation (Figure 1). This new substation will allow SVEC to move the additional power over their existing transmission or distribution lines. This report is the environmental assessment of the potential impact of the proposed project. The assessment determined that no environmental impact statement'' is not required.

  10. THURSDAY: Deputy Secretary of Energy to Visit Western Area Power Administration Transmission Substation

    Broader source: Energy.gov [DOE]

    Deputy Secretary of Energy Elizabeth Sherwood-Randall will visit the Western Area Power Administration for a ceremony at the Electrical District No. 5 Substation to view progress on the Electrical District 5-to-Palo Verde transmission project.

  11. Marys Lake 69/115-kV transmission line upgrade and substation expansion projects

    SciTech Connect (OSTI)

    1996-05-01

    Western Area Power Administration (Western) and the Platte River Power Authority (Platte River) propose to upgrade portions of the existing electric transmission and substation system that serves the Town of Estes Park, Colorado. The existing transmission lines between the Estes Power Plant Switchyard and the Marys Lake Substation include a 115,000 volt (115-kV) line and 69,000 volt (69-kV) line. Approximately one mile is a double-circuit 115/69-kV line on steel lattice structures, and approximately two miles consists of separate single-circuit 115-kV and a 69-kV lines, constructed on wood H-Frame structures. Both lines were constructed in 1951 by the US Bureau of Reclamation. The existing transmission lines are on rights-of-way (ROW) that vary from 75 feet to 120 feet and are owned by Western. There are 48 landowners adjacent to the existing ROW. All of the houses were built adjacent to the existing ROW after the transmission lines were constructed. Upgrading the existing 69-kV transmission line between the Marys Lake Substation and the Estes Power Plant Switchyard to 115-kV and expanding the Marys Lake Substation was identified as the most effective way in which to improve electric service to Estes Park. The primary purpose and need of the proposed project is to improve the reliability of electric service to the Town of Estes Park. Lack of reliability has been a historical concern, and reliability will always be less than desired until physical improvements are made to the electrical facilities serving Estes Park.

  12. EIS-0483: Estes to Flatiron Substation Transmission Lines Rebuild Project, Larimer County, Colorado

    Office of Energy Efficiency and Renewable Energy (EERE)

    Western Area Power Administration (Western) – with USDA Forest Service, Arapaho and Roosevelt National Forest, as a cooperating agency – is preparing an EIS that analyzes the potential environmental impacts of a proposal to rebuild and upgrade two 115-kilovolt single-circuit transmission lines between the Flatiron Substation and the intersection of Mall Road and U.S. Highway 36 in Estes Park, Larimer County, Colorado.

  13. Proceedings: Substation equipment diagnostics conference

    SciTech Connect (OSTI)

    Lyons, K.L.

    1994-07-01

    This Substation Equipment Diagnostics Conference held November 3--5, 1993, in New Orleans, Louisiana, reviewed the status of EPRI research on transmission substation diagnostics as well as that of universities, manufacturers, testing organizations, and other researchers. The papers presented were organized under four categories of diagnostics: Transformers, Circuit Breakers, Other Substation Equipment, and Diagnostic Systems.

  14. Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions

    Broader source: Energy.gov [DOE]

    Historically, manual transmissions have delivered better fuel economy than automatic transmissions. However, improvements in the efficiency of automatic transmissions have closed that gap in recent...

  15. Inter substation data communications

    SciTech Connect (OSTI)

    Lukas, M.R.

    1996-10-01

    The paper briefly describes the scada system operated by ComEd for substation communications. This system has proven a reliable means for monitor and control of the generation, transmission, and distribution system. An attempt to automate stand-alone substation functions into the RTU has had limited success. An automated substation capacitor control algorithm was incorporated into a PC. The PC directly interfaced with the RTU through the serial port for analog monitoring and control of the capacitor banks. There were no further enhancements or development of other control algorithms with the PC. The paper discusses the power system data evolution, the proposed design improvements, and implementation concerns.

  16. Seminoe-Kortes transmission line/substation consolidation project, Carbon County, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1990-07-01

    The existing switchyards at Western Area Power Administration's (WESTERN) Seminoe and Kortes facilities, located approximately 40 miles northeast of Rawlines, Carbon County, Wyoming, were constructed in 1939 and 1951, respectively. The circuit breakers at these facilities are beyond or approaching their service life and need to be replaced. In addition, the switchyards have poor access for maintenance and replacement of equipment, and their locations create potential for oil spills into the North Platte River. WESTERN is proposing to consolidate the switchyard facilities into one new substation to provide easier access, restore proper levels of system reliability, and decrease the potential for oil contamination of the river. This environmental assessment (EA) was prepared to evaluate the impacts of the proposed Seminoe-Kortes Consolidation Project. 57 refs., 12 figs., 8 tabs.

  17. Substation grounding programs

    SciTech Connect (OSTI)

    Meliopoulos, A.P.S. . Electric Power Lab.)

    1992-05-01

    This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 5, is an applications guide of the three computer programs. SOMIP, SMECC, and SGSYS, for the purpose of designing a safe substation grounding system. The applications guide utilizes four example substation grounding systems for the purpose of illustrating the application of the programs, SOMIP, SMECC, and SGSYS. The examples are based on data provided by four contributing utilities, namely, Houston Lighting and Power Company, Southern Company Services, Puget Sound Power and Light Company, and Arizona Public Service Company. For the purpose of illustrating specific capabilities of the computer programs, the data have been modified. As a result, the final designs of the four systems do not necessarily represent actual grounding system designs by these utilities. The example system 1 is a 138 kV/35 kV distribution substation. The example system 2 is a medium size 230 kV/115 kV transmission substation. The third example system is a generation substation while the last is a large 525 kV/345 kV/230 kV transmission substation. The four examples cover most of the practical problems that a user may encounter in the design of substation grounding systems.

  18. Proceedings: Substation Equipment Diagnostics Conference IX

    SciTech Connect (OSTI)

    2001-09-01

    Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The ninth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

  19. Proceedings: Tenth EPRI Substation Equipment Diagnostics Conference

    SciTech Connect (OSTI)

    2002-06-01

    Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The tenth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

  20. Proceedings: Substation Equipment Diagnostics Conference VIII

    SciTech Connect (OSTI)

    2000-06-01

    Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The eighth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

  1. Proposed amendment to presidential permit PP-63 and associated modifications to 500 kV international transmission line, Forbes, Minnesota to Manitoba, Canada. [Forbes Substation

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This Addendum to the Final Environmental Assessment for the Proposed Amendment to Presidential Permit PP-63 and Associated Modifications to 500 kV International Transmission Line: Forbes, Minnesota to Manitoba, Canada (DOE/EA-587) addresses Northern States Power Company's (NSP) proposed expansion of the Forbes Substation. The applicant has requested that the expansion take place on the west side of the substation, within the existing property line, instead of on the north side as originally proposed. All of the proposed construction would take place on property already owned by NSP. DOE has reviewed the environmental impacts associated with this minor modification and has determined that the conclusions reached in the environmental assessment and Finding of No Significant Impact prepared in connection with NSP's original amendment request remain valid.

  2. Electric power substation capital costs (Technical Report) |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Subject: 24 POWER TRANSMISSION AND DISTRIBUTION; POWER SUBSTATIONS; CAPITALIZED COST; CALCULATION METHODS; PLANNING; COST ESTIMATION; MATHEMATICAL MODELS Word Cloud More Like This ...

  3. Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions

  4. Wolf Point Substation, Roosevelt County, Montana

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    The Western Area Power Administration (Western), an agency of the United States Department of Energy, is proposing to construct the 115-kV Wolf Point Substation near Wolf Point in Roosevelt County, Montana (Figure 1). As part of the construction project, Western's existing Wolf Point Substation would be taken out of service. The existing 115-kV Wolf Point Substation is located approximately 3 miles west of Wolf Point, Montana (Figure 2). The substation was constructed in 1949. The existing Wolf Point Substation serves as a Switching Station'' for the 115-kV transmission in the region. The need for substation improvements is based on operational and reliability issues. For this environmental assessment (EA), the environmental review of the proposed project took into account the removal of the old Wolf Point Substation, rerouting of the five Western lines and four lines from the Cooperatives and Montana-Dakota Utilities Company, and the new road into the proposed substation. Reference to the new proposed Wolf Point Substation in the EA includes these facilities as well as the old substation site. The environmental review looked at the impacts to all resource areas in the Wolf Point area. 7 refs., 6 figs.

  5. The implementation of substation automation coordinated with numerical protection relaying

    SciTech Connect (OSTI)

    Welie, G. van; Carolin, T.

    1994-12-31

    During 1987 Eskom embarked on a process of defining user requirements in the area of substation control. This ultimately resulted in a project being established for the procurement and development of a new generation of substation control equipment. At the same time it was decided to establish a new generation of protection schemes for transmission substations, based on numerical protection relays. From the outset, a high degree of coordination was planned between the substation control and protection equipment. Development contracts were placed with suppliers during late 1990 for the protection schemes and during early 1991 for the substation control equipment. These contracts are nearing completion and the first large installations will commence during 1994. The Transmission Group has committed to employing this new technology in all new substations and all substations to be refurbished. This paper discusses the concept of coordinated substation control and protection and gives insight into implementation issues and functional compromises which had to be made to meet project deadlines.

  6. Substation grounding programs. Volume 5, Applications manual

    SciTech Connect (OSTI)

    Meliopoulos, A.P.S.

    1992-05-01

    This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 5, is an applications guide of the three computer programs. SOMIP, SMECC, and SGSYS, for the purpose of designing a safe substation grounding system. The applications guide utilizes four example substation grounding systems for the purpose of illustrating the application of the programs, SOMIP, SMECC, and SGSYS. The examples are based on data provided by four contributing utilities, namely, Houston Lighting and Power Company, Southern Company Services, Puget Sound Power and Light Company, and Arizona Public Service Company. For the purpose of illustrating specific capabilities of the computer programs, the data have been modified. As a result, the final designs of the four systems do not necessarily represent actual grounding system designs by these utilities. The example system 1 is a 138 kV/35 kV distribution substation. The example system 2 is a medium size 230 kV/115 kV transmission substation. The third example system is a generation substation while the last is a large 525 kV/345 kV/230 kV transmission substation. The four examples cover most of the practical problems that a user may encounter in the design of substation grounding systems.

  7. Energy Department, Arizona Utilities Announce Transmission Infrastruct...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    County, Arizona, and runs southeast to the ED5 Substation in Pinal County, Arizona. ... Area Power Administration Transmission Substation Federal Agencies to Assist with Clean ...

  8. Proceedings: Substation equipment diagnostics conference III. Proceedings

    SciTech Connect (OSTI)

    1996-03-01

    This Substation Equipment Diagnostics Conference III was held to review the status of transmission substation diagnostics by EPRI, as well as that of the universities, manufacturers, testing organizations, and other researchers. The papers presented were organized under three categories of diagnostics: Transformers, Miscellaneous Equipment, and Systems. A reception on the evening of the first day of the Conference provided an opportunity for the researchers, utilities and manufacturers to display their equipment for the attendees. Separate abstracts have been indexed into the database for articles from this conference.

  9. Substation flood protection: A case study

    SciTech Connect (OSTI)

    Gacek, D.B.; McGovern, L.L.

    1999-11-01

    On July 18, 1996, the City of Naperville, Illinois encountered a substantial storm event ranging from nine to fourteen inches of rainfall across town in less than twelve hours, with the majority falling over a four-hour period. The watershed containing the City`s Westside substation encountered the most significant rainfall totals, resulting in a flood crest in the substation area of approximately thirteen inches of water. The station is a 138 kV substation, and the flooding of this station caused a power loss to approximately 60% of the City`s customers for more than eight hours. The water level posed no threat to yard equipment, however, within the substation control building, flood water shorted out control circuits and damaged transmission line relay systems. Crews worked round-the-clock for most of a week to return all transmission lines and transformers to normal service. The 15 kV switchgear ultimately had to be replaced due to recurring control circuit problems. Once the station was restored and the cleanup efforts underway, the City embarked on an evaluation to determine what condition or conditions allowed the flooding to occur, and what could be done in the future to avoid this problem to ensure that the customers of Naperville would not experience another service outage of this magnitude due to flooding.

  10. Substation automation problems and possibilities

    SciTech Connect (OSTI)

    Smith, H.L.

    1996-10-01

    The evolutionary growth in the use and application of microprocessors in substations has brought the industry to the point of considering integrated substation protection, control, and monitoring systems. An integrated system holds the promise of greatly reducing the design, documentation, and implementation cost for the substation control, protection, and monitoring systems. This article examines the technical development path and the present implementation problems.

  11. Substation asset management study

    SciTech Connect (OSTI)

    Conroy, M.W.; Conidi, J.

    1996-03-01

    This paper will present an overview of our recent findings in the area of substation asset management and will describe how several utilities, in response to the issues listed above, are re-examining their present maintenance practices in search of more cost-effective programs.

  12. Substation voltage upgrading. Volume 2, Substation insulation tests and design for fast front lightning impulses: Final report

    SciTech Connect (OSTI)

    Panek, J.; Elahi, H.; Lux, A.; Imece, A.F.; LaPanse, R.A.; Stewart, J.R.

    1992-04-01

    This report addresses specific issues to support sound yet not unduly conservative uprating practices for substations. The main parts of the report cover the insulation withstand and overvoltage protection aspects, environmental measurements, reliability criteria, and industry experience. First the insulation design concerns are addressed. Substation stress by a backflashover of the line insulation due to lightning in the vicinity of the substation is recognized as a critical stress. A representative part of a 550 kV BIL substation was erected at the EPRI High Voltage Transmission Research Center, where also a special test circuit was assembled to produce a fast front, slow tail (0.2/200 {mu}s) wave. The substation as well as some special configurations were tested for line-to-ground and line-to-line withstand. Computer studies were performed to complement the test results. A number of important conclusions was reached. The most prominent result in that the high frequency oscillations, as caused by reflections within the substation, do not effect the Critical Flashover Voltage (CFO). The present practice, based on the highest peak is therefore very conservative. The slow tail of the wave appears to dictate the CFO. An arrester model for computer studies to represent very fast as well as slow phenomena was derived. It is based on full scale arrester test data, made available in this project. The computer program to calculate arrester model parameters is also a part of the report. The electric environmental measurements are reported for the tested substation at the HVTRC and for the uprated substation of Public Service Company of Colorado, both before and after the uprating. The performance is satisfactory when corona free hardware is used. Insulation design criteria are analyzed based on substation reliability, the system viewpoint and consequences of the failure. Utility experience with uprated substations is reviewed.

  13. PUREX new substation ATR

    SciTech Connect (OSTI)

    Nelson, D.E.

    1997-05-12

    This document is the acceptance test report (ATR) for the New PUREX Main and Minisubstations. It covers the factory and vendor acceptance and commissioning test reports. Reports are presented for the Main 5 kV substation building, the building fire system, switchgear, and vacuum breaker; the minisubstation control building and switch gear; commissioning test; electrical system and loads inspection; electrical utilities transformer and cable; and relay setting changes based on operational experience.

  14. Substation automation gains momentum with modern options

    SciTech Connect (OSTI)

    Beaty, W.

    1996-12-01

    This paper discusses issues associated with utility substation automation. Monitoring equipment for monitoring power flow, quality, and harmonics for three substations simultaneously is described.

  15. El Paso Electric Company Diablo Substation to the US-Mexico border 115kV transmission line project. Final Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This Environmental Assessment documents the analysis of alternative corridors for development and operation of a proposed 115 kilovolt transmission line using private lands and transporting power to the US-Mexico international border. The project will require (1) an amendment to El Paso Electric Company`s existing export authorization to transfer power across this border, and (2) a Presidential Permit for construction of the transmission line. The project would be located in Dona Ana county in southern New Mexico, approximately five miles west of El Paso, Texas. The alternative corridors, specific locations within those corridors, and structure types are identified and analyzed in the environmental studies.

