National Library of Energy BETA

Sample records for gan films grown

  1. Highly c-axis oriented GaN films grown on free-standing diamond substrates for high-power devices

    SciTech Connect (OSTI)

    Zhang, D. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China) [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Bian, J.M., E-mail: jmbian@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Qin, F.W.; Wang, J.; Pan, L. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China) [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Zhao, J.M. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Zhao, Y.; Bai, Y.Z. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China) [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Du, G.T. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2011-10-15

    Highlights: {yields} GaN films are deposited on diamond substrates by ECR-PEMOCVD. {yields} Influence of deposition temperature on the properties of samples is investigated. {yields} Properties of GaN films are dependent on the deposition temperature. -- Abstract: GaN films with highly c-axis preferred orientation are deposited on free-standing thick diamond films by low temperature electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition (ECR-PEMOCVD). The TMGa and N{sub 2} are applied as precursors of Ga and N, respectively. The quality of as-grown GaN films are systematically investigated as a function of deposition temperature by means of X-ray diffraction (XRD) analysis, Hall Effect measurement (HL), room temperature photoluminescence (PL) and atomic force microscopy (AFM). The results show that the dense and uniformed GaN films with highly c-axis preferred orientation are successfully achieved on free-standing diamond substrates under optimized deposition temperature of 400 {sup o}C, and the room temperature PL spectra of the optimized GaN film show a intense ultraviolet near band edge emission and a weak yellow luminescence. The obtained GaN/diamond structure has great potential for the development of high-power semiconductor devices due to its excellent heat dissipation nature.

  2. Effects of substrate temperature, substrate orientation, and energetic atomic collisions on the structure of GaN films grown by reactive sputtering

    SciTech Connect (OSTI)

    Schiaber, Ziani S.; Lisboa-Filho, Paulo N.; Silva, Jos H. D. da; Leite, Douglas M. G.; Bortoleto, Jos R. R.

    2013-11-14

    The combined effects of substrate temperature, substrate orientation, and energetic particle impingement on the structure of GaN films grown by reactive radio-frequency magnetron sputtering are investigated. Monte-Carlo based simulations are employed to analyze the energies of the species generated in the plasma and colliding with the growing surface. Polycrystalline films grown at temperatures ranging from 500 to 1000 C clearly showed a dependence of orientation texture and surface morphology on substrate orientation (c- and a-plane sapphire) in which the (0001) GaN planes were parallel to the substrate surface. A large increase in interplanar spacing associated with the increase in both a- and c-parameters of the hexagonal lattice and a redshift of the optical bandgap were observed at substrate temperatures higher than 600 C. The results showed that the tensile stresses produced during the film's growth in high-temperature deposition ranges were much larger than the expected compressive stresses caused by the difference in the thermal expansion coefficients of the film and substrate in the cool-down process after the film growth. The best films were deposited at 500 C, 30 W and 600 C, 45 W, which corresponds to conditions where the out diffusion from the film is low. Under these conditions the benefits of the temperature increase because of the decrease in defect density are greater than the problems caused by the strongly strained lattice that occurr at higher temperatures. The results are useful to the analysis of the growth conditions of GaN films by reactive sputtering.

  3. Low temperature thin film transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels

    SciTech Connect (OSTI)

    Bolat, S. E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, B.; Ozgit-Akgun, C.; Biyikli, N.; Okyay, A. K. E-mail: aokyay@ee.bilkent.edu.tr

    2014-06-16

    We report GaN thin film transistors (TFT) with a thermal budget below 250?C. GaN thin films are grown at 200?C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3?nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (I{sub ON}/I{sub OFF}) of 10{sup 3} and sub-threshold swing of 3.3?V/decade. The entire TFT device fabrication process temperature is below 250?C, which is the lowest process temperature reported for GaN based transistors, so far.

  4. Surfactant assisted growth of MgO films on GaN

    SciTech Connect (OSTI)

    Paisley, E. A.; Shelton, T. C.; Collazo, R.; Sitar, Z.; Maria, J.-P.; Christen, H. M.; Biegalski, M. D.; Mita, S.

    2012-08-27

    Thin epitaxial films of <111> oriented MgO on [0001]-oriented GaN were grown by molecular beam epitaxy and pulsed laser deposition using the assistance of a vapor phase surfactant. In both cases, surfactant incorporation enabled layer-by-layer growth and a smooth terminal surface by stabilizing the {l_brace}111{r_brace} rocksalt facet. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly 100 Multiplication-Sign reduction in leakage current density for the surfactant-assisted samples. These data verify numerous predictions regarding the role of H-termination in regulating the habit of rocksalt crystals.

  5. Catalyst and its diameter dependent growth kinetics of CVD grown GaN nanowires

    SciTech Connect (OSTI)

    Samanta, Chandan [Department of Physics, Indian Institute of Technology Kanpur (India)] [Department of Physics, Indian Institute of Technology Kanpur (India); Chander, D. Sathish [Department of Physics, Indian Institute of Technology Kanpur (India) [Department of Physics, Indian Institute of Technology Kanpur (India); Department of Mechanical Engineering, Indian Institute of Technology Kanpur (India); Ramkumar, J. [Department of Mechanical Engineering, Indian Institute of Technology Kanpur (India)] [Department of Mechanical Engineering, Indian Institute of Technology Kanpur (India); Dhamodaran, S., E-mail: kdams2003@gmail.com [Department of Physics, Indian Institute of Technology Kanpur (India)

    2012-04-15

    Graphical abstract: GaN nanowires with controlled diameter and aspect ratio has been grown using a simple CVD technique. The growth kinetics of CVD grown nanowires investigated in detail for different catalysts and their diameters. A critical diameter important to distinguish the growth regimes has been discussed in detail. The results are important which demonstrates the growth of diameter and aspect ratio controlled GaN nanowires and also understand their growth kinetics. Highlights: Black-Right-Pointing-Pointer Controlled diameter and aspect ratio of GaN nanowires achieved in simple CVD reactor. Black-Right-Pointing-Pointer Nanowire growth kinetics for different catalyst and its diameters were understood. Black-Right-Pointing-Pointer Adatoms vapor pressure inside reactor plays a crucial role in growth kinetics. Black-Right-Pointing-Pointer Diffusion along nanowire sidewalls dominate for gold and nickel catalysts. Black-Right-Pointing-Pointer Gibbs-Thomson effect dominates for palladium catalyst. -- Abstract: GaN nanowires were grown using chemical vapor deposition with controlled aspect ratio. The catalyst and catalyst-diameter dependent growth kinetics is investigated in detail. We first discuss gold catalyst diameter dependent growth kinetics and subsequently compare with nickel and palladium catalyst. For different diameters of gold catalyst there was hardly any variation in the length of the nanowires but for other catalysts with different diameter a strong length variation of the nanowires was observed. We calculated the critical diameter dependence on adatoms pressure inside the reactor and inside the catalytic particle. This gives an increasing trend in critical diameter as per the order gold, nickel and palladium for the current set of experimental conditions. Based on the critical diameter, with gold and nickel catalyst the nanowire growth was understood to be governed by limited surface diffusion of adatoms and by Gibbs-Thomson effect for the palladium catalyst.

  6. Surfactant assisted growth of MgO films on GaN

    SciTech Connect (OSTI)

    Paisley, Elisibeth A.; Shelton, T C; Mita, S; Gaddy, Brian E.; Irving, D L; Christen, Hans M; Sitar, Z; Biegalski, Michael D; Maria, Jon Paul

    2012-01-01

    Thin epitaxial films of <111> oriented MgO on [0001]-oriented GaN were grown by molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) using the assistance of a vapor phase surfactant. In both cases, surfactant incorporation enabled layer-by-layer growth and a smooth terminal surface due to stabilizing the {111} rocksalt facet. MBE growth of MgO in water terminates after several monolayers, and is attributed to saturation of surface active sites needed to facilitate the Mg oxidation reaction. MgO films prepared by PLD grow continuously, this occurs due to the presence of excited oxidizing species in the laser plasma eliminate the need for catalytic surface sites. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly two order of magnitude reduction in leakage current density for the smoother surfactant-assisted samples. Collectively, these data verify numerous predictions and calculations regarding the role of H-termination in regulating the habit of MgO crystals.

  7. Electronic and optical device applications of hollow cathode plasma assisted atomic layer deposition based GaN thin films

    SciTech Connect (OSTI)

    Bolat, Sami Tekcan, Burak; Ozgit-Akgun, Cagla; Biyikli, Necmi; Okyay, Ali Kemal

    2015-01-15

    Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metalsemiconductormetal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N{sub 2}/H{sub 2} PA-ALD based GaN channels are observed to have improved stability and transfer characteristics with respect to NH{sub 3} PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N{sub 2}:H{sub 2} ambient.

  8. Radiation-induced defects in GaN bulk grown by halide vapor phase epitaxy

    SciTech Connect (OSTI)

    Duc, Tran Thien; Pozina, Galia; Son, Nguyen Tien; Janzn, Erik; Hemmingsson, Carl; Ohshima, Takeshi

    2014-09-08

    Defects induced by electron irradiation in thick free-standing GaN layers grown by halide vapor phase epitaxy were studied by deep level transient spectroscopy. In as-grown materials, six electron traps, labeled D2 (E{sub C}0.24?eV), D3 (E{sub C}0.60?eV), D4 (E{sub C}0.69?eV), D5 (E{sub C}0.96?eV), D7 (E{sub C}1.19?eV), and D8, were observed. After 2?MeV electron irradiation at a fluence of 1??10{sup 14?}cm{sup ?2}, three deep electron traps, labeled D1 (E{sub C}0.12?eV), D5I (E{sub C}0.89?eV), and D6 (E{sub C}1.14?eV), were detected. The trap D1 has previously been reported and considered as being related to the nitrogen vacancy. From the annealing behavior and a high introduction rate, the D5I and D6 centers are suggested to be related to primary intrinsic defects.

  9. Ferroelectric PLZT thick films grown by poly(1-vinylpyrrolidone...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PLZT thick films grown by poly(1-vinylpyrrolidone-co-vinyl acetate) (PVPVA)-modified sol-gel process Title Ferroelectric PLZT thick films grown by poly(1-vinylpyrrolidone-co-vi...

  10. Effect of ZnO seed layer on the morphology and optical properties of ZnO nanorods grown on GaN buffer layers

    SciTech Connect (OSTI)

    Nandi, R. Mohan, S. Major, S. S.; Srinivasa, R. S.

    2014-04-24

    ZnO nanorods were grown by chemical bath deposition on sputtered, polycrystalline GaN buffer layers with and without ZnO seed layer. Scanning electron microscopy and X-ray diffraction show that the ZnO nanorods on GaN buffer layers are not vertically well aligned. Photoluminescence spectrum of ZnO nanorods grown on GaN buffer layer, however exhibits a much stronger near-band-edge emission and negligible defect emission, compared to the nanorods grown on ZnO buffer layer. These features are attributed to gallium incorporation at the ZnO-GaN interface. The introduction of a thin (25 nm) ZnO seed layer on GaN buffer layer significantly improves the morphology and vertical alignment of ZnO-NRs without sacrificing the high optical quality of ZnO nanorods on GaN buffer layer. The presence of a thick (200 nm) ZnO seed layer completely masks the effect of the underlying GaN buffer layer on the morphology and optical properties of nanorods.

  11. Group III-nitride thin films grown using MBE and bismuth

    DOE Patents [OSTI]

    Kisielowski, Christian K. (Peidmont, CA); Rubin, Michael (Berkeley, CA)

    2000-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  12. Group III-nitride thin films grown using MBE and bismuth

    DOE Patents [OSTI]

    Kisielowski, Christian K. (Piedmont, CA); Rubin, Michael (Berkeley, CA)

    2002-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  13. Electroreflectance study of the effect of {gamma} radiation on the optical properties of epitaxial GaN films

    SciTech Connect (OSTI)

    Belyaev, A. E.; Klyui, N. I. Konakova, R. V.; Lukyanov, A. N.; Danilchenko, B. A.; Sveshnikov, J. N.; Klyui, A. N.

    2012-03-15

    Experimental data on the electroreflectance spectra of {gamma}-irradiated epitaxial GaN films on sapphire are reported. The irradiation doses are 10{sup 5}-2 Multiplication-Sign 10{sup 6} rad. The theoretical electroreflectance spectra calculated on the basis of a model of three types of transitions are in agreement with experimental data with reasonable accuracy. The energies and broadenings of the transitions derived in the context of the model give grounds to infer that, in the GaN films, there are internal stresses dependent on the {gamma}-irradiation dose.

  14. Method of growing GaN films with a low density of structural defects using an interlayer

    DOE Patents [OSTI]

    Bourret-Courchesne, Edith D. (Richmond, CA)

    2003-01-01

    A dramatic reduction of the dislocation density in GaN was obtained by insertion of a single thin interlayer grown at an intermediate temperature (IT-IL) after the growth of an initial grown at high temperature. A description of the growth process is presented with characterization results aimed at understanding the mechanisms of reduction in dislocation density. A large percentage of the threading dislocations present in the first GaN epilayer are found to bend near the interlayer and do not propagate into the top layer which grows at higher temperature in a lateral growth mode. TEM studies show that the mechanisms of dislocation reduction are similar to those described for the epitaxial lateral overgrowth process, however a notable difference is the absence of coalescence boundaries.

  15. Morphology in electrochemically grown conducting polymer films

    DOE Patents [OSTI]

    Rubinstein, I.; Gottesfeld, S.; Sabatani, E.

    1992-04-28

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventionally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol. 2 figs.

  16. Morphology in electrochemically grown conducting polymer films

    DOE Patents [OSTI]

    Rubinstein, Israel; Gottesfeld, Shimshon; Sabatani, Eyal

    1992-01-01

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventioonally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol.

  17. Structural anisotropic properties of a-plane GaN epilayers grown on r-plane sapphire by molecular beam epitaxy

    SciTech Connect (OSTI)

    Lotsari, A.; Kehagias, Th.; Katsikini, M.; Arvanitidis, J.; Ves, S.; Komninou, Ph.; Dimitrakopulos, G. P.; Tsiakatouras, G.; Tsagaraki, K.; Georgakilas, A.; Christofilos, D.

    2014-06-07

    Heteroepitaxial non-polar III-Nitride layers may exhibit extensive anisotropy in the surface morphology and the epilayer microstructure along distinct in-plane directions. The structural anisotropy, evidenced by the M-shape dependence of the (112{sup }0) x-ray rocking curve widths on the beam azimuth angle, was studied by combining transmission electron microscopy observations, Raman spectroscopy, high resolution x-ray diffraction, and atomic force microscopy in a-plane GaN epilayers grown on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). The structural anisotropic behavior was attributed quantitatively to the high dislocation densities, particularly the Frank-Shockley partial dislocations that delimit the I{sub 1} intrinsic basal stacking faults, and to the concomitant plastic strain relaxation. On the other hand, isotropic samples exhibited lower dislocation densities and a biaxial residual stress state. For PAMBE growth, the anisotropy was correlated to N-rich (or Ga-poor) conditions on the surface during growth, that result in formation of asymmetric a-plane GaN grains elongated along the c-axis. Such conditions enhance the anisotropy of gallium diffusion on the surface and reduce the GaN nucleation rate.

  18. Polarity characterization by anomalous x-ray dispersion of ZnO films and GaN lateral polar structures

    SciTech Connect (OSTI)

    Shelton, Christopher T.; Sachet, Edward; Paisley, Elizabeth A.; Hoffmann, Marc P.; Rajan, Joseph; Collazo, Ramn; Sitar, Zlatko; Maria, Jon-Paul

    2014-01-28

    We demonstrate the use of anomalous x-ray scattering of constituent cations at their absorption edge, in a conventional Bragg-Brentano diffractometer, to measure absolutely and quantitatively the polar orientation and polarity fraction of unipolar and mixed polar wurtzitic crystals. In one set of experiments, the gradual transition between c+ and c? polarity of epitaxial ZnO films on sapphire as a function of MgO buffer layer thickness is monitored quantitatively, while in a second experiment, we map the polarity of a lateral polar homojunction in GaN. The dispersion measurements are compared with piezoforce microscopy images, and we demonstrate how x-ray dispersion and scanning probe methods can provide complementary information that can discriminate between polarity fractions at a material surface and polarity fractions averaged over the film bulk.

  19. Hydride vapor phase GaN films with reduced density of residual electrons and deep traps

    SciTech Connect (OSTI)

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Yugova, T. G.; Cox, H.; Helava, H.; Makarov, Yu.; Usikov, A. S.

    2014-05-14

    Electrical properties and deep electron and hole traps spectra are compared for undoped n-GaN films grown by hydride vapor phase epitaxy (HVPE) in the regular process (standard HVPE samples) and in HVPE process optimized for decreasing the concentration of residual donor impurities (improved HVPE samples). It is shown that the residual donor density can be reduced by optimization from ?10{sup 17}?cm{sup ?3} to (25)??10{sup 14}?cm{sup ?3}. The density of deep hole traps and deep electron traps decreases with decreased donor density, so that the concentration of deep hole traps in the improved samples is reduced to ?5??10{sup 13}?cm{sup ?3} versus 2.9??10{sup 16}?cm{sup ?3} in the standard samples, with a similar decrease in the electron traps concentration.

  20. Relaxation and critical strain for maximum In incorporation in AlInGaN on GaN grown by metal organic vapour phase epitaxy

    SciTech Connect (OSTI)

    Reuters, Benjamin; Finken, M.; Wille, A.; Kalisch, H.; Vescan, A.; Hollaender, B.; Heuken, M.

    2012-11-01

    Quaternary AlInGaN layers were grown on conventional GaN buffer layers on sapphire by metal organic vapour phase epitaxy at different surface temperatures and different reactor pressures with constant precursor flow conditions. A wide range in compositions within 30-62% Al, 5-29% In, and 23-53% Ga was covered, which leads to different strain states from high tensile to high compressive. From high-resolution x-ray diffraction and Rutherford backscattering spectrometry, we determined the compositions, strain states, and crystal quality of the AlInGaN layers. Atomic force microscopy measurements were performed to characterize the surface morphology. A critical strain value for maximum In incorporation near the AlInGaN/GaN interface is presented. For compressively strained layers, In incorporation is limited at the interface as residual strain cannot exceed an empirical critical value of about 1.1%. Relaxation occurs at about 15 nm thickness accompanied by strong In pulling. Tensile strained layers can be grown pseudomorphically up to 70 nm at a strain state of 0.96%. A model for relaxation in compressively strained AlInGaN with virtual discrete sub-layers, which illustrates the gradually changing lattice constant during stress reduction is presented.

  1. Method of fabricating low-dislocation-density epitaxially-grown films with textured surfaces

    DOE Patents [OSTI]

    Li, Qiming; Wang, George T

    2015-01-13

    A method for forming a surface-textured single-crystal film layer by growing the film atop a layer of microparticles on a substrate and subsequently selectively etching away the microparticles to release the surface-textured single-crystal film layer from the substrate. This method is applicable to a very wide variety of substrates and films. In some embodiments, the film is an epitaxial film that has been grown in crystallographic alignment with respect to a crystalline substrate.

  2. Influence of growth temperature and temperature ramps on deep level defect incorporation in m-plane GaN

    SciTech Connect (OSTI)

    Armstrong, A. M.; Kelchner, K.; Nakamura, S.; DenBaars, S. P.; Materials Department, University of California, Santa Barbara, California 93106 ; Speck, J. S.

    2013-12-02

    The dependence of deep level defect incorporation in m-plane GaN films grown by metal-organic chemical vapor deposition on bulk m-plane GaN substrates as a function of growth temperature (T{sub g}) and T{sub g} ramping method was investigated using deep level optical spectroscopy. Understanding the influence of T{sub g} on GaN deep level incorporation is important for InGaN/GaN multi-quantum well (MQW) light emitting diodes (LEDs) and laser diodes (LDs) because GaN quantum barrier (QB) layers are grown much colder than thin film GaN to accommodate InGaN QW growth. Deep level spectra of low T{sub g} (800?C) GaN films grown under QB conditions were compared to deep level spectra of high T{sub g} (1150?C) GaN. Reducing T{sub g}, increased the defect density significantly (>50) through introduction of emergent deep level defects at 2.09?eV and 2.9?eV below the conduction band minimum. However, optimizing growth conditions during the temperature ramp when transitioning from high to low T{sub g} substantially reduced the density of these emergent deep levels by approximately 40%. The results suggest that it is important to consider the potential for non-radiative recombination in QBs of LED or LD active regions, and tailoring the transition from high T{sub g} GaN growth to active layer growth can mitigate such non-radiative channels.

  3. Multicycle rapid thermal annealing optimization of Mg-implanted GaN: Evolution of surface, optical, and structural properties

    SciTech Connect (OSTI)

    Greenlee, Jordan D.; Feigelson, Boris N.; Anderson, Travis J.; Hite, Jennifer K.; Mastro, Michael A.; Eddy, Charles R.; Hobart, Karl D.; Kub, Francis J.; Tadjer, Marko J.

    2014-08-14

    The first step of a multi-cycle rapid thermal annealing process was systematically studied. The surface, structure, and optical properties of Mg implanted GaN thin films annealed at temperatures ranging from 900 to 1200?C were investigated by Raman spectroscopy, photoluminescence, UV-visible spectroscopy, atomic force microscopy, and Nomarski microscopy. The GaN thin films are capped with two layers of in-situ metal organic chemical vapor deposition -grown AlN and annealed in 24 bar of N{sub 2} overpressure to avoid GaN decomposition. The crystal quality of the GaN improves with increasing annealing temperature as confirmed by UV-visible spectroscopy and the full widths at half maximums of the E{sub 2} and A{sub 1} (LO) Raman modes. The crystal quality of films annealed above 1100?C exceeds the quality of the as-grown films. At 1200?C, Mg is optically activated, which is determined by photoluminescence measurements. However, at 1200?C, the GaN begins to decompose as evidenced by pit formation on the surface of the samples. Therefore, it was determined that the optimal temperature for the first step in a multi-cycle rapid thermal anneal process should be conducted at 1150?C due to crystal quality and surface morphology considerations.

  4. Increased p-type conductivity through use of an indium surfactant in the growth of Mg-doped GaN

    SciTech Connect (OSTI)

    Kyle, Erin C. H. Kaun, Stephen W.; Young, Erin C.; Speck, James S.

    2015-06-01

    We have examined the effect of an indium surfactant on the growth of p-type GaN by ammonia-based molecular beam epitaxy. p-type GaN was grown at temperatures ranging from 700 to 780 °C with and without an indium surfactant. The Mg concentration in all films in this study was 4.5–6 × 10{sup 19} cm{sup −3} as measured by secondary ion mass spectroscopy. All p-type GaN films grown with an indium surfactant had higher p-type conductivities and higher hole concentrations than similar films grown without an indium surfactant. The lowest p-type GaN room temperature resistivity was 0.59 Ω-cm, and the highest room temperature carrier concentration was 1.6 × 10{sup 18} cm{sup −3}. Fits of the temperature-dependent carrier concentration data showed a one to two order of magnitude lower unintentional compensating defect concentration in samples grown with the indium surfactant. Samples grown at higher temperature had a lower active acceptor concentration. Improvements in band-edge luminescence were seen by cathodoluminescence for samples grown with the indium surfactant, confirming the trends seen in the Hall data.

  5. Temperature threshold for nanorod structuring of metal and oxide films grown by glancing angle deposition

    SciTech Connect (OSTI)

    Deniz, Derya; Lad, Robert J.

    2011-01-15

    Thin films of tin (Sn), aluminum (Al), gold (Au), ruthenium (Ru), tungsten (W), ruthenium dioxide (RuO{sub 2}), tin dioxide (SnO{sub 2}), and tungsten trioxide (WO{sub 3}) were grown by glancing angle deposition (GLAD) to determine the nanostructuring temperature threshold, {Theta}{sub T}, above which adatom surface diffusion becomes large enough such that nanorod morphology is no longer formed during growth. The threshold was found to be lower in metals compared to oxides. Films were grown using both dc and pulsed dc magnetron sputtering with continuous substrate rotation over the temperature range from 291 to 866 K. Film morphologies, structures, and compositions were characterized by high resolution scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. Films were also grown in a conventional configuration for comparison. For elemental metals, nanorod structuring occurs for films with melting points higher than that of Al (933 K) when grown at room temperature with a rotation rate of {approx}5 rpm, corresponding to a value of {Theta}{sub T}{approx_equal}0.33{+-}0.01. For the oxide films, a value of {Theta}{sub T}{approx_equal}0.5 was found, above which GLAD nanorod structuring does not occur. The existence of a nanostructuring temperature threshold in both metal and oxide GLAD films can be attributed to greater adatom mobilities as temperature is increased resulting in nonkinetically limited film nucleation and growth processes.

  6. Hafnium nitride buffer layers for growth of GaN on silicon

    DOE Patents [OSTI]

    Armitage, Robert D.; Weber, Eicke R.

    2005-08-16

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  7. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Craciun, D.; Socol, G.; Lambers, E.; McCumiskey, E. J.; Taylor, C. R.; Martin, C.; Argibay, Nicolas; Craciun, V.; Tanner, D. B.

    2015-01-17

    Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH4 pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH4 pressures exhibited slightly higher nanohardness and Young modulus values than films deposited undermore » higher pressures. As a result, tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.« less

  8. Ferroelectric PLZT thick films grown by poly(1-vinylpyrrolidone-co-vinyl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acetate) (PVP/VA)-modified sol-gel process | Argonne National Laboratory Ferroelectric PLZT thick films grown by poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA)-modified sol-gel process Title Ferroelectric PLZT thick films grown by poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA)-modified sol-gel process Publication Type Journal Article Year of Publication 2016 Authors Hu, Z, Ma, B, Li, M, Koritala, RE, Balachandran, U Journal Materials Research Bulletin Volume 75 Start Page 167

  9. Elastic properties of B-C-N films grown by N{sub 2}-reactive sputtering from boron carbide targets

    SciTech Connect (OSTI)

    Salas, E.; Jimnez Riobo, R. J.; Jimnez-Villacorta, F.; Prieto, C.; Snchez-Marcos, J.; Dept. Qumica-Fsica Aplicada, Universidad Autnoma de Madrid, Cantoblanco, 28049 Madrid ; Muoz-Martn, A.; Prieto, J. E.; Joco, V.

    2013-12-07

    Boron-carbon-nitrogen films were grown by RF reactive sputtering from a B{sub 4}C target and N{sub 2} as reactive gas. The films present phase segregation and are mechanically softer than boron carbide films (a factor of more than 2 in Young's modulus). This fact can turn out as an advantage in order to select buffer layers to better anchor boron carbide films on substrates eliminating thermally induced mechanical tensions.

  10. Structural defects in GaN revealed by Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Liliental-Weber, Zuzanna

    2014-04-18

    This paper reviews the various types of structural defects observed by Transmission Electron Microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by High Nitrogen Pressure Solution. Defects in undoped and Mg doped GaN are discussed. Some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed.

  11. Defect study in molecular beam epitaxy-grown HgCdTe films with activated and unactivated arsenic

    SciTech Connect (OSTI)

    Izhnin, I. I.; Dvoretsky, S. A.; Mikhailov, N. N.; Varavin, V. S.; Mynbaev, K. D.; Fitsych, O. I.; Pociask-Bialy, M.; Sheregii, E.; Voitsekhovskii, A. V.

    2014-04-28

    A defect study was performed on molecular beam epitaxy-grown HgCdTe films in situ doped with arsenic. Doping was performed from either effusion cell or cracker cell, and studied were both as-grown samples and samples subjected to arsenic activation annealing. Electrical properties of the films were investigated with the use of ion milling as a means of stirring defects in the material. As a result of the study, it was confirmed that the most efficient incorporation of electrically active arsenic occurs at the cracking zone temperature of 700?C. Interaction between arsenic and tellurium during the growth was observed and is discussed in the paper.

  12. Characterization of Epitaxial Film Silicon Solar Cells Grown on Seeded Display Glass: Preprint

    SciTech Connect (OSTI)

    Young, D. L.; Grover, S.; Teplin, C.; Stradins, P.; LaSalvia, V.; Chuang, T. K.; Couillard, J. G.; Branz, H. M.

    2012-06-01

    We report characterizations of epitaxial film crystal silicon (c-Si) solar cells with open-circuit voltages (Voc) above 560 mV. The 2-um absorber cells are grown by low-temperature (<750 degrees C) hot-wire CVD (HWCVD) on Corning EAGLE XG display glass coated with a layer-transferred (LT) Si seed. The high Voc is a result of low-defect epitaxial Si (epi-Si) growth and effective hydrogen passivation of defects. The quality of HWCVD epitaxial growth on seeded glass substrates depends on the crystallographic quality of the seed and the morphology of the epitaxial growth surface. Heterojunction devices consist of glass/c-Si LT seed/ epi n+ Si:P/epi n- Si:P/intrinsic a-Si:H/p+ a-Si:H/ITO. Similar devices grown on electronically 'dead' n+ wafers have given Voc {approx}630 mV and {approx}8% efficiency with no light trapping features. Here we study the effects of the seed surface polish on epi-Si quality, how hydrogenation influences the device character, and the dominant junction transport physics.

  13. Composition and Bonding in Amorphous Carbon Films Grown by Ion Beam Assisted Deposition: Influence of the Assistance Voltage

    SciTech Connect (OSTI)

    Albella, J.M.; Banks, J.C.; Climent-Font, A.; Doyle, B.L.; Gago, R.; Jimenez, I.; Terminello, L.J.

    1998-11-12

    Amorphous carbon films have been grown by evaporation of graphite with concurrent Ar+ ions bombardment assistance. The ion energy has been varied between 0-800 V while keeping a constant ion to carbon atom arrival ratio. Film composition and density were determined by ion scattering techniques (RBS and ERDA), indicating a negligible hydrogen content and a density dependence with the assistance voltage. The bonding structure of the films has been studied by Raman and X-ray Absorption Near-Edge (XANES) spectroscopy. Different qualitative effects have been found depending on the ion energy range. For ion energies below 300 eV, there is a densification of the carbon layer due to the increase in the sp3 content. For ion energies above 300 eV sputtering phenomena dominate over densification, and thinner films are found with increasing assistance voltage until no film is grown over 600 V. The films with the highest SP3 content are grown with intermediate energies between 200-300 V.

  14. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    SciTech Connect (OSTI)

    Roberts, J.G.

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  15. ECR Nb Films Grown on Amorphous and Crystalline Cu Substrates: Influence of Ion Energy

    SciTech Connect (OSTI)

    Valente, Anne-Marie; Eremeev, Grigory V.; Spradlin, Joshua K.; Phillips, H. Lawrence; Reece, Charles E.; Cao, C.; Proslier, Thomas; Tao, T.

    2014-02-01

    In the pursuit of niobium (Nb) films with similar performance with the commonly used bulk Nb surfaces for Superconducting RF (SRF) applications, significant progress has been made with the development of energetic condensation deposition techniques. Using energetic condensation of ions extracted from plasma generated by Electron Cyclotron Resonance, it has been demonstrated that Nb films with good structural properties and RRR comparable to bulk values can be produced on metallic substrates. The controlled incoming ion energy enables a number of processes such as desorption of adsorbed species, enhanced mobility of surface atoms and sub-implantation of impinging ions, thus producing improved film structures at lower process temperatures. Particular attention is given to the nucleation conditions to create a favourable template for growing the final surface exposed to SRF fields. The influence of the deposition energy on film growth on copper substrates is investigated with the characterization of the film surface, structure, superconducting properties and RF performance.

  16. High electron mobility thin-film transistors based on Ga{sub 2}O{sub 3} grown by atmospheric ultrasonic spray pyrolysis at low temperatures

    SciTech Connect (OSTI)

    Thomas, Stuart R. E-mail: thomas.anthopoulos@imperial.ac.uk; Lin, Yen-Hung; Faber, Hendrik; Anthopoulos, Thomas D. E-mail: thomas.anthopoulos@imperial.ac.uk; Adamopoulos, George; Sygellou, Labrini; Stratakis, Emmanuel; Pliatsikas, Nikos; Patsalas, Panos A.

    2014-09-01

    We report on thin-film transistors based on Ga{sub 2}O{sub 3} films grown by ultrasonic spray pyrolysis in ambient atmosphere at 400450?C. The elemental, electronic, optical, morphological, structural, and electrical properties of the films and devices were investigated using a range of complementary characterisation techniques, whilst the effects of post deposition annealing at higher temperature (700?C) were also investigated. Both as-grown and post-deposition annealed Ga{sub 2}O{sub 3} films are found to be slightly oxygen deficient, exceptionally smooth and exhibit a wide energy bandgap of ?4.9?eV. Transistors based on as-deposited Ga{sub 2}O{sub 3} films show n-type conductivity with the maximum electron mobility of ?2?cm{sup 2}/V s.

  17. Field emission from bias-grown diamond thin films in a microwave plasma

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Krauss, Alan R. (Naperville, IL); Ding, Ming Q. (Beijing, CN); Auciello, Orlando (Bolinbrook, IL)

    2002-01-01

    A method of producing diamond or diamond like films in which a negative bias is established on a substrate with an electrically conductive surface in a microwave plasma chemical vapor deposition system. The atmosphere that is subjected to microwave energy includes a source of carbon, nitrogen and hydrogen. The negative bias is maintained on the substrate through both the nucleation and growth phase of the film until the film is continuous. Biases between -100V and -200 are preferred. Carbon sources may be one or more of CH.sub.4, C.sub.2 H.sub.2 other hydrocarbons and fullerenes.

  18. Flexible cadmium telluride thin films grown on electron-beam-irradiated graphene/thin glass substrates

    SciTech Connect (OSTI)

    Seo, Won-Oh; Kim, Jihyun, E-mail: hyunhyun7@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, Anam-dong, Sungbuk-gu, Seoul 136-713 (Korea, Republic of); Koo, Yong Hwan; Kim, Byungnam; Lee, Byung Cheol [Radiation Integrated System Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353 (Korea, Republic of); Kim, Donghwan [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2014-08-25

    We demonstrate the close-spaced sublimation growth of polycrystalline cadmium telluride (CdTe) thin films on a flexible graphene electrode/thin glass substrate structure. Prior to the growth of CdTe films, chemical-vapor-deposited graphene was transferred onto a flexible glass substrate and subjected to electron-beam irradiation at an energy of 0.2?MeV in order to intentionally introduce the defects into it in a controlled manner. Micro-Raman spectroscopy and sheet resistance measurements were employed to monitor the damage and disorder in the electron-beam irradiated graphene layers. The morphology and optical properties of the CdTe thin films deposited on a graphene/flexible glass substrate were systematically characterized. The integration of the defective graphene layers with a flexible glass substrate can be a useful platform to grow various thin-film structures for flexible electronic and optoelectronic devices.

  19. p-type conduction from Sb-doped ZnO thin films grown by dual ion beam sputtering in the absence of oxygen ambient

    SciTech Connect (OSTI)

    Kumar Pandey, Sushil; Kumar Pandey, Saurabh; Awasthi, Vishnu; Kumar, Ashish; Mukherjee, Shaibal; Deshpande, Uday P.; Gupta, Mukul

    2013-10-28

    Sb-doped ZnO (SZO) thin films were deposited on c-plane sapphire substrates by dual ion beam sputtering deposition system in the absence of oxygen ambient. The electrical, structural, morphological, and elemental properties of SZO thin films were studied for films grown at different substrate temperatures ranging from 200 C to 600 C and then annealed in situ at 800 C under vacuum (pressure ?5 10{sup ?8} mbar). Films grown for temperature range of 200500 C showed p-type conduction with hole concentration of 1.374 10{sup 16} to 5.538 10{sup 16} cm{sup ?3}, resistivity of 66.73312.758 ? cm, and carrier mobility of 4.9648.846 cm{sup 2} V{sup ?1} s{sup ?1} at room temperature. However, the film grown at 600 C showed n-type behavior. Additionally, current-voltage (IV) characteristic of p-ZnO/n-Si heterojunction showed a diode-like behavior, and that further confirmed the p-type conduction in ZnO by Sb doping. X-ray diffraction measurements showed that all SZO films had (002) preferred crystal orientation. X-ray photoelectron spectroscopy analysis confirmed the formation of Sb{sub Zn}2V{sub Zn} complex caused acceptor-like behavior in SZO films.

  20. Characterization of ZnO film grown on polycarbonate by atomic layer deposition at low temperature

    SciTech Connect (OSTI)

    Lee, Gyeong Beom; Han, Gwon Deok; Shim, Joon Hyung; Choi, Byoung-Ho

    2015-01-15

    ZnO is an attractive material for use in various technological products such as phosphors, gas sensors, and transparent conductors. Recently, aluminum-doped zinc oxide has received attention as a potential replacement for indium tin oxide, which is one of the transparent conductive oxides used in flat panel displays, organic light-emitting diodes, and organic solar cells. In this study, the characteristics of ZnO films deposited on polycarbonate (PC) substrates by atomic layer deposition (ALD) are investigated for various process temperatures. The growth mechanism of these films was investigated at low process temperatures using x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS). XRD and XPS were used to determine the preferred orientation and chemical composition of the films, respectively. Furthermore, the difference of the deposition mechanisms on an amorphous organic material, i.e., PC substrate and an inorganic material such as silicon was discussed from the viewpoint of the diffusion and deposition of precursors. The structure of the films was also investigated by chemical analysis in order to determine the effect of growth temperature on the films deposited by ALD.

  1. Ferromagnetism in undoped One-dimensional GaN Nanowires

    SciTech Connect (OSTI)

    Jeganathan, K. E-mail: jagan@physics.bdu.ac.in; Purushothaman, V.; Debnath, R.; Arumugam, S.

    2014-05-15

    We report an intrinsic ferromagnetism in vertical aligned GaN nanowires (NW) fabricated by molecular beam epitaxy without any external catalyst. The magnetization saturates at ?0.75 emu/gm with the applied field of 3000 Oe for the NWs grown under the low-Gallium flux of 2.4 10{sup ?8} mbar. Despite a drop in saturation magnetization, narrow hysteresis loop remains intact regardless of Gallium flux. Magnetization in vertical standing GaN NWs is consistent with the spectral analysis of low-temperature photoluminescence pertaining to Ga-vacancies associated structural defects at the nanoscale.

  2. GaN: Defect and Device Issues

    SciTech Connect (OSTI)

    Pearton, S.J.; Ren, F.; Shul, R.J.; Zolper, J.C.

    1998-11-09

    The role of extended and point defects, and key impurities such as C, O and H, on the electrical and optical properties of GaN is reviewed. Recent progress in the development of high reliability contacts, thermal processing, dry and wet etching techniques, implantation doping and isolation and gate insulator technology is detailed. Finally, the performance of GaN-based electronic and photonic devices such as field effect transistors, UV detectors, laser diodes and light-emitting diodes is covered, along with the influence of process-induced or grown-in defects and impurities on the device physics.

  3. Ultraviolet GaN photodetectors on Si via oxide buffer heterostructures with integrated short period oxide-based distributed Bragg reflectors and leakage suppressing metal-oxide-semiconductor contacts

    SciTech Connect (OSTI)

    Szyszka, A. E-mail: adam.szyszka@pwr.wroc.pl; Haeberlen, M.; Storck, P.; Thapa, S. B.; Schroeder, T.

    2014-08-28

    Based on a novel double step oxide buffer heterostructure approach for GaN integration on Si, we present an optimized Metal-Semiconductor-Metal (MSM)-based Ultraviolet (UV) GaN photodetector system with integrated short-period (oxide/Si) Distributed Bragg Reflector (DBR) and leakage suppressing Metal-Oxide-Semiconductor (MOS) electrode contacts. In terms of structural properties, it is demonstrated by in-situ reflection high energy electron diffraction and transmission electron microscopy-energy dispersive x-ray studies that the DBR heterostructure layers grow with high thickness homogeneity and sharp interface structures sufficient for UV applications; only minor Si diffusion into the Y{sub 2}O{sub 3} films is detected under the applied thermal growth budget. As revealed by comparative high resolution x-ray diffraction studies on GaN/oxide buffer/Si systems with and without DBR systems, the final GaN layer structure quality is not significantly influenced by the growth of the integrated DBR heterostructure. In terms of optoelectronic properties, it is demonstrated thatwith respect to the basic GaN/oxide/Si system without DBRthe insertion of (a) the DBR heterostructures and (b) dark current suppressing MOS contacts enhances the photoresponsivity below the GaN band-gap related UV cut-off energy by almost up to two orders of magnitude. Given the in-situ oxide passivation capability of grown GaN surfaces and the one order of magnitude lower number of superlattice layers in case of higher refractive index contrast (oxide/Si) systems with respect to classical III-N DBR superlattices, virtual GaN substrates on Si via functional oxide buffer systems are thus a promising robust approach for future GaN-based UV detector technologies.

  4. Local Structures and Interface Morphology of InGaAsN Thin Films Grown on GaAs

    SciTech Connect (OSTI)

    Allerman, A.A.; Chen, J.G.; Geisz, J.F.; Huang, S.; Hulbert, S.L.; Jones, E.D.; Kao, Y.H.; Kurtz, S.; Kurtz, S.R.; Olson, J.M.; Soo, Y.L.

    1999-02-23

    The compound semiconductor system InGaAsN exhibits many intriguing properties which are particularly useful for the development of innovative high efficiency thin film solar cells and long wavelength lasers. The bandgap in these semiconductors can be varied by controlling the content of N and In and the thin films can yet be lattice-matched to GaAs. In the present work, x-ray absorption fine structure (XAFS) and grazing incidence x-ray scattering (GIXS) techniques have been employed to probe the local environment surrounding both N and In atoms as well as the interface morphology of InGaAsN thin films epitaxially grown on GaAs. The soft x-ray XAFS results around nitrogen K-edge reveal that N is in the sp{sup 3} hybridized bonding configuration in InGaAsN and GaAsN, suggesting that N impurities most likely substitute for As sites in these two compounds. The results of In K-edge XAFS suggest a possible trend of a slightly larger coordination number of As nearest neighbors around In atoms in InGaAsN samples with a narrower bandgap whereas the In-As interatomic distance remains practically the same as in InAs within the experimental uncertainties. These results combined suggest that N-substitution of the As sites plays an important role of bandgap-narrowing while in the meantime counteracting the compressive strain caused by In-doping. Grazing incidence x-ray scattering (GIXS) experiments verify that InGaAsN thin films can indeed form very smooth interfaces with GaAs yielding an average interfacial roughness of 5-20{angstrom}.

  5. Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD

    SciTech Connect (OSTI)

    Wiora, M; Bruehne, K; Floeter, A; Gluche, P; Willey, T M; Kucheyev, S O; Van Buuren, A W; Hamza, A V; Biener, J; Fecht, H

    2008-08-01

    Nanocrystalline diamond (NCD) films with a thickness of {approx}6 {micro}m and with average grain sizes ranging from 60 to 9 nm were deposited on silicon wafers using a hot-filament chemical vapor deposition (HFCVD) process. These samples were then characterized with the goal to identify correlations between grain size, chemical composition and mechanical properties. The characterization reveals that our films are phase pure and exhibit a relatively smooth surface morphology. The levels of sp{sup 2}-bonded carbon and hydrogen impurities are low, and showed a systematic variation with the grain size. The hydrogen content increases with decreasing grain size, whereas the sp{sup 2} carbon content decreases with decreasing grain size. The material is weaker than single crystalline diamond, and both stiffness and hardness decrease with decreasing grain size. These trends suggest gradual changes of the nature of the grain boundaries, from graphitic in the case of the 60 nm grain size material to hydrogen terminated sp{sup 3} carbon for the 9 nm grain size material. The films exhibit low levels of internal stress and freestanding structures with a length of several centimeters could be fabricated without noticeable bending.

  6. Reactor design for uniform chemical vapor deposition-grown films without substrate rotation

    DOE Patents [OSTI]

    Wanlass, M.

    1985-02-19

    A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.

  7. Reactor design for uniform chemical vapor deposition-grown films without substrate rotation

    DOE Patents [OSTI]

    Wanlass, Mark

    1987-01-01

    A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.

  8. Influence of growth temperature on electrical, optical, and plasmonic properties of aluminum:zinc oxide films grown by radio frequency magnetron sputtering

    SciTech Connect (OSTI)

    Dondapati, Hareesh; Santiago, Kevin; Pradhan, A. K.

    2013-10-14

    We have investigated the responsible mechanism for the observation of metallic conductivity at room temperature and metal-semiconductor transition (MST) at lower temperatures for aluminum-doped zinc oxide (AZO) films. AZO films were grown on glass substrates by radio-frequency magnetron sputtering with varying substrate temperatures (T{sub s}). The films were found to be crystalline with the electrical resistivity close to 1.1 10{sup ?3} ? cm and transmittance more than 85% in the visible region. The saturated optical band gap of 3.76 eV was observed for the sample grown at T{sub s} of 400 C, however, a slight decrease in the bandgap was noticed above 400 C, which can be explained by BursteinMoss effect. Temperature dependent resistivity measurements of these highly conducting and transparent films showed a MST at ?110 K. The observed metal-like and metal-semiconductor transitions are explained by taking into account the Mott phase transition and localization effects due to defects. All AZO films demonstrate crossover in permittivity from positive to negative and low loss in the near-infrared region, illustrating its applications for plasmonic metamaterials, including waveguides for near infrared telecommunication region. Based on the results presented in this study, the low electrical resistivity and high optical transmittance of AZO films suggested a possibility for the application in the flexible electronic devices, such as transparent conducting oxide film on LEDs, solar cells, and touch panels.

  9. Spectral behavior of the optical constants in the visible/near infrared of GeSbSe chalcogenide thin films grown at glancing angle

    SciTech Connect (OSTI)

    Martin-Palma, R. J.; Ryan, Joseph V.; Pantano, C. G.

    2007-04-23

    GeSbSe chalcogenide thin films were deposited using glancing angle deposition onto transparent glass substrates for the determination of the spectral behavior of the optical constants (index of refraction n and extinction coefficient k) in the visible and near infrared ranges (400-2500 nm) as a function of the deposition angle. Computational simulations based on the matrix method were employed to determine the values of the optical constants of the different films from the experimental reflectance and transmittance spectra. A significant dependence of the overall optical behavior on the deposition angle is found. Furthermore, the band gap of the GeSbSe thin films was calculated. The accurate determination of the optical constants of films grown at glancing angle will enable the development of sculptured thin film fiber-optic chemical sensors and biosensors.

  10. Co{sub 2}FeAl Heusler thin films grown on Si and MgO substrates: Annealing temperature effect

    SciTech Connect (OSTI)

    Belmeguenai, M. Tuzcuoglu, H.; Zighem, F.; Chérif, S. M.; Moch, P.; Gabor, M. S. Petrisor, T.; Tiusan, C.

    2014-01-28

    10 nm and 50 nm Co{sub 2}FeAl (CFA) thin films have been deposited on MgO(001) and Si(001) substrates by magnetron sputtering and annealed at different temperatures. X-rays diffraction revealed polycrystalline or epitaxial growth (according to CFA(001)[110]//MgO(001)[100] epitaxial relation) for CFA films grown on a Si and on a MgO substrate, respectively. For these later, the chemical order varies from the A2 phase to the B2 phase when increasing the annealing temperature (T{sub a}), while only the A2 disorder type has been observed for CFA grown on Si. Microstrip ferromagnetic resonance (MS-FMR) measurements revealed that the in-plane anisotropy results from the superposition of a uniaxial and a fourfold symmetry term for CFA grown on MgO substrates. This fourfold anisotropy, which disappears completely for samples grown on Si, is in accord with the crystal structure of the samples. The fourfold anisotropy field decreases when increasing T{sub a}, while the uniaxial anisotropy field is nearly unaffected by T{sub a} within the investigated range. The MS-FMR data also allow for concluding that the gyromagnetic factor remains constant and that the exchange stiffness constant increases with T{sub a}. Finally, the FMR linewidth decreases when increasing T{sub a}, due to the enhancement of the chemical order. We derive a very low intrinsic damping parameter (1.1×10{sup −3} and 1.3×10{sup −3} for films of 50 nm thickness annealed at 615 °C grown on MgO and on Si, respectively)

  11. Properties of H, O and C in GaN

    SciTech Connect (OSTI)

    Pearton, S.J.; Abernathy, C.R.; Lee, J.W.

    1996-04-01

    The electrical properties of the light ion impurities H, O and C in GaN have been examined in both as-grown and implanted material. H is found to efficiently passivate acceptors such as Mg, Ca and C. Reactivation occurs at {ge} 450 C and is enhanced by minority carrier injection. The hydrogen does not leave the GaN crystal until > 800 C, and its diffusivity is relatively high ({approximately} 10{sup {minus}11} cm{sup 2}/s) even at low temperatures (< 200 C) during injection by wet etching, boiling in water or plasma exposure. Oxygen shows a low donor activation efficiency when implanted into GaN, with an ionization level of 30--40 meV. It is essentially immobile up to 1,100 C. Carbon can produce low p-type levels (3 {times} 10{sup 17} cm{sup {minus}3}) in GaN during MOMBE, although there is some evidence it may also create n-type conduction in other nitrides.

  12. Room temperature photoluminescence from In{sub x}Al{sub (1?x)}N films deposited by plasma-assisted molecular beam epitaxy

    SciTech Connect (OSTI)

    Kong, W. Jiao, W. Y.; Kim, T. H.; Brown, A. S.; Mohanta, A.; Roberts, A. T.; Fournelle, J.; Losurdo, M.; Everitt, H. O.

    2014-09-29

    InAlN films deposited by plasma-assisted molecular beam epitaxy exhibited a lateral composition modulation characterized by 1012?nm diameter, honeycomb-shaped, columnar domains with Al-rich cores and In-rich boundaries. To ascertain the effect of this microstructure on its optical properties, room temperature absorption and photoluminescence characteristics of In{sub x}Al{sub (1?x)}N were comparatively investigated for indium compositions ranging from x?=?0.092 to 0.235, including x?=?0.166 lattice matched to GaN. The Stokes shift of the emission was significantly greater than reported for films grown by metalorganic chemical vapor deposition, possibly due to the phase separation in these nanocolumnar domains. The room temperature photoluminescence also provided evidence of carrier transfer from the InAlN film to the GaN template.

  13. Growth temperature effect on the structural and magnetic properties of Fe{sub 3}O{sub 4} films grown by the self-template method

    SciTech Connect (OSTI)

    Takahashi, R. Misumi, H.; Lippmaa, M.

    2014-07-21

    We have investigated the effect of growth temperature on the structure, surface morphology, and magnetic properties of Fe{sub 3}O{sub 4} thin films grown on SrTiO{sub 3}(001) substrates by a self-template method. To eliminate the intermixing of (001) and (111) orientations that usually occurs in spinel films grown on perovskite substrates, a thin self-template layer of (001)-oriented Fe{sub 3}O{sub 4} was deposited on a SrTiO{sub 3}(001) substrate at 400?C prior to the main film growth at temperatures of up to 1100?C. Increasing the growth temperature from 400?C to 1100?C resulted in greatly improved crystallinity of the Fe{sub 3}O{sub 4} thin films, with the rocking curve width dropping from 1.41 to 0.28. Surface analysis by atomic force microscopy showed that raising the growth temperature increased the grain size and the surface roughness, ultimately leading to the formation of regular nanopyramid arrays at 1100?C. The surface roughening and pyramid formation are caused by the dominance of the lowest surface energy spinel (111) crystal facet. The nanopyramids were fully relaxed but still perfectly (001)-oriented in the out-of-plane direction. The largest pyramids had the lowest coercivity due to a reduction of the demagnetization effect.

  14. Properties of molecular beam epitaxy grown Eu{sub x}(transition metal){sub y} films (transition metals: Mn, Cr)

    SciTech Connect (OSTI)

    Balin, K.; Nowak, A.; Gibaud, A.; Szade, J.; Celinski, Z.

    2011-04-01

    The electronic and crystallographic structures, as well as the magnetic properties, of Eu{sub x}(transition metal){sub y} (transition metals: Mn, Cr) thin films grown by molecular beam epitaxy were studied. Relative changes of the Eu/Mn and Eu/Cr ratios derived from the XPS lines, as well as x-ray reflectivity, indicate mixing of the Eu/Mn and Eu/Cr layers. Valency transitions from Eu{sup 2+} to Eu{sup 3+} were observed in both systems for most studied stoichiometries. A transition to a magnetically ordered phase was observed at 15 K, 40 K, and 62 K for selected films in the Eu-Mn system, and at 50 K for the film with a Eu/Cr ratio of 0.5.

  15. Structural characterization of metastable hcp-Ni thin films epitaxially grown on Au(100) single-crystal underlayers

    SciTech Connect (OSTI)

    Ohtake, Mitsuru; Tanaka, Takahiro; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-05-15

    Ni(1120) epitaxial thin films with hcp structure were prepared on Au(100) single-crystal underlayers at 100 deg. C by ultra high vacuum molecular beam epitaxy. The detailed film structure is studied by in situ reflection high energy electron diffraction, x-ray diffraction, and transmission electron microscopy. The hcp-Ni film consists of two types of variants whose c-axes are rotated around the film normal by 90 deg. each other. An atomically sharp boundary is recognized between the film and the underlayer, where misfit dislocations are introduced. Presence of such dislocations seems to relieve the strain caused by the lattice mismatch between the film and the underlayer.

  16. Element-specific study of epitaxial NiO/Ag/CoO/Fe films grown on vicinal Ag(001) using photoemission electron microscopy

    SciTech Connect (OSTI)

    Meng, Y.; Li, J.; Tan, A.; Jin, E.; Son, J.; Park, J. S.; Doran, A.; Young, A. T.; Scholl, A.; Arenholz, E.; Wu, J.; Hwang, C.; Zhao, H. W.; Qiu, Z. Q.

    2011-01-10

    NiO/Ag/CoO/Fe single crystalline films are grown epitaxially on a vicinal Ag(001) substrate using molecular beam epitaxy and investigated by photoemission electron microscopy. We find that after zero-field cooling, the in-plane Fe magnetization switches from parallel to perpendicular direction of the atomic steps of the vicinal surface at thinner CoO thickness but remains in its original direction parallel to the steps at thicker CoO thickness. CoO and NiO domain imaging result shows that both CoO/Fe and NiO/CoO spins are perpendicularly coupled, suggesting that the Fe magnetization switching may be associated with the rotatable-frozen spin transition of the CoO film.