  16. Substation alarm multiplexing system (SAMS)

    SciTech Connect (OSTI)

    ElBadaly, H.; Gaughan, J.; Ward, G.; Amengual, S.

    1996-03-01

    This paper describes an on going R&D project to develop, design, install, and assess the field performance of an advanced substation alarm system. SAMS provides a highly fault-tolerant system for the reporting of equipment alarms. SAMS separates and identifies each of the multiple alarm contacts, transmits an alarm condition over existing substation two-wire system, and displays the alarm source, and its associated technical information, on a touch-screen monitor inside the substation control room, and a remote central location and on a hand held terminal which may be carried anywhere within the substation. SAMS is currently installed at the Sherman Creek substation in the Bronx for the purpose of a three month field evaluation.

  17. Scoping study: Substation design workstation

    SciTech Connect (OSTI)

    Mauser, S.F. ); Conroy, M.W. ); Singh, N.M. )

    1993-03-01

    This project conducted a survey, consisting of a written questionaire, a workshop, and site visits to determine what facets of substation engineering would benefit from incorporation into a workstation environment. Based on the needs expressed by the respondents, a program for the staged development of a Substation Workstation is recommended. Six analytical function modules for assisting in substation engineering were identified for potential inclusion in the workstation: Initial Planning Activities; Physical Plant Design; Analytical Functions; Civil/Structural Design; Environmental Design; and Project Management. The initial release of the Substation Workstation is recommended to include the workstation environment (including MENTOR -- a concept for on-line help, tutorials, notepad, a minor spreadsheet, and interfaces to other regular desktop functions) and portions of the first three functional modules listed above. Recommendations for progress beyond this first release of the workstation included the development of additional capabilities within the initial functional modules, as well as the development of the remaining modules. An overlap exists between the analytical requirements for this workstation and those already included in the EPRI TLWorkstation and the ICWorkstation. In some cases, elements of these other workstations are also suggested for incorporation into the Substation Workstation (such as the foundation analyses from the TLWorkstation), and in others, an assimilation of the other workstation into the Substation Workstation is recommended (as with the ICWorkstation). Estimated resources for implementing the recommended program, including both costs and development time, are also provided.

  18. Electric power substation capital costs

    SciTech Connect (OSTI)

    Dagle, J.E.; Brown, D.R.

    1997-12-01

    The displacement or deferral of substation equipment is a key benefit associated with several technologies that are being developed with the support of the US Department of Energy`s Office of Utility Technologies. This could occur, for example, as a result of installing a distributed generating resource within an electricity distribution system. The objective of this study was to develop a model for preparing preliminary estimates of substation capital costs based on rudimentary conceptual design information. The model is intended to be used by energy systems analysts who need ``ballpark`` substation cost estimates to help establish the value of advanced utility technologies that result in the deferral or displacement of substation equipment. This cost-estimating model requires only minimal inputs. More detailed cost-estimating approaches are recommended when more detailed design information is available. The model was developed by collecting and evaluating approximately 20 sets of substation design and cost data from about 10 US sources, including federal power marketing agencies and private and public electric utilities. The model is principally based on data provided by one of these sources. Estimates prepared with the model were compared with estimated and actual costs for the data sets received from the other utilities. In general, good agreement (for conceptual level estimating) was found between estimates prepared with the cost-estimating model and those prepared by the individual utilities. Thus, the model was judged to be adequate for making preliminary estimates of typical substation costs for US utilities.

  19. Intelligent devices simplify remote SCADA installations in substations

    SciTech Connect (OSTI)

    Kopriva, V.J.

    1994-12-31

    Utilities are increasingly relying on Supervisory Control and Data Acquisition (SCADA) Systems for the effective and economical management of electric transmission and distribution systems. Now, advances in equipment and design technologies have created opportunities for an increased level of monitoring and control at electric power substations. In the past, prohibitive factors, including complicated equipment and wiring retrofits, protocol compatibility, and hardware installation and maintenance costs have impeded electric utilities in their attempt at broad based application of SCADA systems in electric substations, particularly at distribution voltage levels. These advances in equipment technologies have provided utilities with the opportunity to install and operate SCADA systems at lower cost, while providing flexibility for system expansion over longer periods. The development of intelligent microprocessor controlled devices and integrated communications has facilitated the use of a distributed design approach to installing SCADA monitoring and control in substations. This approach offers greater hardware flexibility and reduced installation costs while increasing reliability, making the addition of monitoring and control to electric substations increasingly practical. This paper will examine current trends in the application of intelligent microprocessor controlled and electronic devices, in stand alone and distributed applications, and the simplification of techniques for installing SCADA systems in substations. It will also consider the potential advantages to be realized in cost and reliability, and examine the necessary changes in design and operation philosophies required to effectively implement the new technology.

  20. MOV surge arresters: improved substation equipment protection

    SciTech Connect (OSTI)

    Niebuhr, W.D.

    1985-07-01

    The introduction of metal-oxide-varistor (MOV) surge arresters has added a new dimension to substation equipment protection. Through the optimal use of these arresters, it is possible to lower surge arrester ratings and thereby improve protective margins, resulting in a possible reduction of the insulation levels (BIL) of substation equipment. This reduction in BIL can lead to a significant reduction in the cost of substation equipment. General methods are delineated for selecting MOV surge arresters for substation protection and the resulting effect on substation equipment insulation levels.

  1. Richard Shaheen named Senior VP of Transmission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transmission lines and initiated upgrades to Celilo Substation and the Pacific Direct Current Intertie. "Richard is an excellent leader, and his 25-plus years of experience at a...

  2. Proponent's Environmental Assessment (PEA) Checklist for Transmission...

    Open Energy Info (EERE)

    Proponent's Environmental Assessment (PEA) Checklist for Transmission Line and Substation Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  3. Substation evaluation using Diagnostic Logic System (DIALOG)

    SciTech Connect (OSTI)

    Andre, W.L.

    1989-08-01

    This project investigated the feasibility of applying a Diagnostic Logic System (DIAGLOG) to evaluate substation operation. The purpose was to see if a determination can be made as to whether the equipment in a substation operated correctly or not when an operating event occurred. The work was directed toward modifying an already proven diagnostic system to create a simplified procedure for describing the operation of substation equipment. Special operating tables or modules of logic were identified for describing relay and breaker operations. The resulting model composed of all the modules connected together is used to evaluate the actual observations available at the substation, and to compare them with what the substation should have produced. The report covers the diagnostic approach used, information on how to construct the modules and examples of diagnosis. Also covered are discussions on the special features of substations that offer a challenge to performing diagnostics. Included in the report are the results of modeling a typical substation and several notes are provided along with an initial library of typical modules which were developed in modeling one of the substations belonging to the Pacific Gas and Electric Company. This substation served as a feasibility demonstrator. 15 figs.

  4. National SCADA Test Bed Substation Automation Evaluation Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: National SCADA Test Bed Substation Automation Evaluation Report Citation Details In-Document Search Title: National SCADA Test Bed Substation Automation ...

  5. National SCADA Test Bed Substation Automation Evaluation Report...

    Office of Scientific and Technical Information (OSTI)

    National SCADA Test Bed Substation Automation Evaluation Report Citation Details In-Document Search Title: National SCADA Test Bed Substation Automation Evaluation Report You ...

  6. A complete and normalized 61850 substation (Smart Grid Project...

    Open Energy Info (EERE)

    as a means to improve the design, maintenance and operation of the substation automation systems. Design a standard substation considering the existing and new solutions...

  7. Substation automation -- a ``bottoms up`` approach

    SciTech Connect (OSTI)

    Thomas, J.

    1996-10-01

    The proliferation of multi-purpose intelligent electronic devices in substations brought the availability of abundant and often overlapping data at the substation. This data can be used for improving the operation and maintenance of the substations and the entire power system. The objective of substation automation is to use technology to gather, consolidate and utilize this data for increasing the efficiency of power system operation and maintenance. Often automation functions are developed and offered around the capabilities of the preferred hardware and software of the integrator. Emphasis is placed on hardware, software and communication protocols rather than need, methodology and application. This can result in over-automation with complex, expensive and ineffective systems, or under-automation that fails to achieve the user`s objectives. The objective is to select appropriate hardware, software and methodology to build the most cost effective system to get the desired results. This paper describes steps to ensure the successful implementation of substation automation.

  8. High voltage electric substation performance in earthquakes

    SciTech Connect (OSTI)

    Eidinger, J.; Ostrom, D.; Matsuda, E.

    1995-12-31

    This paper examines the performance of several types of high voltage substation equipment in past earthquakes. Damage data is provided in chart form. This data is then developed into a tool for estimating the performance of a substation subjected to an earthquake. First, suggests are made about the development of equipment class fragility curves that represent the expected earthquake performance of different voltages and types of equipment. Second, suggestions are made about how damage to individual pieces of equipment at a substation likely affects the post-earthquake performance of the substation as a whole. Finally, estimates are provided as to how quickly a substation, at various levels of damage, can be restored to operational service after the earthquake.

  9. Earth resistivity measurement near substation ground grids

    SciTech Connect (OSTI)

    Lodwig, S.G.; Mateja, S.A.

    1996-11-01

    Proper substation grounding grid design requires good, accurate soil resistivity measurements. This data is essential to model the substation ground grid to design a safe ground grid with a satisfactory ground grid resistance at minimum cost. For substations with several decades of service, there is some concern that a grid may have deteriorated, been damaged during equipment installation or excavation, or that initial soil resistivity measurements were lost or may not have been correctly performed. Ground grid conductors change the substation surface voltage distribution. Any voltage measurements taken at the complete substation will also vary from the tests made without conductors present. During testing, current was injected in the soil by probes placed near the ground grid. The current tends to follow the ground grid conductors since copper is a far better conductor than the soil it is placed in. Resistance readings near grids will be lower than readings in undisturbed soil. Since computer models were unavailable for many years, analyzing the effect of the grid conductors on soil resistivity measurements was very difficult. As a result, soil resistivity measurements made close to substations were of little use to the engineer unless some means of correcting the measured values could be developed. This paper will present results of soil resistivity measurements near a substation ground grid before and after a ground grid has been installed and describes a means of calculating the undisturbed soil model.

  10. Proceedings: Substation equipment diagnostics conference 6

    SciTech Connect (OSTI)

    Traub, T.P.

    1998-09-01

    Substation Equipment Diagnostics Conference 6 was held to assemble, assess and communicate information on the latest diagnostic techniques, test devices, and systems for substation equipment. It focused on the latest in diagnostic equipment and techniques being developed by EPRI and others in research programs, as well as the equipment and programs now available and in service by electric utilities. The conference brought together the views of researchers, manufacturers and users. The papers presented were organized under three categories: Transformers, Circuit Breakers and Other Substation Equipment, and Communications/Data Management/System Integration. Exhibit booths were provided for attendees to obtain detailed information about vendor products or services.

  11. EIS-0474: Southline Transmission Line Project; Arizona and New...

    Broader source: Energy.gov (indexed) [DOE]

    consist of a new 225-mile transmission line between existing substations at Afton, New Mexico, and Apache, Arizona, and improvements to approximately 130 miles of existing...

  12. EA-1982: Parker-Davis Transmission System Routine Operation and...

    Broader source: Energy.gov (indexed) [DOE]

    proposed continuation of operation and maintenance activities and implementation of a ... and at substations and maintenance facilities associated with the transmission system. ...

  13. Experimental adoption of RCM in EDF substations

    SciTech Connect (OSTI)

    Heroin, G.; Aupied, J.; Sanchis, G.

    1996-08-01

    EDF, after testing Reliability Centered Maintenance (RCM) on systems used in nuclear power plants, has now successfully extended RCM to all of its nuclear power plants. In the light of this experience, EDF has committed itself to a pilot study on a line bay of a 400 kV substation in 1992. The RCM method as applied benefited from EDF`s policy of maintenance, introduced five years ago on all substations, which has enhanced prospects of reliability. The original feature in the selection of maintenance tasks was that it brought into play two criteria for failure assessment - frequency and seriousness - and two criteria for maintenance task selection - efficiency and facility. The final outcome of RCM as applied to substation maintenance is to categorize maintenance tasks into: (1) essential maintenance tasks, (2) optional tasks, depending on the type and location of the substation, as well as on factors relating to local management of maintenance policy, and (3) unnecessary tasks.

  14. Scoping study: Substation design workstation. Final report

    SciTech Connect (OSTI)

    Mauser, S.F.; Conroy, M.W.; Singh, N.M.

    1993-03-01

    This project conducted a survey, consisting of a written questionaire, a workshop, and site visits to determine what facets of substation engineering would benefit from incorporation into a workstation environment. Based on the needs expressed by the respondents, a program for the staged development of a Substation Workstation is recommended. Six analytical function modules for assisting in substation engineering were identified for potential inclusion in the workstation: Initial Planning Activities; Physical Plant Design; Analytical Functions; Civil/Structural Design; Environmental Design; and Project Management. The initial release of the Substation Workstation is recommended to include the workstation environment (including MENTOR -- a concept for on-line help, tutorials, notepad, a minor spreadsheet, and interfaces to other regular desktop functions) and portions of the first three functional modules listed above. Recommendations for progress beyond this first release of the workstation included the development of additional capabilities within the initial functional modules, as well as the development of the remaining modules. An overlap exists between the analytical requirements for this workstation and those already included in the EPRI TLWorkstation and the ICWorkstation. In some cases, elements of these other workstations are also suggested for incorporation into the Substation Workstation (such as the foundation analyses from the TLWorkstation), and in others, an assimilation of the other workstation into the Substation Workstation is recommended (as with the ICWorkstation). Estimated resources for implementing the recommended program, including both costs and development time, are also provided.

  15. Notices

    Energy Savers [EERE]

    Pumping Plant Switchyard- Windy Gap Substation Transmission Line Rebuild, Grand ... Switchyard-Windy Gap Substation (Project) transmission line in Grand County, Colorado. ...

  16. Planning substation capacity under the single-contingency scenario

    SciTech Connect (OSTI)

    Leung, L.C.; Khator, S.K.; Schnepp, J.C.

    1995-08-01

    Florida Power and Light (FPL) adopts the single contingency emergency policy for its planning of substation capacity. This paper provides an approach to determine the maximum load which a substation can take on under such a policy. The approach consists of two LP models which determine: (1) the maximum substation load capacity, and (2) the reallocation of load when a substation`s demand cannot be met. Both models are formulated under the single-contingency scenario, an issue which had received little attention in the literature. Not only does the explicit treatment of the scenario provide an exact measure of a substation`s load limit, it also raises several important issues which previous works omit. These two models have been applied to the substation network of the Fort Myers District of the State of Florida.

  17. Utility programs for substation diagnostics development

    SciTech Connect (OSTI)

    1996-03-01

    This article is a brief overview of the opening remarks of the utility panel. These remarks developed a number of interesting substation diagnostic activities and concepts in which the electric utilities are engaged and outlined the considerations which must accompany development of diagnostic sensors and systems. These area include transformer diagnostics, circuit breaker diagnostics, and testing/cost of diagnostic systems.

  18. EIS-0421: Big Eddy-Knight Transmission Line

    Broader source: Energy.gov [DOE]

    BPA is proposing to build a new 500 kilovolt (kV) transmission line in Wasco County, Oregon and Klickitat County, Washington and a new substation in Klickitat County. The new BPA transmission line...

  19. EA-1671: Big River Substation to Poston Substation 69-Kilovolt Transmission Line Project, Arizona and California

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of the Interior’s Bureau of Indian Affairs considered preparing this EA, with DOE’s Western Area Power Administration as a cooperating agency. This project has been canceled.

  20. EIS-0285: Transmission System Vegetation Management Program

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration (Bonneville) is responsible for maintaining a network of 24,000 kilometers (km) or 15,000 miles (mi.) of electric transmission lines and 350 substations. This...

  1. Quality Assurance Plan for site electrical replacements at substation line item subproject: 69 KV Substation

    SciTech Connect (OSTI)

    Ohler, C.K.