  17. Enlarged Mn 3s splitting and room-temperature ferromagnetism in epitaxially grown oxygen doped Mn{sub 2}N{sub 0.86} films

    SciTech Connect (OSTI)

    Meng, M.; Wu, S. X. Ren, L. Z.; Zhou, W. Q.; Wang, Y. J.; Wang, G. L.; Li, S. W.

    2014-11-07

    Single-phase and oxygen doped Mn{sub 2}N{sub 0.86} thin films have been grown on MgO (111) by plasma-assisted molecular beam epitaxy. The films grow under tensile strain and, remarkably, they show ferromagnetic-like interactions at low temperature and ferromagnetic ordering agreed well with the Bloch-law T{sup 3/2} at room-temperature. We further demonstrate the enlarged Mn 3s splitting (6.46 eV) and its possible relation to the observed ferromagnetism. Our study not only provide a strategy for further theoretical work on oxygen doped manganese nitrides, but also shed promising light on utilizing its room-temperature FM property to fabricate spintronic devices.

  18. Microstructure of Co/X (X=Cu,Ag,Au) epitaxial thin films grown on Al{sub 2}O{sub 3}(0001) substrates

    SciTech Connect (OSTI)

    Ohtake, Mitsuru; Akita, Yuta; Futamoto, Masaaki; Kirino, Fumiyoshi

    2007-05-01

    Epitaxial thin films of Co/X (X=Cu,Ag,Au) were prepared on Al{sub 2}O{sub 3}(0001) substrates at substrate temperatures of 100 and 300 degree sign C by UHV molecular beam epitaxy. A complicated microstructure was realized for the epitaxial thin films. In-situ reflection high-energy electron diffraction observation has shown that X atoms of the buffer layer segregated to the surface during Co layer deposition, and it yielded a unique epitaxial granular structure. The structure consists of small Co grains buried in the X buffer layer, where both the magnetic small Co grains and the nonmagnetic X layer are epitaxially grown on the single crystal substrate. The structure varied depending on the X element and the substrate temperature. The crystal structure of Co grains is influenced by the buffer layer material and determined to be hcp and fcc structures for the buffer layer materials of Au and Cu, respectively.

  19. Effects of substrate temperature on properties of NbNx films grown on Nb by pulsed laser deposition

    SciTech Connect (OSTI)

    Ashraf Hassan Farha, Ali Oguz Er, Yüksel Ufuktepe, Ganapati Myneni, Hani E. Elsayed-Ali

    2011-12-01

    NbN{sub x} films were deposited on Nb substrate using pulsed laser deposition. The effects of substrate deposition temperature, from room temperature to 950 C, on the preferred orientation, phase, and surface properties of NbN{sub x} films were studied by X-ray diffraction, atomic force microscopy, and electron probe micro analyzer. We find that the substrate temperature is a critical factor in determining the phase of the NbN{sub x} films. For a substrate temperature up to 450 C the film showed poor crystalline quality. With temperature increase the film became textured and for a substrate temperature of 650-850 C, mix of cubic {delta}-NbN and hexagonal phases ({beta}-Nb{sub 2}N + {delta}'-NbN) were formed. Films with a mainly {beta}-Nb{sub 2}N hexagonal phase were obtained at deposition temperature above 850 C. The c/a ratio of {beta}-Nb{sub 2}N hexagonal shows an increase with increased nitrogen content. The surface roughness of the NbN{sub x} films increased as the temperature was raised from 450 to 850 C.

  20. Microstructure and magnetic properties of FeCo epitaxial thin films grown on MgO single-crystal substrates

    SciTech Connect (OSTI)

    Shikada, Kouhei; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-04-01

    FeCo epitaxial films were prepared on MgO(100), MgO(110), and MgO(111) substrates by ultrahigh vacuum molecular beam epitaxy. FeCo thin films with (100), (211), and (110) planes parallel to the substrate surface grow on respective MgO substrates. FeCo/MgO interface structures are studied by high-resolution cross-sectional transmission electron microscopy and the epitaxial growth mechanism is discussed. Atomically sharp boundaries are recognized between the FeCo thin films and the MgO substrates where misfit dislocations are introduced in the FeCo thin films presumably to decrease the lattice misfits. Misfit dislocations are observed approximately every 9 and 1.4 nm in FeCo thin film at the FeCo/MgO(100) and the FeCo/MgO(110) interfaces, respectively. X-ray diffraction analysis indicates that the lattice spacing measured parallel to the single-crystal substrate surfaces are in agreement within 0.1% with those of the respective bulk values of Fe{sub 50}Co{sub 50} alloy crystal, showing that the FeCo film strain is very small. The magnetic anisotropies of these epitaxial films basically reflect the magnetocrystalline anisotropy of bulk FeCo alloy crystal.

  1. Potential variation around grain boundaries in BaSi{sub 2} films grown on multicrystalline silicon evaluated using Kelvin probe force microscopy

    SciTech Connect (OSTI)

    Baba, Masakazu; Tsukahara, Daichi; Toko, Kaoru; Hara, Kosuke O.; Usami, Noritaka; Sekiguchi, Takashi; Suemasu, Takashi

    2014-12-21

    Potential variations across the grain boundaries (GBs) in a 100?nm thick undoped n-BaSi{sub 2} film on a cast-grown multicrystalline Si (mc-Si) substrate are evaluated using Kelvin probe force microscopy (KFM). The ?-2? X-ray diffraction pattern reveals diffraction peaks, such as (201), (301), (410), and (411) of BaSi{sub 2}. Local-area electron backscatter diffraction reveals that the a-axis of BaSi{sub 2} is tilted slightly from the surface normal, depending on the local crystal plane of the mc-Si. KFM measurements show that the potentials are not significantly disordered in the grown BaSi{sub 2}, even around the GBs of mc-Si. The potentials are higher at GBs of BaSi{sub 2} around Si GBs that are formed by grains with a Si(111) face and those with faces that deviate slightly from Si(111). Thus, downward band bending occurs at these BaSi{sub 2} GBs. Minority carriers (holes) undergo a repelling force near the GBs, which may suppress recombination as in the case of undoped n-BaSi{sub 2} epitaxial films on a single crystal Si(111) substrate. The barrier height for hole transport across the GBs varies in the range from 10 to 55?meV. The potentials are also higher at the BaSi{sub 2} GBs grown around Si GBs composed of grains with Si(001) and Si(111) faces. The barrier height for hole transport ranges from 5 to 55?meV. These results indicate that BaSi{sub 2} GBs formed on (111)-dominant Si surfaces do not have a negative influence on the minority-carrier properties, and thus BaSi{sub 2} formed on underlayers, such as (111)-oriented Si or Ge and on (111)-oriented mc-Si, can be utilized as a solar cell active layer.

  2. Influence of dosing sequence and film thickness on structure and resistivity of Al-ZnO films grown by atomic layer deposition

    SciTech Connect (OSTI)

    Pollock, Evan B. Lad, Robert J.

    2014-07-01

    Aluminum-doped zinc oxide (AZO) films were deposited onto amorphous silica substrates using an atomic layer deposition process with diethyl zinc (DEZ), trimethyl aluminum (TMA), and deionized water at 200?C. Three different Al doping sequences were used at a ZnO:Al ratio of 11:1 within the films. A minimum film resistivity of 1.6??10{sup ?3}?? cm was produced using sequential dosing of DEZ, TMA, DEZ, followed by H{sub 2}O for the Al doping step. This ZAZW sequence yielded an AZO film resistivity that is independent of film thickness, crystallographic texture, and grain size, as determined by high resolution x-ray diffraction (XRD). A pseudo-Voigt analysis method yields values for grain sizes that are smaller than those calculated using other XRD methods. Anisotropic grain sizes or variations in crystallographic texture have minimal influence on film resistivity, which suggests that factors other than film texture, such as intragrain scattering, may be important in influencing film resistivity.

  3. Preparation and structure characterization of SmCo{sub 5}(0001) epitaxial thin films grown on Cu(111) underlayers

    SciTech Connect (OSTI)

    Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-04-01

    SmCo{sub 5}(0001) epitaxial films were prepared on Cu(111) single-crystal underlayers formed on Al{sub 2}O{sub 3}(0001) substrates at 500 deg. C. The nucleation and growth mechanism of (0001)-oriented SmCo{sub 5} crystal on Cu(111) underlayer is investigated and a method to control the nucleation is proposed. The SmCo{sub 5} epitaxial thin film formed directly on Cu underlayer consists of two types of domains whose orientations are rotated around the film normal by 30 deg. each other. By introducing a thin Co seed layer on the Cu underlayer, a SmCo{sub 5}(0001) single-crystal thin film is successfully obtained. Nucleation of SmCo{sub 5} crystal on Cu underlayer seems controllable by varying the interaction between the Cu underlayer and the SmCo{sub 5} layer.

  4. Effect of Ag addition to L1{sub 0} FePt and L1{sub 0} FePd films grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Tokuoka, Y.; Seto, Y.; Kato, T.; Iwata, S.

    2014-05-07

    L1{sub 0} ordered FePt-Ag (5?nm) and FePd-Ag (5?nm) films were grown on MgO (001) substrate at temperatures of 250400?C by using molecular beam epitaxy method, and their crystal and surface structures, perpendicular magnetic anisotropies and Curie temperatures were investigated. In the case of FePt-Ag, Ag addition with the amount of 1020 at.?% was effective to promote L1{sub 0} ordering and granular growth, resulting in the increase of the perpendicular magnetic anisotropy and coercivity of the FePt-Ag films. On the other hand, in the case of FePd-Ag, Ag addition changed the surface morphology from island to continuous film associated with the reductions of its coercivity and perpendicular anisotropy. The variations of lattice constants and Curie temperature with Ag addition were significantly different between FePt-Ag and FePd-Ag. For FePd-Ag, the c and a axes lattice spacings and Curie temperature gradually changed with increasing Ag content, while they unchanged for FePt-Ag. These results suggest the possibility of the formation of FePdAg alloy in FePd-Ag, while Ag segregation in FePt-Ag.

  5. Structural controlled magnetic anisotropy in Heusler L1{sub 0}-MnGa epitaxial thin films

    SciTech Connect (OSTI)

    Wang Kangkang; Lu Erdong; Smith, Arthur R.; Knepper, Jacob W.; Yang Fengyuan

    2011-04-18

    Ferromagnetic L1{sub 0}-MnGa thin films have been epitaxially grown on GaN, sapphire, and MgO substrates using molecular beam epitaxy. Using diffraction techniques, the epitaxial relationships are determined. It is found that the crystalline orientation of the films differ due to the influence of the substrate. By comparing the magnetic anisotropy to the structural properties, a clear correlation could be established indicating that the in-plane and out-of-plane anisotropy is directly determined by the crystal orientation of the film and could be controlled via selection of the substrates. This result could be helpful in tailoring magnetic anisotropy in thin films for spintronic applications.

  6. X-ray magnetic circular dichroism for Co{sub x}Fe{sub 4?x}N (x?=?0, 3, 4) films grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Ito, Keita; Sanai, Tatsunori; Yasutomi, Yoko; Toko, Kaoru; Suemasu, Takashi; Zhu, Siyuan; Kimura, Akio; Takeda, Yukiharu; Saitoh, Yuji

    2014-05-07

    We evaluated orbital (m{sub orb}) and spin magnetic moments (m{sub spin}) of Co{sub x}Fe{sub 4?x}N (x?=?0, 3, 4) epitaxial thin films grown by molecular beam epitaxy using x-ray magnetic circular dichroism, and discussed the dependence of these values on x. Site-averaged m{sub spin} value of Fe atoms was deduced to be 1.91??{sub B} per atom, and that of Co atoms to be 1.47??{sub B} per atom in Co{sub 3}FeN at 300?K. These values are close to 1.87??{sub B} per Fe atom in Fe{sub 4}N and 1.43??{sub B} per Co atom in Co{sub 4}N, respectively. This result implies that the Fe and Co atoms in the Co{sub 3}FeN films were located both at corner and face-centered sites in the anti-perovskite lattice. Spin magnetic moments per unit cell were decreased linearly with increasing x in Co{sub x}Fe{sub 4?x}N. This tendency is in good agreement with theory predicted by the first-principle calculation.

  7. Ultra High p-doping Material Research for GaN Based Light Emitters

    SciTech Connect (OSTI)

    Vladimir Dmitriev

    2007-06-30

    The main goal of the Project is to investigate doping mechanisms in p-type GaN and AlGaN and controllably fabricate ultra high doped p-GaN materials and epitaxial structures. Highly doped p-type GaN-based materials with low electrical resistivity and abrupt doping profiles are of great importance for efficient light emitters for solid state lighting (SSL) applications. Cost-effective hydride vapor phase epitaxial (HVPE) technology was proposed to investigate and develop p-GaN materials for SSL. High p-type doping is required to improve (i) carrier injection efficiency in light emitting p-n junctions that will result in increasing of light emitting efficiency, (ii) current spreading in light emitting structures that will improve external quantum efficiency, and (iii) parameters of Ohmic contacts to reduce operating voltage and tolerate higher forward currents needed for the high output power operation of light emitters. Highly doped p-type GaN layers and AlGaN/GaN heterostructures with low electrical resistivity will lead to novel device and contact metallization designs for high-power high efficiency GaN-based light emitters. Overall, highly doped p-GaN is a key element to develop light emitting devices for the DOE SSL program. The project was focused on material research for highly doped p-type GaN materials and device structures for applications in high performance light emitters for general illumination P-GaN and p-AlGaN layers and multi-layer structures were grown by HVPE and investigated in terms of surface morphology and structure, doping concentrations and profiles, optical, electrical, and structural properties. Tasks of the project were successfully accomplished. Highly doped GaN materials with p-type conductivity were fabricated. As-grown GaN layers had concentration N{sub a}-N{sub d} as high as 3 x 10{sup 19} cm{sup -3}. Mechanisms of doping were investigated and results of material studies were reported at several International conferences providing better understanding of p-type GaN formation for Solid State Lighting community. Grown p-type GaN layers were used as substrates for blue and green InGaN-based LEDs made by HVPE technology at TDI. These results proved proposed technical approach and facilitate fabrication of highly conductive p-GaN materials by low-cost HVPE technology for solid state lighting applications. TDI has started the commercialization of p-GaN epitaxial materials.

  8. Development of an IR-transparent, inverted-grown, thin-film, Al[sub 0. 34]Ga[sub 0. 66]As/GaAs cascade solar cell

    SciTech Connect (OSTI)

    Venkatasubramanian, R.; Timmons, M.L.; Sharps, P.R.; Colpitts, T.S.; Hills, J.S.; Hancock, J.; Hutchby, J.A. )

    1992-12-01

    Inverted growth and the development of associated cell processing, are likely to offer a significant degree of freedom for improving the performance of many III-V multijunction cascades and open new avenues for advanced multijunction concepts. This is especially true for the development of high-efficiency Al[sub 0.37]Ga[sub 0.63]As/GaAs cascades where the high growth temperatures required for the AlGaAs top cell growth can cause the deterioration of the tunnel junction interconnect. In the approach of inverted-grown AlGaAs/GaAs cascade cells, the AlGaAs top cell is grown first at 780 [degree]C and the GaAs tunnel junction and bottom cell are grown at 675 [degree]C. After the inverted growth, the AlGaAs/GaAs cascade structure is selectively removed from the parent substrate. The feasibility of inverted growth is demonstrated by a fully-processed, inverted-grown, thin film GaAs cell with a 1-sun AM1.5 efficiency of 20.3%. Also, an inverted-grown, thin-film, Al[sub 0.34]Ga[sub 0.66]As/GaAs cascade with AM1.5 efficiencies of 19.9% and 21% at 1-sun and 7-suns, respectively, has been obtained.

  9. Epitaxial single-crystal thin films of MnxTi1-xO2-? grown on (rutile)TiO2 substrates with pulsed laser deposition: Experiment and theory

    SciTech Connect (OSTI)

    Ilton, Eugene S.; Droubay, Timothy C.; Chaka, Anne M.; Kovarik, Libor; Varga, Tamas; Arey, Bruce W.; Kerisit, Sebastien N.

    2015-02-01

    Epitaxial rutile-structured single-crystal MnxTi1-xO2-? films were synthesized on rutile- (110) and -(001) substrates using pulsed laser deposition. The films were characterized by reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and aberration-corrected transmission electron microscopy (ACTEM). Under the present conditions, 400oC and PO2 = 20 mTorr, single crystal epitaxial thin films were grown for x = 0.13, where x is the nominal average mole fraction of Mn. In fact, arbitrarily thick films could be grown with near invariant Mn/Ti concentration profiles from the substrate/film interface to the film surface. In contrast, at x = 0.25, Mn became enriched towards the surface and a secondary nano-scale phase formed which appeared to maintain the basic rutile structure but with enhanced z-contrast in the tunnels, or tetrahedral interstitial sites. Ab initio thermodynamic calculations provided quantitative estimates for the destabilizing effect of expanding the ?-MnO2 lattice parameters to those of TiO2-rutile, the stabilizing effect of diluting Mn with increasing Ti concentration, and competing reaction pathways.

  10. Tellurium n-type doping of highly mismatched amorphous GaN1-xAsx alloys in plasma-assisted molecular beam epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Novikov, S. V.; Ting, M.; Yu, K. M.; Sarney, W. L.; Martin, R. W.; Svensson, S. P.; Walukiewicz, W.; Foxon, C. T.

    2014-10-01

    In this paper we report our study on n-type Te doping of amorphous GaN1-xAsx layers grown by plasma-assisted molecular beam epitaxy. We have used a low temperature PbTe source as a source of tellurium. Reproducible and uniform tellurium incorporation in amorphous GaN1-xAsx layers has been successfully achieved with a maximum Te concentration of 9×10²⁰ cm⁻³. Tellurium incorporation resulted in n-doping of GaN1-xAsx layers with Hall carrier concentrations up to 3×10¹⁹ cm⁻³ and mobilities of ~1 cm²/V s. The optimal growth temperature window for efficient Te doping of the amorphous GaN1-xAsx layers has been determined.

  11. Converse magnetoelectric coupling in NiFe/Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}PbTiO{sub 3} nanocomposite thin films grown on Si substrates

    SciTech Connect (OSTI)

    Feng, Ming; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000 ; Hu, Jiamian; Wang, Jianjun; Li, Zheng; Shu, Li; Nan, C. W.

    2013-11-04

    Multiferroic NiFe (?30 nm)/Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}PbTiO{sub 3}(PMNPT, ?220 nm) bilayered thin films were grown on common Pt/Ti/SiO{sub 2}/Si substrates by a combination of off-axis magnetron sputtering and sol-gel spin-coating technique. By using AC-mode magneto-optical Kerr effect technique, the change in the Kerr signal (magnetization) of the NiFe upon applying a low-frequency AC voltage to the PMNPT film was in situ acquired at zero magnetic field. The obtained Kerr signal versus voltage loop essentially tracks the electromechanical strain curve of the PMNPT thin film, clearly demonstrating a strain-mediated converse magnetoelectric coupling, i.e., voltage-modulated magnetization, in the NiFe/PMNPT nanocomposite thin films.

  12. Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes

    SciTech Connect (OSTI)

    Verma, Jai; Kandaswamy, Prem Kumar; Protasenko, Vladimir; Verma, Amit; Grace Xing, Huili; Jena, Debdeep

    2013-01-28

    We demonstrate a GaN quantum dot ultraviolet light-emitting diode that uses tunnel injection of carriers through AlN barriers into the active region. The quantum dot heterostructure is grown by molecular beam epitaxy on AlN templates. The large lattice mismatch between GaN and AlN favors the formation of GaN quantum dots in the Stranski-Krastanov growth mode. Carrier injection by tunneling can mitigate losses incurred in hot-carrier injection in light emitting heterostructures. To achieve tunnel injection, relatively low composition AlGaN is used for n- and p-type layers to simultaneously take advantage of effective band alignment and efficient doping. The small height of the quantum dots results in short-wavelength emission and are simultaneously an effective tool to fight the reduction of oscillator strength from quantum-confined Stark effect due to polarization fields. The strong quantum confinement results in room-temperature electroluminescence peaks at 261 and 340 nm, well above the 365 nm bandgap of bulk GaN. The demonstration opens the doorway to exploit many varied features of quantum dot physics to realize high-efficiency short-wavelength light sources.

  13. Isotope analysis of diamond-surface passivation effect of high-temperature H{sub 2}O-grown atomic layer deposition-Al{sub 2}O{sub 3} films

    SciTech Connect (OSTI)

    Hiraiwa, Atsushi E-mail: qs4a-hriw@asahi-net.or.jp; Saito, Tatsuya; Matsumura, Daisuke; Kawarada, Hiroshi

    2015-06-07

    The Al{sub 2}O{sub 3} film formed using an atomic layer deposition (ALD) method with trimethylaluminum as Al precursor and H{sub 2}O as oxidant at a high temperature (450?C) effectively passivates the p-type surface conduction (SC) layer specific to a hydrogen-terminated diamond surface, leading to a successful operation of diamond SC field-effect transistors at 400?C. In order to investigate this excellent passivation effect, we carried out an isotope analysis using D{sub 2}O instead of H{sub 2}O in the ALD and found that the Al{sub 2}O{sub 3} film formed at a conventional temperature (100?C) incorporates 50 times more CH{sub 3} groups than the high-temperature film. This CH{sub 3} is supposed to dissociate from the film when heated afterwards at a higher temperature (550?C) and causes peeling patterns on the H-terminated surface. The high-temperature film is free from this problem and has the largest mass density and dielectric constant among those investigated in this study. The isotope analysis also unveiled a relatively active H-exchange reaction between the diamond H-termination and H{sub 2}O oxidant during the high-temperature ALD, the SC still being kept intact. This dynamic and yet steady H termination is realized by the suppressed oxidation due to the endothermic reaction with H{sub 2}O. Additionally, we not only observed the kinetic isotope effect in the form of reduced growth rate of D{sub 2}O-oxidant ALD but found that the mass density and dielectric constant of D{sub 2}O-grown Al{sub 2}O{sub 3} films are smaller than those of H{sub 2}O-grown films. This is a new type of isotope effect, which is not caused by the presence of isotopes in the films unlike the traditional isotope effects that originate from the presence of isotopes itself. Hence, the high-temperature ALD is very effective in forming Al{sub 2}O{sub 3} films as a passivation and/or gate-insulation layer of high-temperature-operation diamond SC devices, and the knowledge of the aforementioned new isotope effect will be a basis for further enhancing ALD technologies in general.

  14. ARM - News from the Gan Island Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News from the Gan Island Deployment Related Links amie.png 34h AMIE Home cindy.png 50h CINDY2011 dynamo.png 34h DYNAMO ARM Data Discovery Browse Data Outreach News & Press Blog Backgrounder (PDF, 1.2MB) Education Flyer (PDF, 2.0MB) Images ARM flickr site Official AMIE Logo AMIE Gear Experiment Planning Steering Committee AMIE-MANUS Proposal Abstract AMIE-GAN Proposal Abstract Meetings Cloud Life Cycle Working Group Deployment Operations Science Plan - TWP Manus Site (PDF, 2.1 MB) Science

  15. Structural and dielectric properties of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin films grown by PLD

    SciTech Connect (OSTI)

    James, K. K.; Satish, B.; Jayaraj, M. K.

    2014-01-28

    Ferroelectric thin films of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (BST) were deposited on Si/SiO{sub 2}/TiO{sub 2}/Pt (PtSi) substrate by pulsed laser deposition (PLD). Crystalline films with perovskite structure were obtained without post-deposition annealing. Phase purity of the deposited films was confirmed by x-ray diffraction. The lowest value of FWHM obtained for the film deposited at oxygen pressure 5.410{sup ?4} mbar and substrate temperature 600C, indicates the high crystallinity of the film. The room temperature dielectric constant at 100 kHz was 85. Butterfly loop, which is the characteristic of ferroelectric materials, was obtained in the regime of ?4 to +4V. The leakage current density was nearly 910{sup ?13} Acm{sup ?2}.

  16. Fundamental Bulk/Surface Structure Photoactivity Relationships of Supported (Rh2-yCryO3)/GaN Photocatalysts

    SciTech Connect (OSTI)

    Phivilay, Somphonh; Roberts, Charles; Puretzky, Alexander A; Domen, Kazunari Domen; Wachs, Israel

    2013-01-01

    ABSTRACT. The supported (Rh2-yCryO3)/GaN photocatalyst was examined as a model nitride photocatalyst system to assist in the development of fundamental structure photoactivity relationships for UV activated water splitting. Surface characterization of the outermost surface layers by High Sensitivity-LEIS and High Resolution-XPS revealed for the first time that the GaN support consists of a GaOx outermost surface layer and a thin film of GaOxNy in the surface region. HR-XPS also demonstrates that the supported (Rh2-yCryO3) mixed oxide nanoparticles (NPs) exclusively consist of Cr+3 and Rh+3 cations and are surface enriched for the supported (Rh2-yCryO3)/GaN photocatalyst. Bulk analysis by Raman and UV-vis spectroscopy show that the bulk molecular and electronic structures, respectively, of the GaN support are not perturbed by the deposition of the (Rh2-yCryO3) mixed oxide NPs. The function of the GaN bulk lattice is to generate photoexcited electrons/holes, with the electrons harnessed by the surface Rh+3 sites for evolution of H2 and the holes trapped at the Ga oxide/oxynitride surface sites for splitting of water and evolving O2. These new structure-photoactivity relationships for supported (Rh2-yCryO3)/GaN also extend to the best performing visible light activated supported (Rh2-yCryO3)/(Ga1-xZnx)(N1-xOx) photocatalyst.

  17. Performance enhancement of GaN metalsemiconductormetal ultraviolet photodetectors by insertion of ultrathin interfacial HfO{sub 2} layer

    SciTech Connect (OSTI)

    Kumar, Manoj E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, Burak; Okyay, Ali Kemal E-mail: aokyay@ee.bilkent.edu.tr

    2015-03-15

    The authors demonstrate improved device performance of GaN metalsemiconductormetal ultraviolet (UV) photodetectors (PDs) by ultrathin HfO{sub 2} (UT-HfO{sub 2}) layer on GaN. The UT-HfO{sub 2} interfacial layer is grown by atomic layer deposition. The dark current of the PDs with UT-HfO{sub 2} is significantly reduced by more than two orders of magnitude compared to those without HfO{sub 2} insertion. The photoresponsivity at 360?nm is as high as 1.42 A/W biased at 5 V. An excellent improvement in the performance of the devices is ascribed to allowed electron injection through UT-HfO{sub 2} on GaN interface under UV illumination, resulting in the photocurrent gain with fast response time.

  18. Strain-dependence Of The Structure And Ferroic Properties Of Epitaxial Ni-1 (-) Ti-x(1) (-) O-y(3) Thin Films Grown On Sapphire Substrates

    SciTech Connect (OSTI)

    Varga, Tamas; Droubay, Timothy C.; Bowden, Mark E.; Stephens, Sean A.; Manandhar, Sandeep; Shutthanandan, V.; Colby, Robert J.; Hu, Dehong; Shelton, William A.; Chambers, Scott A.

    2015-03-01

    Polarization-induced weak ferromagnetism has been predicted a few years back in perovskite MTiO3 (M = Fe, Mn, Ni) [Fennie, Phys. Rev. Lett. 100, 167203 (2008)]. We set out to stabilize this metastable perovskite structure by growing NiTiO3 epitaxially on sapphire Al2O3 (001) substrate, and to control the polar and magnetic properties via strain. Epitaxial Ni1-xTi1-yO3 films of different Ni/Ti ratios and thicknesses were deposited on Al2O3 substrates by pulsed laser deposition at different temperatures, and characterized using several techniques. The effect of film thickness, deposition temperature, and film stoichiometry on lattice strain, film structure, and physical properties was investigated. Our structural data from x-ray diffraction, electron microscopy, and x-ray absorption spectroscopy shows that substrate-induced strain has a marked effect on the structure and crystalline quality of the films. Physical property measurements reveal a dependence of the Nel transition and lattice polarization on strain, and highlight our ability to control the ferroic properties in NiTiO3 thin films by film stoichiometry and thickness.

  19. Nanostructured light-absorbing crystalline CuIn{sub (1x)}Ga{sub x}Se{sub 2} thin films grown through high flux, low energy ion irradiation

    SciTech Connect (OSTI)

    Hall, Allen J.; Hebert, Damon; Rockett, Angus A.; Shah, Amish B.; Bettge, Martin

    2013-10-21

    A hybrid effusion/sputtering vacuum system was modified with an inductively coupled plasma (ICP) coil enabling ion assisted physical vapor deposition of CuIn{sub 1?x}Ga{sub x}Se{sub 2} thin films on GaAs single crystals and stainless steel foils. With <80 W rf power to the ICP coil at 620740 C, film morphologies were unchanged compared to those grown without the ICP. At low temperature (600670 C) and high rf power (80400 W), a light absorbing nanostructured highly anisotropic platelet morphology was produced with surface planes dominated by (112){sub T} facets. At 80400 W rf power and 640740 C, both interconnected void and small platelet morphologies were observed while at >270 W and above >715 C nanostructured pillars with large inter-pillar voids were produced. The latter appeared black and exhibited a strong (112){sub T} texture with interpillar twist angles of 8. Application of a negative dc bias of 050 V to the film during growth was not found to alter the film morphology or stoichiometry. The results are interpreted as resulting from the plasma causing strong etching favoring formation of (112){sub T} planes and preferential nucleation of new grains, balanced against conventional thermal diffusion and normal growth mechanisms at higher temperatures. The absence of effects due to applied substrate bias suggests that physical sputtering or ion bombardment effects were minimal. The nanostructured platelet and pillar films were found to exhibit less than one percent reflectivity at angles up to 75 from the surface normal.

  20. GaN nanowires with pentagon shape cross-section by ammonia-source molecular beam epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Yong; Leung, Benjamin; Li, Qiming; Figiel, Jeffrey J.; Wang, George T.

    2015-07-14

    In this study, ammonia-based molecular beam epitaxy (NH3-MBE) was used to grow catalyst-assisted GaN nanowires on (11¯02) r-plane sapphire substrates. Dislocation free [112¯0] oriented nanowires are formed with pentagon shape cross-section, instead of the usual triangular shape facet configuration. Specifically, the cross-section is the result of the additional two nonpolar {101¯0} side facets, which appear due to a decrease in relative growth rate of the {101¯0} facets to the {101¯1} and {101¯1} facets under the growth regime in NH3-MBE. Compared to GaN nanowires grown by Ni-catalyzed metal–organic chemical vapor deposition, the NH3-MBE grown GaN nanowires show more than an ordermore » of magnitude increase in band-edge to yellow luminescence intensity ratio, as measured by cathodoluminescence, indicating improved microstructural and optical properties.« less

  1. Strain-dependence Of The Structure And Ferroic Properties Of Epitaxial NiTiO3 Thin Films Grown On Different Substrates

    SciTech Connect (OSTI)

    Varga, Tamas; Droubay, Timothy C.; Bowden, Mark E.; Kovarik, Libor; Hu, Dehong; Chambers, Scott A.

    2015-08-14

    Polarization-induced weak ferromagnetism has been predicted a few years back in perovskite MTiO3 (M = Fe, Mn, Ni) [Fennie, Phys. Rev. Lett. 100, 167203 (2008)]. We set out to stabilize this metastable perovskite structure by growing NiTiO3 epitaxially on different substrates, and to investigate the dependence of polar and magnetic properties on strain. Epitaxial NiTiO3 films were deposited on Al2O3, Fe2O3, and LiNbO3 substrates by pulsed laser deposition, and characterized using several techniques. The effect of substrate choice on lattice strain, film structure, and physical properties was investigated. Our structural data from x-ray diffraction and electron microscopy shows that substrate-induced strain has a marked effect on the structure and crystalline quality of the films. Physical property measurements reveal a dependence of the weak ferromagnetism and lattice polarization on strain, and highlight our ability to control the ferroic properties in NiTiO3 thin films by the choice of substrate. Our results are also consistent with the theoretical prediction that the ferromagnetism in acentric NiTiO3 is polarization-induced. From the substrates studied here, the perovskite substrate LiNbO3 proved to be the most promising one for strong multiferroism.

  2. Strain-Dependence of the Structure and Ferroic Properties of Epitaxial NiTiO 3 Thin Films Grown on Different Substrates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Varga, Tamas; Droubay, Timothy C.; Bowden, Mark E.; Kovarik, Libor; Hu, Dehong; Chambers, Scott A.

    2015-01-01

    Polarization-induced weak ferromagnetism has been predicted a few years back in perovskite MTiO 3 (M = Fe, Mn, and Ni). We set out to stabilize this metastable perovskite structure by growing NiTiO 3 epitaxially on different substrates and to investigate the dependence of polar and magnetic properties on strain. Epitaxial NiTiO 3 films were deposited on Al 2 O 3 , Fe 2 O 3 , and LiNbO 3 substrates by pulsed laser deposition and characterized using several techniques. The effect of substrate choice on lattice strain, film structure, and physical properties was investigated. Our structural data from X-raymore » diffraction and electron microscopy shows that substrate-induced strain has a marked effect on the structure and crystalline quality of the films. Physical property measurements reveal a dependence of the weak ferromagnetism and lattice polarization on strain and highlight our ability to control the ferroic properties in NiTiO 3 thin films by the choice of substrate. Our results are also consistent with the theoretical prediction that the ferromagnetism in acentric NiTiO 3 is polarization induced. From the substrates studied here, the perovskite substrate LiNbO 3 proved to be the most promising one for strong multiferroism.« less

  3. Photovoltaic properties of Aurivillius phase Bi{sub 5}FeTi{sub 3}O{sub 15} thin films grown by pulsed laser deposition

    SciTech Connect (OSTI)

    Kooriyattil, Sudheendran; Katiyar, Rajesh K.; Pavunny, Shojan P. E-mail: shojanpp@gmail.com; Morell, Gerardo; Katiyar, Ram S. E-mail: shojanpp@gmail.com

    2014-08-18

    We report a remarkable photovoltaic effect in pulsed laser deposited multiferroic aurivillius phase Bi{sub 5}FeTi{sub 3}O{sub 15} (BFTO) thin films sandwiched between ZnO:Al transparent conductive oxide top electrode and SrRuO{sub 3} bottom electrode fabricated on amorphous fused silica substrates. The structural and micro structural properties of these films were analysed by X-ray diffraction and atomic force microscopy techniques. The films were showing a photo sensitive ferroelectric behaviour with a notable apparent polarization in the range of 1015??C/cm{sup 2}. These films also exhibited a switchable photo-response and this parameter was observed to be sensitive to polarisation field and the polarization direction. The device shows a large ON/OFF photo current ratio with an open circuit voltage of 0.14?V. The photo response at zero bias of this BFTO based heterostructures showed rapid increase to a saturation value of 6??A at zero bias.

  4. Strain-Dependence of the Structure and Ferroic Properties of Epitaxial NiTiO3Thin Films Grown on Different Substrates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Varga, Tamas; Droubay, Timothy C.; Bowden, Mark E.; Kovarik, Libor; Hu, Dehong; Chambers, Scott A.

    2015-01-01

    Polarization-induced weak ferromagnetism has been predicted a few years back in perovskite MTiO3(M = Fe, Mn, and Ni). We set out to stabilize this metastable perovskite structure by growing NiTiO3epitaxially on different substrates and to investigate the dependence of polar and magnetic properties on strain. Epitaxial NiTiO3films were deposited on Al2O3, Fe2O3, and LiNbO3substrates by pulsed laser deposition and characterized using several techniques. The effect of substrate choice on lattice strain, film structure, and physical properties was investigated. Our structural data from X-ray diffraction and electron microscopy shows that substrate-induced strain has a marked effect on the structure and crystallinemorequality of the films. Physical property measurements reveal a dependence of the weak ferromagnetism and lattice polarization on strain and highlight our ability to control the ferroic properties in NiTiO3thin films by the choice of substrate. Our results are also consistent with the theoretical prediction that the ferromagnetism in acentric NiTiO3is polarization induced. From the substrates studied here, the perovskite substrate LiNbO3proved to be the most promising one for strong multiferroism.less

  5. X-ray magnetic spectroscopy of MBE-grown Mn-doped Bi{sub 2}Se{sub 3} thin films

    SciTech Connect (OSTI)

    Collins-McIntyre, L. J.; Watson, M. D.; Zhang, S. L.; Coldea, A. I.; Hesjedal, T.; Baker, A. A.; Harrison, S. E.; Pushp, A.; Kellock, A. J.; Parkin, S. S. P.; Laan, G. van der

    2014-12-15

    We report the growth of Mn-doped Bi{sub 2}Se{sub 3} thin films by molecular beam epitaxy (MBE), investigated by x-ray diffraction (XRD), atomic force microscopy (AFM), SQUID magnetometry and x-ray magnetic circular dichroism (XMCD). Epitaxial films were deposited on c-plane sapphire substrates by co-evaporation. The films exhibit a spiral growth mechanism typical of this material class, as revealed by AFM. The XRD measurements demonstrate a good crystalline structure which is retained upon doping up to ?7.5 atomic-% Mn, determined by Rutherford backscattering spectrometry (RBS), and show no evidence of the formation of parasitic phases. However an increasing interstitial incorporation of Mn is observed with increasing doping concentration. A magnetic moment of 5.1 ?{sub B}/Mn is obtained from bulk-sensitive SQUID measurements, and a much lower moment of 1.6 ?{sub B}/Mn from surface-sensitive XMCD. At ?2.5 K, XMCD at the Mn L{sub 2,3} edge, reveals short-range magnetic order in the films and indicates ferromagnetic order below 1.5 K.

  6. Effects of laser energy fluence on the onset and growth of the Rayleigh-Taylor instabilities and its influence on the topography of the Fe thin film grown in pulsed laser deposition facility

    SciTech Connect (OSTI)

    Mahmood, S. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Department of Physics, University of Karachi, Karachi 75270 (Pakistan); Rawat, R. S.; Wang, Y.; Lee, S.; Tan, T. L.; Springham, S. V.; Lee, P. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Zakaullah, M. [Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan)

    2012-10-15

    The effect of laser energy fluence on the onset and growth of Rayleigh-Taylor (RT) instabilities in laser induced Fe plasma is investigated using time-resolved fast gated imaging. The snow plow and shock wave models are fitted to the experimental results and used to estimate the ablation parameters and the density of gas atoms that interact with the ablated species. It is observed that RT instability develops during the interface deceleration stage and grows for a considerable time for higher laser energy fluence. The effects of RT instabilities formation on the surface topography of the Fe thin films grown in pulsed laser deposition system are investigated (i) using different laser energy fluences for the same wavelength of laser radiation and (ii) using different laser wavelengths keeping the energy fluence fixed. It is concluded that the deposition achieved under turbulent condition leads to less smooth deposition surfaces with bigger sized particle agglomerates or network.

  7. Ferromagnetism and magneto-transport properties of Mn{sub 0.92}Ca{sub 0.08}As thin film grown on Al{sub 2}O{sub 3}(0001) substrate

    SciTech Connect (OSTI)

    Dung, Dang Duc; Van Thiet, Duong; Anh Tuan, Duong; Cho, Sunglae; Feng, Wuwei

    2014-05-07

    The epitaxial Mn{sub 0.92}Ca{sub 0.08}As thin film was grown on Al{sub 2}O{sub 3}(0001) substrate by molecular beam epitaxy. The Curie temperature (T{sub C}) around 340 K was enhanced with the addition of Ca, compared to that of bulk MnAs (T{sub C} ∼ 318 K). The maxima magnetoresistance, ∼2.08% at 0.7 T, was observed near the critical magnetic transition temperature. Moreover, the giant magnetocaloric effect was found with the maximum magnetic entropy change, ∼200 J/kgK, around 330 K at 5 T.

  8. Photo-induced valence change of the sulfur atom in an L-cysteine thin film grown on a silver metal substrate in a saliva-emulated aqueous solution

    SciTech Connect (OSTI)

    Tsujibayashi, Toru; Azuma, Junpei; Yamamoto, Isamu; Takahashi, Kazutoshi; Kamada, Masao

    2015-04-27

    A thin film of L-cysteine (HSCH{sub 2}CH(NH{sub 2})COOH) is grown on a silver substrate in saliva-emulated aqueous solution. X-ray photoemission spectroscopic measurements have revealed that the sulfur atom shows valence change under IR laser irradiation at 825?nm. The valence change maintains for about a minute at room temperature and more than an hour between 110 and 250?K after stopping the laser irradiation. It is not observed at all at temperatures lower than 110?K. This temperature-dependent behavior indicates that the photo-excited electronic change should be accompanied by a conformational change in the L-cysteine molecule. It is strongly suggested that the reversible valence change of the sulfur atom is applicable to a memory used around room temperature.

  9. Two-dimensional weak anti-localization in Bi{sub 2}Te{sub 3} thin film grown on Si(111)-(7 Multiplication-Sign 7) surface by molecular beam epitaxy

    SciTech Connect (OSTI)

    Roy, Anupam; Guchhait, Samaresh; Sonde, Sushant; Dey, Rik; Pramanik, Tanmoy; Rai, Amritesh; Movva, Hema C. P.; Banerjee, Sanjay K. [Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States)] [Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States); Colombo, Luigi [Texas Instruments, 12500 TI Boulevard, Dallas, Texas 75266 (United States)] [Texas Instruments, 12500 TI Boulevard, Dallas, Texas 75266 (United States)

    2013-04-22

    We report on low temperature transport studies of Bi{sub 2}Te{sub 3} topological insulator thin films grown on Si(111)-(7 Multiplication-Sign 7) surface by molecular beam epitaxy. A sharp increase in the magnetoresistance with magnetic field at low temperature indicates the existence of weak anti-localization. The measured weak anti-localization effect agrees well with the Hikami-Larkin-Nagaoka model, and the extracted phase coherence length shows a power-law dependence with temperature indicating the existence of a two-dimensional system. An insulating ground state has also been observed at low temperature showing a logarithmic divergence of the resistance that appears to be the influence of electron-electron interaction in a two-dimensional system.

  10. Electronic excitations and structure of Li{sub 2}IrO{sub 3} thin films grown on ZrO{sub 2}:Y (001) substrates

    SciTech Connect (OSTI)

    Jenderka, Marcus Schmidt-Grund, Rdiger; Grundmann, Marius; Lorenz, Michael

    2015-01-14

    Thin films are a prerequisite for application of the emergent exotic ground states in iridates that result from the interplay of strong spin-orbit coupling and electronic correlations. We report on pulsed laser deposition of Li{sub 2}IrO{sub 3} films on ZrO{sub 2}:Y (001) single crystalline substrates. X-ray diffraction confirms preferential (001) and (10-1) out-of-plane crystalline orientations with well defined in-plane orientation. Resistivity between 35 and 300?K is dominated by a three-dimensional variable range hopping mechanism. The dielectric function is determined by means of spectroscopic ellipsometry and, complemented by Fourier transform infrared transmission spectroscopy, reveals a small optical gap of ?300?meV, a splitting of the 5d-t{sub 2g} manifold, and several in-gap excitations attributed to phonons and possibly magnons.

  11. Low-temperature grown quaternary Heusler-compound Co{sub 2}Mn{sub 1-x}Fe{sub x}Si films on Ge(111)

    SciTech Connect (OSTI)

    Yamada, S.; Murakami, T.; Hamaya, K.; Varaprasad, B.; Rajanikanth, A.; Hono, K.; Takahashi, Y. K.; Miyao, M.

    2011-04-01

    Highly ordered quaternary Co{sub 2}Mn{sub 1-x}Fe{sub x}Si films on Ge(111) are explored for spintronic device applications on Si-large-scale integrated circuit (LSI) platform. By using low-temperature molecular beam epitaxy techniques, relatively large magnetic moments are demonstrated for x between 0.50 and 1.0 despite extremely low temperature growth of 130 deg. C. Also, L2{sub 1}-ordered crystal structures can be realized even on a group-IV semiconductor substrate, Ge, compatible with Si-LSI technologies. By the point contact Andreev reflection method, the spin polarization of Co{sub 2}Mn{sub 0.5}Fe{sub 0.5}Si films is estimated to be P= 0.58 {+-} 0.02. We believe that this study will be a first step for integration of high-performance spintronic applications with next ultra LSI.

  12. Structural, magnetic, and electronic properties of GdTiO{sub 3} Mott insulator thin films grown by pulsed laser deposition

    SciTech Connect (OSTI)

    Grisolia, M. N.; Bruno, F. Y.; Sando, D.; Jacquet, E.; Barthlmy, A.; Bibes, M.; Zhao, H. J.; Chen, X. M.; Bellaiche, L.

    2014-10-27

    We report on the optimization process to synthesize epitaxial thin films of GdTiO{sub 3} on SrLaGaO{sub 4} substrates by pulsed laser deposition. Optimized films are free of impurity phases and are fully strained. They possess a magnetic Curie temperature T{sub C}?=?31.8?K with a saturation magnetization of 4.2??{sub B} per formula unit at 10?K. Transport measurements reveal an insulating response, as expected. Optical spectroscopy indicates a band gap of ?0.7?eV, comparable to the bulk value. Our work adds ferrimagnetic orthotitanates to the palette of perovskite materials for the design of emergent strongly correlated states at oxide interfaces using a versatile growth technique such as pulsed laser deposition.

  13. Impact of defects on the electrical transport, optical properties and failure mechanisms of GaN nanowires.

    SciTech Connect (OSTI)

    Armstrong, Andrew M.; Aubry, Sylvie; Shaner, Eric Arthur; Siegal, Michael P.; Li, Qiming; Jones, Reese E.; Westover, Tyler; Wang, George T.; Zhou, Xiao Wang; Talin, Albert Alec; Bogart, Katherine Huderle Andersen; Harris, C. Thomas; Huang, Jian Yu

    2010-09-01

    We present the results of a three year LDRD project that focused on understanding the impact of defects on the electrical, optical and thermal properties of GaN-based nanowires (NWs). We describe the development and application of a host of experimental techniques to quantify and understand the physics of defects and thermal transport in GaN NWs. We also present the development of analytical models and computational studies of thermal conductivity in GaN NWs. Finally, we present an atomistic model for GaN NW electrical breakdown supported with experimental evidence. GaN-based nanowires are attractive for applications requiring compact, high-current density devices such as ultraviolet laser arrays. Understanding GaN nanowire failure at high-current density is crucial to developing nanowire (NW) devices. Nanowire device failure is likely more complex than thin film due to the prominence of surface effects and enhanced interaction among point defects. Understanding the impact of surfaces and point defects on nanowire thermal and electrical transport is the first step toward rational control and mitigation of device failure mechanisms. However, investigating defects in GaN NWs is extremely challenging because conventional defect spectroscopy techniques are unsuitable for wide-bandgap nanostructures. To understand NW breakdown, the influence of pre-existing and emergent defects during high current stress on NW properties will be investigated. Acute sensitivity of NW thermal conductivity to point-defect density is expected due to the lack of threading dislocation (TD) gettering sites, and enhanced phonon-surface scattering further inhibits thermal transport. Excess defect creation during Joule heating could further degrade thermal conductivity, producing a viscous cycle culminating in catastrophic breakdown. To investigate these issues, a unique combination of electron microscopy, scanning luminescence and photoconductivity implemented at the nanoscale will be used in concert with sophisticated molecular-dynamics calculations of surface and defect-mediated NW thermal transport. This proposal seeks to elucidate long standing material science questions for GaN while addressing issues critical to realizing reliable GaN NW devices.

  14. Development of very high Jc in Ba(Fe1-xCox)2As2 thin films grown on CaF2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tarantini, C.; Kametani, F.; Lee, S.; Jiang, J.; Weiss, J. D.; Jaroszynski, J.; Hellstrom, E. E.; Eom, C. B.; Larbalestier, D. C.

    2014-12-03

    Ba(Fe1-xCox)2As2 is the most tunable of the Fe-based superconductors (FBS) in terms of acceptance of high densities of self-assembled and artificially introduced pinning centres which are effective in significantly increasing the critical current density, Jc. Moreover, FBS are very sensitive to strain, which induces an important enhancement in critical temperature,Tc, of the material. In this study we demonstrate that strain induced by the substrate can further improve Jc of both single and multilayer films by more than that expected simply due to the increase in Tc. The multilayer deposition of Ba(Fe1-xCox)2As2 on CaF2 increases the pinning force density (Fp=Jc xmore » μ₀H) by more than 60% compared to a single layer film, reaching a maximum of 84 GN/m3 at 22.5 T and 4.2 K, the highest value ever reported in any 122 phase.« less

  15. ARM - Field Campaign - AMIE-Gan Ancillary Disdrometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : AMIE-Gan Ancillary Disdrometer 2012.01.01 - 2012.02.10 Lead Scientist : Mariko Oue...

  16. ARM MJO Investigation Experiment on Gan Island (AMIE-Gan) Science Plan

    SciTech Connect (OSTI)

    Long, CL; Del Genio, A; Deng, M; Fu, X; Gustafson, W; Houze, R; Jakob, C; Jensen, M; Johnson, R; Liu, X; Luke, E; May, P; McFarlane, S; Minnis, P; Schumacher, C; Vogelmann, A; Wang, Y; Webster, P; Xie, S; Zhang, C

    2011-04-11

    The overarching campaign, which includes the ARM Mobile Facility 2 (AMF2) deployment in conjunction with the Dynamics of the Madden-Julian Oscillation (DYNAMO) and the Cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011 (CINDY2011) campaigns, is designed to test several current hypotheses regarding the mechanisms responsible for Madden-Julian Oscillation (MJO) initiation and propagation in the Indian Ocean area. The synergy between the proposed AMF2 deployment with DYNAMO/CINDY2011, and the corresponding funded experiment on Manus, combine for an overarching ARM MJO Investigation Experiment (AMIE) with two components: AMF2 on Gan Island in the Indian Ocean (AMIE-Gan), where the MJO initiates and starts its eastward propagation; and the ARM Manus site (AMIE-Manus), which is in the general area where the MJO usually starts to weaken in climate models. AMIE-Gan will provide measurements of particular interest to Atmospheric System Research (ASR) researchers relevant to improving the representation of MJO initiation in climate models. The framework of DYNAMO/CINDY2011 includes two proposed island-based sites and two ship-based locations forming a square pattern with sonde profiles and scanning precipitation and cloud radars at both island and ship sites. These data will be used to produce a Variational Analysis data set coinciding with the one produced for AMIE-Manus. The synergy between AMIE-Manus and AMIE-Gan will allow studies of the initiation, propagation, and evolution of the convective cloud population within the framework of the MJO. As with AMIE-Manus, AMIE-Gan/DYNAMO also includes a significant modeling component geared toward improving the representation of MJO initiation and propagation in climate and forecast models. This campaign involves the deployment of the second, marine-capable, AMF; all of the included measurement systems; and especially the scanning and vertically pointing radars. The campaign will include sonde launches at a rate of eight per day for the duration of the deployment. The increased sonde launches for the entire period matches that of the AMIE-Manus campaign and makes possible a far more robust Variational Analysis forcing data set product for the entire campaign, and thus better capabilities for modeling studies and synergistic research using the data from both AMIE sites.

  17. Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon

    SciTech Connect (OSTI)

    Heo, Junseok; Guo Wei; Bhattacharya, Pallab

    2011-01-10

    Optically pumped lasing at room temperature in a silicon based monolithic single GaN nanowire with a two-dimensional photonic crystal microcavity is demonstrated. Catalyst-free nanowires with low density ({approx}10{sup 8} cm{sup -2}) are grown on Si by plasma-assisted molecular beam epitaxy. High resolution transmission electron microscopy images reveal that the nanowires are of wurtzite structure and they have no observable defects. A single nanowire laser fabricated on Si is characterized by a lasing transition at {lambda}=371.3 nm with a linewidth of 0.55 nm. The threshold is observed at a pump power density of {approx}120 kW/cm{sup 2} and the spontaneous emission factor {beta} is estimated to be 0.08.

  18. Demonstration of forward inter-band tunneling in GaN by polarization engineering

    SciTech Connect (OSTI)

    Krishnamoorthy, Sriram; Park, Pil Sung; Rajan, Siddharth

    2011-12-05

    We report on the design, fabrication, and characterization of GaN interband tunnel junction showing forward tunneling characteristics. We have achieved very high forward tunneling currents (153 mA/cm{sup 2} at 10 mV, and 17.7 A/cm{sup 2} peak current) in polarization-engineered GaN/InGaN/GaN heterojunction diodes grown by plasma assisted molecular beam epitaxy. We also report the observation of repeatable negative differential resistance in interband III-Nitride tunnel junctions, with peak-valley current ratio of 4 at room temperature. The forward current density achieved in this work meets the typical current drive requirements of a multi-junction solar cell.

  19. Temperature dependent dielectric function and the E{sub 0} critical points of hexagonal GaN from 30 to 690 K

    SciTech Connect (OSTI)

    Kim, Tae Jung Hwang, Soon Yong; Byun, Jun Seok; Barange, Nilesh S.; Park, Han Gyeol; Dong Kim, Young

    2014-02-15

    The complex dielectric function ? and the E{sub 0} excitonic and band-edge critical-point structures of hexagonal GaN are reported for temperatures from 30 to 690 K and energies from 0.74 to 6.42 eV, obtained by rotating-compensator spectroscopic ellipsometry on a 1.9 ?m thick GaN film deposited on a c-plane (0001) sapphire substrate by molecular beam epitaxy. Direct inversion and B-splines in a multilayer-structure calculation were used to extract the optical properties of the film from the measured pseudodielectric function ???. At low temperature sharp E{sub 0} excitonic and critical-point interband transitions are separately observed. Their temperature dependences were determined by fitting the data to the empirical Varshni relation and the phenomenological expression that contains the Bose-Einstein statistical factor.

  20. Microstructure and dielectric properties of Ba{sub 1-x}Sr{sub x}TiO{sub 3} films grown on LaAlO{sub 3} substrates

    SciTech Connect (OSTI)

    Gim, Y.; Hudson, T.; Fan, Y.; Kwon, C.; Findikoglu, A. T.; Gibbons, B. J.; Park, B. H.; Jia, Q. X.