    1991-05-21

    The 69 KV Substation Project is based on the recognized need to provide a continuous, reliable source of power and to improve the firm capacity of the electrical service to all production facilities at Mound. The project consists of the following major element: 69 KV Substation: (1) Install a 69 KV Substation and associated equipment with two parallel 18 MVA transformers. (2) Install duct bank as required and provide 15 KV feeder cable from new substation to existing Substation 95 for connection to Mound`s existing primary distribution system. (3) Install duct bank for underground routing of the 15 KV feeder cable from Manhole 5C to the existing power house cable pit. (4) Reconfigure existing Dayton Power and Light Co. 15 KV switchgear in P Building. The purpose of this Quality Assurance Plan (QA Plan) is to assure that the objectives of the United States Department of Energy (D.O.E.) and EG&G Mound Applied Technologies, Miamisburg, Ohio (Mound) are met for this non-weapons project relative to health and safety, protection of the environment, reliability and continuity of operations, and documentation of quality efforts. This QA Plan identifies the activities and responsibilities which are necessary in the design, procurement, fabrication, installation, and start up of this project in order to meet these objectives.

  2. EIS-0400: EPA Notice of Availability of Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO

  3. EIS-0400: EPA Notice of Availability of a Draft Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Grandby Pumping Plant Switchyard Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO

  4. Modeling and Simulating Blast Effects on Electric Substations

    SciTech Connect (OSTI)

    Lyle G. Roybal; Robert F. Jeffers; Kent E. McGillivary; Tony D. Paul; Ryan Jacobson

    2009-05-01

    A software simulation tool was developed at the Idaho National Laboratory to estimate the fragility of electric substation components subject to an explosive blast. Damage caused by explosively driven fragments on a generic electric substation was estimated by using a ray-tracing technique to track and tabulate fragment impacts and penetrations of substation components. This technique is based on methods used for assessing vulnerability of military aircraft and ground vehicles to explosive blasts. An open-source rendering and ray-trace engine was used for geometric modeling and interactions between fragments and substation components. Semi-empirical material interactions models were used to calculate blast parameters and simulate high-velocity material interactions between explosively driven fragments and substation components. Finally, a Monte Carlo simulation was added to model the random nature of fragment generation allowing a skilled analyst to predict failure probabilities of substation components.

  5. Knowledge engineering tool for training power-substation operators

    SciTech Connect (OSTI)

    Lambert-Torres, G. |; Costa, C.I.A.; Alves da Silva, A.P.; Ribeiro, G.M.; Quintana, V.H.

    1997-04-01

    Artificial intelligence techniques have been applied to create systems that can give answers for different situations and assistance during the substation switching operation. These techniques have also been used for training purposes. This paper presents a computational package for training power substation operators in the control and corrective actions using expert system techniques. Illustrative examples are presented using a 138-kV CEMIG substation.

  6. EA-2013: Herbicide Application at Three Substations; Imperial...

    Office of Environmental Management (EM)

    Imperial County (California), Maricopa and Yuma Counties (Arizona) EA-2013: Herbicide Application at Three Substations; Imperial County (California), Maricopa and Yuma ...

  7. Benefits of Using Mobile Transformers and Mobile Substations...

    Energy Savers [EERE]

    and mobile substations (MTS) to rapidly restore electrical service to areas subjected to blackouts as a result of equipment failure, natural disasters, acts of terrorism, or war. ...

  8. 351 Substation Demolition -- B Roll | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    351 Substation Demolition -- B Roll 351 Substation Demolition -- B Roll Addthis Description The U.S. Department of Energy (DOE) recently teamed with contractor Washington Closure Hanford to complete a major recycling effort during cleanup of the Hanford Site in southeastern Washington State.

  9. Grizzly Substation Fiber Optics : Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1998-02-01

    This notice announces BPA`s decision to construct, operate, and maintain the Grizzly Substation Fiber Optic Project (Project). This Project is part of a continuing effort by BPA to complete a regionwide upgrade of its existing telecommunications system. The US Forest Service and BPA jointly prepared the Grizzly Substation Fiber Optic Project Environmental Assessment (EA) (DOE/EA-1241) evaluating the potential environmental impacts of the Proposed Action, the Underground Installation Alternative, and the No Action Alternative. Based on the analysis in the EA, the US Forest Service and BPA have determined that the Proposed Action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI. The US Forest Service has separately issued a FONSI and Decision Notice authorizing BPA to construct, operate, and maintain the Project within the Crooked River National Grassland (Grassland).

  10. EIS-0505: Vantage to Pomona Heights 230 kV Transmission Line...

    Energy Savers [EERE]

    BPA's proposed action is to interconnect the proposed transmission line to an existing BPA substation. EIS-0505: Vantage to Pomona Heights 230 kV Transmission Line Project Public ...

  11. EA-1880: Big Bend to Witten Transmission Line Project, South...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to construct, own, and operate an approximately 70-mile long 230-kV single-circuit transmission line that would connect a new switchyard with the existing Witten Substation. ...

  12. EIS-0451: Hooper Springs Transmission Project, Caribou County, Idaho

    Broader source: Energy.gov [DOE]

    DOE’s Bonneville Power Administration (BPA) prepared an EIS that evaluates the potential environmental impacts of a proposed new 115-kilovolt (kV) transmission line from BPA's proposed Hooper Springs Substation near Soda Springs, Idaho, to either an existing Lower Valley Energy (LVE) substation or a proposed BPA connection with LVE's existing transmission system in northeastern Caribou County. Additional information is available at http://efw.bpa.gov/environmental_services/Document_Library/HooperSprings/.

  13. APS team works smarter, cuts substation construction costs by 36%

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    An aggressive, cost-cutting, team of T D employees at Arizona Public Service Co (APS) is building a new distribution substation in Phoenix for less than half the original cost that APS planners had calculated for the project's land, labor and materials. Scheduled for service in June of this year, APS analysts had originally projected land, labor and materials costs for the 20-MVA Bell substation at nearly $1.7-million-not including major equipment such as transformers, circuit breakers, and switches. However, after studying the project, an empowered APS crew was able to slash 36% off the original estimate-more than $610,000. What's more, APS spokesmen say that its new approach to substation construction and design has given its engineers and construction crews a laundry list of additional ideas to try out on future substation ventures. 4 figs., 1 tab.

  14. Variable Voltage Substation Electric Fire and Emergency Response |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Variable Voltage Substation Electric Fire and Emergency Response Variable Voltage Substation Electric Fire and Emergency Response Question from Participant: My question is from an emergency response perspective. It was stated that it took ~ ½ for electricians to de-energize the electrical components before firefighters were allowed in to fight the fire. This delay causes more damage to equipment and potential propagation of the fire. Is there not a "master"

  15. Benefits of Using Mobile Transformers and Mobile Substations for Rapidly

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Restoring Electrical Service: a Report to the United States Congress Pursuant to Section 1816 of the Energy Policy Act of 2005 (August 2006) | Department of Energy Using Mobile Transformers and Mobile Substations for Rapidly Restoring Electrical Service: a Report to the United States Congress Pursuant to Section 1816 of the Energy Policy Act of 2005 (August 2006) Benefits of Using Mobile Transformers and Mobile Substations for Rapidly Restoring Electrical Service: a Report to the United

  16. PP&L experience with substation reliability centered maintenance

    SciTech Connect (OSTI)

    Santarelli, P.D.

    1996-08-01

    This paper is intended to present a summary of Pennsylvania Power & Light`s (PP&L) experience with substation Reliability Centered Maintenance (RCM). The purpose of this summary is to first explain the process used by PP&L to implement substation RCM, second to explain the differences that are apparent from the use of the classical RCM analysis as compared to the method used by PP&L, and third to provide several insights into the process.

  17. National SCADA Test Bed Substation Automation Evaluation Report

    SciTech Connect (OSTI)

    Kenneth Barnes; Briam Johnson

    2009-10-01

    Increased awareness of the potential for cyber attack has recently resulted in improved cyber security practices associated with the electrical power grid. However, the level of practical understanding and deployment of cyber security practices has not been evenly applied across all business sectors. Much of the focus has been centered on information technology business centers and control rooms. This report explores the current level of substation automation, communication, and cyber security protection deployed in electrical substations throughout existing utilities in the United States. This report documents the evaluation of substation automation implementation and associated vulnerabilities. This evaluation used research conducted by Newton-Evans Research Company for some of its observations and results. The Newton Evans Report aided in the determination of what is the state of substation automation in North American electric utilities. Idaho National Laboratory cyber security experts aided in the determination of what cyber vulnerabilities may pose a threat to electrical substations. This report includes cyber vulnerabilities as well as recommended mitigations. It also describes specific cyber issues found in typical substation automation configurations within the electric utility industry. The evaluation report was performed over a 5-month period starting in October 2008

  18. EIS-0496: San Luis Transmission Project; Alameda, Merced, San Joaquin and Stanislaus Counties, California

    Broader source: Energy.gov [DOE]

    Western Area Power Administration and the San Luis & Delta-Mendota Water Authority (Authority) as joint federal and state lead agencies, are preparing an EIS/Environmental Impact Report that assesses the potential environmental impacts of the proposed San Luis Transmission Project. Western proposes to construct, own, operate, and maintain a new 230-kilovolt transmission line between its Tracy and San Luis Substations and a new 70-kV transmission line between the San Luis and O'Neill Substations.

  19. Integrated substation looks like one RTU to dispatchers

    SciTech Connect (OSTI)

    Koch, W.

    1995-12-01

    Traditionally, supervisory control and data acquisition systems (Scada) use a master/slave arrangement. The master Scada computer polls individual circuit devices for information, or the devices may report (by exception) to the computer. The substation engineering department of Portland General Electric Co (PCE) is now pioneering a new arrangement in which all devices in a substation communicate with each other and a local computer over a data bus. A single communications line connects the Scada master to the same bus for control and/or monitoring. The new approach is known as a substation integration system (SIS). Thus, for a lower initial cost, substation integration: eliminates the need for redundant equipment - such as panel meters, annunciators, transducers, sequence-of-event recorders, auxiliary tripping relays. Scada RTU, control, and transfer switches; reduces control house size by 25% by reducing wiring and using panel space more efficiently; provides a standardized user interface for easy data access, both locally and remotely; is flexible and expandable because of its modularity and use of non-proprietary hardware and software; improves operability, maintainability and reliability through immediate access to key data; and, reduces overall life-cycle costs by reducing travel and outage time through remote access to substation information. 5 figs.

  20. Transient performance of substation structures and associated grounding systems

    SciTech Connect (OSTI)

    Dawalibi, F.P.; Xiong, W.; Ma, J.

    1995-05-01

    When lightning strikes an electric substation, large currents generated by the stroke flow in the above ground structures and grounding system and dissipate in the soil. The electromagnetic fields generated by such high currents may cause damage to equipment and may be dangerous to personnel working nearby. In this paper, the frequency and time domain performance of a substation subjected to a lightning strike is described and discussed. The computed scalar potentials, electric fields, and magnetic fields are presented graphically as a function of spatial coordinates, as a function of time and as a function of both. Two cases are considered. The first case examines the substation grounding system only, while the second case includes an above-ground structure as well. It is believed that the results of the second case have not been published before. A double exponential lightning surge current is injected at one corner of the substation. The response of the grounding system to the frequency domain electromagnetic spectrum of this signal is computed by a frequency domain electromagnetic field analysis software package. The temporal and spatial distributions of the electromagnetic fields inside and near the substation are obtained by an inverse Fourier transformation of all these responses. The presence of a soil with an arbitrary resistivity and permittivity is accurately taken into account. The analysis sheds some new light on the understanding of the effects which take place at the higher frequencies.

  1. The role of the digital fault recorder in the automated substation

    SciTech Connect (OSTI)

    Brandt, J.D.

    1996-10-01

    This paper addresses the role of the digital fault recorder in the automated substation. The topics of the paper include distributed architecture, the substation LAN and reduced installation costs, multiple functions, improved substation intelligence, record generation and record merging, fault summaries, master station software, and future considerations.

  2. EIS-0008-S: Supplement, Dickey-Lincoln School Lakes Transmission Project, Maine, New Hampshire, and Vermont

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration developed this SEIS to evaluate the environmental impacts of construction of a steel double-circuit 345-kilovolt transmission line from Moore Substation near Littleton, New Hampshire, to Comerford Substation near Monroe, New Hampshire and a 345-kilovolt wood pole transmission line from Comerford Substation to Webster Substation near Franklin, New Hampshire, as part of the Dickey-Lincoln School Lakes Transmission Project. The Final SEIS consists entirely of Section 9 (Consultation and Coordination), which incorporates public and agency comments on the Draft SEIS and responses to those comments, as well as all necessary errata and addenda to the Draft SEIS. This SEIS is a supplement to DOE/EIS-008, Dickey-Lincoln School Lakes Transmission Project.

  3. Reliability centered maintenance (RCM) for substations project overview

    SciTech Connect (OSTI)

    Lyons, P.F.

    1996-08-01

    An EPRI Tailored Collaboration project establishing guidelines and tools for implementing Reliability Centered Maintenance (RCM) in substations is nearing completion and final results are being presented at this Substation RCM Conference. The ultimate goal of this RCM project is to help utilities slash substation operations and maintenance costs by optimizing equipment maintenance intervals. Preventive maintenance (PM) programs typically have been developed on a component-by-component basis, relying heavily on equipment vendors` maintenance recommendations. RCM is a logical alternative to traditional PM programs. It is intelligent, common sense maintenance that is function-based rather than component-based. First developed by the airline industry in the 1960s and further developed and applied to the nuclear industry by EPRI in the 1980s, RCM ranks the importance of each function of a system, calculates the impact the loss of the function would have on the overall system, and drives the design of appropriate maintenance tasks for each function. The nuclear industry reaped savings of at least 25% by adopting RCM, and one utility that tried this approach for substation maintenance reported savings of 13% in one year.

  4. EIS-0124: Conrad-Shelby Transmission Line Project, Montana

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Western Area Power Administration developed this statement to assess the environmental impact of adding a 230 kV transmission line between Conrad and Shelby, Montana and a new substation near Shelby to update the stressed electrical transmission system.

  5. Substation based data interpretation techniques for improved power system management

    SciTech Connect (OSTI)

    Booth, C.; McDonald, J.R.; Laycock, W.J.

    1997-04-01

    There is now considerable pressure on electric utilities to operate their systems in the most efficient manner possible and to provide increased quality of service to customers. This pressure, coupled with the decreasing availability of reserve margins dictates that there is a requirement for comprehensive system operation support through, among other things, the provision of quality information relating to the behavior of the primary and secondary systems. This paper will show how the data available within modern substation control and management systems can be exploited in a cost-effective manner, through the implementation of advanced substation functions in an open systems environment. Certain functions which are presently carried out at the control center could be distributed (or partially distributed) to the substation. These functions may provide the utility staff with quality information, which can in turn be used to satisfy the objectives of increasing quality and security of supply, in addition to optimizing the utility`s information, maintenance and asset management functions.

  6. EIS-0114: Fall River/Lower Valley Transmission System Reinforcement

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration developed this EIS to explore reinforcing the electrical transmission system in southeastern Idaho by adding a 161-kilovolt partly single- and double-circuit line from the Goshen to Drummond Substations in order to maintain reliable electric service in the area.

  7. EIS-0090: Fort Peck-Havre Transmission Line Project, Montana

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the potential environmental and socioeconomic implications of its proposed action to construct and operate a 230kV transmission line from Fort Peck to Havre, Montana, with three intermediate interconnecting substations.

  8. EIS-0134: Charlie Creek-Belfield Transmission Line Project, North Dakota

    Broader source: Energy.gov [DOE]

    The Western Area Power Administration developed this EIS to assess the environmental impact of constructing a high voltage transmission line between Charlie Creek and Belfield, North Dakota, and a new substation near Belfield to as a means of adding transmission capacity to the area.