    2000-08-21

    We report a systematic study of the microstructure and dielectric properties of barium strontium titanate, Ba{sub 1-x}Sr{sub x}TiO{sub 3}, films grown by laser ablation on LaAlO{sub 3} substrates, where x=0.1-0.9 at an interval of 0.1. X-ray diffraction analysis shows that when x<0.4, the longest unit-cell axis is parallel to the plane of the substrate but perpendicular as x approaches 1. Dielectric constant versus temperature measurements show that the relative dielectric constant has a maximum value and that the peak temperatures corresponding to the maximum relative dielectric constant are about 70 degree sign C higher when x{<=}0.4 but similar when x>0.4, compared with the peak temperatures of the bulk Ba{sub 1-x}Sr{sub x}TiO{sub 3}. At room temperature, the dielectric constant and tunability are relatively high when x{<=}0.4 but start to decrease rapidly as x increases. (c) 2000 American Institute of Physics.

  1. Structural and optical properties of InGaNGaN nanowire heterostructures grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Ho?fling, S.; Worschech, L.; Gru?tzmacher, D.

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaN to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, ?-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.

  2. Ge doped GaN with controllable high carrier concentration for...

    Office of Scientific and Technical Information (OSTI)

    Ge doped GaN with controllable high carrier concentration for plasmonic applications Citation Details In-Document Search Title: Ge doped GaN with controllable high carrier...

  3. Conductivity based on selective etch for GaN devices and applications thereof

    DOE Patents [OSTI]

    Zhang, Yu; Sun, Qian; Han, Jung

    2015-12-08

    This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

  4. Highly transparent ammonothermal bulk GaN substrates

    SciTech Connect (OSTI)

    Jiang, WK; Ehrentraut, D; Downey, BC; Kamber, DS; Pakalapati, RT; Do Yoo, H; D'Evelyn, MP

    2014-10-01

    A novel apparatus has been employed to grow ammonothermal (0001) gallium nitride (GaN) with diameters up to 2 in The crystals have been characterized by x-ray diffraction rocking-curve (XRC) analysis, optical and scanning electron microscopy (SEM), cathodoluminescence (CL), and optical spectroscopy. High crystallinity GaN with FWHM values about 20-50 arcsec and dislocation densities below 1 x 10(5) cm(-2) have been obtained. High optical transmission was achieved with an optical absorption coefficient below 1 cm(-1) at a wavelength of 450 nm. (C) 2014 Elsevier B.V. All rights reserved.

  5. InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes

    SciTech Connect (OSTI)

    Krishnamoorthy, Sriram E-mail: rajan@ece.osu.edu; Akyol, Fatih; Rajan, Siddharth E-mail: rajan@ece.osu.edu

    2014-10-06

    InGaN/GaN tunnel junction contacts were grown using plasma assisted molecular beam epitaxy (MBE) on top of a metal-organic chemical vapor deposition (MOCVD)-grown InGaN/GaN blue (450?nm) light emitting diode. A voltage drop of 5.3?V at 100?mA, forward resistance of 2 10{sup ?2} ? cm{sup 2}, and a higher light output power compared to the reference light emitting diodes (LED) with semi-transparent p-contacts were measured in the tunnel junction LED (TJLED). A forward resistance of 5??10{sup ?4} ? cm{sup 2} was measured in a GaN PN junction with the identical tunnel junction contact as the TJLED, grown completely by MBE. The depletion region due to the impurities at the regrowth interface between the MBE tunnel junction and the MOCVD-grown LED was hence found to limit the forward resistance measured in the TJLED.

  6. Strong geometrical effects in submillimeter selective area growth and light extraction of GaN light emitting diodes on sapphire

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tanaka, Atsunori; Chen, Renjie; Jungjohann, Katherine L.; Dayeh, Shadi A.

    2015-11-27

    Advanced semiconductor devices often utilize structural and geometrical effects to tailor their characteristics and improve their performance. Our detailed understanding of such geometrical effects in the epitaxial selective area growth of GaN on sapphire substrates is reported here, and we utilize them to enhance light extraction from GaN light emitting diodes. Systematic size and spacing effects were performed side-by-side on a single 2” sapphire substrate to minimize experimental sampling errors for a set of 144 pattern arrays with circular mask opening windows in SiO2. We show that the mask opening diameter leads to as much as 4 times increase inmore » the thickness of the grown layers for 20 μm spacings and that spacing effects can lead to as much as 3 times increase in thickness for a 350 μm dot diameter. We also observed that the facet evolution in comparison with extracted Ga adatom diffusion lengths directly influences the vertical and lateral overgrowth rates and can be controlled with pattern geometry. Lastly, such control over the facet development led to 2.5 times stronger electroluminescence characteristics from well-faceted GaN/InGaN multiple quantum well LEDs compared to non-faceted structures.« less

  7. Highly mismatched crystalline and amorphous GaN(1-x)As(x) alloys in the whole composition range

    SciTech Connect (OSTI)

    Yu, K. M.; Novikov, S. V.; Broesler, R.; Demchenko, I. N.; Denlinger, J. D.; Liliental-Weber, Z.; Luckert, F.; Martin, R. W.; Walukiewicz, W.; Foxon, C. T.

    2009-08-29

    Alloying is a commonly accepted method to tailor properties of semiconductor materials for specific applications. Only a limited number of semiconductor alloys can be easily synthesized in the full composition range. Such alloys are, in general, formed of component elements that are well matched in terms of ionicity, atom size, and electronegativity. In contrast there is a broad class of potential semiconductor alloys formed of component materials with distinctly different properties. In most instances these mismatched alloys are immiscible under standard growth conditions. Here we report on the properties of GaN1-xAsx, a highly mismatched, immiscible alloy system that was successfully synthesized in the whole composition range using a nonequilibrium low temperature molecular beam epitaxy technique. The alloys are amorphous in the composition range of 0.17films have smooth morphology, homogeneous composition, and sharp, well defined optical absorption edges. The band gap energy varies in a broad energy range from ~;;3.4 eV in GaN to ~;;0.8 eV at x~;;0.85. The reduction in the band gap can be attributed primarily to the downward movement of the conduction band for alloys with x>0.2, and to the upward movement of the valence band for alloys with x<0.2. The unique features of the band structure offer an opportunity of using GaN1-xAsx alloys for various types of solar power conversion devices.

  8. Effect of postdeposition annealing on the electrical properties of ?-Ga{sub 2}O{sub 3} thin films grown on p-Si by plasma-enhanced atomic layer deposition

    SciTech Connect (OSTI)

    Altuntas, Halit; Donmez, Inci; Ozgit-Akgun, Cagla; Biyikli, Necmi

    2014-07-01

    Ga{sub 2}O{sub 3} dielectric thin films were deposited on (111)-oriented p-type silicon wafers by plasma-enhanced atomic layer deposition using trimethylgallium and oxygen plasma. Structural analysis of the Ga{sub 2}O{sub 3} thin films was carried out using grazing-incidence x-ray diffraction. As-deposited films were amorphous. Upon postdeposition annealing at 700, 800, and 900?C for 30?min under N{sub 2} ambient, films crystallized into ?-form monoclinic structure. Electrical properties of the ?-Ga{sub 2}O{sub 3} thin films were then investigated by fabricating and characterizing Al/?-Ga{sub 2}O{sub 3}/p-Si metaloxide-semiconductor capacitors. The effect of postdeposition annealing on the leakage current densities, leakage current conduction mechanisms, dielectric constants, flat-band voltages, reverse breakdown voltages, threshold voltages, and effective oxide charges of the capacitors were presented. The effective oxide charges (Q{sub eff}) were calculated from the capacitancevoltage (C-V) curves using the flat-band voltage shift and were found as 2.6??10{sup 12}, 1.9??10{sup 12}, and 2.5??10{sup 12} cm{sup ?2} for samples annealed at 700, 800, and 900?C, respectively. Effective dielectric constants of the films decreased with increasing annealing temperature. This situation was attributed to the formation of an interfacial SiO{sub 2} layer during annealing process. Leakage mechanisms in the regions where current increases gradually with voltage were well fitted by the Schottky emission model for films annealed at 700 and 900?C, and by the FrenkelPoole emission model for film annealed at 800?C. Leakage current density was found to improve with annealing temperature. ?-Ga{sub 2}O{sub 3} thin film annealed at 800?C exhibited the highest reverse breakdown field value.

  9. Counting molecular-beam grown graphene layers

    SciTech Connect (OSTI)

    Plaut, Annette S.; Wurstbauer, Ulrich; Pinczuk, Aron; Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 ; Garcia, Jorge M.; Pfeiffer, Loren N.

    2013-06-17

    We have used the ratio of the integrated intensity of graphene's Raman G peak to that of the silicon substrate's first-order optical phonon peak, accurately to determine the number of graphene layers across our molecular-beam (MB) grown graphene films. We find that these results agree well both, with those from our own exfoliated single and few-layer graphene flakes, and with the results of Koh et al.[ACS Nano 5, 269 (2011)]. We hence distinguish regions of single-, bi-, tri-, four-layer, etc., graphene, consecutively, as we scan coarsely across our MB-grown graphene. This is the first, but crucial, step to being able to grow, by such molecular-beam-techniques, a specified number of large-area graphene layers, to order.

  10. Optical characteristics of nanocrystalline Al{sub x}Ga{sub 1?x}N thin films deposited by hollow cathode plasma-assisted atomic layer deposition

    SciTech Connect (OSTI)

    Goldenberg, Eda; Ozgit-Akgun, Cagla; Biyikli, Necmi; Kemal Okyay, Ali

    2014-05-15

    Gallium nitride (GaN), aluminum nitride (AlN), and Al{sub x}Ga{sub 1?x}N films have been deposited by hollow cathode plasma-assisted atomic layer deposition at 200?C on c-plane sapphire and Si substrates. The dependence of film structure, absorption edge, and refractive index on postdeposition annealing were examined by x-ray diffraction, spectrophotometry, and spectroscopic ellipsometry measurements, respectively. Well-adhered, uniform, and polycrystalline wurtzite (hexagonal) GaN, AlN, and Al{sub x}Ga{sub 1?x}N films were prepared at low deposition temperature. As revealed by the x-ray diffraction analyses, crystallite sizes of the films were between 11.7 and 25.2?nm. The crystallite size of as-deposited GaN film increased from 11.7 to 12.1 and 14.4?nm when the annealing duration increased from 30?min to 2?h (800?C). For all films, the average optical transmission was ?85% in the visible (VIS) and near infrared spectrum. The refractive indices of AlN and Al{sub x}Ga{sub 1?x}N were lower compared to GaN thin films. The refractive index of as-deposited films decreased from 2.33 to 2.02 (??=?550?nm) with the increased Al content x (0???x???1), while the extinction coefficients (k) were approximately zero in the VIS spectrum (>400?nm). Postdeposition annealing at 900?C for 2?h considerably lowered the refractive index value of GaN films (2.331.92), indicating a significant phase change. The optical bandgap of as-deposited GaN film was found to be 3.95?eV, and it decreased to 3.90?eV for films annealed at 800?C for 30?min and 2?h. On the other hand, this value increased to 4.1?eV for GaN films annealed at 900?C for 2?h. This might be caused by Ga{sub 2}O{sub 3} formation and following phase change. The optical bandgap value of as-deposited Al{sub x}Ga{sub 1?x}N films decreased from 5.75 to 5.25?eV when the x values decreased from 1 to 0.68. Furthermore, postdeposition annealing did not affect the bandgap of Al-rich films.

  11. Polycrystalline MBE-grown GaAs for solar cells

    SciTech Connect (OSTI)

    Friedman, D.J.; Kurtz, S.R.; Kibbler, A.E.; Al-Jassim, M.; Jones, K.; Keyes, B.; Matson, R.

    1997-02-01

    This paper will discuss initial studies of thin-film GaAs grown by molecular-beam epitaxy for use in developing a thin-film GaAs solar cell. Photocurrent and photoluminescence intensity are related to the material morphology as a function of growth conditions. Growth temperature and V/III ratio have a dramatic effect on the photocurrent. However, it seems likely that even after optimizing such growth parameters, it will be necessary to provide substrates that can provide templates to enhance grain size from the start of thin-film growth. {copyright} {ital 1997 American Institute of Physics.}

  12. Polycrystalline MBE-grown GaAs for solar cells

    SciTech Connect (OSTI)

    Friedman, D. J.; Kurtz, Sarah R.; Kibbler, A. E.; Al-Jassim, M.; Jones, K.; Keyes, B.; Matson, R.

    1997-02-15

    This paper will discuss initial studies of thin-film GaAs grown by molecular-beam epitaxy for use in developing a thin-film GaAs solar cell. Photocurrent and photoluminescence intensity are related to the material morphology as a function of growth conditions. Growth temperature and V/III ratio have a dramatic effect on the photocurrent. However, it seems likely that even after optimizing such growth parameters, it will be necessary to provide substrates that can provide templates to enhance grain size from the start of thin-film growth.

  13. This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

    DOE Patents [OSTI]

    Zhang, Yu; Sun, Qian; Han, Jung

    2015-12-08

    This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

  14. Development of very high Jc in Ba(Fe1-xCox)2As2 thin films grown on CaF2

    SciTech Connect (OSTI)

    Tarantini, C.; Kametani, F.; Lee, S.; Jiang, J.; Weiss, J. D.; Jaroszynski, J.; Hellstrom, E. E.; Eom, C. B.; Larbalestier, D. C.

    2014-12-03

    Ba(Fe1-xCox)2As2 is the most tunable of the Fe-based superconductors (FBS) in terms of acceptance of high densities of self-assembled and artificially introduced pinning centres which are effective in significantly increasing the critical current density, Jc. Moreover, FBS are very sensitive to strain, which induces an important enhancement in critical temperature,Tc, of the material. In this study we demonstrate that strain induced by the substrate can further improve Jc of both single and multilayer films by more than that expected simply due to the increase in Tc. The multilayer deposition of Ba(Fe1-xCox)2As2 on CaF2 increases the pinning force density (Fp=Jc x ??H) by more than 60% compared to a single layer film, reaching a maximum of 84 GN/m3 at 22.5 T and 4.2 K, the highest value ever reported in any 122 phase.

  15. Intrinsic polarization control in rectangular GaN nanowire lasers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Changyi; Liu, Sheng; Luk, Ting S.; Figiel, Jeffrey J.; Brener, Igal; Brueck, S. R. J.; Wang, George T.

    2016-02-10

    In this study, we demonstrate intrinsic, linearly polarized lasing from single GaN nanowires using cross-sectional shape control. A two-step top-down fabrication approach was employed to create straight nanowires with controllable rectangular cross-sections. A clear lasing threshold of 444kW/cm2 and a narrow spectral line width of 0.16 nm were observed under optical pumping at room temperature, indicating the onset of lasing. The polarization was along the short dimension (y-direction) of the nanowire due to the higher transverse confinement factors for y-polarized transverse modes resulting from the rectangular nanowire cross-section. The results show that cross-sectioned shape control can enable inherent control overmore » the polarization of nanowire lasers without additional environment requirements, such as placement onto lossy substrates.« less

  16. Structural and optical properties of InGaN--GaN nanowire heterostructures grown by molecular beam epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Hofling, S.; et al

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaNmore » to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, μ-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.« less

  17. Structural and optical properties of InGaNGaN nanowire heterostructures grown by molecular beam epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Ho?fling, S.; et al

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaNmoreto higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, ?-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.less

  18. Biaxially oriented film on flexible polymeric substrate

    DOE Patents [OSTI]

    Finkikoglu, Alp T. (Los Alamos, NM); Matias, Vladimir (Santa Fe, NM)

    2009-10-13

    A flexible polymer-based template having a biaxially oriented film grown on the surface of a polymeric substrate. The template having the biaxially oriented film can be used for further epitaxial growth of films of interest for applications such as photovoltaic cells, light emitting diodes, and the like. Methods of forming such a flexible template and providing the polymeric substrate with a biaxially oriented film deposited thereon are also described.

  19. Structural and morphological evolution of gallium nitride nanorods grown by chemical beam epitaxy

    SciTech Connect (OSTI)

    Kuo, Shou-Yi; Lai, Fang-I; Chen, Wei-Chun; Hsiao, Chien-Nan; Lin, Woei-Tyng

    2009-07-15

    The morphological and structural evolution is presented for GaN nanorods grown by chemical beam epitaxy on (0001) Al{sub 2}O{sub 3} substrates. Their structural and optical properties are investigated by x-ray diffraction, scanning and transmission electron microscopy, and temperature-dependent photoluminescence measurements. While increasing the growth temperature and the flow rate of radio-frequency nitrogen radical, the three-dimensional growth mode will be enhanced to form one-dimensional nanostructures. The high density of well-aligned nanorods with a diameter of 30-50 nm formed uniformly over the entire sapphire substrate. The x-ray diffraction patterns and transmission electron microscopic images indicate that the self-assembled GaN nanorods are a pure single crystal and preferentially oriented in the c-axis direction. Particularly, the ''S-shape'' behavior with localization of {approx}10 meV observed in the temperature-dependent photoluminescence might be ascribed to the fluctuation in crystallographic defects and composition.

  20. Photo-induced wettability of TiO{sub 2} film with Au buffer layer

    SciTech Connect (OSTI)

    Purkayastha, Debarun Dhar; Sangani, L. D. Varma; Krishna, M. Ghanashyam; Madhurima, V.

    2014-04-24

    The effect of thickness of Au buffer layer (15-25 nm) between TiO{sub 2} film and substrate on the wettability of TiO{sub 2} films is reported. TiO{sub 2} films grown on Au buffer layer have a higher contact angle of 96-;100 as compared to 47.6o for the film grown without buffer layer. The transition from hydrophobicity to hydrophilicity under UV irradiation occurs within 10 min. for the buffer layered films whereas it is almost 30 min. for the film grown without buffer layer. The enhanced photo induced hydrophilicity is shown to be surface energy driven.

  1. GaN Initiative for Grid Applications (GIGA)

    SciTech Connect (OSTI)

    Turner, George

    2015-07-03

    For nearly 4 years, MIT Lincoln Laboratory (MIT/LL) led a very successful, DoE-funded team effort to develop GaN-on-Si materials and devices, targeting high-voltage (>1 kV), high-power, cost-effective electronics for grid applications. This effort, called the GaN Initiative for Grid Applications (GIGA) program, was initially made up of MIT/LL, the MIT campus group of Prof. Tomas Palacios (MIT), and the industrial partner M/A Com Technology Solutions (MTS). Later in the program a 4th team member was added (IQE MA) to provide commercial-scale GaN-on-Si epitaxial materials. A basic premise of the GIGA program was that power electronics, for ubiquitous utilization -even for grid applications - should be closer in cost structure to more conventional Si-based power electronics. For a number of reasons, more established GaN-on-SiC or even SiC-based power electronics are not likely to reach theses cost structures, even in higher manufacturing volumes. An additional premise of the GIGA program was that the technical focus would be on materials and devices suitable for operating at voltages > 1 kV, even though there is also significant commercial interest in developing lower voltage (< 1 kV), cost effective GaN-on-Si devices for higher volume applications, like consumer products. Remarkable technical progress was made during the course of this program. Advances in materials included the growth of high-quality, crack-free epitaxial GaN layers on large-diameter Si substrates with thicknesses up to ~5 ?m, overcoming significant challenges in lattice mismatch and thermal expansion differences between Si and GaN in the actual epitaxial growth process. Such thick epilayers are crucial for high voltage operation of lateral geometry devices such as Schottky barrier (SB) diodes and high electron mobility transistors (HEMTs). New Normally-Off device architectures were demonstrated for safe operation of power electronics circuits. The trade-offs between lateral and vertical devices were explored, with the conclusion that lateral devices are superior for fundamental thermal reasons, as well as for the demonstration of future generations of monolithic power circuits. As part of the materials and device investigations breakdown mechanisms in GaN-on-Si structures were fully characterized and effective electric field engineering was recognized as critical for achieving even higher voltage operation. Improved device contact technology was demonstrated, including the first gold-free metallizations (to enable processing in CMOS foundries) while maintaining low specific contact resistance needed for high-power operation and 5-order-of magnitude improvement in device leakage currents (essential for high power operation). In addition, initial GaN-on-Si epitaxial growth was performed on 8/200 mm Si starting substrates.

  2. Investigation of the optical properties of MoS{sub 2} thin films...

    Office of Scientific and Technical Information (OSTI)

    ellipsometry Spectroscopic ellipsometry (SE) characterization of layered transition metal dichalcogenide (TMD) thin films grown by vapor phase sulfurization is reported. By...

  3. Synthesis, morphology and optical properties of GaN and AlGaN semiconductor nanostructures

    SciTech Connect (OSTI)

    Kuppulingam, B. Singh, Shubra Baskar, K.

    2014-04-24

    Hexagonal Gallium Nitride (GaN) and Aluminum Gallium Nitride (AlGaN) nanoparticles were synthesized by sol-gel method using Ethylene Diamine Tetra Acetic acid (EDTA) complex route. Powder X-ray diffraction (PXRD) analysis confirms the hexagonal wurtzite structure of GaN and Al{sub 0.25}Ga{sub 0.75}N nanoparticles. Surface morphology and elemental analysis were carried out by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX). The room temperature Photoluminescence (PL) study shows the near band edge emission for GaN at 3.35 eV and at 3.59 eV for AlGaN nanoparticles. The Aluminum (Al) composition of 20% has been obtained from PL emission around 345 nm.

  4. Epitaxial growth of high quality WO3 thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Leng, X.; Pereiro, J.; Strle, J.; Bollinger, A. T.; Bozovic, I.

    2015-09-09

    We have grown epitaxial WO3 films on various single-crystal substrates using radio-frequency (RF) magnetron sputtering. While pronounced surface roughness is observed in films grown on LaSrAlO4 substrates, films grown on YAlO3 substrates show atomically flat surfaces, as demonstrated by atomic force microscopy (AFM) and X-ray diffraction (XRD) measurements. The crystalline structure has been confirmed to be monoclinic by symmetric and skew-symmetric XRD. Furthermore, the dependence of the growth modes and the surface morphology on the lattice mismatch is discussed.

  5. High Quality, Low Cost Bulk Gallium Nitride Substrates Grown...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of crystalline GaN growth in ESG Results and Accomplishments HRXRD vs reference SEM surface view 0 20 40 60 80 100 120 140 160 180 200 0 10 20 30 40 50 Deposition rate ...

  6. Comparative study of polar and semipolar (112?2) InGaN layers grown by metalorganic vapour phase epitaxy

    SciTech Connect (OSTI)

    Dinh, Duc V. E-mail: peter.parbrook@tyndall.ie; Zubialevich, V. Z.; Oehler, F.; Kappers, M. J.; Humphreys, C. J.; Alam, S. N.; Parbrook, P. J. E-mail: peter.parbrook@tyndall.ie; Caliebe, M.; Scholtz, F.

    2014-10-21

    InGaN layers were grown simultaneously on (112?2) GaN and (0001) GaN templates by metalorganic vapour phase epitaxy. At higher growth temperature (?750C), the indium content (<15%) of the (112?2) and (0001) InGaN layers was similar. However, for temperatures less than 750C, the indium content of the (112?2) InGaN layers (15%26%) were generally lower than those with (0001) orientation (15%32%). The compositional deviation was attributed to the different strain relaxations between the (112?2) and (0001) InGaN layers. Room temperature photoluminescence measurements of the (112?2) InGaN layers showed an emission wavelength that shifts gradually from 380 nm to 580 nm with decreasing growth temperature (or increasing indium composition). The peak emission wavelength of the (112?2) InGaN layers with an indium content of more than 10% blue-shifted a constant value of ?(5060) nm when using higher excitation power densities. This blue-shift was attributed to band filling effects in the layers.

  7. Performance and breakdown characteristics of irradiated vertical power GaN P-i-N diodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    King, M. P.; Armstrong, A. M.; Dickerson, J. R.; Vizkelethy, G.; Fleming, R. M.; Campbell, J.; Wampler, W. R.; Kizilyalli, I. C.; Bour, D. P.; Aktas, O.; et al

    2015-10-29

    Electrical performance and defect characterization of vertical GaN P-i-N diodes before and after irradiation with 2.5 MeV protons and neutrons is investigated. Devices exhibit increase in specific on-resistance following irradiation with protons and neutrons, indicating displacement damage introduces defects into the p-GaN and n- drift regions of the device that impact on-state device performance. The breakdown voltage of these devices, initially above 1700 V, is observed to decrease only slightly for particle fluence <; 1013 cm-2. Furthermore, the unipolar figure of merit for power devices indicates that while the on-resistance and breakdown voltage degrade with irradiation, vertical GaN P-i-Ns remainmore » superior to the performance of the best available, unirradiated silicon devices and on-par with unirradiated modern SiC-based power devices.« less

  8. Anisotropy of two-photon absorption and free-carrier effect in nonpolar GaN

    SciTech Connect (OSTI)

    Fang, Yu; Zhou, Feng; Yang, Junyi; Wu, Xingzhi; Xiao, Zhengguo; Li, Zhongguo; Song, Yinglin

    2015-03-30

    We reported a systematic study about the anisotropic optical nonlinearities in bulk m-plane and a-plane GaN crystals by Z-scan and pump-probe with phase object methods under picosecond at 532?nm. The two-photon absorption coefficient, which was measured as a function of polarization angle, exhibited oscillation curves with a period of ?/2, indicating a highly polarized optical third-order nonlinearity in both nonpolar GaN samples. Furthermore, free-carrier absorption revealed stronger hole-related absorption for E?c than for E//c probe polarization. In contrast, free-carrier refraction was found almost isotropic due to electron-related refraction in the isotropic conduction bands.

  9. Formation of manganese {delta}-doped atomic layer in wurtzite GaN

    SciTech Connect (OSTI)

    Shi Meng; Chinchore, Abhijit; Wang Kangkang; Mandru, Andrada-Oana; Liu Yinghao; Smith, Arthur R.

    2012-09-01

    We describe the formation of a {delta}-doped manganese layer embedded within c-plane wurtzite gallium nitride using a special molecular beam epitaxy growth process. Manganese is first deposited on the gallium-poor GaN (0001) surface, forming a {radical}(3) Multiplication-Sign {radical}(3)-R30 Degree-Sign reconstructed phase. This well-defined surface reconstruction is then nitrided using plasma nitridation, and gallium nitride is overgrown. The manganese content of the {radical}(3) Multiplication-Sign {radical}(3)-R30 Degree-Sign phase, namely one Mn per each {radical}(3) Multiplication-Sign {radical}(3)-R30 Degree-Sign unit cell, implies that the MnGaN alloy layer has a Mn concentration of up to 33%. The structure and chemical content of the surface are monitored beginning from the initial growth stage up through the overgrowth of 20 additional monolayers (MLs) of GaN. An exponential-like drop-off of the Mn signal with increasing GaN monolayers, as measured by Auger electron spectroscopy, indicates that the highly concentrated Mn layer remains at the {delta}-doped interface. A model of the resultant {delta}-doped structure is formulated based on the experimental data, and implications for possible spintronic applications are discussed.

  10. Vertical GaN power diodes with a bilayer edge termination

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dickerson, Jeramy R.; Allerman, Andrew A.; Bryant, Benjamin N.; Fischer, Arthur J.; King, Michael P.; Moseley, Michael W.; Armstrong, Andrew M.; Kaplar, Robert J.; Kizilyalli, Isik C.; Aktas, Ozgur; et al

    2015-12-07

    Vertical GaN power diodes with a bilayer edge termination (ET) are demonstrated. The GaN p-n junction is formed on a low threading dislocation defect density (104 - 105 cm-2) GaN substrate, and has a 15-μm-thick n-type drift layer with a free carrier concentration of 5 × 1015 cm-3. The ET structure is formed by N implantation into the p+-GaN epilayer just outside the p-type contact to create compensating defects. The implant defect profile may be approximated by a bilayer structure consisting of a fully compensated layer near the surface, followed by a 90% compensated (p) layer near the n-type driftmore » region. These devices exhibit avalanche breakdown as high as 2.6 kV at room temperature. In addition simulations show that the ET created by implantation is an effective way to laterally distribute the electric field over a large area. This increases the voltage at which impact ionization occurs and leads to the observed higher breakdown voltages.« less

  11. Vertical GaN power diodes with a bilayer edge termination

    SciTech Connect (OSTI)

    Dickerson, Jeramy R.; Allerman, Andrew A.; Bryant, Benjamin N.; Fischer, Arthur J.; King, Michael P.; Moseley, Michael W.; Armstrong, Andrew M.; Kaplar, Robert J.; Kizilyalli, Isik C.; Aktas, Ozgur; Wierer, Jr., Jonathan J.

    2015-12-07

    Vertical GaN power diodes with a bilayer edge termination (ET) are demonstrated. The GaN p-n junction is formed on a low threading dislocation defect density (104 - 105 cm-2) GaN substrate, and has a 15-?m-thick n-type drift layer with a free carrier concentration of 5 1015 cm-3. The ET structure is formed by N implantation into the p+-GaN epilayer just outside the p-type contact to create compensating defects. The implant defect profile may be approximated by a bilayer structure consisting of a fully compensated layer near the surface, followed by a 90% compensated (p) layer near the n-type drift region. These devices exhibit avalanche breakdown as high as 2.6 kV at room temperature. In addition simulations show that the ET created by implantation is an effective way to laterally distribute the electric field over a large area. This increases the voltage at which impact ionization occurs and leads to the observed higher breakdown voltages.

  12. HIGH-QUALITY, LOW-COST BULK GALLIUM NITRIDE SUBSTRATES GROWN BY THE ELECTROCHEMICAL SOLUTION GROWTH METHOD

    Broader source: Energy.gov [DOE]

    To develop ESG into a viable bulk growth process for GaN that is more scalable to large-area wafer manufacturing and able to produce cost-effective, high-quality bulk GaN substrates.

  13. High Quality, Low Cost Bulk Gallium Nitride Substrates Grown by the Electrochemical Solution Growth Method

    Broader source: Energy.gov (indexed) [DOE]

    Seacrist, Senior Fellow - Emerging Technologies R&D, SunEdison Semiconductor (formerly MEMC) U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. May 28-29, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  Develop electrochemical solution growth (ESG) of gallium nitride (GaN) into a technology capable of producing large area bulk GaN substrates  Bulk GaN enables homoepitaxial growth

  14. Growth process for gallium nitride porous nanorods

    DOE Patents [OSTI]

    Wildeson, Isaac Harshman; Sands, Timothy David

    2015-03-24

    A GaN nanorod and formation method. Formation includes providing a substrate having a GaN film, depositing SiN.sub.x on the GaN film, etching a growth opening through the SiN.sub.x and into the GaN film, growing a GaN nanorod through the growth opening, the nanorod having a nanopore running substantially through its centerline. Focused ion beam etching can be used. The growing can be done using organometallic vapor phase epitaxy. The nanopore diameter can be controlled using the growth opening diameter or the growing step duration. The GaN nanorods can be removed from the substrate. The SiN.sub.x layer can be removed after the growing step. A SiO.sub.x template can be formed on the GaN film and the GaN can be grown to cover the SiO.sub.x template before depositing SiN.sub.x on the GaN film. The SiO.sub.x template can be removed after growing the nanorods.

  15. Ab initio study on noncompensated CrO codoping of GaN for enhanced solar energy conversion

    SciTech Connect (OSTI)

    Pan, Hui; Gu, Baohua; Eres, Gyula; Zhang, Zhenyu

    2010-03-01

    We describe a novel photocatalyst obtained by codoping GaN with CrO, according to a new "noncompensated" codoping concept based on first-principles calculations. The approach enables controllable narrowing of the GaN band gap with significantly enhanced carrier mobility and photocatalytic activity in the visible light region and thus offers immense potential for application in solar energy conversion, water splitting, and a variety of solar-assisted photocatalysis. Our calculations indicate that the formation energy for the cation doping is greatly reduced by noncompensated codoping with an anion. Although Cr doping alone can split the band gap with the formation of an intermediate band, the mobility is low due to carrier trapping by the localized states. The first-principles calculations also demonstrate that CrO codoping of GaN shifts the Fermi level into the conduction band resulting in high carrier density and mobility.

  16. Nanocomposite films

    DOE Patents [OSTI]

    Mitlin, David (Edmonton, CA); , Ophus, Colin (Edmonton, CA); Evoy, Stephane (Edmonton, CA); Radmilovic, Velimir (Piedmont, CA); Mohammadi, Reza (Edmonton, CA); Westra, Ken (Edmonton, CA); Nelson-Fitzpatrick, Nathaniel (Edmonton, CA); Lee, Zonghoon (Albany, CA)

    2010-07-20

    A thin-film composition of nanocrystal molybdenum in an amorphous metallic matrix may be formed by co-sputtering Mo with aluminum or nickel. NEMS cantilevers may be formed from the film. The films exhibit high nanoindentation hardness and a reduction in roughness and intrinsic stress, while maintaining resistivity in the metallic range.

  17. Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires

    SciTech Connect (OSTI)

    Mamand, S.M.; Omar, M.S.; Muhammad, A.J.

    2012-05-15

    Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: Black-Right-Pointing-Pointer A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. Black-Right-Pointing-Pointer A direct method is used to calculate phonon group velocity for these nanowires. Black-Right-Pointing-Pointer 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. Black-Right-Pointing-Pointer Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2-300 K, was performed using a modified Callaway model. Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10{sup 14} m{sup -2} the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10{sup 14} m{sup -2}, lattice thermal conductivity would be independent of that.

  18. Mechanism of the GaN LED efficiency falloff with increasing current

    SciTech Connect (OSTI)

    Bochkareva, N. I.; Voronenkov, V. V.; Gorbunov, R. I.; Zubrilov, A. S.; Lelikov, Y. S.; Latyshev, F. E.; Rebane, Y. T.; Tsyuk, A. I.; Shreter, Y. G.

    2010-06-15

    The quantum efficiency of GaN LED structures has been studied at various temperatures and biases. It was found that an efficiency falloff is observed with increasing current density and, simultaneously, the tunnel component of the current through the LED grows and the quasi-Fermi levels reach the mobility edge in the InGaN active layer. It is shown that the internal quantum efficiency falloff with increasing current density is due to the carrier leakage from the quantum well as a result of tunnel transitions from its band-tail states to local defect-related energy levels within the energy gaps of the barrier layers.

  19. The effect of N-polar GaN domains as Ohmic contacts

    SciTech Connect (OSTI)

    Xie, J.; Mita, S.; Collazo, R.; Rice, A.; Tweedie, J.; Sitar, Z.

    2010-09-20

    Transfer line method measurements revealed that if the Ohmic contact regions were replaced by N-polar GaN, the contact resistance could be reduced from 0.71 {Omega} mm (or {rho}{sub c}=4x10{sup -6} {Omega} cm{sup 2}) to 0.24 {Omega} mm for a {approx}200 nm thick Si-doped GaN layer. The reduction in contact resistance was largely due to the {approx}10{sup 19} cm{sup -3} free carriers in N-polar source/drain regions as measured by Hall effect. Secondary ion mass spectroscopy confirmed that oxygen doping in the N-polar region was more than three orders of magnitude greater than that in the Ga-polar region that was explained by the large difference in the adsorption energy for oxygen ({approx}1.3 eV/atom) between the N- and Ga-polar surfaces during the metalorganic chemical vapor deposition.

  20. Modifications of the cell wall of yeasts grown on hexadecane...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modifications of the cell wall of yeasts grown on hexadecane and under starvation conditions Title Modifications of the cell wall of yeasts grown on hexadecane and under starvation...

  1. Film Vault

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume One Film Collection Volume Two 75th Anniversary Hydropower in the Northwest Woody Guthrie Videos Strategic Direction Branding & Logos Power of the River History Book...

  2. Near-field microwave microscopy of high-? oxides grown on graphene with an organic seeding layer

    SciTech Connect (OSTI)

    Tselev, Alexander Kalinin, Sergei V.; Sangwan, Vinod K.; Jariwala, Deep; Lauhon, Lincoln J.; Marks, Tobin J.; Hersam, Mark C.; Department of Chemistry, Northwestern University, Evanston, Illinois 60208

    2013-12-09

    Near-field scanning microwave microscopy (SMM) is used for non-destructive nanoscale characterization of Al{sub 2}O{sub 3} and HfO{sub 2} films grown on epitaxial graphene on SiC by atomic layer deposition using a self-assembled perylene-3,4,9,10-tetracarboxylic dianhydride seeding layer. SMM allows imaging of buried inhomogeneities in the dielectric layer with a spatial resolution close to 100?nm. The results indicate that, while topographic features on the substrate surface cannot be eliminated as possible sites of defect nucleation, the use of a vertically heterogeneous Al{sub 2}O{sub 3}/HfO{sub 2} stack suppresses formation of large outgrowth defects in the oxide film, ultimately improving lateral uniformity of the dielectric film.

  3. Texture evolution in nanocrystalline iron films deposited using biased magnetron sputtering

    SciTech Connect (OSTI)

    Vetterick, G.; Taheri, M. L.; Baldwin, J. K.; Misra, A.

    2014-12-21

    Fe thin films were deposited on sodium chloride (NaCl) substrates using magnetron sputtering to investigate means of texture control in free standing metal films. The Fe thin films were studied using transmission electron microscopy equipped with automated crystallographic orientation microscopy. Using this technique, the microstructure of each film was characterized in order to elucidate the effects of altering deposition parameters. The natural tendency for Fe films grown on (100) NaCl is to form a randomly oriented nanocrystalline microstructure. By careful selection of substrate and deposition conditions, it is possible to drive the texture of the film toward a single (100) orientation while retaining the nanocrystalline microstructure.

  4. Ultrashort pulse laser deposition of thin films

    DOE Patents [OSTI]

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  5. Polymer films

    DOE Patents [OSTI]

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  6. Polymer films

    DOE Patents [OSTI]

    Granick, Steve (Champaign, IL); Sukhishvili, Svetlana A. (Maplewood, NJ)

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  7. Efficient Switches for Solar Power Conversion: Four Quadrant GaN Switch Enabled Three Phase Grid-Tied Microinverters

    SciTech Connect (OSTI)

    2012-02-13

    Solar ADEPT Project: Transphorm is developing power switches for new types of inverters that improve the efficiency and reliability of converting energy from solar panels into useable electricity for the grid. Transistors act as fast switches and control the electrical energy that flows in an electrical circuit. Turning a transistor off opens the circuit and stops the flow of electrical current; turning it on closes the circuit and allows electrical current to flow. In this way a transistor can be used to convert DC from a solar panel into AC for use in a home. Transphorms transistors will enable a single semiconductor device to switch electrical currents at high-voltage in both directionsmaking the inverter more compact and reliable. Transphorm is using Gallium Nitride (GaN) as a semiconductor material in its transistors instead of silicon, which is used in most conventional transistors, because GaN transistors have lower losses at higher voltages and switching frequencies.

  8. Performance and breakdown characteristics of irradiated vertical power GaN P-i-N diodes

    SciTech Connect (OSTI)

    King, M. P.; Armstrong, A. M.; Dickerson, J. R.; Vizkelethy, G.; Fleming, R. M.; Campbell, J.; Wampler, W. R.; Kizilyalli, I. C.; Bour, D. P.; Aktas, O.; Nie, H.; Disney, D.; Wierer, Jr., J.; Allerman, A. A.; Moseley, M. W.; Kaplar, R. J.

    2015-10-29

    Electrical performance and defect characterization of vertical GaN P-i-N diodes before and after irradiation with 2.5 MeV protons and neutrons is investigated. Devices exhibit increase in specific on-resistance following irradiation with protons and neutrons, indicating displacement damage introduces defects into the p-GaN and n- drift regions of the device that impact on-state device performance. The breakdown voltage of these devices, initially above 1700 V, is observed to decrease only slightly for particle fluence <; 1013 cm-2. Furthermore, the unipolar figure of merit for power devices indicates that while the on-resistance and breakdown voltage degrade with irradiation, vertical GaN P-i-Ns remain superior to the performance of the best available, unirradiated silicon devices and on-par with unirradiated modern SiC-based power devices.

  9. Effect of hydrogen passivation on charge storage in silicon quantum dots embedded in silicon nitride film

    SciTech Connect (OSTI)

    Cho, Chang-Hee; Kim, Baek-Hyun; Kim, Tae-Wook; Park, Seong-Ju; Park, Nae-Man; Sung, Gun-Yong

    2005-04-04

    The effect of hydrogen passivation on the charge storage characteristics of two types of silicon nitride films containing silicon quantum dots (Si QDs) grown by SiH{sub 4}+N{sub 2} and SiH{sub 4}+NH{sub 3} plasma was investigated. The transmission electron microscope analysis and the capacitance-voltage measurement showed that the silicon nitride film grown by SiH{sub 4}+NH{sub 3} plasma has a lower interface trap density and a higher density of Si QDs compared to that grown by SiH{sub 4}+N{sub 2} plasma. It was also found that the charge retention characteristics in the Si QDs were greatly enhanced in the samples grown by means of SiH{sub 4}+NH{sub 3} plasma, due to the hydrogen passivation of the defects in the silicon nitride films by NH{sub 3} during the growth of the Si QDs.

  10. Tailoring the index of refraction of nanocrystalline hafnium oxide thin films

    SciTech Connect (OSTI)

    Vargas, Mirella [Department of Metallurgical and Materials Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States)] [Department of Metallurgical and Materials Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States); Murphy, N. R. [Materials and Manufacturing Directorate (RX), 3005 Hobson Way, Wright-Patterson Air Force Base (WPAFB), Dayton, Ohio 45433 (United States)] [Materials and Manufacturing Directorate (RX), 3005 Hobson Way, Wright-Patterson Air Force Base (WPAFB), Dayton, Ohio 45433 (United States); Ramana, C. V., E-mail: rvchintalapalle@utep.edu [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States)

    2014-03-10

    Hafnium oxide (HfO{sub 2}) films were grown by sputter-deposition by varying the growth temperature (T{sub s}?=?25700?C). HfO{sub 2} films grown at T{sub s}?grown at T{sub s}???200?C were monoclinic, nanocrystalline with (1{sup }11) texturing. X-ray reflectivity (XRR) analyses indicate that the film-density (?) increases with increasing T{sub s}. The index of refraction (n) profiles derived from spectroscopic ellipsometry analyses follow the Cauchy dispersion relation. Lorentz-Lorenz analysis (n{sub (?)}?=?550?nm) and optical-model adopted agree well with the XRR data/analyses. A direct T{sub s}-?-n relationship suggests that tailoring the optical quality is possible by tuning T{sub s} and the microstructure of HfO{sub 2} films.

  11. Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces

    SciTech Connect (OSTI)

    Alami, J.; Persson, P.O.A.; Music, D.; Gudmundsson, J. T.; Bohlmark, J.; Helmersson, U.

    2005-03-01

    We have synthesized Ta thin films on Si substrates placed along a wall of a 2-cm-deep and 1-cm-wide trench, using both a mostly neutral Ta flux by conventional dc magnetron sputtering (dcMS) and a mostly ionized Ta flux by high-power pulsed magnetron sputtering (HPPMS). Structure of the grown films was evaluated by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The Ta thin film grown by HPPMS has a smooth surface and a dense crystalline structure with grains oriented perpendicular to the substrate surface, whereas the film grown by dcMS exhibits a rough surface, pores between the grains, and an inclined columnar structure. The improved homogeneity achieved by HPPMS is a direct consequence of the high ion fraction of sputtered species.

  12. High carrier concentration p-type transparent conducting oxide films

    DOE Patents [OSTI]

    Yan, Yanfa; Zhang, Shengbai

    2005-06-21

    A p-type transparent conducting oxide film is provided which is consisting essentially of, the transparent conducting oxide and a molecular doping source, the oxide and doping source grown under conditions sufficient to deliver the doping source intact onto the oxide.

  13. Suppression of metastable-phase inclusion in N-polar (0001{sup }) InGaN/GaN multiple quantum wells grown by metalorganic vapor phase epitaxy

    SciTech Connect (OSTI)

    Shojiki, Kanako Iwabuchi, Takuya; Kuboya, Shigeyuki; Choi, Jung-Hun; Tanikawa, Tomoyuki; Hanada, Takashi; Katayama, Ryuji; Matsuoka, Takashi; Usami, Noritaka

    2015-06-01

    The metastable zincblende (ZB) phase in N-polar (0001{sup }) (?c-plane) InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic vapor phase epitaxy is elucidated by the electron backscatter diffraction measurements. From the comparison between the ?c-plane and Ga-polar (0001) (+c-plane), the ?c-plane MQWs were found to be suffered from the severe ZB-phase inclusion, while ZB-inclusion is negligible in the +c-plane MQWs grown under the same growth conditions. The ZB-phase inclusion is a hurdle for fabricating the ?c-plane light-emitting diodes because the islands with a triangular shape appeared on a surface in the ZB-phase domains. To improve the purity of stable wurtzite (WZ)-phase, the optimum conditions were investigated. The ZB-phase is dramatically eliminated with decreasing the V/III ratio and increasing the growth temperature. To obtain much-higher-quality MQWs, the thinner InGaN wells and the hydrogen introduction during GaN barriers growth were tried. Consequently, MQWs with almost pure WZ phase and with atomically smooth surface have been demonstrated.

  14. Intense terahertz emission from molecular beam epitaxy-grown GaAs/GaSb(001)

    SciTech Connect (OSTI)

    Sadia, Cyril P.; Laganapan, Aleena Maria; Agatha Tumanguil, Mae; Estacio, Elmer; Somintac, Armando; Salvador, Arnel; Que, Christopher T.; Yamamoto, Kohji; Tani, Masahiko

    2012-12-15

    Intense terahertz (THz) electromagnetic wave emission was observed in undoped GaAs thin films deposited on (100) n-GaSb substrates via molecular beam epitaxy. GaAs/n-GaSb heterostructures were found to be viable THz sources having signal amplitude 75% that of bulk p-InAs. The GaAs films were grown by interruption method during the growth initiation and using various metamorphic buffer layers. Reciprocal space maps revealed that the GaAs epilayers are tensile relaxed. Defects at the i-GaAs/n-GaSb interface were confirmed by scanning electron microscope images. Band calculations were performed to infer the depletion region and electric field at the i-GaAs/n-GaSb and the air-GaAs interfaces. However, the resulting band calculations were found to be insufficient to explain the THz emission. The enhanced THz emission is currently attributed to a piezoelectric field induced by incoherent strain and defects.

  15. Comparison of topotactic fluorination methods for complex oxide films

    SciTech Connect (OSTI)

    Moon, E. J. Choquette, A. K.; Huon, A.; Kulesa, S. Z.; May, S. J.; Barbash, D.

    2015-06-01

    We have investigated the synthesis of SrFeO{sub 3??}F{sub ?} (? and ? ? 1) perovskite films using topotactic fluorination reactions utilizing poly(vinylidene fluoride) as a fluorine source. Two different fluorination methods, a spin-coating and a vapor transport approach, were performed on as-grown SrFeO{sub 2.5} films. We highlight differences in the structural, compositional, and optical properties of the oxyfluoride films obtained via the two methods, providing insight into how fluorination reactions can be used to modify electronic and optical behavior in complex oxide heterostructures.

  16. Electrochemical removal of hydrogen atoms in Mg-doped GaN epitaxial layers

    SciTech Connect (OSTI)

    Lee, June Key E-mail: hskim7@jbnu.ac.kr; Hyeon, Gil Yong; Tawfik, Wael Z.; Choi, Hee Seok; Ryu, Sang-Wan; Jeong, Tak; Jung, Eunjin; Kim, Hyunsoo E-mail: hskim7@jbnu.ac.kr

    2015-05-14

    Hydrogen atoms inside of an Mg-doped GaN epitaxial layer were effectively removed by the electrochemical potentiostatic activation (EPA) method. The role of hydrogen was investigated in terms of the device performance of light-emitting diodes (LEDs). The effect of the main process parameters for EPA such as solution type, voltage, and time was studied and optimized for application to LED fabrication. In optimized conditions, the light output of 385-nm LEDs was improved by about 26% at 30?mA, which was caused by the reduction of the hydrogen concentration by ?35%. Further removal of hydrogen seems to be involved in the breaking of Ga-H bonds that passivate the nitrogen vacancies. An EPA process with high voltage breaks not only Mg-H bonds that generate hole carriers but also Ga-H bonds that generate electron carriers, thus causing compensation that impedes the practical increase of hole concentration, regardless of the drastic removal of hydrogen atoms. A decrease in hydrogen concentration affects the current-voltage characteristics, reducing the reverse current by about one order and altering the forward current behavior in the low voltage region.

  17. High-power blue laser diodes with indium tin oxide cladding on semipolar (202{sup }1{sup }) GaN substrates

    SciTech Connect (OSTI)

    Pourhashemi, A. Farrell, R. M.; Cohen, D. A.; Speck, J. S.; DenBaars, S. P.; Nakamura, S.

    2015-03-16

    We demonstrate a high power blue laser diode (LD) using indium tin oxide as a cladding layer on semipolar oriented GaN. These devices show peak output powers and external quantum efficiencies comparable to state-of-the-art commercial c-plane devices. Ridge waveguide LDs were fabricated on (202{sup }1{sup }) oriented GaN substrates using InGaN waveguiding layers and GaN cladding layers. At a lasing wavelength of 451?nm at room temperature, an output power of 2.52?W and an external quantum efficiency of 39% were measured from a single facet under a pulsed injection current of 2.34?A. The measured differential quantum efficiency was 50%.

  18. Comparative study of field-dependent carrier dynamics and emission kinetics of InGaN/GaN light-emitting diodes grown on (112{sup }2) semipolar versus (0001) polar planes

    SciTech Connect (OSTI)

    Ji, Yun; Liu, Wei; Chen, Rui; Tiam Tan, Swee; Zhang, Zi-Hui; Ju, Zhengang; Zhang, Xueliang; Sun, Handong; Wei Sun, Xiao; Erdem, Talha; Zhao, Yuji; DenBaars, Steven P. E-mail: volkan@stanfordalumni.org; Nakamura, Shuji; Volkan Demir, Hilmi E-mail: volkan@stanfordalumni.org

    2014-04-07

    The characteristics of electroluminescence (EL) and photoluminescence (PL) emission from GaN light-emitting diodes (LEDs) grown on (112{sup }2) semipolar plane and (0001) polar plane have been comparatively investigated. Through different bias-dependent shifting trends observed from the PL and time-resolved PL spectra (TRPL) for the two types of LEDs, the carrier dynamics within the multiple quantum wells (MQWs) region is systematically analyzed and the distinct field-dependent emission kinetics are revealed. Moreover, the polarization induced internal electric field has been deduced for each of the LEDs. The relatively stable emission behavior observed in the semipolar LED is attributed to the smaller polarization induced internal electric field. The study provides meaningful insight for the design of quantum well (QW) structures with high radiative recombination rates.

  19. Magnetization dynamics of cobalt grown on graphene

    SciTech Connect (OSTI)

    Berger, A. J.; White, S. P.; Adur, R.; Pu, Y.; Hammel, P. C.; Amamou, W.; Kawakami, R. K.

    2014-05-07

    Ferromagnetic resonance (FMR) spin pumping is a rapidly growing field which has demonstrated promising results in a variety of material systems. This technique utilizes the resonant precession of magnetization in a ferromagnet to inject spin into an adjacent non-magnetic material. Spin pumping into graphene is attractive on account of its exceptional spin transport properties. This article reports on FMR characterization of cobalt grown on chemical vapor deposition graphene and examines the validity of linewidth broadening as an indicator of spin pumping. In comparison to cobalt samples without graphene, direct contact cobalt-on-graphene exhibits increased FMR linewidthan often used signature of spin pumping. Similar results are obtained in Co/MgO/graphene structures, where a 1?nm MgO layer acts as a tunnel barrier. However, magnetometry, magnetic force microscopy, and Kerr microscopy measurements demonstrate increased magnetic disorder in cobalt grown on graphene, perhaps due to changes in the growth process and an increase in defects. This magnetic disorder may account for the observed linewidth enhancement due to effects such as two-magnon scattering or mosaicity. As such, it is not possible to conclude successful spin injection into graphene from FMR linewidth measurements alone.

  20. Electrical transport properties of Ti-doped Fe2O3(0001) epitaxial films

    SciTech Connect (OSTI)

    Zhao, Bo; Kaspar, Tiffany C.; Droubay, Timothy C.; McCloy, John S.; Bowden, Mark E.; Shutthanandan, V.; Heald, Steve M.; Chambers, Scott A.

    2011-12-30

    The electrical transport properties for compositionally and structurally well-defined epitaxial ?-(TixFe1?x)2O3(0001) films have been investigated for x ? 0.09. All films were grown by oxygen plasma-assisted molecular beam epitaxy using two different growth rates: 0.050.06 /s and 0.220.24 /s. Despite no detectable difference in cation valence and structural properties, films grown at the lower rate were highly resistive whereas those grown at the higher rate were semiconducting (? = ?1 ???cm at 25?C). Hall effect measurements reveal carrier concentrations between 1019 and 1020 cm?3 at room temperature and mobilities in the range of 0.1 to 0.6 cm2/V??s for films grown at the higher rate. The conduction mechanism transitions from small-polaron hopping at higher temperatures to variable-range hopping at a transition temperature between 180 and 140 K. The absence of conductivity in the slow-grown films is attributed to donor electron compensation by cation vacancies, which may form to a greater extent at the lower rate because of higher oxygen fugacity at the growth front.

  1. Ferromagnetism of manganese-doped indium tin oxide films deposited on polyethylene naphthalate substrates

    SciTech Connect (OSTI)

    Nakamura, Toshihiro; Isozaki, Shinichi; Tanabe, Kohei; Tachibana, Kunihide

    2009-04-01

    Mn-doped indium tin oxide (ITO) films were deposited on polyethylene naphthalate (PEN) substrates using radio-frequency magnetron sputtering. The magnetic, electrical, and optical properties of the films deposited on PEN substrates were investigated by comparing with the properties of films grown on glass substrates at the same growth conditions. Thin films on PEN substrates exhibited low electrical resistivity of the order of 10{sup -4} {omega} cm and high optical transmittance between 75% and 90% in the visible region. Ferromagnetic hysteresis loops were observed at room temperature for the samples grown on PEN substrates. Mn-doped ITO films can be one of the most promising candidates of transparent ferromagnetic materials for flexible spintronic devices.

  2. Photochemical Properties, Composition, and Structure in Molecular Beam Epitaxy Grown Fe Doped and (Fe,N) Codoped Rutile TiO2(110)

    SciTech Connect (OSTI)

    Mangham, Andrew N.; Govind, Niranjan; Bowden, Mark E.; Shutthanandan, V.; Joly, Alan G.; Henderson, Michael A.; Chambers, Scott A.

    2011-08-11

    We have investigated the surface photochemical properties of Fe "doped" and (Fe,N) co-doped homoepitaxial rutile TiO2 (110) films grown by plasma assisted molecular beam epitaxy. Fe does not incorporate as an electronic dopant in the rutile lattice, but rather segregates to the film surface. However, co-deposition of Fe with N enhances the solubility of Fe, and DFT calculations suggest that co-dopant complex formation is the driving force behind the enhanced solubility. The co-doped films, in which a few atomic percent of Ti (O) are replaced with Fe (N), exhibit significant disorder compared to undoped films grown under the same conditions, presumably due to dopant-induced strain. Co-doping redshifts the rutile bandgap into the visible. However, the film surfaces are photochemically inert with respect to hole-mediated decomposition of adsorbed trimethyl acetate. The absence of photochemical activity may result from dopant-induced trap and/or recombination sites within the film. This study indicates that enhanced visible light absorptivity in TiO2 does not necessarily result in visible light initiated surface photochemistry.

  3. Ferroelectric ultrathin perovskite films

    DOE Patents [OSTI]

    Rappe, Andrew M; Kolpak, Alexie Michelle

    2013-12-10

    Disclosed herein are perovskite ferroelectric thin-film. Also disclosed are methods of controlling the properties of ferroelectric thin films. These films can be used in a variety materials and devices, such as catalysts and storage media, respectively.

  4. Laser Focus World highlights Kaminski's home-grown ARPES spectroscopy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Focus World highlights Kaminski's home-grown ARPES spectroscopy system Laser Focus World senior editor Gail Overton wrote a story on angled-resolved photo-emission...

  5. Liquid-phase exfoliation of chemical vapor deposition-grown single layer graphene and its application in solution-processed transparent electrodes for flexible organic light-emitting devices

    SciTech Connect (OSTI)

    Wu, Chaoxing; Li, Fushan E-mail: gtl-fzu@hotmail.com; Wu, Wei; Chen, Wei; Guo, Tailiang E-mail: gtl-fzu@hotmail.com

    2014-12-15

    Efficient and low-cost methods for obtaining high performance flexible transparent electrodes based on chemical vapor deposition (CVD)-grown graphene are highly desirable. In this work, the graphene grown on copper foil was exfoliated into micron-size sheets through controllable ultrasonication. We developed a clean technique by blending the exfoliated single layer graphene sheets with conducting polymer to form graphene-based composite solution, which can be spin-coated on flexible substrate, forming flexible transparent conducting film with high conductivity (?8 ?/?), high transmittance (?81% at 550?nm), and excellent mechanical robustness. In addition, CVD-grown-graphene-based polymer light emitting diodes with excellent bendable performances were demonstrated.

  6. Wet chemical synthesis of quantum confined nanostructured tin oxide thin films by successive ionic layer adsorption and reaction technique

    SciTech Connect (OSTI)

    Murali, K.V., E-mail: kvmuralikv@gmail.com [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Nehru Arts and Science College, Kanhangad, Kerala 671314 (India); Ragina, A.J. [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Nehru Arts and Science College, Kanhangad, Kerala 671314 (India); Preetha, K.C. [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Sree Narayana College, Kannur, Kerala 670007 (India); Deepa, K.; Remadevi, T.L. [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Pazhassi Raja N.S.S. College, Mattannur, Kerala 670702 (India)

    2013-09-01

    Graphical abstract: - Highlights: Quantum confined SnO{sub 2} thin films were synthesized at 80 C by SILAR technique. Film formation mechanism is discussed. Films with snow like crystallite morphology offer high specific surface area. The blue-shifted value of band gap confirmed the quantum confinement effect. Present synthesis has advantages low cost, low temperature and green friendly. - Abstract: Quantum confined nanostructured SnO{sub 2} thin films were synthesized at 353 K using ammonium chloride (NH{sub 4}Cl) and other chemicals by successive ionic layer adsorption and reaction technique. Film formation mechanism is discussed. Structural, morphological, optical and electrical properties were investigated and compared with the as-grown and annealed films fabricated without NH{sub 4}Cl solution. SnO{sub 2} films were polycrystalline with crystallites of tetragonal structure with grain sizes lie in the 58 nm range. Films with snow like crystallite morphology offer high specific surface area. The blue-shifted value of band gap of as-grown films confirmed the quantum confinement effect of grains. Refractive index of the films lies in the 2.12.3 range. Films prepared with NH{sub 4}Cl exhibit relatively lower resistivity of the order of 10{sup 0}10{sup ?1} ? cm. The present synthesis has advantages such as low cost, low temperature and green friendly, which yields small particle size, large surfacevolume ratio, and high crystallinity SnO{sub 2} films.

  7. Tunable giant magnetic anisotropy in amorphous SmCo thin films

    SciTech Connect (OSTI)

    Magnus, F.; Moubah, R.; Roos, A. H.; Kapaklis, V.; Hjoervarsson, B.; Andersson, G.; Kruk, A.; Hase, T.

    2013-04-22

    SmCo thin films have been grown by magnetron sputtering at room temperature with a composition of 2-35 at. % Sm. Films with 5 at. % or higher Sm are amorphous and smooth. A giant tunable uniaxial in-plane magnetic anisotropy is induced in the films which peaks in the composition range 11-22 at. % Sm. This cross-over behavior is not due to changes in the atomic moments but rather the local configuration changes. The excellent layer perfection combined with highly tunable magnetic properties make these films important for spintronics applications.

  8. Structural and Morphological Difference Between Ti/TiN/TiCN Coatings Grown in Multilayer and Graded Form

    SciTech Connect (OSTI)

    Restrepo, E.; Baena, A.; Agudelo, C.; Castillo, H.; Devia, A.; Marino, A.

    2006-12-04

    Thin films can be grown in super-lattice, multilayers and graded form, having each one advantages and disadvantages. The difference between multilayer and graded coatings is the interface. In multilayers the interface is abrupt and in graded coatings it is diffuse. The interface influences many chemical and physical properties of the materials, and its choice depends on the application. Graded coatings have the advantage of having gradual properties such as thermal expansion coefficient and lattice parameter, avoiding adherence problems due to good match between their component materials. In this work the comparison between some properties of coatings grown as multilayer and graded is performed. The materials are produced using the sputtering DC technique because of its facility to control the deposition parameters and generate a slow growth. The target is a disc of titanium and the samples are made of stainless steel 304. The working gases are argon, nitrogen and methane, which are mixed according to the material to be produced, i.e. Ti layer is grown with argon, the TiN film is produced with a mixture of argon and nitrogen, and the TiCN material is obtained mixing argon, nitrogen and methane. These materials are characterized with AFM in order to determine grain size and with XPS studying the chemical composition and performing depth profiles.

  9. Hot filament CVD of boron nitride films

    DOE Patents [OSTI]

    Rye, Robert R.

    1992-01-01

    Using a hot filament (.apprxeq.1400.degree. C.) to activate borazine (B.sub.3 N.sub.3 H.sub.6) molecules for subsequent reaction with a direct line-of-sight substrate, transparent boron ntiride films as thick as 25,000 angstroms are grown for a substrate temperature as low as 100.degree. C. The minimum temperature is determined by radiative heating from the adjacent hot filament. The low temperature BN films show no indication of crystallinity with X-ray diffraction (XRD). X-ray photoelectron spectra (XPS) show the films to have a B:N ratio of 0.97:1 with no other XPS detectable impurities above the 0.5% level. Both Raman and infrared (IR) spectroscopy are characteristic of h-BN with small amounts of hydrogen detected as N-H and B-H bands in the IR spectrum. An important feature of this method is the separation and localization of the thermal activation step at the hot filament from the surface reaction and film growth steps at the substrate surface. This allows both higher temperature thermal activation and lower temperature film growth.

  10. Ferromagnetic response of multiferroic TbMnO{sub 3} films mediated by epitaxial strain and chemical pressure

    SciTech Connect (OSTI)

    Izquierdo, J.; Morn, O.; Astudillo, A.; Bolaos, G.; Arnache, O.

    2014-05-07

    High quality Tb{sub 1?x}Al{sub x}MnO{sub 3} (x?=?0, 0.3) films have been grown under different values of compressive/tensile strain using (001)-oriented SrTiO{sub 3} and MgO substrates. The films were grown by means of rf sputtering at substrate temperature of 800??C. X-ray diffraction analysis shows that films are single phase, preferentially oriented in the (111) and (122) directions for films deposited on SrTiO{sub 3} and MgO substrates, respectively. Although the TbMnO{sub 3} target shows antiferromagnetic order, the films deposited on both substrates show weak ferromagnetic phase at low temperature coexisting with the antiferromagnetic phase. The introduction of Al in the films clearly enhances their ferromagnetic behavior, improving the magnetic performance of this material. Indeed, M(H) measurements at 5?K show a well-defined hysteresis for films grown on both substrates. However, a stronger magnetic signal (larger values of remanence and coercive field) is observed for films deposited on MgO substrates. The chemical pressure generated by Al doping together with the substrate-induced strain seem to modify the subtle competition between magnetic interactions in the system. It is speculated that such modification could lead to a non-collinear magnetic state that may be tuned by strain modifications. This may be performed by varying the thickness of the films and/or considering other substrate materials.

  11. Stimulated emission and optical gain in AlGaN heterostructures grown on bulk AlN substrates

    SciTech Connect (OSTI)

    Guo, Wei Bryan, Zachary; Kirste, Ronny; Bryan, Isaac; Hussey, Lindsay; Bobea, Milena; Haidet, Brian; Collazo, Ramn; Sitar, Zlatko; Xie, Jinqiao; Mita, Seiji; Gerhold, Michael

    2014-03-14

    Optical gain spectra for ?250?nm stimulated emission were compared in three different AlGaN-based structures grown on single crystalline AlN substrates: a single AlGaN film, a double heterostructure (DH), and a Multiple Quantum Well (MQW) structure; respective threshold pumping power densities of 700, 250, and 150?kW/cm{sup 2} were observed. Above threshold, the emission was transverse-electric polarized and as narrow as 1.8?nm without a cavity. The DH and MQW structures showed gain values of 5060?cm{sup ?1} when pumped at 1?MW/cm{sup 2}. The results demonstrated the excellent optical quality of the AlGaN-based heterostructures grown on AlN substrates and their potential for realizing electrically pumped sub-280?nm laser diodes.

  12. Vehicle Technologies Office Merit Review 2015: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives

    Broader source: Energy.gov [DOE]

    Presentation given by APEI Inc. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced low-cost SiC and GaN wide...

  13. Vehicle Technologies Office Merit Review 2014: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives

    Broader source: Energy.gov [DOE]

    Presentation given by APEI Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Advanced low-cost SIC and GaN wide...

  14. TEM characterization of nanodiamond thin films.

    SciTech Connect (OSTI)

    Qin, L.-C.; Zhou, D.; Krauss, A. R.; Gruen, D. M.; Chemistry

    1998-05-01

    The microstructure of thin films grown by microwave plasma-enhanced chemical vapor deposition (MPCVD) from fullerene C{sub 60} precursors has been characterized by scanning electron microscopy (SEM), selected-area electron diffraction (SAED), bright-field electron microscopy, high-resolution electron microscopy (HREM), and parallel electron energy loss spectroscopy (PEELS). The films are composed of nanosize crystallites of diamond, and no graphitic or amorphous phases were observed. The diamond crystallite size measured from lattice images shows that most grains range between 3-5 nm, reflecting a gamma distribution. SAED gave no evidence of either sp2-bonded glassy carbon or sp3-bonded diamondlike amorphous carbon. The sp2-bonded configuration found in PEELS was attributed to grain boundary carbon atoms, which constitute 5-10% of the total. Occasionally observed larger diamond grains tend to be highly faulted.

  15. Density dependence of the room temperature thermal conductivity of atomic layer deposition-grown amorphous alumina (Al{sub 2}O{sub 3})

    SciTech Connect (OSTI)

    Gorham, Caroline S.; Gaskins, John T.; Hopkins, Patrick E.; Parsons, Gregory N.; Losego, Mark D.

    2014-06-23

    We report on the thermal conductivity of atomic layer deposition-grown amorphous alumina thin films as a function of atomic density. Using time domain thermoreflectance, we measure the thermal conductivity of the thin alumina films at room temperature. The thermal conductivities vary ?35% for a nearly 15% change in atomic density and are substrate independent. No density dependence of the longitudinal sound speeds is observed with picosecond acoustics. The density dependence of the thermal conductivity agrees well with a minimum limit to thermal conductivity model that is modified with a differential effective-medium approximation.

  16. Process for forming silicon carbide films and microcomponents

    DOE Patents [OSTI]

    Hamza, A.V.; Balooch, M.; Moalem, M.

    1999-01-19

    Silicon carbide films and microcomponents are grown on silicon substrates at surface temperatures between 900 K and 1700 K via C{sub 60} precursors in a hydrogen-free environment. Selective crystalline silicon carbide growth can be achieved on patterned silicon-silicon oxide samples. Patterned SiC films are produced by making use of the high reaction probability of C{sub 60} with silicon at surface temperatures greater than 900 K and the negligible reaction probability for C{sub 60} on silicon dioxide at surface temperatures less than 1250 K. 5 figs.

  17. Process for forming silicon carbide films and microcomponents

    DOE Patents [OSTI]

    Hamza, Alex V. (Livermore, CA); Balooch, Mehdi (Berkeley, CA); Moalem, Mehran (Berkeley, CA)

    1999-01-01

    Silicon carbide films and microcomponents are grown on silicon substrates at surface temperatures between 900 K and 1700 K via C.sub.60 precursors in a hydrogen-free environment. Selective crystalline silicon carbide growth can be achieved on patterned silicon-silicon oxide samples. Patterned SiC films are produced by making use of the high reaction probability of C.sub.60 with silicon at surface temperatures greater than 900 K and the negligible reaction probability for C.sub.60 on silicon dioxide at surface temperatures less than 1250 K.

  18. Compositionally graded relaxed AlGaN buffers on semipolar GaN for mid-ultraviolet emission

    SciTech Connect (OSTI)

    Young, Erin C.; Wu Feng; Haeger, Daniel A.; Nakamura, Shuji; Denbaars, Steven P.; Cohen, Daniel A.; Speck, James S.; Romanov, Alexey E.

    2012-10-01

    In this Letter, we report on the growth and properties of relaxed, compositionally graded Al{sub x}Ga{sub 1-x}N buffer layers on freestanding semipolar (2021) GaN substrates. Continuous and step compositional grades with Al concentrations up to x = 0.61 have been achieved, with emission wavelengths in the mid-ultraviolet region as low as 265 nm. Coherency stresses were relaxed progressively throughout the grades by misfit dislocation generation via primary (basal) slip and secondary (non-basal) slip systems. Threading dislocation densities in the final layers of the grades were less than 10{sup 6}/cm{sup 2} as confirmed by plan-view transmission electron microscopy and cathodoluminescence studies.

  19. Phase-field simulations of GaN growth by selective area epitaxy from complex mask geometries

    SciTech Connect (OSTI)

    Aagesen, Larry K.; Thornton, Katsuyo; Coltrin, Michael E.; Han, Jung

    2015-05-21

    Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. The model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. The model provides a route to optimize masks and processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.

  20. Magneto-optical characterizations of FeTe???Se??? thin films with critical current density over 1 MA/cm

    SciTech Connect (OSTI)

    Sun, Yue; Li, Qiang; Tsuchiya, Yuji; Pyon, Sunseng; Tamegai, Tsuyoshi; Zhang, Cheng; Ozaki, Toshinori

    2015-01-01

    We performed magneto-optical (MO) measurements on FeTe???Se??? thin films grown on LaAlO? (LAO) and Yttria-stabilized zirconia (YSZ) single-crystalline substrates. These thin films show superconducting transition temperature Tc ~19 K, 4 K higher than the bulk sample. Typical roof-top patterns can be observed in the MO images of thin films grown on LAO and YSZ, from which a large and homogeneous critical current density Jc ~ 3 - 4 x 10? A/cm at 5 K was obtained. Magnetic flux penetration measurement reveals that the current is almost isotropically distributed in the two thin films. Compared with bulk crystals, FeTe???Se??? thin film demonstrates not only higher Tc, but also much larger Jc, which is attractive for applications.

  1. Martensite transformation of epitaxial Ni-Ti films

    SciTech Connect (OSTI)

    Buschbeck, J.; Kozhanov, A.; Kawasaki, J. K.; James, R. D.; Palmstroem, C. J.

    2011-05-09

    The structure and phase transformations of thin Ni-Ti shape memory alloy films grown by molecular beam epitaxy are investigated for compositions from 43 to 56 at. % Ti. Despite the substrate constraint, temperature dependent x-ray diffraction and resistivity measurements reveal reversible, martensitic phase transformations. The results suggest that these occur by an in-plane shear which does not disturb the lattice coherence at interfaces.

  2. Indium Phosphide Polycrystalline Films on Metal Foil for PV Applications -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Indium Phosphide Polycrystalline Films on Metal Foil for PV Applications Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Zheng, M., Yu, Z., Seok, T.J., Chen, Y-Z., Kapadia, R., Takei, K., Aloni, S., Ager, J.W., Wu, M., Chueh, Y-L., Javey, A. "High optical quality polycrystalline indium phosphide grown on metal substrates by

  3. Self-modulated nanostructures in super-large-period Bi{sub 11}(Fe{sub 5}CoTi{sub 3}){sub 10/9}O{sub 33} epitaxial thin films

    SciTech Connect (OSTI)

    Meng, Dechao; Huang, Haoliang; Yun, Yu; Huang, Yan; Zhai, Xiaofang; Ma, Chao; Fu, Zhengping; Peng, Ranran; Mao, Xiangyu; Chen, Xiaobing; Brown, Gail; and others

    2015-05-25

    Super-large-period Aurivillius thin films with a pseudo-period of ten were grown on (0 0 1) SrTiO{sub 3} substrates using the pulsed laser deposition method. The as-grown films are found to be coherently strained to the substrate and atomically smooth. X-ray diffraction indicates an average periodicity of ten, while analysis with the high resolution scanning transmission electron microscopy reveals a self-modulated nanostructure in which the periodicity changes as the film thickness increases. Finally, we discuss the magnetic and possible ferroelectric properties of the self-modulated large period Aurivillius films at the room temperature.

  4. The Morphology and Microstructure of Thin-Film GaAs on Mo Substrates

    SciTech Connect (OSTI)

    Jones, K. M.; Al-Jassim, M. M.; Hasoon, F. S.; Venkatasubramanian, R.

    1999-04-26

    The growth of GaAs thin films on Molybdenum foils was investigated in an attempt to find a low-cost substrate for GaAs. The films were grown by metalorganic chemical vapor deposition (MOCVD). The film thickness was in the 2-4{micro}m range, while the deposition temperature was in the 650-825 C range. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to investigate the film morphology and microstructure, respectively. The film morphology in general, and the grain size in particular, were found to be strongly dependent on the growth temperature. However, the defect structure observed in these films was relatively insensitive to the growth conditions.

  5. High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films

    SciTech Connect (OSTI)

    Mu, Haichuan; Zhang, Zhiqiang; Wang, Keke; Xie, Haifen, E-mail: hfxie@ecust.edu.cn [Department of Physics, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Zhao, Xiaojing; Liu, Feng [Department of Physics, Shanghai Normal University, 100 Guilin Road, Shanghai 200234 (China)

    2014-07-21

    Zinc oxide (ZnO) thin films with various thicknesses were fabricated by Atomic Layer Deposition on Chemical Vapor Deposition grown graphene films and their response to formaldehyde has been investigated. It was found that 0.5?nm ZnO films modified graphene sensors showed high response to formaldehyde with the resistance change up to 52% at the concentration of 9 parts-per-million (ppm) at room temperature. Meanwhile, the detection limit could reach 180 parts-per-billion (ppb) and fast response of 36?s was also obtained. The high sensitivity could be attributed to the combining effect from the highly reactive, top mounted ZnO thin films, and high conductive graphene base network. The dependence of ZnO films surface morphology and its sensitivity on the ZnO films thickness was also investigated.

  6. Analysis of defects in GaAsN grown by chemical beam epitaxy on high index GaAs substrates

    SciTech Connect (OSTI)

    Bouzazi, Boussairi; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2013-09-27

    The lattice defects in GaAsN grown by chemical beam epitaxy on GaAs 311B and GaAs 10A toward [110] were characterized and discussed by using deep level transient spectroscopy (DLTS) and on the basis of temperature dependence of the junction capacitances (C{sub J}). In one hand, GaAsN films grown on GaAs 311B and GaAs 10A showed n-type and p-type conductivities, respectively although the similar and simultaneous growth conditions. This result is indeed in contrast to the common known effect of N concentration on the type of conductivity, since the surface 311B showed a significant improvement in the incorporation of N. Furthermore, the temperature dependence of C{sub J} has shown that GaAs 311B limits the formation of N-H defects. In the other hand, the energy states in the forbidden gap of GaAsN were obtained. Six electron traps, E1 to E6, were observed in the DLTS spectrum of GaAsN grown on GaAs 311B, with apparent activation energies of 0.02, 0.14, 0.16, 0.33, 0.48, and 0.74 eV below the bottom edge of the conduction band, respectively. In addition, four hole traps, H1 to H4, were observed in the DLTS spectrum of GaAsN grown on GaAs 10A, with energy depths of 0.13, 0.20, 0.39, and 0.52 eV above the valence band maximum of the alloy, respectively. Hence, the surface morphology of the GaAs substrate was found to play a key factor role in clarifying the electrical properties of GaAsN grown by CBE.

  7. Influence of nanostructure on charge transport in RuO{sub 2} thin films

    SciTech Connect (OSTI)

    Steeves, M. M.; Lad, R. J.

    2010-07-15

    Polycrystalline thin films of RuO{sub 2} were grown on fused-quartz substrates and a parametric study was carried out to probe the influence of film nanostructure on the four-point Van der Pauw resistivity and Hall coefficient. The films were grown via reactive rf magnetron sputtering of a Ru target in an Ar/O{sub 2} plasma using deposition rates from 0.27 to 3.5 A/s and substrate temperatures from 16 to 500 deg. C Room-temperature resistivities of the RuO{sub 2} films ranged from 58 to 360 {mu}{Omega} cm. Upon first heating following deposition, some films showed decreasing resistivity with increasing temperature, but the resistivities also decreased upon subsequent cooling suggesting that the annealing treatment reduces the film defect density. The temperature coefficient of resistance was found to be small (<0.001 K{sup -1}) in agreement with previous investigations. Hall coefficient measurements of the polycrystalline thin films demonstrated that either n-type or p-type majority carriers can be present depending on deposition conditions and the resulting nanostructure, in contrast to single-crystal RuO{sub 2}, which is an n-type metal. Grain size and homogeneous strain within the films were measured by x-ray diffraction and are correlated to the majority carrier type.

  8. Microstructure investigations of hcp phase CoPt thin films with high coercivity

    SciTech Connect (OSTI)

    Yang, Y.; Varghese, B.; Tan, H. K.; Wong, S. K.; Piramanayagam, S. N.

    2014-02-28

    CoPt films have been grown in the past with a high anisotropy in L1{sub 1} or L1{sub 0} phase, and a high coercivity is observed only in L1{sub 0} CoPt films. Recently, we have grown CoPt films which exhibited a high coercivity without exhibiting an ordered phase. In this study, high resolution transmission electron microscopy (HRTEM) investigations have been carried out to understand the strong thickness and deposition pressure dependent magnetic properties. HRTEM studies revealed the formation of an initial growth layer in a metastable hexagonal (hcp) CoPt with high anisotropy. This phase is believed to be aided by the heteroepitaxial growth on Ru as well as the formation of Ru-doped CoPt phase. As the films grew thicker, transformation from hcp phase to an energetically favourable face-centered cubic (fcc) phase was observed. Stacking faults were found predominantly at the hcp-fcc transformation region of the CoPt film. The higher coercivity of thinner CoPt film is attributed to relatively less fcc fraction, less stacking faults, and to the isolated grain structure of these films compared to the thicker films.

  9. Nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates

    DOE Patents [OSTI]

    Melechko, Anatoli V. (Oak Ridge, TN); McKnight, Timothy E. (Greenback, TN); Guillorn, Michael A. (Ithaca, NY); Ilic, Bojan (Ithaca, NY); Merkulov, Vladimir I. (Knoxville, TN); Doktycz, Mitchel J. (Knoxville, TN); Lowndes, Douglas H. (Knoxville, TN); Simpson, Michael L. (Knoxville, TN)

    2011-08-23

    Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. An apparatus, includes a substrate and a nanoreplicant structure coupled to a surface of the substrate.

  10. Growth of epitaxial (Sr,Ba){sub n+1}Ru{sub n}O{sub 3n+1} films

    SciTech Connect (OSTI)

    Schlom, D.G.; Knapp, S.B.; Wozniak, S. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering] [and others

    1997-12-01

    We have grown epitaxial (Sr,Ba) (n+1)Ru(n)O(3n+1) films, n = 1, 2, and infinity, by pulsed laser deposition (PLD) and controlled their orientation by choosing appropriate substrates. The growth conditions yielding phase pure films have been mapped out. Resistivity versus temperature measurements show that both a and c axis films of Sr2RuO4 are metallic, but not superconducting. The latter is probably due to the presence of low-level impurities that are difficult to avoid given the target preparation process involved in growing these films by PLD.

  11. Process for growing a film epitaxially upon a MGO surface and structures formed with the process

    DOE Patents [OSTI]

    McKee, Rodney Allen (Kingston, TN); Walker, Frederick Joseph (Oak Ridge, TN)

    1998-01-01

    A process and structure wherein optical quality perovskites, such as BaTiO.sub.3 or SrTiO.sub.3, are grown upon a single crystal MgO substrate involves the epitaxial build up of alternating planes of TiO.sub.2 and metal oxide wherein the first plane grown upon the MgO substrate is a plane of TiO.sub.2. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  12. Process for growing a film epitaxially upon a MgO surface

    DOE Patents [OSTI]

    McKee, Rodney Allen (Kingston, TN); Walker, Frederick Joseph (Oak Ridge, TN)

    1997-01-01

    A process and structure wherein optical quality perovskites, such as BaTiO.sub.3 or SrTiO.sub.3, are grown upon a single crystal MgO substrate involves the epitaxial build up of alternating planes of TiO.sub.2 and metal oxide wherein the first plane grown upon the MgO substrate is a plane of TiO.sub.2. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  13. Growth of CdTe thin films on graphene by close-spaced sublimation method

    SciTech Connect (OSTI)

    Jung, Younghun; Yang, Gwangseok; Kim, Jihyun, E-mail: hyunhyun7@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of)] [Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Chun, Seungju; Kim, Donghwan [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of)] [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2013-12-02

    CdTe thin films grown on bi-layer graphene were demonstrated by using the close-spaced sublimation method, where CdTe was selectively grown on the graphene. The density of the CdTe domains was increased with increasing the number of the defective sites in the graphene, which was controlled by the duration of UV exposure. The CdTe growth rate on the bi-layer graphene electrodes was 400?nm/min with a bandgap energy of 1.451.49?eV. Scanning electron microscopy, micro-Raman spectroscopy, micro-photoluminescence, and X-ray diffraction technique were used to confirm the high quality of the CdTe thin films grown on the graphene electrodes.

  14. Magneto-optical characterizations of FeTe₀̣₅Se₀̣₅ thin films with

    Office of Scientific and Technical Information (OSTI)

    critical current density over 1 MA/cm² (Journal Article) | SciTech Connect Magneto-optical characterizations of FeTe₀̣₅Se₀̣₅ thin films with critical current density over 1 MA/cm² Citation Details In-Document Search Title: Magneto-optical characterizations of FeTe₀̣₅Se₀̣₅ thin films with critical current density over 1 MA/cm² We performed magneto-optical (MO) measurements on FeTe₀̣₅Se₀̣₅ thin films grown on LaAlO₃ (LAO) and Yttria-stabilized zirconia (YSZ)

  15. Atomic layer deposition of superparamagnetic and ferrimagnetic magnetite thin films

    SciTech Connect (OSTI)

    Zhang, Yijun; Liu, Ming E-mail: wren@mail.xjtu.edu.cn Ren, Wei E-mail: wren@mail.xjtu.edu.cn; Zhang, Yuepeng; Chen, Xing; Ye, Zuo-Guang E-mail: wren@mail.xjtu.edu.cn

    2015-05-07

    One of the key challenges in realizing superparamagnetism in magnetic thin films lies in finding a low-energy growth way to create sufficiently small grains and magnetic domains which allow the magnetization to randomly and rapidly reverse. In this work, well-defined superparamagnetic and ferrimagnetic Fe{sub 3}O{sub 4} thin films are successfully prepared using atomic layer deposition technique by finely controlling the growth condition and post-annealing process. As-grown Fe{sub 3}O{sub 4} thin films exhibit a conformal surface and poly-crystalline nature with an average grain size of 7 nm, resulting in a superparamagnetic behavior with a blocking temperature of 210 K. After post-annealing in H{sub 2}/Ar at 400 °C, the as-grown α−Fe{sub 2}O{sub 3} sample is reduced to Fe{sub 3}O{sub 4} phase, exhibiting a ferrimagnetic ordering and distinct magnetic shape anisotropy. Atomic layer deposition of magnetite thin films with well-controlled morphology and magnetic properties provides great opportunities for integrating with other order parameters to realize magnetic nano-devices with potential applications in spintronics, electronics, and bio-applications.

  16. Epitaxial Crystal Silicon Absorber Layers and Solar Cells Grown at 1.8 Microns per Minute: Preprint

    SciTech Connect (OSTI)

    Bobela, D. C.; Teplin, C. W.; Young, D. L.; Branz, H. M.; Stradins, P.

    2011-07-01

    We have grown device-quality epitaxial silicon thin films at growth rates up to 1.8 ?m/min, using hot-wire chemical vapor deposition from silane at substrate temperatures below 750 degrees C. At these rates, which are more than 30 times faster than those used by the amorphous and nanocrystalline Si industry, capital costs for large-scale solar cell production would be dramatically reduced, even for cell absorber layers up to 10 ?m thick. We achieved high growth rates by optimizing the three key parameters: silane flow, depletion, and filament geometry, based on our model developed earlier. Hydrogen coverage of the filament surface likely limits silane decomposition and growth rate at high system pressures. No considerable deterioration in PV device performance is observed when grown at high rate, provided that the epitaxial growth is initiated at low rate. A simple mesa device structure (wafer/epi Si/a-Si(i)/a-Si:H(p)/ITO) with a 2.3 um epitaxial silicon absorber layer was grown at 700 nm/min. The finished device had an open-circuit voltage of 0.424 V without hydrogenation treatment.

  17. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D. A.; Heiman, D.

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  18. Atomic moments in Mn{sub 2}CoAl thin films analyzed by X-ray magnetic circular dichroism

    SciTech Connect (OSTI)

    Jamer, M. E.; Assaf, B. A.; Heiman, D.; Sterbinsky, G. E.; Arena, D. A.

    2014-12-07

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn{sub 2}CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. The results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  19. Characterization of Thin Films by XAFS: Application to Spintronics Materials

    SciTech Connect (OSTI)

    Heald, Steve M.; Kaspar, Tiffany C.; Droubay, Timothy C.; Chambers, Scott A.

    2009-10-25

    X-ray absorption fine structure (XAFS) has proven very valuable in characterizing thin films. This is illustrated with some examples from the area of diluted magnetic semiconductor (DMS) materials for spintronics applications. A promising route to DMS materials is doping of oxides such as TiO2 and ZnO with magnetic atoms such as Co. These can be grown as epitaxial thin films on various substrates. XAFS is especially valuable for characterizing the dopant atoms. The near edge region is sensitive to the symmetry of the bonding and valence of the dopants, and the extended XAFS can determine the details of the lattice site. XAFS is also valuable for detecting metallic nanoparticles. These can be difficult to detect by other methods, and can give a spurious magnetic signal. The power of XAFS is illustrated by examples from studies on Co doped ZnO films.

  20. Modified Magnetic Ground State in Nimn (2) O (4) Thin Films

    SciTech Connect (OSTI)

    Nelson-Cheeseman, B.B.; Chopdekar, R.V.; Iwata, J.M.; Toney, M.F.; Arenholz, E.; Suzuki, Y.; /SLAC

    2012-08-23

    The authors demonstrate the stabilization of a magnetic ground state in epitaxial NiMn{sub 2}O{sub 4} (NMO) thin films not observed in their bulk counterpart. Bulk NMO exhibits a magnetic transition from a paramagnetic phase to a collinear ferrimagnetic moment configuration below 110 K and to a canted moment configuration below 70 K. By contrast, as-grown NMO films exhibit a single magnetic transition at 60 K and annealed films exhibit the magnetic behavior found in bulk. Cation inversion and epitaxial strain are ruled out as possible causes for the new magnetic ground state in the as-grown films. However, a decrease in the octahedral Mn{sup 4+}:Mn{sup 3+} concentration is observed and likely disrupts the double exchange that produces the magnetic state at intermediate temperatures. X-ray magnetic circular dichroism and bulk magnetometry indicate a canted ferrimagnetic state in all samples at low T. Together these results suggest that the collinear ferrimagnetic state observed in bulk NMO at intermediate temperatures is suppressed in the as grown NMO thin films due to a decrease in octahedral Mn{sup 4+}, while the canted moment ferrimagnetic ordering is preserved below 60 K.

  1. Helium release and microstructural changes in Er(D,T)2-x3Hex films).

    SciTech Connect (OSTI)

    Gelles, D. S.; Browning, James Frederick; Snow, Clark Sheldon; Banks, James Clifford; Mangan, Michael A.; Rodriguez, Mark Andrew; Brewer, Luke N.; Kotula, Paul Gabriel

    2007-12-01

    Er(D,T){sub 2-x} {sup 3}He{sub x}, erbium di-tritide, films of thicknesses 500 nm, 400 nm, 300 nm, 200 nm, and 100 nm were grown and analyzed by Transmission Electron Microscopy, X-Ray Diffraction, and Ion Beam Analysis to determine variations in film microstructure as a function of film thickness and age, due to the time-dependent build-up of {sup 3}He in the film from the radioactive decay of tritium. Several interesting features were observed: One, the amount of helium released as a function of film thickness is relatively constant. This suggests that the helium is being released only from the near surface region and that the helium is not diffusing to the surface from the bulk of the film. Two, lenticular helium bubbles are observed as a result of the radioactive decay of tritium into {sup 3}He. These bubbles grow along the [111] crystallographic direction. Three, a helium bubble free zone, or 'denuded zone' is observed near the surface. The size of this region is independent of film thickness. Four, an analysis of secondary diffraction spots in the Transmission Electron Microscopy study indicate that small erbium oxide precipitates, 5-10 nm in size, exist throughout the film. Further, all of the films had large erbium oxide inclusions, in many cases these inclusions span the depth of the film.

  2. Epitaxial growth, structure, and intermixing at the LaAlO{sub 3}/SrTiO{sub 3} interface as the film stoichiometry is varied

    SciTech Connect (OSTI)

    Qiao, L.; Droubay, T. C.; Kaspar, T. C.; Chambers, S. A.; Varga, T.; Bowden, M. E.; Shutthanandan, V.; Zhu, Z.

    2011-02-15

    LaAlO{sub 3} epitaxial films with La:Al cation ratios ranging from 0.9 to 1.2 were grown on TiO{sub 2}-terminated SrTiO{sub 3} (001) substrates by off-axis pulsed laser deposition. Although all films are epitaxial, rocking curve measurements show that the crystallographic quality degrades with increasing La:Al ratio. Films with La:Al ratios of 0.9, 1.0, and 1.1 were coherently strained to the substrate. However, the out-of-plane lattice parameter increases over this range, revealing a decrease in film tetragonality. Although all film surfaces exhibit hydroxylation, the extent of hydroxylation is greater for the La-rich films. Rutherford backscattering spectrometry reveals that La from the film diffuses deeply into the SrTiO{sub 3} substrate and secondary-ion-mass spectroscopy shows unambiguous Sr outdiffusion into the films.

  3. Graphene layer growth on silicon substrates with nickel film by pulse arc plasma deposition

    SciTech Connect (OSTI)

    Fujita, K.; Banno, K.; Aryal, H. R.; Egawa, T.

    2012-10-15

    Carbon layer has been grown on a Ni/SiO{sub 2}/Si(111) substrate under high vacuum pressure by pulse arc plasma deposition. From the results of Raman spectroscopy for the sample, it is found that graphene was formed by ex-situ annealing of sample grown at room temperature. Furthermore, for the sample grown at high temperature, graphene formation was shown and optimum temperature was around 1000 Degree-Sign C. Transmission electron microscopy observation of the sample suggests that the graphene was grown from step site caused by grain of Ni film. The results show that the pulse arc plasma technique has the possibility for acquiring homogenous graphene layer with controlled layer thickness.

  4. Metallic transport and large anomalous Hall effect at room temperature in ferrimagnetic Mn{sub 4}N epitaxial thin film

    SciTech Connect (OSTI)

    Shen, Xi; Shigematsu, Kei; Chikamatsu, Akira Fukumura, Tomoteru; Hirose, Yasushi; Hasegawa, Tetsuya

    2014-08-18

    We report the electrical transport properties of ferrimagnetic Mn{sub 4}N (001) epitaxial thin films grown by pulsed laser deposition on MgO (001) substrates. The Mn{sub 4}N thin films were tetragonally distorted with a ratio of out-of-plane to in-plane lattice constants of 0.987 and showed perpendicular magnetic anisotropy with an effective magnetic anisotropy constant of 0.16?MJ/m{sup 3}, which is comparable with that of a recently reported molecular-beam-epitaxy-grown film. The thin films exhibited metallic transport with a room temperature resistivity of 125??? cm in addition to a large anomalous Hall effect with a Hall angle tangent of 0.023.

  5. Shock initiation experiments on ratchet grown PBX 9502

    SciTech Connect (OSTI)

    Gustavsen, Richard L; Thompson, Darla G; Olinger, Barton W; Deluca, Racci; Bartram, Brian D; Pierce, Timothy H; Sanchez, Nathaniel J

    2010-01-01

    This study compares the shock initiation behavior of PBX 9502 pressed to less than nominal density (nominal density is 1.890 {+-} 0.005 g/cm{sup 3}) with PBX 9502 pressed to nominal density and then ''ratchet grown'' to low density. PBX 9502 is an insensitive plastic bonded explosive consisting of 95 weight % dry-aminated tri-amino-tri-nitro-benzene (TATB) and 5 weight % Kel-F 800 plastic binder. ''Ratchet growth'' - an irreversible increase in specific volume - occurs when an explosive based on TATB is temperature cycled. The design of our study is as follows: PBX 9502, all from the same lot, received the following four treatments. Samples in the first group were pressed to less than nominal density. These were not ratchet grown and used as a baseline. Samples in the second group were pressed to nominal density and then ratchet grown by temperature cycling 30 times between -54 C and +80 C. Samples in the final group were pressed to nominal density and cut into 100 mm by 25.4 mm diameter cylinders. During thermal cycling the cylinders were axially constrained by a 100 psi load. Samples for shock initiation experiments were cut perpendicular (disks) and parallel (slabs) to the axial load. The four sample groups can be summarized with the terms pressed low, ratchet grown/no load, axial load/disks, and axial load/slabs. All samples were shock initiated with nearly identical inputs in plate impact experiments carried out on a gas gun. Wave profiles were measured after propagation through 3, 4, 5, and 6 mm of explosive. Side by side comparison of wave profiles from different samples is used as a measure of relative sensitivity. All reduced density samples were more shock sensitive than nominal density PBX 9502. Differences in shock sensitivity between ratchet grown and pressed to low density PBX 9502 were small, but the low density pressings are slightly more sensitive than the ratchet grown samples.

  6. Polycrystalline GaAs solar cells on low-cost Silicon-Film{trademark} substrates

    SciTech Connect (OSTI)

    Mauk, M.G.; Feyock, B.W.; Hall, R.B.; Cavanaugh, K.D.; Cotter, J.E.

    1997-12-31

    The authors assess the potential of a low-cost, large-area Silicon-Film{trademark} sheet as a substrate for thin-film polycrystalline GaAs solar cells. Silicon-Film is a relatively inexpensive material on which large-grain (>2 mm) polycrystalline GaAs films can be formed. The GaAs epitaxial layers are grown by a simple close-spaced vapor transport (CSVT) technique using water vapor as a transport agent. A recrystallized Ge{sub 1{minus}x}Si{sub x} buffer layer between the GaAs epilayer and Silicon-Film substrate can facilitate growth of the GaAs. Selective epitaxy on patterned, oxide-masked substrates is effective in reducing thermal stress effects.

  7. Electric field-induced magnetic switching in Mn:ZnO film

    SciTech Connect (OSTI)

    Ren, S. X.; Sun, G. W.; Zhao, J.; Dong, J. Y.; Zhao, X.; Chen, W.; Wei, Y.; Ma, Z. C.

    2014-06-09

    A large magnetic modulation, accompanied by stable bipolar resistive switching (RS) behavior, was observed in a Mn:ZnO film by applying a reversible electric field. A significant enhancement of the ferromagnetism of the film, to about five times larger than that in the initial (as-grown) state (IS), was obtained by switching the film into the low resistance state. X-ray photoelectron spectroscopy demonstrated the existence of abundant oxygen vacancies in the IS of the film. We suggest that this electric field-induced magnetic switching effect originates with the migration and redistribution of oxygen vacancies during RS. Our work indicates that electric switching is an effective and simple method to increase the ferromagnetism of diluted magnetic oxide films. This provides a promising direction for research in spintronic devices.

  8. Design, fabrication, and performance analysis of GaN vertical electron transistors with a buried p/n junction

    SciTech Connect (OSTI)

    Yeluri, Ramya Lu, Jing; Keller, Stacia; Mishra, Umesh K.; Hurni, Christophe A.; Browne, David A.; Speck, James S.; Chowdhury, Srabanti

    2015-05-04

    The Current Aperture Vertical Electron Transistor (CAVET) combines the high conductivity of the two dimensional electron gas channel at the AlGaN/GaN heterojunction with better field distribution offered by a vertical design. In this work, CAVETs with buried, conductive p-GaN layers as the current blocking layer are reported. The p-GaN layer was regrown by metalorganic chemical vapor deposition and the subsequent channel regrowth was done by ammonia molecular beam epitaxy to maintain the p-GaN conductivity. Transistors with high ON current (10.9?kA/cm{sup 2}) and low ON-resistance (0.4 m? cm{sup 2}) are demonstrated. Non-planar selective area regrowth is identified as the limiting factor to transistor breakdown, using planar and non-planar n/p/n structures. Planar n/p/n structures recorded an estimated electric field of 3.1 MV/cm, while non-planar structures showed a much lower breakdown voltage. Lowering the p-GaN regrowth temperature improved breakdown in the non-planar n/p/n structure. Combining high breakdown voltage with high current will enable GaN vertical transistors with high power densities.

  9. Measurement of the hot electron mean free path and the momentum relaxation rate in GaN

    SciTech Connect (OSTI)

    Suntrup, Donald J.; Gupta, Geetak; Li, Haoran; Keller, Stacia; Mishra, Umesh K.

    2014-12-29

    We present a method for measuring the mean free path and extracting the momentum relaxation time of hot electrons in GaN using the hot electron transistor (HET). In this device, electrons are injected over a high energy emitter barrier into the base where they experience quasi-ballistic transport well above the conduction band edge. After traversing the base, high energy electrons either surmount the base-collector barrier and become collector current or reflect off the barrier and become base current. We fabricate HETs with various base thicknesses and measure the common emitter transfer ratio (α) for each device. The mean free path is extracted by fitting α to a decaying exponential as a function of base width and the relaxation time is computed using a suitable injection velocity. For devices with an injection energy of ∼1 eV, we measure a hot electron mean free path of 14 nm and calculate a momentum relaxation time of 16 fs. These values are in agreement with theoretical calculations where longitudinal optical phonon scattering is the dominant momentum relaxation mechanism.

  10. Magneto-optical characterizations of FeTe₀̣₅Se₀̣₅ thin films with critical current density over 1 MA/cm²

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Yue; Li, Qiang; Tsuchiya, Yuji; Pyon, Sunseng; Tamegai, Tsuyoshi; Zhang, Cheng; Ozaki, Toshinori

    2014-12-03

    We performed magneto-optical (MO) measurements on FeTe₀̣₅Se₀̣₅ thin films grown on LaAlO₃ (LAO) and Yttria-stabilized zirconia (YSZ) single-crystalline substrates. These thin films show superconducting transition temperature Tc ~19 K, 4 K higher than the bulk sample. Typical roof-top patterns can be observed in the MO images of thin films grown on LAO and YSZ, from which a large and homogeneous critical current density Jc ~ 3 - 4 x 10⁶ A/cm² at 5 K was obtained. In this study, magnetic flux penetration measurement reveals that the current is almost isotropically distributed in the two thin films. Compared with bulk crystals,more » FeTe₀̣₅Se₀̣₅ thin film demonstrates not only higher Tc, but also much larger Jc, which is attractive for applications.« less

  11. Porous thin films

    DOE Patents [OSTI]

    Xu, Ting

    2015-11-17

    Compositions of porous thin films and methods of making are provided. The methods involve self-assembly of a cyclic peptide in the presence of a block copolymer.

  12. Film Collection Volume Two

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sag it for the best transmission of high-voltage electricity. It features wonderful animation and tower models. The next film, "The World Behind Your Light Switch" (1966),...

  13. Amorphous diamond films

    DOE Patents [OSTI]

    Falabella, Steven (Livermore, CA)

    1998-01-01

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions.

  14. Film Collection Volume One

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume One Film Collection Volume Two 75th Anniversary Hydropower in the Northwest Woody Guthrie Videos Strategic Direction Branding & Logos Power of the River History Book...

  15. BPA Historical Films Promo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume One Film Collection Volume Two 75th Anniversary Hydropower in the Northwest Woody Guthrie Videos Strategic Direction Branding & Logos Power of the River History Book...

  16. Photo-induced water oxidation at the aqueous GaN (1010) interface: Deprotonation kinetics of the first proton-coupled electron-transfer step

    SciTech Connect (OSTI)

    Ertem, Mehmed Z.; Kharche, Neerav; Batista, Victor S.; Hybertsen, Mark S.; Tully, John C.; Muckerman, James T.

    2015-03-12

    Photoeclectrochemical water splitting plays a key role in a promising path to the carbon-neutral generation of solar fuels. Wurzite GaN and its alloys (e.g., GaN/ZnO and InGaN) are demonstrated photocatalysts for water oxidation, and they can drive the overall water splitting reaction when coupled with co-catalysts for proton reduction. In the present work, we investigate the water oxidation mechanism on the prototypical GaN (1010) surface using a combined ab initio molecular dynamics and molecular cluster model approach taking into account the role of water dissociation and hydrogen bonding within the first solvation shell of the hydroxylated surface. The investigation of free-energy changes for the four proton-coupled electron-transfer (PCET) steps of the water oxidation mechanism shows that the first PCET step for the conversion of Ga-OH to Ga-O?? requires the highest energy input. We further examine the sequential PCETs, with the proton transfer (PT) following the electron transfer (ET), and find that photo-generated holes localize on surface NH sites is thermodynamically more favorable than OH sites. However, proton transfer from OH sites with subsequent localization of holes on oxygen atoms is kinetically favored owing to hydrogen bonding interactions at the GaN (1010)water interface. We find that the deprotonation of surface OH sites is the limiting factor for the generation of reactive oxyl radical ion intermediates and consequently for water oxidation.

  17. Photo-induced water oxidation at the aqueous GaN (101¯0) interface: Deprotonation kinetics of the first proton-coupled electron-transfer step

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ertem, Mehmed Z.; Kharche, Neerav; Batista, Victor S.; Hybertsen, Mark S.; Tully, John C.; Muckerman, James T.

    2015-03-12

    Photoeclectrochemical water splitting plays a key role in a promising path to the carbon-neutral generation of solar fuels. Wurzite GaN and its alloys (e.g., GaN/ZnO and InGaN) are demonstrated photocatalysts for water oxidation, and they can drive the overall water splitting reaction when coupled with co-catalysts for proton reduction. In the present work, we investigate the water oxidation mechanism on the prototypical GaN (101¯0) surface using a combined ab initio molecular dynamics and molecular cluster model approach taking into account the role of water dissociation and hydrogen bonding within the first solvation shell of the hydroxylated surface. The investigation ofmore » free-energy changes for the four proton-coupled electron-transfer (PCET) steps of the water oxidation mechanism shows that the first PCET step for the conversion of –Ga-OH to –Ga-O˙⁻ requires the highest energy input. We further examine the sequential PCETs, with the proton transfer (PT) following the electron transfer (ET), and find that photo-generated holes localize on surface –NH sites is thermodynamically more favorable than –OH sites. However, proton transfer from –OH sites with subsequent localization of holes on oxygen atoms is kinetically favored owing to hydrogen bonding interactions at the GaN (101¯0)–water interface. We find that the deprotonation of surface –OH sites is the limiting factor for the generation of reactive oxyl radical ion intermediates and consequently for water oxidation.« less

  18. Thermal Conductivity Measurement of Xe-Implanted Uranium Dioxide Thick Films using Multilayer Laser Flash Analysis

    SciTech Connect (OSTI)

    Nelson, Andrew T.

    2012-08-30

    The Fuel Cycle Research and Development program's Advanced Fuels campaign is currently pursuing use of ion beam assisted deposition to produce uranium dioxide thick films containing xenon in various morphologies. To date, this technique has provided materials of interest for validation of predictive fuel performance codes and to provide insight into the behavior of xenon and other fission gasses under extreme conditions. In addition to the structural data provided by such thick films, it may be possible to couple these materials with multilayer laser flash analysis in order to measure the impact of xenon on thermal transport in uranium dioxide. A number of substrate materials (single crystal silicon carbide, molybdenum, and quartz) containing uranium dioxide films ranging from one to eight microns in thickness were evaluated using multilayer laser flash analysis in order to provide recommendations on the most promising substrates and geometries for further investigation. In general, the uranium dioxide films grown to date using ion beam assisted deposition were all found too thin for accurate measurement. Of the substrates tested, molybdenum performed the best and looks to be the best candidate for further development. Results obtained within this study suggest that the technique does possess the necessary resolution for measurement of uranium dioxide thick films, provided the films are grown in excess of fifty microns. This requirement is congruent with the material needs when viewed from a fundamental standpoint, as this length scale of material is required to adequately sample grain boundaries and possible second phases present in ceramic nuclear fuel.

  19. Flexible indium zinc oxide/Ag/indium zinc oxide multilayer electrode grown on polyethersulfone substrate by cost-efficient roll-to-roll sputtering for flexible organic photovoltaics

    SciTech Connect (OSTI)

    Park, Yong-Seok; Kim, Han-Ki

    2010-01-15

    The authors describe the preparation and characteristics of flexible indium zinc oxide (IZO)-Ag-IZO multilayer electrodes grown on flexible polyethersulfone (PES) substrates using a roll-to-roll sputtering system for use in flexible organic photovoltaics. By the continuous roll-to-roll sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, they were able to fabricate a high quality IZO-Ag-IZO multilayer electrode with a sheet resistance of 6.15 {epsilon}/square, optical transmittance of 87.4%, and figure of merit value of 42.03x10{sup -3} {Omega}{sup -1} on the PES substrate. In addition, the IZO-Ag-IZO multilayer electrode exhibited superior flexibility to the roll-to-roll sputter grown single ITO electrode due to the existence of a ductile Ag layer between the IZO layers and stable amorphous structure of the IZO film. Furthermore, the flexible organic solar cells (OSCs) fabricated on the roll-to-roll sputter grown IZO-Ag-IZO electrode showed higher power efficiency (3.51%) than the OSCs fabricated on the roll-to-roll sputter grown single ITO electrode (2.67%).

  20. Inversion by metalorganic chemical vapor deposition from N- to Ga-polar gallium nitride and its application to multiple quantum well light-emitting diodes

    SciTech Connect (OSTI)

    Hosalli, A. M.; Van Den Broeck, D. M.; Bedair, S. M. [Department of Electrical and Computer Engineering, NCSU, Raleigh, North Carolina 27695 (United States)] [Department of Electrical and Computer Engineering, NCSU, Raleigh, North Carolina 27695 (United States); Bharrat, D.; El-Masry, N. A. [Department of Material Science and Engineering, NCSU, Raleigh, North Carolina 27695 (United States)] [Department of Material Science and Engineering, NCSU, Raleigh, North Carolina 27695 (United States)

    2013-12-02

    We demonstrate a metalorganic chemical vapor deposition growth approach for inverting N-polar to Ga-polar GaN by using a thin inversion layer grown with high Mg flux. The introduction of this inversion layer allowed us to grow p-GaN films on N-polar GaN thin film. We have studied the dependence of hole concentration, surface morphology, and degree of polarity inversion for the inverted Ga-polar surface on the thickness of the inversion layer. We then use this approach to grow a light emitting diode structure which has the MQW active region grown on the advantageous N-polar surface and the p-layer grown on the inverted Ga-polar surface.

  1. Doping and electronic properties of GaAs grown by close-spaced vapor transport from powder sources for scalable III–V photovoltaics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ritenour, Andrew J.; Boucher, Jason W.; DeLancey, Robert; Greenaway, Ann L.; Aloni, Shaul; Boettcher, Shannon W.