  9. Workshop on user experience with gas-insulated substations

    SciTech Connect (OSTI)

    Graybill, H.W.

    1981-12-01

    There is widespread interest among American and Canadian utilities in the interchange of operating and maintenance experience with gas-insulated substations (GIS). Those utilities who do not yet have GIS on their systems are likewise interested in the operating experience of those who do. A two-day workshop on GIS was held in Portland, Oregon, on July 30 and 31, 1981. The first day of the workshop was open to users only, and the agenda for the day consisted of user presentations on the following subjects: GIS station design and layout; specification and acquisition of GIS equipment; installation and commissioning; and operation and maintenance. On the second day, manufacturers were invited to present their experience, status, and progress in recent developments and improvements. The session was concluded with a general discussion of experience, problems, etc. No formal written papers were presented. The highlights of each verbal presentation and of ensuing discussion are presented in this report.

  10. Use of Static Compensators for Voltage Control at 330- and 500-kV Substations

    SciTech Connect (OSTI)

    Dement'ev, Yu. A.; Kochkin, V. I.; Idiatullov, R. M.; Papafanasopulo, S. G.; Smirnov, A. A.; Smirnov, S. G.

    2003-05-15

    A scheme for compensating the reactive power and controlling the voltage of high-voltage, intermediate-voltage, and low-voltage buses of 330 - 500-kV substations, which consist of static thyristor compensators (STC) on low-voltage autotransformers and controlled shunting reactors on high-voltage lines, is presented. It is shown that the STC can be created step-by-step beginning with the reactive part on substations with low-loaded lines. Results of installation of reactor groups of STC stepwise-controlled by vacuum switches at 330- and 500-kV substations are presented. Tests of the reactor groups have proved their high efficiency.

  11. A simple approach to improve lightning performance of an uprated substation

    SciTech Connect (OSTI)

    Harrington, R.J.; Mueen, M.

    1996-07-01

    This paper presents a simple method to minimize lightning surges entering an uprated or compact substation. A severe lightning stress is caused by a backflashover in close proximity to the substation. Feasibility of uprating is based on the surge arrester technology available at present. However, some aspects of line design offer opportunities in reducing frequency and severity of lightning surges imposed on the substation. The tower surge response adds an inductive overshoot only during the front of the stroke which reduces considerably during the tail. If backflashover does not occur before reflections from adjacent towers arrive, it is unlikely to occur at all. Use of guys and underbuilt ground wires in the limiting distance will produce reflections with larger magnitude and reduce the effective surge impedance of the tower. This would not only reduce backflashover frequency but will also minimize crest and duration of surges entering the substation.

  12. Electrical substation service-area estimation using Cellular Automata: An initial report

    SciTech Connect (OSTI)

    Fenwick, J.W.; Dowell, L.J.

    1998-07-01

    The service areas for electric power substations can be estimated using a Cellular Automata (CA) model. The CA model is a discrete, iterative process whereby substations acquire service area by claiming neighboring cells. The service area expands from a substation until a neighboring substation service area is met or the substation`s total capacity or other constraints are reached. The CA-model output is dependent on the rule set that defines cell interactions. The rule set is based on a hierarchy of quantitative metrics that represent real-world factors such as land use and population density. Together, the metrics determine the rate of cell acquisition and the upper bound for service area size. Assessing the CA-model accuracy requires comparisons to actual service areas. These actual service areas can be extracted from distribution maps. Quantitative assessment of the CA-model accuracy can be accomplished by a number of methods. Some are as simple as finding the percentage of cells predicted correctly, while others assess a penalty based on the distance from an incorrectly predicted cell to its correct service area. This is an initial report of a work in progress.

  13. EA-1948: Gila-North Gila Transmission Line Rebuild and Upgrade Project, Yuma County, Arizona

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration (Western) prepared this EA to analyze the potential environmental impacts of a proposal to rebuild and upgrade two parallel 4.8-mile transmission lines between the Gila and North Gila Substations and take actions in support of portions of Arizona Public Service’s construction of a new, 12.8 mile 230-kV transmission line between North Gila and a proposed substation in Yuma County, Arizona. The U.S. Bureau of Reclamation and U.S. Army Corps of Engineers are cooperating agencies.

  14. EIS-0478: Antelope Valley Station to Neset Transmission Project, Mercer, Dunn, Billings, Williams, McKenzie, and Mountrail Counties, North Dakota

    Broader source: Energy.gov [DOE]

    USDA Rural Utilities Service prepared an EIS that evaluates the potential environmental impacts of constructing, operating, and maintaining a proposed transmission line and associated facilities in western North Dakota. DOE’s Western Area Power Administration, a cooperating agency, would modify its existing Williston Substation to allow a connection of the proposed new transmission line to Western’s transmission system.

  15. EA-1951: Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmission Line; Benton and Yakima Counties, Washington

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess the potential environmental impacts of the proposed rebuilding of the existing 34-mile Midway-Moxee transmission line and the proposed rebuilding and upgrading of the existing 26-mile Midway-Grandview transmission line. Both 115-kV lines originate at the BPA Midway Substation in Benton County and terminate in Yakima County.

  16. EA-1951: Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmission Line Project; Benton and Yakima Counties, Washington

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess the potential environmental impacts of the proposed rebuilding of the existing 34-mile Midway-Moxee transmission line and the proposed rebuilding and upgrading of the existing 26-mile Midway-Grandview transmission line. Both 115-kV lines originate at the BPA Midway Substation in Benton County and terminate in Yakima County.

  17. EIS-0505: Vantage to Pomona Heights 230 kV Transmission Line Project; Yakima, Grant, Benton, and Kittitas Counties, Washington

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management is preparing, with DOE’s Bonneville Power Administration (BPA) as a cooperating agency, an EIS that evaluates the potential environmental impacts of a proposal to construct a 230-kV transmission line in Washington State. BPA’s proposed action is to interconnect the proposed transmission line to an existing BPA substation.

  18. Schultz-Hanford Area Transmission Line Project Draft Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2002-02-08

    This summary covers the major points of the Draft Environmental Impact Statement (EIS) prepared for the BPA Schultz-Hanford Transmission Project proposed by the Bonneville Power Administration (BPA). The project involves constructing a new 500-kilovolt (kV) line in central Washington, north of Hanford. The new line would connect to an existing line at the Schultz Substation near Ellensburg and to a new or existing substation in the Hanford area (see Map 2 in EIS). The project may also involve constructing a new substation to accommodate the new transmission line. As a federal agency, BPA is required by the National Environmental Policy Act (NEPA) to take into account potential environmental consequences of its proposal and take action to protect, restore, and enhance the environment during and after construction. Preparation of this EIS assists in meeting those requirements.

  19. Gap Resolution

    Energy Science and Technology Software Center (OSTI)

    2009-06-16

    With the continued improvements of next generation DNA sequencing technologies and their advantages over traditional Sanger sequencing, the Joint Genome Institute (JGI) has modified its sequencing pipeline to take advantage of the benefits of such technologies. Currently, standard 454 Titanium, paired end 454 Titanium, and Illumina GAll data are generated for all microbial projects and then assembled using draft assemblies at a much greater throughput than before. However, it also presents us with new challenges.more » In addition to the increased throughput, we also have to deal with a larger number of gaps in the Newbler genome assemblies. Gaps in these assemblies are usually caused by repeats (Newbler collapses repeat copies into individual contigs, thus creating gaps), strong secondary structures, and artifacts of the PCR process (specific to 454 paired end libraries). Some gaps in draft assemblies can be resolved merely by adding back the collapsed data from repeats. To expedite gap closure and assembly improvement on large numbers of these assemblies, we developed software to address this issue.« less

  20. Lessons learned from substation predictive maintenance project, TC project {number_sign}7014. Final report

    SciTech Connect (OSTI)

    Geisecke, J.; Spencer, G.; Richardson, F.

    1998-12-01

    The EPRI Maintenance and Diagnostics Center, through a tailored collaboration effort with 10 utilities, developed a Substation Predictive Maintenance Program (SPDM). The objective of the program was to reduce Operation and Maintenance (O and M) costs by applying predictive/condition based maintenance practices to energized substation equipment. This report presents a summary of the project including: how new and existing diagnostic technologies and equipment were evaluated and utilized; how information was gathered in program cost justification and savings and specific work procedures and program administrative aids for a SPDM process. The program was effective in implementing a preventive or condition based maintenance process for participating utilities--enhancing the prioritization or work, redirecting maintenance activity and reducing costs. This document can serve as an implementation guide with lessons learned for substation predictive maintenance processes or to compare and contrast programs currently in place.

  1. EIS-0100: Liberty-Coolidge 230-kV Transmission Line, Arizona

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the potential environmental and socioeconomic implications of various alternatives associated with an upgrade of electrical transmission capability between the Liberty and Coolidge Substations.

  2. Substations reliability-centered maintenance and predictive maintenance - a strategic partnership

    SciTech Connect (OSTI)

    Colsher, R.J.; Abbott, P.D.; Matusheski, R.L.; Smith, S.B.

    1996-08-01

    A maintenance optimization study for substation components can be most effective when Reliability Centered Maintenance (RCM) Analysis is combined with a Predictive Maintenance (PDM) Assessment. If the two processes are performed concurrently, the benefit-to-cost ratios for each is increased. Also, the cost of implementing RCM recommendations for condition monitoring can be minimized, while maximizing their impact at the same time. This paper presents the essential elements of both the RCM and PDM processes, and describes how they work together in a substation environment as a comprehensive maintenance assessment tool. Descriptions of recent experiences are also included.

  3. EIS-0107: Mead-Phoenix +500-kV Direct Current Transmission Line

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration (WAPA) prepared this statement to analyze the potential environmental and socioeconomic impacts arising from WAPA and regional project sponsors’ proposal to construct a 500 kilovolt (kV) alternating current (AC) transmission line with the capability to be upgraded later to 500kV direct current (DC), connecting the Westwing Substation, located north of Phoenix, Arizona, with a new McCullough II Substation, located approximately 14 miles west of Boulder City, Nevada. This statement modifies a previously prepared federal statement from which the participants' election to proceed had not occurred at the time this statement was prepared.

  4. EA-2013: Herbicide Application at Three Substations; Imperial County (California), Maricopa and Yuma Counties (Arizona)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Western Area Power Administration (Western) and the Bureau of Land Management (BLM) prepared an EA that analyzes the potential environmental impacts of Western’s proposed use of selected herbicides for the treatment of undesirable vegetation within three existing substations on lands administered by BLM.

  5. Level 1 Accident Report of the March 1, 2010 Bobcat Fatality at BPA's White Bluffs Substation

    Broader source: Energy.gov [DOE]

    On March 2, 2010 at the request of the Bonneville Power Administration (BPA) Chief Safety Officer, a Level I Accident Investigation was convened to investigate an accident in which a supplemental labor contractor was fatally injured in a Bobcat/backhoe accident at the White Bluffs Substation near Richland, Washington on March 1, 2010.

  6. Puget Sound Area Electric Reliability Plan : Supplemental Environmental Analysis, Schultz Substation.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1992-04-01

    This document describes the purpose, function, and the environmental consequences of the proposed Schultz substation near Ellensburg, Washington. The affected environment is described in detail, including aerial survey photographs. The impacts on vegetation, fish and wildlife, soils, and water resources are described. (GHH)

  7. EIS-0400: EPA Notice of Availability of Final Environmental Impact...

    Broader source: Energy.gov (indexed) [DOE]

    Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO Final Environmental Impact Statement. EIS-0400-FEIS-EPANOA-2013.pdf More...

  8. EIS-0400: Notice of Intent to Prepare an Environmental Impact...

    Energy Savers [EERE]

    EIS-0400: Notice of Intent to Prepare an Environmental Impact Statement Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO ...

  9. EIS-0400: Record of Decision | Department of Energy

    Energy Savers [EERE]

    EIS-0400: Record of Decision Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO Western Area Power Administration prepared an ...

  10. EIS-0400: Draft Environmental Impact Statement | Department of...

    Energy Savers [EERE]

    EIS-0400: Draft Environmental Impact Statement Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO This EIS evaluates the ...

  11. EIS-0400: Final Environmental Impact Statement | Department of...

    Energy Savers [EERE]

    EIS-0400: Final Environmental Impact Statement Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO Western Area Power ...

  12. EA-1982: Parker-Davis Transmission System Routine Operation and Maintenance Project and Proposed Integrated Vegetation Management Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Western Area Power Administration prepared an EA that assesses potential environmental impacts of the proposed continuation of operation and maintenance activities and implementation of a vegetation management program on Western’s Parker-Davis Transmission System in Arizona, California, and Nevada. These actions would occur on existing transmission line and access road rights-of-way, and at substations and maintenance facilities associated with the transmission system.

  13. Design-Build Contract Awarded for Electrical Substation at Los Alamos

    National Nuclear Security Administration (NNSA)

    National Laboratory | National Nuclear Security Administration | (NNSA) Design-Build Contract Awarded for Electrical Substation at Los Alamos National Laboratory April 27, 2016 LOS ALAMOS, NM - Under an interagency agreement with the Department of Energy's National Nuclear Security Administration (DOE/NNSA), the U.S. Army Corps of Engineers (USACE) has awarded a design-build contract at Los Alamos National Laboratory (LANL) to Gardner Zemke Mechanical and Electrical Contractors of

  14. Southline Transmission Line Project - Volume 3 Chapter 3

    Office of Environmental Management (EM)

    ... This airspace may be used by manned or unmanned vehicles. Since most of the construction ... Substations would be unmanned and controlled remotely. Routine substation operations would ...

  15. Environmental Assessment of the Gering-Stegall 115-kV Transmission Line Consolidation Project, Scotts Bluff County, Nebraska

    SciTech Connect (OSTI)

    1995-05-01

    The Department of Energy (DOE), Western Area Power Administration (Western) proposes to consolidate segments of two transmission lines near the Gering Substation in Gering, Nebraska. The transmission lines are both located in Scotts Bluff County, Nebraska. The transmission lines are both located in Scotts Bluff County, Nebraska, within the city of Gering. Presently, there are three parallel 115-kilovolt (kV) transmission lines on separate rights-of-way (ROW) that terminate at the Gering Substation. The project would include dismantling the Archer-Gering wood-pole transmission line and rebuilding the remaining two lines on single-pole steel double circuit structures. The project would consolidate the Gering-Stegall North and Gering-Stegall South 115-kV transmission lines on to one ROW for a 1.33-mile segment between the Gering Substation and a point west of the Gering Landfill. All existing wood-pole H-frame structures would be removed, and the Gering-Stegall North and South ROWs abandoned. Western is responsible for the design, construction, operation, and maintenance of the line. Western prepared an environmental assessment (EA) that analyzed the potential environmental impacts of the proposed construction, operation, and maintenance of the 115-kV transmission line consolidation. Based on the analyses in the EA, the DOE finds that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA).

  16. EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River Counties, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration (BPA) is preparing an EA to assess potential environmental impacts of a proposal to rebuild its 24-mile long, 115 kilovolt Bonneville-Hood River transmission line. The existing line runs between the Bonneville Powerhouse at Bonneville Dam in Multnomah County, Oregon, and BPA's existing Hood River Substation in Hood River County, Oregon. The project would include replacing structures and conductor wires, improving access roads, and constructing new access roads or trails where needed.