    2014-09-01

    We report the use of a simple close-spaced vapor transport technique for the growth of high-quality epitaxial GaAs films using potentially inexpensive GaAs powders as precursors. The free carrier type and density (1016 to 1019 cm–3) of the films were adjusted by addition of Te or Zn powder to the GaAs source powder. We show using photoelectrochemical and electron beam-induced current analyses that the minority carrier diffusion lengths of the n- and p-GaAs films reached ~3 μm and ~8 μm, respectively. Hall mobilities approach those achieved for GaAs grown by metal–organic chemical vapor deposition, 1000–4200 cm2 V–1 s–1 for n-GaAsmore » and 50–240 cm V–1 s–1 for p-GaAs depending on doping level. We conclude that the electronic quality of GaAs grown by close-spaced vapor transport is similar to that of GaAs made using conventional techniques and is thus sufficient for high-performance photovoltaic applications.« less

  2. Doping and electronic properties of GaAs grown by close-spaced vapor transport from powder sources for scalable IIIV photovoltaics

    SciTech Connect (OSTI)

    Ritenour, Andrew J.; Boucher, Jason W.; DeLancey, Robert; Greenaway, Ann L.; Aloni, Shaul; Boettcher, Shannon W.

    2014-09-01

    We report the use of a simple close-spaced vapor transport technique for the growth of high-quality epitaxial GaAs films using potentially inexpensive GaAs powders as precursors. The free carrier type and density (1016 to 1019 cm3) of the films were adjusted by addition of Te or Zn powder to the GaAs source powder. We show using photoelectrochemical and electron beam-induced current analyses that the minority carrier diffusion lengths of the n- and p-GaAs films reached ~3 ?m and ~8 ?m, respectively. Hall mobilities approach those achieved for GaAs grown by metalorganic chemical vapor deposition, 10004200 cm2 V1 s1 for n-GaAs and 50240 cm V1 s1 for p-GaAs depending on doping level. We conclude that the electronic quality of GaAs grown by close-spaced vapor transport is similar to that of GaAs made using conventional techniques and is thus sufficient for high-performance photovoltaic applications.

  3. Investigation of deep level defects in CdTe thin films

    SciTech Connect (OSTI)

    Shankar, H.; Castaldini, A.; Dauksta, E.; Medvid, A.; Cavallini, A.

    2014-02-21

    In the past few years, a large body of work has been dedicated to CdTe thin film semiconductors, as the electronic and optical properties of CdTe nanostructures make them desirable for photovoltaic applications. The performance of semiconductor devices is greatly influenced by the deep levels. Knowledge of parameters of deep levels present in as-grown materials and the identification of their origin is the key factor in the development of photovoltaic device performance. Photo Induced Current Transient Spectroscopy technique (PICTS) has proven to be a very powerful method for the study of deep levels enabling us to identify the type of traps, their activation energy and apparent capture cross section. In the present work, we report the effect of growth parameters and LASER irradiation intensity on the photo-electric and transport properties of CdTe thin films prepared by Close-Space Sublimation method using SiC electrical heating element. CdTe thin films were grown at three different source temperatures (630, 650 and 700 C). The grown films were irradiated with Nd:YAG LASER and characterized by Photo-Induced Current Transient Spectroscopy, Photocurrent measurementand Current Voltage measurements. The defect levels are found to be significantly influenced by the growth temperature.

  4. Non-vacuum growth of graphene films using solid carbon source

    SciTech Connect (OSTI)

    Nguyen, Ba-Son; Lin, Jen-Fin E-mail: dcperng@ee.ncku.edu.tw

    2015-06-01

    This study demonstrates that air annealing can grow high-quality graphene films on the surface of polycrystalline nickel film with the help of an effective SiO{sub 2} capping layer. The number of graphene layers can be modulated by the amount of carbon embedded in the Ni film before annealing. Raman analysis results, transmission electron microscopy images, and electron diffraction patterns of the samples confirm that graphene films can be grown in air with an oxygen blocking layer and a 10?C/s cooling rate in an open-vented rapid thermal annealing chamber or an open tube furnace. The high-quality low-defect air-annealing grown graphene is comparable to commercially available graphene grown via chemical vapor deposition. The proposed graphene growth using air annealing technique is simple and low-cost, making it highly attractive for mass production. It is transfer-free to a silicon substrate and can speed up graphene development, opening up new applications.

  5. Stabilized chromium oxide film

    DOE Patents [OSTI]

    Nyaiesh, A.R.; Garwin, E.L.

    1986-08-04

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  6. Stabilized chromium oxide film

    DOE Patents [OSTI]

    Garwin, Edward L. (Los Altos, CA); Nyaiesh, Ali R. (Palo Alto, CA)

    1988-01-01

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  7. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, B.S.; Lauf, R.J.

    1995-09-19

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

  8. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  9. Adsorption of iso-/n-butane on an Anatase Thin Film: A Molecular Beam Scattering and TDS Study

    SciTech Connect (OSTI)

    Goering, J.; Kadossov, E.; Burghaus, Uwe; Yu, Zhongqing; Thevuthasan, Suntharampillai; Saraf, Laxmikant V.

    2007-07-01

    Binding energies and adsorption probabilities have been determined for n/iso-butane adsorption on an anatase thin film grown on SrTiO3(001) by means of thermal desorption spectroscopy (TDS) and molecular beam scattering. The sample has been characterized by x-ray diffraction (XRD) and Auger electrons spectroscopy (AES).

  10. Nano transfer and nanoreplication using deterministically grown sacrificial nanotemplates

    DOE Patents [OSTI]

    Melechko, Anatoli V. (Oak Ridge, TN); McKnight, Timothy E. (Greenback, TN); Guillorn, Michael A. (Ithaca, NY); Ilic, Bojan (Ithaca, NY); Merkulov, Vladimir I. (Knoxville, TX); Doktycz, Mitchel J. (Knoxville, TN); Lowndes, Douglas H. (Knoxville, TN); Simpson, Michael L. (Knoxville, TN)

    2012-03-27

    Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. An apparatus, includes a substrate and a nanoconduit material coupled to a surface of the substrate. The substrate defines an aperture and the nanoconduit material defines a nanoconduit that is i) contiguous with the aperture and ii) aligned substantially non-parallel to a plane defined by the surface of the substrate.

  11. The Effect of Roll Waves on the Hydrodynamics of Falling Films Observed in Vertical Column Absorbers

    SciTech Connect (OSTI)

    Miller, W.A.

    2001-06-28

    A thin falling film is well suited to simultaneous heat and mass transfer because of the small thermal resistance through the film and because of the large contact surface achievable at low flow rates. The film enters as a smooth laminar flow and quickly transitions into small-amplitude wavy flow. The waves grown in length and amplitude and are identified as roll waves. This flow regime is termed wavy-laminar flow, and modern heat and mass transfer equipment operate in this complicated transition regime. Research published in open literature has shown the mass flow rate in the rollwaves to be about 10 to 20 times greater than that in the laminar substrate. As the film fully develops, the waves grow in mass and the film substrate thins because fluid is swept from the substrate by the secondary flows of the roll wave. Many studies have been conducted to measure and correlate the film thickness of wavy-laminar flows. Literature data show that Nusselt's theory for smooth laminar flow can over predict the film thickness by as much as 20% for certain wavy-laminar flow conditions. The hydrodynamics of falling films were therefore studied to measure the film thickness of a free-surface falling film and to better understand the parameters that affect the variations of the film thickness. A flow loop was set up for measuring the thickness, wave amplitude,and frequency of a film during hydrodynamic flow. Decreasing the pipe diameter caused the amplitude of the wavy flow to diminish. Measurements monitored from stations along the falling film showed a thinning of film thickness. Fully developed flow required large starting lengths of about 0.5 m. The film thickness increases as the Reynolds number (Re) increases. Increasing the Kapitza number (Ka) causes a decrease in the film thickness. Regression analysis showed that the Re and Ka numbers described the data trends in wavy-laminar flow. Rather than correlating the Re number in discrete ranges of the Ka number as earlier researchers have done, this research made the Ka number an independent regression variable along with the Re number. The correlation explains 96% of the total variation in the data and predicts the experimental data within an absolute average deviation of {+-} 4.0%. The correlation supports the calculation of a fully developed film thickness for wavy-laminar falling films.

  12. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    SciTech Connect (OSTI)

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D. A.; Heiman, D.

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  13. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    SciTech Connect (OSTI)

    Jamer, M.; Sterbinsky, G.; Assaf, B.; Arena, D.; Heiman, D.

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. The results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value. (auth)

  14. Bismuth-induced phase control of GaAs nanowires grown by molecular...

    Office of Scientific and Technical Information (OSTI)

    Bismuth-induced phase control of GaAs nanowires grown by molecular beam epitaxy Citation Details In-Document Search Title: Bismuth-induced phase control of GaAs nanowires grown by ...

  15. Characterization of few-layered graphene grown by carbon implantation

    SciTech Connect (OSTI)

    Lee, Kin Kiong; McCallum, Jeffrey C.; Jamieson, David N.

    2014-02-21

    Graphene is considered to be a very promising material for applications in nanotechnology. The properties of graphene are strongly dependent on defects that occur during growth and processing. These defects can be either detrimental or beneficial to device performance depending on defect type, location and device application. Here we present experimental results on formation of few-layered graphene by carbon ion implantation into nickel films and characteristics of graphene devices formed by graphene transfer and lithographic patterning. Micro-Raman spectroscopy was used to determine the number of graphene layers formed and identify defects arising from the device processing. The graphene films were cleaned by annealing in vacuum. Transport properties of cleaned graphene films were investigated by fabrication of back-gated field-effect transistors, which exhibited high hole and electron mobility of 1935 and 1905 cm2/Vs, respectively.

  16. Healing of graphene on single crystalline Ni(111) films

    SciTech Connect (OSTI)

    Zeller, Patrick; Wintterlin, Joost; Speck, Florian; Ostler, Markus; Weinl, Michael; Schreck, Matthias; Seyller, Thomas

    2014-11-10

    The annealing of graphene layers grown on 150?nm thick single crystal Ni(111) films was investigated in situ by low energy electron microscopy and photoemission electron microscopy. After growth, by means of chemical vapor deposition of ethylene, the graphene layers consist of several domains showing different orientations with respect to the underlying Ni surface and also of small bilayer areas. It is shown that, in a controlled process, the rotated domains can be transformed into lattice-aligned graphene, and the bilayer areas can be selectively dissolved, so that exclusively the aligned monolayer graphene is obtained. The ordering mechanism involves transport of C atoms across the surface and solution in the bulk.

  17. In-situ surface composition measurements of CuGaSe{sub 2} thin films

    SciTech Connect (OSTI)

    Fons, P.; Yamada, A.; Niki, S.; Oyanagi, H.

    1998-12-31

    Two CuGaSe{sub 2} films were grown by molecular beam epitaxy onto GaAs (001) substrates with varying Cu/Ga flux ratios under Se overpressure conditions. Growth was interrupted at predetermined times and the surface composition was measured using Auger electron spectroscopy after which growth was continued. After growth, the film composition was analyzed using voltage dependent electron microprobe spectroscopy. Film structure and morphology were also analyzed using x-ray diffraction and atomic force microscopy. The film with a Cu/Ga ratio larger than unity showed evidence of surface segregation of a second Cu-rich phase with a Cu/Se composition ratio slightly greater than unity. A second CuGaSe{sub 2} film with a Cu/Ga ratio of less than unity showed no change in surface composition with time and was also consistent with bulk composition measurements. Diffraction measurements indicated a high concentration of twins as well as the presence of domains with mixed c and a axes in the Ga-rich film. The Cu-rich films by contrast were single domain and had a narrower mosaics. High sensitivity scans along the [001] reciprocal axis did not exhibit any new peaks not attributable to either the substrate or the CuGaSe{sub 2} thin film.

  18. Characteristics of conductive SrRuO{sub 3} thin films with different microstructures

    SciTech Connect (OSTI)

    Jia, Q.X.; Chu, F.; Adams, C.D.; Wu, X.D.; Hawley, M.; Cho, J.H.; Findikoglu, A.T.; Foltyn, S.R.; Smith, J.L.; Mitchell, T.E.

    1996-09-01

    Conductive SrRuO{sub 3} thin films were epitaxially grown on (100) LaAlO{sub 3} substrates by pulsed laser deposition over a temperature range from 650{degree}C to 825{degree}C. Well-textured films exhibiting a strong orientation relationship to the underlying substrate could be obtained at a deposition temperature as low as 450{degree}C. The degree of crystallinity of the films improved with increasing deposition temperature as confirmed by x-ray diffraction, transmission electron microscopy, and scanning tunneling microscopy. Scanning electron microscopy revealed no particulates on the film surface. The resistivity of the SrRuO{sub 3} thin films was found to be a strong function of the crystallinity of the film and hence the substrate temperature during film deposition. A residual resistivity ratio (RRR={rho}{sub 300K}/{rho}{sub 4.2K}) of more than 8 was obtained for the SrRuO{sub 3} thin films deposited under optimized processing conditions. {copyright} {ital 1996 Materials Research Society.}

  19. Low-temperature electrical transport in B-doped ultrananocrystalline diamond film

    SciTech Connect (OSTI)

    Li, Lin; Zhao, Jing; Hu, Zhaosheng; Quan, Baogang; Li, Junjie Gu, Changzhi

    2014-05-05

    B-doped ultrananocrystalline diamond (UNCD) films are grown using hot-filament chemical vapor deposition method, and their electrical transport properties varying with temperature are investigated. When the B-doped concentration of UNCD film is low, a step-like increase feature of the resistance is observed with decreasing temperature, reflecting at least three temperature-modified electronic state densities at the Fermi level according to three-dimensional Mott's variable range hopping transport mechanism, which is very different from that of reported B-doped nanodiamond. With increasing B-doped concentration, a superconductive transformation occurs in the UNCD film and the highest transformation temperature of 5.3?K is observed, which is higher than that reported for superconducting nanodiamond films. In addition, the superconducting coherence length is about 0.63?nm, which breaks a reported theoretical and experimental prediction about ultra-nanoscale diamond's superconductivity.

  20. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Si, W.; Zhang, C.; Wu, L.; Ozaki, T.; Gu, G.; Li, Q.

    2015-09-01

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF2 crystalline substrates respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk.more » With large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.« less

  1. Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth

    SciTech Connect (OSTI)

    Hofmann, S.; Cantoro, M.; Kleinsorge, B.; Casiraghi, C.; Parvez, A.; Robertson, J.; Ducati, C.

    2005-08-01

    A systematic study is presented of the influence of catalyst film thickness on carbon nanostructures grown by plasma-enhanced chemical-vapor deposition from acetylene and ammonia mixtures. We show that reducing the Fe/Co catalyst film thickness below 3 nm causes a transition from larger diameter (>40 nm), bamboolike carbon nanofibers to small diameter ({approx}5 nm) multiwalled nanotubes with two to five walls. This is accompanied by a more than 50 times faster growth rate and a faster catalyst poisoning. Thin Ni catalyst films only trigger such a growth transition when pretreated with an ammonia plasma. We observe a limited correlation between this growth transition and the coarsening of the catalyst film before deposition. For a growth temperature of {<=}550 deg. C, all catalysts showed mainly a tip growth regime and a similar activity on untreated silicon, oxidized silicon, and silicon nitride support.

  2. Sharp semiconductor-to-metal transition of VO{sub 2} thin films on glass substrates

    SciTech Connect (OSTI)

    Jian, Jie; Chen, Aiping [Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843-3128 (United States); Zhang, Wenrui [Material Science and Engineering Program, Texas A and M University, College Station, Texas 77843-3128 (United States); Wang, Haiyan, E-mail: wangh@ece.tamu.edu [Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843-3128 (United States); Material Science and Engineering Program, Texas A and M University, College Station, Texas 77843-3128 (United States)

    2013-12-28

    Outstanding phase transition properties of vanadium dioxide (VO{sub 2}) thin films on amorphous glass were achieved and compared with the ones grown on c-cut sapphire and Si (111) substrates, all by pulsed laser deposition. The films on glass substrate exhibit a sharp semiconductor-to-metal transition (?4.3?C) at a near bulk transition temperature of ?68.4?C with an electrical resistance change as high as 3.2??10{sup 3} times. The excellent phase transition properties of the films on glass substrate are correlated with the large grain size and low defects density achieved. The phase transition properties of VO{sub 2} films on c-cut sapphire and Si (111) substrates were found to be limited by the high defect density.

  3. Transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition

    SciTech Connect (OSTI)

    Zhu, Yuankun; Mendelsberg, Rueben J.; Zhu, Jiaqi; Han, Jiecai; Anders, Andr

    2012-11-26

    Indium doped cadmium oxide (CdO:In) films with different In concentrations were prepared on low-cost glass substrates by pulsed filtered cathodic arc deposition (PFCAD). In this study, it is shown that polycrystalline CdO:In films with smooth surface and dense structure are obtained. In-doping introduces extra electrons leading to remarkable improvements of electron mobility and conductivity, as well as improvement in the optical transmittance due to the Burstein Moss effect. CdO:In films on glass substrates with thickness near 230 nm show low resistivity of 7.23 x 10-5 ?cm, high electron mobility of 142 cm2/Vs, and mean transmittance over 80% from 500-1250 nm (including the glass substrate). These high quality pulsed arc-grown CdO:In films are potentially suitable for high efficiency multi-junction solar cells that harvest a broad range of the solar spectrum.

  4. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Yang-Tse (Rochester Hills, MI); Poli, Andrea A. (Livonia, MI); Meltser, Mark Alexander (Pittsford, NY)

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  5. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  6. Mechanical and Electrical Performance of Thermally Stable Au-ZnO films

    SciTech Connect (OSTI)

    Schoeppner, Rachel L.; Goeke, Ronald S.; Moody, Neville R.; Bahr, David F.

    2015-03-28

    The mechanical properties, thermal stability, and electrical performance of AuZnO composite thin films are determined in this work. The co-deposition of ZnO with Au via physical vapor deposition leads to grain refinement over that of pure Au; the addition of 0.1 vol.% ZnO reduces the as-grown grain size by over 30%. The hardness of the as-grown films doubles with 2% ZnO, from 1.8 to 3.6 GPa as measured by nanoindentation. Films with ZnO additions greater than 0.5% show no significant grain growth after annealing at 350 C, while pure gold and smaller additions do exhibit grain growth and subsequent mechanical softening. Films with 1% and 2% ZnO show a decrease of approximately 50% in electrical resistivity and no change in hardness after annealing. A model accounting for both changes in the interface structure between dispersed ZnO particles and the Au matrix captures the changes in mechanical and electrical resistivity. Furthermore, the addition of 12% ZnO co-deposited with Au provides a method to create mechanically hard and thermally stable films with a resistivity less than 80 n?-m. Our results complement previous studies of other alloying systems, suggesting oxide dispersion strengthened (ODS) gold shows a desirable hardnessresistivity relationship that is relatively independent of the particular ODS chemistry.

  7. Mechanical and Electrical Performance of Thermally Stable Au-ZnO films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schoeppner, Rachel L.; Goeke, Ronald S.; Moody, Neville R.; Bahr, David F.

    2015-03-28

    The mechanical properties, thermal stability, and electrical performance of Au–ZnO composite thin films are determined in this work. The co-deposition of ZnO with Au via physical vapor deposition leads to grain refinement over that of pure Au; the addition of 0.1 vol.% ZnO reduces the as-grown grain size by over 30%. The hardness of the as-grown films doubles with 2% ZnO, from 1.8 to 3.6 GPa as measured by nanoindentation. Films with ZnO additions greater than 0.5% show no significant grain growth after annealing at 350 °C, while pure gold and smaller additions do exhibit grain growth and subsequent mechanicalmore » softening. Films with 1% and 2% ZnO show a decrease of approximately 50% in electrical resistivity and no change in hardness after annealing. A model accounting for both changes in the interface structure between dispersed ZnO particles and the Au matrix captures the changes in mechanical and electrical resistivity. Furthermore, the addition of 1–2% ZnO co-deposited with Au provides a method to create mechanically hard and thermally stable films with a resistivity less than 80 nΩ-m. Our results complement previous studies of other alloying systems, suggesting oxide dispersion strengthened (ODS) gold shows a desirable hardness–resistivity relationship that is relatively independent of the particular ODS chemistry.« less

  8. Nanostructured thermoplastic polyimide films

    DOE Patents [OSTI]

    Aglan, Heshmat

    2015-05-19

    Structured films containing multi-walled carbon nanotubes ("MWCNTs") have enhanced mechanical performance in terms of strength, fracture resistance, and creep recovery of polyimide ("PI") films. Preferably, the loadings of MWCNTs can be in the range of 0.1 wt % to 0.5 wt %. The strength of the new PI films dried at 60.degree. C. increased by 55% and 72% for 0.1 wt % MWCNT and 0.5 wt % MWCNT loadings, respectively, while the fracture resistance increased by 23% for the 0.1 wt % MWCNTs and then decreases at a loading of 0.5 wt % MWCNTs. The films can be advantageously be created by managing a corresponding shift in the annealing temperature at which the maximum strength occurs as the MWCNT loadings increase.

  9. Amorphous diamond films

    DOE Patents [OSTI]

    Falabella, S.

    1998-06-09

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  10. Magnetron sputtered boron films

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Jankowski, Alan F. (Livermore, CA)

    1998-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  11. Magnetron sputtered boron films

    DOE Patents [OSTI]

    Makowiecki, D.M.; Jankowski, A.F.

    1998-06-16

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence. 8 figs.

  12. Quantitative film radiography

    SciTech Connect (OSTI)

    Devine, G.; Dobie, D.; Fugina, J.; Hernandez, J.; Logan, C.; Mohr, P.; Moss, R.; Schumacher, B.; Updike, E.; Weirup, D.

    1991-02-26

    We have developed a system of quantitative radiography in order to produce quantitative images displaying homogeneity of parts. The materials that we characterize are synthetic composites and may contain important subtle density variations not discernible by examining a raw film x-radiograph. In order to quantitatively interpret film radiographs, it is necessary to digitize, interpret, and display the images. Our integrated system of quantitative radiography displays accurate, high-resolution pseudo-color images in units of density. We characterize approximately 10,000 parts per year in hundreds of different configurations and compositions with this system. This report discusses: the method; film processor monitoring and control; verifying film and processor performance; and correction of scatter effects.

  13. Microwave properties of RF- sputtered ZnFe{sub 2}O{sub 4} thin films

    SciTech Connect (OSTI)

    Garg, T. Kulkarni, A. R.; Venkataramani, N.; Sahu, B. N.; Prasad, Shiva

    2014-04-24

    In this work, RF- magnetron sputtering technique has been employed to deposit nanocrystalline ZnFe{sub 2}O{sub 4} thin films at room temperature. The as grown films were ex-situ annealed in air for 2 h at temperatures from 150C to 650C. X-ray diffraction, vibrating sample magnetometer and ferromagnetic resonance were used to analyze the phase formation, magnetic properties and microwave properties respectively. From the hysteresis loops and ferromagnetic resonance spectra taken at room temperature, a systematic study on the effect of O{sub 2} plasma on microwave properties with respect to processing temperature has been carried out.

  14. Influence of aluminium doping on thermoelectric performance of atomic layer deposited ZnO thin films

    SciTech Connect (OSTI)

    Ruoho, Mikko Pale, Ville; Erdmanis, Mikhail; Tittonen, Ilkka

    2013-11-11

    We study the effect of Al doping on thermoelectric power factor of ZnO films grown using atomic layer deposition method. The overall doping level is tuned by either varying the precursor pulsing sequence or by varying the number of precursor pulses while keeping the sequence unchanged. We observe that commonly utilized doping approach when periodic dopant layers are densely packed results in reduced power factor. At the same time, we find that thermoelectric performance can be improved by clustering the dopants. In addition, the clustering was found to tune the preferred crystal orientation of the polycrystalline film.

  15. Proposed Route to Thin Film Crystal Si Using Biaxially Textured Foreign Template Layers

    SciTech Connect (OSTI)

    Teplin, C. W.; Ginley, D. S.; van Hest, M.F.A.M.; Perkins, J. D.; Young, D. L.; Stradins, P.; Wang, Q.; Al-Jassim, M.; Iwaniczko, E.; Leenheer, A.; Jones, K. M.; Branz, H. M.

    2005-11-01

    We have developed a new approach to growing photovoltaic-quality crystal silicon (c-Si) films on glass. Other approaches to film c-Si focus on increasing grain size in order to reduce the deleterious effects of grain boundaries. Instead, we have developed an approach to align the silicon grains biaxially (both in and out of plane) so that 1) grain boundaries are "low-angle" and have less effect on the electronic properties of the material and 2) subsequent epitaxial thickening is simplified. They key to our approach is the use of a foreign template layer that can be grown with biaxial texture directly on glass.

  16. Group I-III-VI.sub.2 semiconductor films for solar cell application

    DOE Patents [OSTI]

    Basol, Bulent M. (Redondo Beach, CA); Kapur, Vijay K. (Northridge, CA)

    1991-01-01

    This invention relates to an improved thin film solar cell with excellent electrical and mechanical integrity. The device comprises a substrate, a Group I-III-VI.sub.2 semiconductor absorber layer and a transparent window layer. The mechanical bond between the substrate and the Group I-III-VI.sub.2 semiconductor layer is enhanced by an intermediate layer between the substrate and the Group I-III-VI.sub.2 semiconductor film being grown. The intermediate layer contains tellurium or substitutes therefor, such as Se, Sn, or Pb. The intermediate layer improves the morphology and electrical characteristics of the Group I-III-VI.sub.2 semiconductor layer.

  17. Magnetic and transport properties of Mn{sub 2}CoAl oriented films

    SciTech Connect (OSTI)

    Jamer, Michelle E.; Assaf, Badih A.; Devakul, Trithep; Heiman, Don

    2013-09-30

    The structure, magnetic, and transport properties of thin films of the Heusler ferrimagnet Mn{sub 2}CoAl have been investigated for properties related to spin gapless semiconductors. Oriented films were grown by molecular beam epitaxy on GaAs substrates and the structure was found to transform from tetragonal to cubic for increasing annealing temperature. The anomalous Hall resistivity is found to be proportional to the square of the longitudinal resistivity and magnetization expected for a topological Berry curvature origin. A delicate balance of the spin-polarized carrier type when coupled with voltage gate-tuning could significantly impact advanced electronic devices.

  18. Polymer film composite transducer

    DOE Patents [OSTI]

    Owen, Thomas E.

    2005-09-20

    A composite piezoelectric transducer, whose piezoeletric element is a "ribbon wound" film of piezolectric material. As the film is excited, it expands and contracts, which results in expansion and contraction of the diameter of the entire ribbon winding. This is accompanied by expansion and contraction of the thickness of the ribbon winding, such that the sound radiating plate may be placed on the side of the winding.

  19. Magnetoresistance of Au films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, D. L.; Song, X. H.; Zhang, X; Zhang, Xiaoguang

    2014-01-01

    Measurement of the magnetoresistance (MR) of Au films as a function of temperature and film thickness reveals a strong dependence on grain size distribution and clear violation of the Kohler s rule. Using a model of random resistor network, we show that this result can be explained if the MR arises entirely from inhomogeneity due to grain boundary scattering and thermal activation of grain boundary atoms.

  20. Multifunctional thin film surface

    DOE Patents [OSTI]

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  1. Resistive switching characteristics of polycrystalline SrTiO{sub 3} films

    SciTech Connect (OSTI)

    Jong Choi, Hyung; Won Park, Suk; Deok Han, Gwon; Hyung Shim, Joon; Na, Junhong; Kim, Gyu-Tae

    2014-06-16

    Strontium titanate (STO) thin films 90?nm in thickness were grown on a Pt substrate through atomic layer deposition (ALD). The as-deposited ALD STO grown with an ALD cycle ratio of 1:1 (Sr:Ti) was in an amorphous phase, and annealing at 800?C in air crystallized the films into the perovskite phase. This phase change was confirmed by x-ray diffraction and transmission electron microscopy. The as-deposited ALD STO exhibited no discernible switching mechanism, whereas unipolar switching behavior was reproducibly observed with a high resistance ratio (10{sup 8}10{sup 9}) and strict separation of the set/reset voltages and currents in the annealed ALD STO. Mechanisms for charge transport in both the low- and high-resistance states and for resistive switching in the annealed ALD STO are also proposed.

  2. Nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates

    DOE Patents [OSTI]

    Melechko, Anatoli V. (Oak Ridge, TN); McKnight, Timothy E. (Greenback, TN), Guillorn, Michael A. (Ithaca, NY); Ilic, Bojan (Ithaca, NY); Merkulov, Vladimir I. (Knoxville, TN); Doktycz, Mitchel J. (Knoxville, TN); Lowndes, Douglas H. (Knoxville, TN); Simpson, Michael L. (Knoxville, TN)

    2011-05-17

    Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. A method includes depositing a catalyst particle on a surface of a substrate to define a deterministically located position; growing an aligned elongated nanostructure on the substrate, an end of the aligned elongated nanostructure coupled to the substrate at the deterministically located position; coating the aligned elongated nanostructure with a conduit material; removing a portion of the conduit material to expose the catalyst particle; removing the catalyst particle; and removing the elongated nanostructure to define a nanoconduit.

  3. Unusual thermopower of inhomogeneous graphene grown by chemical vapor deposition

    SciTech Connect (OSTI)

    Nam, Youngwoo, E-mail: youngwoo.nam@chalmers.se [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Sun, Jie; Lindvall, Niclas; Yurgens, August [Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Jae Yang, Seung; Rae Park, Chong [Department of Materials Science and Engineering, Seoul National University, Seoul 151-747 (Korea, Republic of); Woo Park, Yung [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2014-01-13

    We report on thermopower (TEP) and resistance measurements of inhomogeneous graphene grown by chemical vapor deposition (CVD). Unlike the conventional resistance of pristine graphene, the gate-dependent TEP shows a large electron-hole asymmetry. This can be accounted for by inhomogeneity of the CVD-graphene where individual graphene regions contribute with different TEPs. At the high magnetic field and low temperature, the TEP has large fluctuations near the Dirac point associated with the disorder in the CVD-graphene. TEP measurements reveal additional characteristics of CVD-graphene, which are difficult to obtain from the measurement of resistance alone.

  4. Towards low-cost high-efficiency GaAs photovoltaics and photoelectrodes grown via vapor transport from a solid source

    SciTech Connect (OSTI)

    Boucher, Jason; Ritenour, Andrew; Boettcher, Shannon W.

    2013-04-29

    Towards low-cost high-efficiency GaAs photovoltaics and photoelectrodes grown via vapor transport from a solid source GaAs is an attractive material for thin-film photovoltaic applications, but is not widely used for terrestrial power generation due to the high cost of metal-organic chemical vapor deposition (MOCVD) techniques typically used for growth. Close space vapor transport is an alternative that allows for rapid growth rates of III-V materials, and does not rely on the toxic and pyrophoric precursors used in MOCVD. We characterize CSVT films of GaAs using photoelectrochemical current-voltage and quantum efficiency measurements. Hole diffusion lengths which exceed 1.5 um are extracted from internal quantum efficiency measurements using the Gartner model. Device physics simulations suggest that solar cells based on these films could reach efficiencies exceeding 24 %. To reach this goal, a more complete understanding of the electrical properties and characterization of defects will be necessary, including measurements on complete solid-state devices. Doping of films is achieved by using source material containing the desired impurity (e.g., Te or Zn). We discuss strategies for growing III-V materials on inexpensive substrates that are not lattice-matched to GaAs.

  5. Ga-doped ZnO grown by pulsed laser deposition in H2: the roles of Ga and H

    SciTech Connect (OSTI)

    Look, David; Droubay, Timothy C.; McCloy, John S.; Zhu, Zihua; Chambers, Scott A.

    2011-01-11

    Highly conductive thin films of ZnO doped with Ga were grown by pulsed-laser deposition (PLD) with 10 mTorr of H2 in the growth chamber. Compared with a more conventional method of producing conductive films of ZnO, i.e., growth in O2 followed by annealing in forming gas (5% H2 in Ar), the H2 method requires no post-growth anneal and also produces higher carrier concentrations and lower resistivities with better depth uniformity. As an example, a 65-nm-thick sample had a room-temperature mobility of 32 cm2/V-s, a concentration of 6.8 x 1020 cm-3, and a resistivity of 2.9 x 10^-4 ohm-cm. From a scattering model, the donor and acceptor concentrations were calculated as 8.9 x 1020 and 2.1 x 10^20 cm-3, respectively, as compared to the Ga and H concentrations of 11 x 10^20 and 1 x 10^20 cm-3. Thus, H does not play a significant role as a donor in this type of ZnO

  6. Surface control of epitaxial manganite films via oxygen pressure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tselev, Alexander; Vasudevan, Rama K.; Gianfrancesco, Anthony G.; Qiao, Liang; Ganesh, Panchapakesan; Meyer, Tricia L.; Lee, Ho Nyung; Biegalski, Michael D.; Baddorf, Arthur P.; Kalinin, Sergei

    2015-03-11

    The trend to reduce device dimensions demands increasing attention to atomic-scale details of structure of thin films as well as to pathways to control it. We found that this is of special importance in the systems with multiple competing interactions. We have used in situ scanning tunneling microscopy to image surfaces of La5/8Ca3/8MnO3 films grown by pulsed laser deposition. The atomically resolved imaging was combined with in situ angle-resolved X-ray photoelectron spectroscopy. We find a strong effect of the background oxygen pressure during deposition on structural and chemical features of the film surface. Deposition at 50 mTorr of O2 leadsmore » to mixed-terminated film surfaces, with B-site (MnO2) termination being structurally imperfect at the atomic scale. Moreover, a relatively small reduction of the oxygen pressure to 20 mTorr results in a dramatic change of the surface structure leading to a nearly perfectly ordered B-site terminated surface with only a small fraction of A-site (La,Ca)O termination. This is accompanied, however, by surface roughening at a mesoscopic length scale. The results suggest that oxygen has a strong link to the adatom mobility during growth. The effect of the oxygen pressure on dopant surface segregation is also pronounced: Ca surface segregation is decreased with oxygen pressure reduction.« less

  7. Nanocrystalline zinc ferrite films studied by magneto-optical spectroscopy

    SciTech Connect (OSTI)

    Likov-Jakubisov, E. Vi?ovsk, .; irok, P.; Hrabovsk, D.; Pitora, J.; Sahoo, Subasa C.; Prasad, Shiva; Venkataramani, N.; Bohra, Murtaza; Krishnan, R.

    2015-05-07

    Ferrimagnetic Zn-ferrite (ZnFe{sub 2}O{sub 4}) films can be grown with the ferromagnetic resonance linewidth of 40?Oe at 9.5?GHz without going through a high temperature processing. This presents interest for applications. The work deals with laser ablated ZnFe{sub 2}O{sub 4} films deposited at O{sub 2} pressure of 0.16?mbar onto fused quartz substrates. The films about 120?nm thick are nanocrystalline and their spontaneous magnetization, 4?M{sub s}, depends on the nanograin size, which is controlled by the substrate temperature (T{sub s}). At T{sub s}???350?C, where the grain distribution peaks around ?2030?nm, the room temperature 4?M{sub s} reaches a maximum of ?2.3?kG. The films were studied by magnetooptical polar Kerr effect (MOKE) spectroscopy at photon energies between 1 and 5?eV. The complementary characteristics were provided by spectral ellipsometry (SE). Both the SE and MOKE spectra confirmed ferrimagnetic ordering. The structural details correspond to those observed in MgFe{sub 2}O{sub 4} and Li{sub 0.5}Fe{sub 2.5}O{sub 4} spinels. SE experiments confirm the insulator behavior. The films display MOKE amplitudes somewhat reduced with respect to those in Li{sub 0.5}Fe{sub 2.5}O{sub 4} and MgFe{sub 2}O{sub 4} due to a lower degree of spinel inversion and nanocrystalline structure. The results indicate that the films are free of oxygen vacancies and Fe{sup 3+}-Fe{sup 2+} exchange.

  8. Multi-jump magnetic switching in ion-beam sputtered amorphous Co{sub 20}Fe{sub 60}B{sub 20} thin films

    SciTech Connect (OSTI)

    Raju, M.; Chaudhary, Sujeet; Pandya, D. K.

    2013-08-07

    Unconventional multi-jump magnetization reversal and significant in-plane uniaxial magnetic anisotropy (UMA) in the ion-beam sputtered amorphous Co{sub 20}Fe{sub 60}B{sub 20}(5–75 nm) thin films grown on Si/amorphous SiO{sub 2} are reported. While such multi-jump behavior is observed in CoFeB(10 nm) film when the magnetic field is applied at 10°–20° away from the easy-axis, the same is observed in CoFeB(12.5 nm) film when the magnetic field is 45°–55° away from easy-axis. Unlike the previous reports of multi-jump switching in epitaxial films, their observance in the present case of amorphous CoFeB is remarkable. This multi-jump switching is found to disappear when the films are crystallized by annealing at 420 °C. The deposition geometry and the energy of the sputtered species appear to intrinsically induce a kind of bond orientation anisotropy in the films, which leads to the UMA in the as-grown amorphous CoFeB films. Exploitation of such multi-jump switching in amorphous CoFeB thin films could be of technological significance because of their applications in spintronic devices.

  9. Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiao, Zhigang; Kisslinger, Kim

    2015-06-17

    Thin films of hafnium dioxide (HfO2) are widely used as the gate oxide in fabricating integrated circuits because of their high dielectric constants. In this paper, the authors report the growth of thin films of HfO2 using e-beam evaporation, and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using this HfO2 thin film as the gate oxide. The authors analyzed the thin films using high-resolution transmission electron microscopy and electron diffraction, thereby demonstrating that the e-beam-evaporation-grown HfO2 film has a polycrystalline structure and forms an excellent interface with silicon. Accordingly, we fabricated 31-stage CMOS ring oscillator to test themore » quality of the HfO2 thin film as the gate oxide, and obtained excellent rail-to-rail oscillation waveforms from it, denoting that the HfO2 thin film functioned very well as the gate oxide.« less

  10. Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices

    SciTech Connect (OSTI)

    Xiao, Zhigang; Kisslinger, Kim

    2015-06-17

    Thin films of hafnium dioxide (HfO2) are widely used as the gate oxide in fabricating integrated circuits because of their high dielectric constants. In this paper, the authors report the growth of thin films of HfO2 using e-beam evaporation, and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using this HfO2 thin film as the gate oxide. The authors analyzed the thin films using high-resolution transmission electron microscopy and electron diffraction, thereby demonstrating that the e-beam-evaporation-grown HfO2 film has a polycrystalline structure and forms an excellent interface with silicon. Accordingly, we fabricated 31-stage CMOS ring oscillator to test the quality of the HfO2 thin film as the gate oxide, and obtained excellent rail-to-rail oscillation waveforms from it, denoting that the HfO2 thin film functioned very well as the gate oxide.

  11. Epitaxial thin films

    DOE Patents [OSTI]

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  12. Structure-property correlation in epitaxial (2 0 0) rutile films on sapphire substrates

    SciTech Connect (OSTI)

    Bayati, M.R.; Joshi, Sh.; Molaei, R.; Narayan, R.J.; Narayan, J.

    2012-03-15

    We have investigated the influence of the deposition variables on photocatalytic properties of epitaxial rutile films. Despite a large lattice misfit of rutile with sapphire substrate, (2 0 0) epitaxial layers were grown on (0 0 0 1)sapphire by domain matching epitaxy paradigm. Using {phi}-scan XRD and cross section TEM, the epitaxial relationship was determined to be rutile(1 0 0)||sapphire(0 0 0 1), rutile(0 0 1)||sapphire(1 0 -1 0), and rutile(0 1 0)||sapphire(1 -2 1 0). Based on the XRD patterns, increasing the repetition rate introduced tensile stress along the film normal direction, which may arise as a result of trapped defects. Formation of such defects was studied by UV-VIS, PL, and XPS techniques. AFM studies showed that the film roughness increases with the repetition rate. Finally, photocatalytic performance of the layers was investigated through measuring decomposition rate of 4-chlorophenol on the films surface. The films grown at higher frequencies revealed higher photocatalytic efficiency. This behavior was mainly related to formation of point defects which enhance the charge separation. - Graphical abstract: In this report, epitaxial rutile TiO{sub 2} thin films were deposited by PLD process under various deposition rates (frequencies) and their physical and chemical properties, especially photocatalytic performance, were investigated. It was found that photocatalytic efficiency improves when frequency increases. This behavior was mainly related to formation of point defects which enhance the charge separation. Highlights: Black-Right-Pointing-Pointer Rutile epitaxial thin films were deposited via PLD process under different frequencies. Black-Right-Pointing-Pointer Defect characteristic was studied. Black-Right-Pointing-Pointer Photocatalytic performance of the layers was investigated.

  13. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields

    SciTech Connect (OSTI)

    Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.

    2014-06-07

    We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.

  14. Homoepitaxy of ZnO and MgZnO Films at 90 C

    SciTech Connect (OSTI)

    Ehrentraut, Dirk; Goh, Gregory K.L.; Fujii, Katsushi; Ooi, Chin Chun; Quang, Le Hong; Fukuda, Tsuguo; Kano, Masataka; Zhang, Yuantao; Matsuoka, Takashi

    2014-06-01

    The aqueous synthesis of uniform single crystalline homoepitaxial zinc oxide, ZnO, and magnesium zinc oxide, Mg{sub x}Zn{sub 1?x}O, films under very low temperature conditions at T=90 C and ambient pressure has been explored. A maximum Mg content of 1 mol% was recorded by energy dispersive spectroscopy. The growth on the polar (0 0 0 1) and (0 0 0 1) faces resulted in films that are strongly different in their structural and optical quality as evidenced by high-resolution X-ray diffraction, secondary electron microscopy, and photoluminescence. This is a result of the chemistry and temperature of the solution dictating the stability range of growth-governing metastable species. The use of trisodium citrate, Na{sub 3}C{sub 6}H{sub 5}O{sub 7}, yielded coalesced, mirror-like homoepitaxial films whereas adding magnesium nitrate hexahydrate, Mg(NO{sub 3}){sub 2}6H{sub 2}O, favors the growth of films with pronounced faceting. - Graphical abstract: Homoepitaxial ZnO films grown from aqueous solution below boiling point of water on a ZnO substrate with off-orientation reveal parallel grooves that are characterized by (1 0 1{sup } 1) facets. Adding trisodium citrate yields closed, single-crystalline ZnO films, which can further be functionalized. Alloying with MgO yields MgZnO films with low Mg content only. - Highlights: A simple method to synthesize uniform single crystalline homoepitaxial ZnO and MgZnO films. ZnO growth on (0 0 0 1) and (0 0 0 1{sup }) face resulted in films that are strongly different in their structural and optical quality. Single crystalline MgZnO film was fabricated under mild conditions (90 C and ambient pressure). Mg incorporation of nearly 1 mol% was obtained while maintaining single phase wurtzite structure.

  15. Thin films and uses

    DOE Patents [OSTI]

    Baskaran, Suresh (Kennewick, WA); Graff, Gordon L. (Kennewick, WA); Song, Lin (Richland, WA)

    1998-01-01

    The invention provides a method for synthesizing a titanium oxide-containing film comprising the following steps: (a) preparing an aqueous solution of a titanium chelate with a titanium molarity in the range of 0.01M to 0.6M. (b) immersing a substrate in the prepared solution, (c) decomposing the titanium chelate to deposit a film on the substrate. The titanium chelate maybe decomposed acid, base, temperature or other means. A preferred method provides for the deposit of adherent titanium oxide films from C2 to C5 hydroxy carboxylic acids. In another aspect the invention is a novel article of manufacture having a titanium coating which protects the substrate against ultraviolet damage. In another aspect the invention provides novel semipermeable gas separation membranes, and a method for producing them.

  16. Status review of the science and technology of Ultrananoscrystalline Diamond (UNCD (sup {trademark}) films and application to multifunctional devices.

    SciTech Connect (OSTI)

    Auciello, O.; Sumant, A. V.

    2010-07-01

    This review focuses on a status report on the science and technology of ultrananocrystalline diamond (UNCD) films developed and patented at Argonne National Laboratory. The UNCD material has been developed in thin film form and exhibit multifunctionalities applicable to a broad range of macro to nanoscale multifunctional devices. UNCD thin films are grown by microwave plasma chemical vapor deposition (MPCVD) or hot filament chemical vapor deposition (HFCVD) using new patented Ar-rich/CH4 or H2/CH4 plasma chemistries. UNCD films exhibit a unique nanostructure with 2-5 nm grain size (thus the trade name UNCD) and grain boundaries of 0.4-0.6 nm for plain films, and grain sizes of 7-10 nm and grain boundaries of 2-4 nm when grown with nitrogen introduced in the Ar-rich/CH4 chemistry, to produce UNCD films incorporated with nitrogen, which exhibit electrical conductivity up to semi-metallic level. This review provides a status report on the synthesis of UNCD films via MPCVD and integration with dissimilar materials like oxides for piezoactuated MEMS/NEMS, metal films for contacts, and biological matter for a new generation of biomedical devices and biosensors. A broad range of applications from macro to nanoscale multifunctional devices is reviewed, such as coatings for mechanical pumps seals, field-emission cold cathodes, RF MEMS/NEMS resonators and switches for wireless communications and radar systems, NEMS devices, biomedical devices, biosensors, and UNCD as a platform for developmental biology, involving biological cells growth on the surface. Comparisons with nanocrystalline diamond films and technology are made when appropriate.

  17. Light-trapped, interconnected, silicon-film {trademark} modules. Annual subcontract report, 18 November 1994--18 November 1995

    SciTech Connect (OSTI)

    Hall, R.B.; Rand, J.A.; Cotter, J.E.; Ford, D.H.

    1996-03-01

    This report describes the first year of work performed by AstroPower, Inc., of Newark, Delaware, under the Thin-Film PV Partnership Program. The work led to the development of a new barrier-coated substrate that has enabled high-quality thin-layer polycrystalline silicon to be grown on a low-cost substrate. High diffusion lengths were measured after external phosphorous gettering. This led to a confirmed efficiency for a 0.57cm{sup 2}, thin-layer solar cell grown on a low-cost substrate.

  18. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, Anthony W.; Bhushan, Manjul

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  19. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  20. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL); Diaz, Rocio (Chicago, IL); Vukovic, Lela (Westchester, IL)

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  1. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  2. Native defects in MBE-grown CdTe

    SciTech Connect (OSTI)

    Olender, Karolina; Wosinski, Tadeusz; Makosa, Andrzej; Tkaczyk, Zbigniew; Kolkovsky, Valery; Karczewski, Grzegorz

    2013-12-04

    Deep-level traps in both n- and p-type CdTe layers, grown by molecular-beam epitaxy on GaAs substrates, have been investigated by means of deep-level transient spectroscopy (DLTS). Four of the traps revealed in the DLTS spectra, which displayed exponential kinetics for capture of charge carriers into the trap states, have been assigned to native point defects: Cd interstitial, Cd vacancy, Te antisite defect and a complex formed of the Te antisite and Cd vacancy. Three further traps, displaying logarithmic capture kinetics, have been ascribed to electron states of treading dislocations generated at the mismatched interface with the substrate and propagated through the CdTe layer.

  3. Carbon nanotubes grown on bulk materials and methods for fabrication

    DOE Patents [OSTI]

    Menchhofer, Paul A. (Clinton, TN); Montgomery, Frederick C. (Oak Ridge, TN); Baker, Frederick S. (Oak Ridge, TN)

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  4. Methods for producing complex films, and films produced thereby

    DOE Patents [OSTI]

    Duty, Chad E.; Bennett, Charlee J. C.; Moon, Ji -Won; Phelps, Tommy J.; Blue, Craig A.; Dai, Quanqin; Hu, Michael Z.; Ivanov, Ilia N.; Jellison, Jr., Gerald E.; Love, Lonnie J.; Ott, Ronald D.; Parish, Chad M.; Walker, Steven

    2015-11-24

    A method for producing a film, the method comprising melting a layer of precursor particles on a substrate until at least a portion of the melted particles are planarized and merged to produce the film. The invention is also directed to a method for producing a photovoltaic film, the method comprising depositing particles having a photovoltaic or other property onto a substrate, and affixing the particles to the substrate, wherein the particles may or may not be subsequently melted. Also described herein are films produced by these methods, methods for producing a patterned film on a substrate, and methods for producing a multilayer structure.

  5. Strain-relaxation and critical thickness of epitaxial La1.85Sr0.15CuO4 films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meyer, Tricia L; Jiang, Lu; Park, Sungkyun; Egami, Takeshi; Lee, Ho Nyung

    2015-12-08

    We report the thickness-dependent strain-relaxation behavior and the associated impacts upon the superconductivity in epitaxial La1.85Sr0.15CuO4 films grown on different substrates, which provide a range of strain. We have found that the critical thickness for the onset of superconductivity in La1.85Sr0.15CuO4 films is associated with the finite thickness effect and epitaxial strain. In particular, thin films with tensile strain greater than ~0.25% revealed no superconductivity. We attribute this phenomenon to the inherent formation of oxygen vacancies that can be minimized via strain relaxation.

  6. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates

    SciTech Connect (OSTI)

    Tay, Roland Yingjie; Tsang, Siu Hon; Loeblein, Manuela; Chow, Wai Leong; Loh, Guan Chee; Toh, Joo Wah; Ang, Soon Loong; Teo, Edwin Hang Tong

    2015-03-09

    Atomically thin hexagonal-boron nitride (h-BN) films are primarily synthesized through chemical vapor deposition (CVD) on various catalytic transition metal substrates. In this work, a single-step metal-catalyst-free approach to obtain few- to multi-layer nanocrystalline h-BN (NCBN) directly on amorphous SiO{sub 2}/Si and quartz substrates is demonstrated. The as-grown thin films are continuous and smooth with no observable pinholes or wrinkles across the entire deposited substrate as inspected using optical and atomic force microscopy. The starting layers of NCBN orient itself parallel to the substrate, initiating the growth of the textured thin film. Formation of NCBN is due to the random and uncontrolled nucleation of h-BN on the dielectric substrate surface with no epitaxial relation, unlike on metal surfaces. The crystallite size is ?25?nm as determined by Raman spectroscopy. Transmission electron microscopy shows that the NCBN formed sheets of multi-stacked layers with controllable thickness from ?2 to 25?nm. The absence of transfer process in this technique avoids any additional degradation, such as wrinkles, tears or folding and residues on the film which are detrimental to device performance. This work provides a wider perspective of CVD-grown h-BN and presents a viable route towards large-scale manufacturing of h-BN substrates and for coating applications.

  7. Self-annihilation of inversion domains by high energy defects in III-Nitrides

    SciTech Connect (OSTI)

    Koukoula, T.; Kioseoglou, J. Kehagias, Th.; Komninou, Ph.; Ajagunna, A. O.; Georgakilas, A.

    2014-04-07

    Low-defect density InN films were grown on Si(111) by molecular beam epitaxy over an ?1??m thick GaN/AlN buffer/nucleation layer. Electron microscopy observations revealed the presence of inverse polarity domains propagating across the GaN layer and terminating at the sharp GaN/InN (0001{sup }) interface, whereas no inversion domains were detected in InN. The systematic annihilation of GaN inversion domains at the GaN/InN interface is explained in terms of indium incorporation on the Ga-terminated inversion domains forming a metal bonded In-Ga bilayer, a structural instability known as the basal inversion domain boundary, during the initial stages of InN growth on GaN.

  8. Dynamics of helium films

    SciTech Connect (OSTI)

    Clements, B.E.; Epstein, J.L.; Krotscheck, E.; Tymczak, C.J.; Saarela, M.

    1992-11-01

    The authors present quantitative calculations for the static structure and the dynamics of quantum liquid films on a translationally invariant substrate. The excitation spectrum is calculated by solving the equations of motion for time-dependent one- and two-body densities. They find significant corrections to the Feynman spectrum for the phonon-like collective excitations. 8 refs., 2 figs.

  9. Thin film photovoltaic cell

    DOE Patents [OSTI]

    Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  10. Orientation filtering for crystalline films

    DOE Patents [OSTI]

    Smith, H.I.; Atwater, H.A.; Thompson, C.V.; Geis, M.W.

    1986-12-30

    A substrate is coated with a film to be recrystallized. A pattern of crystallization barriers is created in the film, for example, by etching voids in the film. An encapsulation layer is generally applied to protect the film, fill the voids and otherwise enhance a recrystallization process. Recrystallization is carried out such that certain orientations pass preferentially through the barrier, generally as a result of growth-velocity anisotropy. The result is a film of a specific predetermined crystallographic orientation, a range of orientations or a set of discrete orientations. 7 figs.

  11. Thin-film optical initiator

    DOE Patents [OSTI]

    Erickson, Kenneth L.

    2001-01-01

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  12. Orientation filtering for crystalline films

    DOE Patents [OSTI]

    Smith, Henry I. (Sudbury, MA); Atwater, Harry A. (Somerville, MA); Thompson, Carl V. (Watertown, MA); Geis, Michael W. (Acton, MA)

    1986-12-30

    A substrate is coated with a film to be recrystallized. A pattern of crystallization barriers is created in the film, for example, by etching voids in the film. An encapsulation layer is generally applied to protect the film, fill the voids and otherwise enhance a recrystallization process. Recrystallization is carried out such that certain orientations pass preferentially through the barrier, generally as a result of growth-velocity anisotropy. The result is a film of a specific predetermined crystallographic orientation, a range of orientations or a set of discrete orientations.

  13. DOE - NNSA/NFO -- Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Films NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Nevada Field Office Current Film Library A large number of films depicting historical as well as current activities of the Nevada National Security Site are available to the public on our YouTube page. Historical Nuclear Weapons Test Films The Department of Energy, in cooperation with the Department of Defense, declassified a series of historical films on the nuclear weapons program. They were converted to videotape format to

  14. Process to form mesostructured films

    DOE Patents [OSTI]

    Brinker, C. Jeffrey (Albuquerque, NM); Anderson, Mark T. (Woodbury, MN); Ganguli, Rahul (Camarillo, CA); Lu, Yunfeng (Albuquerque, NM)

    1999-01-01

    This invention comprises a method to form a family of supported films film with pore size in the approximate range 0.8-20 nm exhibiting highly ordered microstructures and porosity derived from an ordered micellar or liquid-crystalline organic-inorganic precursor structure that forms during film deposition. Optically transparent, 100-500-nm thick films exhibiting a unique range of microstructures and uni-modal pore sizes are formed in seconds in a continuous coating operation. Applications of these films include sensors, membranes, low dielectric constant interlayers, anti-reflective coatings, and optical hosts.

  15. Process for growing a film epitaxially upon an oxide surface and structures formed with the process

    DOE Patents [OSTI]

    McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN)

    1995-01-01

    A process and structure wherein a film comprised of a perovskite or a spinel is built epitaxially upon a surface, such as an alkaline earth oxide surface, involves the epitaxial build up of alternating constituent metal oxide planes of the perovskite or spinel. The first layer of metal oxide built upon the surface includes a metal element which provides a small cation in the crystalline structure of the perovskite or spinel, and the second layer of metal oxide built upon the surface includes a metal element which provides a large cation in the crystalline structure of the perovskite or spinel. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  16. Process for growing a film epitaxially upon an oxide surface and structures formed with the process

    DOE Patents [OSTI]

    McKee, Rodney Allen (Kingston, TN); Walker, Frederick Joseph (Oak Ridge, TN)

    1998-01-01

    A process and structure wherein a film comprised of a perovskite or a spinel is built epitaxially upon a surface, such as an alkaline earth oxide surface, involves the epitaxial build up of alternating constituent metal oxide planes of the perovskite or spinel. The first layer of metal oxide built upon the surface includes a metal element which provides a small cation in the crystalline structure of the perovskite or spinel, and the second layer of metal oxide built upon the surface includes a metal element which provides a large cation in the crystalline structure of the perovskite or spinel. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  17. Control method and system for use when growing thin-films on semiconductor-based materials

    DOE Patents [OSTI]

    McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN)

    2001-01-01

    A process and system for use during the growth of a thin film upon the surface of a substrate by exposing the substrate surface to vaporized material in a high vacuum (HV) facility involves the directing of an electron beam generally toward the surface of the substrate as the substrate is exposed to vaporized material so that electrons are diffracted from the substrate surface by the beam and the monitoring of the pattern of electrons diffracted from the substrate surface as vaporized material settles upon the substrate surface. When the monitored pattern achieves a condition indicative of the desired condition of the thin film being grown upon the substrate, the exposure of the substrate to the vaporized materials is shut off or otherwise adjusted. To facilitate the adjustment of the crystallographic orientation of the film relative to the electron beam, the system includes a mechanism for altering the orientation of the surface of the substrate relative to the electron beam.

  18. Method for continuous control of composition and doping of pulsed laser deposited films by pressure control

    DOE Patents [OSTI]

    Lowndes, Douglas H. (Knoxville, TN); McCamy, James W. (Knoxville, TN)

    1996-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  19. Method for continuous control of composition and doping of pulsed laser deposited films

    DOE Patents [OSTI]

    Lowndes, Douglas H. (Knoxville, TN); McCamy, James W. (Knoxville, TN)

    1995-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  20. Role of thermal processes in dewetting of epitaxial Ag(111) film on Si(111)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sanders, Charlotte E.; Zhang, Chendong D.; Kellogg, Gary L.; Shih, Chih-Kang

    2014-08-01

    Epitaxially grown silver (Ag) film on silicon (Si) is an optimal plasmonic device platform, but its technological utility has been limited by its tendency to dewet rapidly under ambient conditions (standard temperature and pressure). The mechanisms driving this dewetting have not heretofore been determined. In our study, scanning probe microscopy and low-energy electron microscopy are used to compare the morphological evolution of epitaxial Ag(111)/Si(111) under ambient conditions with that of similarly prepared films heated under ultra-high vacuum (UHV) conditions. Furthermore, dewetting is seen to be initiated with the formation of pinholes, which might function to relieve strain in the film.more » We find that in the UHV environment, dewetting is determined by thermal processes, and while under ambient conditions, thermal processes are not required. Finally, we conclude that dewetting in ambient conditions is triggered by some chemical process, most likely oxidation.« less

  1. Impact of strain on electronic defects in (Mg,Zn)O thin films

    SciTech Connect (OSTI)

    Schmidt, Florian Mller, Stefan; Wenckstern, Holger von; Benndorf, Gabriele; Pickenhain, Rainer; Grundmann, Marius

    2014-09-14

    We have investigated the impact of strain on the incorporation and the properties of extended and point defects in (Mg,Zn)O thin films by means of photoluminescence, X-ray diffraction, deep-level transient spectroscopy (DLTS), and deep-level optical spectroscopy. The recombination line Y?, previously detected in ZnO thin films grown on an Al-doped ZnO buffer layer and attributed to tensile strain, was exclusively found in (Mg,Zn)O samples being under tensile strain and is absent in relaxed or compressively strained thin films. Furthermore a structural defect E3 can be detected via DLTS measurements and is only incorporated in tensile strained samples. Finally it is shown that the omnipresent deep-level E3 in ZnO can only be optically recharged in relaxed ZnO samples.

  2. Resistance switching in epitaxial SrCoO{sub x} thin films

    SciTech Connect (OSTI)

    Tambunan, Octolia T.; Parwanta, Kadek J.; Acharya, Susant K.; Lee, Bo Wha; Jung, Chang Uk; Kim, Yeon Soo; Park, Bae Ho; Jeong, Huiseong; Park, Ji-Yong; Cho, Myung Rae; Park, Yun Daniel; Choi, Woo Seok; Kim, Dong-Wook; Jin, Hyunwoo; Lee, Suyoun; Song, Seul Ji; Kang, Sung-Jin; Kim, Miyoung; Hwang, Cheol Seong

    2014-08-11

    We observed bipolar switching behavior from an epitaxial strontium cobaltite film grown on a SrTiO{sub 3} (001) substrate. The crystal structure of strontium cobaltite has been known to undergo topotactic phase transformation between two distinct phases: insulating brownmillerite (SrCoO{sub 2.5}) and conducting perovskite (SrCoO{sub 3??}) depending on the oxygen content. The currentvoltage characteristics of the strontium cobaltite film showed that it could have a reversible insulator-to-metal transition triggered by electrical bias voltage. We propose that the resistance switching in the SrCoO{sub x} thin film could be related to the topotactic phase transformation and the peculiar structure of SrCoO{sub 2.5}.

  3. Highly conducting SrMoO{sub 3} thin films for microwave applications

    SciTech Connect (OSTI)

    Radetinac, Aldin Mani, Arzhang; Ziegler, Jrgen; Alff, Lambert; Komissinskiy, Philipp; Melnyk, Sergiy; Nikfalazar, Mohammad; Zheng, Yuliang; Jakoby, Rolf

    2014-09-15

    We have measured the microwave resistance of highly conducting perovskite oxide SrMoO{sub 3} thin film coplanar waveguides. The epitaxial SrMoO{sub 3} thin films were grown by pulsed laser deposition and showed low mosaicity and smooth surfaces with a root mean square roughness below 0.3?nm. Layer-by-layer growth could be achieved for film thicknesses up to 400?nm as monitored by reflection high-energy electron diffraction and confirmed by X-ray diffraction. We obtained a constant microwave resistivity of 29???cm between 0.1 and 20?GHz by refining the frequency dependence of the transmission coefficients. Our result shows that SrMoO{sub 3} is a viable candidate as a highly conducting electrode material for all-oxide microwave electronic devices.

  4. Microstructure, optical property, and electronic band structure of cuprous oxide thin films

    SciTech Connect (OSTI)

    Park, Jun-Woo; Jang, Hyungkeun; Kim, Sung; Choi, Suk-Ho; Lee, Hosun; Kang, Joongoo; Wei, Su-Huai

    2011-11-15

    Cuprous oxide (Cu{sub 2}O) thin films were grown via radio frequency sputtering deposition at various temperatures. The dielectric functions and luminescence properties of the Cu{sub 2}O thin films were measured using spectroscopic ellipsometry and photoluminescence, respectively. High-energy peaks were observed in the photoluminescence spectra. Several critical points (CPs) were found using second derivative spectra of the dielectric functions and the standard critical point model. The electronic band structure and the dielectric functions were calculated using density functional theory, and the CP energies were estimated to compare with the experimental data. We identified the high-energy photoluminescence peaks to quasi-direct transitions which arose from the granular structures of the Cu{sub 2}O thin films.

  5. Electrical spin injection using GaCrN in a GaN based spin light emitting diode

    SciTech Connect (OSTI)

    Banerjee, D.; Ganguly, S.; Saha, D.; Adari, R.; Sankaranarayan, S.; Kumar, A.; Aldhaheri, R. W.; Hussain, M. A.; Balamesh, A. S.

    2013-12-09

    We have demonstrated electrical spin-injection from GaCrN dilute magnetic semiconductor (DMS) in a GaN-based spin light emitting diode (spin-LED). The remanent in-plane magnetization of the thin-film semiconducting ferromagnet has been used for introducing the spin polarized electrons into the non-magnetic InGaN quantum well. The output circular polarization obtained from the spin-LED closely follows the normalized in-plane magnetization curve of the DMS. A saturation circular polarization of ?2.5% is obtained at 200?K.

  6. High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition

    SciTech Connect (OSTI)

    Anders, Andre; Lim, Sunnie H.N.; Yu, Kin Man; Andersson, Joakim; Rosen, Johanna; McFarland, Mike; Brown, Jeff

    2009-04-24

    Aluminum-doped zinc oxide, ZnO:Al or AZO, is a well-known n-type transparent conducting oxide with great potential in a number of applications currently dominated by indium tin oxide (ITO). In this study, the optical and electrical properties of AZO thin films deposited on glass and silicon by pulsed filtered cathodic arc deposition are systematically studied. In contrast to magnetron sputtering, this technique does not produce energetic negative ions, and therefore ion damage can be minimized. The quality of the AZO films strongly depends on the growth temperature while only marginal improvements are obtained with post-deposition annealing. The best films, grown at a temperature of about 200?C, have resistivities in the low to mid 10-4 Omega cm range with a transmittance better than 85percent in the visible part of the spectrum. It is remarkable that relatively good films of small thickness (60 nm) can be fabricated using this method.

  7. Heteroepitaxial growth of highly conductive metal oxide RuO{sub 2} thin films by pulsed laser deposition

    SciTech Connect (OSTI)

    Jia, Q.X.; Wu, X.D.; Foltyn, S.R.; Findikoglu, A.T.; Tiwari, P.; Zheng, J.P.; Jow, T.R.

    1995-09-18

    Highly conductive ruthenium oxide (RuO{sub 2}) has been epitaxially grown on LaAlO{sub 3} substrates by pulsed laser deposition. The RuO{sub 2} film is ({ital h}00) oriented normal to the substrate surface. The heteroepitaxial growth of RuO{sub 2} on LaAlO{sub 3} is demonstrated by the strong in-plane orientation of thin films with respect to the major axes of the substrate. High crystallinity of RuO{sub 2} thin films is also determined from Rutherford backscattering channeling measurements. Electrical measurements on the RuO{sub 2} thin films demonstrate a quite low room-temperature resistivity of 35{plus_minus}2 {mu}{Omega} cm at deposition temperatures of above 500 {degree}C. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  8. Method for making carbon films

    DOE Patents [OSTI]

    Tan, M.X.

    1999-07-29

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area ([approx equal]1000 m[sup 2] /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160 C for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750 C in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750--850 C for between 1--6 hours. 2 figs.

  9. Thin film superconductor magnetic bearings

    DOE Patents [OSTI]

    Weinberger, Bernard R. (Avon, CT)

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  10. Method for making carbon films

    DOE Patents [OSTI]

    Tan, Ming X. (Livermore, CA)

    1999-01-01

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  11. The structural, electrical, and optical properties of hydrogenated chromium-doped CdO films

    SciTech Connect (OSTI)

    Dakhel, A.A.; Hamad, H.

    2013-12-15

    Cadmium oxide thin films doped with different amounts of chromium and annealed in hydrogen atmosphere have been grown on glass substrates by means of physical vapour deposition (PVD) method. The structural, electrical, and optical properties of the prepared Cr-doped CdO (CdO:CrH) films were systematically studied. The structural investigations show that the incorporated Cr ions mainly occupied locations in interstitial positions of CdO lattice. The bandgap engineer by Cr incorporation and hydrogenation were studied. The variations of the electrical parameters of CdO:CrH films with Cr incorporation and hydrogenation were investigated. It was established that among the investigated samples, the largest mobility and conductivity were measured with 1.5%:CrH film. Therefore, hydrogenated CdO:Cr films can be effectively used in different applications of near infrared-transparent-conducting-oxide (NIR-TCO). - Graphical abstract: Optoelectronic properties of synthesised chromium-doped CdO thin films. It was established that the largest mobility (53.4 cm{sup 2}/V.s) and conductivity (2136.8 S/cm) were measured in 1.5%:CrH doped CdO film. Therefore, such films can be effectively used in near infrared-transparent-conducting-oxide (NIR-TCO). - Highlights: The properties of CdO films annealed in H{sub 2} gas were systematically studied. Cr{sup 3+} ions most likely occupied interstitial locations in CdO lattice and as donors. Improvement of conductivity parameters with Cr doping and H annealing. Bandgap narrowing observed with Cd-doping.

  12. Metalorganic chemical vapor deposition and characterization of (Al,Si)O dielectrics for GaN–based devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chan, Silvia; Mishra, Umesh K.; Tahhan, Maher; Liu, Xiang; Bisi, David; Gupta, Chirag; Koksaldi, Onur; Li, Haoran; Mates, Tom; DenBaars, Steven P.; et al

    2016-01-20

    In this study, we report on the growth and electrical characterization of (Al,Si)O dielectrics grown by metalorganic chemical vapor deposition (MOCVD) using trimethylaluminum, oxygen, and silane as precursors. The growth rates, refractive indices, and composition of (Al,Si)O films grown on Si(001) were determined from ellipsometry and XPS measurements. Crystallinity and electrical properties of (Al,Si)O films grown in situ on c-plane GaN were characterized using grazing incidence X-ray diffraction and capacitance–voltage with current–voltage measurements, respectively. Si concentration in the films was found to be tunable by varying the trimethylaluminum and/or oxygen precursor flows. The Si incorporation suppressed the formation of crystallinemore » domains, leading to amorphous films that resulted in reduced interfacial trap density, low gate leakage and ultra-low hysteresis in (Al,Si)O/n-GaN MOS-capacitors.« less

  13. Optical spectroscopy of sputtered nanometer-thick yttrium iron garnet films

    SciTech Connect (OSTI)

    Jakubisova-Liskova, Eva Visnovsky, Stefan; Chang, Houchen; Wu, Mingzhong

    2015-05-07

    Nanometer (nm)-thick yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) films present interest for spintronics. This work employs spectral ellipsometry and magneto-optic Kerr effect (MOKE) spectra to characterize nm-thick YIG films grown on single-crystal Gd{sub 3}Ga{sub 5}O{sub 12} substrates by magnetron sputtering. The thickness (t) of the films ranges between 10 nm and 40 nm. Independent on t, the polar MOKE hysteresis loops saturate in the field of about 1.8 kOe, consistent with the saturation magnetization in bulk YIG (4πM{sub s} ≈ 1.75 kG). The MOKE spectrum measured at photon energies between 1.3 eV and 4.5 eV on the 38-nm-thick film agrees with that measured on single-crystal YIG bulk materials. The MOKE spectrum of the 12-nm-thick film still preserves the structure of the bulk YIG but its amplitude at lower photon energies is modified due to the fact that the radiation penetration depth exceeds 20 nm. The t dependence of the MOKE amplitude is consistent with MOKE calculations. The results indicate that the films are stoichiometric, strain free, without Fe{sup 2+}, and preserve bulk YIG properties down to t ≈ 10 nm.

  14. Evidence that an internal carbonic anhydrase is present in 5% CO/sub 2/-grown and air-grown Chlamydomonas. [Chlamydomonas reinhardtii

    SciTech Connect (OSTI)

    Moroney, J.V.; Togasaki, R.K.; Husic, H.D.; Tolbert, N.E.

    1987-07-01

    Inorganic carbon (C/sub i/) uptake was measured in wild-type cells of Chlamydomonas reinhardtii, and in cia-3, a mutant strain of C. reinhardtii that cannot grow with air levels of CO/sub 2/. Both air-grown cells, that have a CO/sub 2/ concentrating system, and 5% CO/sub 2/-grown cells that do not have this system, were used. When the external pH was 5.1 or 7.3, air-grown, wild-type cells accumulated inorganic carbon (C/sub i/) and this accumulation was enhanced when the permeant carbonic anhydrase inhibitor, ethoxyzolamide, was added. When the external pH was 5.1, 5% CO/sub 2/-grown cells also accumulated some C/sub i/, although not as much as air-grown cells and this accumulation was stimulated by the addition of ethoxyzolamide. At the same time, ethoxyzolamide inhibited CO/sub 2/ fixation by high CO/sub 2/-grown, wild-type cells at both pH 5.1 and 7.3. These observations imply that 5% CO/sub 2/-grown, wild-type cells, have a physiologically important internal carbonic anhydrase, although the major carbonic anhydrase located in the periplasmic space is only present in air-grown cells. Inorganic carbon uptake by cia-3 cells supported this conclusion. This mutant strain, which is thought to lack an internal carbonic anhydrase, was unaffected by ethoxyzolamide at pH 5.1. Other physiological characteristics of cia-3 resemble those of wild-type cells that have been treated with ethoxyzolamide. It is concluded that an internal carbonic anhydrase is under different regulatory control than the periplasmic carbonic anhydrase.

  15. X-ray microstructural analysis of nanocrystalline TiZrN thin films by diffraction pattern modeling

    SciTech Connect (OSTI)

    Escobar, D.; Ospina, R.; Gmez, A.G.; Restrepo-Parra, E.; Arango, P.J.

    2014-02-15

    A detailed microstructural characterization of nanocrystalline TiZrN thin films grown at different substrate temperatures (T{sub S}) was carried out by X-ray diffraction (XRD). Total diffraction pattern modeling based on more meaningful microstructural parameters, such as crystallite size distribution and dislocation density, was performed to describe the microstructure of the thin films more precisely. This diffraction modeling has been implemented and used mostly to characterize powders, but the technique can be very useful to study hard thin films by taking certain considerations into account. Nanocrystalline films were grown by using the cathodic pulsed vacuum arc technique on stainless steel 316L substrates, varying the temperature from room temperature to 200 C. Further surface morphology analysis was performed to study the dependence of grain size on substrate temperature using atomic force microscopy (AFM). The crystallite and surface grain sizes obtained and the high density of dislocations observed indicate that the films underwent nanostructured growth. Variations in these microstructural parameters as a function of T{sub S} during deposition revealed a competition between adatom mobility and desorption processes, resulting in a specific microstructure. These films also showed slight anisotropy in their microstructure, and this was incorporated into the diffraction pattern modeling. The resulting model allowed for the films' microstructure during synthesis to be better understood according to the experimental results obtained. - Highlights: Mobility and desorption competition generates a critical temperature. A microstructure anisotropy related to the local strain was observed in thin films. Adatom mobility and desorption influence grain size and microstrain.

  16. Molecular layer deposition of alucone films using trimethylaluminum and hydroquinone

    SciTech Connect (OSTI)

    Choudhury, Devika; Sarkar, Shaibal K.; Mahuli, Neha

    2015-01-01

    A hybrid organicinorganic polymer film grown by molecular layer deposition (MLD) is demonstrated here. Sequential exposures of trimethylaluminum [Al(CH{sub 3}){sub 3}] and hydroquinone [C{sub 6}H{sub 4}(OH){sub 2}] are used to deposit the polymeric films, which is a representative of a class of aluminum oxide polymers known as alucones. In-situ quartz crystal microbalance (QCM) studies are employed to determine the growth characteristics. An average growth rate of 4.1 per cycle at 150?C is obtained by QCM and subsequently verified with x-ray reflectivity measurements. Surface chemistry during each MLD-half cycle is studied in depth by in-situ Fourier transform infrared (FTIR) vibration spectroscopy. Self limiting nature of the reaction is confirmed from both QCM and FTIR measurements. The conformal nature of the deposit, typical for atomic layer deposition and MLD, is verified with transmission electron microscopy imaging. Secondary ion mass spectroscopy measurements confirm the uniform elemental distribution along the depth of the films.

  17. Ultrafast transient reflectance of epitaxial semiconducting perovskite thin films

    SciTech Connect (OSTI)

    Smolin, S. Y.; Guglietta, G. W.; Baxter, J. B. E-mail: smay@coe.drexel.edu; Scafetta, M. D.; May, S. J. E-mail: smay@coe.drexel.edu

    2014-07-14

    Ultrafast pump-probe transient reflectance (TR) spectroscopy was used to study carrier dynamics in an epitaxial perovskite oxide thin film of LaFeO{sub 3} (LFO) with a thickness of 40 unit cells (16?nm) grown by molecular beam epitaxy on (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (LSAT). TR spectroscopy shows two negative transients in reflectance with local maxima at ?2.5?eV and ?3.5?eV which correspond to two optical transitions in LFO as determined by ellipsometry. The kinetics at these transients were best fit with an exponential decay model with fast (540 ps), medium (?200 ps), and slow (??3?ns) components that we attribute mainly to recombination of photoexcited carriers. Moreover, these reflectance transients did not completely decay within the observable time window, indicating that ?10% of photoexcited carriers exist for at least 3?ns. This work illustrates that TR spectroscopy can be performed on thin (<20?nm) epitaxial oxide films to provide a quantitative understanding of recombination lifetimes, which are important parameters for the potential utilization of perovskite films in photovoltaic and photocatalytic applications.

  18. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    SciTech Connect (OSTI)

    Kashiwagi, Y. Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Nakamoto, M.; Koizumi, A.; Fujiwara, Y.; Takemura, Y.; Murahashi, K.; Ohtsuka, K.; Furuta, S.

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25?nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850?C for 10?min under atmospheric conditions, the resistivity of the ITO film was 5.2?m??cm. The fabricated LED up to 3?mm square surface emitted red light when the on-voltage was exceeded.

  19. Initial growth, refractive index, and crystallinity of thermal and plasma-enhanced atomic layer deposition AlN films

    SciTech Connect (OSTI)

    Van Bui, Hao Wiggers, Frank B.; Gupta, Anubha; Nguyen, Minh D.; Aarnink, Antonius A. I.; Jong, Michel P. de; Kovalgin, Alexey Y.

    2015-01-01

    The authors have studied and compared the initial growth and properties of AlN films deposited on Si(111) by thermal and plasma-enhanced atomic layer deposition (ALD) using trimethylaluminum and either ammonia or a N{sub 2}-H{sub 2} mixture as precursors. In-situ spectroscopic ellipsometry was employed to monitor the growth and measure the refractive index of the films during the deposition. The authors found that an incubation stage only occurred for thermal ALD. The linear growth for plasma-enhanced ALD (PEALD) started instantly from the beginning due to the higher nuclei density provided by the presence of plasma. The authors observed the evolution of the refractive index of AlN during the growth, which showed a rapid increase up to a thickness of about 30?nm followed by a saturation. Below this thickness, higher refractive index values were obtained for AlN films grown by PEALD, whereas above that the refractive index was slightly higher for thermal ALD films. X-ray diffraction characterization showed a wurtzite crystalline structure with a (101{sup }0) preferential orientation obtained for all the layers with a slightly better crystallinity for films grown by PEALD.

  20. Suppression of the thermal hysteresis in magnetocaloric MnAs thin film by highly charged ion bombardment

    SciTech Connect (OSTI)

    Trassinelli, M. Marangolo, M.; Eddrief, M.; Etgens, V. H.; Gafton, V.; Hidki, S.; Lacaze, E.; Lamour, E.; Prigent, C.; Rozet, J.-P.; Steydli, S.; Zheng, Y.; Vernhet, D.

    2014-02-24

    We present the investigation on the modifications of structural and magnetic properties of MnAs thin film epitaxially grown on GaAs induced by slow highly charged ions bombardment under well-controlled conditions. The ion-induced defects facilitate the nucleation of one phase with respect to the other in the first-order magneto-structural MnAs transition, with a consequent suppression of thermal hysteresis without any significant perturbation on the other structural and magnetic properties. In particular, the irradiated film keeps the giant magnetocaloric effect at room temperature opening new perspective on magnetic refrigeration technology for everyday use.

  1. Strain relaxation in epitaxial SrRuO{sub 3} thin films on LaAlO{sub 3} substrates

    SciTech Connect (OSTI)

    Gao, M.; Du, H.; Dai, C.; Lin, Y.; Ma, C. R.; Liu, M.; Collins, G.; Zhang, Y. M.; Chen, C. L.

    2013-09-30

    Strain relaxation behavior of epitaxial SrRuO{sub 3} thin films on (001) LaAlO{sub 3} substrates was investigated using high resolution X-ray diffraction. Lattice distortion and dislocation densities were systematically studied with samples under different growth conditions. Reciprocal space maps reveal different strain relaxation behavior in SrRuO{sub 3} thin films grown at different temperatures. Two kinds of strain relaxation mechanisms were proposed to understand the growth dynamics, including the evolution of threading dislocations and the tilt of crystalline planes.

  2. Exceptional gettering response of epitaxially grown kerfless silicon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Powell, D. M.; Markevich, V. P.; Hofstetter, J.; Jensen, M. A.; Morishige, A. E.; Castellanos, S.; Lai, B.; Peaker, A. R.; Buonassisi, T.

    2016-02-08

    The bulk minority-carrier lifetime in p- and n-type kerfless epitaxial (epi) crystalline silicon wafers is shown to increase >500 during phosphorus gettering. We employ kinetic defect simulations and microstructural characterization techniques to elucidate the root cause of this exceptional gettering response. Simulations and deep-level transient spectroscopy (DLTS) indicate that a high concentra- tion of point defects (likely Pt) is “locked in” during fast (60 C/min) cooling during epi wafer growth. The fine dispersion of moderately fast-diffusing recombination-active point defects limits as-grown lifetime but can also be removed during gettering, confirmed by DLTS measurements. Synchrotron-based X-ray fluorescence microscopy indicates metal agglomeratesmore » at structural defects, yet the structural defect density is sufficiently low to enable high lifetimes. Consequently, after phosphorus diffusion gettering, epi silicon exhibits a higher lifetime than materials with similar bulk impurity contents but higher densities of structural defects, including multicrystalline ingot and ribbon silicon materials. As a result, device simulations suggest a solar-cell efficiency potential of this material >23%.« less

  3. APIVT-Grown Silicon Thin Layers and PV Devices: Preprint

    SciTech Connect (OSTI)

    Wang, T. H.; Ciszek, T. F.; Page, M. R.; Bauer, R. E.; Wang, Q.; Landry, M. D.

    2002-05-01

    Large-grained (5-20 ..mu..m) polycrystalline silicon layers have been grown at intermediate temperatures of 750-950C directly on foreign substrates without a seeding layer by iodine vapor transport at atmospheric pressure with rates as high as 3 mm/min. A model is constructed to explain the atypical temperature dependence of growth rate. We have also used this technique to grow high-quality epitaxial layers on heavily doped CZ-Si and on upgraded MG-Si substrates. Possible solar cell structures of thin-layer polycrystalline silicon on foreign substrates with light trapping have been examined, compared, and optimized by two-dimensional device simulations. The effects of grain boundary re-combination on device performance are presented for two grain sizes of 2 and 20 mm. We found that 104 cm/s recombination velocity is adequate for 20-m m grain-sized thin silicon, whereas a very low recombination velocity of 103 cm/s must be accomplished in order to achieve reasonable performance for a 2- mm grain-sized polycrystalline silicon device.

  4. Thin film composite electrolyte

    DOE Patents [OSTI]

    Schucker, Robert C. (The Woodlands, TX)

    2007-08-14

    The invention is a thin film composite solid (and a means for making such) suitable for use as an electrolyte, having a first layer of a dense, non-porous conductive material; a second layer of a porous ionic conductive material; and a third layer of a dense non-porous conductive material, wherein the second layer has a Coefficient of thermal expansion within 5% of the coefficient of thermal expansion of the first and third layers.

  5. InGaN/GaN multi-quantum well and LED growth on wafer-bonded sapphire-on-polycrystalline AlN substrates by metalorganic chemical vapor deposition.

    SciTech Connect (OSTI)

    Crawford, Mary Hagerott; Olson, S. M.; Banas, M.; Park, Y. -B.; Ladous, C.; Russell, Michael J.; Thaler, Gerald; Zahler, J. M.; Pinnington, T.; Koleske, Daniel David; Atwater, Harry A.

    2008-06-01

    We report growth of InGaN/GaN multi-quantum well (MQW) and LED structures on a novel composite substrate designed to eliminate the coefficient of thermal expansion (CTE) mismatch problems which impact GaN growth on bulk sapphire. To form the composite substrate, a thin sapphire layer is wafer-bonded to a polycrystalline aluminum nitride (P-AlN) support substrate. The sapphire layer provides the epitaxial template for the growth; however, the thermo-mechanical properties of the composite substrate are determined by the P-AlN. Using these substrates, thermal stresses associated with temperature changes during growth should be reduced an order of magnitude compared to films grown on bulk sapphire, based on published CTE data. In order to test the suitability of the substrates for GaN LED growth, test structures were grown by metalorganic chemical vapor deposition (MOCVD) using standard process conditions for GaN growth on sapphire. Bulk sapphire substrates were included as control samples in all growth runs. In situ reflectance monitoring was used to compare the growth dynamics for the different substrates. The material quality of the films as judged by X-ray diffraction (XRD), photoluminescence and transmission electron microscopy (TEM) was similar for the composite substrate and the sapphire control samples. Electroluminescence was obtained from the LED structure grown on a P-AlN composite substrate, with a similar peak wavelength and peak width to the control samples. XRD and Raman spectroscopy results confirm that the residual strain in GaN films grown on the composite substrates is dramatically reduced compared to growth on bulk sapphire substrates.

  6. Photovoltaic Films - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Photovoltaic Films Los Alamos National Laboratory Contact LANL About This Technology LANL&rsquo;s solar power portfolio includes a deposition process known as PAD. PAD eliminates the need for vacuum-based thin film equipment. LANL's solar power portfolio includes a deposition process known as PAD. PAD eliminates the need for vacuum-based thin film equipment. Technology Marketing SummaryThe rising total cost of energy

  7. Relationship between the structure and electrical characteristics of diamond-like carbon films

    SciTech Connect (OSTI)

    Takabayashi, Susumu Otsuji, Taiichi; Yang, Meng; Ogawa, Shuichi; Hayashi, Hiroyuki; Jeko, Radek; Takakuwa, Yuji

    2014-09-07

    To elucidate the relationship between the structure and the electrical characteristics of diamond-like carbon (DLC) films, DLC films were synthesized in a well-controlled glow discharge with the aid of photoelectrons in an argon/methane atmosphere. The dielectric constant and breakdown strength of the films exhibited opposite behaviors, depending on the total pressure during the synthesis. The product of these two values decreased monotonically as the pressure increased. The Raman spectra were analyzed with a Voigt-type formula. Based on the results, the authors propose the sp{sup 2} cluster model for the DLC structure. This model consists of conductive clusters of sp{sup 2} carbons surrounded by a dielectric matrix sea of sp{sup 2} carbon, sp{sup 3} carbon, and hydrogen, and indicates that the dielectric constant of the whole DLC film is determined by the balance between the dielectric constant of the matrix and the total size of the clusters, while the breakdown strength is determined by the reciprocal of the cluster size. The model suggests that a high-? DLC film can be synthesized at a middle pressure and consists of well-grown sp{sup 2} clusters and a dense matrix. A low-? DLC film can be synthesized both at low and high pressures. The sp{sup 2} cluster model explains that a low-? DLC film synthesized at low pressure consists of a dense matrix and a low density of sp{sup 2} clusters, and exhibits a high breakdown strength. On the other hand, a low-? film synthesized at high pressure consists of a coarse matrix and a high density of clusters and exhibits a low breakdown strength.

  8. Characterization of nanocrystalline ZnO:Al films by sol-gel spin coating method

    SciTech Connect (OSTI)

    Gareso, P. L. Rauf, N. Juarlin, E.; Sugianto,; Maddu, A.

    2014-09-25

    Nanocrystalline ZnO films doped with aluminium by sol-gel spin coating method have been investigated using optical transmittance UV-Vis and X-ray diffraction (X-RD) measurements. ZnO films were prepared using zinc acetate dehydrate (Zn(CH{sub 3}COO){sub 2}@@2H{sub 2}O), ethanol, and diethanolamine (DEA) as a starting material, solvent, and stabilizer, respectively. For doped films, AlCl{sub 3} was added to the mixture. The ZnO:Al films were deposited on a transparent conductive oxide (TCO) substrate using spin coating technique at room temperature with a rate of 3000 rpm in 30 sec. The deposited films were annealed at various temperatures from 400C to 600C during 60 minutes. The transmittance UV-Vis measurement results showed that after annealing at 400C, the energy band gap profile of nanocrystalline ZnO:Al film was a blue shift. This indicated that the band gap of ZnO:Al increased after annealing due to the increase of crystalline size. As the annealing temperature increased the bandgap energy was a constant. In addition to this, there was a small oscillation occurring after annealing compared to the asgrown samples. In the case of X-RD measurements, the crystalinity of the films were amorphous before annealing, and after annealing the crystalinity became enhance. Also, X-RD results showed that structure of nanocrystalline ZnO:Al films were hexagonal polycrystalline with lattice parameters are a = 3.290 and c = 5.2531 .

  9. Introduction to BPA Film Collection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Information Act Investor Relations Library Privacy Publications Tribal Affairs Introduction to BPA Film Collection: Volume One, Disc One, 1939-1954 An error occurred. Try...

  10. Process to form mesostructured films

    DOE Patents [OSTI]

    Brinker, C.J.; Anderson, M.T.; Ganguli, R.; Lu, Y.F.

    1999-01-12

    This invention comprises a method to form a family of supported films with pore size in the approximate range 0.8-20 nm exhibiting highly ordered microstructures and porosity derived from an ordered micellar or liquid-crystalline organic-inorganic precursor structure that forms during film deposition. Optically transparent, 100-500-nm thick films exhibiting a unique range of microstructures and uni-modal pore sizes are formed in seconds in a continuous coating operation. Applications of these films include sensors, membranes, low dielectric constant interlayers, anti-reflective coatings, and optical hosts. 12 figs.

  11. DOE - NNSA/NFO -- Current Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Films > Current Nevada Field Office Film Library Instructions: Click the Windows Media or MPG Movie link to view the video Film details are listed on the right Refer to the Viewing Instructions

  12. Atomic-resolution study of polarity reversal in GaSb grown on Si by scanning transmission electron microscopy

    SciTech Connect (OSTI)

    Hosseini Vajargah, S.; Woo, S. Y.; Botton, G. A.; Ghanad-Tavakoli, S.; Kleiman, R. N.; Preston, J. S.

    2012-11-01

    The atomic-resolved reversal of the polarity across an antiphase boundary (APB) was observed in GaSb films grown on Si by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The investigation of the interface structure at the origin of the APB reveals that coalescence of two domains with Ga-prelayer and Sb-prelayer causes the sublattice reversal. The local strain and lattice rotation distributions of the APB, attributed to the discordant bonding length at the APB with the surrounding GaSb lattice, were further studied using the geometric phase analysis technique. The crystallographic characteristics of the APBs and their interaction with other planar defects were observed with HAADF-STEM. The quantitative agreement between experimental and simulated images confirms the observed polarities in the acquired HAADF-STEM data. The self-annihilation mechanism of the APBs is addressed based on the rotation induced by anti-site bonds and APBs' faceting.

  13. Nanoscale Phase Separation In Epitaxial Cr-Mo and Cr-V Alloy Thin Films Studied Using Atom Probe Tomography: Comparison Of Experiments And Simulation

    SciTech Connect (OSTI)

    Devaraj, Arun; Kaspar, Tiffany C.; Ramanan, Sathvik; Walvekar, Sarita K.; Bowden, Mark E.; Shutthanandan, V.; Kurtz, Richard J.

    2014-11-21

    Tailored metal alloy thin film-oxide interfaces generated using molecular beam epitaxial (MBE) deposition of alloy thin films on a single crystalline oxide substrate can be used for detailed studies of irradiation damage response on the interface structure. However presence of nanoscale phase separation in the MBE grown alloy thin films can impact the metal-oxide interface structure. Due to nanoscale domain size of such phase separation it is very challenging to characterize by conventional techniques. Therefor laser assisted atom probe tomography (APT) was utilized to study the phase separation in epitaxial Cr0.61Mo0.39, Cr0.77Mo0.23, and Cr0.32V0.68 alloy thin films grown by MBE on MgO(001) single crystal substrates. Statistical analysis, namely frequency distribution analysis and Pearson coefficient analysis of experimental data was compared with similar analyses conducted on simulated APT datasets with known extent of phase separation. Thus the presence of phase separation in Cr-Mo films, even when phase separation was not clearly observed by x-ray diffraction, and the absence of phase separation in the Cr-V film were thus confirmed.

  14. Nanoscale phase separation in epitaxial Cr-Mo and Cr-V alloy thin films studied using atom probe tomography: Comparison of experiments and simulation

    SciTech Connect (OSTI)

    Devaraj, A.; Ramanan, S.; Walvekar, S.; Bowden, M. E.; Shutthanandan, V.; Kaspar, T. C.; Kurtz, R. J.

    2014-11-21

    Tailored metal alloy thin film-oxide interfaces generated using molecular beam epitaxy (MBE) deposition of alloy thin films on a single crystalline oxide substrate can be used for detailed studies of irradiation damage response on the interface structure. However, the presence of nanoscale phase separation in the MBE grown alloy thin films can impact the metal-oxide interface structure. Due to nanoscale domain size of such phase separation, it is very challenging to characterize by conventional techniques. Therefore, laser assisted atom probe tomography (APT) was utilized to study the phase separation in epitaxial Cr{sub 0.61}Mo{sub 0.39}, Cr{sub 0.77}Mo{sub 0.23}, and Cr{sub 0.32}V{sub 0.68} alloy thin films grown by MBE on MgO(001) single crystal substrates. Statistical analysis, namely frequency distribution analysis and Pearson coefficient analysis of experimental data was compared with similar analyses conducted on simulated APT datasets with known extent of phase separation. Thus, the presence of phase separation in Cr-Mo films, even when phase separation was not clearly observed by x-ray diffraction, and the absence of phase separation in the Cr-V film were confirmed.

  15. Low-temperature CVD of iron, cobalt, and nickel nitride thin films from bis[di(tert-butyl)amido]metal(II) precursors and ammonia

    SciTech Connect (OSTI)

    Cloud, Andrew N.; Abelson, John R., E-mail: abelson@illinois.edu [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 201 Materials Science and Engineering Building, 1304 W. Green St., Urbana, Illinois 61801 (United States); Davis, Luke M.; Girolami, Gregory S., E-mail: girolami@scs.illinois.edu [School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801 (United States)

    2014-03-15

    Thin films of late transition metal nitrides (where the metal is iron, cobalt, or nickel) are grown by low-pressure metalorganic chemical vapor deposition from bis[di(tert-butyl)amido]metal(II) precursors and ammonia. These metal nitrides are known to have useful mechanical and magnetic properties, but there are few thin film growth techniques to produce them based on a single precursor family. The authors report the deposition of metal nitride thin films below 300?C from three recently synthesized M[N(t-Bu){sub 2}]{sub 2} precursors, where M?=?Fe, Co, and Ni, with growth onset as low as room temperature. Metal-rich phases are obtained with constant nitrogen content from growth onset to 200?C over a range of feedstock partial pressures. Carbon contamination in the films is minimal for iron and cobalt nitride, but similar to the nitrogen concentration for nickel nitride. X-ray photoelectron spectroscopy indicates that the incorporated nitrogen is present as metal nitride, even for films grown at the reaction onset temperature. Deposition rates of up to 18?nm/min are observed. The film morphologies, growth rates, and compositions are consistent with a gas-phase transamination reaction that produces precursor species with high sticking coefficients and low surface mobilities.

  16. DOE - NNSA/NFO -- Historical Test Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Films > Historical Test Films NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Historical Test Films Instructions: Click the document Title or Thumbnail to view the video clip and film details Click the Number, Title, or Date table header links to sort the information. The default sort is by Number Complete the Historical Test Film Order Form to order Historical Test films Number Title Date Pic 800000 Nuclear Testing Review - ABLE Various Dates

  17. Origin of superstructures in (double) perovskite thin films

    SciTech Connect (OSTI)

    Shabadi, V. Major, M.; Komissinskiy, P.; Vafaee, M.; Radetinac, A.; Baghaie Yazdi, M.; Donner, W.; Alff, L.

    2014-09-21

    We have investigated the origin of superstructure peaks as observed by X-ray diffraction of multiferroic Bi(Fe{sub 0.5}Cr{sub 0.5})O{sub 3} thin films grown by pulsed laser deposition on single crystal SrTiO{sub 3} substrates. The photon energy dependence of the contrast between the atomic scattering factors of Fe and Cr is used to rule out a chemically ordered double perovskite Bi{sub 2}FeCrO{sub 6} (BFCO). Structural calculations suggest that the experimentally observed superstructure occurs due to unequal cation displacements along the pseudo-cubic [111] direction that mimic the unit cell of the chemically ordered compound. This result helps to clarify discrepancies in the correlations of structural and magnetic order reported for Bi{sub 2}FeCrO{sub 6}. The observation of a superstructure in itself is not a sufficient proof of chemical order in double perovskites.

  18. Vapor-deposited porous films for energy conversion

    DOE Patents [OSTI]

    Jankowski, Alan F.; Hayes, Jeffrey P.; Morse, Jeffrey D.

    2005-07-05

    Metallic films are grown with a "spongelike" morphology in the as-deposited condition using planar magnetron sputtering. The morphology of the deposit is characterized by metallic continuity in three dimensions with continuous and open porosity on the submicron scale. The stabilization of the spongelike morphology is found over a limited range of the sputter deposition parameters, that is, of working gas pressure and substrate temperature. This spongelike morphology is an extension of the features as generally represented in the classic zone models of growth for physical vapor deposits. Nickel coatings were deposited with working gas pressures up 4 Pa and for substrate temperatures up to 1000 K. The morphology of the deposits is examined in plan and in cross section views with scanning electron microscopy (SEM). The parametric range of gas pressure and substrate temperature (relative to absolute melt point) under which the spongelike metal deposits are produced appear universal for other metals including gold, silver, and aluminum.

  19. Carbonaceous film coating

    DOE Patents [OSTI]

    Maya, Leon

    1989-01-01

    A method of making a carbonaceous film comprising heating tris(1,3,2-benzodiazaborolo)borazine or dodecahydro tris[1,3,2]diazaborine[1,2-a:1'2'-c:1"2"-e]borazine in an inert atmosphere in the presence of a substrate to a temperature at which the borazine compound decomposes, and the decomposition products deposit onto the substrate to form a thin, tenacious, highly reflective conductive coating having a narrow band gap which is susceptible of modification and a relatively low coefficient of friction.

  20. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  1. Carbonaceous film coating

    DOE Patents [OSTI]

    Maya, L.

    1988-04-27

    A method of making a carbonaceous film comprising heating tris(1,3,2-benzodiazaborolo)borazine or dodecahydro tris(1,3,2)diazaborine(1,2-a:1'2'-c:1''2''-e)borazine in an inert atmosphere in the presence of a substrate to a temperature at which the borazine compound decomposes, and the decomposition products deposit onto the substrate to form a thin, tenacious, highly reflective conductive coating having a narrow band gap which is susceptible of modification and a relatively low coefficient of friction.

  2. Structural and optical studies of chemically deposited Sn{sub 2}S{sub 3} thin films

    SciTech Connect (OSTI)

    Gneri, Emine; Gde, Fatma; Boyarbay, Behiye; Gm?, Cebrail

    2012-11-15

    Highlights: ? Sn{sub 2}S{sub 3} films were deposited at 30 C by chemical bath deposition. ? The deposition time of the chemical bath was adjusted to 20 h, 22 h, and 24 h. ? Effect of deposition time on structural and optical properties of Sn{sub 2}S{sub 3} thin films were investigated. ? The presence of characteristic bonds of Sn{sub 2}S{sub 3} was observed from Raman shift experiment. ? The direct band gap of thin films constant were calculated. -- Abstract: Sn{sub 2}S{sub 3} thin films were grown on commercial glass substrates by chemical bath deposition at room temperature. The structural and optical properties of Sn{sub 2}S{sub 3} thin films were studied as a function of deposition time. The thin films were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and UVvis spectroscopy. The XRD pattern showed that the Sn{sub 2}S{sub 3} thin films had an orthorhombic polycrystalline structure. The lattice constants of the thin films were a = 8.741 ?, b = 14.034 ? and c = 3.728 ?. The characteristic bonds of Sn{sub 2}S{sub 3} were observed at 66.3, 111.7, 224.7 and 308.9 cm{sup ?1} using Raman shift experiment. The optical energy band gap of the thin films decreased from 2.12 eV to 2.03 eV with increasing deposition time from 20 to 24 h. The optical constants of the thin films were obtained using the experimentally recorded transmission data as a function of the wavelength.

  3. Post-Growth Annealing of Bridgman-grown CdZnTe and CdMnTe Crystals...

    Office of Scientific and Technical Information (OSTI)

    Title: Post-Growth Annealing of Bridgman-grown CdZnTe and CdMnTe Crystals for Room-temperature Nuclear Radiation Detectors Bridgman-grown cadmium zinc telluride (CdZnTe or CZT) and ...

  4. Structure of droplet-epitaxy-grown InAs/GaAs quantum dots

    SciTech Connect (OSTI)

    Cohen, Eyal; Yochelis, Shira; Westreich, Ohad; Shusterman, Sergey; Kumah, Divine P.; Clarke, Roy; Yacoby, Yizhak; Paltiel, Yossi

    2011-09-06

    We have used a direct x-ray phasing method, coherent Bragg rod analysis, to obtain sub-angstrom resolution electron density maps of the InAs/GaAs dot system. The dots were grown by the droplet heteroepitaxy (DHE) technique and their structural and compositional properties are compared with those of dots grown by the strain-driven Stranski-Krastanov method. Our results show that the Ga diffusion into the DHE-grown dots is somewhat larger; however, other characteristics such as the composition of the dots uppermost layers, the interlayer spacing, and the bowing of the atomic layers are similar.

  5. Electrical initiation of an energetic nanolaminate film

    DOE Patents [OSTI]

    Tringe, Joseph W. (Walnut Creek, CA); Gash, Alexander E. (Brentwood, CA); Barbee, Jr., Troy W. (Palo Alto, CA)

    2010-03-30

    A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.

  6. Diamond films treated with alkali-halides

    DOE Patents [OSTI]

    Anderson, D.F.; Kwan, S.W.

    1997-04-08

    A secondary electron emitter is provided and includes a substrate with a diamond film, the diamond film is treated or coated with an alkali-halide. 5 figs.

  7. Innovative Thin Films LLC | Open Energy Information

    Open Energy Info (EERE)

    Thin Films LLC Place: Toledo, Ohio Zip: 43607 Product: Provider of altnernative energy thin film deposition technology. Coordinates: 46.440613, -122.847838 Show Map Loading...

  8. Thin Film Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    help OpenEI by expanding it. Thin Film Solar Technologies is a company located in South Africa . References "Thin Film Solar Technologies" Retrieved from "http:...

  9. Femtosecond laser ablation-based mass spectrometry. An ideal tool for stoichiometric analysis of thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    LaHaye, Nicole L.; Kurian, Jose; Diwakar, Prasoon K.; Alff, Lambert; Harilal, Sivanandan S.

    2015-08-19

    An accurate and routinely available method for stoichiometric analysis of thin films is a desideratum of modern materials science where a material’s properties depend sensitively on elemental composition. We thoroughly investigated femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS) as an analytical technique for determination of the stoichiometry of thin films down to the nanometer scale. The use of femtosecond laser ablation allows for precise removal of material with high spatial and depth resolution that can be coupled to an ICP-MS to obtain elemental and isotopic information. We used molecular beam epitaxy-grown thin films of LaPd(x)Sb2 and T´-La2CuO4 to demonstrate themore » capacity of fs-LA-ICP-MS for stoichiometric analysis and the spatial and depth resolution of the technique. Here we demonstrate that the stoichiometric information of thin films with a thickness of ~10 nm or lower can be determined. Furthermore, our results indicate that fs-LA-ICP-MS provides precise information on the thin film-substrate interface and is able to detect the interdiffusion of cations.« less

  10. Epitaxial growth of highly conductive RuO{sub 2} thin films on (100) Si

    SciTech Connect (OSTI)

    Jia, Q.X.; Song, S.G.; Wu, X.D.; Cho, J.H.; Foltyn, S.R.; Findikoglu, A.T.; Smith, J.L.

    1996-02-01

    Conductive RuO{sub 2} thin films have been heteroepitaxially grown by pulsed laser deposition on Si substrates with yttria-stabilized zirconia (YSZ) buffer layers. The RuO{sub 2} thin films deposited under optimized processing conditions are {ital a}-axis oriented normal to the Si substrate surface with a high degree of in-plane alignment with the major axes of the (100) Si substrate. Cross-sectional transmission electron microscopy analysis on the RuO{sub 2}/YSZ/Si multilayer shows an atomically sharp interface between the RuO{sub 2} and the YSZ. Electrical measurements show that the crystalline RuO{sub 2} thin films are metallic over a temperature range from 4.2 to 300 K and are highly conductive with a room-temperature resistivity of 37{plus_minus}2 {mu}{Omega}cm. The residual resistance ratio ({ital R}{sub 300K}/{ital R}{sub 4.2K}) above 5 for our RuO{sub 2} thin films is the highest ever reported for such films on Si substrates. {copyright} {ital 1996 American Institute of Physics.}

  11. Femtosecond laser ablation-based mass spectrometry. An ideal tool for stoichiometric analysis of thin films

    SciTech Connect (OSTI)

    LaHaye, Nicole L.; Kurian, Jose; Diwakar, Prasoon K.; Alff, Lambert; Harilal, Sivanandan S.

    2015-08-19

    An accurate and routinely available method for stoichiometric analysis of thin films is a desideratum of modern materials science where a materials properties depend sensitively on elemental composition. We thoroughly investigated femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS) as an analytical technique for determination of the stoichiometry of thin films down to the nanometer scale. The use of femtosecond laser ablation allows for precise removal of material with high spatial and depth resolution that can be coupled to an ICP-MS to obtain elemental and isotopic information. We used molecular beam epitaxy-grown thin films of LaPd(x)Sb2 and T-La2CuO4 to demonstrate the capacity of fs-LA-ICP-MS for stoichiometric analysis and the spatial and depth resolution of the technique. Here we demonstrate that the stoichiometric information of thin films with a thickness of ~10 nm or lower can be determined. Furthermore, our results indicate that fs-LA-ICP-MS provides precise information on the thin film-substrate interface and is able to detect the interdiffusion of cations.

  12. Big-Data RHEED analysis for understanding epitaxial film growth processes

    SciTech Connect (OSTI)

    Vasudevan, Rama K; Tselev, Alexander; Baddorf, Arthur P; Kalinin, Sergei V

    2014-10-28

    Reflection high energy electron diffraction (RHEED) has by now become a standard tool for in-situ monitoring of film growth by pulsed laser deposition and molecular beam epitaxy. Yet despite the widespread adoption and wealth of information in RHEED image, most applications are limited to observing intensity oscillations of the specular spot, and much additional information on growth is discarded. With ease of data acquisition and increased computation speeds, statistical methods to rapidly mine the dataset are now feasible. Here, we develop such an approach to the analysis of the fundamental growth processes through multivariate statistical analysis of RHEED image sequence. This approach is illustrated for growth of LaxCa1-xMnO3 films grown on etched (001) SrTiO3 substrates, but is universal. The multivariate methods including principal component analysis and k-means clustering provide insight into the relevant behaviors, the timing and nature of a disordered to ordered growth change, and highlight statistically significant patterns. Fourier analysis yields the harmonic components of the signal and allows separation of the relevant components and baselines, isolating the assymetric nature of the step density function and the transmission spots from the imperfect layer-by-layer (LBL) growth. These studies show the promise of big data approaches to obtaining more insight into film properties during and after epitaxial film growth. Furthermore, these studies open the pathway to use forward prediction methods to potentially allow significantly more control over growth process and hence final film quality.

  13. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    SciTech Connect (OSTI)

    Oguchi, Hiroyuki; Ikeshoji, Tamio; Orimo, Shin-ichi; Ohsawa, Takeo; Shiraki, Susumu; Hitosugi, Taro; Kuwano, Hiroki

    2014-11-24

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al{sub 2}O{sub 3} substrates indicated polycrystalline films with a LiAlO{sub 2} secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides.

  14. Domain matched epitaxial growth of (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} thin films on (0001) Al{sub 2}O{sub 3} with ZnO buffer layer

    SciTech Connect (OSTI)

    Krishnaprasad, P. S. E-mail: mkj@cusat.ac.in; Jayaraj, M. K. E-mail: mkj@cusat.ac.in; Antony, Aldrin; Rojas, Fredy

    2015-03-28

    Epitaxial (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) thin films have been grown by pulsed laser deposition on (0001) Al{sub 2}O{sub 3} substrate with ZnO as buffer layer. The x-ray ?-2?, ?-scan and reciprocal space mapping indicate epitaxial nature of BST thin films. The domain matched epitaxial growth of BST thin films over ZnO buffer layer was confirmed using Fourier filtered high resolution transmission electron microscope images of the film-buffer interface. The incorporation of ZnO buffer layer effectively suppressed the lattice mismatch and promoted domain matched epitaxial growth of BST thin films. Coplanar inter digital capacitors fabricated on epitaxial (111) BST thin films show significantly improved tunable performance over polycrystalline thin films.

  15. GaInNAs Structures Grown by MBE for High-Efficiency Solar Cells: Final Report; 25 June 1999--24 August 2002

    SciTech Connect (OSTI)

    Tu, C. W.

    2003-08-01

    The focus of this work is to improve the quality of GaInNAs by advanced thin-film growth techniques, such as digital-alloy growth techniques and migration-enhanced epitaxy (MEE). The other focus is to further investigate the properties of such materials, which are potentially beneficial for high-efficiency, multijunction solar cells. 400-nm-thick strain-compensated Ga0.92In0.08As/GaN0.03As0.97 short-period superlattices (SPSLs) are grown lattice-matched to GaAs substrates. The photoluminescence (PL) intensity of digital alloys is 3 times higher than that of random alloys at room temperature, and the improvement is even greater at low temperature, by a factor of about 12. The room-temperature PL intensity of the GaInNAs quantum well grown by the strained InAs/GaN0.023As SPSL growth mode is higher by a factor 5 as compare to the continuous growth mode. The SPSL growth method allows for independent adjustment of the In-to-Ga ratio without group III competition. MEE reduces the low-energy tail of PL, and PL peaks become more intense and sharper. The twin peaks photoluminescence of GaNAs grown on GaAs was observed at room temperature. The peaks splitting increase with increase in nitrogen alloy content. The strain-induced splitting of light-hole and heavy-hole bands of tensile-strained GaNAs is proposed as an explanation of such behavior.