  17. McNary-John Day Transmission Line Project Draft Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2002-03-08

    Bonneville is proposing to construct, operate, and maintain a 79-mile-long 500-kilovolt-transmission line in Benton and Klickitat Counties, Washington, and Umatilla and Sherman counties, Oregon. The new line would start at Bonneville's McNary Substation in Oregon and would cross the Columbia River just north of the substation into Washington. The line would then proceed west for about 70 miles along the Columbia River. At the John Day Dam, the line would again cross the Columbia River into Oregon and terminate at Bonneville's John Day Substation. The new line would parallel existing transmission lines for the entire length; mostly within existing available right-of-way. Presently, the existing transmission lines in the area are operating at capacity. These lines help move power from the east side of the Cascades to the west side, where there is a high need for electricity (cities along the I-5 corridor). Because the Northwest has only recently recovered from a shortfall in electric energy supply and a volatile wholesale power market in which prices reached record highs, there are many new proposals for facilities to generate new power. Some of these facilities are in the vicinity of the McNary-John Day project; the proposed line would help insure that existing and newly generated power could move through the system. Bonneville is also considering the No Action Alternative and several short-line routing alternatives. The short routing alternatives include three half-mile-long routes for getting from the McNary Substation to the Columbia River crossing; three two-mile-long routes where the Hanford-John Day transmission line joins the existing corridor; two 1,000-foot-long routes at corridor mile 32; and two 500-foot-long routes at corridor mile 35.

  18. EIS-0365: Imperial-Mexicali 230-kV Transmission Lines

    Broader source: Energy.gov [DOE]

    On February 27, 2001, Baja California Power, Inc. (hereafter referred to as Intergen), InterGen Aztec Energy, V.B.V., filed an application with DOE, Office of Fossil Energy, for a Presidential permit that would allow construction and connection of a double-circuit, 230-kV transmission line extending from the Imperial Valley Substation in California for a distance of about 6 mi (10 km) to a point west of Calexico at the U.S.-Mexico border.

  19. EIS-0379- Rebuild of the Libby (FEC) to Troy Section of BPA’s 115-kilovolt Transmission Line in Libby, Lincoln County, Montana

    Broader source: Energy.gov [DOE]

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action on the proposed rebuilding, operation, and maintenance of a 17-mile-long portion of BPA’s Libby to Bonners Ferry 115-kilovolt (kV) Transmission Line in Lincoln County, Montana. The portion to be rebuilt would start at Flathead Electric Cooperative’s (FEC) Libby Substation, in the town of Libby, Montana, and proceed west along an existing right-of-way for about 17 miles, terminating at BPA’s Troy Substation just east of the town of Troy, Montana.

  20. Final environmental impact statement, Washington Water Power/B.C. Hydro Transmission Interconnection Project

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    Washington Water Power (WWP) proposes to construct and operate an electric transmission line that would connect with the electrical system of the British Columbia Hydro and Power Authority (B.C. Hydro). The project would be composed of a double-circuit, 230-kilovolt (kV) transmission line from WWP`s existing Beacon Substation located northeast of Spokane, Washington to the international border located northwest of Metaline Falls, Washington. The original Presidential permit application and associated proposed route presented in the draft environmental impact statement (DEIS) have been modified to terminate at the Beacon Substation, instead of WWP`s initially proposed termination point at the planned Marshall Substation located southwest of Spokane. A supplemental draft EIS was prepared and submitted for review to not only examine the new proposed 5.6 miles of route, but to also compare the new Proposed Route to the other alternatives previously analyzed in the DEIS. This final EIS (FEIS) assesses the environmental effects of the proposed transmission line through construction, operation, maintenance, and abandonment activities and addresses the impacts associated with the Proposed Action, Eastern Alternative, Western Alternative, Northern Crossover Alternative, Southern Crossover Alternative, and No Action Alternative. The FEIS also contains the comments received and the responses to these comments submitted on the DEIS and Supplemental DEIS.

  1. Transmission Workshop

    Broader source: Energy.gov [DOE]

    On November 1-2, 2012, the GTT presented a workshop on grid integration on the transmission system at the DoubleTree Crystal City near Washington, DC.

  2. Transmission Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Grid Tech Team U.S. Department of Energy DOE Grid Tech Team (GTT) The Grid Tech Team ... regional diversity, AC-DC transmission and distribution solutions, ...

  3. Transmission decisions

    SciTech Connect (OSTI)

    Ellison, C.T. )

    1993-03-01

    As the US FERC moves forward to implement the transmission access provisions of the National Energy Policy Act of 1992, the debate over Regional Transmission Groups continues. Independent energy producers have much at stake in this debate and their reaction to the general RTG concept and to specific RTG proposals will weigh heavily in determining the fate of these proposals.

  4. Feasibility study: Application of RCM techniques for substation maintenance at the Bonneville Power Administration

    SciTech Connect (OSTI)

    Purucker, S.L.; Tonn, B.E.; Goeltz, R.T.; James, R.D.; Kercel, S.; Rizy, D.T.; Simpson, M.L.; Van Dyke, J.W.

    1992-05-28

    This feasibility study examines reliability centered maintenance (RCM) as it applies to Bonneville Power Administrations (BPA) substation maintenance program. Reliability techniques are examined in evaluated. Existing BPA equipment maintenance procedures are documented. Equipment failure history is considered. Economic impacts are estimated. Various equipment instrumentation methods are reviewed. Based on this analysis a prototype system is proposed. The prototype will be implemented in two phases. Phase 1 is to be completed in 1992, it includes instrumenting one power transformer and one oil circuit breaker. Software development will focus on displaying data. Phase 2 is to be completed the following year. The remaining transformers and breakers will be instrumented during the second phase. Software development will focus on predictive maintenance techniques and maintenance decision support.

  5. Experience in the installation of a microprocessor system for controlling converter units of the Vyborg substation

    SciTech Connect (OSTI)

    Gusakovskii, K. B.; Zmaznov, E. Yu.; Katantsev, S. V.; Mazurenko, A. K.; Mestergazi, V. A.; Prochan, G. G.; Funtikova, S. F.

    2006-01-15

    The experience in the installation of modern digital systems for controlling converter units at the Vyborg converter substation on the basis of advanced microprocessor devices is considered. It is shown that debugging of a control and protection system on mathematical and physical models does not guarantee optimum control of actual converter devices. Examples of advancing the control and protection system are described, the necessity for which has become obvious in tests of actual equipment. Comparison of oscillograms of processes before optimization of the control system and after its optimization and adjustment shows that the digital control system makes it possible to improve substantially the algorithms of control and protection in the short term and without changing the hardware component.

  6. Kangley-Echo Lake Transmission Line Project Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2003-06-20

    BPA proposes to build a single-circuit 500-kV transmission line from a tap point on an existing 500-kV line near Kangley, Washington, to its Echo Lake Substation near North Bend, Washington. The proposed route for this line, also called Alternative 1, is about nine miles long. About five miles of the proposed route would go through the Cedar River Municipal Watershed. In addition, Echo Lake Substation would be expanded about three acres to the east and new equipment would be installed there to accommodate the new line (common to all transmission alternatives). This alternative was proposed because it would be located immediately parallel to an existing BPA existing 500-kV transmission line, the Raver-Echo Lake Transmission Line. Locating a new line next to an existing one reduces right-of-way (ROW) clearing needed for the new line and reduces the need for additional access roads. Lattice steel transmission towers would support the 500-kV transmission line. These structures average 135 feet high, with the average span between towers of about 1,150 feet.

  7. Proposed amendment for Presidential Permit PP-63 and associated modifications to 500 kV international transmission line, Forbes, Minnesota to Manitoba, Canada Northern States Power Company. Final Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    Northern States Power Company, (NSP), a Minnesota investor owned utility has applied to the Office of Fossil Energy, United States Department of Energy, to amend Presidential Permit PP-63 to allow for alterations to the 500 kV transmission line and as sedated facilities currently regulated by this permit. The alterations proposed for the 500 kV line owned by NSP are part of a long term effort sponsored by NSP to upgrade the existing NSP transmission system to allow for increased exchange of electricity with the Manitoba Hydro-Electric Board. Presidential Permit PP-63 authorized NSP to construct, connect, operate and maintain a 500 kV line at the United States/Canadian border approximately seven-and-a-half miles west of Warroad in Roseau County, Minnesota. This line connects with a 500 kV line owned and operated by the Manitoba Hydro-Electric Board (MHEB), which extends from Dorsey, Manitoba, Canada to the United States/Canadian border. NSP proposes to increase the electricity transfer capability of this transmission facility by constructing a new 80-acre substation on the existing 500 kV line in Roseau County, Minnesota, and upgrading the existing substation at Forbes, Minnesota. The proposed Roseau substation would contain two 41.5 ohm series capacitor banks. In addition, static VAR compensators are to be installed at the existing Forbes Substation. Approximately 5 acres would be added to the 30-acre Forbes site to house the additional equipment. No new lines would enter or exit the facility. NSP proposes to place the new Roseau Substation in service in May 1993 and to complete the upgrading of the Forbes Substation in March 1994. The primary, initial purpose of these modifications is to enable NSP to import 400 megawatts of electric power from MHEB during the summer months to meet peak electrical demand in the Minneapolis-St. Paul area. It is expected that this power transfer would begin in 1993.

  8. EIS-0116-S1: Final Supplemental Environmental Impact Statement for the Blue River-Gore Pass Portion of the Hayden-Blue River Transmission Line Project, Grand and Summit Counties, Colorado

    Broader source: Energy.gov [DOE]

    This supplemental environmental impact statement by the Western Area Power Administration assesses the environmental effects of constructing, operating, and maintaining about 30 miles of 230/345-kV transmission line between the existing Gore Pass Substation northwest of Kremmling, Colorado, and a proposed new substation (not part of this action) near the Ute Pass Road. Alternatives assessed included routing and design alternatives plus the alternatives addressed in the Hayden-Blue River Final EIS, issued by the Rural Electrification Administration in July 1982 and adopted by DOE in June 1985 (see DOE/EIS-0116).

  9. Tucson Electric Power Company Sahuarita-Nogales Transmission Line Draft Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2003-08-27

    conductors, and two neutral ground wires that would provide both lightning protection and fiber optic communications, on a single set of support structures. The transmission line would originate at TEP's existing South Substation (which TEP would expand), in the vicinity of Sahuarita, Arizona, and interconnect with the Citizens Communications (Citizens) system at a Gateway Substation that TEP would construct west of Nogales, Arizona. The double-circuit transmission line would continue from the Gateway Substation south to cross the U.S.-Mexico border and extend approximately 60 miles (mi) (98 kilometers [km]) into the Sonoran region of Mexico, connecting with the Comision Federal de Electricidad (CFE, the national electric utility of Mexico) at CFE's Santa Ana Substation.

  10. Bridging Gaps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bridging Gaps Bridging Gaps Analysis to identify issues, best practices, and recommendations Implementation of modernization, infrastructure planning, and sustainability efforts ...

  11. Transmission Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Services BPA Clarifications on the DSO216 1 Document updated on 2242015 at 3:29:25 PM B O N N E V I L L E P O W E R A D M I N I S T R A T I O N BPA Clarifications on...

  12. Transmission Planning

    Broader source: Energy.gov [DOE]

    The Department's research into a variety of tools that will improve advanced system monitoring, visualization, control, operations, and market structure will ultimately modernize the electricity transmission infrastructure to ease congestion, allow for increases in demand, and provide a greater degree of security.

  13. Model and simulation of a flywheel energy storage system at a utility substation using electro-magnetic transients programs

    SciTech Connect (OSTI)

    Weissbach, R.S.; Karady, G.G.; Farmer, R.G.

    1996-11-01

    A flywheel energy storage system for use as an uninterruptible power supply at a utility substation to replace electrochemical batteries has been modeled. The model is developed using the Electro-Magnetic Transients Program (EMTP). Models for the flywheel, permanent magnet (synchronous) motor/generator, rectifiers and inverter have been included. Transient response for loss of power and clearing of a short circuit fault, as well as variation of load voltage due to the flywheel spinning down, is presented.

  14. Holbrook Substation Superconductor Cable System, Long Island, New York Final Report

    SciTech Connect (OSTI)

    Maguire, James; McNamara, Joseph

    2010-06-25

    The LIPA Superconductor project broke ground on July 4, 2006, was first energized on April 22, 2008 (Earth Day) and was commissioned on June 25, 2008. Since commissioning, up until early March, 2009, there were numerous refrigeration events that impacted steady state operations. This led to the review of the alarms that were being generated and a rewrite of the program logic in order to decrease the hypersensitivity surrounding these alarms. The high temperature superconductor (HTS) cable was energized on March 5, 2009 and ran uninterrupted until a human error during a refrigeration system switchover knocked the cable out of the grid in early February 2010. The HTS cable was in the grid uninterrupted from March 5, 2009 to February 4, 2010. Although there have been refrigeration events (propagated mainly by voltage sags/surges) during this period, the system was able to automatically switch over from the primary to the backup refrigeration system without issue as required during this period. On February 4, 2010, when switching from the backup over to the primary refrigeration system, two rather than one liquid nitrogen pumps were started inadvertently by a human error (communication) causing an overpressure in the cable cooling line. This in turn activated the pressure relief valve located in the grounding substation. The cable was automatically taken out of the grid without any damage to the components or system as a result of signals sent from the AMSC control cabinet to the LIPA substation. The cable was switched back into the grid again on March 16, 2010 without incident and has been operational since that time. Since switching from the backup to the primary is not an automatic process, a recent improvement was added to the refrigeration operating system to allow remote commands to return the system from backup to primary cooling. This improvement makes the switching procedure quicker since travel to the site to perform this operation is no longer necessary and

  15. Wallula Power Project and Wallula - McNary Transmission Line Project Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2002-08-16

    Wallula Generation, LLC proposes to construct a 1,300-megawatt (MW) natural gas-fired combined-cycle combustion gas turbine facility (the Wallula Power Project). The project would be located in the northwestern portion of Walla Walla County, Washington, approximately 8 miles south of the City of Pasco, 2 miles north of the unincorporated community of Wallula, and 7 miles southeast of the unincorporated community of Burbank. The purpose of the proposed power project is to provide energy to meet the needs of the Northwest and other interconnected electric transmission areas where electrical energy is needed. Firm transmission of the power generated by the Wallula Power Project would require construction of a new 500-kilovolt (kV) transmission line and construction of a new switchyard near Smiths Harbor. Approximately 5.1 miles of new transmission line from the proposed generation plant to the new switchyard would be completed. An additional 28 miles of new transmission line from the Smiths Harbor Switchyard to the McNary Substation would be constructed adjacent to the existing Lower Monumental-McNary transmission line and upgrades completed to the existing McNary Substation if loads are exceeded on the existing line. Wallula Generation, LLC, would construct and operate the generation plant and associated facilities, including the makeup water supply line. Bonneville would design, construct, and operate the two 500 kV transmission line segments and switchyard. To supply natural gas to the plant site, a 5.9-mile pipeline interconnection would be engineered, constructed, owned, and operated by PG&E Gas Transmission-Northwest (GTN). This EIS evaluates the environmental impacts of the proposed action, which includes the proposed power plant and 33-mile transmission line. It also evaluates an alternative using taller towers and longer spans between towers along part of the transmission line, and the use of an alternative approach for the transmission line where it would

  16. Magnetically insulated transmission line oscillator

    DOE Patents [OSTI]

    Bacon, Larry D.; Ballard, William P.; Clark, M. Collins; Marder, Barry M.

    1988-01-01

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.

  17. Magnetically insulated transmission line oscillator

    DOE Patents [OSTI]

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  18. SPARK GAP SWITCH

    DOE Patents [OSTI]

    Neal, R.B.

    1957-12-17

    An improved triggered spark gap switch is described, capable of precisely controllable firing time while switching very large amounts of power. The invention in general comprises three electrodes adjustably spaced and adapted to have a large potential impressed between the outer electrodes. The central electrode includes two separate elements electrically connected togetaer and spaced apart to define a pair of spark gaps between the end electrodes. Means are provided to cause the gas flow in the switch to pass towards the central electrode, through a passage in each separate element, and out an exit disposed between the two separate central electrode elements in order to withdraw ions from the spark gap.

  19. Fiber optic gap gauge

    DOE Patents [OSTI]

    Wood, Billy E.; Groves, Scott E.; Larsen, Greg J.; Sanchez, Roberto J.

    2006-11-14

    A lightweight, small size, high sensitivity gauge for indirectly measuring displacement or absolute gap width by measuring axial strain in an orthogonal direction to the displacement/gap width. The gap gauge includes a preferably titanium base having a central tension bar with springs connecting opposite ends of the tension bar to a pair of end connector bars, and an elongated bow spring connected to the end connector bars with a middle section bowed away from the base to define a gap. The bow spring is capable of producing an axial strain in the base proportional to a displacement of the middle section in a direction orthogonal to the base. And a strain sensor, such as a Fabry-Perot interferometer strain sensor, is connected to measure the axial strain in the base, so that the displacement of the middle section may be indirectly determined from the measurement of the axial strain in the base.

  20. Transmission | Department of Energy

    Energy Savers [EERE]

    resources for Tribes on transmission. Transmission 101 Presentation from the National Council on Electricity Policy's Transmissions Technologies workshop. Includes information on...

  1. Transmission Business Line

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Business Line Non-Federal Financing of Transmission Projects - March 2004 Critical paths on the Northwest transmission grid are congested and the system is near or at...

  2. Storage & Transmission Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & ...

  3. McNary-John Day Transmission Line Project, Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2002-08-30

    Bonneville is proposing to construct, operate, and maintain a 79-mile-long 500-kilovolt-transmission line in Benton and Klickitat Counties, Washington, and Umatilla and Sherman Counties, Oregon. The new line would start at Bonneville's McNary Substation in Oregon and would cross the Columbia River just north of the substation into Washington. The line would then proceed west for about 70 miles along the Columbia River. At the John Day Dam, the line would again cross the Columbia River into Oregon and terminate at Bonneville's John Day Substation. The new line would parallel existing transmission lines for the entire length; mostly within existing available right-of-way. Presently, the existing transmission lines in the area are operating at capacity. These lines help move power from the east side of the Cascades to the west side, where there is a high need for electricity (cities along the I-5 corridor). Because the Northwest has only recently recovered from a shortfall in electric energy supply and a volatile wholesale power market in which prices reached record highs, there are many new proposals for facilities to generate new power. Some of these facilities are in the vicinity of the McNary-John Day project; the proposed line would help insure that existing and newly generated power could move through the system. Bonneville is also considering the No Action Alternative and several short-line routing alternatives. The short routing alternatives include three half-mile-long routes for getting from the McNary Substation to the Columbia River crossing; three two-mile-long routes where the Hanford-John Day transmission line joins the existing corridor; two 1,000-foot-long routes at corridor mile 32; and two 500-foot-long routes at corridor mile 35. This abbreviated final EIS consists of an introduction to the document, changes to the draft EIS, copies of all the comments received on the draft EIS, and Bonneville's written responses to the comments. The final EIS

  4. The results of systems tests of the 500 kV busbar controllable shunting reactor in the Tavricheskaya substation

    SciTech Connect (OSTI)

    Gusev, S. I.; Karpov, V. N.; Kiselev, A. N.; Kochkin, V. I.

    2009-09-15

    The results of systems tests of the 500 kV busbar magnetization-controllable shunting reactor (CSR), set up in the Tavricheskaya substation, including measurements of the quality of the electric power, the harmonic composition of the network currents of the reactor for different values of the reactive power consumed, the determination of the regulating characteristics of the reactor, the speed of response of the shunting reactor in the current and voltage stabilization modes, and also the operation of the reactor under dynamic conditions for different perturbations, are presented. The results obtained are analyzed.

  5. DOE Transmission Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Order No. 1000 Transmission Ratemaking Enabling New Resources - Demand Response - Variable Generation - Storage 2 Stages of Transmission Planning - Local, ...

  6. MULTIPLE SPARK GAP SWITCH

    DOE Patents [OSTI]

    Schofield, A.E.

    1958-07-22

    A multiple spark gap switch of unique construction is described which will permit controlled, simultaneous discharge of several capacitors into a load. The switch construction includes a disc electrode with a plurality of protuberances of generally convex shape on one surface. A firing electrode is insulatingly supponted In each of the electrode protuberances and extends substantially to the apex thereof. Individual electrodes are disposed on an insulating plate parallel with the disc electrode to form a number of spark gaps with the protuberances. These electrodes are each connected to a separate charged capacitor and when a voltage ls applied simultaneously between the trigger electrodes and the dlsc electrode, each spark gap fires to connect its capacitor to the disc electrode and a subsequent load.

  7. Precision gap particle separator

    DOE Patents [OSTI]

    Benett, William J.; Miles, Robin; Jones, II., Leslie M.; Stockton, Cheryl

    2004-06-08

    A system for separating particles entrained in a fluid includes a base with a first channel and a second channel. A precision gap connects the first channel and the second channel. The precision gap is of a size that allows small particles to pass from the first channel into the second channel and prevents large particles from the first channel into the second channel. A cover is positioned over the base unit, the first channel, the precision gap, and the second channel. An port directs the fluid containing the entrained particles into the first channel. An output port directs the large particles out of the first channel. A port connected to the second channel directs the small particles out of the second channel.

  8. Hydromechanical transmission

    DOE Patents [OSTI]

    Orshansky, Jr. deceased, Elias; Weseloh, William E.

    1978-01-01

    A power transmission having three planetary assemblies, each having its own carrier and its own planet, sun, and ring gears. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the three sun gears, all of which are connected together. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gears. The input shaft also drives the carrier of the third planetary assembly. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output through the first ring gear in a hydrostatic mode. The carrier of the third planetary assembly drives the ring gear of the second planetary assembly, and a first clutching means connects the second carrier with the output in a second range, the brake for grounding the first carrier then being released. A second clutching means enables the third ring gear to drive the output shaft in a third range.

  9. Coiled transmission line pulse generators

    DOE Patents [OSTI]

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  10. Multiple gap photovoltaic device

    DOE Patents [OSTI]

    Dalal, Vikram L.

    1981-01-01

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  11. Grand Coulee - Bell 500-kV Transmission Line Project, Draft Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2002-08-09

    BPA is proposing to construct a 500-kilovolt (kV) transmission line that would extend approximately 84 miles between the Grand Coulee 500-kV Switchyard, near Grand Coulee Dam, and the Bell Substation, in Mead just north of Spokane. The new line would cross portions of Douglas, Grant, Lincoln, and Spokane counties. In addition to the transmission line, new equipment would be installed at the substations at each end of the new line and at other facilities. The proposed action would remove an existing 115-kV transmission line and replace it with the new 500-kV line on existing right-of-way for most of its length. Additional right-of-way would be needed in the first 3.5 miles out of the Grand Coulee Switchyard to connect to the existing 115-kV right-of-way. Since the mid-1990s, the transmission path west of Spokane, called the West of Hatwai transmission pathway, has grown increasingly constrained. To date, BPA has been able to manage operation of the path through available operating practices, and customer needed have been met while maintaining the reliability of the path. however, in early 2001, operations showed that the amount of electricity that needs to flow from east to west along this path creates severe transmission congestion. Under these conditions, the system is at risk of overloads and violation of industry safety and reliability standards. The problem is particularly acute in the spring and summer months because of the large amount of power generated by dams east of the path. Large amounts of water cannot be spilled during that time in order for BPA to fulfill its obligation to protect threatened and endangered fish. The amount of power that needs to move through this area during these months at times could exceed the carrying capacity of the existing transmission lines. In additional capacity is not added, BPA will run a significant risk that it will not be able to continue to meet its contractual obligations to deliver power and maintain reliability

  12. Joint HVAC transmission EMF environmental study

    SciTech Connect (OSTI)

    Stormshak, F.; Thompson, J. )

    1992-05-01

    This document describes the rationale, procedures, and results of a carefully controlled study conducted to establish whether chronic exposure of female (ewe) Suffolk lambs to the environment of a 500-kV 60-Hz transmission line would affect various characteristics of growth, endocrine function, and reproductive development. This experiment used identical housing and management schemes for control and line-exposed ewes, thus minimizing these factors as contributors to between-group experimental error. Further, throughout the 10-month duration of this study, changes in electric and magnetic fields, audible noise, and weather conditions were monitored continuously by a computerized system. Such measurements provided the opportunity to identify any relationship between environmental factors and biological responses. Because of reports in the literature that electric and magnetic fields alter concentrations of melatonin in laboratory animals, the primary objective of this study was to ascertain whether a similar effect occurs in lambs exposed to a 500-kV a-c line in a natural setting. In addition, onset of puberty, changes in body weight, wool growth, and behavior were monitored. To determine whether the environment of a 500-kV line caused stress in the study animals, serum levels of cortisol were measured. The study was conducted at Bonneville Power Administration's Ostrander Substation near Estacada, Oregon.

  13. RAPID/BulkTransmission/Transmission Siting & Interconnection...

    Open Energy Info (EERE)

    federal review). Bulk Transmission Transmission Siting & Interconnection in New Mexico New Mexico Statutes (N.M.S.) 62-9-1, 62-9-3(B), and 62-9-3.2 No Location Permit may be...

  14. The integration of renewable energy sources into electric power transmission systems

    SciTech Connect (OSTI)

    Barnes, P.R.; Dykas, W.P.; Kirby, B.J.; Purucker, S.L.; Lawler, J.S.

    1995-07-01

    Renewable energy technologies such as photovoltaics, solar thermal power plants, and wind turbines are nonconventional, environmentally attractive sources of energy that can be considered for electric power generation. Many of the areas with abundant renewable energy resources (very sunny or windy areas) are far removed from major load centers. Although electrical power can be transmitted over long distances of many hundreds of miles through high-voltage transmission lines, power transmission systems often operate near their limits with little excess capacity for new generation sources. This study assesses the available capacity of transmission systems in designated abundant renewable energy resource regions and identifies the requirements for high-capacity plant integration in selected cases. In general, about 50 MW of power from renewable sources can be integrated into existing transmission systems to supply local loads without transmission upgrades beyond the construction of a substation to connect to the grid. Except in the Southwest, significant investment to strengthen transmission systems will be required to support the development of high-capacity renewable sources of 1000 MW or greater in areas remote from major load centers. Cost estimates for new transmission facilities to integrate and dispatch some of these high-capacity renewable sources ranged from several million dollars to approximately one billion dollars, with the latter figure an increase in total investment of 35%, assuming that the renewable source is the only user of the transmission facility.

  15. EIS-0285-SA-147: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Transmission System Vegetation Management Program Vegetation Management for the Big Eddy-Chenoweth NO. 1 and 2 Substation to Substation, Big Eddy - Midway Substation to 2...

  16. NREL: Transmission Grid Integration - Transmission Planning and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printable Version Transmission Grid Integration Home Issues Projects Western Wind & Solar ... Electricity Market Operations Energy Imbalance Markets FESTIV Model Active ...

  17. Transmission Capacity Forum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Email Address: Name: Organization Entity Type: Select the best fit for your role... Energy Trader Transmission Provider Employee Transmission Purchaser Energy Scheduler...

  18. Survey of Transmission Cost Allocation Methodologies for Regional Transmission Organizations

    SciTech Connect (OSTI)

    Fink, S.; Porter, K.; Mudd, C.; Rogers, J.

    2011-02-01

    The report presents transmission cost allocation methodologies for reliability transmission projects, generation interconnection, and economic transmission projects for all Regional Transmission Organizations.

  19. Feasibility study: Application of RCM techniques for substation maintenance at the Bonneville Power Administration. [Reliability Centered Maintenance (RCM)

    SciTech Connect (OSTI)

    Purucker, S.L.; Tonn, B.E.; Goeltz, R.T.; James, R.D.; Kercel, S.; Rizy, D.T.; Simpson, M.L.; Van Dyke, J.W.

    1992-05-28

    This feasibility study examines reliability centered maintenance (RCM) as it applies to Bonneville Power Administrations (BPA) substation maintenance program. Reliability techniques are examined in evaluated. Existing BPA equipment maintenance procedures are documented. Equipment failure history is considered. Economic impacts are estimated. Various equipment instrumentation methods are reviewed. Based on this analysis a prototype system is proposed. The prototype will be implemented in two phases. Phase 1 is to be completed in 1992, it includes instrumenting one power transformer and one oil circuit breaker. Software development will focus on displaying data. Phase 2 is to be completed the following year. The remaining transformers and breakers will be instrumented during the second phase. Software development will focus on predictive maintenance techniques and maintenance decision support.

  20. GAP | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    GAP Environmental Assessment for Gap Material Plutonium - Transport, Receipt, and Processing The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), has prepared this Environmental Assessment for Gap Material Plutonium - Transport, Receipt, and Processing to evaluate the potential environmental impacts associated with transporting plutonium from foreign

  1. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Transmission Grid Integration Transmission Grid...

  2. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    TRANSMISSION AND DISTRIBUTION POWER SUBSTATIONS CAPITALIZED COST CALCULATION METHODS PLANNING COST ESTIMATION MATHEMATICAL MODELS The displacement or deferral of substation...

  3. RAPID/BulkTransmission/California | Open Energy Information

    Open Energy Info (EERE)

    District Valley Electric Assn, Inc Current Projects Colorado River-Valley (and Red Bluff Substation) Eldorado-Ivanpah Carrizo-Midway Reconductoring SCEIID Joint Path 42...

  4. Gap and stripline combined monitor

    DOE Patents [OSTI]

    Yin, Y.

    1986-08-19

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility is disclosed. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length. 4 figs.

  5. Axial gap rotating electrical machine

    DOE Patents [OSTI]

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  6. Gap and stripline combined monitor

    DOE Patents [OSTI]

    Yin, Y.

    1984-02-16

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  7. Gap and stripline combined monitor

    DOE Patents [OSTI]

    Yin, Yan

    1986-01-01

    A combined gap and stripline monitor device (10) for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchotron radiation facility. The monitor has first and second beam pipe portions (11a, 11b) with an axial gap (12) therebetween. An outer pipe (14) cooperates with the first beam pipe portion (11a) to form a gap enclosure, while inner strips (23a-d) cooperate with the first beam pipe portion (11a) to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  8. FAQS Gap Analysis Qualification Card - Occupational Safety |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Occupational Safety FAQS Gap Analysis Qualification Card - Occupational Safety Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences ...

  9. FAQS Gap Analysis Qualification Card - Chemical Processing |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Processing FAQS Gap Analysis Qualification Card - Chemical Processing Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences ...

  10. Type B Accident Investigation of the Serious Personal Injury while Doble Testing at the Western Area Power Administration Hayden Substation, May 19, 1999

    Broader source: Energy.gov [DOE]

    On May 19, 1999, at 10:31 a.m., four Western Area Power Administration (Western) employees were performing Doble testing on a circuit breaker at Hayden Substation in Routt County, Colorado. Three electricians were injured when the high-voltage lead (HVL) of the Doble test set encroached on the minimum approach distance to an energized part outside clearance boundaries, drawing arcing faults.

  11. Proposed Amendment to Presidential Permit PP-63 and Associated Modifications to 500-kV International Transmission Line: Forbes, Minnesota to Manitoba, Canada, Northern States Power Company. Addendum to the final Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This Addendum to the Final Environmental Assessment for the Proposed Amendment to Presidential Permit PP-63 and Associated Modifications to 500 kV International Transmission Line: Forbes, Minnesota to Manitoba, Canada (DOE/EA-587) addresses Northern States Power Company`s (NSP) proposed expansion of the Forbes Substation. The applicant has requested that the expansion take place on the west side of the substation, within the existing property line, instead of on the north side as originally proposed. All of the proposed construction would take place on property already owned by NSP. DOE has reviewed the environmental impacts associated with this minor modification and has determined that the conclusions reached in the environmental assessment and Finding of No Significant Impact prepared in connection with NSP`s original amendment request remain valid.

  12. Proposed amendment to presidential permit PP-63 and associated modifications to 500 kV international transmission line, Forbes, Minnesota to Manitoba, Canada. Addendum to the final environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This Addendum to the Final Environmental Assessment for the Proposed Amendment to Presidential Permit PP-63 and Associated Modifications to 500 kV International Transmission Line: Forbes, Minnesota to Manitoba, Canada (DOE/EA-587) addresses Northern States Power Company`s (NSP) proposed expansion of the Forbes Substation. The applicant has requested that the expansion take place on the west side of the substation, within the existing property line, instead of on the north side as originally proposed. All of the proposed construction would take place on property already owned by NSP. DOE has reviewed the environmental impacts associated with this minor modification and has determined that the conclusions reached in the environmental assessment and Finding of No Significant Impact prepared in connection with NSP`s original amendment request remain valid.