  16. Thin film ion conducting coating

    DOE Patents [OSTI]

    Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  17. Liquid-film electron stripper

    DOE Patents [OSTI]

    Gavin, Basil F. (Albion, CA)

    1986-01-01

    An improved liquid-film electron stripper particularly for high intensity heavy ion beams which produces constant regenerated, stable, free-standing liquid films having an adjustable thickness between 0.3 to 0.05 microns. The improved electron stripper is basically composed of at least one high speed, rotating disc with a very sharp, precision-like, ground edge on one said of the disc's periphery and with a highly polished, flat, radial surface adjacent the sharp edge. A fine stream of liquid, such as oil, impinges at a 90.degree. angle adjacent the disc's sharp outer edge. Film terminators, located at a selected distance from the disc perimeter are positioned approximately perpendicular to the film. The terminators support, shape, and stretch the film and are arranged to assist in the prevention of liquid droplet formation by directing the collected film to a reservoir below without breaking or interfering with the film. One embodiment utilizes two rotating discs and associated terminators, with the discs rotating so as to form films in opposite directions, and with the second disc being located down beam-line relative to the first disc.

  18. System for measuring film thickness

    DOE Patents [OSTI]

    Batishko, Charles R. (West Richland, WA); Kirihara, Leslie J. (Richland, WA); Peters, Timothy J. (Richland, WA); Rasmussen, Donald E. (Richland, WA)

    1990-01-01

    A system for determining the thicknesses of thin films of materials exhibiting fluorescence in response to exposure to excitation energy from a suitable source of such energy. A section of film is illuminated with a fixed level of excitation energy from a source such as an argon ion laser emitting blue-green light. The amount of fluorescent light produced by the film over a limited area within the section so illuminated is then measured using a detector such as a photomultiplier tube. Since the amount of fluorescent light produced is a function of the thicknesses of thin films, the thickness of a specific film can be determined by comparing the intensity of fluorescent light produced by this film with the intensity of light produced by similar films of known thicknesses in response to the same amount of excitation energy. The preferred embodiment of the invention uses fiber optic probes in measuring the thicknesses of oil films on the operational components of machinery which are ordinarily obscured from view.

  19. Metal oxide films on metal

    DOE Patents [OSTI]

    Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  20. Anode film formation and control

    DOE Patents [OSTI]

    Koski, O.; Marschman, S.C.

    1990-05-01

    A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film functions to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al[sub 2]O[sub 3] concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film. 3 figs.

  1. Anode film formation and control

    DOE Patents [OSTI]

    Koski, Oscar (Richland, WA); Marschman, Steven C. (Richland, WA)

    1990-01-01

    A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film function to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al.sub.2 O.sub.3 concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film.

  2. AlGaAsSb/GaSb Distributed Bragg Reflectors Grown by Organometallic Vapor Phase Epitaxy

    SciTech Connect (OSTI)

    C.A. Wang; C.J. Vineis; D.R. Calawa

    2002-02-13

    The first AlGaAsSb/GaSb quarter-wave distributed Bragg reflectors grown by metallic vapor phase epitaxy are reported. The peak reflectance is 96% for a 10-period structure.

  3. Response-time improved hydrothermal-method-grown ZnO scintillator...

    Office of Scientific and Technical Information (OSTI)

    Response-time improved hydrothermal-method-grown ZnO scintillator for soft x-ray free-electron laser timing-observation Citation Details In-Document Search Title: Response-time...

  4. Study of surface morphology and alignment of MWCNTs grown by chemical vapor deposition

    SciTech Connect (OSTI)

    Shukrullah, S. E-mail: noranimuti-mohamed@petronas.com.my Mohamed, N. M. E-mail: noranimuti-mohamed@petronas.com.my Shaharun, M. S. E-mail: noranimuti-mohamed@petronas.com.my; Yasar, M.

    2014-10-24

    In this research work, Multiwalled Carbon Nanotubes (MWCNTs) have been synthesized successfully by using floating catalytic chemical vapor deposition (FCCVD) method. Different ferrocene amounts (0.1, 0.125 and 0.15 g) were used as catalyst and ethylene was used as a carbon precursor at reaction temperature of 800C. Characterization of the grown MWCNTs was carried out by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained data showed that the catalyst weight affects the nanotubes diameter, alignment, crystallinity and growth significantly, whereas negligible influence was noticed on CNTs forest length. The dense, uniform and meadow like patterns of grown CNTs were observed for 0.15 g ferrocene. The average diameter of the grown CNTs was found in the range of 32 to 75 nm. Close inspection of the TEM images also confirmed the defects in some of the grown CNTs, where few black spots were evident in CNTs structure.

  5. High-efficiency, thin-film solar cells. Annual subcontractor report, 1 July 1991--30 June 1992

    SciTech Connect (OSTI)

    Gale, R.P.

    1994-01-01

    This report describes work on a 3-year research program to investigate thin-film GaAs/GaInP cells using the cleavage of lateral epitaxial film for transfer (CLEFT) technique, and to determine the process to enable overgrowth of GaAs films using organometallic chemistry. Application of the CLEFT thin-film technique to GaInP/GaAs solar cells and organometallic overgrowth was investigated. A problem of alloy contamination was identified and controlled, leading to higher quality layers. Solar cell structures were grown and fabricated using previously determined growth parameters for GaAs and GaInP. With the improved materials developed significant improvements were made in solar cell performance. Conditions for in-situ overgrowth by organometallic chemical vapor deposition (OMCVD) were determined and continuous GaAs layers were grown over a separation mask layer. The layers were successfully separated from their substrate using the CLEFT process, demonstrating the application of overgrowth using OM chemistry with HCl.

  6. Properties of Inconel 625 Mesh Structures Grown by Electron Beam Additive

    Office of Scientific and Technical Information (OSTI)

    Manufacturing (Journal Article) | SciTech Connect Journal Article: Properties of Inconel 625 Mesh Structures Grown by Electron Beam Additive Manufacturing Citation Details In-Document Search Title: Properties of Inconel 625 Mesh Structures Grown by Electron Beam Additive Manufacturing Relationships between electron beam parameters (beam current, beam speed, and beam focus) and physical properties (mass, diameter, elastic modulus, and yield strength) have been investigated for Inconel 625

  7. Improving thermostability of CrO{sub 2} thin films by doping with Sn

    SciTech Connect (OSTI)

    Ding, Yi; Wang, Ziyu; Liu, Shuo; Shi, Jing; Yin, Di; Yuan, Cheng; Lu, Zhihong; Xiong, Rui

    2014-09-01

    Chromium dioxide (CrO{sub 2}) is an ideal material for spin electronic devices since it has almost 100% spin polarization near Fermi level. However, it is thermally unstable and easily decomposes to Cr{sub 2}O{sub 3} even at room temperature. In this study, we try to improve the thermal stability of CrO{sub 2} thin films by doping with Sn whose oxide has the same structure as CrO{sub 2}. High quality epitaxial CrO{sub 2} and Sn-doped CrO{sub 2} films were grown on single crystalline TiO{sub 2} (100) substrates by chemical vapor deposition. Sn{sup 4+} ions were believed to be doped into CrO{sub 2} lattice and take the lattice positions of Cr{sup 4+}. The magnetic measurements show that Sn-doping leads to a decrease of magnetocrystalline anisotropy. The thermal stabilities of the films were evaluated by annealing the films at different temperatures. Sn-doped films can withstand a temperature up to 510 °C, significantly higher than what undoped films can do (lower than 435 °C), which suggests that Sn-doping indeed enhances the thermal stability of CrO{sub 2} films. Our study also indicates that Sn-doping may not change the essential half metallic properties of CrO{sub 2}. Therefore, Sn-doped CrO{sub 2} is expected to be very promising for applications in spintronic devices.

  8. High-RRR thin-films of NB produced using energetic condensation from a coaxial, rotating vacuum ARC plasma (CEDTM)

    SciTech Connect (OSTI)

    Enrique Francisco Valderrama, Colt James, Mahadevan Krishnan, Xin Zhao, Larry Phillips, Charles Reece, Kang Seo

    2012-07-01

    We have recently demonstrated unprecedentedly high values of RRR (up to 542) in thin-films of pure Nb deposited on a-plane sapphire and MgO crystal substrates. The Nb films were grown using a vacuum arc discharge struck between a reactor grade Nb cathode rod (RRR {approx} 30) and a coaxial, semi-transparent Mo mesh anode, with a heated substrate placed just outside it. The substrates were pre-heated for several hours prior to deposition at different temperatures. Low pre-heat temperatures (<300 C) and deposition temperatures (<300 C) give low RRR (<50) films, whereas higher pre-heat (700 C) and coating temperatures (500 C) give RRR=214 on a-sapphire and RRR=542 on MgO. XRD (Bragg-Brentano scans and Pole Figures), EBSD and SIMS data reveal several features: (1) on asapphire, higher temperatures show better 3D registry for epitaxial growth of Nb; the crystal structure evolves from textured, polycrystalline (with twins) to single-crystal; (2) on MgO, there is a transition from {l_brace}110{r_brace} planes to {l_brace}100{r_brace} as the temperature is increased beyond 500 C. The dramatic increase in RRR (from {approx}10 at <300 C to {approx}500 at >600 C) is correlated with better epitaxial crystal structure in both a-sapphire and MgO substrate grown films. However, the SIMS data reveal that the most important requirement for high-RRR Nb films on either substrate is the reduction of impurities in the film, especially hydrogen. The hydrogen content in the MgO grown films is 1000 times lower than in bulk Nb tested as a reference from SRF cavity grade Nb. This result has potential implications for SRF accelerators. Coating bulk Nb cavities with an MgO layer followed by our CEDTM deposited Nb films, might create superior SRF cavities that would avoid Q-slope and operate at higher peak fields.

  9. Ferromagnetic thin films

    DOE Patents [OSTI]

    Krishnan, K.M.

    1994-12-20

    A ferromagnetic [delta]-Mn[sub 1[minus]x]Ga[sub x] thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4[+-]0.05. 7 figures.

  10. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  11. Magnetism and transport properties of epitaxial Fe-Ga thin films on GaAs(001)

    SciTech Connect (OSTI)

    Duong Anh Tuan; Shin, Yooleemi; Cho, Sunglae; Dang Duc Dung; Vo Thanh Son

    2012-04-01

    Epitaxial Fe-Ga thin films in disordered bcc {alpha}-Fe crystal structure (A2) have been grown on GaAs(001) by molecular beam epitaxy. The saturated magnetization (M{sub S}) decreased from 1371 to 1105 kA/m with increasing Ga concentration from 10.5 to 24.3 % at room temperature. The lattice parameter increased with the increase in Ga content because of the larger atomic radius of Ga atom than that of Fe. The increase in carrier density with Ga content caused in lower resistivity.

  12. Electronic phase diagram of epitaxial La{sub 1?x}Sr{sub x}FeO{sub 3} films

    SciTech Connect (OSTI)

    Xie, Y. J.; Scafetta, M. D.; Moon, E. J.; Krick, A. L.; Sichel-Tissot, R. J.; May, S. J.

    2014-08-11

    The electronic phase diagram of epitaxial La{sub 1?x}Sr{sub x}FeO{sub 3} films is presented. The films were grown on SrTiO{sub 3} using molecular beam epitaxy with post-growth annealing to minimize oxygen vacancies. Insulating behavior is observed from x?=?00.9, with metallic conduction only present for x?=?1.0. While the La-rich compounds exhibit polaron conduction over all temperatures measured, the Sr-rich films exhibit an electronic phase transition within the compositional window of x?=?0.490.9 as revealed by temperature-dependent resistivity measurements. The transition temperatures are found to decrease with increasing Sr content. The constructed phase diagram is discussed in the context of other 3d e{sub g} perovskite systems including manganites and cobaltites.

  13. Surface and Interface Properties of 10–12 Unit Cells Thick Sputter Deposited Epitaxial CeO 2 Films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Saraf, L. V.; Wang, C. M.; Engelhard, M. H.; Nachimuthu, P.

    2008-01-01

    Ulmore » trathin and continuous epitaxial films with relaxed lattice strain can potentially maintain more of its bulk physical and chemical properties and are useful as buffer layers. We study surface, interface, and microstructural properties of ultrathin ( ∼ 10–12 unit cells thick) epitaxial ceria films grown on single crystal YSZ substrates. The out-of -plane and in-plane lattice parameters indicate relaxation in the continuous film due to misfit dislocations seen by high-resolution transmission electron microscopy (HRTEM) and substrate roughness of ∼ 1-2 unit cells, confirmed by atomic force microscopy and HRTEM. A combination of secondary sputtering, lattice mismatch, substrate roughness, and surface reduction creating secondary phase was likely the cause of surface roughness which should be reduced to a minimum level for effective use of it as buffer layers.« less

  14. Surface and Interface Properties of 1012 Unit Cells Thick Sputter Deposited Epitaxial CeO2Films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Saraf, L. V.; Wang, C. M.; Engelhard, M. H.; Nachimuthu, P.

    2008-01-01

    Ultrathin and continuous epitaxial films with relaxed lattice strain can potentially maintain more of its bulk physical and chemical properties and are useful as buffer layers. We study surface, interface, and microstructural properties of ultrathin (?1012 unit cells thick) epitaxial ceria films grown on single crystal YSZ substrates. The out-of -plane and in-plane lattice parameters indicate relaxation in the continuous film due to misfit dislocations seen by high-resolution transmission electron microscopy (HRTEM) and substrate roughness of?1-2 unit cells, confirmed by atomic force microscopy and HRTEM. A combination of secondary sputtering, lattice mismatch, substrate roughness, and surface reduction creating secondary phasemorewas likely the cause of surface roughness which should be reduced to a minimum level for effective use of it as buffer layers.less

  15. Thermal protection of H13 steel by growth of (TiAl)N films by PAPVD pulsed arc technique

    SciTech Connect (OSTI)

    Jimenez, H.; Devia, D.M.; Benavides, V.; Devia, A. Arango, Y.C.; Arango, P.J.; Velez, J.M.

    2008-08-15

    (TiAl)N Films were grown on H13 steel by a plasma assisted repetitive pulsed arc discharge. To grow the coatings, a TiAl sintered cathode was used, 50% Ti-50% Al. The deposition system consists of a reaction chamber with two electrodes placed face to face. A pulsed power supply, which allows for control of parameters like time active arc, time between arcs, arc energy, and others, is used to generate the discharge. Thermal changes were carried out on H13 steel before and after growing the (TiAl)N films. X-ray diffraction (XRD) was employed to study the coatings, observing the H13 steel and (TiAl)N oxidation temperature. Morphological characteristics were analyzed by means of an Atomic Force Microscopy (AFM). Scanning electron microscopy (SEM) revealed the surface chemical composition of the films and morphological details of the samples.

  16. All-metallic electrically gated 2H-TaSe{sub 2} thin-film switches and logic circuits

    SciTech Connect (OSTI)

    Renteria, J.; Jiang, C.; Yan, Z.; Samnakay, R.; Goli, P.; Pope, T. R.; Salguero, T. T.; Wickramaratne, D.; Lake, R. K.; Khitun, A. G.; Balandin, A. A.

    2014-01-21

    We report the fabrication and performance of all-metallic three-terminal devices with tantalum diselenide thin-film conducting channels. For this proof-of-concept demonstration, the layers of 2H-TaSe{sub 2} were exfoliated mechanically from single crystals grown by the chemical vapor transport method. Devices with nanometer-scale thicknesses exhibit strongly non-linear current-voltage characteristics, unusual optical response, and electrical gating at room temperature. We have found that the drain-source current in thin-film 2H-TaSe{sub 2}Ti/Au devices reproducibly shows an abrupt transition from a highly resistive to a conductive state, with the threshold tunable via the gate voltage. Such current-voltage characteristics can be used, in principle, for implementing radiation-hard all-metallic logic circuits. These results may open new application space for thin films of van der Waals materials.

  17. Epitaxial growth, structure and intermixing at the LaAlO3/SrTiO3 interface as the film stoichiometry is varied

    SciTech Connect (OSTI)

    Qiao, Liang; Droubay, Timothy C.; Varga, Tamas; Bowden, Mark E.; Shutthanandan, V.; Zhu, Zihua; Kaspar, Tiffany C.; Chambers, Scott A.

    2011-02-11

    LaAlO3 epitaxial films with La:Al cation ratios ranging from 0.9 to 1.2 were grown on TiO2-terminated SrTiO3 (001) substrates by off-axis pulsed laser deposition. Although all films are epitaxial, rocking curve and Kiessig fringe oscillation measurements show that the crystallographic quality degrades with increasing La:Al ratio. Films with La:Al ratios of 0.9, 1.0, and 1.1 were coherently strained to the substrate. However, the out-of-plane lattice parameter increases over this range, revealing a decrease in film tetragonality. Although all film surfaces exhibit hydroxylation, the extent of hydroxylation is greater for the La-rich films. Rutherford backscattering spectrometry reveals that La from the film diffuses deeply into the SrTiO3 substrate and secondary ion mass spectroscopy shows unambiguous Sr outdiffusion into the films. Intermixing, which is generally not investigated in studies of the LaAlO3/SrTiO3 interface, may have important implications for the mechanism of electrical conductivity.

  18. Low-temperature growth and orientational control in RuO{sub 2} thin films by metal-organic chemical vapor deposition

    SciTech Connect (OSTI)

    Bai, G.R.; Wang, A.; Foster, C.M.; Vetrone, J.; Patel, J.; Wu, X.

    1996-08-01

    For growth temperatures in the range of 275 C to 425 C, highly conductive RuO{sub 2} thin films with either (110)- or (101)-textured orientations have been grown by metal-organic chemical vapor deposition (MOCVD) on both SiO{sub 2}/Si(001) and Pt/Ti/SiO{sub 2}/Si(001) substrates. Both the growth temperature and growth rate were used to control the type and degree of orientational texture of the RuO{sub 2} films. In the upper part of this growth temperature range ({approximately} 350 C) and at a low growth rate (< 30 {angstrom}/min.), the RuO{sub 2} films favored a (110)-textured. In contrast, at the lower part of this growth temperature range ({approximately} 300 C) and at a high growth rate (> 30 {angstrom}/min.), the RuO{sub 2} films favored a (101)-textured. In contrast, a higher growth temperatures (> 425 C) always produced randomly-oriented polycrystalline films. For either of these low-temperature growth processes, the films produced were crack-free, well-adhered to the substrates, and had smooth, specular surfaces. Atomic force microscopy showed that the films had a dense microstructure with an average grain size of 50--80 nm and a rms. surface roughness of {approximately} 3--10 nm. Four-probe electrical transport measurements showed that the films were highly conductive with resistivities of 34--40 {micro}{Omega}-cm ({at} 25 C).

  19. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    SciTech Connect (OSTI)

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2014-12-14

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO{sub 3} substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ?18?K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ?3?K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. These macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed by soft x-ray resonant magnetic scattering measurements.

  20. Effects of substrate temperature and Cu underlayer thickness on the formation of SmCo{sub 5}(0001) epitaxial thin films

    SciTech Connect (OSTI)

    Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-05-15

    SmCo{sub 5}(0001) epitaxial thin films were prepared on Cu(111) underlayers heteroepitaxially grown on Al{sub 2}O{sub 3}(0001) single-crystal substrates by molecular beam epitaxy. The effects of substrate temperature and Cu underlayer thickness on the crystallographic properties of SmCo{sub 5}(0001) epitaxial films were investigated. The Cu atoms of underlayer diffuse into the SmCo{sub 5} film and substitute the Co sites in SmCo{sub 5} structure forming an alloy compound of Sm(Co,Cu){sub 5}. The ordered phase formation is enhanced with increasing the substrate temperature and with increasing the Cu underlayer thickness. The Cu atom diffusion into the SmCo{sub 5} film is assisting the formation of Sm(Co,Cu){sub 5} ordered phase.

  1. Interface-dependent magnetotransport properties for thin Pt films on ferrimagnetic Y{sub 3}Fe{sub 5}O{sub 12}

    SciTech Connect (OSTI)

    Shiomi, Y.; Ohtani, T.; Iguchi, S.; Sasaki, T.; Qiu, Z.; Nakayama, H.; Uchida, K.; Saitoh, E.

    2014-06-16

    We have studied magnetoresistance and Hall effects for 1.8-nm-thick Pt films grown on a ferrimagnetic insulator Y{sub 3}Fe{sub 5}O{sub 12} in a wide temperature (0.46–300 K) and magnetic-field (−15 to 15 T) region. In the low-temperature regime where quantum corrections to conductivity are observed, weak antilocalization behavior observed in Pt films is critically suppressed when the film is attached to Y{sub 3}Fe{sub 5}O{sub 12}. Hall resistance in the Pt film is also affected by Y{sub 3}Fe{sub 5}O{sub 12}, and it exhibits logarithmic temperature dependence in a broad temperature range. The magnetotransport properties in the high-field range are significantly influenced by the interface between Pt and Y{sub 3}Fe{sub 5}O{sub 12}.

  2. Liquid-film electron stripper

    DOE Patents [OSTI]

    Leemann, Beat T. (Walnut Creek, CA); Yourd, Roland B. (Kensington, CA)

    1984-01-01

    A thin freestanding oil film is produced in vacuum by directing an oil stream radially inward to the hollow-ground sharp outer edge of a rotating disc. The sides of the edge are roughened somewhat to aid in dispersing oil from the disc. Oil is removed from the surface of disc to prevent formation of oil droplets which might spin off the disc and disrupt the oil film. An ion beam is directed through the thin oil film so that electrons are stripped from the ions to increase their charge.

  3. Liquid-film electron stripper

    DOE Patents [OSTI]

    Leemann, B.T.; Yourd, R.B.

    1982-03-09

    A thin freestanding oil film is produced in vacuum by directing an oil stream radially inward to the hollow-ground sharp outer edge of a rotating disc. The sides of the edge are roughened somewhat to aid in dispersing oil from the disc. Oil is removed from the surface of disc to prevent formation of oil droplets which might spin off the disc and disrupt the oil film. An ion beam is directed through the thin oil film so that electrons are stripped from the ions to increase their charge.

  4. Vapor deposition of thin films

    SciTech Connect (OSTI)

    Smith, D.C.; Pattillo, S.G.; Laia, J.R. Jr.; Sattelberger, A.P.

    1990-10-05

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl){sub 3}, iridium(allyl){sub 3}, molybdenum(allyl){sub 4}, tungsten(allyl){sub 4}, rhenium (allyl){sub 4}, platinum(allyl){sub 2}, or palladium(allyl){sub 2} are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  5. Vapor deposition of thin films

    DOE Patents [OSTI]

    Smith, David C. (Los Alamos, NM); Pattillo, Stevan G. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Sattelberger, Alfred P. (Los Alamos, NM)

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  6. Tailoring nanocrystalline diamond film properties

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); McCauley, Thomas G. (Somerville, MA); Zhou, Dan (Orlando, FL); Krauss, Alan R. (Naperville, IL)

    2003-07-15

    A method for controlling the crystallite size and growth rate of plasma-deposited diamond films. A plasma is established at a pressure in excess of about 55 Torr with controlled concentrations of hydrogen up to about 98% by volume, of unsubstituted hydrocarbons up to about 3% by volume and an inert gas of one or more of the noble gases and nitrogen up to about 98% by volume. The volume ratio of inert gas to hydrogen is preferably maintained at greater than about 4, to deposit a diamond film on a suitable substrate. The diamond film is deposited with a predetermined crystallite size and at a predetermined growth rate.

  7. Epitaxial Ni{sub 3}FeN thin films: A candidate for spintronic devices and magnetic sensors

    SciTech Connect (OSTI)

    Loloee, Reza

    2012-07-15

    A new type of epitaxial ferromagnetic nitride (Ni{sub 3} Fe N = permalloy nitride = 'PyN') compound films were grown on Al{sub 2}O{sub 3}(1120) substrates using reactive triode magnetron sputtering. The results of electron back-scattering diffraction and x-ray diffraction techniques indicate a high quality epitaxial crystalline structure with growth normal of (100). Magnetization measurements of epitaxial PyN films revealed several unique results. (1) A textbook square hysteresis loop that suggest existence of single magnetic domain in these films. (2) A coercive field is tunable from a few mOe up to a few Oe by changing the film thickness. (3) A magnetization that switches (rotate) over a very small field range of {delta}H{sub C} {<=} 0.05 Oe, independent of the film thickness. This small {delta}H indicates a very large resistive sensitivity ({delta}R/{delta}H) of the epitaxial PyN. (4) The epitaxial PyN thermal cycling through several cycles between '2 and 800 K' (-271 Degree-Sign C to +527 Degree-Sign C) shows much less degradation only about 2-5% compared to 40% degradation of a simple Py film. Four-probe transport measurements give an anisotropic magnetoresistance of Almost-Equal-To 6%, sufficiently higher than other known ferromagnetic materials. These interesting properties are ideal for a variety of spintronic devices and magnetic sensors.

  8. Preparation and structural characterization of FeCo epitaxial thin films on insulating single-crystal substrates

    SciTech Connect (OSTI)

    Nishiyama, Tsutomu; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-05-15

    FeCo epitaxial films were prepared on MgO(111), SrTiO{sub 3}(111), and Al{sub 2}O{sub 3}(0001) single-crystal substrates by ultrahigh vacuum molecular beam epitaxy. The effects of insulating substrate material on the film growth process and the structures were investigated. FeCo(110){sub bcc} films grow on MgO substrates with two type domains, Nishiyama-Wassermann (NW) and Kurdjumov-Sachs (KS) relationships. On the contrary, FeCo films grown on SrTiO{sub 3} and Al{sub 2}O{sub 3} substrates include FeCo(111){sub bcc} crystal in addition to the FeCo(110){sub bcc} crystals with NW and KS relationships. The FeCo(111){sub bcc} crystal consists of two type domains whose orientations are rotated around the film normal by 180 deg. each other. The out-of-plane and the in-plane lattice spacings of FeCo(110){sub bcc} and FeCo(111){sub bcc} crystals formed on the insulating substrates are in agreement with those of the bulk Fe{sub 50}Co{sub 50} (at. %) crystal with small errors ranging between +0.2% and +0.4%, showing that the strains in the epitaxial films are very small.

  9. AlGaN/GaN heterostructure prepared on a Si (110) substrate via pulsed sputtering

    SciTech Connect (OSTI)

    Watanabe, T.; Ohta, J.; Kondo, T.; Ohashi, M.; Ueno, K.; Kobayashi, A.; Fujioka, H.

    2014-05-05

    GaN films were grown on Si (110) substrates using a low-temperature growth technique based on pulsed sputtering. Reduction of the growth temperature suppressed the strain in the GaN films, leading to an increase in the critical thickness for crack formation. In addition, an AlGaN/GaN heterostructure with a flat heterointerface was prepared using this technique. Furthermore, the existence of a two dimensional electron gas at the heterointerface with a mobility of 1360 cm{sup 2}/Vs and a sheet carrier density of 1.3??10{sup 13}?cm{sup ?2} was confirmed. Finally, the use of the AlGaN/GaN heterostructure in a high electron mobility transistor was demonstrated. These results indicate that low-temperature growth via pulsed sputtering is quite promising for the fabrication of GaN-based electronic devices.

  10. Oxidized film structure and method of making epitaxial metal oxide structure

    DOE Patents [OSTI]

    Gan, Shupan [Richland, WA; Liang, Yong [Richland, WA

    2003-02-25

    A stable oxidized structure and an improved method of making such a structure, including an improved method of making an interfacial template for growing a crystalline metal oxide structure, are disclosed. The improved method comprises the steps of providing a substrate with a clean surface and depositing a metal on the surface at a high temperature under a vacuum to form a metal-substrate compound layer on the surface with a thickness of less than one monolayer. The compound layer is then oxidized by exposing the compound layer to essentially oxygen at a low partial pressure and low temperature. The method may further comprise the step of annealing the surface while under a vacuum to further stabilize the oxidized film structure. A crystalline metal oxide structure may be subsequently epitaxially grown by using the oxidized film structure as an interfacial template and depositing on the interfacial template at least one layer of a crystalline metal oxide.

  11. Functionalization of cubic boron nitride films with rhodamine B and their fluorescent properties

    SciTech Connect (OSTI)

    Liu, W. M.; Zhang, H. Y.; Wang, P. F.; Ye, Q.; Yang, Y.; He, B.; Bello, I.; Lee, S. T.; Zhang, W. J.

    2011-08-08

    Fluorophore-functionalized cubic boron nitride (cBN) films grown by chemical vapor deposition were achieved by immobilizing rhodamine B isothiocyanate onto their surfaces. To perform the immobilization, the cBN substrates were modified with amino groups by photochemical reaction between hydrogen-terminated cBN surfaces and allylamine. The surface analysis of hydrogen-terminated cBN films surfaces and after functionalization with x-ray photoelectron spectroscopy verified that rhodamine B was indeed attached to the cBN surfaces with covalent bonding. The rhodamine B-functionalized cBN surfaces showed significant variation in fluorescent spectra and confocal imaging upon the treatment in acidic or basic solutions.

  12. Extrinsic anomalous Hall effect in epitaxial Mn{sub 4}N films

    SciTech Connect (OSTI)

    Meng, M.; Wu, S. X. Ren, L. Z.; Zhou, W. Q.; Wang, Y. J.; Wang, G. L.; Li, S. W.

    2015-01-19

    Anomalous Hall effect (AHE) in ferrimagnetic Mn{sub 4}N epitaxial films grown by molecular-beam epitaxy is investigated. The longitudinal conductivity σ{sub xx} is within the superclean regime, indicating Mn{sub 4}N is a highly conducting material. We further demonstrate that the AHE signal in 40-nm-thick films is mainly due to the extrinsic contributions based on the analysis fitted by ρ{sub AH}=a′ρ{sub xx0}+bρ{sub xx}{sup 2} and σ{sub AH}∝σ{sub xx}. Our study not only provide a strategy for further theoretical work on antiperovskite manganese nitrides but also shed promising light on utilizing their extrinsic AHE to fabricate spintronic devices.

  13. Utility of reactively sputtered CuN{sub x} films in spintronics devices

    SciTech Connect (OSTI)

    Fang Yeyu; Persson, J.; Zha, C.; Willman, J.; Miller, Casey W.; Aakerman, Johan

    2012-04-01

    We have studied nitrified copper (CuN{sub x}) thin films grown by reactive sputtering in the context of spintronic devices. The Ar-to-N{sub 2} flow ratio enables tunability of the electrical resistivity and surface roughness of the CuN{sub x} films, with the former increasing to nearly 20 times that of Cu, and the latter reduced to the atomic scale. Incorporating this into a Ta/CuN{sub x}/Ta seed stack for spin valves improves the current-in-plane (CIP) magnetoresistance; maximum magnetoresistance results with CuN{sub x} seed layer and Cu interlayer. Finally, finite element modeling results are presented that suggest the use of CuN{sub x} in nanocontact spin torque oscillators can enhance current densities by limiting the current spread through the device. This may positively impact threshold currents, power requirements, and device reliability.

  14. Tailoring of a metastable material: alfa-FeSi2 thin film

    SciTech Connect (OSTI)

    Cao, Guixin; Singh, David J; Zhang, Xiaoguang; Samolyuk, German D; Qiao, Liang; Parish, Chad M; Ke, Jin; Zhang, Yanwen; Guo, Hangwen; Tang, Siwei; Wang, Wenbin; Yi, Jieyu; Cantoni, Claudia; Siemons, Wolter; Payzant, E Andrew; Biegalski, Michael D; Ward, Thomas Zac; Sales, Brian C; Mandrus, D.; Stocks, George Malcolm; Gai, Zheng

    2015-01-01

    The epitaxially stabilized metallic -FeSi2 thin films on Si(001) were grown using pulsed laser deposition. While the bulk material of -FeSi2 is a high temperature metastable phase and nonmagnetic, the thin film is stabilized at room temperature and shows unusual electronic transport and magnetic properties due to strain modification. The transport renders two different conducting states with a strong crossover at 50 K accompanied by an onset of ferromagnetism as well as a substantial magnetocaloric effect and magnetoresistance. These experimental results are discussed in terms of the unusual electronic structure of -FeSi2 obtained within density functional calculations and Boltzmann transport calculations with and without strain. Our findings provide an example of a tailored material with interesting physics properties for practical applications.

  15. Electric and magnetic behaviors observed in NiO-based thin films under light-irradiation

    SciTech Connect (OSTI)

    Luo, Yi-Dong; Song, Kenan; Shun, Li; Gao, Junqi; Xu, Ben, E-mail: xuben@mail.tsinghua.edu.cn, E-mail: linyh@mail.tsinghua.edu.cn; Lin, Yuan-Hua, E-mail: xuben@mail.tsinghua.edu.cn, E-mail: linyh@mail.tsinghua.edu.cn; Nan, Ce-Wen; Liu, Wei [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-09-07

    We report the room-temperature ferromagnetic properties that can be tuned by light irradiation in the Li and Mn co-doped NiO films (LMNO) grown by the spinning coating. The optical tunable magnetic behavior is enhanced by the increase of the Li doping concentration. First-principle calculations reveal that the Li doping plays key roles in the optical tuned magnetic behavior, which brings a 3d-like impurity state to enhance a significant hybridization between the Mn{sup 3+} 3d state and the impurity band, thus strengthening the ferromagnetic coupling effects. Additionally, it can tune the band gap of the LMNO films and produce more holes under the light irradiation, enhancing the optical tuned magnetic behavior.

  16. Fabrication of amorphous diamond films

    DOE Patents [OSTI]

    Falabella, S.

    1995-12-12

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  17. Process for forming planarized films

    DOE Patents [OSTI]

    Pang, Stella W. (Arlington, MA); Horn, Mark W. (North Chelmsford, MA)

    1991-01-01

    A planarization process and apparatus which employs plasma-enhanced chemical vapor deposition (PECVD) to form plarnarization films of dielectric or conductive carbonaceous material on step-like substrates.

  18. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, X.; Sheldon, P.

    1998-01-27

    A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  19. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, Xiaonan (Golden, CO); Sheldon, Peter (Lakewood, CO)

    1998-01-01

    A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  20. Effect of Surface Termination on the Electonic Properties of LaNiO₃ Films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kumah, Divine P.; Malashevich, Andrei; Disa, Ankit S.; Arena, Dario A.; Walker, Fred J.; Ismail-Beigi, Sohrab; Ahn, Charles H.

    2014-11-06

    The electronic and structural properties of thin LaNiO₃ films grown by using molecular beam epitaxy are studied as a function of the net ionic charge of the surface terminating layer. We demonstrate that electronic transport in nickelate heterostructures can be manipulated through changes in the surface termination due to a strong coupling of the surface electrostatic properties to the structural properties of the Ni—O bonds that govern electronic conduction. We observe experimentally and from first-principles theory an asymmetric response of the structural properties of the films to the sign of the surface charge, which results from a strong interplay betweenmore » electrostatic and mechanical boundary conditions governing the system. The structural response results in ionic buckling in the near-surface NiO₂ planes for films terminated with negatively charged NiO₂ and bulklike NiO₂ planes for films terminated with positively charged LaO planes. The ability to modify transport properties by the deposition of a single atomic layer can be used as a guiding principle for nanoscale device fabrication.« less

  1. Effect of Surface Termination on the Electonic Properties of LaNiO? Films

    SciTech Connect (OSTI)

    Kumah, Divine P.; Malashevich, Andrei; Disa, Ankit S.; Arena, Dario A.; Walker, Fred J.; Ismail-Beigi, Sohrab; Ahn, Charles H.

    2014-11-06

    The electronic and structural properties of thin LaNiO? films grown by using molecular beam epitaxy are studied as a function of the net ionic charge of the surface terminating layer. We demonstrate that electronic transport in nickelate heterostructures can be manipulated through changes in the surface termination due to a strong coupling of the surface electrostatic properties to the structural properties of the NiO bonds that govern electronic conduction. We observe experimentally and from first-principles theory an asymmetric response of the structural properties of the films to the sign of the surface charge, which results from a strong interplay between electrostatic and mechanical boundary conditions governing the system. The structural response results in ionic buckling in the near-surface NiO? planes for films terminated with negatively charged NiO? and bulklike NiO? planes for films terminated with positively charged LaO planes. The ability to modify transport properties by the deposition of a single atomic layer can be used as a guiding principle for nanoscale device fabrication.

  2. Growth and Surface Modification of LaFeO3 Thin Films Induced By Reductive Annealing

    SciTech Connect (OSTI)

    Flynn, Brendan T.; Zhang, Hongliang; Shutthanandan, V.; Varga, Tamas; Colby, Robert J.; Oleksak, Richard P.; Manandhar, Sandeep; Engelhard, Mark H.; Chambers, Scott A.; Henderson, Michael A.; Herman, Gregory S.; Thevuthasan, Suntharampillai

    2015-03-01

    The electronic and ionic conductivity of perovskite oxides has enabled their use in diverse applications such as automotive exhaust catalysts, solid oxide fuel cell cathodes, and visible light photocatalysts. The redox chemistry at the surface of perovskite oxides is largely dependent on the oxidation state of the metal cations as well as the oxide surface stoichiometry. In this study, LaFeO3 (LFO) thin films grown on yttria-stabilized zirconia (YSZ) was characterized using both bulk and surface sensitive techniques. A combination of in situ reflection high energy electron diffraction (RHEED), x-ray diffraction (XRD), transmission electron microscopy (TEM) and Rutherford backscattering spectrometry (RBS) demonstrated that the film is highly oriented and stoichiometric. The film was annealed in an ultra-high vacuum chamber to simulate reducing conditions and studied by angle-resolved x-ray photoelectron spectroscopy (XPS). Iron was found to exist as Fe(0), Fe(II), and Fe(III) depending on the annealing conditions and the depth within the film. A decrease in the concentration of surface oxygen species was correlated with iron reduction. These results should help guide and enhance the design of perovskite materials for catalysts.

  3. Transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Yuankun; Mendelsberg, Rueben J.; Zhu, Jiaqi; Han, Jiecai; Anders, André

    2012-11-26

    Indium doped cadmium oxide (CdO:In) films with different In concentrations were prepared on low-cost glass substrates by pulsed filtered cathodic arc deposition (PFCAD). In this study, it is shown that polycrystalline CdO:In films with smooth surface and dense structure are obtained. In-doping introduces extra electrons leading to remarkable improvements of electron mobility and conductivity, as well as improvement in the optical transmittance due to the Burstein Moss effect. CdO:In films on glass substrates with thickness near 230 nm show low resistivity of 7.23 x 10-5 Ωcm, high electron mobility of 142 cm2/Vs, and mean transmittance over 80% from 500-1250 nmmore » (including the glass substrate). These high quality pulsed arc-grown CdO:In films are potentially suitable for high efficiency multi-junction solar cells that harvest a broad range of the solar spectrum.« less

  4. Sandia Energy - Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency Permalink Gallery Assessment of deep level defects in m-plane GaN grown by metalorganic chemical vapor deposition Energy Efficiency, News, News & Events,...

  5. Carbon nanotubes grown on metal microelectrodes for the detection of dopamine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Cheng; Jacobs, Christopher B.; Nguyen, Michael; Ganesana, Mallikarjunarao; Zestos, Alexander; Ivanov, Ilia N.; Puretzky, Alexander A.; Rouleau, Christopher M.; Geohegan, David B.; Venton, B. Jill

    2015-12-07

    Microelectrodes modified with carbon nanotubes (CNTs) are useful for the detection of neurotransmitters because the CNTs enhance sensitivity and have electrocatalytic effects. CNTs can be grown on carbon fiber microelectrodes (CFMEs) but the intrinsic electrochemical activity of carbon fibers makes evaluating the effect of CNT enhancement difficult. Metal wires are highly conductive and many metals have no intrinsic electrochemical activity for dopamine, so we investigated CNTs grown on metal wires as microelectrodes for neurotransmitter detection. In this work, we successfully grew CNTs on niobium substrates for the first time. Instead of planar metal surfaces, metal wires with a diameter ofmore » only 25 μm were used as CNT substrates; these have potential in tissue applications due to their minimal tissue damage and high spatial resolution. Scanning electron microscopy shows that aligned CNTs are grown on metal wires after chemical vapor deposition. By use of fast-scan cyclic voltammetry, CNT-coated niobium (CNT-Nb) microelectrodes exhibit higher sensitivity and lower ΔEp value compared to CNTs grown on carbon fibers or other metal wires. The limit of detection for dopamine at CNT-Nb microelectrodes is 11 ± 1 nM, which is approximately 2-fold lower than that of bare CFMEs. Adsorption processes were modeled with a Langmuir isotherm, and detection of other neurochemicals was also characterized, including ascorbic acid, 3,4-dihydroxyphenylacetic acid, serotonin, adenosine, and histamine. CNT-Nb microelectrodes were used to monitor stimulated dopamine release in anesthetized rats with high sensitivity. This research demonstrates that CNT-grown metal microelectrodes, especially CNTs grown on Nb microelectrodes, are useful for monitoring neurotransmitters.« less

  6. Optoelectronic properties and interband transition of La-doped BaSnO{sub 3} transparent conducting films determined by variable temperature spectral transmittance

    SciTech Connect (OSTI)

    Xing, S. M.; Shan, C.; Jiang, K.; Zhu, J. J.; Li, Y. W.; Hu, Z. G. Chu, J. H.

    2015-03-14

    Perovskite-structured Ba{sub 1?x}La{sub x}SnO{sub 3} (x?=?00.10) films have been directly grown on (0001) sapphire substrates by a sol-gel method. Optical properties and bandgap energy of the films have been investigated by transmittance spectra from 10?K to 450?K. It indicates that these films exhibit a high transmission of more than 80% in the visible region. With increasing temperature, there is a significant bandgap shrinkage of about 0.5?eV for lightly La doping (x???0.04) films. For heavily La doping concentration (x???0.06), the bandgap remains nearly stable with the temperature and La composition. This is due to the fact that the lattice expansion caused by La doping is close to the saturation for the film doped with x?=?0.06. Moreover, temperature dependent conductivity behavior shows a similar pattern, which suggests that the doping concentration of La-doped BaSnO{sub 3} (BLSO) films has a saturated state. The La introduction can modify the Sn 5s-O 2p antibonding state and the nonbonding O 2p orbital, which remarkably affect the electronic bandgap of the BLSO films.

  7. Room temperature ferromagnetic and ferroelectric properties of Bi{sub 1−x}Ca{sub x}MnO{sub 3} thin films

    SciTech Connect (OSTI)

    Pugazhvadivu, K. S.; Tamilarasan, K.; Balakrishnan, L.; Mohan Rao, G.

    2014-11-15

    Bi{sub 1−x}Ca{sub x}MnO{sub 3} (BCMO) thin films with x = 0, 0.1, 0.2, 0.3 and 0.4 are successfully deposited on the n-type Si (100) substrate at two different temperatures of 400 °C and 800 °C using RF magnetron sputtering. The stoichiometry of the films and oxidation state of the elements have been described by X-ray photoelectron spectroscopy analysis. Dielectric measurement depicts the insulating property of BCMO films. Magnetic and ferroelectric studies confirm the significant enhancement in spin orientation as well as electric polarization at room temperature due to incorporation of Ca{sup 2+} ions into BiMnO{sub 3} films. The BCMO (x = 0.2) film grown at 400 °C shows better magnetization (M{sub sat}) and polarization (P{sub s})with the measured values of 869 emu / cc and 6.6 μ{sub C}/ cm{sup 2} respectively than the values of the other prepared films. Thus the realization of room temperature ferromagnetic and ferroelectric ordering in Ca{sup 2+} ions substituted BMO films makes potentially interesting for spintronic device applications.

  8. Effect of deposition pressure on the microstructure and thermoelectric properties of epitaxial ScN(001) thin films sputtered onto MgO(001) substrates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burmistrova, Polina V.; Zakharov, Dmitri N.; Favaloro, Tela; Mohammed, Amr; Stach, Eric A.; Shakouri, Ali; Sands, Timothy D.

    2015-03-14

    Four epitaxial ScN(001) thin films were successfully deposited on MgO(001) substrates by dc reactive magnetron sputtering at 2, 5, 10, and 20 mTorr in an Ar/N2 ambient atmosphere at 650 °C. The microstructure of the resultant films was analyzed by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Electrical resistivity, electron mobility and concentration were measured using the room temperature Hall technique, and temperature dependent in-plain measurements of the thermoelectric properties of the ScN thin films were performed. The surface morphology and film crystallinity significantly degrade with increasing deposition pressure. The ScN thin film deposited at 20 mTorr exhibitsmore » the presence of <221> oriented secondary grains resulting in decreased electric properties and a low thermoelectric power factor of 0.5 W/m-K² at 800 K. ScN thin films grown at 5 and 10 mTorr are single crystalline, yielding the power factor of approximately 2.5 W/m-K² at 800 K. The deposition performed at 2 mTorr produces the highest quality ScN thin film with the electron mobility of 98 cm² V⁻¹ s⁻¹ and the power factor of 3.3 W/m-K² at 800 K.« less

  9. Billion-Ton Update: Home-Grown Energy Resources Across the Nation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Billion-Ton Update: Home-Grown Energy Resources Across the Nation Billion-Ton Update: Home-Grown Energy Resources Across the Nation August 11, 2011 - 3:59pm Addthis Total potential biomass resources by county in the contiguous U.S. from the baseline scenario of the Update (Figure 6.4, page 159) | Map from Billion-Ton Update Total potential biomass resources by county in the contiguous U.S. from the baseline scenario of the Update (Figure 6.4, page 159) | Map from

  10. Recovery Act : Near-Single-Crystalline Photovoltaic Thin Films on Polycrystalline, Flexible Substrates

    SciTech Connect (OSTI)

    Venkat Selvamanickam; Alex Freundlich

    2010-11-29

    III-V photovoltaics have exhibited efficiencies above 40%, but have found only a limited use because of the high cost of single crystal substrates. At the other end of the spectrum, polycrystalline and amorphous thin film solar cells offer the advantage of low-cost fabrication, but have not yielded high efficiencies. Our program is based on single-crystalline-like thin film photovoltaics on polycrystalline substrates using biaxially-textured templates made by Ion Beam-Assisted Deposition (IBAD). MgO templates made by IBAD on flexible metal substrate have been successfully used for epitaxial growth of germanium films. In spite of a 4.5% lattice mismatch, heteroepitaxial growth of Ge was achieved on CeO2 that was grown on IBAD MgO template. Room temperature optical bandgap of the Ge films was identified at 0.67 eV indicating minimal residual strain. Refraction index and extinction coefficient values of the Ge films were found to match well with that measured from a reference Ge single crystal. GaAs has been successfully grown epitaxially on Ge on metal substrate by molecular beam epitaxy. RHEED patterns indicate self annihilation of antiphase boundaries and the growth of a single domain GaAs. The GaAs is found to exhibit strong photoluminescence signal and, an existence of a relatively narrow (FWHM~20 meV) band-edge excitons measured in this film indicates a good optoelectronic quality of deposited GaAs. While excellent epitaxial growth has been achieved in GaAs on flexible metal substrates, the defect density of the films as measured by High Resolution X-ray Diffraction and etch pit experiments showed a high value of 5 * 10^8 per cm^2. Cross sectional transmission electron microscopy of the multilayer architecture showed concentration of threading dislocations near the germanium-ceria interface. The defect density was found decrease as the Ge films were made thicker. The defects appear to originate from the MgO layer presumably because of large lattice mismatches between the various layers. The defect density in GaAs was reduced by a factor of five by adding a step of in-situ deposition of Ge by MBE on the sputtered Ge prior to GaAs growth. We have investigated device design strategies that would support development of high-efficiency devices in presence of dislocation densities of 10^8 cm^-2 present in our epitaxial GaAs films. Results from modeling work show that with a proper emitter, base and doping selection, the modeled efficiency of a GaAs cells with dislocation densities of 10^9 and 10^8 cm^-2 could be increased from 1% and 7% to 11% and 17% respectively. Under AM0, this single junction GaAs solar cell, has optimized value of emitter and base thickness of around 0.7 and 1.7 microns respectively, to give a maximum efficiency of 24.2%. We have fabricated complete GaAs solar cells using our Ge films on metal substrates. Pattern resolution of few microns with well-defined grid line of 30 microns has been realized on few cm square flexible templates. The ability to grow single-crystalline-like Ge films on flexible, polycrystalline substrates by reel-to-reel tape processing now provides an immense potential to fabricate high quality III-V photovoltaics on flexible, inexpensive substrates.

  11. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #844: Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

  12. Large-area low-temperature ultrananocrystaline diamond (UNCD) films and integration with CMOS devices for monolithically integrated diamond MEMD/NEMS-CMOS systems.

    SciTech Connect (OSTI)

    Sumant, A.V.; Auciello, O.; Yuan, H.-C; Ma, Z.; Carpick, R. W.; Mancini, D. C.; Univ. of Wisconsin; Univ. of Pennsylvania

    2009-05-01

    Because of exceptional mechanical, chemical, and tribological properties, diamond has a great potential to be used as a material for the development of high-performance MEMS and NEMS such as resonators and switches compatible with harsh environments, which involve mechanical motion and intermittent contact. Integration of such MEMS/NEMS devices with complementary metal oxide semiconductor (CMOS) microelectronics will provide a unique platform for CMOS-driven commercial MEMS/NEMS. The main hurdle to achieve diamond-CMOS integration is the relatively high substrate temperatures (600-800 C) required for depositing conventional diamond thin films, which are well above the CMOS operating thermal budget (400 C). Additionally, a materials integration strategy has to be developed to enable diamond-CMOS integration. Ultrananocrystalline diamond (UNCD), a novel material developed in thin film form at Argonne, is currently the only microwave plasma chemical vapor deposition (MPCVD) grown diamond film that can be grown at 400 C, and still retain exceptional mechanical, chemical, and tribological properties comparable to that of single crystal diamond. We have developed a process based on MPCVD to synthesize UNCD films on up to 200 mm in diameter CMOS wafers, which will open new avenues for the fabrication of monolithically integrated CMOS-driven MEMS/NEMS based on UNCD. UNCD films were grown successfully on individual Si-based CMOS chips and on 200 mm CMOS wafers at 400 C in a MPCVD system, using Ar-rich/CH4 gas mixture. The CMOS devices on the wafers were characterized before and after UNCD deposition. All devices were performing to specifications with very small degradation after UNCD deposition and processing. A threshold voltage degradation in the range of 0.08-0.44V and transconductance degradation in the range of 1.5-9% were observed.

  13. Reactivity Screening of Anatase TiO2 Nanotube Arrays and Anatase Thin Films: A Surface Chemistry Point of View

    SciTech Connect (OSTI)

    Funk, S.; Hokkanen, B.; Nurkic, T.; Goering, J.; Kadossov, E.; Burghaus, Uwe; Ghicov, A.; Schmuki, P.; Yu, Zhongqing; Thevuthasan, Suntharampillai; Saraf, Laxmikant V.

    2008-09-19

    As a reactivity screening we collected thermal desorption spectroscopy (TDS) data of iso-butane, O2, CO2, and CO adsorbed on ordered TiO2 nanotube (TiNTs) arrays. As a reference system iso-butane adsorption on an anatase TiO2 thin film has been considered as well. The as-grown TiNTs are vertically aligned and amorphous. Polycrystalline (poly.) anatase or poly. anatase/rutile mixed nanotubes are formed by annealing confirmed by x-ray diffraction (XRD) and scanning electron microscopy (SEM). The anatase thin film was grown on SrTiO3(001) and characterized by XRD and atomic force microscopy (AFM). Surprisingly, oxygen distinctly interacts with the TiNTs whereas this process is not observed on fully oxidized single crystal rutile TiO2(110). Desorption temperatures of 110-150 K and 100-120 K were observed for CO2 and CO, respectively, on the TiNTs. Variations in the binding energies of the alkanes on TiNTs and anatase thin films also were present, i.e., a structure-activity relationship (SAR) is evident.

  14. Investigation of size dependent structural and optical properties of thin films of CdSe quantum dots

    SciTech Connect (OSTI)

    Sharma, Madhulika; Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Bombay, Powai, Mumbai 400076 ; Sharma, A.B.; Mishra, N.; Pandey, R.K.

    2011-03-15

    Research highlights: {yields} CdSe q-dots have been synthesized using simple chemical synthesis route. {yields} Thin film of CdSe quantum dots exhibited self-organized growth. {yields} Size dependent blue shift observed in the absorption edge of CdSe nanocrystallites. {yields} PL emission band corresponds to band edge luminescence and defect luminescence. {yields} Organized growth led to enhancement in luminescence yield of smaller size Q-dots. -- Abstract: Cadmium selenide (CdSe) quantum dots were grown on indium tin oxide substrate using wet chemical technique for possible application as light emitting devices. The structural, morphological and luminescence properties of the as deposited thin films of CdSe Q-dot have been investigated, using X-ray diffraction, transmission electron microscopy, atomic force microscopy and optical and luminescence spectroscopy. The quantum dots have been shown to deposit in an organized array on ITO/glass substrate. The as grown Q-dots exhibited size dependent blue shift in the absorption edge. The effect of quantum confinement also manifested as a blue shift of photoluminescence emission. It is shown that the nanocrystalline CdSe exhibits intense photoluminescence as compared to the large grained polycrystalline CdSe films.

  15. Highly transparent and conductive double-layer oxide thin films as anodes for organic light-emitting diodes

    SciTech Connect (OSTI)

    Yang Yu; Wang Lian; Yan He; Jin Shu; Marks, Tobin J.; Li Shuyou

    2006-07-31

    Double-layer transparent conducting oxide thin film structures containing In-doped CdO (CIO) and Sn-doped In{sub 2}O{sub 3} (ITO) layers were grown on glass by metal-organic chemical vapor deposition and ion-assisted deposition (IAD), respectively, and used as anodes for polymer light-emitting diodes (PLEDs). These films have a very low overall In content of 16 at. %. For 180-nm-thick CIO/ITO films, the sheet resistance is 5.6 {omega}/{open_square}, and the average optical transmittance is 87.1% in the 400-700 nm region. The overall figure of merit ({phi}=T{sup 10}/R{sub sheet}) of the double-layer CIO/ITO films is significantly greater than that of single-layer CIO, IAD-ITO, and commercial ITO films. CIO/ITO-based PLEDs exhibit comparable or superior device performance versus ITO-based control devices. CIO/ITO materials have a much lower sheet resistance than ITO, rendering them promising low In content electrode materials for large-area optoelectronic devices.