  13. Automated manual transmission controller

    DOE Patents [OSTI]

    Lawrie, Robert E.; Reed, Jr., Richard G.; Bernier, David R.

    1999-12-28

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  14. Pneumatic gap sensor and method

    DOE Patents [OSTI]

    Bagdal, Karl T.; King, Edward L.; Follstaedt, Donald W.

    1992-01-01

    An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment.

  15. Pneumatic gap sensor and method

    DOE Patents [OSTI]

    Bagdal, K.T.; King, E.L.; Follstaedt, D.W.

    1992-03-03

    An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment. 6 figs.

  16. ELECTRICAL SUBSTATION RELIABILITY EVALUATION WITH EMPHASIS ON EVOLVING INTERDEPENDENCE ON COMMUNICATION INFRASTRUCTURE.

    SciTech Connect (OSTI)

    AZARM,M.A.BARI,R.A.MUSICKI,Z.

    2004-01-15

    The objective of this study is to develop a methodology for a probabilistic assessment of the reliability and security of electrical energy distribution networks. This includes consideration of the future grid system, which will rely heavily on the existing digitally based communication infrastructure for monitoring and protection. Another important objective of this study is to provide information and insights from this research to Consolidated Edison Company (Con Edison) that could be useful in the design of the new network segment to be installed in the area of the World Trade Center in lower Manhattan. Our method is microscopic in nature and relies heavily on the specific design of the portion of the grid being analyzed. It extensively models the types of faults that a grid could potentially experience, the response of the grid, and the specific design of the protection schemes. We demonstrate that the existing technology can be extended and applied to the electrical grid and to the supporting communication network. A small subsection of a hypothetical grid based on the existing New York City electrical grid system of Con Edison is used to demonstrate the methods. Sensitivity studies show that in the current design the frequency for the loss of the main station is sensitive to the communication network reliability. The reliability of the communication network could become a more important contributor to the electrical grid reliability as the utilization of the communication network significantly increases in the near future to support ''smart'' transmission and/or distributed generation. The identification of potential failure modes and their likelihood can support decisions on potential modifications to the network including hardware, monitoring instrumentation, and protection systems.

  17. Eight electrode optical readout gap

    DOE Patents [OSTI]

    Boettcher, Gordon E.; Crain, Robert W.

    1985-01-01

    A protective device for a plurality of electrical circuits includes a pluity of isolated electrodes forming a gap with a common electrode. An output signal, electrically isolated from the circuits being monitored, is obtained by a photosensor viewing the discharge gap through an optical window. Radioactive stabilization of discharge characteristics is provided for slowly changing voltages and carbon tipped dynamic starters provide desirable discharge characteristics for rapidly varying voltages. A hydrogen permeation barrier is provided on external surfaces of the device.

  18. Eight electrode optical readout gap

    DOE Patents [OSTI]

    Boettcher, G.E.; Crain, R.W.

    1984-01-01

    A protective device for a plurality of electrical circuits includes a plurality of isolated electrodes forming a gap with a common electrode. An output signal, electrically isolated from the circuits being monitored, is obtained by a photosensor viewing the discharge gap through an optical window. Radioactive stabilization of discharge characteristics is provided for slowly changing voltages and carbon tipped dynamic starters provide desirable discharge characteristics for rapidly varying voltages. A hydrogen permeation barrier is provided on external surfaces of the device.

  19. Transmission Planning Analysis Tool

    SciTech Connect (OSTI)

    2015-06-23

    Developed to solve specific problem: Assist transmission planning for regional transfers in interconnected power systems. This work was originated in a study for the U.S. Department of State, to recommend transmission reinforcements for the Central American regional system that interconnects 6 countries. Transmission planning analysis is currently performed by engineers with domainspecific and systemspecific knowledge without a unique methodology. The software codes of this disclosure assists engineers by defining systematic analysis procedures to help identify weak points and make decisions on transmission planning of regional interconnected power systems. Transmission Planning Analysis Tool groups PSS/E results of multiple AC contingency analysis and voltage stability analysis and QV analysis of many scenarios of study and arrange them in a systematic way to aid power system planning engineers or transmission operators in effective decision]making process or in the off]line study environment.

  20. Transmission Planning Analysis Tool

    Energy Science and Technology Software Center (OSTI)

    2015-06-23

    Developed to solve specific problem: Assist transmission planning for regional transfers in interconnected power systems. This work was originated in a study for the U.S. Department of State, to recommend transmission reinforcements for the Central American regional system that interconnects 6 countries. Transmission planning analysis is currently performed by engineers with domainspecific and systemspecific knowledge without a unique methodology. The software codes of this disclosure assists engineers by defining systematic analysis procedures to help identifymore » weak points and make decisions on transmission planning of regional interconnected power systems. Transmission Planning Analysis Tool groups PSS/E results of multiple AC contingency analysis and voltage stability analysis and QV analysis of many scenarios of study and arrange them in a systematic way to aid power system planning engineers or transmission operators in effective decision]making process or in the off]line study environment.« less

  1. Pneumatic gap sensor and method

    SciTech Connect (OSTI)

    Bagdal, K.T.; King, E.L.; Follstaedt, D.W.

    1992-03-03

    This patent describes in a casting system which including an apparatus for monitoring the gap between a casting nozzle and a casting surface of a substrate during casting of molten material, wherein the molten material is provided through a channel of the casting nozzle for casting onto the casting surface of the substrate for solidification. It comprises: a pneumatic gap mounted at least partially within a cavity in the casting nozzle adjacent the channel and having a sensor face located within the gap between the nozzle and the casting surface of the substrate, means for supply gas under predetermined pressure to the inlet orifice; and means for measuring the pressure of the gas within the sensor chamber during casting procedures, whereby relative changes in the gap can be determined by corresponding changes in the measured pressure. This patent also describes a method for monitoring the gap between a casting nozzle and a casting surface of a substrate for continuous casting of molten material. It comprises: providing a casting nozzle with a channel for directing the flow of molten material, locating the nozzle and the casting surface is proximity with one another and having a predetermined gap there-between, and dressing the sensor face to correspond in conformation to the casting surface and to adjust the predetermined distance as desired; providing a molten material to the nozzle for casting onto and casting surface; supplying gas at a predetermined pressure to the inlet orifice of the sensor during casting procedures.

  2. NREL: Transmission Grid Integration - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Want updates about future transmission grid integration webinars and ... and Transmission Study Flexible Energy Scheduling Tool for Integration of ...

  3. Series Transmission Line Transformer

    DOE Patents [OSTI]

    Buckles, Robert A.; Booth, Rex; Yen, Boris T.

    2004-06-29

    A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

  4. Electrical Engineer- Transmission Lines

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration, Upper Great Plains Region, Maintenance, North Dakota Maintenance, Transmission...

  5. Current Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  6. Previous Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  7. 2012 Transmission Rate Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Transmission, Ancillary, and Control Area Service Rate Schedules and General Rate Schedule Provisions (FY 2014-2015) October 2013 United States Department of Energy...

  8. Collaborative Transmission Technology Roadmap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Addendum to the Collaborative Transmission Technology Roadmap March 2014 Bonneville Power Administration Enhanced PDF Functionality Functionality of the PDF version of this...

  9. Transmission and Storage Operations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission and Storage Operations Natural Gas Infrastructure R&D and Methane Mitigation Workshop Mary Savalle, PMP, LSSGB Compression Reliability Engineer November 12, 2014 ...

  10. Transmission - Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact-Information-Transmission Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  11. Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Energy, SMART Grid, Systems Analysis, Transmission Grid Integration, Wind Energy Sandia Contributes to International Electrotechnical Commission IEC 61400-26 Availability ...

  12. Hydrothermal Exploration Data Gap Analysis Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrothermal Exploration Data Gap Analysis Update GTP Peer Review Lunch Presentation Westminster, CO Kate Young Dan Getman Ariel Esposito May 10, 2012 2 Data Gap Analysis PROJECT ...

  13. Transmission Line Security Monitor

    SciTech Connect (OSTI)

    2011-01-01

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  14. Transmission Line Security Monitor

    ScienceCinema (OSTI)

    None

    2013-05-28

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  15. ABORT GAP CLEANING IN RHIC.

    SciTech Connect (OSTI)

    DREES,A.; AHRENS,L.; III FLILLER,R.; GASSNER,D.; MCINTYRE,G.T.; MICHNOFF,R.; TRBOJEVIC,D.

    2002-06-03

    During the RHIC Au-run in 2001 the 200 MHz storage cavity system was used for the first time. The rebucketing procedure caused significant beam debunching in addition to amplifying debunching due to other mechanisms. At the end of a four hour store, debunched beam could account for approximately 30%-40% of the total beam intensity. Some of it will be in the abort gap. In order to minimize the risk of magnet quenching due to uncontrolled beam losses at the time of a beam dump, a combination of a fast transverse kicker and copper collimators were used to clean the abort gap. This report gives an overview of the gap cleaning procedure and the achieved performance.

  16. Virtual gap dielectric wall accelerator

    DOE Patents [OSTI]

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  17. Wild Horse 69-kV transmission line environmental assessment

    SciTech Connect (OSTI)

    1996-12-01

    Hill County Electric Cooperative Inc. (Hill County) proposes to construct and operate a 69-kV transmission line from its North Gildford Substation in Montana north to the Canadian border. A vicinity project area map is enclosed as a figure. TransCanada Power Corporation (TCP), a Canadian power-marketing company, will own and construct the connecting 69-kV line from the international border to Express Pipeline`s pump station at Wild Horse, Alberta. This Environmental Assessment is prepared for the Department of Energy (DOE) as lead federal agency to comply with the requirements of the National Environmental Policy Act (NEPA), as part of DOE`s review and approval process of the applications filed by Hill County for a DOE Presidential Permit and License to Export Electricity to a foreign country. The purpose of the proposed line is to supply electric energy to a crude oil pump station in Canada, owned by Express Pipeline Ltd. (Express). The pipeline would transport Canadian-produced oil from Hardisty, Alberta, Canada, to Caster, Wyoming. The Express Pipeline is scheduled to be constructed in 1996--97 and will supply crude oil to refineries in Wyoming and the midwest.

  18. Microsoft PowerPoint - Schatz Materials Research in T&D [Read...

    Energy Savers [EERE]

    ...visualization not included, but have their own materials wish lists Substation Transformers Other Substation Equipment 5 Transmission Infrastructure 6 Transmission System ...

  19. Multiple input electrode gap controller

    DOE Patents [OSTI]

    Hysinger, Christopher L.; Beaman, Joseph J.; Melgaard, David K.; Williamson, Rodney L.

    1999-01-01

    A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows.

  20. Multiple input electrode gap controller

    DOE Patents [OSTI]

    Hysinger, C.L.; Beaman, J.J.; Melgaard, D.K.; Williamson, R.L.

    1999-07-27

    A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows. 17 figs.

  1. Electric Transmission System Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Lauren Azar Senior Advisor to Secretary Chu November 2, 2012 Electric Transmission System ... Can we agree on several key design attributes for the future grid? Taking Action in the ...

  2. Downhole transmission system

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe

    2008-01-15

    A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. An electrical conductor connects both the transmission elements. The electrical conductor comprises at least three electrically conductive elements insulated from each other. In the preferred embodiment the electrical conductor comprises an electrically conducting outer shield, an electrically conducting inner shield and an electrical conducting core. In some embodiments of the present invention, the electrical conductor comprises an electrically insulating jacket. In other embodiments, the electrical conductor comprises a pair of twisted wires. In some embodiments, the electrical conductor comprises semi-conductive material.

  3. Electricity Transmission, A Primer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... the power from low-cost, mine- mouth coal power plants and wind generators in Wyoming. ... As a result, the transmission system helps to insulate electricity consumers from the ...

  4. Transmission Grid Integration

    Office of Energy Efficiency and Renewable Energy (EERE)

    The levels of solar energy penetration envisioned by the DOE SunShot Initiative must be interconnected effectively onto the transmission grid. This interconnection requires an in-depth...

  5. Down hole transmission system

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT)

    2007-07-24

    A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. The electrically conducting coil comprises at least two generally fractional loops. In the preferred embodiment, the transmission elements are connected by an electrical conductor. Preferably, the electrical conductor is a coaxial cable. Preferably, the MCEI trough comprises ferrite. In the preferred embodiment, the fractional loops are connected by a connecting cable. In one aspect of the present invention, the connecting cable is a pair of twisted wires. In one embodiment the connecting cable is a shielded pair of twisted wires. In another aspect of the present invention, the connecting cable is a coaxial cable. The connecting cable may be disposed outside of the MCEI circular trough.

  6. Transmission SEAB Presentation

    Broader source: Energy.gov (indexed) [DOE]

    "05 * Nine Agency MOU - Oct. 2009 * Transmission Cabinet * Designated 7 Pilot Projects DOD CEQ FERC USDA DOE ACHP EPA DOI DOC RRTT Pilot Projects RRTT Rapid Response Team for ...

  7. Transmission Developers Inc.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ' % ~ Transmission Developers Inc. July 7, 2011 Mr. Anthony J. Como Director, Permitting and Siting Office ofElectricity Delivery and Energy Reliability (OE-20) U.S. Department of Energy 1000 Independence A venue SW, Room 8G-024 Washington, D.C. 20585 Subject: Champlain Hudson Power Express Project U.S. Department of Energy Presidential Permit Application PP-362 Dear Mr. Como: On January 25, 2010, Transmission Developers, Inc. ("TDI'' or "Applicants") submitted on behalf of

  8. Transmission Infrastructure Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TRANSMISSION INFRASTRUCTURE PROGRAM DOE Tribal Energy Summit 2015 SECRETARYOF ENERGY'S FINANCING ROUNDTABLE Tracey A. LeBeau Senior Vice President & Transmission Infrastructure Program Manager 1 Program Description Western's Loan Authority * $3.25 billion permanent authority (revolving) * Goal: Attract investment in infrastructure & address market needs * Commercial underwriting standards TIP Portfolio Management Fundamentals * Reflective of Market Need(s) * Ensure Funds Revolve 2 Recent

  9. EIS-0411: Transmission Agency of Northern California Transmission Project

    Broader source: Energy.gov [DOE]

    This EIS is for the Western Area Power Administration construction, operation, and maintenance of the proposed transmission agency of Northern California Transmission Project, California.

  10. National transmission grid study

    SciTech Connect (OSTI)

    Abraham, Spencer

    2003-05-31

    The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE’s Policy Office Electricity Modeling System (POEMS). DOE’s analysis, presented in Section 2, confirms the central role of the nation’s transmission system in lowering costs to consumers through increased trade. More importantly, DOE’s analysis also confirms the results of previous studies, which show that transmission bottlenecks and related transmission system market practices are adding hundreds of millions of dollars to consumers’ electricity bills each year. A more detailed technical overview of the use of POEMS is provided in Appendix A. DOE led an extensive, open, public input process and heard a wide range of comments and recommendations that have all been considered.1 More than 150 participants registered for three public workshops held in Detroit, MI (September 24, 2001); Atlanta, GA (September 26, 2001); and Phoenix, AZ (September 28, 2001).