  16. The Film Scanning and Reanalysis Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Film Scanning National Security Science Latest Issue:July 2015 past issues All Issues submit The Film Scanning and Reanalysis Project Scientists on a search-and-rescue...

  17. Electrostatic thin film chemical and biological sensor

    DOE Patents [OSTI]

    Prelas, Mark A. (Columbia, MO); Ghosh, Tushar K. (Columbia, MO); Tompson, Jr., Robert V. (Columbia, MO); Viswanath, Dabir (Columbia, MO); Loyalka, Sudarshan K. (Columbia, MO)

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  18. Proximity effects of superconducting multilayer film

    SciTech Connect (OSTI)

    Xueyu, C.; Daole, Y.

    1984-07-01

    The proximity effects of superconducting multilayer films composed of different metals are considered. The relationship between the critical temperature of a superconducting multilayer film with strong heterogeneity and its geometric structure is given.

  19. Thin film-coated polymer webs

    DOE Patents [OSTI]

    Wenz, Robert P.; Weber, Michael F.; Arudi, Ravindra L.

    1992-02-04

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  20. Low work function, stable thin films

    DOE Patents [OSTI]

    Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

    2000-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  1. Semiconductor-nanocrystal/conjugated polymer thin films

    DOE Patents [OSTI]

    Alivisatos, A. Paul (Oakland, CA); Dittmer, Janke J. (Munich, DE); Huynh, Wendy U. (Munich, DE); Milliron, Delia (Berkeley, CA)

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  2. Thin film buried anode battery

    DOE Patents [OSTI]

    Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  3. Silicon nanocrystal inks, films, and methods

    DOE Patents [OSTI]

    Wheeler, Lance Michael; Kortshagen, Uwe Richard

    2015-09-01

    Silicon nanocrystal inks and films, and methods of making and using silicon nanocrystal inks and films, are disclosed herein. In certain embodiments the nanocrystal inks and films include halide-terminated (e.g., chloride-terminated) and/or halide and hydrogen-terminated nanocrystals of silicon or alloys thereof. Silicon nanocrystal inks and films can be used, for example, to prepare semiconductor devices.

  4. DOE - NNSA/NFO -- Test Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Historical Test Films > Film Page NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Historical Test Film Instructions: Click the Windows Media or MPG Movie link below the thumbnail to view the video Film details are listed on the right under Description Click the Full Text link for additional information about the video Refer to the Viewing Instructions and FAQs

  5. Epitaxial growth of AlN films via plasma-assisted atomic layer epitaxy

    SciTech Connect (OSTI)

    Nepal, N.; Qadri, S. B.; Hite, J. K.; Mahadik, N. A.; Mastro, M. A.; Eddy, C. R. Jr.

    2013-08-19

    Thin AlN layers were grown at 200650 C by plasma assisted atomic layer epitaxy (PA-ALE) simultaneously on Si(111), sapphire (1120), and GaN/sapphire substrates. The AlN growth on Si(111) is self-limited for trimethyaluminum (TMA) pulse of length > 0.04 s, using a 10 s purge. However, the AlN nucleation on GaN/sapphire is non-uniform and has a bimodal island size distribution for TMA pulse of ?0.03 s. The growth rate (GR) remains almost constant for T{sub g} between 300 and 400 C indicating ALE mode at those temperatures. The GR is increased by 20% at T{sub g} = 500 C. Spectroscopic ellipsometry (SE) measurement shows that the ALE AlN layers grown at T{sub g} ? 400 C have no clear band edge related features, however, the theoretically estimated band gap of 6.2 eV was measured for AlN grown at T{sub g} ? 500 C. X-ray diffraction measurements on 37 nm thick AlN films grown at optimized growth conditions (T{sub g} = 500 C, 10 s purge, 0.06 s TMA pulse) reveal that the ALE AlN on GaN/sapphire is (0002) oriented with rocking curve full width at the half maximum (FWHM) of 670 arc sec. Epitaxial growth of crystalline AlN layers by PA-ALE at low temperatures broadens application of the material in the technologies that require large area conformal growth at low temperatures with thickness control at the atomic scale.

  6. Thin film solar energy collector

    SciTech Connect (OSTI)

    Farrauto, R.J.; Myers, H.; Williams, J.C.

    1982-03-23

    A solar energy collector has improved absorptance and emissivity levels comprising: (1) a silver-copper oxide-rhodium oxide solar absorption film, (2) a cerium oxide interlayer and a substrate of quartz, silica glass or metal. The cerium oxide interlayer minimizes agglomeration of the metal particles, maintains a relatively low thermal emittance and improves overall stability.

  7. Methane production by attached film

    DOE Patents [OSTI]

    Jewell, William J. (202 Eastwood Ave., Ithaca, NY 14850)

    1981-01-01

    A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

  8. Thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

    1996-12-31

    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  9. Thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, Dora K.; Arnold, Jr., Charles; Delnick, Frank M.

    1996-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  10. Capping layer-tailored interface magnetic anisotropy in ultrathin Co{sub 2}FeAl films

    SciTech Connect (OSTI)

    Belmeguenai, M. Zighem, F.; Chérif, S. M.; Gabor, M. S. Petrisor, T.; Tiusan, C.

    2015-01-14

    Co{sub 2}FeAl (CFA) thin films of various thicknesses (2 nm ≤ d ≤ 50 nm) have been grown on (001) MgO single crystal substrates and then capped with Cr, V, and Ta. Their magnetic and structural properties have been studied by x-ray diffraction (XRD), vibrating sample magnetometry, and broadband microstrip ferromagnetic resonance (MS-FMR). The XRD revealed that the films are epitaxial with the cubic [001] CFA axis normal to the substrate plane and that the chemical order varies from the B2 phase to the A2 phase when decreasing the thickness. The deduced lattice parameters showed that the Cr-capped films exhibit a larger tetragonal distortion, as compared with the films capped with V or Ta. The presence of magnetic dead layers has been observed in CFA samples capped with V and Ta but not in the case of the Cr-capped ones. The effective magnetization, deduced from the fit of MS-FMR measurements, increases (decreases) linearly with the CFA inverse thickness (1/d) for the Cr-capped (Ta-capped) films while it is constant for the V-capped ones. This allows quantifying the perpendicular surface anisotropy coefficients of −0.46 erg/cm{sup 2} and 0.74 erg/cm{sup 2} for Cr and Ta-capped films, respectively. Moreover, the fourfold and the uniaxial anisotropy fields, measured in these films, showed different trends with a respect to the CFA inverse thickness. This allows inferring that a non-negligible part of the fourfold magnetocrystalline term is of interfacial origin.

  11. Carbon film electrodes for super capacitor applications

    SciTech Connect (OSTI)

    Tan, M.X.

    1999-11-30

    A microporous carbon film for use as electrodes in energy storage devices is disclosed, which is made by the process comprising the steps of: (1) heating a polymer film material consisting essentially of a copolymer of polyvinylidene chloride and polyvinyl chloride in an inert atmosphere to form a carbon film; and (2) activating said carbon film to form said microporous carbon film having a density between about 0.7 g/cm{sup 2} and 1 g/cm{sup 2} and a gravimetric capacitance of about between 120 F/g and 315 F/g.

  12. Carbon film electrodes for super capacitor applications

    DOE Patents [OSTI]

    Tan, Ming X.

    1999-01-01

    A microporous carbon film for use as electrodes in energy strorage devices is disclosed, which is made by the process comprising the steps of: (1) heating a polymer film material consisting essentially of a copolymer of polyvinylidene chloride and polyvinyl chloride in an inert atmosphere to form a carbon film; and (2) activating said carbon film to form said microporous carbon film having a density between about 0.7 g/cm.sup.2 and 1 g/cm.sup.2 and a gravimetric capacitance of about between 120 F/g and 315 F/g.

  13. Method for fabricating hafnia films

    DOE Patents [OSTI]

    Hu, Michael Z [Knoxville, TN

    2007-08-21

    The present invention comprises a method for fabricating hafnia film comprising the steps of providing a substrate having a surface that allows formation of a self-assembled monolayer thereon via covalent bonding; providing an aqueous solution that provides homogeneous hafnium ionic complexes and hafnium nanoclusters wherein the aqueous solution is capable of undergoing homogeneous precipitation under controlled conditions for a desired period of time at a controlled temperature and controlled solution acidity for desired nanocluster nucleation and growth kinetics, desired nanocluster size, desired growth rate of film thickness and desired film surface characteristics. The method further comprising forming the self-assembled monolayer on the surface of the substrate wherein the self-assembled monolayer comprises a plurality of hydrocarbon chains cross-linked together along the surface of the substrate, the hydrocarbon chains being uniformly spaced from one another and wherein each of the hydrocarbon chains having a functional anchoring group at a first end of the chain covalently bonded with the surface of the substrate and each of the hydrocarbon chains having a functional terminating group projected away from the surface wherein the functional terminating group provides a bonding site for the hafnium film to grow; and exposing the substrate to the aqueous solution for a desired period of time at a controlled temperature wherein the hafnium ionic complexes and the hafnium nanoclusters are deposited on the bonding site of the functional terminating group thereby forming the hafnia film wherein the hafnium bonded to the hydrocarbons and to one another provide a uniform ordered arrangement defined by the uniform arrangement of the hydrocarbons.

  14. A 350 mK, 9 T scanning tunneling microscope for the study of superconducting thin films on insulating substrates and single crystals

    SciTech Connect (OSTI)

    Kamlapure, Anand; Saraswat, Garima; Ganguli, Somesh Chandra; Bagwe, Vivas; Raychaudhuri, Pratap; Pai, Subash P.

    2013-12-15

    We report the construction and performance of a low temperature, high field scanning tunneling microscope (STM) operating down to 350 mK and in magnetic fields up to 9 T, with thin film deposition and in situ single crystal cleaving capabilities. The main focus lies on the simple design of STM head and a sample holder design that allows us to get spectroscopic data on superconducting thin films grown in situ on insulating substrates. Other design details on sample transport, sample preparation chamber, and vibration isolation schemes are also described. We demonstrate the capability of our instrument through the atomic resolution imaging and spectroscopy on NbSe{sub 2} single crystal and spectroscopic maps obtained on homogeneously disordered NbN thin film.

  15. Effects of H{sub 2} plasma treatment on the electrical properties of titanium-doped indium oxide films prepared by polymer-assisted deposition

    SciTech Connect (OSTI)

    Hwang, Joo-Sang; Lee, Ji-Myon; Vishwanath, Sujaya Kumar; Kim, Jihoon

    2015-07-15

    The effects of hydrogen (H{sub 2}) plasma on the optical and electrical properties of titanium-doped InO (TIO) grown on glass substrates using polymer-assisted deposition are reported. Samples were exposed to H{sub 2} plasma formed by inductively coupled plasma (ICP). After plasma treatment at a power of 100?W, the sheet resistance of the TIO films decreased from 11?000 to 285??/sq. Additionally, the Hall mobility and sheet carrier concentration of the films increased as the ICP source power was increased to 100?W, without affecting the optical transmittance of the films, due to the removal of the polymer residues and the formation of oxygen vacancies.

  16. Nanodomain induced anomalous magnetic and electronic transport properties of LaBaCo{sub 2}O{sub 5.5+?} highly epitaxial thin films

    SciTech Connect (OSTI)

    Ruiz-Zepeda, F.; Ma, C.; Bahena Uribe, D.; Cantu-Valle, J.; Wang, H.; Xu, Xing; Yacaman, M. J.; Ponce, A.; Chen, C.; Lorenz, B.; Jacobson, A. J.; Chu, P. C. W.

    2014-01-14

    A giant magnetoresistance effect (?46% at 20?K under 7?T) and anomalous magnetic properties were found in a highly epitaxial double perovskite LaBaCo{sub 2}O{sub 5.5+?} (LBCO) thin film on (001) MgO. Aberration-corrected Electron Microscopy and related analytical techniques were employed to understand the nature of these unusual physical properties. The as-grown film is epitaxial with the c-axis of the LBCO structure lying in the film plane and with an interface relationship given by (100){sub LBCO} || (001){sub MgO} and [001]{sub LBCO} || [100]{sub MgO} or [010]{sub MgO}. Orderly oxygen vacancies were observed by line profile electron energy loss spectroscopy and by atomic resolution imaging. Especially, oxygen vacancy and nanodomain structures were found to have a crucial effect on the electronic transport and magnetic properties.

  17. Method of making reflecting film reflector

    DOE Patents [OSTI]

    Cottingham, James G. (Center Moriches, NY)

    1980-01-01

    A reflector of the reflecting film type is disclosed and which may be used in a heliostatic system for concentrating solar energy and comprising a reflecting film bonded to an appropriate rigid substrate in such a way that specularity of a very high order is achieved. A method of bonding the reflecting film to the substrate is also disclosed and comprises the steps of initially adhering the film to a smooth, clean flat rigid surface with a non-bonding liquid between the rigid surface and film, and then bonding the substrate and film. The non-bonding liquid has a molecular adhesion greater than any stresses due to handling or curing of the bonding agent which is applied between the film and the opposing surface of the rigid substrate.

  18. Field Emission and Nanostructure of Carbon Films

    SciTech Connect (OSTI)

    Merkulov, V.I.; Lowndes, D.H.; Baylor, L.R.

    1999-11-29

    The results of field emission measurements of various forms of carbon films are reported. It is shown that the films nanostructure is a crucial factor determining the field emission properties. In particular, smooth, pulsed-laser deposited amorphous carbon films with both high and low sp3 contents are poor field emitters. This is similar to the results obtained for smooth nanocrystalline, sp2-bonded carbon films. In contrast, carbon films prepared by hot-filament chemical vapor deposition (HE-CVD) exhibit very good field emission properties, including low emission turn-on fields, high emission site density, and excellent durability. HF-CVD carbon films were found to be predominantly sp2-bonded. However, surface morphology studies show that these films are thoroughly nanostructured, which is believed to be responsible for their promising field emission properties.

  19. Carbon Film Electrodes For Super Capacitor Applications

    DOE Patents [OSTI]

    Tan, Ming X. (Livermore, CA)

    1999-07-20

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  20. Low temperature atomic layer deposited ZnO photo thin film transistors

    SciTech Connect (OSTI)

    Oruc, Feyza B.; Aygun, Levent E.; Donmez, Inci; Biyikli, Necmi; Okyay, Ali K.; Yu, Hyun Yong

    2015-01-01

    ZnO thin film transistors (TFTs) are fabricated on Si substrates using atomic layer deposition technique. The growth temperature of ZnO channel layers are selected as 80, 100, 120, 130, and 250?C. Material characteristics of ZnO films are examined using x-ray photoelectron spectroscopy and x-ray diffraction methods. Stoichiometry analyses showed that the amount of both oxygen vacancies and interstitial zinc decrease with decreasing growth temperature. Electrical characteristics improve with decreasing growth temperature. Best results are obtained with ZnO channels deposited at 80?C; I{sub on}/I{sub off} ratio is extracted as 7.8 10{sup 9} and subthreshold slope is extracted as 0.116 V/dec. Flexible ZnO TFT devices are also fabricated using films grown at 80?C. I{sub D}V{sub GS} characterization results showed that devices fabricated on different substrates (Si and polyethylene terephthalate) show similar electrical characteristics. Sub-bandgap photo sensing properties of ZnO based TFTs are investigated; it is shown that visible light absorption of ZnO based TFTs can be actively controlled by external gate bias.

  1. Mechanism of lateral ordering of InP dots grown on InGaP layers

    SciTech Connect (OSTI)

    Bortoleto, J.R.R.; Gutierrez, H.R.; Cotta, M.A.; Bettini, J.

    2005-07-04

    The mechanisms leading to the spontaneous formation of a two-dimensional array of InP/InGaP dots grown by chemical-beam epitaxy are discussed. Samples where the InGaP buffer layer was grown at different conditions were characterized by transmission electron microscopy. Our results indicate that a periodic strain field related to lateral two-dimensional compositional modulation in the InGaP buffer layer determines the dot nucleation positions during InP growth. Although the periodic strain field in the InGaP is large enough to align the InP dots, both their shape and optical properties are effectively unaltered. This result shows that compositional modulation can be used as a tool for in situ dot positioning.

  2. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dong, Qingfeng; Fang, Yanjun; Shao, Yuchuan; Mulligan, Padhraic; Qiu, Jie; Cao, Lei; Huang, Jinsong

    2015-02-27

    Long, balanced electron and hole diffusion lengths greater than 100 nanometers in the polycrystalline organolead trihalide compound CH3NH3PbI3 are critical for highly efficient perovskite solar cells. We found that the diffusion lengths in CH3NH3PbI3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm–2) illumination and exceed 3 millimeters under weak light for both electrons and holes. The internal quantum efficiencies approach 100% in 3-millimeter-thick single-crystal perovskite solar cells under weak light. These long diffusion lengths result from greater carrier mobility, longer lifetime, and much smaller trap densities in the single crystals thanmore » in polycrystalline thin films. As a result, the long carrier diffusion lengths enabled the use of CH3NH3PbI3 in radiation sensing and energy harvesting through the gammavoltaic effect, with an efficiency of 3.9% measured with an intense cesium-137 source.« less

  3. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dong, Qingfeng; Fang, Yanjun; Shao, Yuchuan; Mulligan, Padhraic; Qiu, Jie; Cao, Lei; Huang, Jinsong

    2015-02-27

    Long, balanced electron and hole diffusion lengths greater than 100 nanometers in the polycrystalline organolead trihalide compound CH3NH3PbI3 are critical for highly efficient perovskite solar cells. We found that the diffusion lengths in CH3NH3PbI3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm–2) illumination and exceed 3 millimeters under weak light for both electrons and holes. The internal quantum efficiencies approach 100% in 3-millimeter-thick single-crystal perovskite solar cells under weak light. These long diffusion lengths result from greater carrier mobility, longer lifetime, and much smaller trap densities in the single crystals thanmore »in polycrystalline thin films. As a result, the long carrier diffusion lengths enabled the use of CH3NH3PbI3 in radiation sensing and energy harvesting through the gammavoltaic effect, with an efficiency of 3.9% measured with an intense cesium-137 source.« less

  4. Effect of processor temperature on film dosimetry

    SciTech Connect (OSTI)

    Srivastava, Shiv P.; Das, Indra J.

    2012-07-01

    Optical density (OD) of a radiographic film plays an important role in radiation dosimetry, which depends on various parameters, including beam energy, depth, field size, film batch, dose, dose rate, air film interface, postexposure processing time, and temperature of the processor. Most of these parameters have been studied for Kodak XV and extended dose range (EDR) films used in radiation oncology. There is very limited information on processor temperature, which is investigated in this study. Multiple XV and EDR films were exposed in the reference condition (d{sub max.}, 10 Multiplication-Sign 10 cm{sup 2}, 100 cm) to a given dose. An automatic film processor (X-Omat 5000) was used for processing films. The temperature of the processor was adjusted manually with increasing temperature. At each temperature, a set of films was processed to evaluate OD at a given dose. For both films, OD is a linear function of processor temperature in the range of 29.4-40.6 Degree-Sign C (85-105 Degree-Sign F) for various dose ranges. The changes in processor temperature are directly related to the dose by a quadratic function. A simple linear equation is provided for the changes in OD vs. processor temperature, which could be used for correcting dose in radiation dosimetry when film is used.

  5. Highly textured oxypnictide superconducting thin films on metal substrates

    SciTech Connect (OSTI)

    Iida, Kazumasa, E-mail: iida@nuap.nagoya-u.ac.jp; Kurth, Fritz; Grinenko, Vadim; Hnisch, Jens [Institute for Metallic Materials, IFW Dresden, D-01171 Dresden (Germany); Chihara, Masashi; Sumiya, Naoki; Hatano, Takafumi; Ikuta, Hiroshi [Department of Crystalline Materials Science, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Ichinose, Ataru; Tsukada, Ichiro [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan); Matias, Vladimir [iBeam Materials, Inc., 2778A Agua Fria Street, Santa Fe, New Mexico 87507 (United States); Holzapfel, Bernhard [Institute for Technical Physics, Karlsruhe Institute of Technology, Hermann von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-27

    Highly textured NdFeAs(O,F) thin films have been grown on ion beam assisted deposition-MgO/Y{sub 2}O{sub 3}/Hastelloy substrates by molecular beam epitaxy. The oxypnictide coated conductors showed a superconducting transition temperature (T{sub c}) of 43?K with a self-field critical current density (J{sub c}) of 7.010{sup 4}?A/cm{sup 2} at 5?K, more than 20 times higher than powder-in-tube processed SmFeAs(O,F) wires. Albeit higher T{sub c} as well as better crystalline quality than Co-doped BaFe{sub 2}As{sub 2} coated conductors, in-field J{sub c} of NdFeAs(O,F) was lower than that of Co-doped BaFe{sub 2}As{sub 2}. These results suggest that grain boundaries in oxypnictides reduce J{sub c} significantly compared to that in Co-doped BaFe{sub 2}As{sub 2} and, hence biaxial texture is necessary for high J{sub c.}.

  6. Photopatternable sorbent and functionalized films

    DOE Patents [OSTI]

    Grate, Jay W. (West Richland, WA); Nelson, David A. (Richland, WA)

    2006-01-31

    A composition containing a polymer, a crosslinker and a photo-activatable catalyst is placed on a substrate. The composition is exposed to a predetermined pattern of light, leaving an unexposed region. The light causes the polymer to become crosslinked by hydrosilylation. A solvent is used to remove the unexposed composition from the substrate, leaving the exposed pattern to become a sorbent polymer film that will absorb a predetermined chemical species when exposed to such chemical species.

  7. Photoluminescence of as-grown and thermal annealed SiO{sub x}/Si-nanocrystals heterolayers grown by reactive rf sputtering

    SciTech Connect (OSTI)

    Mota-Pineda, E.; Melendez-Lira, M.; Zapata-Torres, M.; Angel, P. del; Perez-Centeno, A.; Santana-Aranda, M. A.; Jimenez-Sandoval, S.

    2010-11-15

    SiO{sub x}/Si-nanocrystals (Si NCs) heterolayers were fabricated employing a rf magnetron sputtering system. The synthesis process, through modification of the oxygen partial pressure of the plasma, promotes the synthesis of stoichiometric SiO{sub 2} layers and affect the Si NCs layer giving place to SiO{sub x}/Si NCs (1.64grown samples showed strong photoluminescence (PL) bands in the visible and near-infrared regions; transmission electron microscopy measurements confirmed the presence of Si NCs. Thermal annealing at 1100 deg. C promoted the SiO{sub 2} stoichiometry in the interface and the crystallization of more Si NCs. The results allow us to clearly identify the origin of the PL bands; indicating that the near-infrared emission is related to the nonstoichiometric oxide while the red and green bands are originated in Si NCs.

  8. Post-Growth Annealing of Bridgman-grown CdZnTe and CdMnTe Crystals for

    Office of Scientific and Technical Information (OSTI)

    Room-temperature Nuclear Radiation Detectors (Journal Article) | SciTech Connect Post-Growth Annealing of Bridgman-grown CdZnTe and CdMnTe Crystals for Room-temperature Nuclear Radiation Detectors Citation Details In-Document Search Title: Post-Growth Annealing of Bridgman-grown CdZnTe and CdMnTe Crystals for Room-temperature Nuclear Radiation Detectors Bridgman-grown cadmium zinc telluride (CdZnTe or CZT) and cadmium manganese telluride (CdMnTe or CMT) crystals often have Te inclusions that

  9. Effect of substrate temperature on the magnetic properties of epitaxial sputter-grown Co/Pt

    SciTech Connect (OSTI)

    Mihai, A. P.; Whiteside, A. L.; Canwell, E. J.; Marrows, C. H.; Moore, T. A.; Benitez, M. J.; McGrouther, D.; McVitie, S.; McFadzean, S.

    2013-12-23

    Epitaxial Co/Pt films have been deposited by dc-magnetron sputtering onto heated C-plane sapphire substrates. X-ray diffraction, the residual resistivity, and transmission electron microscopy indicate that the Co/Pt films are highly ordered on the atomic scale. The coercive field and the perpendicular magnetic anisotropy increase as the substrate temperature is increased from 100250?C during deposition of the Co/Pt. Measurement of the domain wall creep velocity as a function of applied magnetic field yields the domain wall pinning energy, which scales with the coercive field. Evidence for an enhanced creep velocity in highly ordered epitaxial Co/Pt is found.

  10. Microstructure and ionic-conductivity of alternating-multilayer structured Gd-doped ceria and zirconia thin films

    SciTech Connect (OSTI)

    Wang, Yiguang; An, Linan; Saraf, Laxmikant V.; Wang, Chong M.; Shutthanandan, V.; Mccready, David E.; Thevuthasan, Suntharampillai

    2009-04-01

    Multilayer thin-film of consisting of alternating Gd-doped ceria and zirconia have been grown by sputter-deposition on ?-Al2O3 (0001) substrates. The films were characterized using x-ray diffraction (XRD), atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The Gd-doped ceria and zirconia layers had the fluorite structure and are highly textured such that the (111) plane of the films parallel to the (0001) plane of the ?-Al2O3. The epitaxial relationship can be written as (111)ZrO2/CeO2//(0001)Al2O3 and [11-2]ZrO2/CeO2//[-2110]Al2O3.. The absence of Ce3+ features in the XPS spectra indicates that the Gd-doped ceria films are completely oxidized. The ionic conductivity of this structure shows great improvement as compared with that of the bulk crystalline material. This research provides insight on designing of material for low-temperature electrolyte applications.

  11. Tuneable dielectric films having low electrical losses

    DOE Patents [OSTI]

    Dimos, Duane Brian (Albuquerque, NM); Schwartz, Robert William (Albuquerque, NM); Raymond, Mark Victor (Albuquerque, NM); Al-Shareef, Husam Niman (Boise, ID); Mueller, Carl (Lakewood, CO); Galt, David (Denver, CO)

    2000-01-01

    The present invention is directed to a method for forming dielectric thin films having substantially reduced electrical losses at microwave and millimeter wave frequencies relative to conventional dielectric thin films. The reduction in losses is realized by dramatically increasing the grain sizes of the dielectric films, thereby minimizing intergranular scattering of the microwave signal due to grain boundaries and point defects. The increase in grain size is realized by heating the film to a temperature at which the grains experience regrowth. The grain size of the films can be further increased by first depositing the films with an excess of one of the compoents, such that a highly mobile grain boundary phase is formed.

  12. Ambient-pressure silica aerogel films

    SciTech Connect (OSTI)

    Prakash, S.S. [New Mexico Univ., Albuquerque, NM (United States); Brinker, C.J. [New Mexico Univ., Albuquerque, NM (United States)]|[Sandia National Labs., Albuquerque, NM (United States); Hurd, A.J. [Sandia National Labs., Albuquerque, NM (United States)

    1994-12-31

    Very highly porous (aerogel) silica films with refractive index in the range 1.006--1.05 (equivalent porosity 98.5--88%) were prepared by an ambient-pressure process. It was shown earlier using in situ ellipsometric imaging that the high porosity of these films was mainly attributable to the dilation or `springback` of the film during the final stage of drying. This finding was irrefutably reconfirmed by visually observing a `springback` of >500% using environmental scanning electron microscopy (ESEM). Ellipsometry and ESEM also established the near cent per cent reversibility of aerogel film deformation during solvent intake and drying. Film thickness profile measurements (near the drying line) for the aerogel, xerogel and pure solvent cases are presented from imaging ellipsometry. The thickness of these films (crack-free) were controlled in the range 0.1-3.5 {mu}m independent of refractive index.

  13. Method for forming porous platinum films

    DOE Patents [OSTI]

    Maya, Leon (Oak Ridge, TN)

    2000-01-01

    A method for forming a platinum film includes providing a substrate, sputtering a crystalline platinum oxide layer over at least a portion of the substrate, and reducing the crystalline platinum oxide layer to form the platinum film. A device includes a non-conductive substrate and a platinum layer having a density of between about 2 and 5 g/cm.sup.3 formed over at least a portion of the non-conductive substrate. The platinum films produced in accordance with the present invention provide porous films suitable for use as electrodes, yet require few processing steps. Thus, such films are less costly. Such films may be formed on both conductive and non-conductive substrates. While the invention has been illustrated with platinum, other metals, such as noble metals, that form a low density oxide when reactively sputtered may also be used.

  14. Anisotropic conducting films for electromagnetic radiation applications

    DOE Patents [OSTI]

    Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard

    2015-06-16

    Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.

  15. Electrochemical photovoltaic cell having ternary alloy film

    DOE Patents [OSTI]

    Russak, Michael A. (Farmingdale, NY)

    1984-01-01

    A thin film compound semiconductor electrode comprising CdSe.sub.1-x Te.sub.x (0.ltoreq.x.ltoreq.1) is deposited on a transparent conductive substrate. An electrolyte contacts the film to form a photoactive site. The semiconductor material has a narrow energy bandgap permitting high efficiency for light conversion. The film may be fabricated by: (1) co-evaporation of two II-VI group compounds with a common cation, or (2) evaporation of three elements, concurrenty.

  16. Polymer-assisted deposition of films

    DOE Patents [OSTI]

    McCleskey, Thomas M. (Los Alamos, NM); Burrell; Anthony K. (Los Alamos, NM); Jia; Quanxi (Los Alamos, NM); Lin; Yuan (Los Alamos, NM)

    2009-10-20

    A polymer assisted deposition process for deposition of metal oxide films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures to yield metal oxide films and the like. Such films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.

  17. Polymer-assisted deposition of films

    DOE Patents [OSTI]

    McCleskey, Thomas M. (Los Alamos, NM); Burrell, Anthony K. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Lin, Yuan (Los Alamos, NM)

    2008-04-29

    A polymer assisted deposition process for deposition of metal oxide films is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures to yield metal oxide films. Such films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.

  18. Nanostructured columnar heterostructures of TiO{sub 2} and Cu{sub 2}O enabled by a thin-film self-assembly approach: Potential for photovoltaics

    SciTech Connect (OSTI)

    Polat, zgr; Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996 ; Aytug, Tolga; Lupini, Andrew R.; Paranthaman, Parans M.; Ertugrul, Mehmet; Bogorin, Daniela F.; Meyer, Harry M.; Wang, Wei; Pennycook, Stephen J.; Christen, David K.

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ? Material self-assembly in phase-separated oxides is exploited. ? Three-dimensionally nanostructured epitaxial films are grown using sputtering. ? Films are composed of well-ordered oriented nanopillars of n-type TiO{sub 2} and p-type Cu{sub 2}O. ? Observed interfaces at adjacent TiO{sub 2}Cu{sub 2}O columns are nearly atomically distinct. ? Absorption profile of the composite film captures a wide range of the solar spectrum. -- Abstract: Significant efforts are being devoted to the development of multifunctional thin-film heterostructures and nanostructured material architectures for components with novel applications of superconductivity, multiferroicity, solar photocatalysis and energy conversion. In particular, nanostructured assemblies with well-defined geometrical shapes have emerged as possible high efficiency and economically viable alternatives to planar photovoltaic thin-film architectures. By exploiting phase-separated self-assembly, here we present advances in a vertically oriented two-component system that offers potential for future development of nanostructured thin film solar cells. Through a single-step deposition by magnetron sputtering, we demonstrate growth of an epitaxial, composite film matrix formed as self-assembled, well ordered, phase segregated, and oriented nanopillars of n-type TiO{sub 2} and p-type Cu{sub 2}O. The composite films were structurally characterized to atomic resolution by a variety of analytical tools, and evaluated for preliminary optical properties using absorption measurements. We find nearly atomically distinct TiO{sub 2}Cu{sub 2}O interfaces (i.e., needed for possible active pn junctions), and an absorption profile that captures a wide range of the solar spectrum extending from ultraviolet to visible wavelengths. This high-quality materials system could lead to photovoltaic devices that can be optimized for both incident light absorption and carrier collection.

  19. Sputtered Thin Film Photovoltaics - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    highly toxic chemicals (H2Se gas, potassium cyanide) Applications and Industries High-efficiency thin film photovoltaics Flexible photovoltaics More Information References:...

  20. Exploding conducting film laser pumping apparatus

    DOE Patents [OSTI]

    Ware, Kenneth D. (San Diego, CA); Jones, Claude R. (Los Alamos, NM)

    1986-01-01

    Exploding conducting film laser optical pumping apparatus. The 342-nm molecular iodine and the 1.315-.mu.m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.

  1. BPA shares new collection of historical films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Line" (1950), a richly detailed film about power engineering that uses animation, tower models and field footage to show how Bonneville built the largest...

  2. Applied Films Corporation | Open Energy Information

    Open Energy Info (EERE)

    Place: Longmont, Colorado Zip: 80504 Sector: Services, Solar Product: Provider of thin film deposition equipment and services, particularly to the solar industry....

  3. Polymer-assisted deposition of films

    DOE Patents [OSTI]

    McCleskey,Thomas M. (Los Alamos, NM); Burrell,Anthony K. (Los Alamos, NM); Jia,Quanxi (Los Alamos, NM); Lin,Yuan (Chandler, AZ)

    2012-02-28

    A polymer assisted deposition process for deposition of metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be conformal on a variety of substrates including non-planar substrates. In some instances, the films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.

  4. Novel wide band gap materials for highly efficient thin film tandem solar cells

    SciTech Connect (OSTI)

    Brian E. Hardin, Stephen T. Connor, Craig H. Peters

    2012-06-11

    Tandem solar cells (TSCs), which use two or more materials to absorb sunlight, have achieved power conversion efficiencies of >25% versus 11-20% for commercialized single junction solar cell modules. The key to widespread commercialization of TSCs is to develop the wide-band, top solar cell that is both cheap to fabricate and has a high open-circuit voltage (i.e. >1V). Previous work in TSCs has generally focused on using expensive processing techniques with slow growth rates resulting in costs that are two orders of magnitude too expensive to be used in conventional solar cell modules. The objective of the PLANT PV proposal was to investigate the feasibility of using Ag(In,Ga)Se2 (AIGS) as the wide-bandgap absorber in the top cell of a thin film tandem solar cell (TSC). Despite being studied by very few in the solar community, AIGS solar cells have achieved one of the highest open-circuit voltages within the chalcogenide material family with a Voc of 949mV when grown with an expensive processing technique (i.e. Molecular Beam Epitaxy). PLANT PVâ??s goal in Phase I of the DOE SBIR was to 1) develop the chemistry to grow AIGS thin films via solution processing techniques to reduce costs and 2) fabricate new device architectures with high open-circuit voltage to produce full tandem solar cells in Phase II. PLANT PV attempted to translate solution processing chemistries that were successful in producing >12% efficient Cu(In,Ga)Se2 solar cells by replacing copper compounds with silver. The main thrust of the research was to determine if it was possible to make high quality AIGS thin films using solution processing and to fully characterize the materials properties. PLANT PV developed several different types of silver compounds in an attempt to fabricate high quality thin films from solution. We found that silver compounds that were similar to the copper based system did not result in high quality thin films. PLANT PV was able to deposit AIGS thin films using a mixture of solution and physical vapor deposition processing, but these films lacked the p-type doping levels that are required to make decent solar cells. Over the course of the project PLANT PV was able to fabricate efficient CIGS solar cells (8.7%) but could not achieve equivalent performance using AIGS. During the nine-month grant PLANT PV set up a variety of thin film characterization tools (e.g. drive-level capacitance profiling) at the Molecular Foundry, a Department of Energy User Facility, that are now available to both industrial and academic researchers via the grant process. PLANT PV was also able to develop the back end processing of thin film solar cells at Lawrence Berkeley National Labs to achieve 8.7% efficient CIGS solar cells. This processing development will be applied to other types of thin film PV cells at the Lawrence Berkeley National Labs. While PLANT PV was able to study AIGS film growth and optoelectronic properties we concluded that AIGS produced using these methods would have a limited efficiency and would not be commercially feasible. PLANT PV did not apply for the Phase II of this grant.

  5. Interplay between strain, quantum confinement, and ferromagnetism in strained ferromagnetic semiconductor (In,Fe)As thin films

    SciTech Connect (OSTI)

    Sasaki, Daisuke; Anh, Le Duc; Nam Hai, Pham; Tanaka, Masaaki

    2014-04-07

    We systematically investigated the influence of strain on the electronic structure and ferromagnetism of (In,Fe)As thin films. It is found that while the shift of the critical point energies of compressive-strained (In,Fe)As layers grown on (In{sub 1?y},Ga{sub y})As (y?=?0.05, 0.1) buffer layers can be explained by the hydrostatic deformation effect (HDE) alone, those of tensile-strained (In,Fe)As layers grown on (Ga{sub 1?z},Al{sub z})Sb (z?=?0, 0.5, 1) buffer layers can be explained by the combination of HDE and the quantum confinement effect (QCE). The Curie temperature T{sub C} of the (In,Fe)As layers strongly depends on the strain, and shows a maximum for the (In,Fe)As layer grown on a GaSb buffer layer. The strain dependence of T{sub C} can be explained by the s-d exchange mechanism taking into account HDE and QCE.

  6. Structural and Optical Investigations of GaN-Si Interface for a Heterojunction Solar Cell

    SciTech Connect (OSTI)

    Williams, Joshua J.; Jeffries, April M.; Bertoni, Mariana I.; Williamson, Todd L.; Bowden, Stuart G.; Honsberg, Christiana B.

    2014-06-08

    In recent years the development of heterojunction silicon based solar cells has gained much attention, lea largely by the efforts of Panasonic’s HIT cell. The success of the HIT cell prompts the scientific exploration of other thin film layers, besides the industrially accepted amorphous silicon. In this paper we report upon the use of gallium nitride, grown by MBE at “low temperatures” (~200°C), on silicon wafers as one possible candidate for making a heterojunction solar cell; the first approximation of band alignments between GaN and Si; and the material quality as determined by X-ray diffraction.

  7. Oxygen diffusion of anodic surface oxide film on titanium studied by Auger electron spectroscopy. [Oxygen diffusivity

    SciTech Connect (OSTI)

    Wang, P.S.; Wittberg, T.N.; Keil, R.G.

    1982-01-01

    TiO/sub 2/ films of about 1000 A were grown onto titanium foils anodically under galvanostatic conditions at 20 mA/cm/sup 2/ in saturated aqueous solutions of ammonium tetraborate. The samples were then aged at 450, 500, and 550/sup 0/C, and oxygen diffusion was observed by Auger electron spectroscopy (AES) profilings. The oxygen diffusivities were calculated by Fick's Second Law, using the Boltzmann-Matano solution, to be 9.4 x 10/sup -17/, 2.6 x 10/sup -16/, and 1.2 x 10/sup -15/ cm/sup 2//sec at 450, 500, and 550/sup 0/C, respectively. The diffusivities obtained by this method were also compared with those obtained using an exact solution to Fick's Second Law. The activation energy was calculated to be 30 kcal/mole.

  8. Photobiomolecular metallic particles and films

    DOE Patents [OSTI]

    Hu, Zhong-Cheng

    2003-05-06

    The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.

  9. Thin film solar energy collector

    DOE Patents [OSTI]

    Aykan, Kamran (Monmouth Beach, NJ); Farrauto, Robert J. (Westfield, NJ); Jefferson, Clinton F. (Millburn, NJ); Lanam, Richard D. (Westfield, NJ)

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  10. PLZT film capacitors for power electronics and energy storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PLZT film capacitors for power electronics and energy storage applications Title PLZT film capacitors for power electronics and energy storage applications Publication Type Journal...

  11. Multifunctional thin film surface (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Multifunctional thin film surface Citation Details In-Document Search Title: Multifunctional thin film surface You are accessing a document from the Department of Energy's (DOE)...

  12. Low-temperature plasma-deposited silicon epitaxial films: Growth...

    Office of Scientific and Technical Information (OSTI)

    Low-temperature plasma-deposited silicon epitaxial films: Growth and properties Citation Details In-Document Search Title: Low-temperature plasma-deposited silicon epitaxial films:...

  13. Radiochromic Film Measurement of Spatial Uniformity for a Laser...

    Office of Scientific and Technical Information (OSTI)

    Radiochromic Film Measurement of Spatial Uniformity for a Laser Generated X-ray Environment Citation Details In-Document Search Title: Radiochromic Film Measurement of Spatial...

  14. Solar Thin Films Inc formerly American United Global Inc | Open...

    Open Energy Info (EERE)

    Films Inc formerly American United Global Inc Jump to: navigation, search Name: Solar Thin Films Inc (formerly American United Global Inc) Place: New York, New York Zip: 10038...

  15. SFC Ltd formerly SamWoo Film | Open Energy Information

    Open Energy Info (EERE)

    Solar Product: Korean manufacturer of various types of film, including light diffusion, printing, OHP, inkjet films and TPT-type backsheets for solar modules. Coordinates:...

  16. High Temperature Thin Film Polymer Dielectric Based Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for HEV Power Electronic Systems High Temperature Thin Film Polymer Dielectric Based ... More Documents & Publications High Temperature Polymer Capacitor Dielectric Films High ...

  17. NREL: Photovoltaics Research - Polycrystalline Thin-Film Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the area of polycrystalline thin-film materials and devices. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  18. Evaluation of crystallinity and film stress in yttria-stabilized...

    Office of Scientific and Technical Information (OSTI)

    ... A, Vacuum, Surfaces and Films; Journal Volume: 23; ... Language: English Subject: 36 MATERIALS SCIENCE; ABSORPTION; ... SPUTTERING; STRESSES; THIN FILMS; WATER VAPOR; X-RAY ...

  19. Solvothermal Thin Film Deposition of Electron Blocking Layers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solvothermal Thin Film Deposition of Electron Blocking Layers Home > Research > ANSER Research Highlights > Solvothermal Thin Film Deposition of Electron Blocking Layers...

  20. Epitaxial ternary nitride thin films prepared by a chemical solution...

    Office of Scientific and Technical Information (OSTI)

    Epitaxial ternary nitride thin films prepared by a chemical solution method Citation Details In-Document Search Title: Epitaxial ternary nitride thin films prepared by a chemical...

  1. Thinner Film Silicon Solar Cells - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thin film silicon solar cells with a potential increase in photon energy conversion of up to 20%, a significant improvement over conventional thin film photovoltaic technologies. ...

  2. China Lucky Film Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Lucky Film Co Ltd Jump to: navigation, search Name: China Lucky Film Co Ltd Place: Baoding, Hebei Province, China Zip: 71054 Sector: Solar Product: China's photosensitive materials...

  3. Semiconductor-nanocrystal/conjugated polymer thin films (Patent...

    Office of Scientific and Technical Information (OSTI)

    Semiconductor-nanocrystalconjugated polymer thin films Citation Details In-Document Search Title: Semiconductor-nanocrystalconjugated polymer thin films You are accessing a...

  4. Superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} thin films on polycrystalline ferrite for magnetically tunable microwave components

    SciTech Connect (OSTI)

    Jia, Q.X.; Findikoglu, A.T.; Arendt, P.; Foltyn, S.R.; Roper, J.M.; Groves, J.R.; Coulter, J.Y.; Li, Y.Q.; Dionne, G.F.

    1998-04-01

    Superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (YBCO) thin films with a surface resistance of 0.86 m{Omega} at 10 GHz and 76 K have been grown on polycrystalline ferrite yttrium iron garnet (YIG) substrates. The chemical and structural mismatches between YBCO and YIG are solved by using a double buffer layer of biaxially oriented yttria-stabilized zirconia (YSZ) and CeO{sub 2}, where YSZ is deposited by an ion-beam-assisted-deposition technique. The YBCO films are {ital c} axis oriented with an in-plane mosaic spread [full width at half maximum of an x-ray {phi}-scan on (103) reflection] of less than 8{degree}. The films have a superconductive transition temperature above 88 K with a transition width less than 0.3 K, giving a critical current density above 10{sup 6}A/cm{sup 2} in self field at 75 K. At 75 K in an external magnetic field of 1 T perpendicular to the film surface, the films maintain a critical current density over 2{times}10{sup 5}A/cm{sup 2}. {copyright} {ital 1998 American Institute of Physics.}

  5. Anisotropic-strain-relaxation-induced crosshatch morphology in epitaxial SrTiO{sub 3}/NdGaO{sub 3} thin films

    SciTech Connect (OSTI)

    Tan, X. L.; Chen, F.; Chen, P. F.; Xu, H. R.; Chen, B. B.; Jin, F.; Gao, G. Y.; Wu, W. B.

    2014-10-15

    We investigate the strain relaxation and surface morphology of epitaxial SrTiO{sub 3} (STO) films grown on (001){sub O} and (110){sub O} planes of orthorhombic NdGaO{sub 3} (NGO), and (001) plane of cubic (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (LSAT) substrates. Although the average lattice mismatches are similar, strikingly regular crosshatched surface patterns can be found on STO/NGO(001){sub O}[(110){sub O}] films, contrary to the uniform surface of STO/LSAT(001). Based on the orientation and thickness dependent patterns and high-resolution x-ray diffractions, we ascribe the crosshatch morphology to the anisotropic strain relaxation with possibly the 60 misfit dislocation formation and lateral surface step flow in STO/NGO films, while an isotropic strain relaxation in STO/LSAT. Further, we show that the crosshatched STO/NGO(110){sub O} surface could be utilized as a template to modify the magnetotransport properties of epitaxial La{sub 0.6}Ca{sub 0.4}MnO{sub 3} films. This study highlights the crucial role of symmetry mismatch in determining the surface morphology of the perovskite oxide films, in addition to their epitaxial strain states, and offers a different route for designing and fabricating functional perovskite-oxide devices.

  6. Growth mechanism and microstructure of low defect density InN (0001) In-face thin films on Si (111) substrates

    SciTech Connect (OSTI)

    Kehagias, Th.; Dimitrakopulos, G. P.; Koukoula, T.; Komninou, Ph.; Ajagunna, A. O.; Georgakilas, A.; Physics Department, University of Crete, P.O. Box 2208, 71003 Heraklion-Crete ; Tsagaraki, K.; Adikimenakis, A.

    2013-10-28

    Transmission electron microscopy has been employed to analyze the direct nucleation and growth, by plasma-assisted molecular beam epitaxy, of high quality InN (0001) In-face thin films on (111) Si substrates. Critical steps of the heteroepitaxial growth process are InN nucleation at low substrate temperature under excessively high N-flux conditions and subsequent growth of the main InN epilayer at the optimum conditions, namely, substrate temperature 400450 C and In/N flux ratio close to 1. InN nucleation occurs in the form of a very high density of three dimensional (3D) islands, which coalesce very fast into a low surface roughness InN film. The reduced reactivity of Si at low temperature and its fast coverage by InN limit the amount of unintentional Si nitridation by the excessively high nitrogen flux and good bonding/adhesion of the InN film directly on the Si substrate is achieved. The subsequent overgrowth of the main InN epilayer, in a layer-by-layer growth mode that enhances the lateral growth of InN, reduces significantly the crystal mosaicity and the density of threading dislocations is about an order of magnitude less compared to InN films grown using an AlN/GaN intermediate nucleation/buffer layer on Si. The InN films exhibit the In-face polarity and very smooth atomically stepped surfaces.

  7. Diamond film growth argon-carbon plasmas

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Krauss, Alan R. (Naperville, IL); Liu, Shengzhong (Canton, MI); Pan, Xianzheng (Wuhan Hubei, CN); Zuiker, Christopher D. (LaGrange, IL)

    1998-01-01

    A method and system for manufacturing diamond film. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrogen and hydrocarbon and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous and deposition of a diamond film on a substrate.

  8. Diamond film growth from fullerene precursors

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Liu, Shengzhong (Woodridge, IL); Krauss, Alan R. (Naperville, IL); Pan, Xianzheng (Woodridge, IL)

    1997-01-01

    A method and system for manufacturing diamond film. The method involves forming a fullerene vapor, providing a noble gas stream and combining the gas with the fullerene vapor, passing the combined fullerene vapor and noble gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the fullerene and deposition of a diamond film on a substrate.

  9. Preparation of a semiconductor thin film

    DOE Patents [OSTI]

    Pehnt, Martin; Schulz, Douglas L.; Curtis, Calvin J.; Ginley, David S.

    1998-01-01

    A process for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  10. Preparation of a semiconductor thin film

    DOE Patents [OSTI]

    Pehnt, M.; Schulz, D.L.; Curtis, C.J.; Ginley, D.S.

    1998-01-27

    A process is disclosed for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  11. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  12. Organic conductive films for semiconductor electrodes

    DOE Patents [OSTI]

    Frank, A.J.

    1984-01-01

    According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor over-coated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

  13. Improved liquid-film electron stripper

    DOE Patents [OSTI]

    Gavin, B.F.

    1984-11-01

    An improved liquid-film electron stripper particularly for high intensity heavy ion beams which produces constant regenerated, stable, free-standing liquid films having an adjustable thickness between 0.3 to 0.05 microns. The improved electron stripper is basically composed of at least one high speed, rotating disc with a very sharp, precision-like, ground edge on one side of the disc's periphery and with highly polished, flat, radial surface adjacent the sharp edge. A fine stream of liquid, such as oil, impinges at a 90/sup 0/ angle adjacent the disc's sharp outer edge. Film terminators, located at a selected distance from the disc perimeter are positioned approximately perpendicular to the film. The terminators support, shape, and stretch the film and are arranged to assist in the prevention of liquid droplet formation by directing the collected film to a reservoir below without breaking or interfering with the film. One embodiment utilizes two rotating discs and associated terminators, with the discs rotating so as to form films in opposite directions, and with the second disc being located down beam-line relative to the first disc.

  14. Measuring the depth profiles of strain/composition in AlGaN-graded layer by high-resolution x-ray diffraction

    SciTech Connect (OSTI)

    Kuchuk, A. V.; Stanchu, H. V.; Kladko, V. P.; Belyaev, A. E.; Li, Chen; Ware, M. E.; Mazur, Yu. I.; Salamo, G. J.

    2014-12-14

    Here, we demonstrate X-ray fitting through kinematical simulations of the intensity profiles of symmetric reflections for epitaxial compositionally graded layers of AlGaN grown by molecular beam epitaxy pseudomorphically on [0001]-oriented GaN substrates. These detailed simulations depict obvious differences between changes in thickness, maximum concentration, and concentration profile of the graded layers. Through comparison of these simulations with as-grown samples, we can reliably determine these parameters, most important of which are the profiles of the concentration and strain which determine much of the electrical properties of the film. In addition to learning about these parameters for the characterization of thin film properties, these fitting techniques create opportunities to calibrate growth rates and control composition profiles of AlGaN layers with a single growth rather than multiple growths as has been done traditionally.

  15. Thin palladium films on silicon and titanium

    SciTech Connect (OSTI)

    Harris, L.A.

    1982-12-01

    Films of Pd from 20 to 160A thick were deposited on sputter-etched Si and on Ti films of Si and then tested electrochemically in 0.5M H/sub 2/SO/sub 4/. The behavior characteristic of Pd metal was lost with prolonged storage or with extended electrochemical cycling. The thinner films produced oxidation and reduction peaks in the voltammograms similar to the hydrogen peaks observed with Pt. Hydrogen sorption measured from voltammograms at different sweep rates and by pulse measurements indicates a definite diffusion component that begins to limit hydrogen sorption for P films thicker than about 80A. Shifts of the oxygen reduction peak indicate an increase in oxygen bonding strength as the films are made thinner.

  16. Dye-sensitized solar cell employing zinc oxide aggregates grown in the presence of lithium

    DOE Patents [OSTI]

    Zhang, Qifeng; Cao, Guozhong

    2013-10-15

    Provided are a novel ZnO dye-sensitized solar cell and method of fabricating the same. In one embodiment, deliberately added lithium ions are used to mediate the growth of ZnO aggregates. The use of lithium provides ZnO aggregates that have advantageous microstructure, morphology, crystallinity, and operational characteristics. Employing lithium during aggregate synthesis results in a polydisperse collection of ZnO aggregates favorable for porosity and light scattering. The resulting nanocrystallites forming the aggregates have improved crystallinity and more favorable facets for dye molecule absorption. The lithium synthesis improves the surface stability of ZnO in acidic dyes. The procedures developed and disclosed herein also help ensure the formation of an aggregate film that has a high homogeneity of thickness, a high packing density, a high specific surface area, and good electrical contact between the film and the fluorine-doped tin oxide electrode and among the aggregate particles.

  17. Composite polymeric film and method for its use in installing a very-thin polymeric film in a device

    DOE Patents [OSTI]

    Duchane, D.V.; Barthell, B.L.

    1982-04-26

    A composite polymeric film and a method for its use in forming and installing a very thin (< 10 ..mu..m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectiely dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to e successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  18. Preparation and characterization of highly L2{sub 1}-ordered full-Heusler alloy Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} thin films for spintronics device applications

    SciTech Connect (OSTI)

    Wang Wenhong; Sukegawa, Hiroaki; Shan Rong; Furubayashi, Takao; Inomata, Koichiro

    2008-06-02

    We report the investigation of structure and magnetic properties of full-Heusler alloy Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} (CFAS) thin films grown on MgO-buffered MgO (001) substrates through magnetron sputtering. It was found that single-crystal CFAS thin films with high degree of L2{sub 1} ordering and sufficiently flat surface could be obtained after postdeposition annealing. All the films show a distinct uniaxial magnetic anisotropy with the easy axis of magnetization along the in-plane [110] direction. These results indicate that the use of the MgO buffer for CFAS is a promising approach for achieving a higher tunnel magnetoresistance ratio, and thus for spintronics device applications.

  19. Permanent laser conditioning of thin film optical materials

    DOE Patents [OSTI]

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  20. Permanent laser conditioning of thin film optical materials

    DOE Patents [OSTI]

    Wolfe, C. Robert (Palo Alto, CA); Kozlowski, Mark R. (Pleasanton, CA); Campbell, John H. (Livermore, CA); Staggs, Michael (Tracy, CA); Rainer, Frank (Livermore, CA)

    1995-01-01

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.