  11. Transmission Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Grid Tech Team » Activities/Outreach » GTT Activities » Transmission Workshop Transmission Workshop Transmission Workshop GTT Transmission Workshop - November 1-2, 2012 On November 1-2, 2012, the GTT presented a workshop on grid integration on the transmission system at the DoubleTree Crystal City near Washington, DC. A draft of the DOE Action Plan Addressing the Electricity Transmission System was discussed during the workshop, which addressed the challenges and opportunities presented

  12. Emplacement Gantry Gap Analysis Study

    SciTech Connect (OSTI)

    R. Thornley

    2005-05-27

    To date, the project has established important to safety (ITS) performance requirements for structures, systems, and components (SSCs) based on the identification and categorization of event sequences that may result in a radiological release. These performance requirements are defined within the ''Nuclear Safety Design Bases for License Application'' (NSDB) (BSC 2005 [DIRS 171512], Table A-11). Further, SSCs credited with performing safety functions are classified as ITS. In turn, assurance that these SSCs will perform as required is sought through the use of consensus codes and standards. This gap analysis is based on the design completed for license application only. Accordingly, identification of ITS SSCs beyond those defined within the NSDB are based on designs that may be subject to further development during detail design. Furthermore, several design alternatives may still be under consideration to satisfy certain safety functions, and final selection will not be determined until further design development has occurred. Therefore, for completeness, alternative designs currently under consideration will be discussed throughout this study. This gap analysis will evaluate each code and standard identified within the ''Emplacement Gantry ITS Standards Identification Study'' (BSC 2005 [DIRS 173586]) to ensure each ITS performance requirement is fully satisfied. When a performance requirement is not fully satisfied, a gap is highlighted. This study will identify requirements to supplement or augment the code or standard to meet performance requirements. Further, this gap analysis will identify nonstandard areas of the design that will be subject to a design development plan. Nonstandard components and nonstandard design configurations are defined as areas of the design that do not follow standard industry practices or codes and standards. Whereby, assurance that an SSC will perform as required may not be readily sought though the use of consensus standards. This

  13. ITC Transmission | Open Energy Information

    Open Energy Info (EERE)

    ITC Transmission Jump to: navigation, search Name: ITC Transmission Place: Michigan Phone Number: Western Michigan Office: (269) 792-7223 -- Northern Michigan Office: (989)...

  14. Metallic photonic band-gap materials

    SciTech Connect (OSTI)

    Sigalas, M.M.; Chan, C.T.; Ho, K.M.; Soukoulis, C.M.

    1995-10-15

    We calculate the transmission and absorption of electromagnetic waves propagating in two-dimensional (2D) and 3D periodic metallic photonic band-gap (PBG) structures. For 2D systems, there is substantial difference between the {ital s}- and {ital p}-polarized waves. The {ital p}-polarized waves exhibit behavior similar to the dielectric PBG`s. But, the {ital s}-polarized waves have a cutoff frequency below which there are no propagating modes. For 3D systems, the results are qualitatively the same for both polarizations but there are important differences related to the topology of the structure. For 3D structures with isolated metallic scatterers (cermet topology), the behavior is similar to that of the dielectric PBG`s, while for 3D structures with the metal forming a continuous network (network topology), there is a cutoff frequency below which there are no propagating modes. The systems with the network topology may have some interesting applications for frequencies less than about 1 THz where the absorption can be neglected. We also study the role of the defects in the metallic structures.

  15. Department of Energy Finalizes Loan Guarantee for New Transmission...

    Office of Environmental Management (EM)

    The ON Line project will run 235 miles from Ely, Nevada to just north of Las Vegas, with a new substation located at the northern end of the line. ON Line represents the first ...

  16. Air Gap Effects in LX-17

    SciTech Connect (OSTI)

    Souers, P C; Ault, S; Avara, R; Bahl, K L; Boat, R; Cunningham, B; Gidding, D; Janzen, J; Kuklo, D; Lee, R; Lauderbach, L; Weingart, W C; Wu, B; Winer, K

    2005-09-26

    Three experiments done over twenty years on gaps in LX-17 are reported. For the detonation front moving parallel to the gaps, jets of gas products were seen coming from the gaps at velocities greater than the detonation velocity. A case can be made that the jet velocity increased with gap thickness but the data is scattered. For the detonation front moving transverse to the gap, time delays were seen. The delays roughly increase with gap width, going from 0-70 ns at 'zero gap' to around 300 ns at 0.5-1 mm gap. Larger gaps of up to 6 mm width almost certainly stopped the detonation, but this was not proved. Real-time resolution of the parallel jets and determination of the actual re-detonation or failure in the transverse case needs to be done in future experiments.

  17. Electronic gap sensor and method

    DOE Patents [OSTI]

    Williams, Robert S.; King, Edward L.; Campbell, Steven L.

    1991-01-01

    An apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces.

  18. Electronic gap sensor and method

    DOE Patents [OSTI]

    Williams, R.S.; King, E.L.; Campbell, S.L.

    1991-08-06

    Disclosed are an apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. 5 figures.

  19. Transmission line capital costs

    SciTech Connect (OSTI)

    Hughes, K.R.; Brown, D.R.

    1995-05-01

    The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

  20. Printed circuit dispersive transmission line

    DOE Patents [OSTI]

    Ikezi, H.; Lin-Liu, Y.R.; DeGrassie, J.S.

    1991-08-27

    A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other. 5 figures.

  1. Printed circuit dispersive transmission line

    DOE Patents [OSTI]

    Ikezi, Hiroyuki; Lin-Liu, Yuh-Ren; DeGrassie, John S.

    1991-01-01

    A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other.

  2. Closed Gap Enzen | Open Energy Information

    Open Energy Info (EERE)

    search Name: Closed Gap-Enzen Place: Bangalore, India Zip: 560 052 Product: Formed as a joint venture, Closed Gap-Enzen provides a new integrated meter enabling seamless customer...

  3. Spark gap with low breakdown voltage jitter

    DOE Patents [OSTI]

    Rohwein, Gerald J.; Roose, Lars D.

    1996-01-01

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed.

  4. Spark gap with low breakdown voltage jitter

    DOE Patents [OSTI]

    Rohwein, G.J.; Roose, L.D.

    1996-04-23

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed. 13 figs.

  5. Autonomous data transmission apparatus

    DOE Patents [OSTI]

    Kotlyar, Oleg M. (4675 W. 3825 S, Salt Lake City, UT 84120)

    1997-01-01

    A autonomous borehole data transmission apparatus for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters.

  6. Autonomous data transmission apparatus

    DOE Patents [OSTI]

    Kotlyar, O.M.

    1997-03-25

    A autonomous borehole data transmission apparatus is described for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters. 4 figs.

  7. Borehole data transmission apparatus

    DOE Patents [OSTI]

    Kotlyar, Oleg M.

    1993-01-01

    A borehole data transmission apparatus whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  8. Borehole data transmission apparatus

    DOE Patents [OSTI]

    Kotlyar, O.M.

    1993-03-23

    A borehole data transmission apparatus is described whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  9. Calibration curves for some standard Gap Tests

    SciTech Connect (OSTI)

    Bowman, A.L.; Sommer, S.C.

    1989-01-01

    The relative shock sensitivities of explosive compositions are commonly assessed using a family of experiments that can be described by the generic term ''Gap Test.'' Gap tests include a donor charge, a test sample, and a spacer, or gap, between two explosives charges. The donor charge, gap material, and test dimensions are held constant within each different version of the gap test. The thickness of the gap is then varied to find the value at which 50% of the test samples will detonate. The gap tests measure the ease with a high-order detonation can be established in the test explosive, or the ''detonability,'' of the explosive. Test results are best reported in terms of the gap thickness at the 50% point. It is also useful to define the shock pressure transmitted into the test sample at the detonation threshold. This requires calibrating the gap test in terms of shock pressure in the gap as a function of the gap thickness. It also requires a knowledge of the shock Hugoniot of the sample explosive. We used the 2DE reactive hydrodynamic code with Forest Fire burn rates for the donor explosives to calculate calibration curves for several gap tests. The model calculations give pressure and particle velocity on the centerline of the experimental set-up and provide information about the curvature and pulse width of the shock wave. 10 refs., 1 fig.

  10. Big George to Carter Mountain 115-kV transmission line project, Park and Hot Springs Counties, Wyoming. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Western Area Power Administration (Western) is proposing to rebuild, operate, and maintain a 115-kilovolt (kV) transmission line between the Big George and Carter Mountain Substations in northwest Wyoming (Park and Hot Springs Counties). This environmental assessment (EA) was prepared in compliance with the National Environmental Policy Act (NEPA) and the regulations of the Council on Environmental Quality (CEQ) and the Department of Energy (DOE). The existing Big George to Carter Mountain 69-kV transmission line was constructed in 1941 by the US Department of Interior, Bureau of Reclamation, with 1/0 copper conductor on wood-pole H-frame structures without an overhead ground wire. The line should be replaced because of the deteriorated condition of the wood-pole H-frame structures. Because the line lacks an overhead ground wire, it is subject to numerous outages caused by lightning. The line will be 54 years old in 1995, which is the target date for line replacement. The normal service life of a wood-pole line is 45 years. Under the No Action Alternative, no new transmission lines would be built in the project area. The existing 69-kV transmission line would continue to operate with routine maintenance, with no provisions made for replacement.

  11. Drill string transmission line

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Bradford, Kline; Fox, Joe

    2006-03-28

    A transmission line assembly for transmitting information along a downhole tool comprising a pin end, a box end, and a central bore traveling between the pin end and the box end, is disclosed in one embodiment of the invention as including a protective conduit. A transmission line is routed through the protective conduit. The protective conduit is routed through the central bore and the ends of the protective conduit are routed through channels formed in the pin end and box end of the downhole tool. The protective conduit is elastically forced into a spiral or other non-linear path along the interior surface of the central bore by compressing the protective conduit to a length within the downhole tool shorter than the protective conduit.

  12. Transmission and Storage Operations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission and Storage Operations Natural Gas Infrastructure R&D and Methane Mitigation Workshop Mary Savalle, PMP, LSSGB Compression Reliability Engineer November 12, 2014 Agenda * DTE Gas Snapshot * NOx & CO - Combustion stability * Methane - Packing - Blowdowns * Capture vs Flare 2 SNAPSHOT * DTE Gas - 41 Units * Age Range: 8-59yrs (Average 45yrs) - 118,200HP * 1,000-15,000HP - 7 different manufacturers * Cooper-Bessemer, Solar, Waukesha, DeLaval, IR, CAT, Ariel - Complete Mixture *

  13. Appendix TFIELD: Transmissivity Fields

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appendix TFIELD-2014 Transmissivity Fields United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Appendix TFIELD-2014 Table of Contents TFIELD-1.0 Overview of the T-field Development, Calibration, and Mining Modification Process TFIELD-2.0 Geologic Data TFIELD-2.1 Culebra Hydrogeologic Setting TFIELD-2.2 Refinement of Geologic Boundaries TFIELD-2.2.1 Rustler Halite Margins TFIELD-2.2.2 Salado

  14. Gas insulated transmission line with insulators having field controlling recesses

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA); Pederson, Bjorn O. (Chelmsford, MA)

    1984-01-01

    A gas insulated transmission line having a novel insulator for supporting an inner conductor concentrically within an outer sheath. The insulator has a recess contiguous with the periphery of one of the outer and inner conductors. The recess is disposed to a depth equal to an optimum gap for the dielectric insulating fluid used for the high voltage insulation or alternately disposed to a large depth so as to reduce the field at the critical conductor/insulator interface.

  15. Photonic band gap structure simulator

    DOE Patents [OSTI]

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  16. Geothermal Resources and Transmission Planning

    Broader source: Energy.gov [DOE]

    This project addresses transmission-related barriers to utility-scale deployment of geothermal electric generation technologies.

  17. GTT 2012 Transmission Workshop- Documents

    Broader source: Energy.gov [DOE]

    Use the links below to download documents from the GTT's Transmission Workshop, held November 1-2, 2012

  18. Gap Assessment (FY 13 Update)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Getman, Dan

    2013-09-30

    To help guide its future data collection efforts, The DOE GTO funded a data gap analysis in FY2012 to identify high potential hydrothermal areas where critical data are needed. This analysis was updated in FY2013 and the resulting datasets are represented by this metadata. The original process was published in FY 2012 and is available here: https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2013/Esposito.pdf Though there are many types of data that can be used for hydrothermal exploration, five types of exploration data were targeted for this analysis. These data types were selected for their regional reconnaissance potential, and include many of the primary exploration techniques currently used by the geothermal industry. The data types include: 1. well data 2. geologic maps 3. fault maps 4. geochemistry data 5. geophysical data To determine data coverage, metadata for exploration data (including data type, data status, and coverage information) were collected and catalogued from nodes on the National Geothermal Data System (NGDS). It is the intention of this analysis that the data be updated from this source in a semi-automated fashion as new datasets are added to the NGDS nodes. In addition to this upload, an online tool was developed to allow all geothermal data providers to access this assessment and to directly add metadata themselves and view the results of the analysis via maps of data coverage in Geothermal Prospector (http://maps.nrel.gov/gt_prospector). A grid of the contiguous U.S. was created with 88,000 10-km by 10-km grid cells, and each cell was populated with the status of data availability corresponding to the five data types. Using these five data coverage maps and the USGS Resource Potential Map, sites were identified for future data collection efforts. These sites signify both that the USGS has indicated high favorability of occurrence of geothermal resources and that data gaps exist. The uploaded data are contained in two data files for

  19. Gap between active and passive solar heating

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01

    The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

  20. Electricity Transmission, A Primer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission, A Primer Electricity Transmission, A Primer This primer on electric transmission is intended to help policymakers understand the physics of the transmission system, the economics, and the policies. Electricity Transmission, A Primer (1.95 MB) More Documents & Publications Draft Chapter 4: Transmission Adequacy Electricity Grid Basics Webinar Presentation Slides and Text Version Chapter 4 Transmission Adequacy

  1. EIS-0267: BPA/Lower Valley Transmission System Reinforcement Project, Wyoming

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA and LVPL proposal to construct a new 115-kV line from BPA’s Swan Valley Substation near Swan Valley in Bonneville County, Idaho about 58 km (36 miles) east to BPA’s Teton Substation near Jackson in Teton County, Wyoming.

  2. Hydrothermal Exploration Data Gap Analysis Update

    Broader source: Energy.gov [DOE]

    Hydrothermal Exploration Data Gap Analysis presentation by Kate Young, Dan Getman, and Ariel Esposito at the 2012 Peer Review Meeting on May 10, 2012

  3. FAQS Gap Analysis Qualification Card Emergency Management

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  4. Colorado Electrical Transmission Grid

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Xcel Energy Publication Date: 2012 Title: Colorado XcelEnergy NonXcel Transmission Network Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains transmission network of Colorado Spatial Domain: Extent: Top: 4540689.017558 m Left: 160606.141934 m Right: 758715.946645 m Bottom: 4098910.893397m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shapefile

  5. Automated manual transmission clutch controller

    DOE Patents [OSTI]

    Lawrie, Robert E.; Reed, Jr., Richard G.; Rausen, David J.

    1999-11-30

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  6. RAPID/Bulk Transmission | Open Energy Information

    Open Energy Info (EERE)

    Page Edit History RAPIDBulk Transmission < RAPID(Redirected from RAPIDOverviewBulkTransmission) Redirect page Jump to: navigation, search REDIRECT RAPIDBulkTransmission...

  7. Electricity Transmission, A Primer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Transmission, A Primer Electricity Transmission, A Primer This primer on electric transmission is intended to help policymakers understand the physics of the...

  8. 2015 National Electric Transmission Congestion Study | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 National Electric Transmission Congestion Study 2015 National Electric Transmission Congestion Study 2015 National Electric Transmission Congestion Study Section 1221(a) of ...

  9. Bordertown to California Transmission | Open Energy Information

    Open Energy Info (EERE)

    Transmission EIS Bordertown to California 120kV Transmission Line Project Environmental Impact Statement General NEPA Document Info Energy Sector Transmission Environmental...

  10. THURSDAY: Deputy Secretary of Energy to Visit Western Area Power...

    Broader source: Energy.gov (indexed) [DOE]

    Area Power Administration Transmission Substation WASHINGTON - Deputy Secretary of Energy ... at the Electrical District No. 5 Substation to view progress on the Electrical ...